1
|
Dagsuyu E, Can-Tuncelli I, Yanardag R, Erkan N, Dogruyol H, Ulusoy S, Ozden O, Mol S, Tosun SY, Ucok D. Environmental stress responses to marine mucilage: Oxidative damage in economically important seafood from the Sea of Marmara. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 374:126266. [PMID: 40250519 DOI: 10.1016/j.envpol.2025.126266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/14/2025] [Accepted: 04/15/2025] [Indexed: 04/20/2025]
Abstract
Marine mucilage, a gelatinous organic substance driven by nutrient enrichment and rising sea temperature, poses significant threats to marine biodiversity and fisheries. This study examines the oxidative stress responses in four seafood species: deep-water rose shrimp (Parapenaeus longirostris), common sole (Solea solea), European anchovy (Engraulis encrasicolus), and Atlantic horse mackerel (Trachurus trachurus) in Sea of Marmara, Türkiye, between September 2021 to April 2022. Biomarkers of oxidative stress-reduced glutathione (GSH), lipid peroxidation (LPO), and antioxidant enzyme activities (glutathione reductase, glutathione-S-transferase, and superoxide dismutase), were analyzed in muscle tissues to evaluate species-specific resilience to mucilage. Findings revealed distinct variations among species. Deep-water rose shrimp demonstrated the highest GSH level and lowest LPO level, indicating robust oxidative stress defense. In contrast, pelagic species, including European anchovy and Atlantic horse mackerel, exhibited decreased GSH and elevated LPO levels and variability antioxidant enzyme activities, reflecting greater sensitivity to environmental stress. During the marine mucilage, in addition to mucilage distribution, fluctuations in seawater temperature (between 7.4°C and 24.4°C), and physiological stress caused seasonal changes in various enzymatic activities of the fish species investigated in our study. These results highlight the risks posed by marine mucilage to seafood safety and the ecological balance of marine environments. The vulnerability of pelagic species, combined with their economic and nutritional importance, underscores the urgency of mitigation strategies. This study emphasizes the need for integrated "One Health" approaches to safeguard ecosystem health and food security in the region.
Collapse
Affiliation(s)
- Eda Dagsuyu
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar, 34320, Istanbul, Türkiye.
| | - Idil Can-Tuncelli
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Seafood Processing Programme, Fatih, 34134, Istanbul, Türkiye
| | - Refiye Yanardag
- Istanbul University-Cerrahpaşa, Faculty of Engineering, Department of Chemistry, Avcilar, 34320, Istanbul, Türkiye
| | - Nuray Erkan
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Food Safety Programme, Fatih, 34134, Istanbul, Türkiye
| | - Hande Dogruyol
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Food Safety Programme, Fatih, 34134, Istanbul, Türkiye
| | - Safak Ulusoy
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Seafood Processing Programme, Fatih, 34134, Istanbul, Türkiye
| | - Ozkan Ozden
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Seafood Processing Programme, Fatih, 34134, Istanbul, Türkiye
| | - Suhendan Mol
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Seafood Processing Programme, Fatih, 34134, Istanbul, Türkiye
| | - Sehnaz Yasemin Tosun
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Seafood Processing Programme, Fatih, 34134, Istanbul, Türkiye
| | - Didem Ucok
- Istanbul University, Faculty of Aquatic Sciences, Department of Fisheries and Seafood Processing Technology, Seafood Processing Programme, Fatih, 34134, Istanbul, Türkiye
| |
Collapse
|
2
|
Li X, Hu Z, Guo M, Liu G, Gao J, Xing W. Insight into the characterization of dissolved organic matter in shallow lakes with different trophic states and their net photo-generation capacity of reactive oxygen species. WATER RESEARCH 2025; 276:123204. [PMID: 39933291 DOI: 10.1016/j.watres.2025.123204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 01/08/2025] [Accepted: 01/24/2025] [Indexed: 02/13/2025]
Abstract
Reactive oxygen species (ROS) are ubiquitous in the aquatic environment, and they are closely related to several biogeochemical processes. Dissolved organic matter (DOM) is one of the main photosensitizers involved in the formation of ROS and it also serves as a sink for ROS by involving in scavenging, quenching, and antioxidant reactions. The net effect of these processes depends on the concentration, source, and composition of the DOM. Current studies have mainly focused on the steady-state concentration of reactive oxygen species ([ROS]ss) produced by the total DOM in lakes with different trophic states and ignored the net photo-generation capacity of ROS ([ROS]DOM, the net steady concentration of ROS generated per unit mass of DOM), leading to a vague understanding of the photochemical properties of DOM in aquatic systems, especially in shallow lakes with different trophic states. In this study, the optical composition of DOM was determined with optical characterization, such as specific UV-Vis and excitation-emission matrices with fluorescence regional integration (FRI-EEMs), and its molecular characteristics were analyzed by Fourier-transform ion cyclotron resonance mass spectrometry (FT-ICR MS). The results revealed that DOM in lakes with different trophic states had mixed endogenous and exogenous characteristics, accompanied by an increasing trend in endogenous characteristics with the increasing trophic state of lakes. Spectroscopic probes were used to detect the steady-state concentration of ROS and further calculate the [ROS]DOM, such as [3DOM*]DOM, [•OH]DOM, [1O2]DOM and [O2.-]DOM. The results indicated that the [ROS]DOM in lakes with light-eutrophic states was significantly higher than that in lakes with moderate-eutrophic and hyper-eutrophic states, which indicated that the DOM in lower trophic state lakes has a higher net photo-generation capacity of ROS. Pearson analysis results showed that [3DOM*]DOM, [•OH]DOM, [1O2]DOM and [O2.-]DOM had a significant positive correlation with lignin/CRAMs-like, aromatic, and tannin compounds, as well as the fluorescence components, fulvic- and humic-like substances and the UV-Vis indicator: SUVA254 revealed that DOM with higher humification and aromaticity had a higher net photo-generation capacity of ROS in different trophic state lakes. In addition, the molecular uniqueness of the DOM was dominated by lignin/CRAMs-like and aromatic compounds, which were positively correlated with [ROS]DOM, in the following order: [3DOM*]DOM > [•OH]DOM > [1O2]DOM > [O2.-]DOM. This study emphasizes the importance of focusing on the source, composition, and net photo-generation capacity of ROS by DOM, which would help evaluate the photochemical potential and other behaviors of DOM in lakes with different trophic states and provide guidance for the risk assessment of DOM input from different sources.
Collapse
Affiliation(s)
- Xiaolu Li
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Zhen Hu
- Key Laboratory of Vegetable Ecological Cultivation on Highland, Ministry of Agriculture and Rural Affairs, Hubei Hongshan Laboratory, Industrial Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430063, China
| | - Minli Guo
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Guanglong Liu
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Jiong Gao
- Hubei Key Laboratory of Regional Development and Environmental Response, College of Resources and Environmental Science, Hubei University, Wuhan 430062, China.
| | - Wei Xing
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| |
Collapse
|
3
|
Narváez-Barragán DA, Sperfeld M, Segev E. DmdA-independent lag phase shortening in Phaeobacter inhibens bacteria under stress conditions. FEBS J 2025. [PMID: 40318179 DOI: 10.1111/febs.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Revised: 03/20/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Bacteria can shorten their lag phase by using methyl groups from compounds like dimethylsulfoniopropionate (DMSP), which are incorporated into cellular components via the methionine cycle. However, the role of specific methionine synthases in this process is not fully understood. Using transcriptomics, genetics, and biochemical assays, we investigated methionine synthases involved in lag phase shortening in Phaeobacter inhibens. We focused on a cobalamin-dependent methionine synthase (MetH)-like complex encoded by three genes: a betaine-homocysteine S-methyltransferase (bmt), a cobalamin-binding protein (cbp), and an intermediate methyl carrier (PGA1_c16040). Expression profiling revealed transcriptional decoupling among these genes. Deleting bmt disrupted lag phase shortening in response to DMSP. Functional assays showed that Bmt can directly produce methionine from DMSP and betaine, independent of tetrahydrofolate (THF) or cobalamin. Interestingly, under stress conditions, lag phase shortening occurred even in the absence of dimethylsulfoniopropionate demethylase DmdA, the primary DMSP demethylase. Under osmotic and oxidative stress, bmt expression increased significantly in response to both DMSP and betaine, suggesting an alternative methylation route. This highlights the role of Bmt as both demethylase and a methionine synthase under stress, offering a cost-effective strategy for methyl group assimilation. Our findings reveal a novel stress-responsive pathway for methionine synthesis and demonstrate the role of Bmt in promoting bacterial adaptation by accelerating the lag phase.
Collapse
Affiliation(s)
| | - Martin Sperfeld
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Einat Segev
- Department of Plant and Environmental Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
4
|
Imlay JA. The Barrier Properties of Biological Membranes Dictate How Cells Experience Oxidative Stress. Mol Microbiol 2025; 123:454-463. [PMID: 40091849 PMCID: PMC12051229 DOI: 10.1111/mmi.15353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/17/2025] [Accepted: 02/19/2025] [Indexed: 03/19/2025]
Abstract
Molecular oxygen, superoxide, and hydrogen peroxide are related oxidants that can each impair the growth of microorganisms. Strikingly, these species exhibit large differences in their abilities to cross biological membranes. This Perspective explains the basis of those differences, and it describes natural situations in which the permeability of membranes to oxidants determines the amount of stress that a bacterium experiences.
Collapse
Affiliation(s)
- James A. Imlay
- Department of MicrobiologyUniversity of IllinoisUrbanaIllinoisUSA
| |
Collapse
|
5
|
Fernández-García F, Marques A, Jerónimo S, Oliveira IB, Carvalhais A, Pereira V, Asturiano JF, Pacheco M, Mieiro C. Sex-specific reproductive impairment in Pacific oysters (Magallana gigas) exposed to TiO 2 NPs: A focus on gonadal status. MARINE ENVIRONMENTAL RESEARCH 2025; 205:107008. [PMID: 39983464 DOI: 10.1016/j.marenvres.2025.107008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/05/2025] [Accepted: 02/09/2025] [Indexed: 02/23/2025]
Abstract
Environmentally realistic concentrations of titanium dioxide nanoparticles (TiO2 NPs) are considered reprotoxic for marine bivalves. However, further investigation is needed to understand their impact on gonadal health, particularly concerning sex-specific responses. Thus, this study aimed to understand sex-based effects of TiO2 NPs environmentally realistic concentrations in the gonad of Pacific oysters (Magallana gigas). Oysters were exposed to 10 and 100 μg·L-1 of TiO2 NPs for 3 and 7 days. Morphological parameters (condition index, sex and gametogenic stage), energy-related responses (carbohydrates, lipids, proteins, and electron transport system (ETS) activity), digestive function (alpha-amylase activity), and oxidative stress profile (antioxidants and damage) were assessed to address gonadal status. The results revealed sex-specific responses based on duration and concentration. Females reflected a drop in carbohydrate levels after 3 days at 100 μg·L-1, suggesting mobilization of this energy reserve to counteract TiO2 NP effects, followed by recovery after 7 days. Males showed reduced metabolic activity after 3 days at 10 μg·L-1, marked by ETS depletion, independently of oxidative stress demonstrating a compensatory response to TiO2 NP exposure. After 7 days, both concentrations triggered male lipid peroxidation despite carbohydrate mobilization at 10 μg·L-1, indicating oxidative damage in testes. These findings revealed that TiO2 NPs are reprotoxic for male oysters at 10 μg·L-1, through oxidative stress pathways, while females reflected vulnerability to 100 μg·L-1. This study provides valuable insights into understanding TiO2 NP's reprotoxicity at environmental concentrations, highlighting gonads as a target for these NPs, and their potential risks to marine bivalves.
Collapse
Affiliation(s)
- F Fernández-García
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain.
| | - A Marques
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - S Jerónimo
- Agricultural College of Coimbra (ESAC/IPC), 3045-601, Coimbra, Portugal
| | - I B Oliveira
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), University of Porto, 4450-208, Matosinhos, Portugal
| | - A Carvalhais
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - V Pereira
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - J F Asturiano
- Grupo de Acuicultura y Biodiversidad, Instituto de Ciencia y Tecnología Animal, Universitat Politècnica de València, Valencia, Spain
| | - M Pacheco
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - C Mieiro
- Centre for Environmental and Marine Studies (CESAM) and Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
6
|
Rodrigo DCG, Udayantha HMV, Liyanage DS, Omeka WKM, Kodagoda YK, Hanchapola HACR, Dilshan MAH, Ganepola GANP, Warnakula WADLR, Kim G, Kim J, Lee J, Wan Q, Lee J. Functional characterization of peroxiredoxin 5 from yellowtail clownfish (Amphiprion clarkii): Immunological expression assessment, antioxidant activities, heavy metal detoxification, and nitrosative stress mitigation. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2025; 162:105289. [PMID: 39536807 DOI: 10.1016/j.dci.2024.105289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/10/2024] [Accepted: 11/10/2024] [Indexed: 11/16/2024]
Abstract
Peroxiredoxin 5 (Prdx5) is the last recognized member of Prdx family. It is a unique, atypical, 2-Cys antioxidant enzyme, protecting cells from death caused by reactive oxygen species (ROS). In this study, the Prdx5 ortholog of Amphiprion clarkii (AcPrdx5) was identified and characterized to explore its specific structural features and functional properties. The open reading frame of AcPrdx5 is 573 bp long and encodes 190 amino acids containing a mitochondrial targeting sequence, thioredoxin domain, and two conserved cysteine residues responsible for antioxidant function. The predicted molecular weight and theoretical isoelectric point of AcPrdx5 are 20.3 kDa and 9.01, respectively. AcPrdx5 sequences were found to be highly conserved across the other orthologs from various organisms and it distinctively clustered within the fish Prdx5 subclade of the phylogenetic tree. The expression of AcPrdx5 was ubiquitously detected among twelve tested tissues, with the highest level in the brain. Furthermore, the mRNA levels of AcPrdx5 in the blood and head-kidney tissues were significantly (p < 0.05) upregulated following polyinosinic-polycytidylic acid (Poly I:C), lipopolysaccharide (LPS), and Vibrio harveyi immune challenge. A concentration-dependent antioxidant potential of recombinant AcPrdx5 was observed in insulin disulfide bond reduction, heavy metal detoxification, free radical and hydrogen peroxide (H2O2) scavenging assays. Additionally, AcPrdx5 overexpression in fathead minnow (FHM) cells upregulated the antioxidant-associated gene (Rrm1, MAPK, SOD2, and PRDX1) expression after H2O2 treatment, and promoted cell viability upon arsenic (As) exposure. In macrophages, AcPrdx5 overexpression effectively suppressed substantial nitric oxide production under lipopolysaccharide treatment. Collectively, our results suggest that AcPrdx5 may play roles in both antioxidant defense system and innate immune response against pathogenic invasions in A. clarkii.
Collapse
Affiliation(s)
- D C G Rodrigo
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - H M V Udayantha
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - D S Liyanage
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - W K M Omeka
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - Y K Kodagoda
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - H A C R Hanchapola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - M A H Dilshan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - G A N P Ganepola
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - W A D L R Warnakula
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - Gaeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - Jeongeun Kim
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - Jihun Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea
| | - Qiang Wan
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, South Korea
| | - Jehee Lee
- Department of Marine Life Sciences & Center for Genomic Selection in Korean Aquaculture, Jeju National University, Jeju, 63243, South Korea; Marine Life Research Institute, Jeju National University, Jeju, 63333, South Korea.
| |
Collapse
|
7
|
Song JA, Lee E, Choi YU, Park JJC, Han J. Influence of temperature changes on oxidative stress and antioxidant defense system in the bay scallop, Argopecten irradians. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111775. [PMID: 39537095 DOI: 10.1016/j.cbpa.2024.111775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/31/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
In this study, we aimed to understand the effects of changes in temperature on biochemical and molecular responses associated with the antioxidant defense system in the bay scallop, Argopecten irradians. We measured the contents of H2O2 and malondialdehyde (MDA), as well as the activities of antioxidant enzymes (e.g., glutathione S-transferase [GST], superoxide dismutase [SOD], and catalase [CAT]), and the regulation of stress-related genes (e.g., GST, SOD, CAT, and heat shock protein 70 [HSP70]). In addition, total antioxidant capacity (TAC) was examined in scallops exposed to different temperatures. A. irradians showed high levels of H2O2 and MDA in response to acute thermal stress (48 and 72 h of exposure). Temperature changes also led to a significant increase in antioxidant enzyme activity and mRNA expression levels in A. irradians. Interestingly, the TAC increased in response to acute thermal stress (28 °C) for up to 12 h and decreased thereafter. The oxidative stress induced by high temperatures could not be alleviated by an increase in levels of antioxidant enzymes, such as GST, SOD, and CAT, resulting in high levels of H2O2 and MDA and low levels of TAC. In addition, significant changes (P < 0.05) in HSP70 levels were observed in response to changes in temperature, suggesting that HSP70 played an important role in the heat tolerance of A. irradians. In conclusion, A. irradians exhibits a greater degree of oxidative stress responses in high-temperature environments than that in low-temperature environments. Overall, these findings indicate that temperature changes lead to oxidative stress, resulting in cellular damage and activation of the antioxidant defense system in bay scallops. Further experiments are required to elucidate other antioxidants and fully understand the redox system in A. irradians.
Collapse
Affiliation(s)
- Jin Ah Song
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Eunseong Lee
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Young-Ung Choi
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea
| | - Jordan Jun Chul Park
- Département des Sciences, Université Sainte-Anne, Church Point, NS B0W 1M0, Canada
| | - Jeonghoon Han
- Marine Biotechnology & Bioresource Research Department, Korea Institute of Ocean Science & Technology (KIOST), Busan 49111, Republic of Korea.
| |
Collapse
|
8
|
Humayun S, Hayyan M, Alias Y. A review on reactive oxygen species-induced mechanism pathways of pharmaceutical waste degradation: Acetaminophen as a drug waste model. J Environ Sci (China) 2025; 147:688-713. [PMID: 39003083 DOI: 10.1016/j.jes.2023.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/22/2023] [Accepted: 11/22/2023] [Indexed: 07/15/2024]
Abstract
Innately designed to induce physiological changes, pharmaceuticals are foreknowingly hazardous to the ecosystem. Advanced oxidation processes (AOPs) are recognized as a set of contemporary and highly efficient methods being used as a contrivance for the removal of pharmaceutical residues. Since reactive oxygen species (ROS) are formed in these processes to interact and contribute directly toward the oxidation of target contaminant(s), a profound insight regarding the mechanisms of ROS leading to the degradation of pharmaceuticals is fundamentally significant. The conceptualization of some specific reaction mechanisms allows the design of an effective and safe degradation process that can empirically reduce the environmental impact of the micropollutants. This review mainly deliberates the mechanistic reaction pathways for ROS-mediated degradation of pharmaceuticals often leading to complete mineralization, with a focus on acetaminophen as a drug waste model.
Collapse
Affiliation(s)
- Saba Humayun
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Centre for Ionic Liquids, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Maan Hayyan
- Chemical Engineering Program, Faculty of Engineering and Technology, Muscat University, Muscat P.C.130, Oman.
| | - Yatimah Alias
- Department of Chemistry, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia; University of Malaya Centre for Ionic Liquids, University of Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
9
|
Li W, Jin W, Wu D, Wang C, Xu H, Song N. The substantial generation of photochemically produced reactive intermediates (PPRIs) in algae-type zones from one large shallow lake promoted the removal of organic pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176821. [PMID: 39395495 DOI: 10.1016/j.scitotenv.2024.176821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/05/2024] [Accepted: 10/07/2024] [Indexed: 10/14/2024]
Abstract
Photochemically produced reactive intermediates (PPRIs) are ubiquitously present in aquatic systems and hold significant importance in biogeochemical cycles. The photochemical reaction of dissolved organic matter (DOM), known as photosensitizers upon irradiation, is the main pathway for PPRIs generation. However, the PPRIs produced by algal-derived organic matter (ADOM) and their environmental effects remains elusive. This study confirmed that substantial PPRIs were generated by ADOM in the algal-derived areas. UV absorption spectra, fluorescence spectra and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were then indicated a significant correlation between the molecular weight of DOM and the quantum yield of PPRIs, with lower molecular weight of DOM exhibiting a higher potential for PPRIs generation. Orthogonal partial least squares (OPLS) were used to build novel multivariate predictive models for indicating the PPRIs production in algae-type zone. Also, the higher concentrations of PPRIs could significantly removal different kinds of organic pollutants, such as bisphenol A (BPA), sulfadiazine (SDZ) and 17α-ethinylestradiol (EE2). Quenching experiments further elucidated that 3DOM⁎ was the key specie for pollutants degradation, serving as the precursor to generate a series of PPRIs. This study highlighted the importance of PPRIs generated from ADOM in the natural attenuation of pollutants and provided a new insight for understanding the self-purification in aquatic system.
Collapse
Affiliation(s)
- Wenkang Li
- Key Laboratory of Lake and Watershed Science for Water Security, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Weidong Jin
- National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Dinggui Wu
- Organic Geochemistry Unit, Key Laboratory of Geoscience Big Data and Deep Resource of Zhejiang Province, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Chunliu Wang
- School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Huacheng Xu
- Key Laboratory of Lake and Watershed Science for Water Security, State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China
| | - Na Song
- Jiangsu Key Laboratory of Ocean-Land Environmental Change and Ecological Construction, School of Marine Science and Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
10
|
Liu K, Ge Z, Ai D, Ma Z, Huang D, Zhang J. Coupled effects of redox-active substances and microbial communities on reactive oxygen species in rhizosphere sediments of submerged macrophytes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175421. [PMID: 39128517 DOI: 10.1016/j.scitotenv.2024.175421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 08/07/2024] [Accepted: 08/07/2024] [Indexed: 08/13/2024]
Abstract
Reactive oxygen species (ROS) play crucial roles in element cycling and pollutant dynamics, but their variations and mechanisms in the rhizosphere of submerged macrophytes are poorly investigated. This study investigated the light-dark cycle fluctuations and periodic variations in ROS, redox-active substances, and microbial communities in the rhizosphere of Vallisneria natans. The results showed sustained production and significant diurnal fluctuations in the O2•- and •OH from 27.6 ± 3.7 to 61.7 ± 3.0 μmol/kg FW and 131.0 ± 6.8 to 195.4 ± 8.7 μmol/kg FW, respectively, which simultaneously fluctuated with the redox-active substances. The ROS contents in the rhizosphere were higher than those observed in non-rhizosphere sediments over the V. natans growth period, exhibiting increasing-decreasing trends. According to the redundancy analysis results, water-soluble phenols, fungi, and bacteria were the main factors influencing ROS production in the rhizosphere, showing contribution rates of 74.0, 17.3, and 4.4 %, respectively. The results of partial least squares path modeling highlighted the coupled effects of redox-active substances and microbial metabolism. Our findings also demonstrated the degradation effect of ROS in rhizosphere sediments of submerged macrophytes. This study provides experimental evidence of ROS-related rhizosphere effects and further insights into submerged macrophytes-based ecological restoration.
Collapse
Affiliation(s)
- Kexuan Liu
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zuhan Ge
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Dan Ai
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zihang Ma
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Deying Huang
- Department of Chemistry, Fudan University, Shanghai 200433, PR China
| | - Jibiao Zhang
- National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary, Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China.
| |
Collapse
|
11
|
Amorim K, Grover R, Omanović D, Sauzéat L, Do Noscimiento MIM, Fine M, Ferrier-Pagès C. Desert dust improves the photophysiology of heat-stressed corals beyond iron. Sci Rep 2024; 14:26509. [PMID: 39489736 PMCID: PMC11532333 DOI: 10.1038/s41598-024-77381-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Desert dust is an important source of essential metals for marine primary productivity, especially in oligotrophic systems surrounded by deserts, such as the Red Sea. However, there are very few studies on the effects of dust on reef-building corals and none on the response of corals to heat stress. We therefore supplied dust to two coral species (Stylophora pistillata and Turbinaria reniformis) kept under control conditions (26 °C) or heat stress (32 °C). Since dust releases large amounts of iron (Fe) in seawater, among other metals, the direct effect of different forms of Fe enrichment on coral photosynthesis was also tested. First, our results show that the desert dust altered the coral metallome by increasing the content of metals that are important for coral physiology (e.g. lithium (up to 5-fold), manganese (up to 4-fold in S. pistillata), iron (up to 3-fold in S. pistillata), magnesium (up to 1.3-fold), molybdenum (up to 1.5-fold in S. pistillata)). Overall, metal enrichment improved the photosynthetic performance of corals, especially under thermal stress (e.g. Pgross (up to 2-fold), Pnet (up to 10-fold), chlorophyll (up to 1.5-fold), symbionts (up to 1.6-fold)). However, Fe exposure (ferric chloride or ferric citrate) did not directly improve photosynthesis, suggesting that it is the combination of metals released by the dust, the so-called "metal cocktail effect", that has a positive impact on coral photophysiology. Dust also led to a decrease in Ni uptake (up to 1.4-fold in the symbionts), likely related to the nitrogen metabolism. Finally, we found that the isotopic signature of metals such as iron, zinc and copper is a good indicator of heat stress and dust exposure in corals. In conclusion, desert dust can increase coral resistance to bleaching by supplying corals with essential metals.
Collapse
Affiliation(s)
- Katherine Amorim
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco.
| | - R Grover
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco
| | - D Omanović
- Center for Marine and Environmental Research, Ruđer Bošković Institute, Bijenička cesta 54, Zagreb, 10000, Croatia
| | - L Sauzéat
- Université Clermont Auvergne, CNRS, IRD, OPGC, Laboratoire Magmas et Volcans, Clermont-Ferrand, 63000, France
- Université Clermont Auvergne, CNRS, INSERM, Institut Génétique, Reproduction et Développement, Clermont-Ferrand, 63000, France
| | - M I Marcus Do Noscimiento
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco
| | - Maoz Fine
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
- The Interuniversity Institute for Marine Sciences in Eilat, P.O.B. 469, Eilat, 88103, Israel
| | - Christine Ferrier-Pagès
- Coral Ecophysiology team, Centre Scientifique de Monaco, Principality of Monaco, 8 Quai Antoine 1 er, Monaco, 98000, Principality of Monaco.
| |
Collapse
|
12
|
Yang H, Zhang Y, Gao W, Wu C. Cathodic electrochemiluminescence of boron and nitrogen-codoped carbon dots for the detection of dissolved oxygen in seawater. Talanta 2024; 279:126529. [PMID: 39024853 DOI: 10.1016/j.talanta.2024.126529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/18/2024] [Accepted: 07/07/2024] [Indexed: 07/20/2024]
Abstract
Electrochemiluminescence (ECL) is widely used in various fields due to its high sensitivity and controllable characteristics. Carbon dots (CDs) have emerged as promising ECL emitters due to their simple synthesis, low toxicity, and excellent biocompatibility. However, the practical application of many CDs emitters is hindered by their limited luminous efficiency, often necessitating additional coreactants to enhance the ECL signal intensity. In this study, we synthesized boron and nitrogen-codoped carbon dots (BN-CDs) as ECL emitters, utilizing dissolved oxygen (DO) as the coreactant. The BN-CDs/DO system exhibited a strong cathodic ECL signal. We proposed a reaction mechanism for the BN-CDs/DO ECL system. Additionally, we developed an ECL sensor for DO detection based on this system, showing a linear correlation between ECL peak intensity and DO concentration from 0.5 to 19.8 mg/L, with a detection limit of 0.12 mg/L. It was proven reliable for DO analysis in seawater and freshwater environments. This study provides insights into the synthesis and utilization of BN-CDs, highlighting the potential of DO as an intrinsic coreactant in CDs ECL systems. Furthermore, it provides new perspectives on the detection of DO in seawater and the design of innovative DO sensors.
Collapse
Affiliation(s)
- Hongye Yang
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Yifei Zhang
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China
| | - Wenyue Gao
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China.
| | - Chi Wu
- Shandong Provincial Center for In-Situ Marine Sensors, Institute of Marine Science and Technology, Shandong University, Qingdao, 266237, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou, 511458, China.
| |
Collapse
|
13
|
Bi Z, Wang W, Zhao L, Wang X, Xing D, Zhou Y, Lee DJ, Ren N, Chen C. The generation and transformation mechanisms of reactive oxygen species in the environment and their implications for pollution control processes: A review. ENVIRONMENTAL RESEARCH 2024; 260:119592. [PMID: 39002629 DOI: 10.1016/j.envres.2024.119592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/07/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Reactive oxygen species (ROS), substances with strong activity generated by oxygen during electron transfer, play a significant role in the decomposition of organic matter in various environmental settings, including soil, water and atmosphere. Although ROS has a short lifespan (ranging from a few nanoseconds to a few days), it continuously generated during the interaction between microorganisms and their environment, especially in environments characterized by strong ultraviolet radiation, fluctuating oxygen concentration or redox conditions, and the abundance of metal minerals. A comprehensive understanding of the fate of ROS in nature can provide new ideas for pollutant degradation and is of great significance for the development of green degradation technologies for organic pollutants. At present, the review of ROS generally revolves around various advanced oxidation processes, but lacks a description and summary of the fate of ROS in nature, this article starts with the definition of reactive oxidants species and reviews the production, migration, and transformation mechanisms of ROS in soil, water and atmospheric environments, focusing on recent developments. In addition, the stimulating effects of ROS on organisms were reviewed. Conclusively, the article summarizes the classic processes, possible improvements, and future directions for ROS-mediated degradation of pollutants. This review offers suggestions for future research directions in this field and provides the possible ROS technology application in pollutants treatment.
Collapse
Affiliation(s)
- Zhihao Bi
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Wei Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| | - Lei Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Xueting Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China
| | - Yanfeng Zhou
- Heilongjiang Agricultural Engineering Vocational College, Harbin, Heilongjiang Province, 150070, China
| | - Duu-Jong Lee
- Department of Mechanical Engineering, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China; Department of Chemical Engineering and Materials Science, Yuan Ze University, Chung-li, 32003, Taiwan
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China; Shenzhen Graduate School, Harbin Institute of Technology, Shenzhen, 518055, China
| | - Chuan Chen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin, Heilongjiang Province, 150090, China.
| |
Collapse
|
14
|
de Carvalho FM, Laux M, Ciapina LP, Gerber AL, Guimarães APC, Kloh VP, Apolinário M, Paes JES, Jonck CR, de Vasconcelos ATR. Finding microbial composition and biological processes as predictive signature to access the ongoing status of mangrove preservation. Int Microbiol 2024; 27:1485-1500. [PMID: 38388811 PMCID: PMC11452435 DOI: 10.1007/s10123-024-00492-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 01/08/2024] [Accepted: 02/13/2024] [Indexed: 02/24/2024]
Abstract
Mangroves are complex land-sea transition ecosystems whose microbiota are essential for their nutrient recycling and conservation. Brazil is the third-largest estuarine area in the world and "Baía de Todos os Santos" (BTS) is one of the largest bays of the country, with wide anthropogenic exploration. Using a metagenomic approach, we investigated composition and functional adaptability as signatures of the microbiome of pristine and anthropized areas of BTS, including those under petroleum refinery influence. The taxonomic analysis showed dominance of sulfate-reducing Desulfobacteraceae, Rhodobacteraceae, and Flavobacteriaceae. Taxa were significantly diverse between pristine and disturbed areas. Disturbed mangroves showed a notary increase in abundance of halophilic, sulfur-related, and hydrocarbon-degrading genera and a decrease in diatoms compared to pristine area. The metabolic profile of BTS mangroves was correlated with the differentially abundant microbiota. Two ecological scenarios were observed: one marked by functions of central metabolism associated with biomass degradation and another by mechanisms of microbial adaptability to pollution conditions and environmental degradation. Part of the microbiome was distinct and not abundant in Brazilian estuarine soils. The microbiome signature observed in each BTS mangrove reflects how human actions impact the diversity of these ecosystems and also emphasize their role in attempting to restore disturbed mangroves. The microbiome may act as a potential biological indicator of the preservation status of these soils, despite the limitation of soil property conditions. Additionally, our data pointed to metagenomics as an additional tool for environmental assessment and reinforced the need for protective measures for the mangroves under study.
Collapse
Affiliation(s)
- Fabíola Marques de Carvalho
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Marcele Laux
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Luciane Prioli Ciapina
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Alexandra Lehmkuhl Gerber
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Ana Paula C Guimarães
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Vinícius Prata Kloh
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil
| | - Moacir Apolinário
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brazil
| | - Jorge Eduardo Santos Paes
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brazil
| | - Célio Roberto Jonck
- Petróleo Brasileiro S. A., Centro de Pesquisa Leopoldo Américo Miguez de Mello, Rio de Janeiro, RJ, Brazil
| | - Ana Tereza R de Vasconcelos
- Laboratório de Bioinformática, Laboratório Nacional de Computação Científica, Avenida Getúlio Vargas 333, Quitandinha Petrópolis, Rio de Janeiro, 25651-075, Brazil.
| |
Collapse
|
15
|
Echeveste P, Fernández-Juárez V, Brito-Echeverría J, Rodríguez-Romero A, Tovar-Sánchez A, Agawin NS. Toxicity of inorganic nanoparticles and commercial sunscreens on marine bacteria. CHEMOSPHERE 2024; 364:143066. [PMID: 39128774 DOI: 10.1016/j.chemosphere.2024.143066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 08/13/2024]
Abstract
The Balearic Islands, a top tourist destination for sunny beaches, face physical and chemical pressures from human activities, impacting keystone species like the endemic seagrass Posidonia oceanica and its associated microbiome. This study evaluated the effects of ZnO and TiO2 nanoparticles and three commercial sunscreens with varying protection factors (50 or 90) and chemical complexities (1- SPF50_E "eco-friendly"; 2- SPF50 not "eco-friendly"; 3- SPF90 not "eco-friendly") on five heterotrophic bacteria (Pseudomonas azotifigens, Marinobacterium litorale, Thiothrix nivea, Sedimenticola thiotaurini and Cobetia sp) and two autotrophic cyanobacteria (Halothece sp. and Fischerella muscicola) associated to P. oceanica, as well as a natural leaf epiphytic community. Results indicated that TiO2 affected all heterotrophic bacteria, while ZnO was toxic to only two species, while autotrophs were unaffected. Commercial sunscreens impacted three heterotrophs and the natural epiphytic community, while autotrophs were only affected by SPF50. SPF50_E reduced phosphorus uptake, and both SPF50 and SPF90 decreased alkaline phosphatase activity. Reactive oxygen species production was mainly induced by SPF90, followed by SPF50_E and SPF50. Generally, the smallest bacteria were most sensitive to UV-filters (UVFs). This study indicates that UVFs exposure may alter the epiphytic community structure of P. oceanica.
Collapse
Affiliation(s)
- Pedro Echeveste
- Department of Biology, Universitat de Les Illes Balears, Palma, Spain.
| | - Víctor Fernández-Juárez
- Department of Infectious Diseases, Institute for Biomedicine, Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden; Culture Collection University of Gothenburg (CCUG), Sahlgrenska Academy of the University of Gothenburg, Gothenburg, Sweden; Marine Biological Section, Department of Biology, University of Copenhagen, Helsingør, Denmark
| | | | - Araceli Rodríguez-Romero
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, ICMAN-CSIC, Puerto Real, Spain
| | - Antonio Tovar-Sánchez
- Department of Ecology and Coastal Management, Institute of Marine Sciences of Andalusia, ICMAN-CSIC, Puerto Real, Spain
| | - Nona S Agawin
- Department of Biology, Universitat de Les Illes Balears, Palma, Spain
| |
Collapse
|
16
|
Zheng C, Yang J, Wang Y, Ahmed W, Khan A, Li J, Weng J, Mehmood S, Li W. Comprehensive Assessment of Herbicide Toxicity on Navicula sp. Algae: Effects on Growth, Chlorophyll Content, Antioxidant System, and Lipid Metabolism. Mar Drugs 2024; 22:387. [PMID: 39330268 PMCID: PMC11433268 DOI: 10.3390/md22090387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/24/2024] [Accepted: 08/27/2024] [Indexed: 09/28/2024] Open
Abstract
This study investigated the effects of herbicide exposure on Navicula sp. (MASCC-0035) algae, focusing on growth density, chlorophyll content, antioxidant system, and lipid metabolism. Navicula cultures were exposed to different concentrations of atrazine (ATZ), glyphosate (Gly), and acetochlor (ACT) for 96 h. Results showed a significant decrease in cell numbers, with higher herbicide concentrations having the most noticeable impacts. For instance, Gly-G2 had reduced cell populations by 21.00% at 96 h. Chlorophyll content varied, with Gly having a greater impact on chlorophyll a compared to ATZ and ACT. Herbicide exposure also affected the antioxidant system, altering levels of soluble sugar, soluble protein, and reactive oxygen species (ROS). Higher herbicide rates increased soluble sugar content (e.g., ATZ, Gly, and ACT-G2 had increased by 14.03%, 19.88%, and 19.83%, respectively, at 72 h) but decreased soluble protein content, notably in Gly-G2 by 11.40%, indicating cellular stress. Lipid metabolism analysis revealed complex responses, with changes in free proline, fatty acids, and lipase content, each herbicide exerting distinct effects. These findings highlight the multifaceted impacts of herbicide exposure on Navicula algae, emphasizing the need for further research to understand ecological implications and develop mitigation strategies for aquatic ecosystems.
Collapse
Affiliation(s)
- Chunyan Zheng
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Jie Yang
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Yunting Wang
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Waqas Ahmed
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Amir Khan
- Department of Medicine, Hainan Medical University, Haikou 571100, China
| | - Jiannan Li
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Jiechang Weng
- Hainan Provincial Ecological and Environmental Monitoring Center, Haikou 570228, China
| | - Sajid Mehmood
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| | - Weidong Li
- College of Ecology, Hainan University, Haikou 570100, China
- Center for Eco-Environment Restoration Engineering of Hainan Province, Hainan University, Haikou 570228, China
| |
Collapse
|
17
|
Gao X, Wang H, Chen K, Guo Y, Zhou J, Xie W. Toxicological and Pharmacological Activities, and Potential Medical Applications, of Marine Algal Toxins. Int J Mol Sci 2024; 25:9194. [PMID: 39273145 PMCID: PMC11394994 DOI: 10.3390/ijms25179194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
Marine algal toxins have garnered significant attention in the research community for their unique biochemical properties and potential medical applications. These bioactive compounds, produced by microalgae, pose significant risks due to their high toxicity, yet offer promising therapeutic benefits. Despite extensive research identifying over 300 marine algal toxins, including azaspiracids, brevetoxins, cyclic imines, and yessotoxins, gaps remain in the understanding of their pharmacological potential. In this paper, we critically review the classification, bioactive components, toxicology, pharmacological activities, and mechanisms of these toxins, with a particular focus on their clinical applications. Our motivation stems from the increasing interest in marine algal toxins as candidates for drug development, driven by their high specificity and affinity for various biological receptors. We aim to bridge the gap between toxicological research and therapeutic application, offering insights into the advantages and limitations of these compounds in comparison to other bioactive substances. This review not only enhances the understanding of marine algal toxins' complexity and diversity, but also highlights their extensive application potential in medicine and bioscience, providing a foundation for future research and development in this field.
Collapse
Affiliation(s)
- Xinyu Gao
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Hanyi Wang
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Kuilin Chen
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Shenzhen Key Laboratory of Health Science and Technology, Institute of Biopharmaceutical and Health Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Yifan Guo
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Jin Zhou
- Institute for Ocean Engineering, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| | - Weidong Xie
- State Key Laboratory of Chemical Oncogenomics, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
- Open FIESTA Center, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China
| |
Collapse
|
18
|
Mohamed DFMS, Tarafdar A, Lee SY, Oh HB, Kwon JH. Assessment of biodegradation and toxicity of alternative plasticizer di(2-ethylhexyl) terephthalate: Impacts on microbial biofilms, metabolism, and reactive oxygen species-mediated stress response. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 355:124217. [PMID: 38797346 DOI: 10.1016/j.envpol.2024.124217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/04/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
Although di(2-ethylhexyl) terephthalate (DOTP) is being widely adopted as a non-phthalate plasticizer, existing research primarily focuses on human and rat toxicity. This leaves a significant gap in our understanding of their impact on microbial communities. This study assessed the biodegradation and toxicity of DOTP on microbes, focusing on its impact on biofilms and microbial metabolism using Rhodococcus ruber as a representative bacterial strain. DOTP is commonly found in mass fractions between 0.6 and 20% v/v in various soft plastic products. This study used polyvinyl chloride films (PVC) with varying DOTP concentrations (range 1-10% v/v) as a surface for analysis of biofilm growth. Cell viability and bacterial stress responses were tested using LIVE/DEAD™ BacLight™ Bacterial Viability Kit and by the detection of reactive oxygen species using CellROX™ Green Reagent, respectively. An increase in the volume of dead cells (in the plastisphere biofilm) was observed with increasing DOTP concentrations in experiments using PVC films, indicating the potential negative impact of DOTP on microbial communities. Even at a relatively low concentration of DOTP (1%), signs of stress in the microbes were noticed, while concentrations above 5% compromised their ability to survive. This research provides a new understanding of the environmental impacts of alternative plasticizers, prompting the need for additional research into their wider effects on both the environment and human health.
Collapse
Affiliation(s)
- Dana Fahad M S Mohamed
- Division of Environmental Science and Ecological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea; School of Food Science and Environmental Health, Technological University Dublin, City Campus, Grangegorman, Dublin, D07ADY7, Ireland
| | - So Yeon Lee
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Han Bin Oh
- Department of Chemistry, Sogang University, Seoul, 04107, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
19
|
Bai S, Shang K, Zeng S, Huang Z, Han Z. Genome analysis of Salinimicrobium sp. 3283s, a deep-sea bacterium isolated from the sediments of South China Sea, China. Mar Genomics 2024; 76:101125. [PMID: 39009496 DOI: 10.1016/j.margen.2024.101125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/12/2024] [Indexed: 07/17/2024]
Abstract
Salinimicrobium sp. 3283s is an aerobic, golden-yellow pigment-producing, Flavobacteriaceae bacterium isolated from the sediments at the depth of 1751 m in the South China Sea. In this study, we present the complete genome sequence of strain 3283s, which only have a single circular chromosome comprising 3,702,683 bp with 41.41% G + C content and no circular plasmid. In total, 3257 protein coding genes, 45 tRNA, 9 rRNA, and 13 sRNA genes were obtained. In terms of the function of gene annotation, strain 3283s was more different from Salinimicrobium oceani J15B91, which was isolated from the South China Sea at a similar depth, and more similar to a Mariana Trench-derived strain Salinimicrobium profundisediminis MT39, which was closer in phylogenetic taxonomic status, suggesting that strain 3283s possesses a stronger potential to adapt to the deep-sea environment. Furthermore, the high- pressure simulations also confirmed that strain 3283s can grow in both 30 MPa and 60 MPa hydrostatic pressure environments, and that it grows better in 30 MPa hydrostatic pressure environments than in 60 MPa hydrostatic pressure environments. In addition, we found a large number of genes in strain 3283s that can promote better adaptation of the bacteria to the low oxygen and high hydrostatic pressure (HHP) environment of the deep sea, such as biosynthetic enzymes of antioxidant pigments, genes encoding cytochromes with enhanced affinity for oxygen, proteins for adaptation to HHP, and genes encoding TonB-dependent transporters in the absence of flagella.
Collapse
Affiliation(s)
- Shijie Bai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Kun Shang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Shuqian Zeng
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; Hainan Tropical Ocean University, Sanya 572022, China
| | - Ziming Huang
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China; Hainan Tropical Ocean University, Sanya 572022, China
| | - Zhuang Han
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| |
Collapse
|
20
|
Kültz D, Gardell AM, DeTomaso A, Stoney G, Rinkevich B, Qarri A, Hamar J. Proteome-wide 4-hydroxy-2-nonenal signature of oxidative stress in the marine invasive tunicate Botryllus schlosseri. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.19.604351. [PMID: 39211222 PMCID: PMC11360967 DOI: 10.1101/2024.07.19.604351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The colonial ascidian Boytryllus schlosseri is an invasive marine chordate that thrives under conditions of anthropogenic climate change. We show that the B. schlosseri expressed proteome contains unusually high levels of proteins that are adducted with 4-hydroxy-2-nonenal (HNE). HNE represents a prominent posttranslational modification resulting from oxidative stress. Although numerous studies have assessed oxidative stress in marine organisms HNE protein modification has not previously been determined in any marine species. LC/MS proteomics was used to identify 1052 HNE adducted proteins in B. schlosseri field and laboratory populations. Adducted amino acid residues were ascertained for 1849 modified sites, of which 1195 had a maximum amino acid localization score. Most HNE modifications were at less reactive lysines (rather than more reactive cysteines). HNE prevelance on most sites was high. These observations suggest that B. schlosseri experiences and tolerates high intracellular reactive oxygen species levels, resulting in substantial lipid peroxidation. HNE adducted B. schlosseri proteins show enrichment in mitochondrial, proteostasis, and cytoskeletal functions. Based on these results we propose that redox signaling contributes to regulating energy metabolism, the blastogenic cycle, oxidative burst defenses, and cytoskeleton dynamics during B. schlosseri development and physiology. A DIA assay library was constructed to quantify HNE adduction at 72 sites across 60 proteins that represent a holistic network of functionally discernable oxidative stress bioindicators. We conclude that the vast amount of HNE protein adduction in this circumpolar tunicate is indicative of high oxidative stress tolerance contributing to its range expansion into diverse environments. NEW & NOTEWORTHY Oxidative stress results from environmental challenges that increase in frequency and severity during the Anthropocene. Oxygen radical attack causes lipid peroxidation leading to HNE production. Proteome-wide HNE adduction is highly prevalent in Botryllus schlosseri , a widely distributed, highly invasive, and economically important biofouling ascidian and the first marine species to be analyzed for proteome HNE modification. HNE adduction of specific proteins physiologically sequesters reactive oxygen species, which enhances fitness and resilience during environmental change.
Collapse
|
21
|
Zhou J, Gao W, Xie L, Zhang R, Zhang Y, Wei Z. Revealing mechanism of phenol-amine reaction to form humus in compost based on high-resolution liquid chromatography mass spectrometry and spectroscopy. BIORESOURCE TECHNOLOGY 2024; 403:130862. [PMID: 38768664 DOI: 10.1016/j.biortech.2024.130862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Revised: 05/17/2024] [Accepted: 05/17/2024] [Indexed: 05/22/2024]
Abstract
Humus is the stable form of carbon storage in straw compost. The phenol-amine reaction is a pathway for humus formation in straw compost. In this study, two reaction systems, GP group (pyrogallol and glycine) and GCP group (catechol, pyrogallol, and glycine), were constructed in a simulated composting environment and revealed the molecular binding mechanism of the phenol-amine reaction through spectroscopy and mass spectrometry. The results showed that phenolic self-polymerization was faster than phenol-amine reaction. Therefore, the aromatization degree of GP was 27.14 % higher than that of GCP. The phenol-amine reaction first produced fulvic acid, and then formed humus units rich in active functional group structures (i.e., phenolic hydroxyl and carboxyl groups). These units further captured small molecule compounds to form humic acid eventually. This study would provide theoretical support for exploring the humus formation process and the promotion of straw humification by adding phenol or amino acids to compost.
Collapse
Affiliation(s)
- Jin Zhou
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China; College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Wenfang Gao
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Lina Xie
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China
| | - Ruju Zhang
- Institute of Animal Science, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China
| | - Yunxian Zhang
- College of Environment, Beijing Normal University, Beijing 100091, China
| | - Zimin Wei
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Tianjin 300387, China.
| |
Collapse
|
22
|
Bai S, Huang Z, Li XG. Genome analysis of Rossellomorea sp. y25, a deep sea bacterium isolated from the sediments of South China Sea. Mar Genomics 2024; 75:101110. [PMID: 38735673 DOI: 10.1016/j.margen.2024.101110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/19/2024] [Accepted: 04/19/2024] [Indexed: 05/14/2024]
Abstract
Rossellomorea sp. y25, a putative new species of yellow pigment-producing, aerobic and chemoheterotrophic bacterium belonging to the family Bacillaceae, was isolated from the sediments at the depth of 1829 m in the South China Sea. In this study, we present the complete genome sequences of strain y25, which consisted of only one circular chromosome with 4,633,006 bp and the content of G + C was 41.76%. A total of 4466 CDSs, 106 tRNA, 33 rRNA, and 101 sRNA genes were obtained. Genomic analysis of strain y25 showed that it has the ability to produce antioxidant carotenoids and a large number of heavy metal resistance genes, such as arsenic, cadmium and zinc. In addition, strain y25 contains a prophage that may contribute to host protection against lysis by related Bacillus-like phages. This is the first report of genome-wide information on a bacterium of the genus Rossellomorea isolated from the deep sea, providing insights into how microorganisms of this genus adapt to deep-sea environments.
Collapse
Affiliation(s)
- Shijie Bai
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China
| | - Zhaosong Huang
- School of Biological Science and Technology, University of Jinan, Jinan 250024, China
| | - Xue-Gong Li
- Institute of Deep-sea Science and Engineering, Chinese Academy of Sciences, Sanya 572000, China.
| |
Collapse
|
23
|
Rezaei T, Javadi A. Environmental impact assessment of ocean energy converters using quantum machine learning. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 362:121275. [PMID: 38833932 DOI: 10.1016/j.jenvman.2024.121275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 05/07/2024] [Accepted: 05/27/2024] [Indexed: 06/06/2024]
Abstract
The depletion of fossil energy reserves and the environmental pollution caused by these sources highlight the need to harness renewable energy sources from the oceans, such as waves and tides, due to their high potential. On the other hand, the large-scale deployment of ocean energy converters to meet future energy needs requires the use of large farms of these converters, which may have negative environmental impacts on the ocean ecosystem. In the meantime, a very important point is the volume of data produced by different methods of collecting data from the ocean for their analysis, which makes the use of advanced tools such as different machine learning algorithms even more colorful. In this article, some environmental impacts of ocean energy devices have been analyzed using machine learning and quantum machine learning. The results show that quantum machine learning performs better than its classical counterpart in terms of calculation accuracy. This approach offers a promising new method for environmental impact assessment, especially in a complex environment such as the ocean.
Collapse
Affiliation(s)
- Taha Rezaei
- Department of Engineering, University of Exeter, EX4 4QJ, United Kingdom.
| | - Akbar Javadi
- Department of Engineering, University of Exeter, EX4 4QJ, United Kingdom
| |
Collapse
|
24
|
Ye T, Huang M, Wang Y, Yang A, Xu H. Humic substance mitigated the microplastic-induced inhibition of hydroxyl radical production in riparian sediment. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134246. [PMID: 38603911 DOI: 10.1016/j.jhazmat.2024.134246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 04/03/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Hydroxyl radicals (·OH) generated during the flooding-drought transformation process play a vital role in affecting nutrient cycles at riparian zone. However, information on the processes and mechanisms for ·OH formation under the influence of microplastics (MPs) remains unclear. In this study, the effects of MPs on ·OH production from riparian sediments with different biomass [e.g., vegetation lush (VL) and vegetation barren (VB)] were studied. The results showed that presence of MPs inhibited the production of ·OH by 27 % and 7.5 % for VB and VL sediments, respectively. The inhibition was mainly resulted from the MP-induced reduction of the biotic and abiotic mediated Fe redox processes. Spectral analysis revealed that VL sediments contained more high-molecular-weight humic-like substances. Presence of MPs increased the abundances and activities of Proteobacteria, Acidobacteria and Actinobacteria, which were conducive to the changes in humification and polar properties of organic matters. The reduced humic- and fulvic-like substances were accumulated in the flooding period and substantially oxidized during flooding/drought transformation due to the enhanced MP-mediated electron transfer abilities, thus mitigated the MP-induced inhibition effects. Therefore, in order to better understanding the biogeochemical cycling of contaminants as influenced by ·OH and MPs in river ecosystems, humic substances should be considered systematically.
Collapse
Affiliation(s)
- Tianran Ye
- School of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
| | - Mengyu Huang
- School of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
| | - Yulai Wang
- School of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
| | - Ao Yang
- School of Energy and Environment, Anhui University of Technology, Maanshan 243002, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing 210008, China.
| |
Collapse
|
25
|
Saldaña-Serrano M, Bastolla CLV, Mattos JJ, de Lima D, Piazza CE, Righetti BPH, Martiol R, Dias VHV, Ferreira CP, Nogueira DJ, de Miranda Gomes CHA, Taniguchi S, Bícego MC, Bainy ACD. Biochemical responses in Pacific oysters Magallana gigas (Thunberg, 1793): Tools to evaluate the environmental quality of aquaculture areas. MARINE POLLUTION BULLETIN 2024; 201:116244. [PMID: 38489909 DOI: 10.1016/j.marpolbul.2024.116244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 03/01/2024] [Accepted: 03/06/2024] [Indexed: 03/17/2024]
Abstract
The discharge of sanitary sewage into the bays of the Florianópolis Metropolitan Area (Southern Brazil), has led to the contamination of oyster farms. Consequently, linear alkylbenzenes (LABs) were quantified in the sediment, and the biochemical responses in gills and digestive gland of oysters from six farms were assessed. Our findings revealed elevated levels of LABs in the sediment of the Imaruim and Serraria farms. Additionally, alterations were observed in the antioxidant enzymes: catalase, glutathione peroxidase and superoxide dismutase in both oyster tissue from the Serraria, Santo Antonio de Lisboa and Sambaqui farms. Furthermore, correlation analyses indicated strong and moderate associations between biochemical responses, organic contaminants, and certain physicochemical parameters. Consequently, our results demonstrated the activation of the antioxidant system in oysters, representing a protective response to the presence of sanitary sewage and other contaminants. Therefore, we propose the utilization of biochemical biomarkers for monitoring the environmental quality of farms.
Collapse
Affiliation(s)
- Miguel Saldaña-Serrano
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Camila Lisarb Velasquez Bastolla
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Jacó Joaquim Mattos
- Aquaculture Pathology Research Center-NEPAQ, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Daína de Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Clei Endrigo Piazza
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Bárbara Pacheco Harrison Righetti
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Renata Martiol
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Vera Helena Vidal Dias
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Clarissa Pellegrini Ferreira
- Department of Fisheries Engineering and Biological Sciences, University of Santa Catarina State, UDESC, Laguna, SC 88.790-000, Brazil
| | - Diego José Nogueira
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil
| | - Carlos Henrique Araujo de Miranda Gomes
- Laboratory of Marine Mollusks-LMM, Department of Aquaculture, Center of Agricultural Science, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88040900, Brazil
| | - Satie Taniguchi
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Marcia Caruso Bícego
- Laboratory of Marine Organic Chemistry - LABQOM, Oceanographic Institute, University of São Paulo, São Paulo 05508-120, Brazil
| | - Afonso Celso Dias Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry-LABCAI, Federal University of Santa Catarina, UFSC, Florianópolis, SC 88034-257, Brazil.
| |
Collapse
|
26
|
Kaing V, Guo Z, Sok T, Kodikara D, Breider F, Yoshimura C. Photodegradation of biodegradable plastics in aquatic environments: Current understanding and challenges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 911:168539. [PMID: 37981156 DOI: 10.1016/j.scitotenv.2023.168539] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/20/2023] [Accepted: 11/10/2023] [Indexed: 11/21/2023]
Abstract
Direct and indirect photolysis are important abiotic processes in aquatic environments through which plastics can be transformed physically and chemically. Transport of biodegradable plastics in water is influenced by vertical mixing and turbulent flow, which make biodegradable plastics remain susceptible to sunlight and photolysis despite their high density. In general, biodegradable plastics are composed of ester containing polymers (e.g., poly(butylene succinate), polyhydroxyalkanoate, and polylactic acid), whereas non-biodegradable plastics are composed of long chains of saturated aliphatic hydrocarbons in their backbones (e.g., polyethylene, polypropylene, and polystyrene). Based on the reviewed knowledge and discussion, we may hypothesize that 1) direct photolysis is more pronounced for non-biodegradation than for biodegradable plastics, 2) smaller plastics such as micro/nano-plastics are more prone to photodegradation and photo-transformation by direct and indirect photolysis, 3) the production rate of reactive oxygen species (ROS) on the surface of biodegradable plastics is higher than that of non-biodegradable plastics, 4) the photodegradation of biodegradable plastics may be promoted by ROS produced from biodegradable plastics themselves, and 5) the subsequent reactions of ROS are more active on biodegradable plastics than non-biodegradable plastics. Moreover, micro/nanoplastics derived from biodegradable plastics serve as more effective carriers of organic pollutants than those from non-biodegradable plastics and thus biodegradable plastics may not necessarily be more ecofriendly than non-biodegradable plastics. However, biodegradable plastics have been largely unexplored from the viewpoint of direct or indirect photolysis. Roles of reactive oxygen species originating from biodegradable plastics should be further explored for comprehensively understanding the photodegradation of biodegradable plastics.
Collapse
Affiliation(s)
- Vinhteang Kaing
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan; Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ty Sok
- Faculty of Hydrology and Water Resources Engineering, Institute of Technology of Cambodia, Russian Federation Blvd., P.O. Box 86, Phnom Penh, Cambodia; Research and Innovation Center, Institute of Technology of Cambodia, Phnom Penh, Cambodia
| | - Dilini Kodikara
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Florian Breider
- EPFL - Ecole Polytechnique Fédérale de Lausanne, Central Environmental Laboratory, Institute of Environmental Engineering, ENAC, station 2, CH-1015 Lausanne, Switzerland
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, 2-12-1-M1-4 Ookayama, Meguro-ku, Tokyo 152-8550, Japan.
| |
Collapse
|
27
|
Egea LG, Brun FG, Jiménez-Ramos R. Dissolved organic carbon leaching from microplastics and bioavailability in coastal ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 909:168673. [PMID: 37981166 DOI: 10.1016/j.scitotenv.2023.168673] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/11/2023] [Accepted: 11/16/2023] [Indexed: 11/21/2023]
Abstract
The dissolved organic carbon (DOC) leached from two types of microplastics (polyethylene and polypropylene) frequently found in coastal areas were evaluated in situ. Subsequently, the bioavailability of leached DOC was assessed for microbial inocula from different coastal communities (i.e., estuarine and open-coastal waters, river-mouth waters and seagrass beds). Leached DOC was largely biodegradable (as much as 85 %). However, seagrass beds and river-mouth waters exhibited lower DOC utilization efficiency than estuarine and open-coastal waters, probably because of differences in their microbial communities. The labile/recalcitrant ratio of DOC leached from plastic was similar under illuminated and dark conditions, whereas DOC leached from polyethylene, rather than DOC leached from polypropylene, was preferentially used by microbial communities. We estimated that as many as 21,000 metric tons of DOC leached from plastics may be released into ocean annually. Our results support the need to consider the potential impacts of coastal plastic pollution on microbial communities, including consideration of the trophic webs and coastal carbon cycle.
Collapse
Affiliation(s)
- L G Egea
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Departamento de Biología, Facultad de Ciencias del Mar y Ambientales Universidad de Cádiz, Campus Universitario de Puerto Real., 11510 Puerto Real, Cádiz, Spain
| | - F G Brun
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Departamento de Biología, Facultad de Ciencias del Mar y Ambientales Universidad de Cádiz, Campus Universitario de Puerto Real., 11510 Puerto Real, Cádiz, Spain
| | - R Jiménez-Ramos
- Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional del Mar (CEI·MAR), Departamento de Biología, Facultad de Ciencias del Mar y Ambientales Universidad de Cádiz, Campus Universitario de Puerto Real., 11510 Puerto Real, Cádiz, Spain.
| |
Collapse
|
28
|
Ge Z, Ma Z, Hong W, Liu K, Yan S, Song W, Zhang J. Temporal variations in reactive oxygen species in biofilms of submerged macrophytes: The key role of microbial metabolism mediated by oxygen fluctuations. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132542. [PMID: 37734308 DOI: 10.1016/j.jhazmat.2023.132542] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/28/2023] [Accepted: 09/11/2023] [Indexed: 09/23/2023]
Abstract
Reactive oxygen species (ROS) play a crucial role in the biogeochemistry of aquatic environments, yet their occurrence and accumulation in the biofilm of submerged macrophytes have been poorly documented. Herein, we first investigated the light-dark cycling fluctuations of biofilm microenvironment and the temporal variations of a representative ROS (O2•-) during biofilm succession on the macrophyte leaves and subsequently quantified the photochemical processes in biofilms. The sustained production of O2•- exhibited a distinct rhythmic fluctuation from 32.49 ± 0.56 μmol/kg to 72.56 ± 0.92 μmol/kg FW, which simultaneously fluctuated with the dissolved oxygen, redox potential, and pH, all driven by the alternating oxic-anoxic conditions of biofilms. The intensities of O2•- and ROS firstly increased and then decreased throughout biofilm succession. The O2•- concentrations in biofilms from different waters followed the order of rural river water > landscape lake water > aquaculture pond water, and the leaf photosynthesis and microbial community played a key role. ROS production was significantly associated with Actinobacteria, Proteobacteria and Bacteroidetes, with contributions of 44.6%, 32.8%, and 15.2%, respectively. Partial least squares path modeling structural equation analysis showed that ROS production in leaf biofilms was mainly related to the microenvironment and microbial metabolism. These findings will facilitate the development of ecological restoration strategies in aquatic environments.
Collapse
Affiliation(s)
- Zuhan Ge
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Zihang Ma
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Wenjie Hong
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Kexuan Liu
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Shuwen Yan
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Weihua Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China
| | - Jibiao Zhang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, PR China; Shanghai Shifang Ecology and Landscape Co., Ltd, Shanghai 200233, PR China.
| |
Collapse
|
29
|
Tsamesidis I, Tzika P, Georgiou D, Charisis A, Hans S, Lordan R, Zabetakis I, Kalogianni EP. Oil from Mullet Roe Byproducts: Effect of Oil Extraction Method on Human Erythrocytes and Platelets. Foods 2023; 13:79. [PMID: 38201107 PMCID: PMC10778715 DOI: 10.3390/foods13010079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Background: The valorization of byproducts to obtain high nutritional value foods is of utmost importance for our planet where the population is booming. Among these products are oils rich in ω-3 fatty acids produced from fishery byproducts. Recently, mullet roe oil from roe byproducts was produced that was rich in the ω-3 fatty acids eicosatetraenoic acid (EPA) and docosahexaenoic acid (DHA). Oils are customarily characterized for their composition and degree of oxidation but little is known of their biological effects, especially the effect of the extraction method. Methods: The purpose of this study was to evaluate the effects of freshly extracted mullet roe oil from mullet roe byproducts and the effect of the extraction method on human red blood cells (hRBCs) and platelets. To this end, the hemocompatibility (cytotoxicity), oxidative effects, and erythrocyte membrane changes were examined after 1 and 24 h of incubation. Antiplatelet effects were also assessed in vitro. Results: The expeller press oil extraction method and alcalase-assisted extraction produced the most biocompatible oils, as shown by hemocompatibility measurements and the absence of erythrocyte membrane alterations. Solvent extracts and protease-assisted extraction oils resulted in the rupture of red blood cells at different examined dilutions, creating hemolysis. Conclusions: It seems that the proper functioning of oil-erythrocyte interactions cannot be explained solely by ROS. Further investigations combining chemical analysis with oil-cell interactions could be used as an input to design high nutritional value oils using green extraction technologies. All samples exhibited promising antiplatelet and antiblood clotting effects in vitro.
Collapse
Affiliation(s)
- Ioannis Tsamesidis
- Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400 Thessaloniki, Greece; (I.T.); (P.T.); (D.G.); (A.C.)
| | - Paraskevi Tzika
- Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400 Thessaloniki, Greece; (I.T.); (P.T.); (D.G.); (A.C.)
| | - Despoina Georgiou
- Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400 Thessaloniki, Greece; (I.T.); (P.T.); (D.G.); (A.C.)
| | - Aggelos Charisis
- Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400 Thessaloniki, Greece; (I.T.); (P.T.); (D.G.); (A.C.)
| | - Sakshi Hans
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (S.H.); (R.L.); (I.Z.)
| | - Ronan Lordan
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (S.H.); (R.L.); (I.Z.)
- Institute for Translational Medicine and Therapeutics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ioannis Zabetakis
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (S.H.); (R.L.); (I.Z.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute, University of Limerick, V94 T9PX Limerick, Ireland
| | - Eleni P. Kalogianni
- Department of Food Science and Technology, Sindos Campus, International Hellenic University, 57400 Thessaloniki, Greece; (I.T.); (P.T.); (D.G.); (A.C.)
| |
Collapse
|
30
|
Zhang H, Xie P. The mechanisms of microcystin-LR-induced genotoxicity and neurotoxicity in fish and mammals: Bibliometric analysis and meta-analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167018. [PMID: 37709090 DOI: 10.1016/j.scitotenv.2023.167018] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 09/03/2023] [Accepted: 09/10/2023] [Indexed: 09/16/2023]
Abstract
Microcystin-leucine arginine (MC-LR) is a typical cyanobacterial toxin, and the threat of this toxin is increasing among organisms. Despite extensive toxicological studies on MC-LR, there is no comprehensive analysis based on previously published data. Therefore, we conducted bibliometric analysis and meta-analysis to identify research hotspots and to elucidate the key mechanism of the relationship between MC-LR and genotoxicity and neurotoxicity among fish and mammals. One of the hotspots is toxic mechanisms (indicated by the frequent appearance of oxidative stress, DNA damage, apoptosis, neurotoxicity, genotoxicity, ROS, comet assay, signalling pathway, and gene expression indicate as keywords). The density visualization shows a high frequency of "microcystin-LR" and "toxicology," and the overlay visualization emphasizes the prominence of "neurotoxicity" in recent years. These findings confirm the importance of studying MC-LR toxicity. Meta-analysis indicated that in both fish and mammals, MC-LR exposure increased ROS levels by 294 % and increased DNA damage biomarkers by 174 % but decreased neurotoxicity biomarkers by 9 %. Intergroup comparisons revealed that the exposure concentration of MC-LR was significantly correlated with genotoxicity and neurotoxicity levels in both fish and mammals (p < 0.05). Furthermore, the random forest (RF) model revealed that exposure concentration was the primary determinant associated with the induction of ROS, genotoxicity, and neurotoxicity induced by MC-LR. This is likely the dominant mechanism by which excessive ROS production induced by MC-LR causes oxidative stress, ultimately leading to genotoxicity and neurotoxicity in both fish and mammals.
Collapse
Affiliation(s)
- Huixia Zhang
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China
| | - Ping Xie
- Institute for Ecological Research and Pollution Control of Plateau Lakes; School of Ecology and Environmental Sciences, Yunnan University, Kunming 650500, PR China; Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, PR China.
| |
Collapse
|
31
|
Rayaroth MP, Aravind UK, Boczkaj G, Aravindakumar CT. Singlet oxygen in the removal of organic pollutants: An updated review on the degradation pathways based on mass spectrometry and DFT calculations. CHEMOSPHERE 2023; 345:140203. [PMID: 37734498 DOI: 10.1016/j.chemosphere.2023.140203] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 09/14/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023]
Abstract
The degradation of pollutants by a non-radical pathway involving singlet oxygen (1O2) is highly relevant in advanced oxidation processes. Photosensitizers, modified photocatalysts, and activated persulfates can generate highly selective 1O2 in the medium. The selective reaction of 1O2 with organic pollutants results in the evolution of different intermediate products. While these products can be identified using mass spectrometry (MS) techniques, predicting a proper degradation mechanism in a 1O2-based process is still challenging. Earlier studies utilized MS techniques in the identification of intermediate products and the mechanism was proposed with the support of theoretical calculations. Although some reviews have been reported on the generation of 1O2 and its environmental applications, a proper review of the degradation mechanism by 1O2 is not yet available. Hence, we reviewed the possible degradation pathways of organic contaminants in 1O2-mediated oxidation with the support of density functional theory (DFT). The Fukui function (FF, f-, f+, and f0), HOMO-LUMO energies, and Gibbs free energies obtained using DFT were used to identify the active site in the molecule and the degradation mechanism, respectively. Electrophilic addition, outer sphere type single electron transfer (SET), and addition to the hetero atoms are the key mechanisms involved in the degradation of organic contaminants by 1O2. Since environmental matrices contain several contaminants, it is difficult to experiment with all contaminants to identify their intermediate products. Therefore, the DFT studies are useful for predicting the intermediate compounds during the oxidative removal of the contaminants, especially for complex composition wastewater.
Collapse
Affiliation(s)
- Manoj P Rayaroth
- Bigelow Laboratory for Ocean Sciences, 60 Bigelow Dr, East Boothbay, ME, 04544, USA.
| | - Usha K Aravind
- School of Environmental Studies, Cochin University of Science & Technology (CUSAT), Kochi 682022, Kerala, India
| | - Grzegorz Boczkaj
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233, Gdansk, G. Narutowicza 11/12 Str, Poland; EkoTech Center, Gdansk University of Technology, G. Narutowicza St. 11/12, 80-233 Gdansk, Poland
| | - Charuvila T Aravindakumar
- School of Environmental Sciences, Mahatma Gandhi University, Kottayam 686560, Kerala, India; Inter University Instrumentation Centre (IUIC), Mahatma Gandhi University (MGU), Kottayam 686560, Kerala, India.
| |
Collapse
|
32
|
Yang M, Batchelor-McAuley C, Barton S, Rickaby REM, Bouman HA, Compton RG. Calcifying Coccolithophore: An Evolutionary Advantage Against Extracellular Oxidative Damage. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2300346. [PMID: 37433976 DOI: 10.1002/smll.202300346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 06/29/2023] [Indexed: 07/13/2023]
Abstract
The evolutionary advantages afforded by phytoplankton calcification remain enigmatic. In this work, fluoroelectrochemical experiments reveal that the presence of a CaCO3 shell of a naturally calcifying coccolithophore, Coccolithus braarudii, offers protection against extracellular oxidants as measured by the time required for the switch-off in their chlorophyll signal, compared to the deshelled equivalents, suggesting the shift toward calcification offers some advantages for survival in the surface of radical-rich seawater.
Collapse
Affiliation(s)
- Minjun Yang
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, Great Britain
| | - Christopher Batchelor-McAuley
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, Great Britain
| | - Samuel Barton
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, Great Britain
| | - Rosalind E M Rickaby
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, Great Britain
| | - Heather A Bouman
- Department of Earth Sciences, University of Oxford, South Parks Road, Oxford, OX1 3AN, Great Britain
| | - Richard G Compton
- Physical and Theoretical Chemistry Laboratory, Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, Great Britain
| |
Collapse
|
33
|
Taenzer L, Wankel SD, Kapit J, Pardis WA, Herrera S, Auscavitch S, Grabb KC, Cordes E, Hansel CM. Corals and sponges are hotspots of reactive oxygen species in the deep sea. PNAS NEXUS 2023; 2:pgad398. [PMID: 38034097 PMCID: PMC10682969 DOI: 10.1093/pnasnexus/pgad398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 11/01/2023] [Indexed: 12/02/2023]
Abstract
Reactive oxygen species (ROS) are central to diverse biological processes through which organisms respond to and interact with their surroundings. Yet, a lack of direct measurements limits our understanding of the distribution of ROS in the ocean. Using a recently developed in situ sensor, we show that deep-sea corals and sponges produce the ROS superoxide, revealing that benthic organisms can be sources and hotspots of ROS production in these environments. These findings confirm previous contentions that extracellular superoxide production by corals can be independent of the activity of photosynthetic symbionts. The discovery of deep-sea corals and sponges as sources of ROS has implications for the physiology and ecology of benthic organisms and introduces a previously overlooked suite of redox reactants at depth.
Collapse
Affiliation(s)
- Lina Taenzer
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Scott D Wankel
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Jason Kapit
- Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - William A Pardis
- Applied Ocean Physics and Engineering, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| | - Santiago Herrera
- Department of Biological Sciences, Lehigh University, Bethlehem, PA 18015, USA
| | | | - Kalina C Grabb
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
- Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Erik Cordes
- Department of Biology, Temple University, Philadelphia, PA 19122, USA
| | - Colleen M Hansel
- Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution, Woods Hole, MA 02543, USA
| |
Collapse
|
34
|
An J, Jiang Y, Cao H, Yi C, Li S, Qu M, Liu G. Photodegradation of glyphosate in water and stimulation of by-products on algae growth. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115211. [PMID: 37418942 DOI: 10.1016/j.ecoenv.2023.115211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 06/19/2023] [Accepted: 06/29/2023] [Indexed: 07/09/2023]
Abstract
Glyphosate is the most widely used herbicide in global agricultural cultivation. However, little is known about the environmental risks associated with its migration and transformation. We conducted light irradiation experiments to study the dynamics and mechanism of photodegradation of glyphosate in ditches, ponds and lakes, and evaluated the effect of glyphosate photodegradation on algae growth through algae culture experiments. Our results showed that glyphosate in ditches, ponds and lakes could undergo photochemical degradation under sunlight irradiation with the production of phosphate, and the photodegradation rate of glyphosate in ditches could reach 86% after 96 h under sunlight irradiation. Hydroxyl radicals (•OH) was the main reactive oxygen species (ROS) for glyphosate photodegradation, and its steady-state concentrations in ditches, ponds and lakes were 6.22 × 10-17, 4.73 × 10-17, and 4.90 × 10-17 M. The fluorescence emission-excitation matrix (EEM) and other technologies further indicated that the humus components in dissolved organic matter (DOM) and nitrite were the main photosensitive substances producing •OH. In addition, the phosphate generated by glyphosate photodegradation could greatly promote the growth of Microcystis aeruginosa, thereby increasing the risk of eutrophication. Thus, glyphosate should be scientifically and reasonably applied to avoid environmental risks.
Collapse
Affiliation(s)
- Jiaqi An
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongcan Jiang
- PowerChina Huadong Engineering Corporation Ltd., Hangzhou 311122, Zhejiang Province, China; College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, China.
| | - Huafen Cao
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Ceng Yi
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China
| | - Suxia Li
- Qinzhou Key Laboratory for Eco-Restoration of Environment, Beibu Gulf University, Qinzhou, Guangxi 535011, China
| | - Mengjie Qu
- School of Chemical and Environmental Engineering, Wuhan Polytechnic University, Wuhan 430023, China.
| | - Guanglong Liu
- State Environmental Protection Key Laboratory of Soil Health and Green Remediation, College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, China; Qinzhou Key Laboratory for Eco-Restoration of Environment, Beibu Gulf University, Qinzhou, Guangxi 535011, China.
| |
Collapse
|
35
|
Li J, Wen J, Hu R, Pei S, Li T, Shan B, Huang H, Zhu C. Transcriptome Responses to Different Environments in Intertidal Zones in the Peanut Worm Sipunculus nudus. BIOLOGY 2023; 12:1182. [PMID: 37759582 PMCID: PMC10525638 DOI: 10.3390/biology12091182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/19/2023] [Accepted: 08/26/2023] [Indexed: 09/29/2023]
Abstract
The peanut worm (Sipunculus nudus) is an important intertidal species worldwide. Species living in the same aquaculture area might suffer different environmental impacts. To increase knowledge of the molecular mechanisms underlying the response to environmental fluctuations, we performed a transcriptome analysis of S. nudus from different intertidal zones using a combination of the SMRT platform and the Illumina sequencing platform. (1) A total of 105,259 unigenes were assembled, and 23,063 unigenes were perfectly annotated. The results of the PacBio Iso-Seq and IIIumina RNA-Seq enriched the genetic database of S. nudus. (2) A total of 830 DEGs were detected in S. nudus from the different groups. In particular, 33 DEGs had differential expression in the top nine KEGG pathways related to pathogens, protein synthesis, and cellular immune response and signaling. The results indicate that S. nudus from different zones experience different environmental stresses. (3) Several DEGs (HSPA1, NFKBIA, eEF1A, etc.) in pathways related to pathogens (influenza A, legionellosis, measles, and toxoplasmosis) had higher expression in groups M and L. HSPA1 was clearly enriched in most of the pathways, followed by NFKBIA. The results show that the peanut worms from the M and L tidal flats might have suffered more severe environmental conditions. (4) Some DEGs (MKP, MRAS, and HSPB1) were upregulated in peanut worms from the H tidal flat, and these DEGs were mainly involved in the MAPK signaling pathway. These results indicate that the MAPK pathway may play a vital role in the immune response of the peanut worm to the effects of different intertidal flats. This study provides a valuable starting point for further studies to elucidate the molecular basis of the response to different environmental stresses in S. nudus.
Collapse
Affiliation(s)
- Junwei Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (J.L.); (J.W.); (T.L.); (B.S.); (H.H.)
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Jiufu Wen
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (J.L.); (J.W.); (T.L.); (B.S.); (H.H.)
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Ruiping Hu
- Institute of Biological and Medical Engineering, Guangdong Academy of Science, Guangzhou 510316, China
| | - Surui Pei
- Corregene Biotechnology Co., Ltd., Beijing 102600, China;
| | - Ting Li
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (J.L.); (J.W.); (T.L.); (B.S.); (H.H.)
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Binbin Shan
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (J.L.); (J.W.); (T.L.); (B.S.); (H.H.)
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Honghui Huang
- South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China; (J.L.); (J.W.); (T.L.); (B.S.); (H.H.)
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, Guangzhou 510300, China
| | - Changbo Zhu
- College of Animal Science, Inner Mongolia Agricultural University, Hohhot 010018, China
| |
Collapse
|
36
|
Zeng G, Shi M, Dai M, Zhou Q, Luo H, Lin L, Zang K, Meng Z, Pan X. Hydroxyl radicals in natural waters: Light/dark mechanisms, changes and scavenging effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161533. [PMID: 36640880 DOI: 10.1016/j.scitotenv.2023.161533] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/06/2023] [Accepted: 01/07/2023] [Indexed: 06/17/2023]
Abstract
Hydroxyl radicals (•OH) are the most active, aggressive and oxidative reactive oxygen species. In the natural aquatic environment, •OH plays an important role in the biogeochemistry cycle, biotransformation, and pollution removal. This paper reviewed the distribution and formation mechanism of •OH in aquatic environments, including natural waters, colloidal substances, sediments, and organisms. Furthermore, factors affecting the formation and consumption of •OH were thoroughly discussed, and the mechanisms of •OH generation and scavenging were summarized. In particular, the effects of climate change and artificial work on •OH in the largest natural aquatic environment, i.e., marine environment was analyzed with the help of bibliometrics. Moreover, Fenton reactions make the •OH variation more complicated and should not be neglected, especially in those areas with suspended particles and sediments. Regarding the •OH variation in the natural aquatic environment, more attention should be given to global change and human activities.
Collapse
Affiliation(s)
- Ganning Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China
| | - Ming Shi
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Mengzheng Dai
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qian Zhou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Liangyu Lin
- Key Laboratory of Ocean Space Resource Management Technology, MNR, Hangzhou 310012, China; Zhejiang Academy of Marine Science, Hangzhou 310012, China
| | - Kunpeng Zang
- Zhejiang Carbon Neutral Innovation Institute, Zhejiang University of Technology, Hangzhou 310014, China
| | - Zhu Meng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
37
|
Romera-Castillo C, Lucas A, Mallenco-Fornies R, Briones-Rizo M, Calvo E, Pelejero C. Abiotic plastic leaching contributes to ocean acidification. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 854:158683. [PMID: 36099941 DOI: 10.1016/j.scitotenv.2022.158683] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/07/2022] [Accepted: 09/07/2022] [Indexed: 06/15/2023]
Abstract
Ocean acidification and plastic pollution are considered as potential planetary boundary threats for which crossing certain thresholds could be very harmful for the world's societies and ecosystems well-being. Surface oceans have acidified around 0.1 units since the Industrial Revolution, and the amount of plastic reaching the ocean in 2018 was quantified to 13 million metric tonnes. Currently, both ocean threats are worsening with time. Plastic leaching is known to alter the biogeochemistry of the ocean through the release of dissolved organic matter. However, its impact in the inorganic chemistry of the seawater is less studied. Here we show, from laboratory experiments, that abiotic plastic degradation induces a decrease in seawater pH, particularly if the plastic is already aged, as that found in the ocean. The pH decrease is enhanced by solar radiation, and it is probably induced from a combination of the release of organic acids and the production of CO2. It is also related to the amount of leached dissolved organic carbon, with higher acidification as leaching increases. In coastal areas, where plastic debris accumulates in large quantities, plastic leaching could lead to a seawater pH decrease up to 0.5 units. This is comparable to the projected decrease induced in surface oceans by the end of the twenty-first century for the most pessimistic anthropogenic emissions scenarios.
Collapse
Affiliation(s)
| | - Arturo Lucas
- Instituto de Ciencias del Mar-CSIC, Barcelona, Spain
| | | | | | - Eva Calvo
- Instituto de Ciencias del Mar-CSIC, Barcelona, Spain
| | - Carles Pelejero
- Instituto de Ciencias del Mar-CSIC, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain
| |
Collapse
|
38
|
Wang T, Huang Q, Burns AS, Moran MA, Whitman WB. Oxidative Stress Regulates a Pivotal Metabolic Switch in Dimethylsulfoniopropionate Degradation by the Marine Bacterium Ruegeria pomeroyi. Microbiol Spectr 2022; 10:e0319122. [PMID: 36301115 PMCID: PMC9769926 DOI: 10.1128/spectrum.03191-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/03/2022] [Indexed: 01/10/2023] Open
Abstract
Dimethylsulfoniopropionate (DMSP) is an abundant organic compound in marine surface water and source of dimethyl sulfide (DMS), the largest natural sulfur source to the upper atmosphere. Marine bacteria either mineralize DMSP through the demethylation pathway or transform it to DMS through the cleavage pathway. Factors that regulate which pathway is utilized are not fully understood. In chemostat experiments, the marine Roseobacter Ruegeria pomeroyi DSS-3 was exposed to oxidative stress either during growth with H2O2 or by mutation of the gene encoding catalase. Oxidative stress reduced expression of the genes in the demethylation pathway and increased expression of those encoding the cleavage pathway. These results are contrary to the sulfur demand hypothesis, which theorizes that DMSP metabolism is driven by sulfur requirements of bacterial cells. Instead, we find strong evidence consistent with oxidative stress control over the switch in DMSP metabolism from demethylation to DMS production in an ecologically relevant marine bacterium. IMPORTANCE Dimethylsulfoniopropionate (DMSP) is the most abundant low-molecular-weight organic compound in marine surface water and source of dimethyl sulfide (DMS), a climatically active gas that connects the marine and terrestrial sulfur cycles. Marine bacteria are the major DMSP consumers, either generating DMS or consuming DMSP as a source of reduced carbon and sulfur. However, the factors regulating the DMSP catabolism in bacteria are not well understood. Marine bacteria are also exposed to oxidative stress. RNA sequencing (RNA-seq) experiments showed that oxidative stress induced in the laboratory reduced expression of the genes encoding the consumption of DMSP via the demethylation pathway and increased the expression of genes encoding DMS production via the cleavage pathway in the marine bacterium Ruegeria pomeroyi. These results support a model where DMS production in the ocean is regulated in part by oxidative stress.
Collapse
Affiliation(s)
- Tao Wang
- Department of Microbiology, University of Georgia, Georgia, USA
| | - Qiuyuan Huang
- Department of Microbiology, University of Georgia, Georgia, USA
| | - Andrew S. Burns
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | - Mary Ann Moran
- Department of Marine Sciences, University of Georgia, Athens, Georgia, USA
| | | |
Collapse
|
39
|
Song N, Wu D, Xu H, Jiang H. Integrated evaluation of the reactive oxygen species (ROS) production characteristics in one large lake under alternating flood and drought conditions. WATER RESEARCH 2022; 225:119136. [PMID: 36155006 DOI: 10.1016/j.watres.2022.119136] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 09/16/2022] [Accepted: 09/18/2022] [Indexed: 06/16/2023]
Abstract
Reactive oxygen species (ROS) are omnipresent in natural aquatic environments, and play an important role in biogeochemical cycles. One of the dominant sources of ROS in surface waters was thought to be from dissolved organic matter (DOM) interacting with photochemical process. The properties of DOM were different between the flood and drought periods in lakes; yet, information on how these variations influence ROS photoproduction is unknown. Through a three-year study, the photochemical properties of DOM and the resultant ROS photoproduction between the flood and drought period were determined in the largest freshwater lake in China (Lake Poyang). Results found that quantum yield coefficients of excited triplets (3CDOM*), apparent quantum yields of singlet oxygen (1O2) and hydroxyl radicals (•OH) were holistically higher in the flood period than those in the drought period. The optical properties of DOM showed that DOM in the flood period featured an allochthonous input, accompanied by higher molecular size (E2/E3), aromatic content (SUVA254), humification degree (HIX), while DOM in the drought period was mainly internal input. Fourier transform ion cyclotron resonance mass spectrometry (FI-ICR MS) further revealed that some refractory components, such as lignin-like and carboxyl-rich alicyclic molecules (CRAM) presented higher abundance in the flood period, and played the positive impacts on ROS production. Orthogonal partial least squares (OPLS) were used to build novel multivariate predictive models for indicating the spatio-temporal ROS production. Also, the relatively higher steady-state concentrations of 3CDOM* and 1O2 in the flood period could significantly diminish the half-lives of acetochlor. Considering the photochemical activity of DOM varied considerably at different periods, this study provided a new method to predict ROS production and contributed to a new insight into stage-specific emerging contaminants removing in natural aquatic environments.
Collapse
Affiliation(s)
- Na Song
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China.
| | - Dinggui Wu
- Organic Geochemistry Unit, School of Earth Sciences, Zhejiang University, Hangzhou 310027, China
| | - Huacheng Xu
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing 210008, China.
| |
Collapse
|
40
|
Zhang R, Deng Z, Li J, Zhang Y, Wei Z, Cao H. Effect of leaching time on phytotoxicity of dissolved organic matter derived from black carbon based on spectroscopy. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 307:119595. [PMID: 35688387 DOI: 10.1016/j.envpol.2022.119595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/30/2022] [Accepted: 06/05/2022] [Indexed: 06/15/2023]
Abstract
Black carbon (BC) exports huge amounts of its derived DOM from terrestrial ecosystems annually through a variety of ways (i.e., erosion or runoff migration). The pyrolytic feedstock type and temperature resulted in DOM derived from highly condensed aromatic and non-aromatic BC. However, the behaviors of low aromatic BC-derived DOM at diverse leaching time are poorly understood. In this work, low aromatic BCs were prepared by pyrolysis corn straws at 250 °C, 350 °C and 450 °C. Extraction experiments for four leaching time (6 h, 10 h, 15 h and 21 h) were set up to simulate BC-derived DOM generative process in nature. The phytotoxicity of BC-derived DOM was evaluated via germination index (GI). Spectral characteristics were discussed to analyze the phytotoxicity variations of fluorescence components composition at different time, including the excitation-emission matrix-parallel factor, two-dimensional correlation spectra and Fourier transform infrared spectroscopy. The results suggested that low aromatic BC-derived DOM might contain aromatic phenolic compounds. A longer time contributed to accumulate the complex, hard-to-use organic matters, leading to lower GI. These results would supplement the dynamic spectral characteristics of low aromatic BC-derived DOM and its environmental risks during the leaching process.
Collapse
Affiliation(s)
- Ruju Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Ze Deng
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Jiulong Li
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Yunxian Zhang
- College of Life Science, Northeast Agricultural University, Harbin 150030, China
| | - Zimin Wei
- College of Life Science, Northeast Agricultural University, Harbin 150030, China.
| | - Huan Cao
- College of Agriculture, Northeast Agricultural University, Harbin 150030, China
| |
Collapse
|
41
|
Bui HT, Park HY, Alvarez PJJ, Lee J, Kim W, Kim EJ. Visible-Light Activation of a Dissolved Organic Matter-TiO 2 Complex Mediated via Ligand-to-Metal Charge Transfer. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:10829-10837. [PMID: 35767386 DOI: 10.1021/acs.est.2c02975] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Given the widespread use of TiO2, its release into aquatic systems and complexation with dissolved organic matter (DOM) are highly possible, making it important to understand how such interactions affect photocatalytic activity under visible light. Here, we show that humic acid/TiO2 complexes (HA/TiO2) exhibit photoactivity (without significant electron-hole activation) under visible light through ligand-to-metal charge transfer (LMCT). The observed visible-light activities for pollutant removal and bacterial inactivation are primarily linked to the generation of H2O2via the conduction band. By systematically considering molecular-scale interactions between TiO2 and organic functional groups in HA, we find a key role of phenolic groups in visible-light absorption and H2O2 photogeneration. The photochemical formation of H2O2 in river waters spiked with TiO2 is notably elevated above naturally occurring H2O2 generated from background organic constituents due to LMCT contribution. Our findings suggest that H2O2 generation by HA/TiO2 is related to the quantity and functional group chemistry of DOM, which provides chemical insights into photocatalytic activity and potential ecotoxicity of TiO2 in environmental and engineered systems.
Collapse
Affiliation(s)
- Hoang Tran Bui
- Department of Energy Engineering/KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| | - Hyeon Yeong Park
- Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Korea
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| | - Pedro J J Alvarez
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
| | - Jaesang Lee
- Civil, Environmental, and Architectural Engineering, Korea University, Seoul 02841, Korea
| | - Wooyul Kim
- Department of Energy Engineering/KENTECH Institute for Environmental and Climate Technology, Korea Institute of Energy Technology (KENTECH), Naju 58330, Korea
| | - Eun-Ju Kim
- Water Cycle Research Center, Korea Institute of Science and Technology (KIST), Seoul 02792, Korea
| |
Collapse
|
42
|
Omar NM, Prášil O, McCain JSP, Campbell DA. Diffusional Interactions among Marine Phytoplankton and Bacterioplankton: Modelling H 2O 2 as a Case Study. Microorganisms 2022; 10:821. [PMID: 35456871 PMCID: PMC9030875 DOI: 10.3390/microorganisms10040821] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 02/04/2023] Open
Abstract
Marine phytoplankton vary widely in size across taxa, and in cell suspension densities across habitats and growth states. Cell suspension density and total biovolume determine the bulk influence of a phytoplankton community upon its environment. Cell suspension density also determines the intercellular spacings separating phytoplankton cells from each other, or from co-occurring bacterioplankton. Intercellular spacing then determines the mean diffusion paths for exchanges of solutes among co-occurring cells. Marine phytoplankton and bacterioplankton both produce and scavenge reactive oxygen species (ROS), to maintain intracellular ROS homeostasis to support their cellular processes, while limiting damaging reactions. Among ROS, hydrogen peroxide (H2O2) has relatively low reactivity, long intracellular and extracellular lifetimes, and readily crosses cell membranes. Our objective was to quantify how cells can influence other cells via diffusional interactions, using H2O2 as a case study. To visualize and constrain potentials for cell-to-cell exchanges of H2O2, we simulated the decrease of [H2O2] outwards from representative phytoplankton taxa maintaining internal [H2O2] above representative seawater [H2O2]. [H2O2] gradients outwards from static cell surfaces were dominated by volumetric dilution, with only a negligible influence from decay. The simulated [H2O2] fell to background [H2O2] within ~3.1 µm from a Prochlorococcus cell surface, but extended outwards 90 µm from a diatom cell surface. More rapid decays of other, less stable ROS, would lower these threshold distances. Bacterioplankton lowered simulated local [H2O2] below background only out to 1.2 µm from the surface of a static cell, even though bacterioplankton collectively act to influence seawater ROS. These small diffusional spheres around cells mean that direct cell-to-cell exchange of H2O2 is unlikely in oligotrophic habits with widely spaced, small cells; moderate in eutrophic habits with shorter cell-to-cell spacing; but extensive within phytoplankton colonies.
Collapse
Affiliation(s)
- Naaman M. Omar
- Department of Biology, Mount Allison University, Sackville, NB E4L1G7, Canada;
| | - Ondřej Prášil
- Center Algatech, Laboratory of Photosynthesis, Novohradska 237, CZ 37981 Trebon, Czech Republic;
| | - J. Scott P. McCain
- Department of Biology, Massachusetts Institute of Technology, Boston, MA 02142, USA;
| | - Douglas A. Campbell
- Department of Biology, Mount Allison University, Sackville, NB E4L1G7, Canada;
| |
Collapse
|