1
|
Yang L, Mo W, Xin L, Zhang M, Chen K, Guo X, Zhang J, Yu B. Rescuing fertility: Itaconic acid prevents ovarian damage through NRF2-mediated pyroptosis pathways in diminished ovarian reserve models. Cell Signal 2025; 131:111766. [PMID: 40147551 DOI: 10.1016/j.cellsig.2025.111766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
BACKGROUND Diminished ovarian reserve (DOR) is a major cause of infertility, often triggered by inflammation and oxidative stress. Pyroptosis, a form of programmed cell death, has been implicated in DOR pathogenesis. Itaconic acid (IA), an endogenous metabolite, is known for its anti-inflammatory and antioxidant properties. This study aimed to explore whether IA could alleviate lipopolysaccharide (LPS)-induced DOR in mice by inhibiting pyroptosis through the NRF2 pathway. METHODS A DOR mouse model was established by administering LPS for 5 consecutive days, followed by IA treatment. Ovarian function was assessed by follicle count and hormone levels. Inflammatory markers, oxidative stress, and pyroptosis-related proteins were evaluated in both in vivo and in vitro models. The molecular mechanism was further investigated using inhibitors and molecular docking studies. RESULTS IA significantly improved ovarian function in LPS-induced DOR mice by increasing the number of follicles and normalizing hormone levels. IA also reduced inflammation, oxidative stress, and pyroptosis, as evidenced by lower expression of NLRP3, cleaved-caspase-1, and N-GSDMD, while increasing NRF2 expression. In vitro, IA enhanced granulosa cell (GC) viability, reduced reactive oxygen species (ROS), and decreased pyroptosis in LPS-treated GCs. Additionally, the beneficial effects of IA were mediated via the NRF2 pathway, as NRF2 inhibition (ML385) reversed these improvements. Additionally, we identified GSDMD as a downstream target of IA, with inhibition of GSDMD ameliorating DOR progression and inflammatory responses. CONCLUSION IA alleviates LPS-induced DOR by reducing inflammation, oxidative stress, and pyroptosis through activation of the NRF2 signaling and direct inhibition of the GSDMD pathway. These findings suggest that IA may serve as a potential therapeutic agent for improving ovarian reserve and fertility.
Collapse
Affiliation(s)
- Ling Yang
- Department of Obstetrics and Gynecology, the Hexian People's Hospital, Maanshan 238200, Anhui, China
| | - Wenya Mo
- School of Nursing, Anhui Medical University, Hefei 230032, Anhui, China; Department of Urology, the First Affiliated Hospital of University of Science and Technology of China, Hefei 230036, Anhui, China
| | - Lei Xin
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei 230032, Anhui, China
| | - Mingzhao Zhang
- Department of Breast Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Kegong Chen
- Department of Thoracic Surgery, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China
| | - Xiaohui Guo
- Department of Pathology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China.
| | - Jing Zhang
- College of Veterinary Medicine, Jilin University, Changchun 130062, Jilin, China.
| | - Biao Yu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Anhui Medical University, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, Hefei 230032, Anhui, China.
| |
Collapse
|
2
|
Qian C, Wang Y, Yuan Q, Guo Y, Wang Y. Insights into the itaconate family: Immunomodulatory mechanisms and therapeutic potentials. Eur J Pharmacol 2025; 997:177542. [PMID: 40147573 DOI: 10.1016/j.ejphar.2025.177542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2024] [Revised: 03/06/2025] [Accepted: 03/24/2025] [Indexed: 03/29/2025]
Abstract
The itaconate family, comprising itaconate derivatives, endogenous isomers, and other related compounds, has demonstrated substantial immunoregulatory properties. These compounds exhibit significant therapeutic potential in various disease models by modulating metabolic pathways, signal transduction cascades, and post-translational modifications. In this review, we delineate the structural characteristics and biological functions of the members of the itaconate family and elucidate their immunomodulatory mechanisms. Additionally, we summarize the immunomodulatory effects of the itaconate family across various disease categories, including cardiovascular, liver, respiratory, bone and cartilage, neurological, and autoimmune diseases. This review aims to deepen our understanding of the itaconate family and its potential applications, providing new perspectives and therapeutic strategies for inflammatory disorders and autoimmune diseases.
Collapse
Affiliation(s)
- Chunlin Qian
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yueying Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Yuchen Guo
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Yuan Wang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
3
|
Xie Y, Cheng Q, Xu ML, Xue J, Wu H, Du Y. Itaconate: A Potential Therapeutic Strategy for Autoimmune Disease. Scand J Immunol 2025; 101:e70026. [PMID: 40289463 DOI: 10.1111/sji.70026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 04/30/2025]
Abstract
Itaconate is a metabolite of the Krebs cycle, and endogenous itaconate is driven by a variety of innate signals that inhibit the production of inflammatory cytokines. The key mechanism of action of itaconate was initially found to be the competitive inhibition of succinate dehydrogenase (SDH), which inhibits the production of inflammatory factors, as well as its antioxidant effects. With increasing research, it was discovered that it modifies cysteine residues of related proteins through the Michael addition, such as modifying the Kelch-like ECH-associated protein 1 (KEAP1) protein and activating the nuclear factor erythroid 2-related factor 2 (NRF2) signalling pathway, as well as glycolytic enzymes and cellular pathway-associated factors that attenuate inflammatory responses and oxidative stress. It also acts on a variety of immune cells, affecting their function and activity, and has been increasingly shown to play a therapeutic role in a variety of inflammatory and autoimmune diseases through a combination of these mechanisms. In conclusion, there has been a great breakthrough in the research of itaconate, from the initial industrial application to the redefinition of the biological functions of itaconate. However, with the deepening of the research, we also found that there are more questions: the mechanism of action of itaconate, more functions of itaconate, clinical application of itaconate, and the use of itaconate still needs to be solved.
Collapse
Affiliation(s)
- Yifan Xie
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Department of Clinic Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Qi Cheng
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Meng Li Xu
- Department of Nephrology, The Third Affiliate Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Jing Xue
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Huaxiang Wu
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| | - Yan Du
- Department of Rheumatology, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
4
|
Prenen F, Pollenus E, Meers H, Knoops S, Sadler R, Deckers M, Mills EL, Van den Steen PE. Itaconate Has Limited Protective Effects in Experimental Malaria Models. Eur J Immunol 2025; 55:e202451595. [PMID: 40346757 DOI: 10.1002/eji.202451595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 04/24/2025] [Accepted: 04/25/2025] [Indexed: 05/12/2025]
Abstract
In severe malaria, dysregulated metabolism and excessive inflammatory responses contribute to fatal outcomes. Therapeutic strategies that address both metabolic and inflammatory balances are thus required. Itaconate, a metabolite produced by aconitate decarboxylase 1 (ACOD1), is a potent inhibitor of both inflammation and glycolysis with protective effects in various inflammatory diseases. Although elevated itaconate levels have been observed in Plasmodium-infected individuals, its role in malaria is still poorly understood, making further investigation essential for assessing its therapeutic potential. We investigated the role of itaconate in both severe and mild malaria using Plasmodium berghei NK65 (PbNK65) and Plasmodium chabaudi AS (PcAS) models, respectively. Using 13C-tracer metabolomics, we detected increased itaconate levels in various organs during infection and identified inflammatory monocytes as the source of this production. Nevertheless, ACOD1 knockout mice displayed no significant changes in phenotype after PbNK65 infection, and treatment of PbNK65-infected mice with 4-octyl itaconate did not affect disease severity either. However, in the PcAS model, ACOD1 deficiency worsened the disease, as indicated by increased weight loss, higher clinical scores, and elevated parasitemia. Therefore, in contrast to the findings in recent literature, our study shows that itaconate does not contribute to susceptibility, but rather provides limited protection to malaria.
Collapse
Affiliation(s)
- Fran Prenen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Emilie Pollenus
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Hanne Meers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Sofie Knoops
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Rebecca Sadler
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Margot Deckers
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
- Laboratory of Host-Pathogen Interactions, Department of Pathology, University of Utah, Salt Lake City, USA
| | - Evanna L Mills
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, Massachusetts, USA
- Department of Immunology, Harvard Medical School, Boston, Massachusetts, USA
| | - Philippe E Van den Steen
- Laboratory of Immunoparasitology, Department of Microbiology, Immunology and Transplantation, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| |
Collapse
|
5
|
Zhao H, Lv J, Chen B, He F, Wang Q, Xie D, Koyama H, Zhang C, Cheng J. RAGE deficiency obstructs high uric acid-induced oxidative stress and inflammatory response. Int Immunopharmacol 2025; 151:114316. [PMID: 39987631 DOI: 10.1016/j.intimp.2025.114316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 02/13/2025] [Accepted: 02/13/2025] [Indexed: 02/25/2025]
Abstract
Hyperuricemia is a metabolic disorder primarily associated with gout and implicated in various metabolic inflammatory diseases. While the role of monosodium urate crystals triggering inflammation has been well-documented, recent findings suggest that soluble high uric acid (HUA) also induces pro-inflammatory cytokine production in human monocytes. However, the comprehensive effects of HUA levels on macrophage dysfunction and the underlying mechanisms remain underexplored. This study employs urate oxidase knockout (UOX-KO) and receptor for advanced glycation end products deficiency (RAGE-/-) mouse models to elucidate macrophage function and its mechanistic pathways. Our results demonstrate that HUA promotes M1 polarization and migration of macrophages while impairing their phagocytic ability. This process is mediated through the high mobility group box 1 (HMGB1)-RAGE- ROS axis. Notably, RAGE deficiency in bone marrow-derived cells partially mediates these effects. Pathologically, elevated HMGB1 and monocyte chemoattractant protein 1 levels in pancreatic islets increases macrophage infiltration in UOX-KO mice. Treatment with the FPS-ZM1, as a pharmacological RAGE inhibitor, effectively decreases serum UA levels, ameliorates islet inflammation and insulin resistance. These findings suggest that soluble HUA serves as a pro-inflammatory trigger through the HMGB1-RAGE-ROS axis, and that RAGE inhibition may mitigate these effects by decreasing inflammatory macrophage infiltration in the islets. Additionally, the influence of UA on macrophages extends beyond gout, potentially contributing to the pathogenesis of other metabolic inflammatory conditions, such as atherosclerosis, non-alcoholic steatohepatitis, obesity, and hyperlipidemia.
Collapse
Affiliation(s)
- Hairong Zhao
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China; Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Jiamin Lv
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Binyang Chen
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Furong He
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Qiang Wang
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - De Xie
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China
| | - Hidenori Koyama
- Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan
| | - Chenggui Zhang
- Yunnan Provincial Key Laboratory of Entomological Biopharmaceutical R&D, College of Pharmacy, Dali University, Dali, Yunnan, China.
| | - Jidong Cheng
- Department of Endocrinology, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, China; Department of Diabetes, Endocrinology and Clinical Immunology, Hyogo College of Medicine, Nishinomiya, Japan.
| |
Collapse
|
6
|
Zhu H, Wang W, Zhu J, Chen X, Wang J, Wang J, Liu D, Yang P, Liu Y. Methylglyoxal deteriorates macrophage efferocytosis in diabetic wounds through ROS-induced ubiquitination degradation of KLF4. Free Radic Biol Med 2025; 231:23-37. [PMID: 39986490 DOI: 10.1016/j.freeradbiomed.2025.02.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/19/2025] [Accepted: 02/20/2025] [Indexed: 02/24/2025]
Abstract
Diabetic wounds are a leading cause of disability and mortality in patients with diabetes, and persistent low-grade inflammation plays a significant role in their pathogenesis. Methylglyoxal (MGO), an active product of glucose metabolism, often induces chronic inflammation and is considered a major risk factor in the healing of diabetic wounds. Efferocytosis, the process by which macrophages clear apoptotic cells, is crucial for terminating the inflammatory response and tissue repair. However, the role of MGO in macrophage efferocytosis remains unclear. This study aimed to investigate whether MGO regulates macrophage efferocytosis and the underlying mechanisms. In this study, we observed impaired efferocytosis in diabetic wounds, leading to the accumulation of apoptotic neutrophils and a relative deficiency of M2 macrophages, with MGO being a significant cause. MGO promotes the production of ROS, which not only activates the MAPK p38 pathway, but also upregulates the transcription of the E3 ubiquitin ligase FBXO32, catalyzing the ubiquitination of the transcription factor KLF4 and suppressing the transcription of MerTK mRNA, thereby affecting the phagocytic function of macrophages. Inhibition of the MAPK p38 pathway or knockdown of FBXO32 reduced the ubiquitination and degradation of KLF4, thus mitigating the impairment of efferocytosis caused by oxidative stress. This study reveals the mechanism by which MGO inhibits efferocytosis in diabetic wounds, providing a new target and theoretical basis for the treatment of chronic diabetic wounds.
Collapse
Affiliation(s)
- Hanting Zhu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenao Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiajun Zhu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xuelian Chen
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jizhuang Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jiaqiang Wang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Dan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Peilang Yang
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yan Liu
- Department of Burn, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
7
|
Zhao X, Chen C, Qiu H, Liu J, Shao N, Guo M, Jiang Y, Zhao J, Xu L. The landscape of ATF3 in tumors: Metabolism, expression regulation, therapy approach, and open concerns. Pharmacol Res 2025; 214:107666. [PMID: 39978658 DOI: 10.1016/j.phrs.2025.107666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 02/09/2025] [Accepted: 02/17/2025] [Indexed: 02/22/2025]
Abstract
Cellular stress response is a pivotal process in tumor development and therapy. Activating transcription factor 3 (ATF3), a representative stress-responsive protein, plays pleiotropic roles in various biological processes. Over the past decade, studies have described not only the general role of ATF3 in tumor metabolism but also the complexity of ATF3 expression regulation and its associated modifications, including phosphorylation, ubiquitination, SUMOylation, and NEDDylation. Interestingly, beyond being a transcription factor, ATF3 can act as a modifier to control the ubiquitination of target molecules, such as p53, to exert its function in tumors. These advances in uncovering ATF3 biological function have yielded new insights into the cellular stress response during tumor development and will be instrumental in developing novel interventions. In this review, we update the role of ATF3 as a nexus in amino acid metabolism, lipid metabolism, glycometabolism, and other metabolic pathways in tumors; delineate the underlying mechanisms involving DNA level regulation, epigenetic regulation, and post-translational modifications of ATF3; and summarize the progression of tumor mono/combination therapies related to ATF3. In particular, we discuss the challenges that need to be addressed to provide a new conceptual framework for further understanding the potential therapeutic value of ATF3 in ongoing clinical trials.
Collapse
Affiliation(s)
- Xu Zhao
- Medical College, Guizhou University, Guiyang, Guizhou Province 550025, China; Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Chao Chen
- Medical College, Guizhou University, Guiyang, Guizhou Province 550025, China; Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Hui Qiu
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Jing Liu
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Nan Shao
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Mengmeng Guo
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China
| | - Yuanye Jiang
- Department of Gastroenterology, Putuo hospital, Shanghai University of Tradtional Chinese Medicine, Shanghai 200062, China.
| | - Juanjuan Zhao
- Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China.
| | - Lin Xu
- Medical College, Guizhou University, Guiyang, Guizhou Province 550025, China; Key Laboratory for Cancer Prevention and Treatment of Guizhou Province, Zunyi, Guizhou 563000, China; Department of Immunology, Zunyi Medical University, Guizhou 563000, China; Innovation Center for Tissue Damage Repair, Ministry of Education, Zunyi, Guizhou 563000, China.
| |
Collapse
|
8
|
Petit N, Chang YYJ, Lobianco FA, Hodgkinson T, Browne S. Hyaluronic acid as a versatile building block for the development of biofunctional hydrogels: In vitro models and preclinical innovations. Mater Today Bio 2025; 31:101596. [PMID: 40083836 PMCID: PMC11903855 DOI: 10.1016/j.mtbio.2025.101596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/07/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025] Open
Abstract
Hyaluronic acid (HyA) is a non-sulphated linear polysaccharide found abundantly in the extracellular matrix, known for its biocompatibility and versatility in tissue engineering. Chemical modifications of HyA, including methacrylate, acrylate, click chemistry, norbornene, or host-guest chemistry, are necessary for the formation of stable hydrogels with tuneable biophysical characteristics. These modifications enable precise control over stiffness, swelling, degradation, and advanced functionalities such as shear-thinning, self-healing, and injectability. Functionalisation further enhances hydrogel bioactivity, enabling controlled cell adhesion, modulation of cell behaviour, hydrogel degradation, and release profiles, as well as inflammation modulation or bacterial growth inhibition. These are achieved by conjugating proteins, peptides, antibodies, or reactive chemical groups. HyA hydrogels find broad applications both in vitro and in vivo. In vitro, HyA-based hydrogels can support the development of models to understand fundamental processes in health and mechanisms behind disease progression, serving as highly tuneable extracellular matrix mimetics. As therapeutic interventions, injectable or implantable HyA-based hydrogels have been developed to repair a range of tissues, including cartilage, bone, muscle, and skin defects. However, issues remain to be addressed before widespread adoption of HyA-based hydrogels as clinical options. Future innovations for HyA hydrogels include its establishment as an enabling technology for the delivery of novel therapeutics, with a particular focus on immunomodulatory molecules, and the development of more dynamic, tissue-mimetic HyA-based hydrogels.
Collapse
Affiliation(s)
- Noémie Petit
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Yu-yin Joanne Chang
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
| | - Franz Acker Lobianco
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Tom Hodgkinson
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
| | - Shane Browne
- Tissue Engineering Research Group, Department of Anatomy and Regenerative Medicine, Royal College of Surgeons in Ireland, 123, St Stephen's Green, Dublin 2, Ireland
- CÚRAM, Research Ireland Centre for Medical Devices, University of Galway, Galway, H91 W2TY, Ireland
- Trinity Centre for Biomedical Engineering, Trinity College Dublin, Dublin 2, Ireland
| |
Collapse
|
9
|
Li Z, Lu Q, Zhang R, Xilifu N, Li Y, Huang X, Zhang J, Zang S, Jiang G, Liu J. Metabolic memory in gestational diabetes enhances SARS-CoV-2 susceptibility in postpartum women: a prospective cohort study integrated with longitudinal metabolomics. Endocr Connect 2025; 14:e240681. [PMID: 40019194 PMCID: PMC11915492 DOI: 10.1530/ec-24-0681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/01/2025]
Abstract
OBJECTIVE Women with gestational diabetes mellitus (GDM) often develop a metabolic memory that increases the risk of future metabolic disorders, even after blood glucose levels normalize following clinical intervention. However, the impact of this metabolic memory on susceptibility to SARS-CoV-2 remains unclear. Therefore, we aim to investigate the potential association between metabolic memory in GDM and susceptibility to SARS-CoV-2 infection. METHODS We conducted a prospective cohort study with 1,675 pregnant women, including 197 (11.8%) with GDM. Postpartum SARS-CoV-2 infections were tracked via telephone follow-up and categorized into negative and positive groups. Logistic regression was used to explore risk factors for SARS-CoV-2 infection. Peripheral blood samples were collected from 30 GDM and 30 normal glucose-tolerant (NGT) pregnant women in three trimesters (T1, T2, T3) for longitudinal untargeted metabolomics to identify GDM and SARS-CoV-2-associated metabolites. Limma package was applied to find differential metabolites (DEMs) associated with SARS-CoV-2 infection and GDM. RESULTS Among 1,675 women, 1,348 (80.5%) tested positive for SARS-CoV-2. GDM post-partum women had higher SARS-CoV-2 infection rates (88.3% vs. 79.4%, P = 0.003) than NGT women. GDM was associated with SARS-CoV-2 infection (T2: OR [95% CI]: 2.17 [1.26-3.54], P = 0.005; T3: OR [95% CI]: 1.70 [1.03-2.82], P = 0.040). Compared to the SARS-CoV-2 negative group, the positive group exhibited elevated levels of allantoic acid, LPE (0:0/22:6), LPC (15:0/0:0), 1-linoleoyl-sn-glycero-3-phosphorylcholine in T1 and T2, before clinical intervention. In T3, allantoic acid remained elevated post-intervention. A similar increase as described above was observed in the GDM compared to the NGT group. CONCLUSION Compared to NGT, women with GDM are at a higher risk of postnatal SARS-CoV-2 infection. Metabolic memory from GDM may heighten susceptibility to SARS-CoV-2.
Collapse
Affiliation(s)
- Zhangyan Li
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Qiuhan Lu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Rui Zhang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Nuerbiya Xilifu
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
- Department of Endocrinology, the Second People’s Hospital of Kashgar Prefecture, Xinjiang, China
| | - Yue Li
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Xinmei Huang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Jiaying Zhang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Shufei Zang
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| | - Guozhi Jiang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, Guangdong, China
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun Liu
- Department of Endocrinology, Shanghai Fifth People’s Hospital, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Ghotbeddin Z, Jahromi MA, Shahriari A, Peysokhan M, Dezfouli AM. Neonatal febrile seizures: Dimethyl itaconate's role in behavioral recovery and glutathione enzyme modulation in adult rats. PLoS One 2025; 20:e0318430. [PMID: 40131987 PMCID: PMC11936269 DOI: 10.1371/journal.pone.0318430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Accepted: 01/16/2025] [Indexed: 03/27/2025] Open
Abstract
Febrile seizures are common in children and can lead to neurological deficits like motor impairments, memory problems, and cognitive decline. Research on dimethyl itaconate aims to mitigate these effects and improve the quality of life for affected people. By exploring its potential as a protective agent against oxidative stress during seizures, this study in adult male rats measures the activity of key enzymes related to oxidative stress and behavioral performance. Pregnant rats were divided into control, sham, DMI, febrile seizure, and DMI + febrile seizure groups. Seizure severity was evaluated through threshold and frequency measurements, while memory, motor function, and balance were assessed using shuttle box, rotarod, open field, and wire hanging tests. After that, the hippocampus tissue was removed from the brain and the levels of MDA, SOD, GSH, TAC, GR, GPx, and catalase were measured through biochemical methods. Results show that dimethyl itaconate raised the seizure threshold and reduced tonic-clonic seizures. The DMI + febrile seizure group also showed improved memory, movement, and balance compared to the febrile seizure group (p < 0.05 in all cases). Overall, dimethyl itaconate decreased oxidative stress and improved neurological outcomes in fever-affected rats.
Collapse
Affiliation(s)
- Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohammad Abiri Jahromi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ali Shahriari
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Peysokhan
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Anahita Memar Dezfouli
- Department of Veterinary Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|
11
|
Yang X, Chen Y, Wang X, Xu G, Wang H, Shu X, Ding H, Ma X, Guo J, Wang J, Zhao J, Fang Y, Liu H, Lu W. Ameliorative Effect of Itaconic Acid/IRG1 Against Endoplasmic Reticulum Stress-Induced Necroptosis in Granulosa Cells via PERK-ATF4-AChE Pathway in Bovine. Cells 2025; 14:419. [PMID: 40136668 PMCID: PMC11940906 DOI: 10.3390/cells14060419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/07/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
The necroptosis of granulosa cells has been proven to be one of the important triggers of follicular atresia, which is an important cause of reduced reproductive capacity in cows. The rapid growth of granulosa cells is accompanied by endoplasmic reticulum stress (ERS), leading to granulosa cell death. However, the link between ERS and necroptosis, as well as its mechanism in bovine granulosa cells is still unclear. Itaconic acid is an endogenous anti-inflammatory and antioxidant small-molecule compound that can alleviate ERS. Therefore, the aim of the current study is to evaluate the effect of ERS on necroptosis and investigate the ameliorative effect of itaconic acid against ERS-induced necroptosis in granulosa cells. Bovine granulosa cells were treated with tunicamycin (Tm) to induce ERS. After the addition of the necroptosis inhibitor Nec-1 and the detection of the necroptosis inducer acetylcholinesterase (AChE), flow cytometry, transmission electron microscopy, and mass spectrometry were used to analyze the expression of itaconic acid and IRG1 in the granulosa cells. In addition, the role of the PERK pathway downstream of ERS in ERS-induced necroptosis was also investigated. We report here that ERS can induce necroptosis in granulosa cells. Itaconic acid supplementation significantly attenuates the effect of ERS-induced damage. In summary, this research provides a scientific basis and a drug reference for treating follicular atresia and improving bovine reproductive capacity.
Collapse
Affiliation(s)
- Xiaorui Yang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yue Chen
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xinzi Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Gaoqing Xu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongjie Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xinqi Shu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - He Ding
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Xin Ma
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Guo
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jun Wang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Jing Zhao
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Yi Fang
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Hongyu Liu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| | - Wenfa Lu
- Key Laboratory of Animal Production, Product Quality and Security, Ministry of Education, Jilin Agricultural University, Changchun 130118, China; (X.Y.); (Y.C.); (X.W.); (G.X.); (H.W.); (X.S.); (H.D.); (X.M.); (J.G.); (J.W.); (J.Z.); (Y.F.)
- Key Laboratory of Utilization and Protection of Beef Cattle Germplasm Resources, Jilin Agricultural University, Changchun 130118, China
- Jilin Province Engineering Laboratory for Ruminant Reproductive Biotechnology and Healthy Production, College of Animal Science and Technology, Jilin Agricultural University, Changchun 130118, China
| |
Collapse
|
12
|
Ma Y, Wang J, Cui F, Tang L, Khalid S, Tian Y, Xie J. Independent and combined effects of long-term air pollution exposure and genetic predisposition on COVID-19 severity: A population-based cohort study. Proc Natl Acad Sci U S A 2025; 122:e2421513122. [PMID: 40030018 PMCID: PMC11912415 DOI: 10.1073/pnas.2421513122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 01/13/2025] [Indexed: 03/19/2025] Open
Abstract
The relationships between air pollution, genetic susceptibility, and COVID-19-related outcomes, as well as the potential interplays between air pollution and genetic susceptibility, remain largely unexplored. The Cox proportional hazards model was used to assess associations between long-term exposure to air pollutants and the risk of COVID-19 outcomes (infection, hospitalization, and death) in a COVID-19-naive cohort (n = 458,396). Additionally, associations between air pollutants and the risk of COVID-19 severity (hospitalization and death) were evaluated in a COVID-19 infection cohort (n = 110,216). Furthermore, this study investigated the role of host genetic susceptibility in the relationships between exposure to air pollutants and the development of COVID-19-related outcomes. Long-term exposure to air pollutants was significantly associated with an increased risk of COVID-19-related outcomes in the COVID-19 naive cohort. Similarly, in COVID-19 infection cohort, hazard ratios (HRs) for COVID-19 hospital admission were 1.23 (1.19, 1.27) for PM2.5 and 1.22 (1.17, 1.26) for PM10, whereas HRs for COVID-19 death were 1.28 (1.18, 1.39) for PM2.5 and 1.25 (1.16, 1.36) for PM10. Notably, significant interactions were found between PM2.5/PM10 and genetic susceptibility in COVID-19 death. In COVID-19 infection cohort, participants with both high genetic risk and high air pollutants exposure had 1.86- to 1.97-fold and 1.91- to 2.14-fold higher risk of COVID-19 hospitalization and death compared to those with both low genetic risk and low air pollutants exposure. Exposure to air pollution is significantly associated with an increased burden of severe COVID-19, and air pollution-gene interactions may play a crucial role in the development of COVID-19-related outcomes.
Collapse
Affiliation(s)
- Yudiyang Ma
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jianing Wang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Feipeng Cui
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Linxi Tang
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Sara Khalid
- Botnar Research Centre, Nuffield Orthopaedic Centre, Nuffield Department of Orthopaedics, Rheumatology, and Musculoskeletal Sciences, University of Oxford, OxfordOX3 7LD, United Kingdom
| | - Yaohua Tian
- Ministry of Education Key Laboratory of Environment and Health, and State Key Laboratory of Environmental Health (Incubating), School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Junqin Xie
- Centre for Statistics in Medicine and National Institute for Health and Care Research Biomedical Research Centre Oxford, Nuffield Department of Orthopaedics, Rheumatology and Musculoskeletal Sciences, University of Oxford, OxfordOX3 7LD, United Kingdom
| |
Collapse
|
13
|
Deng J, Feng Z, Luodan A, Ma C, He J, Gong Y, Huang X, Xiao W, Fan X, Xu H. Immune-responsive gene 1/itaconate pathway inhibits microglia activation to alleviate traumatic optic neuropathy in mice. Int Immunopharmacol 2025; 149:114199. [PMID: 39904042 DOI: 10.1016/j.intimp.2025.114199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/15/2024] [Accepted: 01/28/2025] [Indexed: 02/06/2025]
Abstract
Retinal inflammatory microenvironment caused by microglia over-activation is deemed to be crucial pathological changes that lead to the massive death of retinal ganglion cells (RGCs) after traumatic optic neuropathy (TON), which then results in visual impairment and even blindness. Therefore, exploring effective targets to suppress microglia activation is a promising therapeutic strategy for TON. In the present work, we determined the roles of immune-responsive gene 1 (IRG1)/itaconate pathway on retinal microglia activation and neuroinflammation after TON, through endogenously manipulating Irg1 expression and exogenously supplementing itaconate derivatives, we evaluated its effects on RGCs survival, retinal structural damage and visual function after TON. Finally, we identified the downstream mechanism by which the Irg1/itaconate pathway regulates microglia through transcriptome analysis. We found that specifically overexpression of Irg1 in retinal microglia significantly inhibited microglia activation and alleviated neuroinflammation after TON, thereby promoting RGCs survival and improving visual function. While knockdown of Irg1 caused microglia over-activation and exacerbated neuroinflammation, thus aggravating RGCs damage and deteriorating visual function after TON. Further in vivo and in vitro experiments confirmed that itaconate derivatives significantly inhibited microglia activation and alleviated neuroinflammation, hence alleviated RGCs damage and visual impairment. Finally, transcriptome analysis indicated that complement and coagulation cascades pathway might be the crucial downstream mechanism of the Irg1/itaconate pathway. Our study identifies the Irg1/itaconate pathway as a prospective target for treating TON.
Collapse
Affiliation(s)
- Jiaxing Deng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Zhou Feng
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China; Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China
| | - A Luodan
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Chao Ma
- Department of Rehabilitation, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China
| | - Juncai He
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Yu Gong
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Xiaona Huang
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Weizuo Xiao
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China
| | - Xiaotang Fan
- Department of Military Cognitive Psychology, School of Psychology, Third Military Medical University (Army Medical University), Chongqing 400038 China.
| | - Haiwei Xu
- Southwest Eye Hospital, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing 400038 China; Key Lab of Visual Damage and Regeneration & Restoration of Chongqing, Chongqing 400038 China.
| |
Collapse
|
14
|
Liao X, Tang M, Li J, Guo R, Zhong C, Chen X, Zhang X, Mo H, Que D, Yu W, Song X, Li H, Cai Y, Yang P. Acid-Triggered Cascaded Responsive Supramolecular Peptide Alleviates Myocardial Ischemia‒Reperfusion Injury by Restoring Redox Homeostasis and Protecting Mitochondrial Function. Adv Healthc Mater 2025; 14:e2404319. [PMID: 39831810 DOI: 10.1002/adhm.202404319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Redox imbalance, including excessive production of reactive oxygen species (ROS) caused by mitochondrial dysfunction and insufficient endogenous antioxidant capacity, is the primary cause of myocardial ischemia‒reperfusion (I/R) injury. In the exploration of reducing myocardial I/R injury, it is found that protecting myocardial mitochondrial function after reperfusion not only reduces ROS bursts but also inhibits cell apoptosis triggered by the release of cytochrome c. Additionally, nuclear factor erythroid 2-related factor 2 (Nrf2) is considered a potential therapeutic target for treating myocardial I/R injury by enhancing the cellular antioxidant capacity through the induction of endogenous antioxidant enzymes. In this study, a peptide‒drug conjugate OI-FFG-ss-SS31(ISP) is developed by integrating the Nrf2 activator 4-octyl itaconate (OI) and the mitochondria-targeting protective peptide elamipretide (SS31), and its therapeutic potential for myocardial I/R injury is explored. The results showed that ISP could self-assemble into nanofibers in response to the acidic microenvironment and bind to Keap-1 with high affinity, thereby activating Nrf2 and enhancing antioxidant capacity. Simultaneously, the release of SS31 could improve mitochondrial function and reduce ROS, ultimately providing a restoration of redox homeostasis to effectively alleviate myocardial I/R injury. This study presents a promising acid-triggered peptide-drug conjugate for treating myocardial I/R injury.
Collapse
Affiliation(s)
- Xu Liao
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, P. R. China
| | - Min Tang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Department of Cardiology of Zhuzhou Central Hospital, NO.116 Changjiang South Road Tianyuan District, Zhuzhou, 412000, P. R. China
| | - Jiejing Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, P. R. China
| | - Runze Guo
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, P. R. China
| | - Chongbin Zhong
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, P. R. China
| | - Xiangzhou Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, P. R. China
| | - Xuwei Zhang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, P. R. China
| | - Hongwei Mo
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, P. R. China
| | - Dongdong Que
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, P. R. China
| | - Wenjie Yu
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, P. R. China
| | - Xudong Song
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, P. R. China
| | - Hekai Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, P. R. China
| | - Yanbin Cai
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, P. R. China
| | - Pingzhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, 510280, P. R. China
- Heart Center of Zhujiang Hospital, Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, 510280, P. R. China
| |
Collapse
|
15
|
Gao X, Tang M, Li J, Ma J, Liu Z, Liu W. Activation of Nrf2 pathway by 4-Octyl itaconate enhances donor lung function in cold preservation settings. Respir Res 2025; 26:69. [PMID: 40016745 PMCID: PMC11869626 DOI: 10.1186/s12931-025-03151-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 02/11/2025] [Indexed: 03/01/2025] Open
Abstract
BACKGROUND Lung transplantation is the primary treatment for end-stage lung diseases. However, ischemia-reperfusion injury (IRI) significantly impacts transplant outcomes. 4-Octyl itaconate (4-OI) has shown potential in mitigating organ IRI, although its effects in lung transplantation require further exploration. METHODS BEAS-2B cells were used to model transplantation, assessing the effects of 4-OI through viability, apoptosis, and ROS assays. qRT-PCR analyzed cytokine transcription post-cold ischemia/reperfusion (CI/R). RNA sequencing and Gene Ontology analysis elucidated 4-OI's mechanisms of action, confirmed by Western blotting. ALI-airway and lung transplantation organoid models evaluated improvements in bronchial epithelial morphology and function due to 4-OI. ELISA measured IL-6 and IL-8 levels. Rat models of extended cold preservation and non-heart-beating transplantation assessed 4-OI's impact on lung function, injury, and inflammation. RESULTS Our findings indicate that 4-OI (100 µM) during cold preservation effectively maintained cell viability, decreased apoptosis, and reduced ROS production in BEAS-2B cells under CI/R conditions. It also downregulated pro-inflammatory cytokine transcription, including IL1B, IL6, and TNF. Inhibition of Nrf2 partially reversed these protective effects. In cold preservation solutions, 4-OI upregulated Nrf2 target genes such as NQO1, HMOX1, and SLC7A11. In ALI airway models, 4-OI enhanced bronchial epithelial barrier integrity and ciliary beat function after CI/R. In rat models, 4-OI administration improved lung function and reduced pulmonary edema, tissue injury, apoptosis, and systemic inflammation following extended cold preservation or non-heart-beating lung transplantation. CONCLUSIONS Incorporating 4-OI into cold preservation solutions appears promising for alleviating CI/R-induced bronchial epithelial injury and enhancing lung transplant outcomes via Nrf2 pathway activation.
Collapse
Affiliation(s)
- Xinliang Gao
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mingbo Tang
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jialin Li
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jianzun Ma
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China
| | - Zhengrui Liu
- Changchun Yifu Jilin Province Academician Workstation, Changchun, China
| | - Wei Liu
- Department of Thoracic Surgery, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
16
|
Yu Q, Mei H, Gu Q, Zeng R, Li Y, Zhang J, Gao C, Fang H, Qu J, Liu J. OLFML3 Promotes IRG1 Mitochondrial Localization and Modulates Mitochondrial Function in Macrophages. Int J Biol Sci 2025; 21:2275-2295. [PMID: 40083707 PMCID: PMC11900800 DOI: 10.7150/ijbs.103859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 02/15/2025] [Indexed: 03/16/2025] Open
Abstract
Olfactomedin-like protein 3 (OLFML3), belonging to olfactomedin (OLF) protein family, has poorly defined functions. Recent studies have reported the functions of OLFML3 in anti-viral immunity and tumorigenesis. In this study, we investigated the roles of OLFML3 in macrophages. In LPS- or Pseudomonas aeruginosa-induced acute lung injury (ALI) mouse model, OLFML3 depletion exacerbated inflammatory response, leading to reduced survival. OLFML3 achieved the in vivo activity by regulating macrophage phagocytosis and migration. Mass spectrometry analysis revealed immunoresponsive gene 1 (IRG1) as an OLFML3-interacting protein. IRG1 is a mitochondrial decarboxylase that catalyzes the conversion of cis-aconitate to itaconate, a myeloid-borne mitochondrial metabolite with immunomodulatory activities. Further investigation showed that OLFML3 could prevent LPS-induced mitochondrial dysfunction in macrophages by maintaining the homeostasis of mitochondrial membrane potential (MMP), mitochondrial reactive oxygen species (mtROS) and itaconate-related metabolites. In-depth protein-protein interaction studies showed that OLFML3 could promote IRG1 mitochondrial localization via a mitochondrial transport protein, apoptosis inducing factor mitochondria associated 1 (AIFM1). In summary, our study showed that OLFML3 could facilitate IRG1 mitochondrial localization and prevent LPS-induced mitochondrial dysfunction in macrophages.
Collapse
Affiliation(s)
- Qijun Yu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| | - Hong Mei
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qian Gu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Ran Zeng
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| | - Yanan Li
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| | - Junjie Zhang
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Chenxu Gao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Hai Fang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Jieming Qu
- Department of Pulmonary and Critical Care Medicine, Ruijin Hospital, Institute of Respiratory Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; and Shanghai Key Laboratory of Emergency Prevention, Diagnosis and Treatment of Respiratory Infectious Diseases, Shanghai 200025, China
| | - Jia Liu
- Shanghai Institute for Advanced Immunochemical Studies and School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- Guangzhou Laboratory, Guangzhou International Bio Island, No. 9 XingDaoHuanBei Road, Guangzhou, 510005, Guangdong, China
- Shanghai Clinical Research and Trial Center, Shanghai, 201210, China
| |
Collapse
|
17
|
Wang F, Liu Y, Zhao Y, Zheng H, Zhang L. The absence of IRG1 exacerbates bone loss in a mouse model of ovariectomy-induced osteoporosis by increasing osteoclastogenesis through the potentiation of NLRP3 inflammasome activation. Int Immunopharmacol 2025; 148:114099. [PMID: 39870006 DOI: 10.1016/j.intimp.2025.114099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2024] [Revised: 01/13/2025] [Accepted: 01/14/2025] [Indexed: 01/29/2025]
Abstract
The immune-responsive gene 1 (IRG1) protein plays a role in various pathological processes by connecting cellular metabolism to a range of cellular activities through the production of itaconate. Recent studies have highlighted the significance of IRG1 and itaconate in bone metabolism and homeostasis. However, the precise role of IRG1 in osteoporosis remains inadequately documented. This study aimed to determine the role of IRG1 in osteoporosis through the utilization of IRG1 knockout (KO) mice and a model of ovariectomy (OVX)-induced osteoporosis. The expression of IRG1 was found to be higher in the bone tissues of postmenopausal osteoporotic mice induced by OVX in comparison to sham control mice. When compared to wild type (WT) mice, OVX-induced bone loss was significantly worse in IRG1 KO mice, and this was accompanied by an increase in osteoclastogenesis and bone resorption. However, the loss of bone and the process of osteoclastogenesis and bone resorption were effectively reversed when the IRG1 KO mice were replenished with itaconate. The osteoclastogenesis induced by receptor activator of nuclear factor kappa-Β ligand (RANKL) in bone marrow-derived macrophages (BMMs) was found to be enhanced by IRG1 deficiency, which could be reversed through the replenishment of itaconate. Further investigation revealed that IRG1 deficiency potentiated the activation of NOD-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome. The inhibition of NLRP3 inflammasome using a targeted inhibitor significantly ameliorated RANKL-induced osteoclastogenesis in IRG1 KO BMMs. Overall, this study highlights the significance of IRG1 in regulating osteoclastogenesis and proposes it as a potential target for osteoporosis treatment.
Collapse
Affiliation(s)
- Fang Wang
- Department of Endocrinology, Sichuan Provincial People's Hospital, Southwest Medical University, Luzhou, Sichuan 646099, China
| | - Yanqiao Liu
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Yanqin Zhao
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Hongyin Zheng
- Department of Nuclear Medicine, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Lei Zhang
- Department of Endocrinology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.
| |
Collapse
|
18
|
Zhao L, Ding X, Zhou L, Song C, Kang T, Xu Y, Liu Y, Han Y, Zhao W, Zhang B, Xu D, Guo J. Effect of PM 2.5 exposure on susceptibility to allergic asthma in elderly rats treated with allergens. Sci Rep 2025; 15:5594. [PMID: 39955443 PMCID: PMC11830082 DOI: 10.1038/s41598-025-90261-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 02/11/2025] [Indexed: 02/17/2025] Open
Abstract
Fine particulate matter 2.5 (PM2.5) is a prevalent atmospheric pollutant that is closely associated with asthma. Elderly patients have a high incidence of asthma with a long course of illness. Our previous studies revealed that exposure to PM2.5 diminishes lung function and exacerbates lung damage in elderly rats. In the present study, we investigated whether PM2.5 exposure influences susceptibility to allergic asthma in elderly rats. Brown-Norway elderly rats were treated with ovalbumin (OVA) for different durations before and after PM2.5 exposure. The results from pulmonary function tests and histopathology indicated that early exposure to allergens prior to PM2.5 exposure increased susceptibility to airway hyperresponsiveness and led to severe lung injury in elderly asthmatic rats. Cytokine microarray analysis demonstrated that the majority of cytokines and chemokines were upregulated in OVA-treated rats before and after PM2.5 exposure. Cytological examination showed no change in eosinophil (EOS) counts, yet the amounts of neutrophils (NEU), white blood cells (WBC), lymphocytes (LYM), and monocytes (MON) in the lung lavage fluid of OVA-treated rats were significantly higher than those in control rats before and after PM2.5 exposure, suggesting that PM2.5 affects noneosinophilic asthma in elderly rats. ELISA results from the plasma and lung lavage fluid revealed that the levels of IgG1, IgE, IgG2a and IgG2b were significantly elevated in OVA-treated rats, whereas the level of IgG2b in the lung lavage fluid was significantly lower in rats treated with OVA prior to PM2.5 exposure compared to those treated afterward. A non-targeted metabolomic analysis of plasma identified 202 metabolites, among which 31 metabolites were differentially abundant. Ten metabolites and 11 metabolic pathways were uniquely detected in OVA-treated rats before PM2.5 exposure. Specifically, there were positive or negative correlations between the levels of Th2-associated cytokines (IL-4, IL-5, and IL-13) and six metabolites in the OVA-treated group before PM2.5 exposure, whereas the levels of IL-4 and IL-5 were negatively correlated with five metabolites in the OVA-treated group after PM2.5 exposure. Our findings suggest that PM2.5 exposure could influence the susceptibility of allergic asthma in response to allergens in elderly rats, potentially through changes in plasma metabolites.
Collapse
Affiliation(s)
- Lianlian Zhao
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, 116026, China
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Xiaolin Ding
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Li Zhou
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Chenchen Song
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Taisheng Kang
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Yanfeng Xu
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Yunpeng Liu
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Yunlin Han
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Wenjie Zhao
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China
| | - Boxiang Zhang
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, 116026, China
| | - Dan Xu
- Institute of Environmental Systems Biology, Environment Science and Engineering College, Dalian Maritime University, Dalian, 116026, China.
| | - Jianguo Guo
- National Human Diseases Animal Model Resource Center, State Key Laboratory of Respiratory Health and Multimorbidity, NHC Key Laboratory of Comparative Medicine, Beijing Key Laboratory for Animal Models of Emerging and Reemerging Infectious Diseases, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Institute of Laboratory Animal Science, National Center of Technology Innovation for Animal Model, CAMS & PUMC, Beijing, China.
| |
Collapse
|
19
|
Ren J, Chen X, Wang T, Liu C, Wang K. Regenerative therapies for myocardial infarction: exploring the critical role of energy metabolism in achieving cardiac repair. Front Cardiovasc Med 2025; 12:1533105. [PMID: 39991634 PMCID: PMC11842438 DOI: 10.3389/fcvm.2025.1533105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Accepted: 01/27/2025] [Indexed: 02/25/2025] Open
Abstract
Cardiovascular diseases are the most lethal diseases worldwide, of which myocardial infarction is the leading cause of death. After myocardial infarction, in order to ensure normal blood supply to the heart, the remaining cardiomyocytes compensate for the loss of cardiomyocytes mainly by working at high capacity rather than by proliferating to produce new cardiomyocytes. This is partly due to the extremely limited ability of the adult heart to repair itself. A growing body of research suggests that the loss of cardiac regenerative capacity is closely related to metabolic shifts in energy sources. Currently, a large number of studies have focused on changes in metabolic levels before and after the proliferation window of cardiomyocytes, so it is crucial to search for relevant factors in metabolic pathways to regulate the cell cycle in cardiomyocyte progression. This paper presents a review of the role of myocardial energy metabolism in regenerative repair after cardiac injury. It aims to elucidate the effects of myocardial metabolic shifts on cardiomyocyte proliferation in adult mammals and to point out directions for cardiac regeneration research and clinical treatment of myocardial infarction.
Collapse
Affiliation(s)
- Jiahao Ren
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Xinzhe Chen
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Tao Wang
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Cuiyun Liu
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| | - Kun Wang
- Key Laboratory of Maternal & Fetal Medicine of National Health Commission of China, Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, China
| |
Collapse
|
20
|
Zeng L, Wang Y, Huang Y, Yang W, Zhou P, Wan Y, Tao K, Li R. IRG1/itaconate enhances efferocytosis by activating Nrf2-TIM4 signaling pathway to alleviate con A induced autoimmune liver injury. Cell Commun Signal 2025; 23:63. [PMID: 39910615 PMCID: PMC11796036 DOI: 10.1186/s12964-025-02075-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
Immune response gene 1 (IRG1) is highly expressed in mitochondria of macrophages in a pro-inflammatory state. IRG1 and its metabolites play important roles in infection, immune-related diseases and tumor progression by exerting resistance of pathogens, attenuating inflammation and producing antioxidant substances through various pathways and mechanisms. IRG1 deficiency aggravates liver injury. Efferocytosis is a vital mechanism for preventing the progression of inflammatory tissue damage. However, the mechanism by how IRG1/itaconate regulates efferocytosis in autoimmune hepatitis has yet to be fully understood. Therefore, we explored the influence of IRG1-/- on efferocytosis and its effects on regulating the nuclear factor erythroid 2-associated factor 2 (Nrf2)-T-cell immunoglobulin domain and mucin domain 4 (TIM4) pathway and autoimmune liver injury. An autoimmune hepatitis model was established by injecting Con A into wild-type and IRG1-/- mice via the tail vein. Liver injury and inflammatory response were assessed. The efferocytosis role of IRG1-/- macrophages and its potential regulatory mechanisms were also analysed. Exogenous 4-octyl itaconate (OI) supplementation promoted the expression of Nrf2 and TIM4 and restored IRG1-/- bone marrow-derived macrophage (BMDM) efferocytosis, whereas inhibition of Nrf2 mediated by ML385 led to impaired efferocytosis of BMDMs, decreased expression of TIM4, and aggravated liver inflammation injury. Additionally, after supplementing Nrf2-/- BMDMs with exogenous OI, we evaluated the changes in its efferocytosis effect, efferocytosis did not change, and the protective effect of OI disappeared. However, when TIM4 was blocked, the efferocytotic effect of BMDMs was attenuated, inflammatory liver injury and oxidative stress were aggravated. OI promoted the transformation of macrophages into M2 macrophages, and this was inhibited when TIM4 was blocked. To our best understanding, this is the initial exploration to show that TIM4, a downstream molecule of the IRG1/itaconate-Nrf2 pathway, regulates macrophage efferocytosis. These findings suggest a new mechanism and potential treatment for promoting the resolution of inflammation and efferocytosis in autoimmune hepatitis.
Collapse
Affiliation(s)
- Liwu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Yaxin Wang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, China
| | - Yongzhou Huang
- Department of General Surgery, First Affiliated Hospital of Shihezi University, Shihezi, 832000, Xinjiang, China
| | - Wenchang Yang
- Department of Gastroenterology Surgery, The Affiliated Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Pei Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Yaqi Wan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
21
|
Zhao N, Yi M, Zhang LJ, Zhang QX, Yang L. 4-Octyl Itaconate Attenuates Neuroinflammation in Experimental Autoimmune Encephalomyelitis Via Regulating Microglia. Inflammation 2025; 48:151-164. [PMID: 38761250 DOI: 10.1007/s10753-024-02050-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 05/02/2024] [Accepted: 05/08/2024] [Indexed: 05/20/2024]
Abstract
Abnormal activation of microglia, the resident macrophages in the central nervous system, plays an important role in the pathogenesis of multiple sclerosis (MS). The immune responsive gene 1(IRG1)/itaconate axis is involved in regulating microglia-mediated neuroinflammation. 4-Octyl itaconate (4-OI), a derivative of itaconate, plays a crucial immunomodulatory role in macrophages. This study investigated the effects and mechanisms of action of 4-OI on experimental autoimmune encephalomyelitis (EAE) and inflammatory BV2 microglia. In an EAE mouse model, clinical evaluation was conducted during the disease course. Hematoxylin and eosin staining was performed to assess inflammatory infiltration and Luxol Fast Blue was used to visualize pathological damage. Quantitative real-time polymerase chain reaction, western blotting and immunofluorescence were used to evaluate inflammatory response and microglial function status in EAE mice. BV2 microglia were used to further investigate the effects and mechanisms of action of 4-OI in vitro. 4-OI significantly alleviated the clinical symptoms of EAE, the inflammatory infiltration, and demyelination; reduced the levels of inflammatory factors; and inhibited the classical activation of microglia in the spinal cord. 4-OI successfully suppressed the classical activation of BV2 microglia and decreased the levels of inflammatory factors by activating the Nrf2/HO-1 signaling pathway. Furthermore, 4-OI downregulated IRG1 expression in both EAE mice and inflammatory BV2 microglia. 4-OI attenuates the microglia-mediated neuroinflammation and has promising therapeutic effects in MS.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Ming Yi
- Department of The Key Laboratory for Human Disease Gene Study of Sichuan Province and the Department of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan, 611731, China
- Research Unit for Blindness Prevention of the Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan, China
| | - Lin-Jie Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Qiu-Xia Zhang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Li Yang
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
| |
Collapse
|
22
|
Xiao CL, Lai HT, Zhou JJ, Liu WY, Zhao M, Zhao K. Nrf2 Signaling Pathway: Focus on Oxidative Stress in Spinal Cord Injury. Mol Neurobiol 2025; 62:2230-2249. [PMID: 39093381 DOI: 10.1007/s12035-024-04394-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/22/2024] [Indexed: 08/04/2024]
Abstract
Spinal cord injury (SCI) is a serious, disabling injury to the central nervous system that can lead to motor, sensory, and autonomic dysfunction below the injury plane. SCI can be divided into primary injury and secondary injury according to its pathophysiological process. Primary injury is irreversible in most cases, while secondary injury is a dynamic regulatory process. Secondary injury involves a series of pathological events, such as ischemia, oxidative stress, inflammatory events, apoptotic pathways, and motor dysfunction. Among them, oxidative stress is an important pathological event of secondary injury. Oxidative stress causes a series of destructive events such as lipid peroxidation, DNA damage, inflammation, and cell death, which further worsens the microenvironment of the injured site and leads to neurological dysfunction. The nuclear factor erythrocyte 2-associated factor 2 (Nrf2) is considered to be a key pathway of antioxidative stress and is closely related to the pathological process of SCI. Activation of this pathway can effectively inhibit the oxidative stress process and promote the recovery of nerve function after SCI. Therefore, the Nrf2 pathway may be a potential therapeutic target for SCI. This review deeply analyzed the generation of oxidative stress in SCI, the role and mechanism of Nrf2 as the main regulator of antioxidant stress in SCI, and the influence of cross-talk between Nrf2 and related pathways that may be involved in the pathological regulation of SCI on oxidative stress, and summarized the drugs and other treatment methods based on Nrf2 pathway regulation. The objective of this paper is to provide evidence for the role of Nrf2 activation in SCI and to highlight the important role of Nrf2 in alleviating SCI by elucidating the mechanism, so as to provide a theoretical basis for targeting Nrf2 pathway as a therapy for SCI.
Collapse
Affiliation(s)
- Chun-Lin Xiao
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Hong-Tong Lai
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Jiang-Jun Zhou
- Hospital 908, Joint Logistics Support Force, 1028 Jinggangshan Avenue, Qingyunpu District, Nanchang City, Jiangxi Province, 330001, People's Republic of China
| | - Wu-Yang Liu
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China
| | - Min Zhao
- Department of Spine Surgery, Yingtan People's Hospital, 116 Shengli West Road, Yuehu District, Yingtan City, Jiangxi Province, 335000, People's Republic of China.
| | - Kai Zhao
- Gannan Medical University, 1 Harmony Avenue, Rongjiang New District, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
- Department of Orthopaedics, Frist Affiliated Hospital of Gannan Medical University, Ganzhou, Jiangxi Province, 341000, People's Republic of China.
| |
Collapse
|
23
|
Switala L, Di L, Colantonio S, Lakshman B, Caceres TW, Reading JJ, Garcia-Buntley SS, Maiseyeu A. The Development and Characterization of Two Monoclonal Antibodies Against the Conjugates and Derivatives of the Immunometabolite Itaconate. ACS OMEGA 2025; 10:1110-1121. [PMID: 39829496 PMCID: PMC11740141 DOI: 10.1021/acsomega.4c08552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/04/2024] [Accepted: 12/10/2024] [Indexed: 01/22/2025]
Abstract
We have developed two monoclonal antibodies, CPTC-2MeSC-1 and CPTC-2MeSC-2, against itaconate and its conjugates with sulfhydryl-containing biomolecules such as cysteines. Itaconate is a dicarboxylic acid metabolite that has recently gained much interest for its anti-inflammatory properties in many biological models. We have synthesized an itaconate-cysteine conjugate ITA-Cys designed to mimic in vivo Michael adducts of itaconate. Two monoclonal antibodies against ITA-Cys, CPTC-2MeSC-1 and CPTC-2MeSC, were developed and shown to have high immunoreactivity to unconjugated itaconate, itaconate-BSA conjugates, and Michael adducts of dimethyl itaconate. We found that CPTC-2MeSC-1 and CPTC-2MeSC-2 are specific and do not bind to other structurally similar cysteine Michael adducts, including those obtained from "sister" metabolites (fumarate, cis-aconitate), itaconate isomers (citraconate), and some itaconate esters. CPTC-2MeSC-2 is a useful tool in both studying biological actions of itaconate and developing therapeutic applications of itaconate and its derivatives.
Collapse
Affiliation(s)
- Lauren Switala
- Department
of Medicine, School of Medicine, Case Western
Reserve University, Cardiovascular Research Institute, Cleveland 44106-7078, United States
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland 44106, United States
| | - Lin Di
- Department
of Medicine, School of Medicine, Case Western
Reserve University, Cardiovascular Research Institute, Cleveland 44106-7078, United States
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland 44106, United States
| | - Simona Colantonio
- Cancer
Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Bindu Lakshman
- Cancer
Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Tessa W. Caceres
- Cancer
Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Joshua J. Reading
- Cancer
Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Sandra S. Garcia-Buntley
- Cancer
Research Technology Program, Antibody Characterization Lab, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21701, United States
| | - Andrei Maiseyeu
- Department
of Medicine, School of Medicine, Case Western
Reserve University, Cardiovascular Research Institute, Cleveland 44106-7078, United States
- Department
of Biomedical Engineering, Case Western
Reserve University, Cleveland 44106, United States
| |
Collapse
|
24
|
Hong C, Wang L, Zhou X, Zou L, Xiang X, Deng H, Li Q, Wu Y, Liu L, Li T. Protective Effects of Mdivi-1 on Cognition Disturbance Following Sepsis in Mice via Alleviating Microglia Activation and Polarization. CNS Neurosci Ther 2025; 31:e70149. [PMID: 39791542 PMCID: PMC11719124 DOI: 10.1111/cns.70149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 10/09/2024] [Accepted: 10/20/2024] [Indexed: 01/30/2025] Open
Abstract
BACKGROUND Neuroinflammation is one of the essential pathogeneses of cognitive damage suffering from sepsis-associated encephalopathy (SAE). Lots of evidences showed the microglia presented mitochondrial fragmentation during SAE. This study investigated the protective effects and novel mechanisms of inhibiting microglia mitochondrial fragmentation via mitochondrial division inhibitor 1 (Mdivi-1) on cognitive damage in SAE. METHODS The SAE model was performed by cecal ligation and puncture (CLP), and Mdivi-1 was administrated via intraperitoneal injection. Morris water maze was performed to assess cognitive function. Mitochondrial morphology was observed by electron microscope or MitoTracker staining. The qRT-PCR, immunofluorescence staining, and western blots were used to detect the inflammatory factors and protein content, respectively. Flow cytometry was used to detect the polarization of hippocampal microglia. Bioinformatics analysis was used to verify hypotheses. RESULTS Mdivi-1 administration alleviated sepsis-induced mitochondrial fragmentation, microglia activation, polarization, and cognitive damage. The mechanisms study showed neuroinflammation and oxidative stress were suppressed via NF-κB and Keap1/Nrf2/HO-1 pathways following Mdivi-1 administration; meanwhile, pyroptosis in microglia was reduced, which was associated with enhanced autophagosome formation via p62 elevation following Mdivi-1 administration. CONCLUSION Inhibition of microglia mitochondrial fragmentation is beneficial to SAE cognitive disturbance, the mechanisms are related to alleviating neuroinflammation, oxidative stress, and pyroptosis.
Collapse
Affiliation(s)
- Chen Hong
- Shock and Transfusion Department, Research Institute of Surgery, Daping HospitalArmy Medical UniversityChongqingChina
| | - Li Wang
- Shock and Transfusion Department, Research Institute of Surgery, Daping HospitalArmy Medical UniversityChongqingChina
| | - Xiaowei Zhou
- Shock and Transfusion Department, Research Institute of Surgery, Daping HospitalArmy Medical UniversityChongqingChina
| | - Liyong Zou
- Shock and Transfusion Department, Research Institute of Surgery, Daping HospitalArmy Medical UniversityChongqingChina
| | - Xinming Xiang
- Shock and Transfusion Department, Research Institute of Surgery, Daping HospitalArmy Medical UniversityChongqingChina
| | - Haoyue Deng
- Shock and Transfusion Department, Research Institute of Surgery, Daping HospitalArmy Medical UniversityChongqingChina
| | - Qinghui Li
- Shock and Transfusion Department, Research Institute of Surgery, Daping HospitalArmy Medical UniversityChongqingChina
| | - Yue Wu
- Shock and Transfusion Department, Research Institute of Surgery, Daping HospitalArmy Medical UniversityChongqingChina
| | - Liangming Liu
- Shock and Transfusion Department, Research Institute of Surgery, Daping HospitalArmy Medical UniversityChongqingChina
| | - Tao Li
- Shock and Transfusion Department, Research Institute of Surgery, Daping HospitalArmy Medical UniversityChongqingChina
| |
Collapse
|
25
|
Chen B, Liu Y, Luo S, Zhou J, Wang Y, He Q, Zhuang G, Hao H, Ma F, Xiao X, Li S. Itaconic acid ameliorates necrotizing enterocolitis through the TFEB-mediated autophagy-lysosomal pathway. Free Radic Biol Med 2025; 226:251-265. [PMID: 39571950 DOI: 10.1016/j.freeradbiomed.2024.11.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 11/09/2024] [Accepted: 11/18/2024] [Indexed: 11/25/2024]
Abstract
Excessive autophagy has been implicated in the pathogenesis of necrotizing enterocolitis (NEC), yet the molecular underpinnings of the autophagy-lysosomal pathway (ALP) in NEC are not well characterized. This study aimed to elucidate alterations within the ALP in NEC by employing RNA sequencing on intestinal tissues obtained from affected infants. Concurrently, we established animal and cellular models of NEC to assess the therapeutic efficacy of itaconic acid (ITA). Our results indicate that the ALP is significantly disrupted in NEC. Notably, ITA was found to modulate the ALP, enhancing autophagic flux and lysosomal function, which consequently alleviated NEC symptoms. Further analysis revealed that ITA's beneficial effects are mediated through the promotion of TFEB nuclear translocation, thereby augmenting the ALP. These findings suggest that targeting the ALP with ITA to modulate TFEB activity may represent a viable therapeutic approach for NEC.
Collapse
Affiliation(s)
- Baozhu Chen
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, China
| | - Yufeng Liu
- Center for Medical Research on Innovation and Translation, Guangzhou First People's Hospital, The Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510000, China
| | - Shunchang Luo
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, China
| | - Jialiang Zhou
- Department of Neonatal Surgery, Guangdong Women and Children Hospital, Guangzhou, 510010, China
| | - Yijia Wang
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, China
| | - Qiuming He
- Department of Surgical Neonatal Intensive Care Unit, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Guiying Zhuang
- The Maternal and Children Health Care Hospital (Huzhong Hospital) of Huadu, No. 17 Industrial Avenue, Huadu District, Guangzhou, Guangdong, 510800, China
| | - Hu Hao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, China.
| | - Fei Ma
- Maternal & Child Health Research Institute, Zhuhai Center for Maternal and Child Health Care, Zhuhai, 519001, China.
| | - Xin Xiao
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, China.
| | - Sitao Li
- Department of Pediatrics, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510655, China; Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, 510655, China; Department of Pediatrics, Xinyi People's Hospital, Maoming, 525300, China.
| |
Collapse
|
26
|
Asghar MA, Tang S, Wan B, Chen Y, Zhang X, Zhao Q. Valproic acid-induced oxidative stress: Systematic review, meta-analysis and network pharmacology highlights disruption in antioxidant pathways in rodents. Toxicol Appl Pharmacol 2025; 494:117160. [PMID: 39557347 DOI: 10.1016/j.taap.2024.117160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/20/2024]
Abstract
Valproic acid (VPA) is a widely used antiepileptic drug, but its effects on oxidative stress in rodent models have not been systematically reviewed. This meta-analysis aimed to evaluate the impact of VPA on oxidative stress markers in rodents and explore underlying mechanisms through network pharmacology. A systematic search of PubMed, Web of Science, and PsycINFO (2010-2024) was conducted, following PRISMA and CAMARADES guidelines. Forty-two studies involving 639 rodents were included. Meta-analysis and meta-regression were performed using SPSS and R, and network pharmacology identified key pathways. From 1802 studies, 42 met the criteria, involving 639 rodents. VPA treatment was associated with a significant increase in malondialdehyde (MDA) levels (SMD = 30.45, 95 % CI: 17.64-43.25, P < 0.001) and a decrease in clinically relevant biomarkers, such as superoxide dismutase (SOD) (SMD = -13.22, 95 % CI: -19.39--7.04, P < 0.001), glutathione (GSH) (SMD = -16.97, 95 % CI: -28.13--5.82, P < 0.001), catalase (CAT) (SMD = -9.24, 95 % CI: -13.85--4.62, P < 0.001), glutathione S-transferases (GST) (SMD = -8.82, 95 % CI: -17.40--0.24, P = 0.040), and glutathione peroxidase (GPx) (SMD = -36.05, 95 % CI: -60.72--11.37, P < 0.001). Meta-regression analysis suggested that dosing periods and doses significantly impacted oxidative stress markers. Network pharmacology analysis identified 33 key targets and significant pathways, including MAPK signaling, Toll-like receptor signaling, and TNF signaling. VPA induces oxidative stress in rodent models by increasing MDA and reducing antioxidants, suggesting potential oxidative stress-related side effects in patients.
Collapse
Affiliation(s)
| | - Shixin Tang
- College of Public Health, Chongqing Medical University, Chongqing, PR China
| | - Bing Wan
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Ying Chen
- NMPA Key Laboratory for Quality Control and Evaluation of Pharmaceutical Excipients, Guangdong Institute for Drug Control, Guangzhou 510660, PR China
| | - Xiao Zhang
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China
| | - Qinjian Zhao
- College of Pharmacy, Chongqing Medical University, Chongqing, PR China.
| |
Collapse
|
27
|
Si Y, Huang H, Pan J, Luo X, Zhang J, Guo Y, Liu D. Identification of potential biomarkers and pathways involved in high-altitude pulmonary edema using GC-MS and LC-MS metabolomic methods. Sci Rep 2024; 14:30978. [PMID: 39730680 PMCID: PMC11680936 DOI: 10.1038/s41598-024-82047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 12/02/2024] [Indexed: 12/29/2024] Open
Abstract
High-altitude pulmonary edema (HAPE) is a life-threatening altitude sickness afflicting certain individuals after rapid ascent to high altitude above 2500 m. In the setting of HAPE, an early diagnosis is critical and currently based on clinical evaluation. The aim of this study was to utilize the metabolomics to identify the altered metabolic patterns and potential biomarkers for HAPE. Serum samples from HAPE patients (n = 24) and healthy controls (n = 21) were analyzed by gas chromatography-mass spectrometry (GC-MS) and liquid chromatography-mass spectrometry (LC-MS) to profile differential metabolites and explore dysregulated metabolic pathways. The correlation analysis and receiver operating characteristic (ROC) curve analysis were further performed to screen biomarkers for HAPE. A total of 119 differential metabolites between the control and HAPE groups were identified. Top dysregulated pathways included pyrimidine metabolism, citrate cycle, sulfur metabolism, phenylalanine metabolism and purine metabolism. After correlation analysis with clinical indices, 39 differential metabolites were obtained as potential biomarkers related to HAPE. Finally, 7 biomarkers, specifically S-nitroso-N-acetylcysteine, aminocaproic acid, emodin, threo-hydroxyaspartic acid, 6-hydroxynicotinic acid, 3-acetylphenol sulfate and cis-aconitic acid, were screened out through ROC analysis, which displayed high diagnostic accuracy for HAPE. Taken together, the altered serum metabolic profile is associated with the occurrence of HAPE. Diagnostic tests based on the biomarkers from metabolomics may hold promise as a strategy for early detection of HAPE.
Collapse
Affiliation(s)
- Yachen Si
- Department of Intensive Care Unit, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, China
- Department of Internal Medicine, The 944 Hospital of Joint Logistics Support Force of Chinese PLA, Jiuquan, China
| | - He Huang
- Department of Neurology, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, China
| | - Jing Pan
- Department of Health Service, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, China
| | - Xiaozheng Luo
- Department of Intensive Care Unit, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, China
| | - Jiangming Zhang
- Department of Intensive Care Unit, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, China
| | - Yan Guo
- Department of Stomatology, Western Theater Command General Hospital, Chengdu, China.
| | - Dongmei Liu
- Department of Intensive Care Unit, The 940 Hospital of Joint Logistics Support Force of Chinese PLA, Lanzhou, China.
| |
Collapse
|
28
|
Yang T, Fang H, Lin D, Yang S, Luo H, Wang L, Yang B. Ganoderma Lucidum polysaccharide peptide (GL-PP2): A potential therapeutic agent against sepsis-induced organ injury by modulating Nrf2/NF-κB pathways. Int J Biol Macromol 2024; 285:138378. [PMID: 39643194 DOI: 10.1016/j.ijbiomac.2024.138378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Sepsis, characterized by a severe immune response to infection, remains a leading cause of mortality, with few effective strategies to prevent organ damage. Targeting inflammation, oxidative stress, and apoptosis is crucial for improving outcomes and advancing sepsis management. We investigated the protective effects of Ganoderma Lucidum Polysaccharide Peptide 2 (GL-PP2) against sepsis-induced organ damage, focusing on immune regulation and kidney protection. In a murine sepsis model, mice received intraperitoneal injection of GL-PP2 (25, 50, 100 mg/kg) for seven days, with dexamethasone (5 mg/kg) as a positive control. Sepsis was induced by intraperitoneal lipopolysaccharide (LPS, 10 mg/kg), followed by histological, biochemical, molecular, and network pharmacology analyses to evaluate kidney and spleen damage. Results demonstrated that GL-PP2 mitigates LPS-induced kidney and spleen damage, preserving tissue integrity and improving renal function markers (blood creatinine, urea nitrogen). GL-PP2 also lowers pro-inflammatory cytokines, boosts antioxidant enzymes, and modulates the Nrf2/NF-κB pathways, highlighting its anti-inflammatory and antioxidant effects. Additionally, it reduces apoptosis by regulating Bax, cleaved caspase-3, and Bcl-2 expression. These findings indicate that GL-PP2 is a promising sepsis therapy candidate, as it targets inflammation, oxidative stress, and apoptosis, reducing organ injury. By modulating key pathways, GL-PP2 could improve clinical outcomes, warranting further study.
Collapse
Affiliation(s)
- Teng Yang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Hui Fang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, China.
| | - Dongmei Lin
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Shangpeng Yang
- School of Pharmacy, Shandong Second Medical University, Weifang 261053, Shandong, China
| | - Hongjian Luo
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Lianfu Wang
- National Engineering Research Center of JUNCAO Technology, Fujian Agriculture and Forestry University, Fujian, Fuzhou 350002, China
| | - Baoxue Yang
- State Key Laboratory of Vascular Homeostasis and Remodeling, Department of Pharmacology, School of Basic Medical Sciences, Peking University, Beijing, China.
| |
Collapse
|
29
|
Wang Q, Liu J, Ma Y, Han Y, Huang H. Association Between the Ionized-to-Total Calcium Ratio and the Risk of Acute Kidney Injury in Patients With Severe Autoimmune Diseases: A Retrospective Analysis From the MIMIC-IV Database. Int J Rheum Dis 2024; 27:e15446. [PMID: 39641572 DOI: 10.1111/1756-185x.15446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/20/2024] [Accepted: 11/27/2024] [Indexed: 12/07/2024]
Abstract
AIM To investigate the relationship between the ionized-to-total calcium ratio and the incidence of acute kidney injury (AKI) in critically ill patients with autoimmune diseases. METHODS A retrospective study was conducted utilizing data from the Medical Information Mart for Intensive Care IV database. In-hospital AKI was the primary outcome. Patients were classified into four distinct categories depending on the calcium ratio. Cox proportional hazards model and restricted cubic spline (RCS) analysis were applied to assess the association between the calcium ratio and AKI risk. Subgroup analyses were conducted to evaluate the consistency of this association across various patient characteristics. RESULTS A total of 1054 critically ill patients with autoimmune diseases were enrolled and stratified by calcium ratio quartiles into four groups (< 0.515; 0.515-0.546; 0.546-0.576; > 0.576). Cumulative incidence curves showed significant difference in AKI risk among the four groups. Patients in the highest calcium ratio quartile experienced a markedly reduced likelihood of AKI versus those in the lowest, especially in the fully adjusted model (HR = 0.66, 95% CI 0.51-0.84, p < 0.001). RCS analysis demonstrated an obvious nonlinear relationship, showing a steep decline in AKI risk with increasing calcium ratio, which eventually plateaued. This protective effect of higher calcium ratios against AKI was consistent across subgroups, except in those with chronic kidney disease at baseline. CONCLUSION The ionized-to-total calcium ratio proves to be significantly associated with the development of AKI in critically ill patients with autoimmune diseases, with its elevation indicating a reduced AKI risk.
Collapse
Affiliation(s)
- Qinxue Wang
- Department of Geriatric Intensive Care Unit, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Critical Care Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jun Liu
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yuanze Ma
- Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Han
- Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Critical Care Medicine, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Haobin Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
30
|
Shao M, Chen J, Zhang F, Su Q, Lin X, Wang W, Chen C, Ren H, Zheng S, Hui S, Qin S, Ni Y, Zhong J, Yang J. 4-Octyl itaconate attenuates renal tubular injury in db/db mice by activating Nrf2 and promoting PGC-1α-mediated mitochondrial biogenesis. Ren Fail 2024; 46:2403653. [PMID: 39291665 PMCID: PMC11411562 DOI: 10.1080/0886022x.2024.2403653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 07/11/2024] [Accepted: 09/08/2024] [Indexed: 09/19/2024] Open
Abstract
Objectives: The aim of this study was to investigate the mechanism of itaconate's potential effect in diabetic kidney disease. Methods: Renal immune responsive gene 1 (IRG1) levels were measured in db/db mice and streptozotocin (STZ) + high-fat diet (HFD)-induced diabetic mice. Irg1 knockout mice were generated. db/db mice were treated with 4-octyl itaconate (4-OI, 50 mg/kg), a derivative of itaconate, for 4 weeks. Renal function and morphological changes were investigated. Ultrastructural alterations were determined by transmission electron microscopy. Results: Renal IRG1 levels were reduced in two diabetic models. STZ+HFD-treated Irg1 knockout mice exhibited aggravated renal tubular injury and worsened renal function. Treatment with 4-OI lowered urinary albumin-to-creatinine ratio and blood urea nitrogen levels, and restored renal histological changes in db/db mice. It improved mitochondrial damage, increased expressions of peroxisome-proliferator-activated receptor γ coactivator-1α (PGC-1α) and mitochondrial transcription factor A (TFAM) in the renal cortex of db/db mice. These were confirmed in vitro; 4-OI improved high glucose-induced abnormal mitochondrial morphology and TFAM expression in HK-2 cells, effects that were inhibited by PGC-1α silencing. Moreover, 4-OI reduced the number of apoptotic cells in the renal cortex of db/db mice. Further study showed that 4-OI increased renal Nrf2 expression and decreased oxidative stress levels in db/db mice. In HK-2 cells, 4-OI decreased high glucose-induced mitochondrial ROS production, which was reversed by Nrf2 silencing. Nrf2 depletion also inhibited 4-OI-mediated regulation of PGC-1α, TFAM, and mitochondrial apoptotic protein expressions. Conclusions: 4-OI attenuates renal tubular injury in db/db mice by activating Nrf2 and promoting PGC-1α-mediated mitochondrial biogenesis.
Collapse
Affiliation(s)
- Muqing Shao
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiayao Chen
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Fuwei Zhang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Qian Su
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiaoqian Lin
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Weiwei Wang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Cardiology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Caiyu Chen
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Hongmei Ren
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Shuo Zheng
- Department of Cardiology, Daping Hospital, The Third Military Medical University, Chongqing, China
| | - Suocheng Hui
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Si Qin
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yinxing Ni
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Zhong
- Department of Endocrinology, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jian Yang
- Research Center for Metabolic and Cardiovascular Diseases, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Clinical Nutrition, The Third Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Watermann P, Kalsi GK, Dringen R, Arend C. Differential Effects of Itaconate and its Esters on the Glutathione and Glucose Metabolism of Cultured Primary Rat Astrocytes. Neurochem Res 2024; 50:24. [PMID: 39562371 PMCID: PMC11576791 DOI: 10.1007/s11064-024-04263-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/09/2024] [Accepted: 10/07/2024] [Indexed: 11/21/2024]
Abstract
Itaconate is produced as endogenous metabolite by decarboxylation of the citric acid cycle intermediate cis-aconitate. As itaconate has anti-microbial and anti-inflammatory properties, this substance is considered as potential therapeutic drug for the treatment of inflammation in various diseases including traumatic brain injury and stroke. To test for potential adverse effects of itaconate on the viability and metabolism of brain cells, we investigated whether itaconate or its membrane permeable derivatives dimethyl itaconate (DI) and 4-octyl itaconate (OI) may affect the basal glucose and glutathione (GSH) metabolism of cultured primary astrocytes. Acute exposure of astrocytes to itaconate, DI or OI in concentrations of up to 300 µM for up to 6 h did not compromise cell viability. Of the tested substances, only OI stimulated aerobic glycolysis as shown by a time- and concentration-dependent increase in glucose-consumption and lactate release. None of the tested itaconates affected the pentose-phosphate pathway-dependent reduction of the water-soluble tetrazolium salt 1 (WST1). In contrast, both DI and OI, but not itaconate, depleted cellular GSH in a time- and concentration-dependent manner. For OI this depletion was accompanied by a matching increase in the extracellular GSH content that was completely prevented in the presence of the multidrug resistance protein 1 (Mrp1)-inhibitor MK571, while in DI-treated cultures GSH was depleted both in cells and medium. These data suggest that OI stimulates Mrp1-mediated astrocytic GSH export, while DI reacts with GSH to a conjugate that is not detectable by the GSH assay applied. The data presented demonstrate that itaconate, DI and OI differ strongly in their effects on the GSH and glucose metabolism of cultured astrocytes. Such results should be considered in the context of the discussed potential use of such compounds as therapeutic agents.
Collapse
Affiliation(s)
- Patrick Watermann
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 28359, Bremen, Germany
- Centre for Environmental Research and Sustainable Technology, University of Bremen, 28359, Bremen, Germany
| | - Gurleen K Kalsi
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 28359, Bremen, Germany
| | - Ralf Dringen
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 28359, Bremen, Germany
- Centre for Environmental Research and Sustainable Technology, University of Bremen, 28359, Bremen, Germany
| | - Christian Arend
- Centre for Biomolecular Interactions Bremen, Faculty 2 (Biology/Chemistry), University of Bremen, 28359, Bremen, Germany.
- Centre for Environmental Research and Sustainable Technology, University of Bremen, 28359, Bremen, Germany.
| |
Collapse
|
32
|
Zamir Nasta T, Tabandeh MR, Abbasi A, Moradi H, Imani MM, Jalili C. Harmine promotes odontoblastic differentiation of dental pulp stem cells. NUCLEOSIDES, NUCLEOTIDES & NUCLEIC ACIDS 2024:1-12. [PMID: 39540882 DOI: 10.1080/15257770.2024.2427930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 07/15/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
INTRODUCTION Dental pulp stem cells (DPSCs) have the potential to differentiate into various types of tissues including tooth, adipose, cartilage, muscle, nerve, and also possess regenerative properties. Harmine, a beta-carboline alkaloid, has been shown to have antitumor activities and promote bone formation through the differentiation of osteoblasts. The aim of this study was to investigate the effect of harmine on the differentiation of DPSCs into odontoblast cells. MATERIALS AND METHODS DPSCs were obtained from Iran's National Genetic Reserve Center and cultured under standard stem cell culture conditions. The cells were differentiated in culture medium with and without harmine, and cell viability was evaluated using MTT assay at different harmine concentrations. Moreover, differentiation of cells was measured using Alizarin Red staining, and the expression of Runx2, DSPP, and DMP1 genes was evaluated using western blotting and real-time PCR. RESULTS Harmine increased the survival rate of DPSCs in a time--dependent manner, but higher doses (above 80 μM) had a toxic effect. On day 14, Alizarin Red staining showed increased differentiation of odontoblasts in the harmine-treated groups compared to the untreated groups. Furthermore, harmine increased the expression of Runx2, DSPP, and DMP1 genes and proteins. CONCLUSION These findings suggest that harmine has a significant impact on the differentiation and proliferation of odontoblasts in DPSCs, likely due to its various properties and role in healing various diseases. Therefore, harmine could serve as a potential therapeutic agent for promoting dental tissue regeneration using DPSCs.
Collapse
Affiliation(s)
- Touraj Zamir Nasta
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Tabandeh
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
- Stem Cells and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Ardeshir Abbasi
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hiva Moradi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Moslem Imani
- Department of Orthodontic, School of Dentistry, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Cyrus Jalili
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| |
Collapse
|
33
|
Damasceno ROS, Pinheiro JLS, Rodrigues LHM, Gomes RC, Duarte ABS, Emídio JJ, Diniz LRL, de Sousa DP. Anti-Inflammatory and Antioxidant Activities of Eugenol: An Update. Pharmaceuticals (Basel) 2024; 17:1505. [PMID: 39598416 PMCID: PMC11597765 DOI: 10.3390/ph17111505] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/19/2024] [Accepted: 09/23/2024] [Indexed: 11/29/2024] Open
Abstract
Medicinal plants are a rich source of bioactive compounds that possess pharmacological properties for preventing and treating inflammation-related diseases. Essential oils is a chemical class that contains many bioactive compounds, such as eugenol, which is capable of inhibiting or modulating the inflammatory response. This natural product emerges as a compound that promotes various biological activities, including antioxidant activity, which makes it useful in the food industry. Recently, its pharmacological applications have also been highlighted. So, this review aims to update and discuss the most recent findings on the anti-inflammatory and antioxidant activities of eugenol, along with its mechanisms of action and therapeutic potential for treating inflammation and oxidative imbalance conditions.
Collapse
Affiliation(s)
- Renan Oliveira Silva Damasceno
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (R.O.S.D.); (J.L.S.P.); (L.H.M.R.)
| | - João Lucas Silva Pinheiro
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (R.O.S.D.); (J.L.S.P.); (L.H.M.R.)
| | - Lucas Henrique Marques Rodrigues
- Department of Physiology and Pharmacology, Federal University of Pernambuco, Recife 50670-901, Pernambuco, Brazil; (R.O.S.D.); (J.L.S.P.); (L.H.M.R.)
| | - Rebeca Carneiro Gomes
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil; (R.C.G.); (A.B.S.D.); (J.J.E.)
| | - Allana Brunna Sucupira Duarte
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil; (R.C.G.); (A.B.S.D.); (J.J.E.)
| | - Jeremias Justo Emídio
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil; (R.C.G.); (A.B.S.D.); (J.J.E.)
| | | | - Damião Pergentino de Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa 58051-970, Paraíba, Brazil; (R.C.G.); (A.B.S.D.); (J.J.E.)
| |
Collapse
|
34
|
Zhao Y, Zhou Z, Cui X, Yu Y, Yan P, Zhao W. Enhancing insight into ferroptosis mechanisms in sepsis: A genomic and pharmacological approach integrating single-cell sequencing and Mendelian randomization. Int Immunopharmacol 2024; 140:112910. [PMID: 39121604 DOI: 10.1016/j.intimp.2024.112910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/26/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
This research investigated the intricate relationship between ferroptosis and sepsis by utilizing advanced genomic and pharmacological methodologies. Specifically, we obtained expression quantitative trait loci (eQTLs) for 435 genes associated with ferroptosis from the eQTLGen Consortium and detected notable cis-eQTLs for 281 of these genes. Next, we conducted a detailed analysis to assess the impact of these eQTLs on susceptibility to sepsis using Mendelian randomization (MR) with data from a cohort of 10,154 sepsis patients and 452,764 controls sourced from the UK Biobank. MR analysis revealed 16 ferroptosis-related genes that exhibited significant associations with sepsis outcomes. To bolster the robustness of these findings, sensitivity analyses were performed to assess pleiotropy and heterogeneity, thus confirming the reliability of the causal inferences. Furthermore, single-cell RNA sequencing data from sepsis patients offered a detailed examination of gene expression profiles, demonstrating varying levels of ferroptosis marker expression across different cell types. Pathway enrichment analysis utilizing gene set enrichment analysis (GSEA) further revealed the key biological pathways involved in the progression of sepsis. Additionally, the use of computational molecular docking facilitated the prediction of interactions between identified genes and potential therapeutic compounds, highlighting novel drug targets. In conclusion, our integrated approach combining genomics and pharmacology offers valuable insights into the involvement of ferroptosis in sepsis, laying the groundwork for potential therapeutic strategies targeting this cell death pathway to enhance sepsis management.
Collapse
Affiliation(s)
- Yuanqi Zhao
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, China
| | - Zijian Zhou
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, China
| | - Xiuyu Cui
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, China
| | - Yiwei Yu
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, China
| | - Ping Yan
- Department of Gastroenterology, First Affiliated Hospital of Dali University, Dali, China.
| | - Weidong Zhao
- Department of Clinical Laboratory, School of Clinical Medicine, Dali University, Dali, China; Department of Clinical Laboratory, Second Infectious Disease Hospital of Yunnan Province, Dali, China; Immunology Discipline Team, School of Basic Medicine, Dali University, Dali, China.
| |
Collapse
|
35
|
Zhou P, Tao K, Zeng L, Zeng X, Wan Y, Xie G, Liu X, Zhang P. IRG1/Itaconate inhibits proliferation and promotes apoptosis of CD69 +CD103 +CD8 + tissue-resident memory T cells in autoimmune hepatitis by regulating the JAK3/STAT3/P53 signalling pathway. Apoptosis 2024; 29:1738-1756. [PMID: 38641760 DOI: 10.1007/s10495-024-01970-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 04/21/2024]
Abstract
To investigate the protective role of immune response gene 1 (IRG1) and exogenous itaconate in autoimmune hepatitis (AIH) and elucidate the underlying mechanisms. Wild-type and IRG1-/- AIH mouse models were established, and samples of liver tissue and ocular blood were collected from each group of mice to assess the effects of IRG1/itaconate on the expression of pro- and anti-inflammatory cytokines. The levels of liver enzymes and related inflammatory factors were determined using enzyme-linked immunosorbent assay and real-time quantitative polymerase chain reaction (PCR). Liver histomorphology was detected through hematoxylin and eosin staining and then scored for liver injury, and the infiltration levels of tissue-resident memory T (TRM) cells and related molecules in the liver tissue were detected through immunofluorescence staining in vitro. RNA sequencing and gene enrichment analysis were conducted to identify the corresponding molecules and pathways, and lentiviral transfection was used to generate TRM cell lines with IRG1, Jak3, Stat3, and p53 knockdown. Real-time quantitative PCR and western blot were performed to detect the expression levels of relevant mRNAs and proteins in the liver tissue and cells. The percentage of apoptotic cells was determined using flow cytometry. IRG1/itaconate effectively reduced the release of pro-inflammatory cytokines and the pathological damage to liver tissue, thereby maintaining normal liver function. At the same time, IRG1/itaconate inhibited the JAK3/STAT3 signaling pathway, regulated the expression of related downstream proteins, and inhibited the proliferation and promoted the apoptosis of CD69+CD103+CD8+ TRM cells. For the first time, P53 was found to act as a downstream molecule of the JAK3/STAT3 pathway and was regulated by IRG1/itaconate to promote the apoptosis of CD8+ TRM cells. IRG1/itaconate can alleviate concanavalin A-induced autoimmune hepatitis in mice by inhibiting the proliferation and promoting the apoptosis of CD69+CD103+CD8+ TRM cells via the JAK3/STAT3/P53 pathway.
Collapse
MESH Headings
- Animals
- Mice
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Antigens, Differentiation, T-Lymphocyte/genetics
- Antigens, Differentiation, T-Lymphocyte/metabolism
- Apoptosis/drug effects
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/drug effects
- Cell Proliferation/drug effects
- Disease Models, Animal
- Hepatitis, Autoimmune/immunology
- Hepatitis, Autoimmune/pathology
- Hepatitis, Autoimmune/genetics
- Hepatitis, Autoimmune/drug therapy
- Integrin alpha Chains/genetics
- Integrin alpha Chains/metabolism
- Janus Kinase 3/genetics
- Janus Kinase 3/metabolism
- Janus Kinase 3/antagonists & inhibitors
- Lectins, C-Type/genetics
- Lectins, C-Type/metabolism
- Liver/pathology
- Liver/drug effects
- Liver/metabolism
- Liver/immunology
- Memory T Cells/immunology
- Memory T Cells/metabolism
- Memory T Cells/drug effects
- Mice, Inbred C57BL
- Mice, Knockout
- Signal Transduction/drug effects
- STAT3 Transcription Factor/metabolism
- STAT3 Transcription Factor/genetics
- Tumor Suppressor Protein p53/metabolism
- Tumor Suppressor Protein p53/genetics
Collapse
Affiliation(s)
- Pei Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Liwu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Xinyu Zeng
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Yaqi Wan
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Gengchen Xie
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Xinghua Liu
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, China.
| |
Collapse
|
36
|
Wu L, Hu Z, Luo X, Ge C, Lv Y, Zhan S, Huang W, Shen X, Yu D, Liu B. Itaconic Acid Alleviates Perfluorooctanoic Acid-Induced Oxidative Stress and Intestinal Damage by Regulating the Keap1/Nrf2/Ho-1 Pathway and Reshaping the Gut Microbiota. Int J Mol Sci 2024; 25:9826. [PMID: 39337313 PMCID: PMC11432532 DOI: 10.3390/ijms25189826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/23/2024] [Accepted: 08/25/2024] [Indexed: 09/30/2024] Open
Abstract
Itaconic acid (IA) is recognized for its potential application in treating intestinal diseases owing to the anti-inflammatory and antioxidant properties. Perfluorooctanoic acid (PFOA) can accumulate in animals and result in oxidative and inflammatory damages to multi-tissue and organ, particularly in the intestinal tract. This study aimed to explore whether IA could mitigate intestinal damage induced by PFOA exposure in laying hens and elucidate its potential underlying mechanisms. The results showed that IA improved the antioxidant capacity of laying hens and alleviated the oxidative damage induced by PFOA, as evidenced by the elevated activities of T-SOD, GSH-Px, and CAT, and the decreased MDA content in both the jejunum and serum. Furthermore, IA improved the intestinal morphological and structural integrity, notably attenuating PFOA-induced villus shedding, length reduction, and microvillus thinning. IA also upregulated the mRNA expression of ZO-1, Occludin, Claudin-1, and Mucin-2 in the jejunum, thereby restoring intestinal barrier function. Compared with the PF group, IA supplementation downregulated the gene expression of Keap1 and upregulated the HO-1, NQO1, SOD1, and GPX1 expression in the jejunum. Meanwhile, the PF + IA group exhibited lower expressions of inflammation-related genes (NF-κB, IL-1β, IFN-γ, TNF-α, and IL-6) compared to the PF group. Moreover, IA reversed the PFOA-induced imbalance in gut microbiota by reducing the harmful bacteria such as Escherichia-Shigella, Clostridium innocuum, and Ruminococcus torques, while increasing the abundance of beneficial bacteria like Lactobacillus. Correlation analysis further revealed a significant association between gut microbes, inflammatory factors, and the Keap1/Nrf2/HO-1 pathway expression. In conclusion, dietary IA supplementation could alleviate the oxidative and inflammatory damage caused by PFOA exposure in the intestinal tract by reshaping the intestinal microbiota, modulating the Keap1/Nrf2/HO-1 pathway and reducing oxidative stress and inflammatory response, thereby promoting intestinal homeostasis.
Collapse
Affiliation(s)
- Lianchi Wu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhaoying Hu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Luo
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chaoyue Ge
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yujie Lv
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shenao Zhan
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Weichen Huang
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xinyu Shen
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dongyou Yu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Shaoxing 312500, China
| | - Bing Liu
- College of Animal Sciences, Zhejiang University, Hangzhou 310058, China
- ZJU-Xinchang Joint Innovation Centre (TianMu Laboratory), Gaochuang Hi-Tech Park, Shaoxing 312500, China
| |
Collapse
|
37
|
Huang KT, Aye Y. Toward decoding spatiotemporal signaling activities of reactive immunometabolites with precision immuno-chemical biology tools. Commun Chem 2024; 7:195. [PMID: 39223329 PMCID: PMC11369232 DOI: 10.1038/s42004-024-01282-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Accepted: 08/22/2024] [Indexed: 09/04/2024] Open
Abstract
Immune-cell reprogramming driven by mitochondria-derived reactive electrophilic immunometabolites (mt-REMs-e.g., fumarate, itaconate) is an emerging phenomenon of major biomedical importance. Despite their localized production, mt-REMs elicit significantly large local and global footprints within and across cells, through mechanisms involving electrophile signaling. Burgeoning efforts are being put into profiling mt-REMs' potential protein-targets and phenotypic mapping of their multifaceted inflammatory behaviors. Yet, precision indexing of mt-REMs' first-responders with spatiotemporal intelligence and locale-specific function assignments remain elusive. Highlighting the latest advances and overarching challenges, this perspective aims to stimulate thoughts and spur interdisciplinary innovations to address these unmet chemical-biotechnological needs at therapeutic immuno-signaling frontiers.
Collapse
Affiliation(s)
- Kuan-Ting Huang
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Yimon Aye
- Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
- University of Oxford, Oxford, UK.
| |
Collapse
|
38
|
McGettrick AF, Bourner LA, Dorsey FC, O'Neill LAJ. Metabolic Messengers: itaconate. Nat Metab 2024; 6:1661-1667. [PMID: 39060560 DOI: 10.1038/s42255-024-01092-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 07/01/2024] [Indexed: 07/28/2024]
Abstract
The metabolite itaconate has emerged as an important immunoregulator with roles in antibacterial defence, inhibition of inflammation and, more recently, as an inhibitory factor in obesity. Itaconate is one of the most upregulated metabolites in inflammatory macrophages. It is produced owing to the disturbance of the tricarboxylic acid cycle and the diversion of aconitate to itaconate via the enzyme aconitate decarboxylase 1. In immunology, initial studies concentrated on the role of itaconate in inflammatory macrophages where it was shown to be inhibitory, but this has expanded as the impact of itaconate on other cell types is starting to emerge. This review focuses on itaconate as a key immunoregulatory metabolite and describes its diverse mechanisms of action and its many impacts on the immune and inflammatory responses and in cancer. We also examine the clinical relevance of this immunometabolite and its therapeutic potential for immune and inflammatory diseases.
Collapse
Affiliation(s)
- A F McGettrick
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - L A Bourner
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - F C Dorsey
- Eli Lilly and Company, Lilly Corporate Center, Indianapolis, IN, USA
| | - L A J O'Neill
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
39
|
Jin Y, Cai D, Mo L, Jing G, Zeng L, Cheng H, Guo Q, Dai M, Wang Y, Chen J, Chen G, Li X, Shi S. Multifunctional nanogel loaded with cerium oxide nanozyme and CX3CL1 protein: Targeted immunomodulation and retinal protection in uveitis rat model. Biomaterials 2024; 309:122617. [PMID: 38788457 DOI: 10.1016/j.biomaterials.2024.122617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 05/15/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024]
Abstract
Effectively addressing retinal issues represents a pivotal aspect of blindness-related diseases. Novel approaches involving reducing inflammation and rebalancing the immune response are paramount in the treatment of these conditions. This study delves into the potential of a nanogel system comprising polyethylenimine-benzene boric acid-hyaluronic acid (PEI-PBA-HA). We have evaluated the collaborative impact of cerium oxide nanozyme and chemokine CX3CL1 protein for targeted immunomodulation and retinal protection in uveitis models. Our nanogel system specifically targets the posterior segment of the eyes. The synergistic effect in this area reduces oxidative stress and hampers the activation of microglia, thereby alleviating the pathological immune microenvironment. This multifaceted drug delivery system disrupts the cycle of oxidative stress, inflammation, and immune response, suppressing initial immune cells and limiting local retinal structural damage induced by excessive immune reactions. Our research sheds light on interactions within retinal target cells, providing a promising avenue for the development of efficient and innovative drug delivery platforms.
Collapse
Affiliation(s)
- Yuanyuan Jin
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Danyang Cai
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Lihua Mo
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Gaosa Jing
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Li Zeng
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Hui Cheng
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Qi Guo
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Mali Dai
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Yuqin Wang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Jinrun Chen
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Guojun Chen
- Department of Biomedical Engineering, McGill University, Montreal, QC, H3G 0B1, Canada; Rosalind & Morris Goodman Cancer Institute, McGill University, Montreal, QC, H3G 0B1, Canada.
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| | - Shuai Shi
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, 270 Xueyuan Road, Wenzhou, 325027, China.
| |
Collapse
|
40
|
Zhang X, Zhang Y, Yuan S, Zhang J. The potential immunological mechanisms of sepsis. Front Immunol 2024; 15:1434688. [PMID: 39040114 PMCID: PMC11260823 DOI: 10.3389/fimmu.2024.1434688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 06/25/2024] [Indexed: 07/24/2024] Open
Abstract
Sepsis is described as a life-threatening organ dysfunction and a heterogeneous syndrome that is a leading cause of morbidity and mortality in intensive care settings. Severe sepsis could incite an uncontrollable surge of inflammatory cytokines, and the host immune system's immunosuppression could respond to counter excessive inflammatory responses, characterized by the accumulated anti-inflammatory cytokines, impaired function of immune cells, over-proliferation of myeloid-derived suppressor cells and regulatory T cells, depletion of immune effector cells by different means of death, etc. In this review, we delve into the underlying pathological mechanisms of sepsis, emphasizing both the hyperinflammatory phase and the associated immunosuppression. We offer an in-depth exploration of the critical mechanisms underlying sepsis, spanning from individual immune cells to a holistic organ perspective, and further down to the epigenetic and metabolic reprogramming. Furthermore, we outline the strengths of artificial intelligence in analyzing extensive datasets pertaining to septic patients, showcasing how classifiers trained on various clinical data sources can identify distinct sepsis phenotypes and thus to guide personalized therapy strategies for the management of sepsis. Additionally, we provide a comprehensive summary of recent, reliable biomarkers for hyperinflammatory and immunosuppressive states, facilitating more precise and expedited diagnosis of sepsis.
Collapse
Affiliation(s)
- Xinyu Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yujing Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shiying Yuan
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiancheng Zhang
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Institute of Anesthesia and Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
41
|
Wubuli A, Abdulla R, Zhao J, Wu T, Aisa HA. Exploring anti-inflammatory and antioxidant-related quality markers of Artemisia absinthium L. based on spectrum-effect relationship. PHYTOCHEMICAL ANALYSIS : PCA 2024; 35:1152-1173. [PMID: 38591190 DOI: 10.1002/pca.3350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Revised: 03/06/2024] [Accepted: 03/07/2024] [Indexed: 04/10/2024]
Abstract
INTRODUCTION Artemisia absinthium L. is a well-known medicinal, aromatic, and edible plant with important medicinal and economic properties and a long history of use in treating liver inflammation and other diseases; however, there has been insufficient progress in quality control. OBJECTIVE This study aimed to investigate the quality markers for the anti-inflammatory and antioxidant activities of A. absinthium based on spectrum-effect relationship analysis. MATERIALS AND METHODS Eighteen batches of A. absinthium from different origins were used. Chemical fingerprints were obtained by ultra-performance liquid chromatography (UPLC). The chemical compositions were identified by quadrupole-Orbitrap high-resolution mass spectrometry. Anti-inflammatory activity was assessed by inhibition of cyclooxygenase-2 and 15-lipoxygenase in vitro and inhibition of nitric oxide release in lipopolysaccharide-induced BV-2 cells. Antioxidant activity was assessed by DPPH and ABTS radical scavenging assays. The relationship between bioactivity and chemical fingerprints was then analyzed using chemometrics including gray relational analysis, bivariate correlation analysis, and orthogonal partial least squares analysis. RESULTS Different batches of A. absinthium extracts possessed significant anti-inflammatory and antioxidant activities to varying degrees. Eighty compounds were identified from A. absinthium, and 12 main common peaks were obtained from the UPLC fingerprints. P3 (chlorogenic acid), P5 (isochlorogenic acid A), and P6 (isochlorogenic acid C) were screened as the most promising active compounds by correlation analysis and further validated for their remarkable anti-inflammatory effects. CONCLUSION This is the first study to screen the quality markers of A. absinthium by establishing the spectrum-effect relationship, which can provide a reference for the development of quality standards and further research on A. absinthium.
Collapse
Affiliation(s)
- Ayixiamuguli Wubuli
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rahima Abdulla
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Jiangyu Zhao
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Tao Wu
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
| | - Haji Akber Aisa
- State Key Laboratory Basis of Xinjiang Indigenous Medicinal Plants Resource Utilization, Xinjiang Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Urumqi, Xinjiang, China
- University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
42
|
Wang S, Liu J, Zhou L, Xu H, Zhang D, Zhang X, Wang Q, Zhou Q. Research progresses on mitochondrial-targeted biomaterials for bone defect repair. Regen Biomater 2024; 11:rbae082. [PMID: 39055307 PMCID: PMC11272180 DOI: 10.1093/rb/rbae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 05/23/2024] [Accepted: 06/15/2024] [Indexed: 07/27/2024] Open
Abstract
In recent years, the regulation of the cell microenvironment has opened up new avenues for bone defect repair. Researchers have developed novel biomaterials to influence the behavior of osteoblasts and immune cells by regulating the microenvironment, aiming to achieve efficient bone repair. Mitochondria, as crucial organelles involved in energy conversion, biosynthesis and signal transduction, play a vital role in maintaining bone integrity. Dysfunction of mitochondria can have detrimental effects on the transformation of the immune microenvironment and the differentiation of stem cells, thereby hindering bone tissue regeneration. Consequently, targeted therapy strategies focusing on mitochondria have emerged. This approach offers a wide range of applications and reliable therapeutic effects, thereby providing a new treatment option for complex and refractory bone defect diseases. In recent studies, more biomaterials have been used to restore mitochondrial function and promote positive cell differentiation. The main directions are mitochondrial energy metabolism, mitochondrial biogenesis and mitochondrial quality control. In this review, we investigated the biomaterials used for mitochondria-targeted treatment of bone defect repair in recent years from the perspective of progress and strategies. We also summarized the micro-molecular mechanisms affected by them. Through discussions on energy metabolism, oxidative stress regulation and autophagy regulation, we emphasized the opportunities and challenges faced by mitochondria-targeted biomaterials, providing vital clues for developing a new generation of bone repair materials.
Collapse
Affiliation(s)
- Shuze Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Jialin Liu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Linxi Zhou
- Department of Orthodontics, Shanghai Ninth People’s Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai 200011, China
- National Center for Stomatology, Shanghai 200011, China
- National Clinical Research Center for Oral Diseases, Shanghai 200011, China
- Shanghai Key Laboratory of Stomatology, Shanghai 200011, China
| | - Hao Xu
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Dan Zhang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Xing Zhang
- Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China
- School of Materials Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Qiang Wang
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| | - Qing Zhou
- Liaoning Provincial Key Laboratory of Oral Diseases, School and Hospital of Stomatology, China Medical University, Shenyang 110001, China
| |
Collapse
|
43
|
Ciccarone F, Ciriolo MR. Reprogrammed mitochondria: a central hub of cancer cell metabolism. Biochem Soc Trans 2024; 52:1305-1315. [PMID: 38716960 DOI: 10.1042/bst20231090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/22/2024] [Accepted: 04/26/2024] [Indexed: 06/27/2024]
Abstract
Mitochondria represent the metabolic hub of normal cells and play this role also in cancer but with different functional purposes. While cells in differentiated tissues have the prerogative of maintaining basal metabolism and support the biosynthesis of specialized products, cancer cells have to rewire the metabolic constraints imposed by the differentiation process. They need to balance the bioenergetic supply with the anabolic requirements that entail the intense proliferation rate, including nucleotide and membrane lipid biosynthesis. For this aim, mitochondrial metabolism is reprogrammed following the activation of specific oncogenic pathways or due to specific mutations of mitochondrial proteins. The main process leading to mitochondrial metabolic rewiring is the alteration of the tricarboxylic acid cycle favoring the appropriate orchestration of anaplerotic and cataplerotic reactions. According to the tumor type or the microenvironmental conditions, mitochondria may decouple glucose catabolism from mitochondrial oxidation in favor of glutaminolysis or disable oxidative phosphorylation for avoiding harmful production of free radicals. These and other metabolic settings can be also determined by the neo-production of oncometabolites that are not specific for the tissue of origin or the accumulation of metabolic intermediates able to boost pro-proliferative metabolism also impacting epigenetic/transcriptional programs. The full characterization of tumor-specific mitochondrial signatures may provide the identification of new biomarkers and therapeutic opportunities based on metabolic approaches.
Collapse
Affiliation(s)
- Fabio Ciccarone
- Department of Biology, University of Rome 'Tor Vergata', 00133 Rome, Italy
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| | - Maria Rosa Ciriolo
- Department of Biology, University of Rome 'Tor Vergata', 00133 Rome, Italy
- IRCCS San Raffaele Roma, 00166 Rome, Italy
| |
Collapse
|
44
|
Huang H, Li G, He Y, Chen J, Yan J, Zhang Q, Li L, Cai X. Cellular succinate metabolism and signaling in inflammation: implications for therapeutic intervention. Front Immunol 2024; 15:1404441. [PMID: 38933270 PMCID: PMC11200920 DOI: 10.3389/fimmu.2024.1404441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/27/2024] [Indexed: 06/28/2024] Open
Abstract
Succinate, traditionally viewed as a mere intermediate of the tricarboxylic acid (TCA) cycle, has emerged as a critical mediator in inflammation. Disruptions within the TCA cycle lead to an accumulation of succinate in the mitochondrial matrix. This excess succinate subsequently diffuses into the cytosol and is released into the extracellular space. Elevated cytosolic succinate levels stabilize hypoxia-inducible factor-1α by inhibiting prolyl hydroxylases, which enhances inflammatory responses. Notably, succinate also acts extracellularly as a signaling molecule by engaging succinate receptor 1 on immune cells, thus modulating their pro-inflammatory or anti-inflammatory activities. Alterations in succinate levels have been associated with various inflammatory disorders, including rheumatoid arthritis, inflammatory bowel disease, obesity, and atherosclerosis. These associations are primarily due to exaggerated immune cell responses. Given its central role in inflammation, targeting succinate pathways offers promising therapeutic avenues for these diseases. This paper provides an extensive review of succinate's involvement in inflammatory processes and highlights potential targets for future research and therapeutic possibilities development.
Collapse
Affiliation(s)
- Hong Huang
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Gejing Li
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Yini He
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jing Chen
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Jianye Yan
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qin Zhang
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Liqing Li
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
- The Central Research Laboratory, Hunan Traditional Chinese Medical College, Zhuzhou, Hunan, China
| | - Xiong Cai
- Department of Rheumatology of First Hospital and Institute of Innovation and Applied Research in Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
45
|
Liu C, Fu C, Sun Y, You Y, Wang T, Zhang Y, Xia H, Wang X. Itaconic acid regulation of TFEB-mediated autophagy flux alleviates hyperoxia-induced bronchopulmonary dysplasia. Redox Biol 2024; 72:103115. [PMID: 38554522 PMCID: PMC10998238 DOI: 10.1016/j.redox.2024.103115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/03/2024] [Accepted: 03/05/2024] [Indexed: 04/01/2024] Open
Abstract
BACKGROUND Premature infants often require oxygen supplementation, which can elicit bronchopulmonary dysplasia (BPD) and lead to mitochondrial dysfunction. Mitochondria play important roles in lung development, in both normal metabolism and apoptosis. Enhancing our comprehension of the underlying mechanisms in BPD development can facilitate the effective treatments. METHODS Plasma samples from BPD and non-BPD infants were collected at 36 weeks post-menstrual age and used for metabolomic analysis. Based on hyperoxia-induced animal and cell models, changes in mitophagy and apoptosis were evaluated following treatment with itaconic acid (ITA). Finally, the mechanism of action of ITA in lung development was comprehensively demonstrated through rescue strategies and administration of corresponding inhibitors. RESULTS An imbalance in the tricarboxylic acid (TCA) cycle significantly affected lung development, with ITA serving as a significant metabolic marker for the outcomes of lung development. ITA improved the morphological changes in BPD rats, promoted SP-C expression, and inhibited the degree of alveolar type II epithelial cells (AEC II) apoptosis. Mechanistically, ITA mainly promotes the nuclear translocation of transcription factor EB (TFEB) to facilitate dysfunctional mitochondrial clearance and reduces apoptosis in AEC II cells by regulating autophagic flux. CONCLUSION The metabolic imbalance in the TCA cycle is closely related to lung development. ITA can improve lung development by regulating autophagic flux and promote the nuclear translocation of TFEB, implying its potential therapeutic utility in the treatment of BPD.
Collapse
Affiliation(s)
- Chengbo Liu
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China
| | - Changchang Fu
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China; Department of Neonatology, Children's Hospital of Soochow University, Suzhou, 215025, China
| | - Yazhou Sun
- Department of Pediatrics, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan, 453000, China
| | - You You
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China
| | - Tengfei Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| | - Yongjun Zhang
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China.
| | - Hongping Xia
- Department of Pediatrics, Xinhua Hospital, Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200093, China.
| | - Xingyun Wang
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
46
|
Zhou Y, Huang X, Jin Y, Qiu M, Ambe PC, Basharat Z, Hong W. The role of mitochondrial damage-associated molecular patterns in acute pancreatitis. Biomed Pharmacother 2024; 175:116690. [PMID: 38718519 DOI: 10.1016/j.biopha.2024.116690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/27/2024] [Accepted: 04/29/2024] [Indexed: 06/03/2024] Open
Abstract
Acute pancreatitis (AP) is one of the most common gastrointestinal tract diseases with significant morbidity and mortality. Current treatments remain unspecific and supportive due to the severity and clinical course of AP, which can fluctuate rapidly and unpredictably. Mitochondria, cellular power plant to produce energy, are involved in a variety of physiological or pathological activities in human body. There is a growing evidence indicating that mitochondria damage-associated molecular patterns (mtDAMPs) play an important role in pathogenesis and progression of AP. With the pro-inflammatory properties, released mtDAMPs may damage pancreatic cells by binding with receptors, activating downstream molecules and releasing inflammatory factors. This review focuses on the possible interaction between AP and mtDAMPs, which include cytochrome c (Cyt c), mitochondrial transcription factor A (TFAM), mitochondrial DNA (mtDNA), cardiolipin (CL), adenosine triphosphate (ATP) and succinate, with focus on experimental research and potential therapeutic targets in clinical practice. Preventing or diminishing the release of mtDAMPs or targeting the mtDAMPs receptors might have a role in AP progression.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Xiaoyi Huang
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Yinglu Jin
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China; School of the First Clinical Medical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Minhao Qiu
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China
| | - Peter C Ambe
- Department of General Surgery, Visceral Surgery and Coloproctology, Vinzenz-Pallotti-Hospital Bensberg, Vinzenz-Pallotti-Str. 20-24, Bensberg 51429, Germany
| | | | - Wandong Hong
- Department of Gastroenterology and Hepatology, the First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, People's Republic of China.
| |
Collapse
|
47
|
Fan X, Yu W, Wang Q, Yang H, Tan D, Yu B, He J, Zheng P, Yu J, Luo J, Luo Y, Yan H, Wang J, Wang H, Wang Q, Mao X. Protective effect of Broussonetia papyrifera leaf polysaccharides on intestinal integrity in a rat model of diet-induced oxidative stress. Int J Biol Macromol 2024; 268:131589. [PMID: 38643924 DOI: 10.1016/j.ijbiomac.2024.131589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/28/2024] [Accepted: 04/12/2024] [Indexed: 04/23/2024]
Abstract
This study aimed to investigate the effect of Broussonetia papyrifera polysaccharides (BPP) on the jejunal intestinal integrity of rats ingesting oxidized fish oil (OFO) induced oxidative stress. Polysaccharides (Mw 16,956 Da) containing carboxyl groups were extracted from Broussonetia papyrifera leaves. In vitro antioxidant assays showed that this polysaccharide possessed antioxidant capabilities. Thirty-two male weaned rats were allocated into two groups orally infused BPP solution and PBS for 26 days, respectively. From day 9 to day 26, half of the rats in each group were fed food containing OFO, where the lipid peroxidation can induce intestinal oxidative stress. OFO administration resulted in diarrhea, decreased growth performance (p < 0.01), impaired jejunal morphology (p < 0.05) and antioxidant capacity (p < 0.01), increased the levels of ROS and its related products, IL-1β and IL-17 (p < 0.01) of jejunum, as well as down-regulated Bcl-2/Bax (p < 0.01) and Nrf2 signaling (p < 0.01) of jejunum in rats. BPP gavage effectively alleviated the negative effects of OFO on growth performance, morphology, enterocyte apoptosis, antioxidant capacity and inflammation of jejunum (p < 0.05) in rats. In the oxidative stress model cell assay, the use of receptor inhibitors inhibited the enhancement of antioxidant capacity by BPP. These results suggested that BPP protected intestinal morphology, thus improving growth performance and reducing diarrhea in rats ingesting OFO. This protective effect may be attributed to scavenging free radicals and activating the Nrf2 pathway, which enhances antioxidant capacity, consequently reducing inflammation and mitigating intestinal cell death.
Collapse
Affiliation(s)
- Xiangqi Fan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Wei Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Qingxiang Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Heng Yang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Dayan Tan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Bing Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jun He
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Ping Zheng
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jie Yu
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Junqiu Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Yuheng Luo
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Hui Yan
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Jianping Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Huifen Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Quyuan Wang
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China
| | - Xiangbing Mao
- Institute of Animal Nutrition, Sichuan Agricultural University, Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Key laboratory of Animal Disease-resistant Nutrition and Feed of China Ministry of Agriculture and Rural Affairs, Key laboratory of Animal Disease-resistant Nutrition of Sichuan Province, Chengdu 611130, People's Republic of China.
| |
Collapse
|
48
|
Yang L, Zhou P, Li R, Yin Y, Xie G, Shi L, Zhang P, Tao K. Investigating the role of itaconate in macrophage activation and oxidative stress injury in sepsis-associated acute kidney injury. Mol Biol Rep 2024; 51:533. [PMID: 38642169 DOI: 10.1007/s11033-024-09462-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/20/2024] [Indexed: 04/22/2024]
Abstract
BACKGROUND Sepsis may be linked to oxidative stress and can be controlled by itaconate, an activator of the nuclear factor erythroid 2-related factor 2 (Nrf2) pathway. Nevertheless, the itaconate impact on sepsis-associated acute kidney injury (SA-AKI) has yet to be definitively established. METHODS We employed SA-AKI mouse model through a cecal ligation and puncture (CLP) procedure for the in vivo investigation of the potential nephroprotective effect of itaconate in this study. A plasmid was transfected into RAW264.7 cells to examine the Nrf2 pathway function after itaconate administration. Finally, the immune-responsive gene 1-knockout (IRG1-/-) mice were used to study the itaconate impacts on oxidative stress-induced SA-AKI. RESULTS We have shown that 4-octyl itaconate (OI) significantly reduced CD11b-positive macrophage aggregation and activated the Nrf2 pathway in the bone marrow-derived macrophages (BMDM). The impacts of Nrf2 inhibitor ML385 on the anti-inflammatory and antioxidant properties of itaconate were found to be partial. OI inhibited lipopolysaccharide-induced oxidative stress injury in RAW264.7 macrophages and activated Nrf2 in the nucleus to hinder the expression of nuclear factor kappa B p65, thereby suppressing oxidative stress injury in the macrophages. Additionally, the introduction of the transfected plasmid resulted in a partial inhibition of the anti-inflammatory impact of itaconate. The kidney injury caused by sepsis exhibited greater severity in the IRG1-/- mice than in the wild type mice. Exogenous OI partially attenuated the kidney injury induced by sepsis in the IRG1-/- mice and suppressed the oxidative stress injury in macrophages. CONCLUSIONS This investigation offers new proof to support the itaconate function in the development and progression of SA-AKI and shows a new possible therapeutic agent for the SA-AKI treatment.
Collapse
Affiliation(s)
- Lei Yang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Pei Zhou
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Ruidong Li
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Yuping Yin
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Gengchen Xie
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Liang Shi
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China
| | - Peng Zhang
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| | - Kaixiong Tao
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1277 Jiefang Avenue, Wuhan, 430022, Hubei Province, China.
| |
Collapse
|
49
|
Wang Y, Yang C, Hou Y, Wang J, Zhang K, Wang L, Sun D, Li X, Wei R, Nian H. Dimethyl itaconate inhibits antigen-specific Th17 cell responses and autoimmune inflammation via modulating NRF2/STAT3 signaling. FASEB J 2024; 38:e23607. [PMID: 38581245 DOI: 10.1096/fj.202302293rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 03/14/2024] [Accepted: 03/29/2024] [Indexed: 04/08/2024]
Abstract
Pathogenic Th17 cells play a crucial role in autoimmune diseases like uveitis and its animal model, experimental autoimmune uveitis (EAU). Dimethyl itaconate (DMI) possesses potent anti-inflammatory effects. However, there is still a lack of knowledge about the role of DMI in regulating pathogenic Th17 cells and EAU. Here, we reported that intraperitoneal administration of DMI significantly inhibited the severity of EAU via selectively suppressing Th17 cell responses. In vitro antigen stimulation studies revealed that DMI dramatically decreased the frequencies and function of antigen-specific Th17, but not Th1, cells. Moreover, DMI hampered the differentiation of naive CD4+ T cells toward pathogenic Th17 cells. DMI-treated DCs produced less IL-1β, IL-6, and IL-23, and displayed an impaired ability to stimulate antigen-specific Th17 activation. Mechanistically, DMI activated the NRF2/HO-1 pathway and suppressed STAT3 signaling, which subsequently restrains p-STAT3 nuclear translocation, leading to decreased pathogenic Th17 cell responses. Thus, we have identified an important role for DMI in regulating pathogenic Th17 cells, supporting DMI as a promising therapy in Th17 cell-driven autoimmune diseases including uveitis.
Collapse
Affiliation(s)
- Ying Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Chao Yang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yubiao Hou
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Jiali Wang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Kailang Zhang
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Lihua Wang
- Department of Kidney Diseases and Blood Purification, The Second Hospital of Tianjin Medical University, Tianjin, China
| | - Deming Sun
- Doheny Eye Institute, Department of Ophthalmology, David Geffen School of Medicine, University of California Los Angeles (UCLA), Los Angeles, California, USA
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Ruihua Wei
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Hong Nian
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| |
Collapse
|
50
|
Abbaszadeh M, Ghotbeddin Z, Tabandeh MR, Rahimi K. The impact of Dimethyl itaconate on c-Fos expression in the spinal cord in experimental pain models. Neurosci Lett 2024; 828:137741. [PMID: 38521401 DOI: 10.1016/j.neulet.2024.137741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 03/17/2024] [Accepted: 03/20/2024] [Indexed: 03/25/2024]
Abstract
Itaconate has been found to have potent anti-inflammatory effects and is being explored as a potential treatment for inflammatory diseases. However, its ability to relieve nociception and the mechanisms behind it are not yet understood. Our research aims to investigate the nociception-relieving properties of dimethyl itaconate (DMI) in the formalin test and writhing test. In male Wistar rats, Itaconic acid was injected intraperitoneally (i.p.). The formalin test and writhing test were conducted to determine the nociceptive behaviors. The spinal cords were removed from the rats and analyzed for c-fos protein expression. The study found that administering DMI 10 and 20 mg/kg reduced nociception in formalin and writhing tests. Injection of formalin into the periphery of the body led to an increase in the expression of c-fos in the spinal cord, which was alleviated by DMI 20 mg/kg. Similarly, acetic acid injection into the peritoneal cavity caused an increase in c-fos expression in the spinal cord, which was then reduced by 20 mg/kg. According to our findings, DMI reduced nociception in rats during the formalin and writhing tests. One possible explanation for this outcome is that the decrease in c-fos protein expression may be attributed to the presence of DMI.
Collapse
Affiliation(s)
- Mohammad Abbaszadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Zohreh Ghotbeddin
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran.
| | - Mohammad Reza Tabandeh
- Stem Cell and Transgenic Technology Research Center, Shahid Chamran University of Ahvaz, Ahvaz, Iran; Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Kaveh Rahimi
- Department of Basic Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| |
Collapse
|