1
|
Mailloux RJ. Targeted Redox Regulation α-Ketoglutarate Dehydrogenase Complex for the Treatment of Human Diseases. Cells 2025; 14:653. [PMID: 40358176 PMCID: PMC12071522 DOI: 10.3390/cells14090653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2025] [Revised: 04/26/2025] [Accepted: 04/28/2025] [Indexed: 05/15/2025] Open
Abstract
α-ketoglutarate dehydrogenase complex (KGDHc) is a crucial enzyme in the tricarboxylic acid (TCA) cycle that intersects monosaccharides, amino acids, and fatty acid catabolism with oxidative phosphorylation (OxPhos). A key feature of KGDHc is its ability to sense changes in the redox environment through the reversible oxidation of the vicinal lipoic acid thiols of its dihydrolipoamide succinyltransferase (DLST; E2) subunit, which controls its activity and, by extension, OxPhos. This characteristic inculcates KGDHc with redox regulatory properties for the modulation of metabolism and mediating of intra- and intercellular signals. The innate capacity of KGDHc to participate in the regulation of cell redox homeodynamics also occurs through the production of mitochondrial hydrogen peroxide (mtH2O2), which is generated by the dihydrolipoamide dehydrogenase (DLD; E3) downstream from the E2 subunit. Reversible covalent redox modification of the E2 subunit controls this mtH2O2 production by KGDHc, which not only protects from oxidative distress but also modulates oxidative eustress pathways. The importance of KGDHc in modulating redox homeodynamics is underscored by the pathogenesis of neurological and metabolic disorders that occur due to the hyper-generation of mtH2O2 by this enzyme complex. This also implies that the targeted redox modification of the E2 subunit could be a potential therapeutic strategy for limiting the oxidative distress triggered by KGDHc mtH2O2 hyper-generation. In this short article, I will discuss recent findings demonstrating KGDHc is a potent mtH2O2 source that can trigger the manifestation of several neurological and metabolic diseases, including non-alcoholic fatty liver disease (NAFLD), inflammation, and cancer, and the targeted redox modification of the E2 subunit could alleviate these syndromes.
Collapse
Affiliation(s)
- Ryan J Mailloux
- School of Human Nutrition, McGill University, 21111 Lakeshore Road, Sainte-Anne-de-Bellevue, Quebec, QC H9X 3V9, Canada
| |
Collapse
|
2
|
Chalifoux O, Sterman S, Faerman B, Li M, Trezza S, Michalak M, Agellon LB, Mailloux RJ. MitoSNO inhibits mitochondrial hydrogen peroxide generation by α-ketoglutarate dehydrogenase. J Biol Chem 2025; 301:108510. [PMID: 40250560 PMCID: PMC12144464 DOI: 10.1016/j.jbc.2025.108510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 03/26/2025] [Accepted: 03/27/2025] [Indexed: 04/20/2025] Open
Abstract
Here, we demonstrate mitochondrial hydrogen peroxide (mtH2O2) production by α-ketoglutarate dehydrogenase (KGDH) can be inhibited by mitochondria-targeted S-nitrosating agent (MitoSNO), alleviating lipotoxicity. MitoSNO in the nanomolar range inhibits mtH2O2 by ∼50% in isolated liver mitochondria without disrupting respiration, whereas the mitochondria-selective derivative used to synthesize MitoSNO, mitochondria-selective N-acetyl-penicillamine, had no effect on either mtH2O2 generation or oxidative phosphorylation. Additionally, mtH2O2 generation in isolated liver mitochondria was almost abolished when MitoSNO was administered in the low micromolar range. The potent inhibitory effect of MitoSNO was comparable to 2-keto-3-methyl-valeric acid and valproic acid, selective inhibitors for KGDH-mediated mtH2O2 production. S1QEL 1.1 (S1) and S3QEL (S3), which are known to selectively suppress mtH2O2 genesis through inhibition of complex I and complex III, respectively, without disrupting respiration, had little to no effect on mtH2O2 production by liver mitochondria. The MitoSNO also suppressed mtH2O2 production and partially rescued mitochondrial respiration in Huh-7 cells subjected to palmitate- and fructose-induced lipotoxicity. MitoSNO also prevented cell death and abrogated intrahepatic lipid accumulation in these Huh-7 cells. MitoSNO nullified mtH2O2 overgeneration and partially rescued oxidative phosphorylation in liver mitochondria from mice fed a high-fat diet. Our findings demonstrate that MitoSNO interferes with mtH2O2 production through KGDH S-nitrosation and may be useful in alleviating nonalcoholic fatty liver disease.
Collapse
Affiliation(s)
- Olivia Chalifoux
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Samantha Sterman
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Ben Faerman
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Meijing Li
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Stephanie Trezza
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Luis B Agellon
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada
| | - Ryan J Mailloux
- School of Human Nutrition, McGill University, Sainte-Anne-de-Bellevue, Quebec, Canada.
| |
Collapse
|
3
|
Teixeira J, Benfeito S, Carreira R, Barbosa A, Amorim R, Tavares LC, Jones JG, Raimundo N, Cagide F, Oliveira C, Borges F, Koopman WJH, Oliveira PJ. The mitochondriotropic antioxidants AntiOxBEN 2 and AntiOxCIN 4 are structurally-similar but differentially alter energy homeostasis in human skin fibroblasts. BIOCHIMICA ET BIOPHYSICA ACTA. BIOENERGETICS 2025; 1866:149535. [PMID: 39788276 DOI: 10.1016/j.bbabio.2025.149535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/17/2024] [Accepted: 12/30/2024] [Indexed: 01/12/2025]
Abstract
Mitochondrial dysfunction and increased reactive oxygen species (ROS) generation play an import role in different human pathologies. In this context, mitochondrial targeting of potentially protective antioxidants by their coupling to the lipophilic triphenylphosphonium cation (TPP) is widely applied. Employing a six‑carbon (C6) linker, we recently demonstrated that mitochondria-targeted phenolic antioxidants derived from gallic acid (AntiOxBEN2) and caffeic acid (AntiOxCIN4) counterbalance oxidative stress in primary human skin fibroblasts by activating ROS-protective mechanisms. Here we demonstrate that C6-TPP (but not AntiOxBEN2 and AntiOxCIN4) induce cell death in human skin fibroblasts. This indicates that C6-TPP cytoxocity is counterbalanced by the antioxidant moieties of AntiOxBEN2 and AntiOxCIN4. Remarkably, C6-TPP and AntiOxBEN2 (but not AntiOxCIN4) induced a glycolytic switch, as exemplified by a reduced cellular oxygen consumption rate (OCR), increased extracellular acidification rate (ECAR), elevated extracellular lactate levels, and higher protein levels of glucose transporter 1 (GLUT-1). This switch involved activation of AMP-activated protein kinase (AMPK) and fully compensated for the loss in mitochondrial ATP production by sustaining cellular ATP content. When glycolytic switch induction was prevented (i.e. by using a glucose-free, galactose-containing medium), AntiOxBEN2 induced cell death whereas AntiOxCIN4 did not. We conclude that, despite their similar chemical structure and antioxidant capacity, AntiOxBEN2 and AntiOxCIN4 display both common (redox-adaptive) and specific (bioenergetic-adaptive) effects.
Collapse
Affiliation(s)
- José Teixeira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.
| | - Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Rodrigo Carreira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - André Barbosa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Ricardo Amorim
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal; CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Ludgero C Tavares
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIVG - Vasco da Gama Research Center, University School Vasco da Gama - EUVG, Coimbra, Portugal
| | - John G Jones
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Nuno Raimundo
- Multidisciplinary Institute of Ageing (MIA), University of Coimbra, Coimbra, Portugal; Department of Cellular and Molecular Physiology, Penn State University College of Medicine, Hershey, PA, USA
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Catarina Oliveira
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Werner J H Koopman
- Cellular Bioenergetics Group, Department of Pediatrics, Amalia Children's Hospital, Radboud Center for Mitochondrial Medicine (RCMM), Radboud University Medical Center (Radboudumc), Nijmegen, the Netherlands; Human and Animal Physiology, Wageningen University, Wageningen, the Netherlands
| | - Paulo J Oliveira
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal; CIBB - Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
4
|
Lin B, Wu T, Nasb M, Li Z, Chen N. Regular exercise alleviates metabolic dysfunction-associated steatohepatitis through rescuing mitochondrial oxidative stress and dysfunction in liver. Free Radic Biol Med 2025; 230:163-176. [PMID: 39954868 DOI: 10.1016/j.freeradbiomed.2025.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/20/2025] [Accepted: 02/13/2025] [Indexed: 02/17/2025]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is characterized by severe mitochondrial dysfunction, associated with the production of mitochondrial reactive oxygen species (mROS). The substantial generation of mROS in the MASH liver, resulting from lipid surplus and electron transport chain (ETC) overload, impairs mitochondrial structure and functionality, thereby contributing to the development of severe hepatic steatosis and inflammation. Regular exercise represents an effective strategy for the treatment of MASH. Understanding the effects of exercise on oxidative stress and mitochondrial function is essential for effective treatment of MASH. This article reviews the pathological alterations in mitochondrial β-oxidation, ETC efficiency and mROS production within MASH liver. Additionally, it discusses how exercise influences the redox state and mitochondrial quality control mechanisms-such as biogenesis, mitophagy, fusion, and fission-within the MASH liver. The article emphasizes the importance of in-depth studies on exercise-induced MASH mitigation through the enhancement of mitochondrial redox balance, quality control, and function. Exploring the relationship between exercise and hepatic mitochondria could provide valuable insights into identifying potential therapeutic targets for MASH.
Collapse
Affiliation(s)
- Baoxuan Lin
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Tong Wu
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Mohammad Nasb
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China
| | - Zeyun Li
- Department of Rehabilitation Medicine, Xiangtan Central Hospital, Xiangtan, China.
| | - Ning Chen
- Tianjiu Research and Development Center for Exercise Nutrition and Foods, Hubei Key Laboratory of Exercise Training and Monitoring, College of Sports Medicine, Wuhan Sports University, Wuhan, China.
| |
Collapse
|
5
|
Liu M, Li B, Yin Z, Yin L, Luo Y, Zeng Q, Zhang D, Wu A, Chen L. Targeting mitochondrial dynamics: A promising approach for intracerebral hemorrhage therapy. Life Sci 2025; 361:123317. [PMID: 39674268 DOI: 10.1016/j.lfs.2024.123317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/03/2024] [Accepted: 12/11/2024] [Indexed: 12/16/2024]
Abstract
Intracerebral hemorrhage (ICH) is a major global health issue with high mortality and disability rates. Following ICH, the hematoma exerts direct pressure on brain tissue, and blood entering the brain directly damages neurons and the blood-brain barrier. Subsequently, oxidative stress, inflammatory responses, apoptosis, brain edema, excitotoxicity, iron toxicity, and metabolic dysfunction around the hematoma further exacerbate brain tissue damage, leading to secondary brain injury (SBI). Mitochondria, essential for energy production and the regulation of oxidative stress, are damaged after ICH, resulting in impaired ATP production, excessive reactive oxygen species (ROS) generation, and disrupted calcium homeostasis, all of which contribute to SBI. Therefore, a central factor in SBI is mitochondrial dysfunction. Mitochondrial dynamics regulate the shape, size, distribution, and quantity of mitochondria through fusion and fission, both of which are crucial for maintaining their function. Fusion repairs damaged mitochondria and preserves their health, while fission helps mitochondria adapt to cellular stress and removes damaged mitochondria through mitophagy. When this balance is disrupted following ICH, mitochondrial dysfunction worsens, oxidative stress and metabolic failure are exacerbated, ultimately contributing to SBI. Targeting mitochondrial dynamics offers a promising therapeutic approach to restoring mitochondrial function, reducing cellular damage, and improving recovery. This review explores the latest research on modulating mitochondrial dynamics and highlights its potential to enhance outcomes in ICH patients.
Collapse
Affiliation(s)
- Mengnan Liu
- Department of Cardiovascular Medicine, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Binru Li
- Department of Neurology, Minzu Hospital of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi, China.
| | - Zhixue Yin
- Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Lu Yin
- Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Ye Luo
- Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Qi Zeng
- Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Dechou Zhang
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Anguo Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Department of Cardiology, The Affiliated Hospital of Southwest Medical University and Key Laboratory of Medical Electrophysiology, Ministry of Education, School of Pharmacy, Luzhou 646000, Sichuan, China; Southwest Medical University, Luzhou 646000, Sichuan, China.
| | - Li Chen
- Department of Neurology, The Affiliated Traditional Chinese Medicine Hospital, Southwest Medical University, Luzhou 646000, Sichuan, China.
| |
Collapse
|
6
|
Amorim R, Marques MP, Melim C, Varela C, Sardão VA, Teixeira J, Dias MI, Barros L, Oliveira PJ, Cabral C. Chemical Characterization and Differential Lipid-Modulating Effects of Selected Plant Extracts from Côa Valley (Portugal) in a Cell Model for Liver Steatosis. Pharmaceuticals (Basel) 2025; 18:39. [PMID: 39861102 PMCID: PMC11768118 DOI: 10.3390/ph18010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/28/2024] [Accepted: 12/30/2024] [Indexed: 01/27/2025] Open
Abstract
BACKGROUND/OBJECTIVES Côa Valley, located in the northeast of Portugal, harbors more than 500 medicinal plant species. Among them, four species stand out due to their traditional uses: Equisetum ramosissimum Desf. (hemorrhages, urethritis, hepatitis), Rumex scutatus L. subsp. induratus (Boiss. and Reut.) Malag. (inflammation, constipation), Geranium purpureum Vill., and Geranium lucidum L. (pain relief, gastric issues). Given their rich ethnomedicinal history, we evaluated their protective effects on an in vitro model of metabolic dysfunction-associated steatotic liver disease (MASLD). METHODS Decoction (D) and hydroalcoholic (EtOH80%) extracts were prepared and chemically characterized. Their safety profile and effects on lipid accumulation were assessed in palmitic acid (PA)-treated HepG2 cells using resazurin, sulforhodamine B, and Nile Red assays. RESULTS Chemical analysis revealed diverse phenolic compounds, particularly kaempferol derivatives in E. ramosissimum. All extracts showed minimal cytotoxicity at 25-50 µg/mL. At 100 µg/mL, only E. ramosissimum extracts maintained high cell viability. In the lipotoxicity model, E. ramosissimum decoction demonstrated the most potent effect, significantly reducing PA-induced neutral lipid accumulation in a dose-dependent manner, while other extracts showed varying degrees of activity. CONCLUSIONS These findings highlight E. ramosissimum's decoction, rich in kaempferol derivatives, as particularly effective in reducing lipid accumulation in this MASLD cell model while also providing a comprehensive characterization of traditionally used plants from the Côa Valley region.
Collapse
Affiliation(s)
- Ricardo Amorim
- Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; (R.A.); (M.P.M.); (C.M.); (C.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
| | - Mário Pedro Marques
- Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; (R.A.); (M.P.M.); (C.M.); (C.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
| | - Catarina Melim
- Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; (R.A.); (M.P.M.); (C.M.); (C.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
| | - Carla Varela
- Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; (R.A.); (M.P.M.); (C.M.); (C.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
- Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, University of Coimbra, Pólo II, R. Silvio Lima, 3030-790 Coimbra, Portugal
| | - Vilma A. Sardão
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
- Multidisciplinary Institute of Aging, University of Coimbra, 3004-504 Coimbra, Portugal
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Teixeira
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Maria Inês Dias
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança (IPB), Campus Santa Apolónia, 5300-253 Bragança, Portugal; (M.I.D.); (L.B.)
- Associate Laboratory for Sustainability and Technology in Mountains Regions (SusTEC), Polytechnic Institute of Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Lillian Barros
- Mountain Research Centre (CIMO), Polytechnic Institute of Bragança (IPB), Campus Santa Apolónia, 5300-253 Bragança, Portugal; (M.I.D.); (L.B.)
- Associate Laboratory for Sustainability and Technology in Mountains Regions (SusTEC), Polytechnic Institute of Bragança (IPB), Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Paulo J. Oliveira
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
- Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Célia Cabral
- Clinic Academic Center of Coimbra (CACC), Faculty of Medicine, Coimbra Institute for Clinical and Biomedical Research (iCBR), University of Coimbra, 3000-548 Coimbra, Portugal; (R.A.); (M.P.M.); (C.M.); (C.V.)
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-548 Coimbra, Portugal; (V.A.S.); (J.T.); (P.J.O.)
- Center for Functional Ecology, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
7
|
Amorim R, Soares P, Chavarria D, Benfeito S, Cagide F, Teixeira J, Oliveira PJ, Borges F. Decreasing the burden of non-alcoholic fatty liver disease: From therapeutic targets to drug discovery opportunities. Eur J Med Chem 2024; 277:116723. [PMID: 39163775 DOI: 10.1016/j.ejmech.2024.116723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/22/2024]
Abstract
Non-alcoholic fatty liver disease (NAFLD) presents a pervasive global pandemic, affecting approximately 25 % of the world's population. This grave health issue not only demands urgent attention but also stands as a significant economic concern on a global scale. The genesis of NAFLD can be primarily attributed to unhealthy dietary habits and a sedentary lifestyle, albeit certain genetic factors have also been recorded to contribute to its occurrence. NAFLD is characterized by fat accumulation in more than 5 % of hepatocytes according to histological analysis, or >5.6 % of lipid volume fraction in total liver weight in patients. The pathophysiology of NAFLD/non-alcoholic steatohepatitis (NASH) is multifactorial and the mechanisms underlying the progression to advanced forms remain unclear, thereby representing a challenge to disease therapy. Despite the substantial efforts from the scientific community and the large number of pre-clinical and clinical trials performed so far, only one drug was approved by the Food and Drug Administration (FDA) to treat NAFLD/NASH specifically. This review provides an overview of available information concerning emerging molecular targets and drug candidates tested in clinical studies for the treatment of NAFLD/NASH. Improving our understanding of NAFLD pathophysiology and pharmacotherapy is crucial not only to explore new molecular targets, but also to potentiate drug discovery programs to develop new therapeutic strategies. This knowledge endeavours scientific efforts to reduce the time for achieving a specific and effective drug for NAFLD or NASH management and improve patients' quality of life.
Collapse
Affiliation(s)
- Ricardo Amorim
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Pedro Soares
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal
| | - José Teixeira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal
| | - Paulo J Oliveira
- CNC-UC, Center for Neuroscience and Cell Biology, University of Coimbra, Portugal; CIBB, Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, Portugal.
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Porto, Portugal.
| |
Collapse
|
8
|
Grayson C, Chalifoux O, Russo MDST, Avizonis DZ, Sterman S, Faerman B, Koufos O, Agellon LB, Mailloux RJ. Ablating the glutaredoxin-2 (Glrx2) gene protects male mice against non-alcoholic fatty liver disease (NAFLD) by limiting oxidative distress. Free Radic Biol Med 2024; 224:660-677. [PMID: 39278573 DOI: 10.1016/j.freeradbiomed.2024.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/22/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
In the present study, we investigated the consequences of deleting the glutaredoxin-2 gene (Glrx2-/-) on the development of non-alcoholic fatty liver disease (NAFLD) in male and female C57BL6N mice fed a control (CD) or high-fat diet (HFD). We report that the HFD induced a significant increase in body mass in the wild-type (Wt) and Glrx2-/- male, but not female, mice, which was associated with the hypertrophying of the abdominal fat. Interestingly, while the Wt male mice fed the HFD developed NAFLD, the deletion of the Glrx2 gene mitigated vesicle formation, intrahepatic lipid accumulation, and fibrosis in the males. The protective effect associated with ablating the Glrx2 gene in male mice was due to enhancement of mitochondrial redox buffering capacity. Specifically, liver mitochondria from male Glrx2-/- fed a CD or HFD produced significantly less hydrogen peroxide (mtH2O2), had lower malondialdehyde levels, greater activities for glutathione peroxidase and thioredoxin reductase, and less protein glutathione mixed disulfides (PSSG) when compared to the Wt male mice fed the HFD. These effects correlated with the S-glutathionylation of α-ketoglutarate dehydrogenase (KGDH), a potent mtH2O2 source and key redox sensor in hepatic mitochondria. In comparison to the male mice, both Wt and Glrx2-/- female mice displayed almost complete resistance to HFD-induced body mass increases and the development of NAFLD, which was attributed to the superior redox buffering capacity of the liver mitochondria. Together, our findings show that modulation of mitochondrial S-glutathionylation signaling through Glrx2 augments resistance of male mice towards the development of NAFLD through preservation of mitochondrial redox buffering capacity. Additionally, our findings demonstrate the sex dimorphisms associated with the manifestation of NAFLD is related to the superior redox buffering capacity and modulation of the S-glutathionylome in hepatic mitochondria from female mice.
Collapse
Affiliation(s)
- Cathryn Grayson
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Olivia Chalifoux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Mariana De Sa Tavares Russo
- Goodman Cancer Institute, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada; Department of Medicine, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada
| | - Daina Zofija Avizonis
- Goodman Cancer Institute, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada; Department of Medicine, McGill University, Qc, H3A 1A3, Montréal, Québec, Canada
| | - Samantha Sterman
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Ben Faerman
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Olivia Koufos
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Luis B Agellon
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada
| | - Ryan J Mailloux
- School of Human Nutrition, Faculty of Agricultural and Environmental Science, McGill University, Ste Anne de Bellevue, Québec, Canada.
| |
Collapse
|
9
|
Liu J, Sebastià C, Jové-Juncà T, Quintanilla R, González-Rodríguez O, Passols M, Castelló A, Sánchez A, Ballester M, Folch JM. Identification of genomic regions associated with fatty acid metabolism across blood, liver, backfat and muscle in pigs. Genet Sel Evol 2024; 56:66. [PMID: 39327557 PMCID: PMC11426007 DOI: 10.1186/s12711-024-00933-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND The composition and distribution of fatty acids (FA) are important factors determining the quality, flavor, and nutrient value of meat. In addition, FAs synthesized in the body participate in energy metabolism and are involved in different regulatory pathways in the form of signaling molecules or by acting as agonist or antagonist ligands of different nuclear receptors. Finally, synthesis and catabolism of FAs affect adaptive immunity by regulating lymphocyte metabolism. The present study performed genome-wide association studies using FA profiles of blood, liver, backfat and muscle from 432 commercial Duroc pigs. RESULTS Twenty-five genomic regions located on 15 Sus scrofa chromosomes (SSC) were detected. Annotation of the quantitative trait locus (QTL) regions identified 49 lipid metabolism-related candidate genes. Among these QTLs, four were identified in more than one tissue. The ratio of C20:4n-6/C20:3n-6 was associated with the region on SSC2 at 7.56-14.26 Mb for backfat, liver, and muscle. Members of the fatty acid desaturase gene cluster (FADS1, FADS2, and FADS3) are the most promising candidate genes in this region. Two QTL regions on SSC14 (103.81-115.64 Mb and 100.91-128.14 Mb) were identified for FA desaturation in backfat and muscle. In addition, two separate regions on SSC9 at 0 - 14.55 Mb and on SSC12 at 0-1.91 Mb were both associated with the same multiple FA traits for backfat, with candidate genes involved in de novo FA synthesis and triacylglycerol (TAG) metabolism, such as DGAT2 and FASN. The ratio C20:0/C18:0 was associated with the region on SSC5 at 64.84-78.32 Mb for backfat. Furthermore, the association of the C16:0 content with the region at 118.92-123.95 Mb on SSC4 was blood specific. Finally, candidate genes involved in de novo lipogenesis regulate T cell differentiation and promote the generation of palmitoleate, an adipokine that alleviates inflammation. CONCLUSIONS Several SNPs and candidate genes were associated with lipid metabolism in blood, liver, backfat, and muscle. These results contribute to elucidating the molecular mechanisms implicated in the determination of the FA profile in different pig tissues and can be useful in selection programs that aim to improve health and energy metabolism in pigs.
Collapse
Affiliation(s)
- Junhui Liu
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain.
| | - Cristina Sebastià
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Teodor Jové-Juncà
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Raquel Quintanilla
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Olga González-Rodríguez
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Magí Passols
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
| | - Anna Castelló
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Armand Sánchez
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain
| | - Maria Ballester
- Animal Breeding and Genetics Program, Institut de Recerca i Tecnologia Agroalimentàries (IRTA), Torre Marimon, 08140, Caldes de Montbui, Spain
| | - Josep M Folch
- Plant and Animal Genomics, Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB Consortium, 08193, Bellaterra, Spain.
- Departament de Ciència Animal i dels Aliments, Facultat de Veterinària, Universitat Autònoma de Barcelona (UAB), 08193, Bellaterra, Spain.
| |
Collapse
|
10
|
Liu M, Deng X, Zhao Y, Everaert N, Zhang H, Xia B, Schroyen M. Alginate Oligosaccharides Enhance Antioxidant Status and Intestinal Health by Modulating the Gut Microbiota in Weaned Piglets. Int J Mol Sci 2024; 25:8029. [PMID: 39125598 PMCID: PMC11311613 DOI: 10.3390/ijms25158029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/16/2024] [Accepted: 07/21/2024] [Indexed: 08/12/2024] Open
Abstract
Alginate oligosaccharides (AOSs), which are an attractive feed additive for animal production, exhibit pleiotropic bioactivities. In the present study, we investigated graded doses of AOS-mediated alterations in the physiological responses of piglets by determining the intestinal architecture, barrier function, and microbiota. A total of 144 weaned piglets were allocated into four dietary treatments in a completely random design, which included a control diet (CON) and three treated diets formulated with 250 mg/kg (AOS250), 500 mg/kg (AOS500), and 1000 mg/kg AOS (AOS1000), respectively. The trial was carried out for 28 days. Our results showed that AOS treatment reinforced the intestinal barrier function by increasing the ileal villus height, density, and fold, as well as the expression of tight junction proteins, especially at the dose of 500 mg/kg AOS. Meanwhile, supplementations with AOSs showed positive effects on enhancing antioxidant capacity and alleviating intestinal inflammation by elevating the levels of antioxidant enzymes and inhibiting excessive inflammatory cytokines. The DESeq2 analysis showed that AOS supplementation inhibited the growth of harmful bacteria Helicobacter and Escherichia_Shigella and enhanced the relative abundance of Faecalibacterium and Veillonella. Collectively, these findings suggested that AOSs have beneficial effects on growth performance, antioxidant capacity, and gut health in piglets.
Collapse
Affiliation(s)
- Ming Liu
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Xiong Deng
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
| | - Yong Zhao
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Nadia Everaert
- Nutrition and Animal Microbiota Ecosystems Laboratory, Department of Biosystems, KU Leuven, 3001 Leuven, Belgium
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China (H.Z.)
| | - Bing Xia
- Animal Science and Technology College, Beijing University of Agriculture, Beijing 102206, China; (M.L.)
| | - Martine Schroyen
- Precision Livestock and Nutrition Unit, Gembloux Agro-Bio Tech, University of Liège, Passage des Déportés 2, 5030 Gembloux, Belgium
| |
Collapse
|
11
|
Wang X, Zhang K, Ali W, Li J, Huang Q, Liu D, Liu G, Ran D, Liu Z. Luteolin alleviates cadmium-induced metabolism disorder through antioxidant and anti-inflammatory mechanisms in chicken kidney. Poult Sci 2024; 103:103817. [PMID: 38759568 PMCID: PMC11107462 DOI: 10.1016/j.psj.2024.103817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/25/2024] [Accepted: 04/25/2024] [Indexed: 05/19/2024] Open
Abstract
Cadmium (Cd) is a common environmental pollutant associated with an increased incidence of renal metabolic diseases. Luteolin (Lut), a natural flavonoid, is widely used for its multifaceted therapeutic properties in inflammatory diseases. However, whether Lut protects against Cd-induced nephrotoxicity is still equivocal. The present study investigated the effects of Lut supplementation on renal oxidative stress, inflammation and metabolism and their related mechanisms. Therefore, 40 chickens were treated with Cd and/or Lut with automatic water and free food intake for 1 mo and then the kidney tissues were collected to explore this issue. In this study, Cd exposure induced renal glycolipid metabolism disorders and resultant kidney damage by periodic acid Schiff (PAS) staining, Oil Red O staining, total cholesterol (TC), triglyceride (TG), and glucose (Glu) levels in kidney, which were significantly ameliorated by Lut. Moreover, Lut also normalized the expression levels of factors related to Cd-disturbed glycolipid metabolism, improving metabolic homeostasis, and contributing to alleviating kidney damage. Furthermore, Lut demonstrated therapeutic potential against Cd-induced renal oxidative stress and inflammation by enhancing antioxidant capacity and inhibiting cytokine production in the kidney tissues. Mechanistically, Lut activated the AMPK/SIRT1/FOXO1 signaling pathway, attenuating oxidative stress and inflammatory responses, ameliorating the metabolic disturbance. In conclusion, these observations demonstrate that Lut treatment activates AMPK/SIRT1/FOXO1 signaling pathway, decreases oxidative stress and inflammation response, which may contribute to prevent Cd-induced metabolism disorder and consequent kidney damage.
Collapse
Affiliation(s)
- Xueru Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Kanglei Zhang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Waseem Ali
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Jiahui Li
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Qing Huang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Dongdi Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China
| | - Gang Liu
- Department of Pathology & Laboratory Medicine, Tulane University School of Medicine, New Orleans, LA 70112, USA
| | - Di Ran
- College of Veterinary Medicine, Southwest University, Chongqing 400715, P.R. China; College of Medicine, University of Illinois Chicago, Chicago, IL 60607, USA
| | - Zongping Liu
- College of Veterinary Medicine, Yangzhou University, Yangzhou, Jiangsu 225009, P.R. China.
| |
Collapse
|
12
|
Chen J, Jian L, Guo Y, Tang C, Huang Z, Gao J. Liver Cell Mitophagy in Metabolic Dysfunction-Associated Steatotic Liver Disease and Liver Fibrosis. Antioxidants (Basel) 2024; 13:729. [PMID: 38929168 PMCID: PMC11200567 DOI: 10.3390/antiox13060729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/30/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) affects approximately one-third of the global population. MASLD and its advanced-stage liver fibrosis and cirrhosis are the leading causes of liver failure and liver-related death worldwide. Mitochondria are crucial organelles in liver cells for energy generation and the oxidative metabolism of fatty acids and carbohydrates. Recently, mitochondrial dysfunction in liver cells has been shown to play a vital role in the pathogenesis of MASLD and liver fibrosis. Mitophagy, a selective form of autophagy, removes and recycles impaired mitochondria. Although significant advances have been made in understanding mitophagy in liver diseases, adequate summaries concerning the contribution of liver cell mitophagy to MASLD and liver fibrosis are lacking. This review will clarify the mechanism of liver cell mitophagy in the development of MASLD and liver fibrosis, including in hepatocytes, macrophages, hepatic stellate cells, and liver sinusoidal endothelial cells. In addition, therapeutic strategies or compounds related to hepatic mitophagy are also summarized. In conclusion, mitophagy-related therapeutic strategies or compounds might be translational for the clinical treatment of MASLD and liver fibrosis.
Collapse
Affiliation(s)
- Jiaxin Chen
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linge Jian
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yangkun Guo
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Chengwei Tang
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhiyin Huang
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
| | - Jinhang Gao
- Laboratory of Gastroenterology and Hepatology, West China Hospital, Sichuan University, Chengdu 610041, China (C.T.)
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
13
|
Wu JJ, Zhang SY, Mu L, Dong ZG, Zhang YJ. Heyingwuzi formulation alleviates diabetic retinopathy by promoting mitophagy via the HIF-1α/BNIP3/NIX axis. World J Diabetes 2024; 15:1317-1339. [PMID: 38983802 PMCID: PMC11229969 DOI: 10.4239/wjd.v15.i6.1317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/22/2024] [Accepted: 04/01/2024] [Indexed: 06/11/2024] Open
Abstract
BACKGROUND Diabetic retinopathy (DR) is the primary cause of visual problems in patients with diabetes. The Heyingwuzi formulation (HYWZF) is effective against DR. AIM To determine the HYWZF prevention mechanisms, especially those underlying mitophagy. METHODS Human retinal capillary endothelial cells (HRCECs) were treated with high glucose (hg), HYWZF serum, PX-478, or Mdivi-1 in vitro. Then, cell counting kit-8, transwell, and tube formation assays were used to evaluate HRCEC proliferation, invasion, and tube formation, respectively. Transmission electron microscopy was used to assess mitochondrial morphology, and Western blotting was used to determine the protein levels. Flow cytometry was used to assess cell apoptosis, reactive oxygen species (ROS) production, and mitochondrial membrane potential. Moreover, C57BL/6 mice were established in vivo using streptozotocin and treated with HYWZF for four weeks. Blood glucose levels and body weight were monitored continuously. Changes in retinal characteristics were evaluated using hematoxylin and eosin, tar violet, and periodic acid-Schiff staining. Protein levels in retinal tissues were determined via Western blotting, immunohistochemistry, and immunostaining. RESULTS HYWZF inhibited excessive ROS production, apoptosis, tube formation, and invasion in hg-induced HRCECs via mitochondrial autophagy in vitro. It increased the mRNA expression levels of BCL2-interacting protein 3 (BNIP3), FUN14 domain-containing 1, BNIP3-like (BNIP3L, also known as NIX), PARKIN, PTEN-induced kinase 1, and hypoxia-inducible factor (HIF)-1α. Moreover, it downregulated the protein levels of vascular endothelial cell growth factor and increased the light chain 3-II/I ratio. However, PX-478 and Mdivi-1 reversed these effects. Additionally, PX-478 and Mdivi-1 rescued the effects of HYWZF by decreasing oxidative stress and apoptosis and increasing mitophagy. HYWZF intervention improved the symptoms of diabetes, tissue damage, number of acellular capillaries, and oxidative stress in vivo. Furthermore, in vivo experiments confirmed the results of in vitro experiments. CONCLUSION HYWZF alleviated DR and associated damage by promoting mitophagy via the HIF-1α/BNIP3/NIX axis.
Collapse
Affiliation(s)
- Jia-Jun Wu
- Department of Ophthalmology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Shu-Yan Zhang
- Department of Ophthalmology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Lin Mu
- Department of Ophthalmology, Eye and ENT Hospital, Fudan University, Shanghai 200031, China
| | - Zhi-Guo Dong
- Department of Ophthalmology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yin-Jian Zhang
- Department of Ophthalmology, Longhua Hospital Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| |
Collapse
|
14
|
Batheja S, Gupta S, Tejavath KK, Gupta U. TPP-based conjugates: potential targeting ligands. Drug Discov Today 2024; 29:103983. [PMID: 38641237 DOI: 10.1016/j.drudis.2024.103983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 03/30/2024] [Accepted: 04/10/2024] [Indexed: 04/21/2024]
Abstract
Mitochondria are one of the major sources of energy as well as regulators of cancer cell metabolism. Thus, they are potential targets for the effective treatment and management of cancer. Research has explored triphenylphosphonium (TPP) derivatives as potent cancer-targeting ligands because of their lipophilic nature and mitochondrial affinity. In this review, we summarize the utility of TPP-based conjugates targeting mitochondria in different types of cancer and other diseases, such as neurodegenerative and cardiovascular disorders. Such conjugates offer versatile therapeutic potential by modulating membrane potential, influencing reactive oxygen species (ROS) production, and coupling of molecular modifications (such as ATP metabolism and energy metabolism). Thus, we highlight TPP conjugates as promising mitochondria-targeting agents for use in targeted drug delivery systems.
Collapse
Affiliation(s)
- Sanya Batheja
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Shruti Gupta
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India
| | - Kiran Kumar Tejavath
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India; Department of Biochemistry, All India Institute of Medical Sciences, BIBINAGAR, Hyderabad Metropolitan Region (HMR), Telangana 508126, India.
| | - Umesh Gupta
- Nanopolymeric Drug Delivery Lab, Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, NH-8, Bandarsindri, Kishangarh, Ajmer 305817, India.
| |
Collapse
|
15
|
Wang L, Fang X, Ling B, Wang F, Xia Y, Zhang W, Zhong T, Wang X. Research progress on ferroptosis in the pathogenesis and treatment of neurodegenerative diseases. Front Cell Neurosci 2024; 18:1359453. [PMID: 38515787 PMCID: PMC10955106 DOI: 10.3389/fncel.2024.1359453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 02/15/2024] [Indexed: 03/23/2024] Open
Abstract
Globally, millions of individuals are impacted by neurodegenerative disorders including Huntington's disease (HD), amyotrophic lateral sclerosis (ALS), Parkinson's disease (PD), and Alzheimer's disease (AD). Although a great deal of energy and financial resources have been invested in disease-related research, breakthroughs in therapeutic approaches remain elusive. The breakdown of cells usually happens together with the onset of neurodegenerative diseases. However, the mechanism that triggers neuronal loss is unknown. Lipid peroxidation, which is iron-dependent, causes a specific type of cell death called ferroptosis, and there is evidence its involvement in the pathogenic cascade of neurodegenerative diseases. However, the specific mechanisms are still not well known. The present article highlights the basic processes that underlie ferroptosis and the corresponding signaling networks. Furthermore, it provides an overview and discussion of current research on the role of ferroptosis across a variety of neurodegenerative conditions.
Collapse
Affiliation(s)
- Lijuan Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiansong Fang
- Department of Blood Transfusion, The First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Baodian Ling
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Fangsheng Wang
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Yu Xia
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Wenjuan Zhang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Tianyu Zhong
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| | - Xiaoling Wang
- The First School of Clinical Medicine, Gannan Medical University, Ganzhou, China
- Laboratory Medicine, First Affiliated Hospital of Gannan Medical University, Ganzhou, China
| |
Collapse
|
16
|
Tian M, Hou J, Liu Z, Li Z, Huang D, Zhang Y, Ma Y. BNIP3 in hypoxia-induced mitophagy: Novel insights and promising target for non-alcoholic fatty liver disease. Int J Biochem Cell Biol 2024; 168:106517. [PMID: 38216085 DOI: 10.1016/j.biocel.2024.106517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 12/22/2023] [Accepted: 01/07/2024] [Indexed: 01/14/2024]
Abstract
BNIP3 localizes to the outer mitochondrial membrane, has been demonstrated to be extensively involved in abnormalities to mitochondrial metabolic function and dynamicsand in non-alcoholic fatty liver disease (NAFLD). However, its role in NAFLD under hypoxia remains unclear. This study aimed to investigate the expression and the role of BNIP3 in NAFLD under hypoxia, and explore its involvement in regulating NAFLD mitophagy, fatty acid β-oxidation both in vivo and in vitro. BNIP3-mediated mitophagy level was analyzed using real-time quantitative polymerase chain reaction, Western blotting, immunofluorescence and electron microscopy. The role of BNIP3 in fatty acid β-oxidation was evaluated using lipid droplet staining, triglyceride content determination, and cellular energy metabolism. The results showed that compared with the HFD-2200 m, the body weight, inflammatory liver injury, and lipid deposition were significantly reduced in the HFD-4500 m group (P < 0.05), but autophagy and mitophagy were increased, and the expression of the mitophagy receptor BNIP3 was increased (P < 0.05). Compared to the control group, BNIP3 knockdown in the hypoxia group resulted in decreased levels of CPT1, ATGL, and p-HSL in lipid-accumulating hepatocytes, lipid droplet accumulation and triglyceride content increased (P < 0.05). Moreover, the ability of lipid-accumulating hepatocytes to oxidize fatty acids was reduced by BNIP3 knockdown in the hypoxia group (P < 0.05). Therefore, it can be concluded that, in NAFLD mice under hypoxia, BNIP3-mediated mitophagy promotes fatty acid β-oxidation. This study elucidated the role of BNIP3 in promoting fatty acid β-oxidation in NAFLD under hypoxia, and suggests BNIP3 may serve as a novel potential therapeutic target for NAFLD.
Collapse
Affiliation(s)
- Meiyuan Tian
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, China; Central Laboratory, Affiliated Hospital of Qinghai University in Qinghai province, Xining 810001, China; Key Laboratory for Echinococcosis studies in Qinghai Province, Xining 810001, China
| | - Jing Hou
- Central Laboratory, Affiliated Hospital of Qinghai University in Qinghai province, Xining 810001, China; Key Laboratory for Echinococcosis studies in Qinghai Province, Xining 810001, China
| | - Zhe Liu
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, China; Central Laboratory, Affiliated Hospital of Qinghai University in Qinghai province, Xining 810001, China; Key Laboratory for Echinococcosis studies in Qinghai Province, Xining 810001, China
| | - Zhanquan Li
- Central Laboratory, Affiliated Hospital of Qinghai University in Qinghai province, Xining 810001, China; Key Laboratory for Echinococcosis studies in Qinghai Province, Xining 810001, China
| | - Dengliang Huang
- Central Laboratory, Affiliated Hospital of Qinghai University in Qinghai province, Xining 810001, China; Key Laboratory for Echinococcosis studies in Qinghai Province, Xining 810001, China
| | - Yaogang Zhang
- Central Laboratory, Affiliated Hospital of Qinghai University in Qinghai province, Xining 810001, China; Key Laboratory for Echinococcosis studies in Qinghai Province, Xining 810001, China
| | - Yanyan Ma
- Research Center for High Altitude Medicine, Key Laboratory of High-Altitude Medicine (Ministry of Education), Key Laboratory of Application and Foundation for High Altitude Medicine Research in Qinghai Province (Qinghai-Utah Joint Research Key Lab for High Altitude Medicine), Qinghai University, Xining 810001, China; Central Laboratory, Affiliated Hospital of Qinghai University in Qinghai province, Xining 810001, China; Key Laboratory for Echinococcosis studies in Qinghai Province, Xining 810001, China.
| |
Collapse
|
17
|
Jakubek P, Kalinowski P, Karkucinska-Wieckowska A, Kaikini A, Simões ICM, Potes Y, Kruk B, Grajkowska W, Pinton P, Milkiewicz P, Grąt M, Pronicki M, Lebiedzinska-Arciszewska M, Krawczyk M, Wieckowski MR. Oxidative stress in metabolic dysfunction-associated steatotic liver disease (MASLD): How does the animal model resemble human disease? FASEB J 2024; 38:e23466. [PMID: 38318780 DOI: 10.1096/fj.202302447r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/15/2024] [Accepted: 01/22/2024] [Indexed: 02/07/2024]
Abstract
Despite decades of research, the pathogenesis of metabolic dysfunction-associated steatotic liver disease (MASLD) is still not completely understood. Based on the evidence from preclinical models, one of the factors proposed as a main driver of disease development is oxidative stress. This study aimed to search for the resemblance between the profiles of oxidative stress and antioxidant defense in the animal model of MASLD and the group of MASLD patients. C57BL/6J mice were fed with the Western diet for up to 24 weeks and served as the animal model of MASLD. The antioxidant profile of mice hepatic tissue was determined by liquid chromatography-MS3 spectrometry (LC-MS/MS). The human cohort consisted of 20 patients, who underwent bariatric surgery, and 6 controls. Based on histological analysis, 4 bariatric patients did not have liver steatosis and as such were also classified as controls. Total antioxidant activity was measured in sera and liver biopsy samples. The hepatic levels of antioxidant enzymes and oxidative damage were determined by Western Blot. The levels of antioxidant enzymes were significantly altered in the hepatic tissue of mice with MASLD. In contrast, there were no significant changes in the antioxidant profile of hepatic tissue of MASLD patients, except for the decreased level of carbonylated proteins. Decreased protein carbonylation together with significant correlations between the thioredoxin system and parameters describing metabolic health suggest alterations in the thiol-redox signaling. Altogether, these data show that even though the phenotype of mice closely resembles human MASLD, the animal-to-human translation of cellular and molecular processes such as oxidative stress may be more challenging.
Collapse
Affiliation(s)
- Patrycja Jakubek
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Piotr Kalinowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | | | - Aakruti Kaikini
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Inês C M Simões
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Yaiza Potes
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Beata Kruk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
| | - Wieslawa Grajkowska
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Paolo Pinton
- Department of Medical Sciences, Section of Experimental Medicine, Laboratory for Technologies of Advanced Therapies, University of Ferrara, Ferrara, Italy
| | - Piotr Milkiewicz
- Liver and Internal Medicine Unit, Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
- Translational Medicine Group, Pomeranian Medical University, Szczecin, Poland
| | - Michał Grąt
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, Warsaw, Poland
| | - Maciej Pronicki
- Department of Pathology, The Children's Memorial Health Institute, Warsaw, Poland
| | - Magdalena Lebiedzinska-Arciszewska
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| | - Marcin Krawczyk
- Laboratory of Metabolic Liver Diseases, Department of General, Transplant and Liver Surgery, Centre for Preclinical Research, Medical University of Warsaw, Warsaw, Poland
- Department of Medicine II, Saarland University Medical Center, Saarland University, Homburg, Germany
| | - Mariusz R Wieckowski
- Laboratory of Mitochondrial Biology and Metabolism, Nencki Institute of Experimental Biology of Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
18
|
Maseko TE, Elkalaf M, Peterová E, Lotková H, Staňková P, Melek J, Dušek J, Žádníková P, Čížková D, Bezrouk A, Pávek P, Červinková Z, Kučera O. Comparison of HepaRG and HepG2 cell lines to model mitochondrial respiratory adaptations in non‑alcoholic fatty liver disease. Int J Mol Med 2024; 53:18. [PMID: 38186319 PMCID: PMC10781417 DOI: 10.3892/ijmm.2023.5342] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 12/01/2023] [Indexed: 01/09/2024] Open
Abstract
Although some clinical studies have reported increased mitochondrial respiration in patients with fatty liver and early non‑alcoholic steatohepatitis (NASH), there is a lack of in vitro models of non‑alcoholic fatty liver disease (NAFLD) with similar findings. Despite being the most commonly used immortalized cell line for in vitro models of NAFLD, HepG2 cells exposed to free fatty acids (FFAs) exhibit a decreased mitochondrial respiration. On the other hand, the use of HepaRG cells to study mitochondrial respiratory changes following exposure to FFAs has not yet been fully explored. Therefore, the present study aimed to assess cellular energy metabolism, particularly mitochondrial respiration, and lipotoxicity in FFA‑treated HepaRG and HepG2 cells. HepaRG and HepG2 cells were exposed to FFAs, followed by comparative analyses that examained cellular metabolism, mitochondrial respiratory enzyme activities, mitochondrial morphology, lipotoxicity, the mRNA expression of selected genes and triacylglycerol (TAG) accumulation. FFAs stimulated mitochondrial respiration and glycolysis in HepaRG cells, but not in HepG2 cells. Stimulated complex I, II‑driven respiration and β‑oxidation were linked to increased complex I and II activities in FFA‑treated HepaRG cells, but not in FFA‑treated HepG2 cells. Exposure to FFAs disrupted mitochondrial morphology in both HepaRG and HepG2 cells. Lipotoxicity was induced to a greater extent in FFA‑treated HepaRG cells than in FFA‑treated HepG2 cells. TAG accumulation was less prominent in HepaRG cells than in HepG2 cells. On the whole, the present study demonstrates that stimulated mitochondrial respiration is associated with lipotoxicity in FFA‑treated HepaRG cells, but not in FFA‑treated HepG2 cells. These findings suggest that HepaRG cells are more suitable for assessing mitochondrial respiratory adaptations in the developed in vitro model of early‑stage NASH.
Collapse
Affiliation(s)
- Tumisang Edward Maseko
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Moustafa Elkalaf
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Eva Peterová
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Department of Medical Biochemistry, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Halka Lotková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Pavla Staňková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Jan Melek
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Jan Dušek
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Petra Žádníková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Dana Čížková
- Department of Histology and Embryology Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Aleš Bezrouk
- Department of Medical Biophysics, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Charles University, Faculty of Pharmacy in Hradec Kralove, 500 05 Hradec Kralove, Czech Republic
| | - Zuzana Červinková
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| | - Otto Kučera
- Department of Physiology, Charles University, Faculty of Medicine in Hradec Kralove, 500 03 Hradec Kralove, Czech Republic
| |
Collapse
|
19
|
Kulovic-Sissawo A, Tocantins C, Diniz MS, Weiss E, Steiner A, Tokic S, Madreiter-Sokolowski CT, Pereira SP, Hiden U. Mitochondrial Dysfunction in Endothelial Progenitor Cells: Unraveling Insights from Vascular Endothelial Cells. BIOLOGY 2024; 13:70. [PMID: 38392289 PMCID: PMC10886154 DOI: 10.3390/biology13020070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 01/18/2024] [Accepted: 01/19/2024] [Indexed: 02/24/2024]
Abstract
Endothelial dysfunction is associated with several lifestyle-related diseases, including cardiovascular and neurodegenerative diseases, and it contributes significantly to the global health burden. Recent research indicates a link between cardiovascular risk factors (CVRFs), excessive production of reactive oxygen species (ROS), mitochondrial impairment, and endothelial dysfunction. Circulating endothelial progenitor cells (EPCs) are recruited into the vessel wall to maintain appropriate endothelial function, repair, and angiogenesis. After attachment, EPCs differentiate into mature endothelial cells (ECs). Like ECs, EPCs are also susceptible to CVRFs, including metabolic dysfunction and chronic inflammation. Therefore, mitochondrial dysfunction of EPCs may have long-term effects on the function of the mature ECs into which EPCs differentiate, particularly in the presence of endothelial damage. However, a link between CVRFs and impaired mitochondrial function in EPCs has hardly been investigated. In this review, we aim to consolidate existing knowledge on the development of mitochondrial and endothelial dysfunction in the vascular endothelium, place it in the context of recent studies investigating the consequences of CVRFs on EPCs, and discuss the role of mitochondrial dysfunction. Thus, we aim to gain a comprehensive understanding of mechanisms involved in EPC deterioration in relation to CVRFs and address potential therapeutic interventions targeting mitochondrial health to promote endothelial function.
Collapse
Affiliation(s)
- Azra Kulovic-Sissawo
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Carolina Tocantins
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Mariana S Diniz
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research (IIIUC), University of Coimbra, 3004-531 Coimbra, Portugal
| | - Elisa Weiss
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Andreas Steiner
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| | - Silvija Tokic
- Research Unit of Analytical Mass Spectrometry, Cell Biology and Biochemistry of Inborn Errors of Metabolism, Department of Paediatrics and Adolescent Medicine, Medical University of Graz, Auenbruggerplatz 34, 8036 Graz, Austria
| | - Corina T Madreiter-Sokolowski
- Division of Molecular Biology and Biochemistry, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria
| | - Susana P Pereira
- CNC-UC-Center for Neuroscience and Cell Biology, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal
- Center for Innovative Biomedicine and Biotechnology (CIBB), University of Coimbra, 3000-504 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| | - Ursula Hiden
- Perinatal Research Laboratory, Department of Obstetrics and Gynaecology, Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
- Research Unit Early Life Determinants (ELiD), Medical University of Graz, Auenbruggerplatz 14, 8036 Graz, Austria
| |
Collapse
|
20
|
Zhang J, Liu Z, Yin X, Wang E, Wang J. NSC48160 targets AMPKα to ameliorate nonalcoholic steatohepatitis by inhibiting lipogenesis and mitochondrial oxidative stress. iScience 2024; 27:108614. [PMID: 38155777 PMCID: PMC10753068 DOI: 10.1016/j.isci.2023.108614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/06/2023] [Accepted: 11/29/2023] [Indexed: 12/30/2023] Open
Abstract
Hepatic steatosis, which is triggered by dysregulation of lipid metabolism and redox equilibrium in the liver, is regarded as a risk factor in the non-alcoholic fatty liver disease (NAFLD). However, pharmacologic engagement of this process is difficult. We identified the small molecule NSC48160 as an effective agent against nonalcoholic steatohepatitis (NASH). We found that NSC48160 significantly lowered hepatic lipid levels in vitro and in vivo by activating the AMPKα-dependent pathway. AMPKα regulated its downstream pathway involved in lipogenesis (SREBP-1c/FASN pathway) and fatty acid oxidation (PPARα pathway). Metabonomics analysis combined with RNA-sequencing profiling revealed that NSC48160-induced lipogenesis is modulated by lipid metabolism. Moreover, NSC48160 dramatically reduces reactive oxygen species (ROS) production, restores the levels of the membrane potential and NAD+/NADH ratio, and improves mitochondrial respiration. These findings suggest that NSC48160 is a promising hit compound in the pursuit of a pharmacological approach in the treatment of NASH.
Collapse
Affiliation(s)
- Jiaxin Zhang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Zuojia Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xunzhe Yin
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Erkang Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Jin Wang
- Department of Chemistry and Physics, Stony Brook University, Stony Brook, NY 11794-3400, USA
| |
Collapse
|
21
|
Gong K, Zhang Z, Chen SS, Zhu XR, Wang MY, Yang XY, Ding C, Han JH, Li QS, Duan YJ. 6-Methyl flavone inhibits Nogo-B expression and improves high fructose diet-induced liver injury in mice. Acta Pharmacol Sin 2023; 44:2216-2229. [PMID: 37402997 PMCID: PMC10618526 DOI: 10.1038/s41401-023-01121-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 06/01/2023] [Indexed: 07/06/2023]
Abstract
Excessive fructose consumption increases hepatic de novo lipogenesis, resulting in cellular stress, inflammation and liver injury. Nogo-B is a resident protein of the endoplasmic reticulum that regulates its structure and function. Hepatic Nogo-B is a key protein in glycolipid metabolism, and inhibition of Nogo-B has protective effects against metabolic syndrome, thus small molecules that inhibit Nogo-B have therapeutic benefits for glycolipid metabolism disorders. In this study we tested 14 flavones/isoflavones in hepatocytes using dual luciferase reporter system based on the Nogo-B transcriptional response system, and found that 6-methyl flavone (6-MF) exerted the strongest inhibition on Nogo-B expression in hepatocytes with an IC50 value of 15.85 μM. Administration of 6-MF (50 mg· kg-1 ·d-1, i.g. for 3 weeks) significantly improved insulin resistance along with ameliorated liver injury and hypertriglyceridemia in high fructose diet-fed mice. In HepG2 cells cultured in a media containing an FA-fructose mixture, 6-MF (15 μM) significantly inhibited lipid synthesis, oxidative stress and inflammatory responses. Furthermore, we revealed that 6-MF inhibited Nogo-B/ChREBP-mediated fatty acid synthesis and reduced lipid accumulation in hepatocytes by restoring cellular autophagy and promoting fatty acid oxidation via the AMPKα-mTOR pathway. Thus, 6-MF may serve as a potential Nogo-B inhibitor to treat metabolic syndrome caused by glycolipid metabolism dysregulation.
Collapse
Affiliation(s)
- Ke Gong
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
| | - Zhen Zhang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
| | - Sha-Sha Chen
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
| | - Xin-Ran Zhu
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
| | - Meng-Yao Wang
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
| | - Xin-Yue Yang
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Chen Ding
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Ji-Hong Han
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China
- College of Life Sciences, State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of Ministry of Education, Nankai University, Tianjin, 300071, China
| | - Qing-Shan Li
- Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, 230031, China.
| | - Ya-Jun Duan
- Department of Cardiology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
| |
Collapse
|
22
|
Diniz MS, Magalhães CC, Tocantins C, Grilo LF, Teixeira J, Pereira SP. Nurturing through Nutrition: Exploring the Role of Antioxidants in Maternal Diet during Pregnancy to Mitigate Developmental Programming of Chronic Diseases. Nutrients 2023; 15:4623. [PMID: 37960276 PMCID: PMC10649237 DOI: 10.3390/nu15214623] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/27/2023] [Accepted: 10/27/2023] [Indexed: 11/15/2023] Open
Abstract
Chronic diseases represent one of the major causes of death worldwide. It has been suggested that pregnancy-related conditions, such as gestational diabetes mellitus (GDM), maternal obesity (MO), and intra-uterine growth restriction (IUGR) induce an adverse intrauterine environment, increasing the offspring's predisposition to chronic diseases later in life. Research has suggested that mitochondrial function and oxidative stress may play a role in the developmental programming of chronic diseases. Having this in mind, in this review, we include evidence that mitochondrial dysfunction and oxidative stress are mechanisms by which GDM, MO, and IUGR program the offspring to chronic diseases. In this specific context, we explore the promising advantages of maternal antioxidant supplementation using compounds such as resveratrol, curcumin, N-acetylcysteine (NAC), and Mitoquinone (MitoQ) in addressing the metabolic dysfunction and oxidative stress associated with GDM, MO, and IUGR in fetoplacental and offspring metabolic health. This approach holds potential to mitigate developmental programming-related risk of chronic diseases, serving as a probable intervention for disease prevention.
Collapse
Affiliation(s)
- Mariana S. Diniz
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Carina C. Magalhães
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Carolina Tocantins
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Luís F. Grilo
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Doctoral Programme in Experimental Biology and Biomedicine (PDBEB), Institute for Interdisciplinary Research, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Teixeira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
| | - Susana P. Pereira
- CNC-UC—Center for Neuroscience and Cell Biology, University of Coimbra, 3004-504 Coimbra, Portugal; (M.S.D.); (C.C.M.); (C.T.); (L.F.G.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-517 Coimbra, Portugal
- Laboratory of Metabolism and Exercise (LaMetEx), Research Centre in Physical Activity, Health and Leisure (CIAFEL), Laboratory for Integrative and Translational Research in Population Health (ITR), Faculty of Sports, University of Porto, 4200-450 Porto, Portugal
| |
Collapse
|
23
|
Chen Y, Li P, Chen X, Yan R, Zhang Y, Wang M, Qin X, Li S, Zheng C, You F, Li T, Liu Y. Endoplasmic reticulum-mitochondrial calcium transport contributes to soft extracellular matrix-triggered mitochondrial dynamics and mitophagy in breast carcinoma cells. Acta Biomater 2023; 169:192-208. [PMID: 37541606 DOI: 10.1016/j.actbio.2023.07.060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/03/2023] [Accepted: 07/28/2023] [Indexed: 08/06/2023]
Abstract
Although mitochondrial morphology and function are considered to be closely related to matrix stiffness-driven tumor progression, it remains poorly understood how extracellular matrix (ECM) stiffness affects mitochondrial dynamics and mitophagy. Here, we found that soft substrate triggered calcium transport by increasing endoplasmic reticulum (ER) calcium release and mitochondrial (MITO) calcium uptake. ER-MITO calcium transport promoted the recruitment of dynamin-related protein 1 (Drp1) to mitochondria and phosphorylation at the serine 616 site, which induced mitochondrial fragmentation and Parkin/PINK1-mediated mitophagy. Furthermore, in vivo experiments demonstrated that soft ECM enhanced calcium levels in tumor tissue, Drp1 activity was required for soft ECM-induced mitochondrial dynamics impairment, and inhibition of Drp1 activity enhanced soft ECM-induced tumor necrosis. In conclusion, we revealed a new mechanism whereby ER-MITO calcium transport regulated mitochondrial dynamics and mitophagy through Drp1 translocation in response to soft substrates. These findings provide valuable insights into ECM stiffness as a potential target for antitumor therapy. STATEMENT OF SIGNIFICANCE: Here, we examined the relationship between substrate stiffness and mitochondrial dynamics by using polyacrylamide (PAA) substrates to simulate the stages of breast cancer or BAPN to reduce tumor tissue stiffness. The results elucidated that soft substrate triggered the recruitment of DRP1 and subsequent mitochondrial fission and mitophagy by ER-MITO calcium transport. Furthermore, mitophagy partly attenuated soft ECM-mediated tumor tissue necrosis and contributed to tumor survival in vivo. Our discoveries revealed the molecular mechanisms by which mechanical stimulation regulates mitochondrial dynamics, providing valuable insights into ECM stiffness as a target for anti-tumor approaches, which could be beneficial for both biomechanics research and clinical applications.
Collapse
Affiliation(s)
- Yu Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Ping Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xiangyan Chen
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Ran Yan
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Yixi Zhang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Meng Wang
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Xiang Qin
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Shun Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China
| | - Chuan Zheng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China
| | - Fengming You
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China
| | - Tingting Li
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China.
| | - Yiyao Liu
- Department of Pharmacy, Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Provincial People's Hospital, and School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu, PR China; TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, No. 39 Shi-er-qiao Road, Chengdu 610072, Sichuan, PR China.
| |
Collapse
|
24
|
Heinle JW, DiJoseph K, Sabag A, Oh S, Kimball SR, Keating S, Stine JG. Exercise Is Medicine for Nonalcoholic Fatty Liver Disease: Exploration of Putative Mechanisms. Nutrients 2023; 15:nu15112452. [PMID: 37299416 DOI: 10.3390/nu15112452] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/18/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Exercise remains a key component of nonalcoholic fatty liver disease (NAFLD) treatment. The mechanisms that underpin improvements in NAFLD remain the focus of much exploration in our attempt to better understand how exercise benefits patients with NAFLD. In this review, we summarize the available scientific literature in terms of mechanistic studies which explore the role of exercise training in modulating fatty acid metabolism, reducing hepatic inflammation, and improving liver fibrosis. This review highlights that beyond simple energy expenditure, the activation of key receptors and pathways may influence the degree of NAFLD-related improvements with some pathways being sensitive to exercise type, intensity, and volume. Importantly, each therapeutic target of exercise training in this review is also the focus of previous or ongoing drug development studies in patients with nonalcoholic steatohepatitis (NASH), and even when a regulatory-agency-approved drug comes to market, exercise will likely remain an integral component in the clinical management of patients with NAFLD and NASH.
Collapse
Affiliation(s)
- James Westley Heinle
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Kara DiJoseph
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| | - Angelo Sabag
- School of Health Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW 2006, Australia
| | - Sechang Oh
- Department of Physical Therapy, Faculty of Rehabilitation, R Professional University of Rehabilitation, Tsuchiura 300-0032, Ibaraki, Japan
| | - Scot R Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
| | - Shelley Keating
- School of Human Movement and Nutrition Sciences, The University of Queensland, St. Lucia, QLD 4072, Australia
| | - Jonathan G Stine
- Division of Gastroenterology and Hepatology, Department of Medicine, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Department of Public Health Sciences, College of Medicine, The Pennsylvania State University, Hershey, PA 17033, USA
- Fatty Liver Program, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Liver Center, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
- Cancer Institute, Penn State Health Milton S. Hershey Medical Center, Hershey, PA 17033, USA
| |
Collapse
|
25
|
Pinho SA, Anjo SI, Cunha-Oliveira T. Metabolic Priming as a Tool in Redox and Mitochondrial Theragnostics. Antioxidants (Basel) 2023; 12:1072. [PMID: 37237939 PMCID: PMC10215850 DOI: 10.3390/antiox12051072] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/05/2023] [Accepted: 05/06/2023] [Indexed: 05/28/2023] Open
Abstract
Theragnostics is a promising approach that integrates diagnostics and therapeutics into a single personalized strategy. To conduct effective theragnostic studies, it is essential to create an in vitro environment that accurately reflects the in vivo conditions. In this review, we discuss the importance of redox homeostasis and mitochondrial function in the context of personalized theragnostic approaches. Cells have several ways to respond to metabolic stress, including changes in protein localization, density, and degradation, which can promote cell survival. However, disruption of redox homeostasis can lead to oxidative stress and cellular damage, which are implicated in various diseases. Models of oxidative stress and mitochondrial dysfunction should be developed in metabolically conditioned cells to explore the underlying mechanisms of diseases and develop new therapies. By choosing an appropriate cellular model, adjusting cell culture conditions and validating the cellular model, it is possible to identify the most promising therapeutic options and tailor treatments to individual patients. Overall, we highlight the importance of precise and individualized approaches in theragnostics and the need to develop accurate in vitro models that reflect the in vivo conditions.
Collapse
Affiliation(s)
- Sónia A. Pinho
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- PDBEB—PhD Programme in Experimental Biology and Biomedicine, Institute of Interdisciplinary Research (IIIUC), University of Coimbra, 3004-504 Coimbra, Portugal
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Sandra I. Anjo
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Cunha-Oliveira
- CNC-Center for Neuroscience and Cell Biology, CIBB-Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3060-197 Cantanhede, Portugal; (S.A.P.); (S.I.A.)
- IIIUC, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
26
|
Fu Z, Zhao PY, Yang XP, Li H, Hu SD, Xu YX, Du XH. Cannabidiol regulates apoptosis and autophagy in inflammation and cancer: A review. Front Pharmacol 2023; 14:1094020. [PMID: 36755953 PMCID: PMC9899821 DOI: 10.3389/fphar.2023.1094020] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Cannabidiol (CBD) is a terpenoid naturally found in plants. The purified compound is used in the treatment of mental disorders because of its antidepressive, anxiolytic, and antiepileptic effects. CBD can affect the regulation of several pathophysiologic processes, including autophagy, cytokine secretion, apoptosis, and innate and adaptive immune responses. However, several authors have reported contradictory findings concerning the magnitude and direction of CBD-mediated effects. For example, CBD treatment can increase, decrease, or have no significant effect on autophagy and apoptosis. These variable results can be attributed to the differences in the biological models, cell types, and CBD concentration used in these studies. This review focuses on the mechanism of regulation of autophagy and apoptosis in inflammatory response and cancer by CBD. Further, we broadly elaborated on the prospects of using CBD as an anti-inflammatory agent and in cancer therapy in the future.
Collapse
Affiliation(s)
- Ze Fu
- Medical School of Chinese PLA, Beijing, China
| | | | | | - Hao Li
- Medical School of Chinese PLA, Beijing, China
| | - Shi-Dong Hu
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ying-Xin Xu
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Xiao-Hui Du
- Department of General Surgery, First Medical Center of Chinese PLA General Hospital, Beijing, China,*Correspondence: Xiao-Hui Du,
| |
Collapse
|