1
|
Wang X, Gui H, Liu C, Huo F, Lan W, Zhu X, Wang W, Ma A, Lan J. ENTR1 regulates periodontitis by modulating macrophage M1 polarization via AMPK activation. Life Sci 2025; 369:123525. [PMID: 40054733 DOI: 10.1016/j.lfs.2025.123525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 02/26/2025] [Accepted: 03/01/2025] [Indexed: 03/30/2025]
Abstract
AIMS Periodontitis is a chronic inflammatory disorder arising from an imbalance between oral microbiota and the host's immune response, with macrophages as pivotal targets for prevention and treatment. Endosome-associated Trafficking Regulator 1 (ENTR1) is indispensable for protein trafficking and implant osseointegration. However, its specific role in periodontitis has yet to be clarified. This research seeks to explore the effects of ENTR1 on macrophage polarization, elucidate its mechanisms, and evaluate its regulatory functions in the regeneration of periodontal tissues. MATERIALS AND METHODS A ligature-induced periodontitis mouse model was established to investigate the correlation between macrophage polarization markers and ENTR1 expression. Techniques including qRT-PCR, Western blot, ELISA, flow cytometry, and immunofluorescence staining were utilized to evaluate the impact of ENTR1 on macrophage polarization under inflammatory stimuli. Micro-CT and histological staining were applied to assess periodontal bone resorption. The interaction between ENTR1 and AMP-activated protein kinase (AMPK) was explored through Western blot and co-immunoprecipitation, further validated by applying the AMPK inhibitor Compound C (CpC). KEY FINDINGS ENTR1 expression was down-regulated in the mice with periodontitis relative to healthy controls. Overexpressing ENTR1 suppressed macrophage M1 polarization and mitigated bone loss in periodontitis, while knocking down ENTR1 exacerbated these effects. ENTR1 directly interacted with AMPK, enhancing its phosphorylation. Furthermore, the inhibitory impact of ENTR1 on macrophage M1 polarization and inflammation-induced alveolar bone resorption were partially attenuated by CpC treatment. SIGNIFICANCE ENTR1 regulates periodontitis by suppressing macrophage M1 polarization through enhancing AMPK phosphorylation, presenting a promising therapeutic target for its prevention and management.
Collapse
Affiliation(s)
- Xi Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Houda Gui
- Department of Implantology, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Chenghang Liu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Fenglei Huo
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Weipeng Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Xingyan Zhu
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Wenhao Wang
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Anquan Ma
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China
| | - Jing Lan
- Department of Prosthodontics, School and Hospital of Stomatology, Cheeloo College of Medicine, Shandong University & Shandong Key Laboratory of Oral Tissue Regeneration & Shandong Engineering Research Center of Dental Materials and Oral Tissue Regeneration & Shandong Provincial Clinical Research Center for Oral Diseases, No.44-1 Wenhua Road West, 250012 Jinan, Shandong, China.
| |
Collapse
|
2
|
Yang X, Zhang L, Ran H, Peng F, Tu Y. Micro/nanomotors for active inflammatory disease therapy. Biomater Sci 2025; 13:2541-2555. [PMID: 40181756 DOI: 10.1039/d5bm00052a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2025]
Abstract
Inflammation is a carefully orchestrated response of the immune system to repair injured tissues and clear various damage factors. However, dysregulated inflammation can eventually contribute to the development and progression of various inflammatory diseases. Although anti-inflammatory drugs have demonstrated certain therapeutic efficacy in clinical settings, significant limitations still persist, highlighting the necessity for the development of improved approaches to address complex inflammatory conditions. Micro/nanomotors (MNMs) have shown significant promise for applications in the biomedical field due to their micro/nano-scale sizes and autonomous movement. Unlike traditional nanoparticles, which exhibit passive diffusion in biological fluids, MNMs can convert external energy into a driving force for self-propulsion. This capability not only enhances the tissue penetration depth and retention rates but also facilitates interaction with inflammatory lesions. Recent efforts have suggested that MNMs for inflammatory disease therapy could provide an efficient therapeutic effect. Herein, we mainly introduce the recent advances in inflammatory disease therapy based on MNMs. We conclude by discussing both the obstacles and potential opportunities for MNMs innovations in addressing inflammation.
Collapse
Affiliation(s)
- Xue Yang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Lishan Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Hui Ran
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Fei Peng
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
3
|
Zeng L, Zhang J, Song R, Dong X, Wei Z, Li X, Zeng X, Yao J. Laminarin Alleviates Acute Lung Injury Induced by LPS Through Inhibition of M1 Macrophage Polarisation. J Cell Mol Med 2025; 29:e70440. [PMID: 40045157 PMCID: PMC11882389 DOI: 10.1111/jcmm.70440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 12/27/2024] [Accepted: 02/12/2025] [Indexed: 03/09/2025] Open
Abstract
The lipopolysaccharide-induced acute lung injury (ALI) mouse model is used to simulate human acute respiratory distress syndrome (ARDS), which has a high mortality rate. An imbalance between M1 and M2 macrophages, characterised by an increase in M1 macrophages, was observed in sepsis-induced ALI. We report that laminarin, an active ingredient found in algae, exhibits exceptional performance in a mouse model of sepsis-induced ALI. It ameliorates lung edema, enhances the survival rate of mice and reduces the levels of the inflammatory factors TNF-α and IL-6. Furthermore, laminarin reduced the expression of CD86, which are markers associated with M1 macrophages. Laminarin treatment reduces the secretion of TNF-α and IL-6 in LPS-stimulated macrophages. Laminarin treatment also decreases glucose uptake in LPS-stimulated macrophages. Transcriptome sequencing reveals that genes downregulated in LPS-stimulated macrophages following laminarin treatment are predominantly enriched in the HIF-1α signalling pathway. Experimental validation confirms that laminarin treatment of LPS-stimulated macrophages reduces the expression of HIF-1α and significantly decreases the expression of related indicators ROS and NLRP3. After using siRNA to knock down HIF-1α in RAW264.7 cells, the inhibitory effect of laminarin on LPS-induced M1 polarisation of macrophages is abolished. This suggests that laminarin may potentially inhibit macrophage polarisation towards the M1 phenotype by downregulating the HIF-1α signal. In conclusion, the data presented in our study demonstrate that laminarin can effectively reduce M1 macrophage polarisation by downregulating HIF-1α signalling. This makes it a novel candidate drug for the treatment of LPS-induced ALI.
Collapse
Grants
- 2020KTSCX024 Educational Commission of Guangdong Province, China
- 2022A1515220197 Basic and Applied Basic Research Foundation of Guangdong Province
- 2021A1515010928 Natural Science Foundation of Guangdong Province, China
- B2021121 The Medical Science and Technology Foundation of Guangdong Province
- YNZX0003 The Scientific Research Start Plan of Shunde Hospital, Southern Medical University
- YNZX0002 The Scientific Research Start Plan of Shunde Hospital, Southern Medical University
- SRSP2021015 The Scientific Research Start Plan of Shunde Hospital, Southern Medical University
- SRSP2021002 The Scientific Research Start Plan of Shunde Hospital, Southern Medical University
- SRSP2021006 The Scientific Research Start Plan of Shunde Hospital, Southern Medical University
- SRSP2019009 The Scientific Research Start Plan of Shunde Hospital, Southern Medical University
- SRSP2021012 The Scientific Research Start Plan of Shunde Hospital, Southern Medical University
- Educational Commission of Guangdong Province, China
- Basic and Applied Basic Research Foundation of Guangdong Province
- Natural Science Foundation of Guangdong Province, China
Collapse
Affiliation(s)
- Liming Zeng
- Medical Research Center & Department of Laboratory Medicine of Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| | - Jieyu Zhang
- Medical Research Center & Department of Laboratory Medicine of Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
- Central Laboratory of The Sixth Affliated Hospital, School of MedicineSouth China University of TechnologyFoshanGuangdongChina
| | - Rongrong Song
- Medical Research Center & Department of Laboratory Medicine of Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
- Central Laboratory of The Sixth Affliated Hospital, School of MedicineSouth China University of TechnologyFoshanGuangdongChina
| | - Xinhuai Dong
- Medical Research Center & Department of Laboratory Medicine of Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| | - Zibo Wei
- Medical Research Center & Department of Laboratory Medicine of Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| | - Xiaoyan Li
- Clinical Laboratory of Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
| | - Xiaokang Zeng
- Medical Research Center & Department of Laboratory Medicine of Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
- Central Laboratory of The Sixth Affliated Hospital, School of MedicineSouth China University of TechnologyFoshanGuangdongChina
| | - Jie Yao
- Medical Research Center & Department of Laboratory Medicine of Shunde HospitalSouthern Medical University (The First People's Hospital of Shunde)FoshanGuangdongChina
- Clinical Laboratory of The Sixth Affiliated Hospital, School of MedicineSouth China University of TechnologyFoshanGuangdongChina
| |
Collapse
|
4
|
Li P, Li F, Chen S, Ma Q, Wang J, Ma B, Xu J. Role of acupuncture in improving the outcome of sepsis-induced lung injury. Histol Histopathol 2025; 40:369-380. [PMID: 38962967 DOI: 10.14670/hh-18-781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
OBJECTIVE The purpose of this study was to investigate the effect of serum exosomes of mice after acupuncture (acu-exo) on acute lung injury (ALI) in sepsis in vitro and in vivo. METHODS Serum exosomes (acu-exo) of normal mice were prepared after acupuncture. Lipopolysaccharide (LPS) was used to establish the model of ALI in vivo and in vitro. Immunohistochemistry, western blot, and immunofluorescence were used to evaluate the mechanism of acu-exo on ALI. P2X7 knockout mice and P2X7 siRNA were used to verify the mechanism. RESULTS Compared with normal mice, serum exosomes were significantly increased in normal mice after acupuncture. The results showed that P2X7 was increased in the lung of septic mice as compared with the WT group. It was also found that the increase in NLRP3 and NF-κB was accompanied by the activation of P2X7. Increased P2X7 led to activation of the P2X7 receptor causing mitochondrial dysfunctions in lung tissue of septic mice. Knockout of P2X7 or silenced P2X7 markedly decreased NLRP3 and NF-κB and led to mitochondrial function recovery in lung tissue of sepsis. At the same time, acu-exo significantly restored the above changes in the lung tissue of septic mice. CONCLUSIONS Inhibition of P2X7 led to mitochondrial function recovery of lung tissue by inhibiting NLRP3 and NF-κB. At the same time, acu-exo could improve ALI by decreasing NLRP3 and NF-κB activation.
Collapse
Affiliation(s)
- Peng Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China
| | - Fangfang Li
- Department of Dermatology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Si Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Qiulei Ma
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jie Wang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Bingquan Ma
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jin Xu
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Institute of Health and Rehabilitation Science, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, PR China.
| |
Collapse
|
5
|
Han H, Zhang Y, Huang E, Zhou S, Huang Z, Qin K, Du X. The role of TBC1D15 in sepsis-induced acute lung injury: Regulation of mitochondrial homeostasis and mitophagy. Int J Biol Macromol 2025; 293:139289. [PMID: 39740704 DOI: 10.1016/j.ijbiomac.2024.139289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/24/2024] [Accepted: 12/27/2024] [Indexed: 01/02/2025]
Abstract
Mitochondrial quality control is crucial in sepsis-induced acute lung injury (SI-ALI). Our study investigates how the intracellular protein TBC1D15 regulates mitochondrial quality to improve SI-ALI. We found TBC1D15 levels significantly decreased in the whole blood of sepsis patients, monocytes, lung tissue from SI-ALI mice, and the MLE-12 cellular model (mouse lung epithelial cells). Overexpression of TBC1D15 using adeno-associated viral and lentiviral vectors alleviated lung injury and inflammation in both mouse models and MLE-12 cells, while silencing TBC1D15 exacerbated inflammatory responses. Mechanistically, TBC1D15 overexpression dissociated mitochondria-lysosome contact duration, promoted mitophagy, and restored mitochondrial function. The protective effects of TBC1D15 were reversed by the mitophagy inhibitor Bafilomycin A1. Additionally, TBC1D15 knockdown prolonged mitochondria-lysosome contact time, resulting in worsened mitochondrial dysfunction and increased oxidative stress. Our findings indicate that SI-ALI is characterized by prolonged mitochondria-lysosome contact and impaired mitophagy. Thus, TBC1D15 overexpression presents a promising therapeutic strategy to mitigate mitochondrial dysfunction and reduce lung injury in septic conditions, suggesting potential clinical applications for SI-ALI treatment.
Collapse
Affiliation(s)
- Hanghang Han
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China; Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yingying Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China; Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Enhao Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China; Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Siyu Zhou
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China; Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zijin Huang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China
| | - Ke Qin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China.
| | - Xueke Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangxi Medical University, Nanning 530007, Guangxi Zhuang Autonomous Region, China; Key Laboratory for Basic Science and Prevention of Perioperative Organ Disfunction, Guangxi Medical University Cancer Hospital, Nanning 530021, Guangxi Zhuang Autonomous Region, China.
| |
Collapse
|
6
|
Wang F, Zhang M, Yin L, Zhou Z, Peng Z, Li W, Chen H, Yu G, Tang J. The tryptophan metabolite kynurenic acid ameliorates septic colonic injury through activation of the PPARγ signaling pathway. Int Immunopharmacol 2025; 147:113651. [PMID: 39742725 DOI: 10.1016/j.intimp.2024.113651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/13/2024] [Accepted: 11/14/2024] [Indexed: 01/04/2025]
Abstract
Sepsis is the leading cause of death among critically ill patients in clinical practice, making it urgent to reduce its incidence and mortality rates. In sepsis, macrophage dysfunction often worsens and complicates the condition. M1 and M2 macrophages, two distinct types, contribute to pro-inflammatory and anti-inflammatory effects, respectively. An imbalance between them is a major cause of sepsis. The aim of this study was to explore the potential of a differential metabolite between M1 and M2 macrophages in mitigating septic colonic injury via multiomics in combination with clinical data and animal experiments. Using nontargeted metabolomics analysis, we found that Kynurenic acid (KYNA), a metabolite of tryptophan metabolism, was significantly upregulated in the supernatant of M2 macrophages. Furthermore, we discovered that the level of KYNA was significantly decreased in sepsis in both human and mouse serum and was negatively correlated with inflammatory factor levels. In vivo experiments demonstrated that KYNA can effectively alleviate septic colon injury and reduce inflammatory factor levels in mice, indicating that KYNA plays a very important protective role in sepsis. Mechanistically, KYNA promotes the transition of M1 macrophages to M2 macrophages by inhibiting the NF-κB signaling pathway and alleviates septic colonic injury through the PPARγ/NF-κB axis. This article reveals that KYNA, a differentially abundant metabolite between M1 and M2 macrophages, can become a new strategy for alleviating septic colon injury.
Collapse
Affiliation(s)
- Fei Wang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Meng Zhang
- Department of Pneumology, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Liping Yin
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Ziyang Zhou
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Ziyao Peng
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Wenweiran Li
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China
| | - Hui Chen
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China.
| | - Guohong Yu
- Department of Emergency Medicine, Baoshan Second People's Hospital, Baoshan College of Traditional Chinese Medicine, 13 Zhengyang South Road, Baoshan, Yunnan 678000, China.
| | - Jianguo Tang
- Department of Trauma-Emergency & Critical Care Medicine, Shanghai Fifth People's Hospital, Fudan University, 128 Ruili Road, Shanghai 200240, China.
| |
Collapse
|
7
|
Zhang H, Wang Y, Wang S, Xue X, Huang K, Xu D, Jiang L, Li S, Zhang Y. Tangeretin alleviates sepsis-induced acute lung injury by inhibiting ferroptosis of macrophage via Nrf2 signaling pathway. Chin Med 2025; 20:11. [PMID: 39815349 PMCID: PMC11734455 DOI: 10.1186/s13020-025-01063-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/07/2025] [Indexed: 01/18/2025] Open
Abstract
BACKGROUND Sepsis-induced acute lung injury (ALI) is a severe clinical condition accompanied with high mortality. Tangeretin, which is widely found in citrus fruits, has been reported to exert antioxidant and anti-inflammatory properties. However, whether tangeretin protects against sepsis-induced ALI and the potential mechanisms remain unclear. METHODS We established an ALI model via intraperitoneally injected with 5 mg/kg lipopolysaccharides (LPS) for 12 h. Tangeretin was applied intraperitoneally 30 min before LPS treatment. Dexamethasone (Dex) was used as a positive control. Hematoxylin and eosin (HE) staining and protein content in bronchoalveolar lavage fluid (BALF) were determined to detect the degree of lung injury. RNA-seq was also applied to explore the effect of tangeretin on ALI. In vitro, RAW264.7 were treated with Nrf2 siRNA, the expression of ferroptosis-associated biomarkers, including glutathione peroxidase 4 (GPX4) and prostaglandin-endoperoxide synthase 2 (PTGS2) were assessed. Glutathione (GSH), malondialdehyde (MDA) levels, reactive oxygen species (ROS) and inflammatory factors were also determined both in vivo and in vitro. Furthermore, mice were treated with an Nrf2 inhibitor (ML385) to verify the mechanism of tangeretin in inhibiting sepsis-induced lung injury and ferroptosis. Data were analyzed using one way analysis of variance or two-tailed unpaired t tests. RESULTS Our study demonstrated that tangeretin significantly alleviated lung injury, reversed the LPS-induced reduction in GPX4 and GSH, and mitigates the elevation of PTGS2 and MDA levels. Tangeretin also reduced 4-HNE and iron levels. Besides, the levels of LPS-stimulated inflammatory factors IL-6, IL-1β and TNF-α were also decreased by tangeretin. RNA-seq and bioinformatics analysis demonstrated that tangeretin inhibited inflammatory response. Mechanistically, we identified that tangeretin inhibited the GPX4-dependent lipid peroxidation through activation of Nrf2. The silence of Nrf2 abolished the inhibitory effect of tangeretin on oxidative stress, inflammatory response and ferroptosis in RAW264.7 cells. Additionally, all the protective effects of tangeretin on ALI were abolished in Nrf2 inhibitor-treated mice. CONCLUSION We identified that ferroptosis as a critical mechanism contributing to sepsis-induced ALI. Tangeretin, a promising therapeutic candidate, effectively mitigates ALI through inhibiting ferroptosis via upregulating Nrf2 signaling pathway.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Yan Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Shenghua Wang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Xiaomei Xue
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Kai Huang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Dunfeng Xu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Siyuan Li
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| | - Yunqian Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China.
| |
Collapse
|
8
|
Zou T, Lu J, Zhu Y, Xu Y, Sun Y. Mesenchymal stem cell-derived exosomes improved septic lung injury by reducing excessive NETs formation and alleviating inflammatory response. Allergol Immunopathol (Madr) 2025; 53:63-68. [PMID: 39786877 DOI: 10.15586/aei.v53i1.1238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/19/2024] [Indexed: 01/12/2025]
Abstract
To illustrate the potential of mesenchymal stem cell-derived exosomes (MSC-Exos) in mitigating septic lung injury by reducing the excessive formation of neutrophil extracellular traps (NETs), a mouse model of septic lung injury was induced through cecal ligation and puncture (CLP). The mice received intraperitoneal injections of MSC-Exos. Post injection, pathological alterations of the lung tissue were evaluated through HE staining, and the levels of inflammatory markers in each mouse group at various time points were assessed using ELISA kits. The presence of NETs markers in lung tissue (colocalization of CitH3 and MPO) was determined via immunofluorescence, and the levels of dsDNA in mouse serum were measured using a dsDNA kit. The findings indicated noticeable damage in the sepsis group postsurgically, whereas the severity of lung tissue damage was significantly diminished in mice of the MSC-Exos group. By the 72-h mark after the CLP procedure, there was an elevation in TNF-α, IL-6, IL-1β, and IL-10. Compared to the CLP group, the inflammatory factors in the serum of mice from the CLP + MSC-Exo group were higher at 12 and 24 h but decreased at the 72-h point. Furthermore, the fluorescence intensity of CitH3 and MPO and the dsDNA content increased in the CLP group mice over different time intervals, with MSC-Exos reversing these changes. In summary, MSC-Exos effectively suppressed sepsis-induced NETs formation and ameliorated lung injury.
Collapse
Affiliation(s)
- Ting Zou
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jianshuang Lu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yanke Zhu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yue Xu
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Yuanyuan Sun
- Department of Pediatrics, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Pediatrics, The Quzhou Affiliated Hospital of Wenzhou Medical University (Quzhou People's Hospital). Quzhou, Zhejiang, China;
| |
Collapse
|
9
|
He S, Ye H, Wang Q, He Y, Liu X, Song J, Zhao C, Hu Y, Luo L, Guo Y, Liu Q. Ginsenoside Rb1 targets to HO-1 to improve sepsis by inhibiting ferroptosis. Free Radic Biol Med 2025; 226:13-28. [PMID: 39510452 DOI: 10.1016/j.freeradbiomed.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/02/2024] [Accepted: 11/04/2024] [Indexed: 11/15/2024]
Abstract
Sepsis remains the leading cause of mortality among Intensive Care Unit (ICU) patients, with its pathogenesis and treatment not yet fully elucidated. Ferroptosis plays a critical role in sepsis, suggesting that ferroptosis-related genes may serve as potential therapeutic targets. This study aims to identify key ferroptosis-related genes in sepsis and explore targeted therapeutics. Through differential expression analysis of the GSE13940 and GSE26440 datasets, heme oxygenase-1 (HO-1) was identified as a hub gene associated with ferroptosis. Additionally, single-cell analysis of the GSE175453 dataset revealed a significant upregulation of HO-1 expression in monocyte lineages during sepsis. The cecal ligation and puncture (CLP) method was employed to induce sepsis in a mouse model, lung and intestinal tissues exhibited typical ferroptosis characteristics, with a significant increase in HO-1 expression. However, treatment with the HO-1 inhibitor zinc protoporphyrin (ZNPP) significantly ameliorated ferroptosis in CLP-induced lung and intestinal tissues, as well as in lipopolysaccharide (LPS)-induced THP-1 cells. Subsequently, molecular docking, surface plasmon resonance (SPR), and microscale thermophoresis (MST) experiments demonstrated that ginsenoside Rb1 specifically targets HO-1, identifying K18A as the key binding residue. Finally, experiments conducted both in vitro and in vivo verified that ginsenoside Rb1 significantly reduces HO-1 expression, inhibits ferroptosis in sepsis-induced lung, and intestinal tissues and THP-1 cells, and improves sepsis-induced pulmonary and intestinal damage. In conclusion, this study identifies HO-1 as a key ferroptosis target in sepsis and suggests ginsenoside Rb1 as a potential novel HO-1 inhibitor for the therapeutic approach of sepsis-induced organ dysfunction.
Collapse
Affiliation(s)
- Shasha He
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Haoran Ye
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| | - Yidong He
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xin Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Jin Song
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China
| | - Chunxia Zhao
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Yahui Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China
| | - Lianxiang Luo
- The Marine Biomedical Research Institute of Guangdong Zhanjiang, School of Ocean and Tropical Medicine, Guangdong Medical University, Zhanjiang, 524023, China.
| | - Yuhong Guo
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| | - Qingquan Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing, 100010, China; Beijing Institute of Traditional Chinese Medicine, Beijing, 100010, China; Beijing Key Laboratory of Basic Research with Traditional Chinese Medicine on Infectious Diseases, Beijing, 100010, China.
| |
Collapse
|
10
|
Zhang J, Xia Z, Dong C, Zhu J, Ni H, Xu Y, Xu Y. Study on the Mechanism of UMI-77 in the Treatment of Sepsis-Induced Acute Lung Injury Based on Transcriptomics and Metabolomics. J Inflamm Res 2024; 17:11197-11209. [PMID: 39713715 PMCID: PMC11663390 DOI: 10.2147/jir.s495512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/15/2024] [Indexed: 12/24/2024] Open
Abstract
Introduction Sepsis-induced acute lung injury (ALI), a critical sequela of systemic inflammation, often progresses to acute respiratory distress syndrome, conferring high mortality. Although UMI-77 has demonstrated efficacy in mitigating lung injury in sepsis, the molecular mechanisms underlying its action have not yet been fully elucidated. Methods This study aimed to delineate the mechanism by which UMI-77 counteracts sepsis-induced ALI using comprehensive transcriptomic and metabolomic analyses. Results UMI-77 significantly ameliorated histopathological changes in the lungs of mice with sepsis-induced ALI Transcriptomic analysis revealed that 124 differentially expressed genes were modulated by UMI-77 and were predominantly implicated in chemokine-mediated signaling pathways, apoptosis regulation, and inflammatory responses. Integrated metabolomic analysis identified Atp4a, Ido1, Ctla4, and Cxcl10 as key genes, and inosine 5'-monophosphate (IMP), thiamine monophosphate, thymidine 3',5'-cyclic monophosphate (dTMP) as key differential metabolites. UMI-77 may regulate key genes (Atp4a, Ido1, Ctla4, and Cxcl10) to affect key metabolites (IMP, thiamine monophosphate, and dTMP) and their target genes (Entpd2, Entpd1, Nt5e, and Hprt) involved in cytokine-cytokine receptor interaction, gastric acid secretion, pyrimidine, and purine metabolism in the treatment of sepsis-induced ALI. Conclusion UMI-77 exerts its therapeutic effect in sepsis-induced ALI through intricate modulation of pivotal genes and metabolites, thereby influencing critical biological pathways. This study lays the groundwork for further development and clinical translation of UMI-77 as a potential therapeutic agent for sepsis-associated lung injuries.
Collapse
Affiliation(s)
- Jiatian Zhang
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province, Shaoxing University, Shaoxing, 312000, People’s Republic of China
| | - Zhelin Xia
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, People’s Republic of China
| | - Cuicui Dong
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000, People’s Republic of China
| | - Jiaqi Zhu
- Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000, People’s Republic of China
| | - Hang Ni
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province, Shaoxing University, Shaoxing, 312000, People’s Republic of China
| | - Yubin Xu
- Department of Pharmacy, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, 318000, People’s Republic of China
| | - Yinghe Xu
- Department of Critical Care Medicine, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, 317000, People’s Republic of China
| |
Collapse
|
11
|
Cheng S, Li Y, Sun X, Liu Z, Guo L, Wu J, Yang X, Wei S, Wu G, Xu S, Yang F, Wu J. The impact of glucose metabolism on inflammatory processes in sepsis-induced acute lung injury. Front Immunol 2024; 15:1508985. [PMID: 39712019 PMCID: PMC11659153 DOI: 10.3389/fimmu.2024.1508985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 11/18/2024] [Indexed: 12/24/2024] Open
Abstract
Acute lung injury (ALI) is a prevalent and critical complication of sepsis, marked by high incidence and mortality rates, with its pathogenesis still not being fully elucidated. Recent research has revealed a significant correlation between the metabolic reprogramming of glucose and sepsis-associated ALI (S-ALI). Throughout the course of S-ALI, immune cells, including macrophages and dendritic cells, undergo metabolic shifts to accommodate the intricate demands of immune function that emerge as sepsis advances. Indeed, glucose metabolic reprogramming in S-ALI serves as a double-edged sword, fueling inflammatory immune responses in the initial stages and subsequently initiating anti-inflammatory responses as the disease evolves. In this review, we delineate the current research progress concerning the pathogenic mechanisms linked to glucose metabolic reprogramming in S-ALI, with a focus on the pertinent immune cells implicated. We encapsulate the impact of glucose metabolic reprogramming on the onset, progression, and prognosis of S-ALI. Ultimately, by examining key regulatory factors within metabolic intermediates and enzymes, We have identified potential therapeutic targets linked to metabolic reprogramming, striving to tackle the inherent challenges in diagnosing and treating Severe Acute Lung Injury (S-ALI) with greater efficacy.
Collapse
Affiliation(s)
- Shilei Cheng
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Yufei Li
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
- School of Pharmacy, Shandong University of Traditional Chinese Medicine (TCM), Jinan, China
| | - Xiaoliang Sun
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Zhirui Liu
- Brain and Mind Centre, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Liang Guo
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jueheng Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Xiaohan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
| | - Sisi Wei
- Department of Anesthesiology, Qilu Hospital of Shandong University Dezhou Hospital, Dezhou, China
| | - Guanghan Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Shilong Xu
- School of Anesthesiology, Shandong Second Medical University, Weifang, China
| | - Fan Yang
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| | - Jianbo Wu
- Department of Anesthesiology, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China
- Shandong Institute of Anesthesia and Respiratory Critical Medicine, Jinan, China
- Shandong Provincial Clinical Research Center for Anesthesiology, Jinan, China
| |
Collapse
|
12
|
Qian J, Liu KJ, Zhong CH, Xian LN, Hu ZH. Sivelestat sodium alleviated sepsis-induced acute lung injury by inhibiting TGF-β/Smad signaling pathways through upregulating microRNA-744-5p. J Thorac Dis 2024; 16:6616-6633. [PMID: 39552870 PMCID: PMC11565364 DOI: 10.21037/jtd-24-65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 08/30/2024] [Indexed: 11/19/2024]
Abstract
Background Acute lung injury (ALI) is one of the most common critical illnesses in clinical practice, with sepsis being the most common cause of ALI. Sivelestat sodium (SV) hydrate is a highly effective inhibitor of neutrophil elastase, specifically targeting ALI related to systemic inflammatory response syndrome. The aim of this study is to examine the mechanisms by which SV can reduce the severity of ALI resulting from sepsis. Methods Cecum ligation and puncture (CLP) was employed for creating an animal model of ALI caused by sepsis. Primary human pulmonary microvascular endothelial cells (HPMECs) were treated with lipopolysaccharide (LPS) to develop an in vitro model of infection-induced ALI. Lung tissue damage was assessed by employing hematoxylin-eosin (H&E) and Masson staining. Lung edema was determined by calculating the lung wet-to-dry weight ratio. Lung tissue and cell samples were analyzed using Enzyme-linked immunosorbent assay (ELISA) to detect levels of tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, and IL-6. The 5-ethynyl-2'-deoxyuridine (EdU) and wound-healing assay were used to determine the cell proliferation and migration, while flow cytometry was used for detecting cell apoptosis. The association between microRNA (miR)-744 and transforming growth factor (TGF)-β1 was discovered and confirmed through the utilization of bioinformatics analyses and dual-luciferase gene reporter assay. The analysis of TGF-β1, p-Smad3, and Smad3 was carried out through western blotting and immunohistochemistry in both in vitro and in vivo scenarios. Results In both in vivo and in vitro settings of ALI models of sepsis, there was a significant decrease in the level of miR-744-5p, a significant elevation in the expression of inflammatory factors, and a significant intensification of lung tissue damage. Administration of SV resulted in a significant increase in the level of miR-744-5p, suppressed the inflammatory response, and ultimately improved lung injury. Cell proliferation was significantly enhanced by SV and cell apoptosis was inhibited. The protection of SV was significantly reversed by inhibiting the effect of miR-744-5p. The double-luciferase reporter gene assay revealed substantial interactions occurring between miR-744-5p and TGF-β1. The TGF-β/Smad signaling pathway was significantly inhibited by SV, however, the inhibitory effect can be counteracted by utilizing the miR-744-5p inhibitor. Conclusions The upregulation of miR-744-5p by SV inhibits the TGF-β/Smad signaling pathway, thereby reducing sepsis-induced ALI.
Collapse
Affiliation(s)
- Jin Qian
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Intensive Care Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Ke-Jun Liu
- Key Laboratory of Tropical Translational Medicine of Ministry of Education, School of Basic Medicine and Life Sciences, Hainan Medical University, Haikou, China
| | - Chang-Hui Zhong
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Intensive Care Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Li-Na Xian
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Intensive Care Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Zhi-Hua Hu
- Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Intensive Care Medicine, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
13
|
Qin F, Tan H, Yang Y, Xu L, Yang X. Upregulation of Cullin1 neddylation promotes glycolysis and M1 polarization of macrophage via NF-κB p65 pathway in sepsis. Funct Integr Genomics 2024; 24:204. [PMID: 39476129 DOI: 10.1007/s10142-024-01483-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/18/2024] [Accepted: 10/20/2024] [Indexed: 11/07/2024]
Abstract
This study aimed to explore the underlying mechanism of neddylation in macrophage polarization during sepsis. A mouse model of sepsis was established by cecal ligation and puncture (CLP). ELISA and Flow cytometry were performed to analyze the generation of pro-inflammatory factors and M1/M2 macrophage polarization, respectively. Western blotting was applied to detect NEDD8-mediated neddylation and glycolysis-related proteins. ECAR method was used to analyze the glycolysis level. HE staining was applied to detect the lung injury. The bacterial load in peritoneal cavity and peripheral blood was determined by counting the colony-forming units. The results showed the upregulated neddylation, M1 polarization and glycolysis of macrophage in patients with sepsis and CLP-challenged mice. NEDD8-mediated Cullin1 neddylation promoted M1 polarization and glycolysis to accelerate inflammation via NF-κB p65 pathway in E.coli-treated Raw264.7 cells. MLN4924 treatment alleviated sepsis by inhibiting neddylation to prevent M1 polarization in CLP-challenged mice. In summary, this study demonstrated that upregulation of NEDD8-mediated Cullin1 neddylation promotes glycolysis and M1 polarization of macrophage via NF-κB p65 pathway, accelerating inflammation in sepsis.
Collapse
Affiliation(s)
- Fuchuang Qin
- The Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 1367 West Wenyi Rd., Yuhang District, Hangzhou, China
| | - Hang Tan
- Department of Neurosurgery, Hangzhou Mingzhou Brain Rehabilitation Hospital, Hangzhou, China
| | - Yang Yang
- The Fifth Rehabilitation Department, Zhe Jiang University Rehabilitation Hospital, Hangzhou, China
| | - Liping Xu
- Outpatient Department, Shu Lan (HangZhou) Hospital Affiliated to Zhejiang Shuren University, Shulan International Medical College, Hangzhou, China
| | - Xiaofeng Yang
- The Emergency and Trauma Center, The First Affiliated Hospital, Zhejiang University School of Medicine, 1367 West Wenyi Rd., Yuhang District, Hangzhou, China.
| |
Collapse
|
14
|
Xu J, Tao L, Jiang L, Lai J, Hu J, Tang Z. Moderate Hypothermia Alleviates Sepsis-Associated Acute Lung Injury by Suppressing Ferroptosis Induced by Excessive Inflammation and Oxidative Stress via the Keap1/GSK3β/Nrf2/GPX4 Signaling Pathway. J Inflamm Res 2024; 17:7687-7704. [PMID: 39498104 PMCID: PMC11533192 DOI: 10.2147/jir.s491885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Accepted: 10/17/2024] [Indexed: 11/07/2024] Open
Abstract
Purpose Sepsis-associated acute lung injury (SA-ALI) is a common complication in patients with sepsis, contributing to high morbidity and mortality. Excessive inflammation and oxidative stress are crucial contributors to lung injury in sepsis. This study aims to examine the protective effects of moderate hypothermia on SA-ALI and explore the underlying mechanisms. Methods Sepsis was induced in rats through cecal ligation and puncture followed by intervention with moderate hypothermia (32-33.9°C). Blood, bronchoalveolar lavage fluid, and lung tissues were collected 12 hours post-surgery. Inflammatory responses, oxidative injury, SA-ALI-related pathophysiological processes, and Keap1/GSK3β/Nrf2/GPX4 signaling in septic rats were observed by ELISA, lung W/D ratio, immunohistochemistry, immunofluorescence, histological staining, Western blotting, RT-qPCR, and TEM assays. Results Moderate hypothermia treatment alleviated lung injury in septic rats, reflected in amelioration of pathological changes in lung structure and improved pulmonary function. Further, moderate hypothermia reduced arterial blood lactate production and suppressed the expression of inflammatory factors IL-1β, IL-6, and TNF-α; downregulated ROS, MDA, and redox-active iron levels; and restored GSH and SOD content. TEM results demonstrated that moderate hypothermia could mitigate ferroptosis in PMVECs within lung tissue. The underlying mechanism may involve regulation of the Keap1/Nrf2/SLC7A11/GPX4 signaling pathway, with the insulin pathway PI3K/Akt/GSK3β also playing a partial role. Conclusion Collectively, we illustrated a novel potential therapeutic mechanism in which moderate hypothermia could alleviate ferroptosis induced by excessive inflammation and oxidative stress via the regulation of Keap1/GSK3β/Nrf2/GPX4 expression, hence ameliorating acute lung injury in sepsis.
Collapse
Affiliation(s)
- Jie Xu
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
- Department of Critical Care Medicine, Suining Central Hospital, Suining, Sichuan, 629000, People’s Republic of China
| | - Liujun Tao
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Liangyan Jiang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Jie Lai
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Juntao Hu
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| | - Zhanhong Tang
- Department of Critical Care Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, 530021, People’s Republic of China
| |
Collapse
|
15
|
Pan Y, Yang C, Sun Y, Zhang S, Xue T, Li F, Fu D. SPRY4 regulates ERK1/2 phosphorylation to affect oxidative stress and steroidogenesis in polycystic ovary syndrome. Steroids 2024; 212:109516. [PMID: 39313103 DOI: 10.1016/j.steroids.2024.109516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/19/2024] [Accepted: 09/20/2024] [Indexed: 09/25/2024]
Abstract
Polycystic ovary syndrome (PCOS) is a prevalent endocrine disorder in women of childbearing age. The role of Sprouty RTK Signaling Antagonist 4 (SPRY4) in ovarian function in PCOS was investigated herein, focusing on its regulation of ERK1/2 phosphorylation. PCOS models were established in mice using dehydroepiandrosterone (DHEA). The expression levels of SPRY4 in ovarian tissues were analyzed through RT-qPCR and immunohistochemistry. SPRY4 knockdown was achieved via lentivirus, and its effects on endocrine function, ovarian morphology, oxidative stress, and ERK1/2 phosphorylation were evaluated. Afterwards, granulosa cells were isolated and treated with DHEA and ERK2 agonist tert-Butylhydroquinone. The impacts of ERK2 activation on the regulation of SPRY4 knockdown were assessed using ELISA, fluorescent probes, western blotting, and biochemical assays. SPRY4 knockdown normalized the estrous cycle, reduced serum levels of testosterone, anti-Müllerian hormone, and luteinizing hormone/follicle-stimulating hormone ratio, and improved ovarian morphology. Additionally, SPRY4 knockdown alleviated oxidative stress by decreasing reactive oxygen species and malondialdehyde levels while increasing superoxide dismutase activity. It also restored steroidogenic enzyme expression, which were disrupted by DHEA induction. In vitro, SPRY4 knockdown enhanced granulosa cell viability and reduced ERK1/2 phosphorylation, with tert-Butylhydroquinone reversing these effects and restoring oxidative stress and steroidogenesis disruptions. Together, SPRY4 modulates ERK1/2 phosphorylation to influence oxidative stress and steroidogenesis in PCOS. Targeting SPRY4 may provide novel therapeutic avenues for improving ovarian function and managing PCOS.
Collapse
Affiliation(s)
- Yu Pan
- Reproductive Medicine Center, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province 225000, China
| | - Chunxia Yang
- Reproductive Medicine Center, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province 225000, China
| | - Yan Sun
- Reproductive Medicine Center, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province 225000, China
| | - Shenmin Zhang
- Reproductive Medicine Center, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province 225000, China
| | - Tongmin Xue
- Reproductive Medicine Center, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province 225000, China
| | - Feng Li
- Reproductive Medicine Center, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province 225000, China
| | - Dan Fu
- Reproductive Medicine Center, Northern Jiangsu People's Hospital, Yangzhou City, Jiangsu Province 225000, China.
| |
Collapse
|
16
|
Liu Y, Zhou W, Zhao J, Chu M, Xu M, Wang X, Xie L, Zhou Y, Song L, Wang J, Yang T. Regulation of YAP translocation by myeloid Pten deficiency alleviates acute lung injury via inhibition of oxidative stress and inflammation. Free Radic Biol Med 2024; 222:199-210. [PMID: 38901501 DOI: 10.1016/j.freeradbiomed.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 06/22/2024]
Abstract
BACKGROUND Phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is intricately involved in modulating the inflammatory response in acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). Nevertheless, the myeloid PTEN governing Hippo-YAP pathway mediated oxidative stress and inflammation in lipopolysaccharide (LPS)-induced ALI remains to be elucidate. METHODS The floxed Pten (PtenFL/FL) and myeloid-specific Pten knockout (PtenM-KO) mice were intratracheal instill LPS (5 mg/kg) to establish ALI, then Yap siRNA mix with the mannose-conjugated polymers was used to knockdown endogenous macrophage YAP in some PtenM-KO mice before LPS challenged. The bone marrow-derived macrophages (BMMs) from PtenFL/FL and PtenM-KO mice were obtained, and BMMs were transfected with CRISPR/Cas9-mediated glycogen synthase kinase 3 Beta (GSK3β) knockout (KO) or Yes-associated protein (YAP) KO vector subjected to LPS (100 ng/ml) challenged or then cocultured with MLE12 cells. RESULTS Here, our findings demonstrate that myeloid-specific PTEN deficiency exerts a protective against LPS-induced oxidative stress and inflammation dysregulated in ALI model. Moreover, ablation of the PTEN-YAP axis in macrophages results in reduced nuclear factor-E2-related factor-2 (NRF2) expression, a decrease in antioxidant gene expression, augmented levels of free radicals, lipid and protein peroxidation, heightened generation of pro-inflammatory cytokines, ultimately leading to increased apoptosis in MLE12 cells. Mechanistically, it is noteworthy that the deletion of myeloid PTEN promotes YAP translocation and regulates NRF2 expression, alleviating LPS-induced ALI via the inhibition of GSK3β and MST1 binding. CONCLUSIONS Our study underscores the crucial role of the myeloid PTEN-YAP-NRF2 axis in governing oxidative stress and inflammation dysregulated in ALI, indicating its potential as a therapeutic target for ALI.
Collapse
Affiliation(s)
- Yang Liu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China
| | - Wenqin Zhou
- Department of Emergency Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiaying Zhao
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China; Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Mingqiang Chu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mingcui Xu
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China
| | - Xiao Wang
- Department of Infectious Diseases, The First Affiliated Hospital with Nanjing Medical University, Nanjing, Jiangsu, China
| | - Liangjie Xie
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Ying Zhou
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China
| | - Lijia Song
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China
| | - Jian Wang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China
| | - Tao Yang
- Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang School of Clinical Medicine with Nanjing Medical University, Zhenjiang, Jiangsu, China.
| |
Collapse
|
17
|
Zhou X, Wang M, Sun M, Yao N. HSPB8 attenuates lipopolysaccharide‑mediated acute lung injury in A549 cells by activating mitophagy. Mol Med Rep 2024; 30:171. [PMID: 39054966 PMCID: PMC11294906 DOI: 10.3892/mmr.2024.13295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 06/27/2024] [Indexed: 07/27/2024] Open
Abstract
Sepsis is a life‑threatening multiple organ failure disease caused by an uncontrolled inflammatory response and can progress to acute lung injury (ALI). Heat‑shock protein B8 (HSPB8) serves a cytoprotective role in multiple types of diseases; however, to the best of our knowledge, the regulatory role of HSPB8 in sepsis‑induced ALI remains unclear. A549 human alveolar type II epithelial cells were treated with lipopolysaccharide (LPS) for 24 h to simulate a sepsis‑induced ALI model. Cell transfection was performed to overexpress HSPB8, and cells were treated with mitochondrial division inhibitor‑1 (Mdivi‑1) for 2 h before LPS induction to assess the underlying mechanism. Protein expression was evaluated using western blotting and an immunofluorescence assay. Cytokines were examined using ELISA assay kits and antioxidant enzymes were examined using their detection kits. Cell apoptosis was detected using flow cytometry. The mitochondrial membrane potential was detected by JC‑1 staining. HSPB8 was upregulated in A549 cells treated with LPS and HSPB8 overexpression attenuated LPS‑induced inflammatory cytokine levels, oxidative stress and apoptosis in A549 cells. LPS inhibited mitophagy and reduced the mitochondrial membrane potential in A549 cells, which was partly inhibited by HSPB8 overexpression. Furthermore, Mdivi‑1 decreased the inhibitory effect of HSPB8 on the inflammatory response, oxidative stress and apoptosis in LPS‑treated A549 cells. In conclusion, HSPB8 overexpression attenuated the LPS‑mediated inflammatory response, oxidative stress and apoptosis in A549 cells by promoting mitophagy, indicating HSPB8 as a potential therapeutic target in sepsis‑induced ALI.
Collapse
Affiliation(s)
- Xinjian Zhou
- Intensive Care Unit, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| | - Minpeng Wang
- Intensive Care Unit, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| | - Menghan Sun
- Intensive Care Unit, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| | - Nana Yao
- Intensive Care Unit, Shanghai Eighth People's Hospital, Shanghai 200235, P.R. China
| |
Collapse
|
18
|
Bai G, Ling J, Lu J, Fang M, Yu S. Adiponectin receptor agonist AdipoRon alleviates memory impairment in the hippocampus of septic mice. Behav Brain Res 2024; 472:115174. [PMID: 39098398 DOI: 10.1016/j.bbr.2024.115174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/20/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Sepsis-associated encephalopathy (SAE) is a common and severe clinical feature of sepsis; however, therapeutic approaches are limited because of the unclear pathogenesis. Adiponectin receptor agonist (AdipoRon) is a small-molecule agonist of the adiponectin receptor that exhibits anti-inflammatory and memory-improving effects in various diseases. In the present study, we established lipopolysaccharide (LPS)-induced mice models of SAE and found that Adiponectin receptor 1 (AdipoR1) was significantly decreased in the hippocampus. Administration of AdipoRon improves memory impairment, mitigates synaptic damage, and alleviates neuronal death. Furthermore, AdipoRon reduces the number of microglia. More importantly, AdipoRon promotes the phosphorylation of adenosine 5 '-monophosphate activated protein kinase (pAMPK). In conclusion, AdipoRon is protective against SAE-induced memory decline and brain injury in the SAE models via activating the hippocampal adenosine 5 '-monophosphate activated protein kinase (AMPK).
Collapse
Affiliation(s)
- Guangyang Bai
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jianmin Ling
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Jun Lu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| | - Minghao Fang
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| | - Shanshan Yu
- Department of Emergency Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China; Department of Critical Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China.
| |
Collapse
|
19
|
Gao M, Zhu X, Gao X, Yang H, Li H, Du Y, Gao J, Chen Z, Dong H, Wang B, Zhang L. Kaempferol mitigates sepsis-induced acute lung injury by modulating the SphK1/S1P/S1PR1/MLC2 signaling pathway to restore the integrity of the pulmonary endothelial cell barrier. Chem Biol Interact 2024; 398:111085. [PMID: 38823539 DOI: 10.1016/j.cbi.2024.111085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/19/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
Sepsis-induced acute lung injury (SALI) is the common complication of sepsis, resulting in high incidence and mortality rates. The primary pathogenesis of SALI is the interplay between acute inflammation and endothelial barrier damage. Studies have shown that kaempferol (KPF) has anti-sepsis properties. Sphingosine kinase 1 (SphK1)/sphingosine-1-phosphate (S1P) signaling pathway's significance in acute lung damage and S1P receptor 1 (S1PR1) agonists potential in myosin light chain 2 (MLC2) phosphorylation are documented. Whether KPF can regulate the SphK1/S1P/S1PR1/MLC2 signaling pathway to protect the lung endothelial barrier remains unclear. This study investigates the KPF's therapeutic effects and molecular mechanisms in repairing endothelial cell barrier damage in both LPS-induced sepsis mice and human umbilical vein endothelial cells (HUVECs). KPF significantly reduced lung tissue damage and showed anti-inflammatory effects by decreasing IL-6 and TNF-α synthesis in the sepsis mice model. Further, KPF administration can reduce the high permeability of the LPS-induced endothelial cell barrier and alleviate lung endothelial cell barrier injury. Mechanistic studies showed that KPF pretreatment can suppress MLC2 hyperphosphorylation and decrease SphK1, S1P, and S1PR1 levels. The SphK1/S1P/S1PR1/MLC2 signaling pathway controls the downstream proteins linked to endothelial barrier damage, and the Western blot (WB) showed that KPF raised the protein levels. These proteins include zonula occludens (ZO)-1, vascular endothelial (VE)-cadherin and Occludin. The present work revealed that in mice exhibiting sepsis triggered by LPS, KPF strengthened the endothelial barrier and reduced the inflammatory response. The SphK1/S1P/S1PR1/MLC2 pathway's modulation is the mechanism underlying this impact.
Collapse
Affiliation(s)
- Meijuan Gao
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - Xuan Zhu
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - XiaoJin Gao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Hui Yang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - Haixia Li
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Yuan Du
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Jing Gao
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Zhuoxi Chen
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, PR China
| | - Hanpeng Dong
- Key Laboratory of Molecular Pharmacology and Drug Evaluation (Yantai University), Ministry of Education, School of Pharmacy, Yantai University, Yantai, 264005, PR China
| | - Binsheng Wang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, PR China.
| | - Leiming Zhang
- School of Traditional Chinese Medicine, Binzhou Medical University, Yantai, 264003, PR China.
| |
Collapse
|
20
|
Liu F, Yang Y, Dong H, Zhu Y, Feng W, Wu H. Essential oil from Cinnamomum cassia Presl bark regulates macrophage polarization and ameliorates lipopolysaccharide-induced acute lung injury through TLR4/MyD88/NF-κB pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155651. [PMID: 38688144 DOI: 10.1016/j.phymed.2024.155651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/31/2024] [Accepted: 04/16/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND Cinnamomum cassia Presl, a traditional Chinese medicine recorded in "Shennong's Herbal Classic," has been historically used to treat respiratory diseases and is employed to address inflammation. The essential oil derived from Cinnamomum cassia bark is a primary anti-inflammatory agent. However, there remains ambiguity regarding the chemical composition of cinnamon bark essential oil (BCEO), its principal anti-inflammatory components, and their potential efficacy in typical inflammatory respiratory conditions, such as acute lung injury (ALI). PURPOSE This study aimed to unveil the chemical composition of BCEO. In addition, the mechanism of action of BCEO in ameliorating ALI and regulating macrophage polarization through the TLR4/MyD88/NF-κB pathway was elucidated. METHODS BCEO was extracted using supercritical fluid extraction (SFE) and characterized through gas chromatography-mass spectrometry (GC-MS) analysis. Acute oral toxicity was observed in C57BL/6 J mice. The pharmacological effects and underlying mechanisms of BCEO were evaluated in a mouse model of ALI, which was induced by administering 5 mg/kg of lipopolysaccharide (LPS) through intratracheal instillation. RESULTS GC-MS analysis revealed 99.08% of the constituents of BCEO. The primary components of BCEO were trans-cinnamaldehyde, o-methoxycinnamaldehyde, (+)-α-muurolene, δ-cadinene, and copaene. Oral acute toxicity tests indicated that the maximum tolerated dose of BCEO was 12 g/kg/day. BCEO treatment significantly reduced lung W/D ratio, total protein concentration in BALF, levels of TNF-α, IL-6, and IL-1β in BALF, WBC count and NEU% in peripheral blood, and lung histological damage. Pulmonary function, IL-10 levels, and LYM% in peripheral blood also showed improvement. BCEO effectively decreased the proportion of M1 phenotype macrophages in BALF, M1/M2 ratio, and apoptotic cells in the lung tissue while increasing the proportion of M2 phenotype macrophages in BALF. Furthermore, BCEO treatment led to reduced protein and mRNA levels of TLR4, MyD88, and p-p65, alongside increased p65 expression, suggesting its potential to impede the TLR4/MyD88/NF-κB signaling pathway. CONCLUSION SFE-extracted BCEO or its major constituents could serve as a viable treatment for ALI by reducing lung inflammation, improving pulmonary function, and protecting against LPS-induced ALI in mice. This therapeutic effect is achieved by inhibiting M1 macrophage polarization, promoting M2 macrophage polarization, and suppressing the TLR4/MyD88/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Fugang Liu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Faculty of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanfang Yang
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan 430065, China
| | - Haoran Dong
- Academy of Chinese Medical Sciences, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Yanhui Zhu
- Faculty of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China
| | - Weisheng Feng
- Faculty of Pharmacy, Henan University of Chinese Medicine, Zhengzhou, 450046, China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province China, Zhengzhou 450046, China.
| | - Hezhen Wu
- Faculty of Pharmacy, Hubei University of Chinese Medicine, Wuhan, 430065, China; Modern Engineering Research Center of Traditional Chinese Medicine and Ethnic Medicine of Hubei Province, Wuhan 430065, China.
| |
Collapse
|
21
|
Chen Q, Lao J. Interference with Histone Deacetylase 4 Regulates c-Jun N-terminal Kinase/Activating Protein-1 Signaling to Ameliorate Sepsis-induced Alveolar Epithelial Cell Injury. JOURNAL OF PHYSIOLOGICAL INVESTIGATION 2024; 67:174-186. [PMID: 39133038 DOI: 10.4103/ejpi.ejpi-d-24-00021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 04/26/2024] [Indexed: 08/13/2024]
Abstract
ABSTRACT Sepsis is a syndrome of systemic inflammatory response resulting from infection, which can lead to severe lung injury. Histone deacetylase 4 (HDAC4) is a key protein known to regulate a wide range of cellular processes. This study was designed to investigate the role of HDAC4 in lipopolysaccharide (LPS)-induced alveolar epithelial cell injury as well as to disclose its potential molecular mechanisms. The alveolar epithelial cell injury model was established by inducing A549 cells with LPS. A549 cell viability was detected by cell counting kit-8 assay and the transfection efficiency of small interfering RNA targeting HDAC4 was appraised utilizing Western blot. The levels of inflammatory cytokines and oxidative stress markers were detected using corresponding assay kits. Dichloro-dihydro-fluorescein diacetate assay was used for the measurement of reactive oxygen species (ROS) content. Flow cytometry, 5,5',6,6'-tetrachloro-1,1',3,3'-tetraethyl-benzimidazolyl-carbocyanine iodide-1 staining, adenosine triphosphate (ATP) assay kits, and MitoSOX Red assay kits were employed to estimate cell apoptosis, mitochondrial membrane potential, ATP level, and mitochondrial ROS level, respectively. The oxygen consumption rate of A549 cells was evaluated with XF96 extracellular flux analyzer. Western blot was applied for the evaluation of HDAC4, apoptosis- and c-Jun N-terminal kinase (JNK)/activating protein-1 (AP-1) signaling pathway-related proteins. HDAC4 expression was found to be increased in LPS-induced A549 cells and HDAC4 silence inhibited inflammatory damage, repressed oxidative stress, alleviated cell apoptosis, improved mitochondrial function, and blocked JNK/AP-1 signaling in A549 cells stimulated by LPS, which were all reversed by JNK activator anisomycin. Collectively, the interference with HDAC4 could ameliorate LPS-induced alveolar epithelial cell injury, and such protective effect may be potentially mediated through the JNK/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Qunyan Chen
- Department of Emergency Medicine, Central People's Hospital of Zhanjiang, Zhanjiang, Guangdong, China
| | | |
Collapse
|
22
|
Zhang S, Zhao X, Xue Y, Wang X, Chen XL. Advances in nanomaterial-targeted treatment of acute lung injury after burns. J Nanobiotechnology 2024; 22:342. [PMID: 38890721 PMCID: PMC11184898 DOI: 10.1186/s12951-024-02615-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 06/04/2024] [Indexed: 06/20/2024] Open
Abstract
Acute lung injury (ALI) is a common complication in patients with severe burns and has a complex pathogenesis and high morbidity and mortality rates. A variety of drugs have been identified in the clinic for the treatment of ALI, but they have toxic side effects caused by easy degradation in the body and distribution throughout the body. In recent years, as the understanding of the mechanism underlying ALI has improved, scholars have developed a variety of new nanomaterials that can be safely and effectively targeted for the treatment of ALI. Most of these methods involve nanomaterials such as lipids, organic polymers, peptides, extracellular vesicles or cell membranes, inorganic nanoparticles and other nanomaterials, which are targeted to reach lung tissues to perform their functions through active targeting or passive targeting, a process that involves a variety of cells or organelles. In this review, first, the mechanisms and pathophysiological features of ALI occurrence after burn injury are reviewed, potential therapeutic targets for ALI are summarized, existing nanomaterials for the targeted treatment of ALI are classified, and possible problems and challenges of nanomaterials in the targeted treatment of ALI are discussed to provide a reference for the development of nanomaterials for the targeted treatment of ALI.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Xinyu Zhao
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China
| | - Yuhao Xue
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China
| | - Xianwen Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230022, P. R. China.
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, P. R. China.
| |
Collapse
|
23
|
Liu J, Song K, Lin B, Chen Z, Zuo Z, Fang Y, He Q, Yao X, Liu Z, Huang Q, Guo X. HMGB1 promotes neutrophil PD-L1 expression through TLR2 and mediates T cell apoptosis leading to immunosuppression in sepsis. Int Immunopharmacol 2024; 133:112130. [PMID: 38648712 DOI: 10.1016/j.intimp.2024.112130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 04/18/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Neutrophils and T lymphocytes are closely related to occurrence of immunosuppression in sepsis. Studies have shown that neutrophil apoptosis decreases and T lymphocyte apoptosis increases in sepsis immunosuppression, but the specific mechanism involved remains unclear. In the present study, we found Toll-like Receptor 2 (TLR2) and programmed death-ligand 1 (PD-L1) were significantly activated in bone marrow neutrophils of wild-type mice after LPS treatment and that they were attenuated by treatment with C29, an inhibitor of TLR2. PD-L1 activation inhibits neutrophil apoptosis, whereas programmed death protein 1 (PD-1)activation promotes apoptosis of T lymphocytes, which leads to immunosuppression. Mechanistically, when sepsis occurs, pro-inflammatory factors and High mobility group box-1 protein (HMGB1) passively released from dead cells cause the up-regulation of PD-L1 through TLR2 on neutrophils. The binding of PD-L1 and PD-1 on T lymphocytes leads to increased apoptosis of T lymphocytes and immune dysfunction, eventually resulting in the occurrence of sepsis immunosuppression. In vivo experiments showed that the HMGB1 inhibitor glycyrrhizic acid (GA) and the TLR2 inhibitor C29 could inhibit the HMGB1/TLR2/PD-L1 pathway, and improving sepsis-induced lung injury. In summary, this study shows that HMGB1 regulates PD-L1 and PD-1 signaling pathways through TLR2, which leads to immunosuppression.
Collapse
Affiliation(s)
- Jinlian Liu
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, National Experimental Education Demonstration Center for Basic Medical Sciences, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Ke Song
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, National Experimental Education Demonstration Center for Basic Medical Sciences, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Bingqi Lin
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, National Experimental Education Demonstration Center for Basic Medical Sciences, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhenfeng Chen
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, National Experimental Education Demonstration Center for Basic Medical Sciences, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zirui Zuo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, National Experimental Education Demonstration Center for Basic Medical Sciences, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yixing Fang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, National Experimental Education Demonstration Center for Basic Medical Sciences, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Qi He
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, National Experimental Education Demonstration Center for Basic Medical Sciences, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Xiaodan Yao
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, National Experimental Education Demonstration Center for Basic Medical Sciences, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhifeng Liu
- Department of Medical Critical Care Medicine, General Hospital of Southern Theatre Command of PLA, 2. Guangdong Branch Center, National Clinical Research Center for Geriatric Diseases (Chinese PLA General Hospital), Guangzhou, Guangdong, China.
| | - Qiaobing Huang
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, National Experimental Education Demonstration Center for Basic Medical Sciences, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| | - Xiaohua Guo
- Department of Pathophysiology, Guangdong Provincial Key Laboratory of Cardiac Function and Microcirculation, Guangdong Provincial Key Laboratory of Proteomics, State Key Laboratory of Organ Failure Research, National Experimental Education Demonstration Center for Basic Medical Sciences, School of Basic Medical Sciences, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
24
|
Li X, Lin Z, Xu S, Zhang N, Zhou J, Liao B. Knockdown of KBTBD7 attenuates septic lung injury by inhibiting ferroptosis and improving mitochondrial dysfunction. Int Immunopharmacol 2024; 133:112129. [PMID: 38652964 DOI: 10.1016/j.intimp.2024.112129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 04/25/2024]
Abstract
Lung injury in sepsis is caused by an excessive inflammatory response caused by the entry of pathogenic microorganisms into the body. It is also accompanied by the production of large amounts of ROS. Ferroptosis and mitochondrial dysfunction have also been shown to be related to sepsis. Finding suitable sepsis therapeutic targets is crucial for sepsis research. BTB domain-containing protein 7 (KBTBD7) is involved in regulating inflammatory responses, but its role and mechanism in the treatment of septic lung injury are still unclear. In this study, we evaluated the role and related mechanisms of KBTBD7 in septic lung injury. In in vitro studies, we established an in vitro model by inducing human alveolar epithelial cells with lipopolysaccharide (LPS) and found that KBTBD7 was highly expressed in the in vitro model. KBTBD7 knockdown could reduce the inflammatory response by inhibiting the secretion of pro-inflammatory factors and inhibit the production of ROS, ferroptosis and mitochondrial dysfunction. Mechanistic studies show that KBTBD7 interacts with FOXA1, promotes FOXA1 expression, and indirectly inhibits SLC7A11 transcription. In vivo studies have shown that knocking down KBTBD7 improves lung tissue damage in septic lung injury mice, inhibits inflammatory factors, ROS production and ferroptosis. Taken together, knockdown of KBTBD7 shows an alleviating effect on septic lung injury in vitro and in vivo, providing a potential therapeutic target for the treatment of septic lung injury.
Collapse
Affiliation(s)
- Xiang Li
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Zhao Lin
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - ShiYu Xu
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Ning Zhang
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Jun Zhou
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China
| | - Bo Liao
- Department of Critical Care Medicine, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing, Jiangsu, 211100, China.
| |
Collapse
|
25
|
Pan H, Xu R, Zhang Y. Role of SPRY4 in health and disease. Front Oncol 2024; 14:1376873. [PMID: 38686189 PMCID: PMC11056578 DOI: 10.3389/fonc.2024.1376873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 04/01/2024] [Indexed: 05/02/2024] Open
Abstract
SPRY4 is a protein encoding gene that belongs to the Spry family. It inhibits the mitogen-activated protein kinase (MAPK) signaling pathway and plays a role in various biological functions under normal and pathological conditions. The SPRY4 protein has a specific structure and interacts with other molecules to regulate cellular behavior. It serves as a negative feedback inhibitor of the receptor protein tyrosine kinases (RTK) signaling pathway and interferes with cell proliferation and migration. SPRY4 also influences inflammation, oxidative stress, and cell apoptosis. In different types of tumors, SPRY4 can act as a tumor suppressor or an oncogene. Its dysregulation is associated with the development and progression of various cancers, including colorectal cancer, glioblastoma, hepatocellular carcinoma, perihilar cholangiocarcinoma, gastric cancer, breast cancer, and lung cancer. SPRY4 is also involved in organ development and is associated with ischemic diseases. Further research is ongoing to understand the expression and function of SPRY4 in specific tumor microenvironments and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Hao Pan
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Renjie Xu
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yong Zhang
- Department of Hepatobiliary Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
26
|
Yang Z, Kao X, Huang N, Yuan K, Chen J, He M. Identification and Analysis of PANoptosis-Related Genes in Sepsis-Induced Lung Injury by Bioinformatics and Experimental Verification. J Inflamm Res 2024; 17:1941-1956. [PMID: 38562657 PMCID: PMC10984196 DOI: 10.2147/jir.s452608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 02/20/2024] [Indexed: 04/04/2024] Open
Abstract
Purpose Sepsis-induced lung injury (SLI) is a serious complication of sepsis. PANoptosis, a novel form of inflammatory programmed cell death that is not yet to be fully investigated in SLI. Our research aims to screen and validate the signature genes of PANoptosis in SLI by bioinformatics and in vivo experiment. Methods SLI-related datasets were downloaded from NCBI Gene Expression Omnibus (GEO) database. Differentially expressed genes (DEGs) of SLI were identified and intersected with the PANoptosis gene set to obtain DEGs related to PANoptosis (SPAN_DEGs). Then, Protein-Protein Interaction (PPI) network and functional enrichment analysis were conducted based on SPAN_DEGs. SVM-REF, LASSO and RandomForest three algorithms were combined to identify the signature genes. The Nomogram and ROC curves were performed to predict diagnostic value. Immune infiltration analysis, correlation analysis and differential expression analysis were used to explore the immunological characterization, correlation and expression levels of the signature genes. Finally, H&E staining and qRT-PCR were conducted for further verification in vivo experiment. Results Twenty-four SPAN_DEGs were identified by intersecting 675 DEGs with the 277 PANoptosis genes. Four signature genes (CD14, GSDMD, IL1β, and FAS) were identified by three machine learning algorithms, which were highly expressed in the SLI group, and had high diagnostic value in the diagnostic model. Moreover, immune infiltration analysis showed that most immune cells and immune-related functions were higher in the SLI group than those in the control group and were closely associated with the signature genes. Finally, it was confirmed that the cecum ligation and puncture (CLP) group mice showed significant pathological damage in lung tissues, and the mRNA expression levels of CD14, IL1β, and FAS were significantly higher than the sham group. Conclusion CD14, FAS, and IL1β may be the signature genes in PANoptosis to drive the progression of SLI and involved in regulating immune processes.
Collapse
Affiliation(s)
- Zhen Yang
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| | - Xingyu Kao
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| | - Na Huang
- The Eighth School of Clinical Medicine, Guangzhou University of Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| | - Kang Yuan
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| | - Jingli Chen
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| | - Mingfeng He
- Foshan Hospital of Traditional Chinese Medicine, Foshan, Guangdong Province, People’s Republic of China
| |
Collapse
|
27
|
Lei M, Feng T, Zhang M, Chang F, Liu J, Sun B, Chen M, Li Y, Zhang L, Tang P, Yin P. CHRONIC CRITICAL ILLNESS-INDUCED MUSCLE ATROPHY: INSIGHTS FROM A TRAUMA MOUSE MODEL AND POTENTIAL MECHANISM MEDIATED VIA SERUM AMYLOID A. Shock 2024; 61:465-476. [PMID: 38517246 DOI: 10.1097/shk.0000000000002322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2024]
Abstract
ABSTRACT Background: Chronic critical illness (CCI), which was characterized by persistent inflammation, immunosuppression, and catabolism syndrome (PICS), often leads to muscle atrophy. Serum amyloid A (SAA), a protein upregulated in critical illness myopathy, may play a crucial role in these processes. However, the effects of SAA on muscle atrophy in PICS require further investigation. This study aims to develop a mouse model of PICS combined with bone trauma to investigate the mechanisms underlying muscle weakness, with a focus on SAA. Methods: Mice were used to examine the effects of PICS after bone trauma on immune response, muscle atrophy, and bone healing. The mice were divided into two groups: a bone trauma group and a bone trauma with cecal ligation and puncture group. Tibia fracture surgery was performed on all mice, and PICS was induced through cecal ligation and puncture surgery in the PICS group. Various assessments were conducted, including weight change analysis, cytokine analysis, hematological analysis, grip strength analysis, histochemical staining, and immunofluorescence staining for SAA. In vitro experiments using C2C12 cells (myoblasts) were also conducted to investigate the role of SAA in muscle atrophy. The effects of inhibiting receptor for advanced glycation endproducts (RAGE) or JAK2 on SAA-induced muscle atrophy were examined. Bioinformatic analysis was conducted using a dataset from the GEO database to identify differentially expressed genes and construct a coexpression network. Results: Bioinformatic analysis confirmed that SAA was significantly upregulated in muscle tissue of patients with intensive care unit-induced muscle atrophy. The PICS animal models exhibited significant weight loss, spleen enlargement, elevated levels of proinflammatory cytokines, and altered hematological profiles. Evaluation of muscle atrophy in the animal models demonstrated decreased muscle mass, grip strength loss, decreased diameter of muscle fibers, and significantly increased expression of SAA. In vitro experiment demonstrated that SAA decreased myotube formation, reduced myotube diameter, and increased the expression of muscle atrophy-related genes. Furthermore, SAA expression was associated with activation of the FOXO signaling pathway, and inhibition of RAGE or JAK2/STAT3-FOXO signaling partially reversed SAA-induced muscle atrophy. Conclusions: This study successfully develops a mouse model that mimics PICS in CCI patients with bone trauma. Serum amyloid A plays a crucial role in muscle atrophy through the JAK2/STAT3-FOXO signaling pathway, and targeting RAGE or JAK2 may hold therapeutic potential in mitigating SAA-induced muscle atrophy.
Collapse
|
28
|
Zhu W, Yang G, Chen N, Zhang W, Gao Q, Li T, Yuan N, Jin H. CTRP13 alleviates palmitic acid-induced inflammation, oxidative stress, apoptosis and endothelial cell dysfunction in HUVECs. Tissue Cell 2024; 86:102232. [PMID: 37976900 DOI: 10.1016/j.tice.2023.102232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 09/26/2023] [Accepted: 10/04/2023] [Indexed: 11/19/2023]
Abstract
C1q/tumor necrosis factor-related protein 13 (CTRP13) has been reported to participate in cardiovascular diseases. However, the role and molecular mechanism of CTRP13 in obesity-induced endothelial cell damage is still unclear. In palmitic acid (PA)-induced human umbilical vein endothelial cells (HUVECs), qRT-PCR and western blot were used to examine CTRP13 expression. CCK-8 and TUNEL assays were adopted to assess cell viability and apoptosis, respectively. ROS level and MDA content were evaluated by their commercial kits and inflammatory cytokines were measured using ELISA. Endothelial cell dysfunction was evaluated by detecting NO production and eNOS expression, and tube formation assay was performed to assess angiogenesis. AMPK pathway-related proteins were detected by western blot. The results showed that CTRP13 was downregulated in PA-induced HUVECs. CTRP13 overexpression reduced PA-induced cell viability loss and oxidative stress in HUVECs. Moreover, CTRP13 overexpression suppressed PA-induced inflammation and apoptosis, improved angiogenesis ability, and alleviated endothelial cell dysfunction in HUVECs. In addition, CTRP13 overexpression activated AMPK pathway and regulated the expressions of downstream NOX1/p38 and KLF2. Furthermore, compound C countervailed the impacts of CTRP13 overexpression on cell viability, oxidative stress, inflammation, apoptosis and endothelial function in PA-induced HUVECs. To sum up, CTRP13 overexpression may alleviate PA-induced endothelial cell damage.
Collapse
Affiliation(s)
- Wei Zhu
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China.
| | - Guojun Yang
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Naijun Chen
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Wenjun Zhang
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Qian Gao
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Tingting Li
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Nan Yuan
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Huawei Jin
- Department of Edocrine and Metabolism, Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
29
|
Wang S, Lin F, Zhang C, Gao D, Qi Z, Wu S, Wang W, Li X, Pan L, Xu Y, Tan B, Yang A. Xuanbai Chengqi Decoction alleviates acute lung injury by inhibiting NLRP3 inflammasome. JOURNAL OF ETHNOPHARMACOLOGY 2024; 319:117227. [PMID: 37751794 DOI: 10.1016/j.jep.2023.117227] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Revised: 09/20/2023] [Accepted: 09/23/2023] [Indexed: 09/28/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Acute lung injury/acute respiratory distress syndrome (ALI/ARDS) is a prevalent critical respiratory disorder caused mostly by infection and other factors. However, effective drug therapies are currently lacking. Xuanbai Chengqi Decoction (XCD), a traditional Chinese medicine (TCM) prescription, is commonly employed to treat lung diseases. It has been recommended by Chinese health authorities as one of the TCM prescriptions for COVID-19. Nonetheless, its underlying mechanism for the treatment of ALI has not been fully understood. AIM OF THE STUDY The study aims to investigate the therapeutic effect of XCD on lipopolysaccharide (LPS) -induced ALI in mice and explore its anti-inflammatory mechanism involving pyroptosis. MATERIALS AND METHODS Ultra-performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) was employed to identify the active compounds of XCD, and quantitative analysis of the main compounds was conducted. Male C57BL/6J mice were given different doses of XCD (4.5 and 9.0 g/kg/day) or dexamethasone (5 mg/kg/day) by oral gavage for 5 consecutive days. Subsequently, ALI was induced by injecting LPS (20 mg/kg) intraperitoneally 2 h after the last administration, and serum and lung tissues were collected 8 h later. J774A.1 cells were pretreated with different doses of XCD (100, 200, 400 μg/ml) for 12 h, then incubated with LPS (1 μg/ml) for 4 h and ATP (1 mM) for 2 h to induce pyroptosis. Supernatant and cells were collected. Moreover, J774A.1 cells were transfected with an NLRP3 overexpression plasmid for 24 h, followed by subsequent experiments with XCD (400 μg/ml). Lung histopathological changes were evaluated using hematoxylin and eosin (HE) staining. To assess the efficacy of XCD on ALI/ARDS, the levels of inflammatory factors, chemokines, and proteins associated with NLRP3 inflammasome signaling pathway were evaluated. RESULTS XCD was found to ameliorate lung inflammation injury in ALI mice, and reduce the protein expression of TNF-α, IL-1β, and IL-6 in both mouse serum and J774A.1 cell supernatant. Meanwhile, XCD significantly decreased the mRNA levels of IL-1β, pro-IL-1β, CXCL1, CXCL10, TNF-α, NLRP3, NF-κB P65, and the protein expression of NLRP3, Cleaved-Caspase1, and GSDMD-N in the lung and J774A.1 cells. These effects were consistent with the NLRP3 inhibitor MCC950. Furthermore, overexpression of NLRP3 reversed the anti-inflammatory effect of XCD. CONCLUSION The therapeutic mechanism of XCD in ALI treatment may involve alleviating inflammatory responses in lung tissues by inhibiting the activation of the NLRP3 inflammasome-mediated pyroptosis in macrophages.
Collapse
Affiliation(s)
- Shun Wang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| | - Feifei Lin
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
| | - Chengxi Zhang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| | - Dan Gao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| | - Zhuocao Qi
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| | - Suwan Wu
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| | - Wantao Wang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| | - Xiaoqian Li
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| | - Lingyun Pan
- Experiment Center for Science and Technology, Shanghai University of Traditional Chinese Medicine, Shanghai, 210203, China.
| | - Yanwu Xu
- School of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Bo Tan
- Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Aidong Yang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China; Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, 201203, China.
| |
Collapse
|
30
|
Liu Y, Zhang Y, You G, Zheng D, He Z, Guo W, Antonina K, Shukhrat Z, Ding B, Zan J, Zhang Z. Tangeretin attenuates acute lung injury in septic mice by inhibiting ROS-mediated NLRP3 inflammasome activation via regulating PLK1/AMPK/DRP1 signaling axis. Inflamm Res 2024; 73:47-63. [PMID: 38147126 DOI: 10.1007/s00011-023-01819-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/05/2023] [Accepted: 11/06/2023] [Indexed: 12/27/2023] Open
Abstract
OBJECTIVE NLRP3 inflammasome-mediated pyroptosis of macrophage acts essential roles in the progression of sepsis-induced acute lung injury (ALI). Tangeretin (TAN), enriched in citrus fruit peel, presents anti-oxidative and anti-inflammatory effects. Here, we aimed to explore the potentially protective effect of TAN on sepsis-induced ALI, and the underlying mechanism of TAN in regulating NLRP3 inflammasome. MATERIAL AND METHODS The effect of TAN on sepsis-induced ALI and NLRP3 inflammasome-mediated pyroptosis of macrophage were examined in vivo and in vitro using a LPS-treated mice model and LPS-induced murine macrophages, respectively. The mechanism of TAN regulating the activation of NLRP3 inflammasome in sepsis-induced ALI was investigated with HE staining, Masson staining, immunofluorescent staining, ELISA, molecular docking, transmission electron microscope detection, qRT-PCR, and western blot. RESULTS TAN could evidently attenuate sepsis-induced ALI in mice, evidenced by reducing pulmonary edema, pulmonary congestion and lung interstitial fibrosis, and inhibiting macrophage infiltration in the lung tissue. Besides, TAN significantly suppressed inflammatory cytokine IL-1β and IL-18 expression in the serum or bronchoalveolar lavage fluid (BALF) samples of mice with LPS-induced ALI, and inhibited NLRP3 inflammasome-mediated pyroptosis of macrophages. Furthermore, we found TAN inhibited ROS production, preserved mitochondrial morphology, and alleviated excessive mitochondrial fission in LPS-induced ALI in mice. Through bioinformatic analysis and molecular docking, Polo-like kinase 1 (PLK1) was identified as a potential target of TAN for treating sepsis-induced ALI. Moreover, TAN significantly inhibited the reduction of PLK1 expression, AMP-activated protein kinase (AMPK) phosphorylation, and Dynamin related protein 1 (Drp1) phosphorylation (S637) in LPS-induced ALI in mice. In addition, Volasertib, a specific inhibitor of PLK1, abolished the protective effects of TAN against NLRP3 inflammasome-mediated pyroptosis of macrophage and lung injury in the cell and mice septic models. CONCLUSION TAN attenuates sepsis-induced ALI by inhibiting ROS-mediated NLRP3 inflammasome activation via regulating PLK1/AMPK/DRP1 signaling axis, and TAN is a potentially therapeutic candidate against ALI through inhibiting pyroptosis.
Collapse
Affiliation(s)
- Yuntao Liu
- State Key Laboratory of Traditional Chinese Medicine Syndrom,The second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yuting Zhang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Guoxing You
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Danwen Zheng
- State Key Laboratory of Traditional Chinese Medicine Syndrom,The second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhipeng He
- State Key Laboratory of Traditional Chinese Medicine Syndrom,The second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Wenjie Guo
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China
| | - Kim Antonina
- No. 1 Department of Internal Diseases, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Ziyadullaev Shukhrat
- No. 1 Department of Internal Diseases, Samarkand State Medical University, Samarkand, Uzbekistan
| | - Banghan Ding
- State Key Laboratory of Traditional Chinese Medicine Syndrom,The second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| | - Jie Zan
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Zhongde Zhang
- State Key Laboratory of Traditional Chinese Medicine Syndrom,The second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
31
|
Zhang C, Li X, Gao D, Zhu H, Wang S, Tan B, Yang A. Network Pharmacology and Experimental Validation of the Anti-Inflammatory Effect of Tingli Dazao Xiefei Decoction in Acute Lung Injury Treatment. J Inflamm Res 2023; 16:6195-6209. [PMID: 38145012 PMCID: PMC10748588 DOI: 10.2147/jir.s433840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/12/2023] [Indexed: 12/26/2023] Open
Abstract
Purpose Tingli Dazao Xiefei Decoction (TDXD) is a Traditional Chinese Medicine (TCM) formula used to treat acute lung injury (ALI). However, the precise mechanism of TDXD in treating ALI remains unclear. We investigated the therapeutic mechanism of TDXD against ALI using a complementary approach combining network pharmacology, molecular docking, and in vitro and in vivo experiments. Material and Methods Potential drug targets of TDXD and relevant target genes associated with ALI were retrieved from Chinese medicines and disease genes databases. Bioinformatics technology was employed to screen potential active ingredients and core targets. Validation experiments were conducted using a lipopolysaccharide (LPS)-induced ALI mouse (C57BL/6J) model, LPS-induced inflammatory RAW264.7 cells, and molecular docking between active compounds of TDXD and potential targets. Results Network pharmacology suggested that the mechanism of TDXD against ALI involved phosphoinositide 3-kinase (PI3K) / protein kinase B (AKT) / phosphatase and tensin homolog (PTEN) and Janus kinase 2 (JAK2) / signal transducer and activator of transcription 3 (STAT3) pathways. Quercetin, β-sitosterol, kaempferol, isorhamnetin, and L-stepholidine were identified as the main active compounds of TDXD that exerted anti-ALI effects. Molecular docking indicated that these compounds exhibited good binding capabilities (≤ -5kcal/mol) to key targets in PI3K/AKT/PTEN and JAK2/STAT3 signaling pathways. In the animal model, TDXD alleviated injuries and inflammatory responses in lung tissues, accompanied by inhibition of expression of tumor necrosis factor-α (TNF-α), Interleukin-6 (IL-6), STAT3, and Suppressor of Cytokine Signaling 3 (SOCS3) mRNA, and key proteins in PI3K/AKT/PTEN and JAK2/STAT3 pathways (all P values < 0.05). Cell based experiments showed that TDXD dose-dependently inhibited the expression of essential proteins in PI3K/AKT/PTEN and JAK2/STAT3 pathways (P < 0.05). Conclusion This study revealed that the mechanism of TDXD in ALI treatment might involve simultaneous regulation of PI3K/AKT/PTEN and JAK2/STAT3 pathways.
Collapse
Affiliation(s)
- Chengxi Zhang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Center for Traditional Chinese Medicine and Epidemic Disease, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, People’s Republic of China
| | - Xiaoqian Li
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Center for Traditional Chinese Medicine and Epidemic Disease, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, People’s Republic of China
| | - Dan Gao
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Center for Traditional Chinese Medicine and Epidemic Disease, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, People’s Republic of China
| | - Huahe Zhu
- Department of Integrative Medicine, Huashan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Shun Wang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Center for Traditional Chinese Medicine and Epidemic Disease, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, People’s Republic of China
| | - Bo Tan
- Laboratory of Clinical Pharmacokinetics, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
| | - Aidong Yang
- School of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, People’s Republic of China
- Center for Traditional Chinese Medicine and Epidemic Disease, Shanghai Institute of Infectious Disease and Biosecurity, Shanghai, People’s Republic of China
| |
Collapse
|
32
|
Xie W, Deng L, Lin M, Huang X, Qian R, Xiong D, Liu W, Tang S. Sirtuin1 Mediates the Protective Effects of Echinacoside against Sepsis-Induced Acute Lung Injury via Regulating the NOX4-Nrf2 Axis. Antioxidants (Basel) 2023; 12:1925. [PMID: 38001778 PMCID: PMC10669561 DOI: 10.3390/antiox12111925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/18/2023] [Accepted: 10/23/2023] [Indexed: 11/26/2023] Open
Abstract
Currently, the treatment for sepsis-induced acute lung injury mainly involves mechanical ventilation with limited use of drugs, highlighting the urgent need for new therapeutic options. As a pivotal aspect of acute lung injury, the pathologic activation and apoptosis of endothelial cells related to oxidative stress play a crucial role in disease progression, with NOX4 and Nrf2 being important targets in regulating ROS production and clearance. Echinacoside, extracted from the traditional Chinese herbal plant Cistanche deserticola, possesses diverse biological activities. However, its role in sepsis-induced acute lung injury remains unexplored. Moreover, although some studies have demonstrated the regulation of NOX4 expression by SIRT1, the specific mechanisms are yet to be elucidated. Therefore, this study aimed to investigate the effects of echinacoside on sepsis-induced acute lung injury and oxidative stress in mice and to explore the intricate regulatory mechanism of SIRT1 on NOX4. We found that echinacoside inhibited sepsis-induced acute lung injury and oxidative stress while preserving endothelial function. In vitro experiments demonstrated that echinacoside activated SIRT1 and promoted its expression. The activated SIRT1 was competitively bound to p22 phox, inhibiting the activation of NOX4 and facilitating the ubiquitination and degradation of NOX4. Additionally, SIRT1 deacetylated Nrf2, promoting the downstream expression of antioxidant enzymes, thus enhancing the NOX4-Nrf2 axis and mitigating oxidative stress-induced endothelial cell pathologic activation and mitochondrial pathway apoptosis. The SIRT1-mediated anti-inflammatory and antioxidant effects of echinacoside were validated in vivo. Consequently, the SIRT1-regulated NOX4-Nrf2 axis may represent a crucial target for echinacoside in the treatment of sepsis-induced acute lung injury.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Liu
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (M.L.); (X.H.); (R.Q.); (D.X.)
| | - Siyuan Tang
- Xiangya Nursing School, Central South University, Changsha 410013, China; (W.X.); (L.D.); (M.L.); (X.H.); (R.Q.); (D.X.)
| |
Collapse
|
33
|
Huang W, Wen L, Tian H, Jiang J, Liu M, Ye Y, Gao J, Zhang R, Wang F, Li H, Shen L, Peng F, Tu Y. Self-Propelled Proteomotors with Active Cell-Free mtDNA Clearance for Enhanced Therapy of Sepsis-Associated Acute Lung Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2301635. [PMID: 37518854 PMCID: PMC10520684 DOI: 10.1002/advs.202301635] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/10/2023] [Indexed: 08/01/2023]
Abstract
Acute lung injury (ALI) is a frequent and serious complication of sepsis with limited therapeutic options. Gaining insights into the inflammatory dysregulation that causes sepsis-associated ALI can help develop new therapeutic strategies. Herein, the crucial role of cell-free mitochondrial DNA (cf-mtDNA) in the regulation of alveolar macrophage activation during sepsis-associated ALI is identified. Most importantly, a biocompatible hybrid protein nanomotor (NM) composed of recombinant deoxyribonuclease I (DNase-I) and human serum albumin (HSA) via glutaraldehyde-mediated crosslinking is prepared to obtain an inhalable nanotherapeutic platform targeting pulmonary cf-mtDNA clearance. The synthesized DNase-I/HSA NMs are endowed with self-propulsive capability and demonstrate superior performances in stability, DNA hydrolysis, and biosafety. Pulmonary delivery of DNase-I/HSA NMs effectively eliminates cf-mtDNAs in the lungs, and also improves sepsis survival by attenuating pulmonary inflammation and lung injury. Therefore, pulmonary cf-mtDNA clearance strategy using DNase-I/HSA NMs is considered to be an attractive approach for sepsis-associated ALI.
Collapse
Affiliation(s)
- Weichang Huang
- Department of Critical Care MedicineDongguan Institute of Respiratory and Critical Care MedicineAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523059China
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Lihong Wen
- Department of Plastic SurgerySun Yat‐sen Memorial HospitalSun Yat‐sen UniversityGuangzhou510120China
| | - Hao Tian
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Jiamiao Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Meihuan Liu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Yicheng Ye
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Junbin Gao
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Ruotian Zhang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Fei Wang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Huaan Li
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| | - Lihan Shen
- Department of Critical Care MedicineDongguan Institute of Respiratory and Critical Care MedicineAffiliated Dongguan HospitalSouthern Medical UniversityDongguan523059China
| | - Fei Peng
- School of Materials Science and EngineeringSun Yat‐Sen UniversityGuangzhou510275China
| | - Yingfeng Tu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism & Guangdong Provincial Key Laboratory of New Drug ScreeningSchool of Pharmaceutical SciencesSouthern Medical UniversityGuangzhou510515China
| |
Collapse
|
34
|
Kandasamy J, Li R, Vamesu BM, Olave N, Halloran B, Jilling T, Ballinger SW, Ambalavanan N. Mitochondrial DNA Variations Modulate Alveolar Epithelial Mitochondrial Function and Oxidative Stress in Newborn Mice Exposed to Hyperoxia. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.17.541177. [PMID: 37292719 PMCID: PMC10245974 DOI: 10.1101/2023.05.17.541177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Oxidative stress is an important contributor to bronchopulmonary dysplasia (BPD), a form of chronic lung disease that is the most common morbidity in very preterm infants. Mitochondrial functional differences due to inherited and acquired mutations influence the pathogenesis of disorders in which oxidative stress plays a critical role. We previously showed using mitochondrial-nuclear exchange (MNX) mice that mitochondrial DNA (mtDNA) variations modulate hyperoxia-induced lung injury severity in a model of BPD. In this study, we studied the effects of mtDNA variations on mitochondrial function including mitophagy in alveolar epithelial cells (AT2) from MNX mice. We also investigated oxidant and inflammatory stress as well as transcriptomic profiles in lung tissue in mice and expression of proteins such as PINK1, Parkin and SIRT3 in infants with BPD. Our results indicate that AT2 from mice with C57 mtDNA had decreased mitochondrial bioenergetic function and inner membrane potential, increased mitochondrial membrane permeability and were exposed to higher levels of oxidant stress during hyperoxia compared to AT2 from mice with C3H mtDNA. Lungs from hyperoxia-exposed mice with C57 mtDNA also had higher levels of pro-inflammatory cytokines compared to lungs from mice with C3H mtDNA. We also noted changes in KEGG pathways related to inflammation, PPAR and glutamatergic signaling, and mitophagy in mice with certain mito-nuclear combinations but not others. Mitophagy was decreased by hyperoxia in all mice strains, but to a greater degree in AT2 and neonatal mice lung fibroblasts from hyperoxia-exposed mice with C57 mtDNA compared to C3H mtDNA. Finally, mtDNA haplogroups vary with ethnicity, and Black infants with BPD had lower levels of PINK1, Parkin and SIRT3 expression in HUVEC at birth and tracheal aspirates at 28 days of life when compared to White infants with BPD. These results indicate that predisposition to neonatal lung injury may be modulated by variations in mtDNA and mito-nuclear interactions need to be investigated to discover novel pathogenic mechanisms for BPD.
Collapse
|
35
|
miR-125b-5p in adipose derived stem cells exosome alleviates pulmonary microvascular endothelial cells ferroptosis via Keap1/Nrf2/GPX4 in sepsis lung injury. Redox Biol 2023; 62:102655. [PMID: 36913799 PMCID: PMC10023991 DOI: 10.1016/j.redox.2023.102655] [Citation(s) in RCA: 138] [Impact Index Per Article: 69.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
BACKGROUND Sepsis is a fatal disease with a high rate of morbidity and mortality, during which acute lung injury is the earliest and most serious complication. Injury of pulmonary microvascular endothelial cells (PMVECs) induced by excessive inflammation plays an important role in sepsis acute lung injury. This study is meant to explore the protective effect and mechanism of ADSCs exosomes on excessive inflammation PMVECs injury. RESULTS We successfully isolated ADSCs exosomes, the characteristic of which were confirmed. ADSCs exosomes reduced excessive inflammatory response induced ROS accumulation and cell injury in PMVECs. Besides, ADSCs exosomes inhibited excessive inflammatory response induced ferroptosis while upregulated expression of GPX4 in PMVECs. And further GPX4 inhibition experiments revealed that ADSCs exosomes alleviated inflammatory response induced ferroptosis via upregulating GPX4. Meanwhile, ADSCs exosomes could increase the expression and nucleus translocation of Nrf2, while decrease the expression of Keap1. miRNA analysis and further inhibition experiments verified that specific delivery of miR-125b-5p by ADSCs exosomes inhibited Keap1 and alleviated ferroptosis. In CLP induced sepsis model, ADSCs exosomes could relieve the lung tissue injury and reduced the death rate. Besides, ADSCs exosomes alleviated oxidative stress injury and ferroptosis of lung tissue, while remarkably increase expression of Nrf2 and GPX4. CONCLUSION Collectively, we illustrated a novel potentially therapeutic mechanism that miR-125b-5p in ADSCs exosomes could alleviate the inflammation induced PMVECs ferroptosis in sepsis induced acute lung injury via regulating Keap1/Nrf2/GPX4 expression, hence improve the acute lung injury in sepsis.
Collapse
|