1
|
Elgazzaz M, Woodham PC, Maher J, Faulkner JL. Implications of pregnancy on cardiometabolic disease risk: preeclampsia and gestational diabetes. Am J Physiol Cell Physiol 2024; 327:C646-C660. [PMID: 39010840 PMCID: PMC11427017 DOI: 10.1152/ajpcell.00293.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/17/2024]
Abstract
Cardiometabolic disorders, such as obesity, insulin resistance, and hypertension, prior to and within pregnancy are increasing in prevalence worldwide. Pregnancy-associated cardiometabolic disease poses a great risk to the short- and long-term well-being of the mother and offspring. Hypertensive pregnancy, notably preeclampsia, as well as gestational diabetes are the major diseases of pregnancy growing in prevalence as a result of growing cardiometabolic disease prevalence. The mechanisms whereby obesity, diabetes, and other comorbidities lead to preeclampsia and gestational diabetes are incompletely understood and continually evolving in the literature. In addition, novel therapeutic avenues are currently being explored in these patients to offset cardiometabolic-induced adverse pregnancy outcomes in preeclamptic and gestational diabetes pregnancies. In this review, we discuss the emerging pathophysiological mechanisms of preeclampsia and gestational diabetes in the context of cardiometabolic risk as well as the most recent preclinical and clinical updates in the pathogenesis and treatment of these conditions.
Collapse
Affiliation(s)
- Mona Elgazzaz
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Genetics Unit, Department of Histology and Cell Biology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Padmashree C Woodham
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - James Maher
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| | - Jessica L Faulkner
- Department of Physiology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
- Department of Obstetrics and Gynecology, Medical College of Georgia, Augusta University, Augusta, Georgia, United States
| |
Collapse
|
2
|
Batista JPT, de Faria AOV, Ribeiro TFS, Simões e Silva AC. The Role of Renin-Angiotensin System in Diabetic Cardiomyopathy: A Narrative Review. Life (Basel) 2023; 13:1598. [PMID: 37511973 PMCID: PMC10381689 DOI: 10.3390/life13071598] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
Diabetic cardiomyopathy refers to myocardial dysfunction in type 2 diabetes, but without the traditional cardiovascular risk factors or overt clinical atherosclerosis and valvular disease. The activation of the renin-angiotensin system (RAS), oxidative stress, lipotoxicity, maladaptive immune responses, imbalanced mitochondrial dynamics, impaired myocyte autophagy, increased myocyte apoptosis, and fibrosis contribute to diabetic cardiomyopathy. This review summarizes the studies that address the link between cardiomyopathy and the RAS in humans and presents proposed pathophysiological mechanisms underlying this association. The RAS plays an important role in the development and progression of diabetic cardiomyopathy. The over-activation of the classical RAS axis in diabetes leads to the increased production of angiotensin (Ang) II, angiotensin type 1 receptor activation, and aldosterone release, contributing to increased oxidative stress, fibrosis, and cardiac remodeling. In contrast, Ang-(1-7) suppresses oxidative stress, inhibits tissue fibrosis, and prevents extensive cardiac remodeling. Angiotensin-converting-enzyme (ACE) inhibitors and angiotensin receptor blockers improve heart functioning and reduce the occurrence of diabetic cardiomyopathy. Experimental studies also show beneficial effects for Ang-(1-7) and angiotensin-converting enzyme 2 infusion in improving heart functioning and tissue injury. Further research is necessary to fully understand the pathophysiology of diabetic cardiomyopathy and to translate experimental findings into clinical practice.
Collapse
Affiliation(s)
- João Pedro Thimotheo Batista
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil; (J.P.T.B.); (A.O.V.d.F.); (T.F.S.R.)
| | - André Oliveira Vilela de Faria
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil; (J.P.T.B.); (A.O.V.d.F.); (T.F.S.R.)
| | - Thomas Felipe Silva Ribeiro
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil; (J.P.T.B.); (A.O.V.d.F.); (T.F.S.R.)
| | - Ana Cristina Simões e Silva
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil; (J.P.T.B.); (A.O.V.d.F.); (T.F.S.R.)
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte 30130-100, MG, Brazil
| |
Collapse
|
3
|
Linge LL, Sugulle M, Wallukat G, Dechend R, Staff AC. Circulating angiotensin II type I receptor - autoantibodies in diabetic pregnancies. J Reprod Immunol 2023; 155:103777. [PMID: 36495655 DOI: 10.1016/j.jri.2022.103777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 10/25/2022] [Accepted: 11/23/2022] [Indexed: 11/27/2022]
Abstract
Pregnant women with either pre-existing or gestational diabetes mellitus are at increased risk of preeclampsia as well as future cardiovascular disease. The renin-angiotensin system is dysregulated in both diabetes mellitus and preeclampsia. In preeclampsia, maternal levels of circulating agonistic autoantibodies against the angiotensin II Type I receptor (AT1-AAs) are increased. Circulating AT1-AAs are thought to contribute to both the pathophysiology of preeclampsia and the increased risk of future cardiovascular disease. Studies exploring AT1-AA in diabetes outside pregnancy suggest their potential for both metabolic and cardiovascular pathogenicity. No studies have investigated AT1-AAs in diabetic pregnancies. We hypothesized elevated maternal circulating AT1-AA levels in pregnancies complicated by any type of diabetes mellitus. Third-trimester maternal serum from 39 women (controls: n = 10; type 1 diabetes: n = 9; type 2 diabetes: n = 10; gestational diabetes=10) were analyzed for AT1-AA using an established bioassay method. Circulating AT1-AAs were present in 70% (7/10) of the controls and 83% (24/29) of the diabetes group (P = 0.399). Presence of AT1-AA was correlated to hsCRP levels (P = 0.036), but neither with maternal circulating angiogenic factors (soluble fms-like tyrosine kinase-1 and placental growth factor), nor with maternal or fetal characteristics indicative of metabolic disease or placental dysfunction. Our study is the first to demonstrate presence of circulating AT1-AAs in pregnant women with any type of diabetes. Our findings suggest AT1-AAs presence in pregnancy independently of placental dysfunction, nuancing the current view on their pathogenicity. Whether AT1-AAs per se contribute to increased risk of adverse pregnancy outcomes and future cardiovascular disease remains currently unanswered.
Collapse
Affiliation(s)
- Lydia Lande Linge
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Gynaecology and Obstetrics, Oslo University Hospital, Oslo, Norway
| | - Meryam Sugulle
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Gynaecology and Obstetrics, Oslo University Hospital, Oslo, Norway.
| | - Gerd Wallukat
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Medical Faculty, Berlin, Germany
| | - Ralf Dechend
- Experimental and Clinical Research Center, a joint cooperation between the Max-Delbrück Center for Molecular Medicine in the Helmholtz Association and the Charité Medical Faculty, Berlin, Germany; Department of Cardiology and Nephrology, HELIOS Klinikum Berlin, Germany
| | - Anne Cathrine Staff
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway; Division of Gynaecology and Obstetrics, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
4
|
Lei J, Zhao M, Li L, Ji B, Xu T, Sun M, Chen J, Qiu J, Gao Q. Research progress of placental vascular pathophysiological changes in pregnancy-induced hypertension and gestational diabetes mellitus. Front Physiol 2022; 13:954636. [PMID: 35928561 PMCID: PMC9343869 DOI: 10.3389/fphys.2022.954636] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/30/2022] [Indexed: 01/11/2023] Open
Abstract
The placenta is a vital organ for fetal development, providing the fetus with nutrients, oxygen, and other important factors. Placenta is rich in blood vessels. Abnormal placental vascular function and blood circulation may lead to insufficient blood supply to the fetus in the uterus, leading to serious consequences such as pregnancy complications, fetal distress and even stillbirth. Pregnancy-induced hypertension (PIH) and gestational diabetes mellitus (GDM) are common complications of pregnancy. Recent studies report that pregnancy complications are often accompanied by changes in placental vascular structure and function. What are the physiological characteristics of human placental blood vessels? What are the pathological changes in the state of PIH and GDM? What are the relationships between these pathological changes and the occurrence of these pregnancy complications? Answers to these questions not only increase the understanding of placental vascular characteristics, but also provide important information for revealing the pathological mechanism of PIH and GDM. This article will summarize the research on the pathological changes of placental blood vessels in PIH and GDM, hoping to further unravel the physiological and pathological characteristics of placental blood vessels in the state of PIH and GDM, provide information for guiding clinical treatment for PIH and GDM.
Collapse
Affiliation(s)
- Jiahui Lei
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Meng Zhao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Lingjun Li
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Bingyu Ji
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Ting Xu
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Miao Sun
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jie Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Jie Chen, ; Junlan Qiu, ; Qinqin Gao,
| | - Junlan Qiu
- Department of Oncology and Hematology, The Affiliated Suzhou Science and Technology Town Hospital of Nanjing Medical University, Suzhou, China
- *Correspondence: Jie Chen, ; Junlan Qiu, ; Qinqin Gao,
| | - Qinqin Gao
- Institute for Fetology, The First Affiliated Hospital of Soochow University, Suzhou, China
- *Correspondence: Jie Chen, ; Junlan Qiu, ; Qinqin Gao,
| |
Collapse
|
5
|
Angiotensin-converting enzyme 2 (ACE2), angiotensin-(1-7) and Mas receptor in gonadal and reproductive functions. Clin Sci (Lond) 2021; 134:2929-2941. [PMID: 33196086 DOI: 10.1042/cs20200865] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/13/2020] [Accepted: 10/30/2020] [Indexed: 12/16/2022]
Abstract
Angiotensin (Ang)-(1-7) is an active peptide formed from Ang I or Ang-(1-9) by multiple proteolytic steps involving angiotensin-converting enzyme (ACE) 1 and other peptidases, or by a single cleavage of Ang II catalyzed chiefly by ACE2. The effects of Ang-(1-7) are mediated by the G protein-coupled receptor Mas (or Mas1), encoded by the protooncogene MAS. The reproductive system expresses ACE2 quite abundantly and therefore is able to generate Ang-(1-7) using precursor peptides produced locally or taken from circulation. In several mammalian species, Ang-(1-7) stimulates ovarian follicle growth, oocyte maturation and ovulation. The peptide is found in human endometrium, mostly during the secretory phase of menstrual cycle when the uterus is receptive to embryo implantation. Rat models and human observational studies suggest that Ang-(1-7) is part of the maternal adaptive response to pregnancy and its deficiency is associated with poor circulation in the placental bed. Knockout mice revealed a relevant participation of Mas-mediated stimulus to the maintenance of normal spermatogenesis, even though the animal can still reproduce without it. In addition, the vasorelaxant effect of Ang-(1-7) participates in the physiological mechanism of corpus cavernosum blood influx and penile erection. We conclude that preclinical evidence encourages the pursuit of treatments for female and male reproductive dysfunctions based on Mas agonists, starting with its natural ligand Ang-(1-7).
Collapse
|
6
|
Kopylov AT, Papysheva O, Gribova I, Kotaysch G, Kharitonova L, Mayatskaya T, Sokerina E, Kaysheva AL, Morozov SG. Molecular pathophysiology of diabetes mellitus during pregnancy with antenatal complications. Sci Rep 2020; 10:19641. [PMID: 33184417 PMCID: PMC7665025 DOI: 10.1038/s41598-020-76689-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Accepted: 11/02/2020] [Indexed: 12/16/2022] Open
Abstract
Gestational diabetes mellitus is a daunting problem accompanied by severe fetal development complications and type 2 diabetes mellitus in postpartum. Diagnosis of diabetic conditions occurs only in the second trimester, while associated antenatal complications are typically revealed even later. We acquired an assay of peripheral and cord blood samples of patients with different types of diabetes mellitus who delivered either healthy newborns or associated with fetopathy complications. Obtained data were handled with qualitative and quantitative analysis. Pathways of molecular events involved in diabetes mellitus and fetopathy were reconstructed based on the discovered markers and their quantitative alteration. Plenty of pathways were integrated to differentiate the type of diabetes and to recognize the impact of the diabetic condition on fetal development. The impaired triglycerides transport, glucose uptake, and consequent insulin resistance are mostly affected by faulted lipid metabolism (APOM, APOD, APOH, APOC1) and encouraged by oxidative stress (CP, TF, ORM2) and inflammation (CFH, CFB, CLU) as a secondary response accompanied by changes in matrix architecture (AFM, FBLN1, AMBP). Alterations in proteomes of peripheral and cord blood were expectedly unequal. Both up- and downregulated markers were accommodated in the cast of molecular events interconnected with the lipid metabolism, RXR/PPAR-signaling pathway, and extracellular architecture modulation. The obtained results congregate numerous biological processes to molecular events that underline diabetes during gestation and uncover some critical aspects affecting fetal growth and development.
Collapse
Affiliation(s)
- Arthur T Kopylov
- Department of Pathology, Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., 125315, Moscow, Russia. .,Institute of Biomedical Chemistry, Biobanking Group, 10 Pogodinskaya str., 119121, Moscow, Russia.
| | - Olga Papysheva
- S.S. Yudin 7th State Clinical Hospital, 4 Kolomenskaya str., 115446, Moscow, Russia
| | - Iveta Gribova
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., 110020, Moscow, Russia
| | - Galina Kotaysch
- N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., 110020, Moscow, Russia
| | - Lubov Kharitonova
- N.I. Pirogov Medical University, 1 Ostrovityanova st., 117997, Moscow, Russia
| | - Tatiana Mayatskaya
- N.I. Pirogov Medical University, 1 Ostrovityanova st., 117997, Moscow, Russia
| | - Ekaterina Sokerina
- Department of Pathology, Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., 125315, Moscow, Russia
| | - Anna L Kaysheva
- Institute of Biomedical Chemistry, Biobanking Group, 10 Pogodinskaya str., 119121, Moscow, Russia
| | - Sergey G Morozov
- Department of Pathology, Institute of General Pathology and Pathophysiology, 8 Baltyiskaya str., 125315, Moscow, Russia.,N.E. Bauman 29th State Clinical Hospital, 2 Hospitalnaya sq., 110020, Moscow, Russia
| |
Collapse
|
7
|
Stanhewicz AE, Alexander LM. Local angiotensin-(1-7) administration improves microvascular endothelial function in women who have had preeclampsia. Am J Physiol Regul Integr Comp Physiol 2020; 318:R148-R155. [PMID: 31577152 PMCID: PMC6985799 DOI: 10.1152/ajpregu.00221.2019] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Revised: 09/20/2019] [Accepted: 09/29/2019] [Indexed: 12/12/2022]
Abstract
Despite remission of clinical symptoms postpartum, women who have had preeclampsia demonstrate microvascular endothelial dysfunction, mediated in part by increased sensitivity to angiotensin II (ANG II). Angiotensin-(1-7) [Ang-(1-7)] is an endogenous inhibitor of the actions of ANG II and plausible druggable target in women who had preeclampsia. We therefore examined the therapeutic potential of Ang-(1-7) in the microvasculature of women with a history of preeclampsia (PrEC; n = 13) and parity-matched healthy control women (HC; n = 13) hypothesizing that administration of Ang-(1-7) would increase endothelium-dependent dilation and nitric oxide (NO)-dependent dilation and decrease ANG II-mediated constriction in PrEC. Using the cutaneous microcirculation, we assessed endothelium-dependent vasodilator function in response to graded infusion of acetylcholine (ACh; 10-7 to 102 mmol/L) in control sites and sites treated with 15 mmol/L NG-nitro-l-arginine methyl ester (l-NAME; NO-synthase inhibitor), 100 µmol/L Ang-(1-7), or 15 mmol/L l-NAME + 100 µmol/L Ang-(1-7). Vasoconstrictor function was measured in response to ANG II (10-20-10-4 mol/L) in control sites and sites treated with 100 µmol/L Ang-(1-7). PrEC had reduced endothelium-dependent dilation (P < 0.001) and NO-dependent dilation (P = 0.04 vs. HC). Ang-(1-7) coinfusion augmented endothelium-dependent dilation (P < 0.01) and NO-dependent dilation (P = 0.03) in PrEC but had no effect in HC. PrEC demonstrated augmented vasoconstrictor responses to ANG II (P < 0.01 vs. HC), which was attenuated by coinfusion of Ang-(1-7) (P < 0.001). Ang-(1-7) increased endothelium-dependent vasodilation via NO synthase-mediated pathways and attenuated ANG II-mediated constriction in women who have had preeclampsia, suggesting that Ang-(1-7) may be a viable therapeutic target for improved microvascular function in women who have had a preeclamptic pregnancy.
Collapse
Affiliation(s)
- Anna E Stanhewicz
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| | - Lacy M Alexander
- Noll Laboratory, Department of Kinesiology, The Pennsylvania State University, University Park, Pennsylvania
| |
Collapse
|
8
|
Liu J, Mosavati B, Oleinikov AV, Du E. Biosensors for Detection of Human Placental Pathologies: A Review of Emerging Technologies and Current Trends. Transl Res 2019; 213:23-49. [PMID: 31170377 PMCID: PMC6783355 DOI: 10.1016/j.trsl.2019.05.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 02/06/2023]
Abstract
Substantial growth in the biosensor research has enabled novel, sensitive and point-of-care diagnosis of human diseases in the last decade. This paper presents an overview of the research in the field of biosensors that can potentially predict and diagnosis of common placental pathologies. A survey of biomarkers in maternal circulation and their characterization methods is presented, including markers of oxidative stress, angiogenic factors, placental debris, and inflammatory biomarkers that are associated with various pathophysiological processes in the context of pregnancy complications. Novel biosensors enabled by microfluidics technology and nanomaterials is then reviewed. Representative designs of plasmonic and electrochemical biosensors for highly sensitive and multiplexed detection of biomarkers, as well as on-chip sample preparation and sensing for automatic biomarker detection are illustrated. New trends in organ-on-a-chip based placental disease models are highlighted to illustrate the capability of these in vitro disease models in better understanding the complex pathophysiological processes, including mass transfer across the placental barrier, oxidative stress, inflammation, and malaria infection. Biosensor technologies that can be potentially embedded in the placental models for real time, label-free monitoring of these processes and events are suggested. Merger of cell culture in microfluidics and biosensing can provide significant potential for new developments in advanced placental models, and tools for diagnosis, drug screening and efficacy testing.
Collapse
Affiliation(s)
- Jia Liu
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Babak Mosavati
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida
| | - Andrew V Oleinikov
- Charles E. Schmidt College of Medicine, Department of Biomedical Science, Florida Atlantic University, Boca Raton, Florida
| | - E Du
- College of Engineering and Computer Science, Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, Florida; Charles E. Schmidt College of Science, Department of Biological Sciences, Florida Atlantic University, Boca Raton, Florida.
| |
Collapse
|
9
|
South AM, Shaltout HA, Washburn LK, Hendricks AS, Diz DI, Chappell MC. Fetal programming and the angiotensin-(1-7) axis: a review of the experimental and clinical data. Clin Sci (Lond) 2019; 133:55-74. [PMID: 30622158 PMCID: PMC6716381 DOI: 10.1042/cs20171550] [Citation(s) in RCA: 83] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 11/20/2018] [Accepted: 12/03/2018] [Indexed: 02/07/2023]
Abstract
Hypertension is the primary risk factor for cardiovascular disease that constitutes a serious worldwide health concern and a significant healthcare burden. As the majority of hypertension has an unknown etiology, considerable research efforts in both experimental models and human cohorts has focused on the premise that alterations in the fetal and perinatal environment are key factors in the development of hypertension in children and adults. The exact mechanisms of how fetal programming events increase the risk of hypertension and cardiovascular disease are not fully elaborated; however, the focus on alterations in the biochemical components and functional aspects of the renin-angiotensin (Ang) system (RAS) has predominated, particularly activation of the Ang-converting enzyme (ACE)-Ang II-Ang type 1 receptor (AT1R) axis. The emerging view of alternative pathways within the RAS that may functionally antagonize the Ang II axis raise the possibility that programming events also target the non-classical components of the RAS as an additional mechanism contributing to the development and progression of hypertension. In the current review, we evaluate the potential role of the ACE2-Ang-(1-7)-Mas receptor (MasR) axis of the RAS in fetal programming events and cardiovascular and renal dysfunction. Specifically, the review examines the impact of fetal programming on the Ang-(1-7) axis within the circulation, kidney, and brain such that the loss of Ang-(1-7) expression or tone, contributes to the chronic dysregulation of blood pressure (BP) and cardiometabolic disease in the offspring, as well as the influence of sex on potential programming of this pathway.
Collapse
Affiliation(s)
- Andrew M South
- Department of Pediatrics, Section of Nephrology, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Department of Epidemiology and Prevention, Division of Public Health Sciences, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Cardiovascular Sciences Center, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Hypertension and Vascular Research, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
| | - Hossam A Shaltout
- Cardiovascular Sciences Center, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Department of Obstetrics and Gynecology, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Department of Pharmacology and Toxicology, School of Pharmacy, University of Alexandria, Egypt
- Hypertension and Vascular Research, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Department of Surgery, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
| | - Lisa K Washburn
- Department of Pediatrics, Section of Nephrology, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Cardiovascular Sciences Center, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Hypertension and Vascular Research, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
| | - Alexa S Hendricks
- Cardiovascular Sciences Center, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Hypertension and Vascular Research, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
| | - Debra I Diz
- Cardiovascular Sciences Center, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Hypertension and Vascular Research, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Department of Surgery, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
| | - Mark C Chappell
- Cardiovascular Sciences Center, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A.
- Hypertension and Vascular Research, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
- Department of Surgery, Wake Forest School of Medicine, 526 Vine Street, Winston Salem, NC 27157, U.S.A
| |
Collapse
|
10
|
Chen G, Jin X, Zhang L, Niu J, Gu Y. Decreased Ang-(1-7) and Downregulated Intrarenal RAS May Contribute to the Direct Podocyte Injury With Proteinuria in Preeclampsia. Reprod Sci 2018; 26:1146-1157. [PMID: 30595084 DOI: 10.1177/1933719118813200] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The mechanisms of proteinuria development in preeclampsia (PE) are still enigmatic. Renin-angiotensin system (RAS) components may play a role. Maternal serum and urinary concentrations of angiotensin-(1-7) [Ang-(1-7)], angiotensin II (Ang II), and angiotensinogen in women with PE (n = 14), gestational hypertension (n = 14), and normal pregnancy were quantified. The alteration in these concentrations was used to evaluate their relationships with podocyturia and proteinuria in PE. In addition, the podocytes cultured in vitro were interfered in serum of preeclamptic and normotensive pregnant women, with or without Ang-(1-7). The morphologic change in podocyte was observed using a microscope. The changes in podocyte-specific proteins (nephrin, CD2-associated protein [CD2AP]), the cytoskeletal protein F-actin, the tight junction protein (ZO-1), and Mas receptor (MasR) were examined by immunofluorescence. Western blot was used to examine the expression and variation of MasR. We found that the concentrations of RAS components were associated with prepartal urinary podocyte number, random urine albumin/creatinine ratio, blood pressure, and renal function. The expression of nephrin, F-actin, ZO-1, and MasR on podocytes interfered in serum of PE was significantly decreased compared to normal control and normal pregnant serum group in vitro, yet their expression was significantly increased after coculture by 10-6 mol/L Ang-(1-7) and the preeclamptic serum. The expression of CD2AP had no significant difference. We concluded that decreased Ang-(1-7) and downregulated intrarenal RAS contributed to the direct podocyte injury with proteinuria in PE.
Collapse
Affiliation(s)
- Guixiang Chen
- 1 Division of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China.,2 Division of Nephrology, Shanghai Ninth People's Hospital, Affiliated to Shanghai JiaoTong University, School of Medicine, Shanghai, People's Republic of China
| | - Xiaohong Jin
- 1 Division of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Lihong Zhang
- 1 Division of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Jianying Niu
- 1 Division of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China
| | - Yong Gu
- 1 Division of Nephrology, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, People's Republic of China.,3 Division of Nephrology, Huashan Hospital, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
11
|
Pringle KG, de Meaultsart CC, Sykes SD, Weatherall LJ, Keogh L, Clausen DC, Dekker GA, Smith R, Roberts CT, Rae KM, Lumbers ER. Urinary angiotensinogen excretion in Australian Indigenous and non-Indigenous pregnant women. Pregnancy Hypertens 2018; 12:110-117. [PMID: 29674190 DOI: 10.1016/j.preghy.2018.04.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 02/12/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022]
Abstract
The intrarenal renin-angiotensin system (iRAS) is implicated in the pathogenesis of hypertension, chronic kidney disease and diabetic nephropathy. Urinary angiotensinogen (uAGT) levels reflect the activity of the iRAS and are altered in women with preeclampsia. Since Indigenous Australians suffer high rates and early onset of renal disease, we hypothesised that Indigenous Australian pregnant women, like non-Indigenous women with pregnancy complications, would have altered uAGT levels. The excretion of RAS proteins was measured in non-Indigenous and Indigenous Australian women with uncomplicated or complicated pregnancies (preeclampsia, diabetes/gestational diabetes, proteinuria/albuminuria, hypertension, small/large for gestational age, preterm birth), and in non-pregnant non-Indigenous women. Non-Indigenous pregnant women with uncomplicated pregnancies, had higher uAGT/creatinine levels than non-Indigenous non-pregnant women (P < 0.01), and levels increased as pregnancy progressed (P < 0.001). In non-Indigenous pregnant women with pregnancy complications, uAGT/creatinine was suppressed in the third trimester (P < 0.01). In Indigenous pregnant women with uncomplicated pregnancies, there was no change in uAGT/creatinine with gestational age and uAGT/creatinine was lower in the 2nd and 3rd trimesters than in non-Indigenous pregnant women with uncomplicated pregnancies (P < 0.03, P < 0.007, respectively). The uAGT/creatinine ratios of Indigenous women with uncomplicated or complicated pregnancies were the same. A decrease in uAGT/creatinine with advancing gestational age was associated with increased urinary albumin/creatinine, as is seen in preeclampsia, but it was not specific for this disorder. The reduced uAGT/creatinine in Indigenous pregnant women may reflect subclinical renal dysfunction which limits the ability of the kidney to maintain sodium balance and could indicate an increased risk of pregnancy complications and/or future renal disease.
Collapse
Affiliation(s)
- Kirsty G Pringle
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton, New South Wales, Australia.
| | - Celine Corbisier de Meaultsart
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Shane D Sykes
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Loretta J Weatherall
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Gomeroi Gaaynggal Centre, Faculty of Health and Medicine, The University of Newcastle, Tamworth, New South Wales, Australia; University of Newcastle Department of Rural Health, Faculty of Health and Medicine, The University of Newcastle, Tamworth, New South Wales, Australia
| | - Lyniece Keogh
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Gomeroi Gaaynggal Centre, Faculty of Health and Medicine, The University of Newcastle, Tamworth, New South Wales, Australia; University of Newcastle Department of Rural Health, Faculty of Health and Medicine, The University of Newcastle, Tamworth, New South Wales, Australia
| | - Don C Clausen
- Pathology North, New South Wales Health, Tamworth, New South Wales, Australia
| | - Gus A Dekker
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Roger Smith
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| | - Claire T Roberts
- Adelaide Medical School and Robinson Research Institute, University of Adelaide, Adelaide, Australia
| | - Kym M Rae
- Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Gomeroi Gaaynggal Centre, Faculty of Health and Medicine, The University of Newcastle, Tamworth, New South Wales, Australia; University of Newcastle Department of Rural Health, Faculty of Health and Medicine, The University of Newcastle, Tamworth, New South Wales, Australia; Priority Research Centre for Generational Health and Aging, University of Newcastle, Callaghan, New South Wales, Australia
| | - Eugenie R Lumbers
- School of Biomedical Sciences and Pharmacy, Faculty of Health and Medicine, The University of Newcastle, Callaghan, New South Wales, Australia; Priority Research Centre for Reproductive Science, University of Newcastle, Callaghan, New South Wales, Australia; Mothers and Babies Research Centre, Hunter Medical Research Institute, New Lambton, New South Wales, Australia
| |
Collapse
|
12
|
Carreiro MP, Nogueira AI, Ribeiro-Oliveira A. Controversies and Advances in Gestational Diabetes-An Update in the Era of Continuous Glucose Monitoring. J Clin Med 2018; 7:E11. [PMID: 29370080 PMCID: PMC5852427 DOI: 10.3390/jcm7020011] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 01/08/2018] [Accepted: 01/09/2018] [Indexed: 12/17/2022] Open
Abstract
Diabetes in pregnancy, both preexisting type 1 or type 2 and gestational diabetes, is a highly prevalent condition, which has a great impact on maternal and fetal health, with short and long-term implications. Gestational Diabetes Mellitus (GDM) is a condition triggered by metabolic adaptation, which occurs during the second half of pregnancy. There is still a lot of controversy about GDM, from classification and diagnosis to treatment. Recently, there have been some advances in the field as well as recommendations from international societies, such as how to distinguish previous diabetes, even if first recognized during pregnancy, and newer diagnostic criteria, based on pregnancy outcomes, instead of maternal risk of future diabetes. These new recommendations will lead to a higher prevalence of GDM, and important issues are yet to be resolved, such as the cost-utility of this increase in diagnoses as well as the determinants for poor outcomes. The aim of this review is to discuss the advances in diagnosis and classification of GDM, as well as their implications in the field, the issue of hyperglycemia in early pregnancy and the role of hemoglobin A1c (HbA1c) during pregnancy. We have looked into the determinants of the poor outcomes predicted by the diagnosis by way of oral glucose tolerance tests, highlighting the relevance of continuous glucose monitoring tools, as well as other possible pathogenetic factors related to poor pregnancy outcomes.
Collapse
Affiliation(s)
- Marina P Carreiro
- Laboratory of Endocrinology, Federal University of Minas Gerais, Belo Horizonte 30130-100, Brazil.
| | - Anelise I Nogueira
- Laboratory of Endocrinology, Federal University of Minas Gerais, Belo Horizonte 30130-100, Brazil.
| | - Antonio Ribeiro-Oliveira
- Laboratory of Endocrinology, Federal University of Minas Gerais, Belo Horizonte 30130-100, Brazil.
| |
Collapse
|
13
|
Santos RAS, Sampaio WO, Alzamora AC, Motta-Santos D, Alenina N, Bader M, Campagnole-Santos MJ. The ACE2/Angiotensin-(1-7)/MAS Axis of the Renin-Angiotensin System: Focus on Angiotensin-(1-7). Physiol Rev 2018; 98:505-553. [PMID: 29351514 PMCID: PMC7203574 DOI: 10.1152/physrev.00023.2016] [Citation(s) in RCA: 775] [Impact Index Per Article: 110.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 05/09/2017] [Accepted: 06/18/2017] [Indexed: 12/16/2022] Open
Abstract
The renin-angiotensin system (RAS) is a key player in the control of the cardiovascular system and hydroelectrolyte balance, with an influence on organs and functions throughout the body. The classical view of this system saw it as a sequence of many enzymatic steps that culminate in the production of a single biologically active metabolite, the octapeptide angiotensin (ANG) II, by the angiotensin converting enzyme (ACE). The past two decades have revealed new functions for some of the intermediate products, beyond their roles as substrates along the classical route. They may be processed in alternative ways by enzymes such as the ACE homolog ACE2. One effect is to establish a second axis through ACE2/ANG-(1-7)/MAS, whose end point is the metabolite ANG-(1-7). ACE2 and other enzymes can form ANG-(1-7) directly or indirectly from either the decapeptide ANG I or from ANG II. In many cases, this second axis appears to counteract or modulate the effects of the classical axis. ANG-(1-7) itself acts on the receptor MAS to influence a range of mechanisms in the heart, kidney, brain, and other tissues. This review highlights the current knowledge about the roles of ANG-(1-7) in physiology and disease, with particular emphasis on the brain.
Collapse
Affiliation(s)
- Robson Augusto Souza Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Walkyria Oliveira Sampaio
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Andreia C Alzamora
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Daisy Motta-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Natalia Alenina
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Michael Bader
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| | - Maria Jose Campagnole-Santos
- National Institute of Science and Technology in Nanobiopharmaceutics, Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais , Belo Horizonte , Brazil ; Department of Biological Sciences, Federal University of Ouro Preto , Ouro Preto , Brazil ; Max-Delbrück-Center for Molecular Medicine (MDC), Berlin , Germany ; Berlin Institute of Health (BIH), Berlin , Germany ; Charité - University Medicine, Berlin , Germany ; DZHK (German Center for Cardiovascular Research), Partner Site Berlin, Berlin , Germany ; Institute for Biology, University of Lübeck , Lübeck , Germany
| |
Collapse
|
14
|
Garg P, Badhwar S, Jaryal AK, Kachhawa G, Deepak KK, Kriplani A. The temporal trend of vascular function in women with gestational diabetes. Vasc Med 2017; 22:96-102. [DOI: 10.1177/1358863x16678479] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Priyanka Garg
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Smriti Badhwar
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Ashok Kumar Jaryal
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Garima Kachhawa
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| | - Kishore Kumar Deepak
- Department of Physiology, All India Institute of Medical Sciences, New Delhi, India
| | - Alka Kriplani
- Department of Obstetrics and Gynecology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
15
|
Cuffe JSM, Holland O, Salomon C, Rice GE, Perkins AV. Review: Placental derived biomarkers of pregnancy disorders. Placenta 2017; 54:104-110. [PMID: 28117143 DOI: 10.1016/j.placenta.2017.01.119] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 01/09/2017] [Accepted: 01/13/2017] [Indexed: 12/25/2022]
Abstract
Pregnancy is one of the greatest physiological challenges that a women can experience. The physiological adaptations that accompany pregnancy may increase the risk of developing a number of disorders that can lead to both acute and chronic physiological outcomes. In addition, fetal development may be impaired and, if the fetus survives, the child may be at an increased risk of disease throughout life. Pregnancy disorders are poorly predicted by traditional risk factors and maternal history alone. The identification of biomarkers that can predict incidence and severity of disease would allow for improved and targeted prophylactic therapies to prevent adverse maternal and fetal outcomes. Many of these pregnancy disorders, including preeclampsia, intrauterine growth restriction, gestational diabetes mellitus and preterm birth are known to be regulated at least in part by poor trophoblast invasion and/or dysregulated placental function. Cellular stress within the placenta increases the release of a number of factors into the maternal circulation. While many of these factors minimally impact maternal biology, others affect key physiological systems and contribute to disease. Importantly, these factors may be detected in physiological fluids and have predictive capacity making them ideal candidates as biomarkers of pregnancy disorders. This review will discuss what is known about these placental derived biomarkers of pregnancy disorders and highlight potential clinical opportunities for disease prediction and diagnosis.
Collapse
Affiliation(s)
- James S M Cuffe
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland, Australia.
| | - Olivia Holland
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| | - Carlos Salomon
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, USA
| | - Gregory E Rice
- Exosome Biology Laboratory, Centre for Clinical Diagnostics, University of Queensland Centre for Clinical Research, Royal Brisbane and Women's Hospital, Brisbane, Queensland, Australia; Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Ochsner Clinic Foundation, New Orleans, USA
| | - Anthony V Perkins
- School of Medical Science, Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Southport, Queensland, Australia
| |
Collapse
|
16
|
Angulo-Tuesta A, Santos LMP, Natalizi DA. Impact of health research on advances in knowledge, research capacity-building and evidence-informed policies: a case study on maternal mortality and morbidity in Brazil. SAO PAULO MED J 2016; 134:153-62. [PMID: 27224280 PMCID: PMC10496541 DOI: 10.1590/1516-3180.2015.01530211] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Accepted: 11/02/2015] [Indexed: 11/21/2022] Open
Abstract
CONTEXT AND OBJECTIVE National health research systems aim to generate high-quality knowledge so as to maintain and promote the population's health. This study aimed to analyze the impact of maternal mortality/morbidity research funded by the Brazilian Ministry of Health and institutional partners, on the dimensions: advancing in knowledge, research capacity-building and informing decision-making, within the framework of the Canadian Academy of Health Sciences. DESIGN AND SETTING Descriptive study based on secondary data, conducted at a public university. METHODS The advancing in knowledge dimension was estimated from the principal investigators' publication counts and h-index. Data on research capacity-building were obtained from the Ministry of Health's information system. The informing decision-making dimension was analyzed from citations in Stork Network (Rede Cegonha) documents. RESULTS Between 2002 and 2010, R$ 21.6 million were invested in 128 maternal mortality/morbidity projects. Over this period, the principal investigators published 174 articles, resulting in an h-index of 35, thus showing progress in the advancing in knowledge dimension. Within the research capacity-building dimension, training of 71 students (undergraduate/postgraduate) was observed. Progress in the informing decision-making dimension was modest: 73.5% of the 117 citations in the Stork Network documents were institutional documents and norms. One of the projects funded, the 2006/7 National Demography and Health Survey, was cited in program documents. CONCLUSION Impacts were shown in the advancing in knowledge and research capacity-building dimensions. The health research system needs to incorporate research for evidence-informed policies.
Collapse
Affiliation(s)
- Antonia Angulo-Tuesta
- PhD. Associate Professor, Faculdade da Ceilândia, Universidade de Brasília, Brasília, DF, Brazil.
| | - Leonor Maria Pacheco Santos
- PhD. Associate Professor and Head of Department of Public Health, Universidade de Brasília, Brasília, DF, Brazil.
| | - Daniel Alves Natalizi
- MSc. Postgraduate Student in Human Nutrition Program, Faculdade de Ciências da Saúde, Universidade de Brasília, Brasília, DF, Brazil.
| |
Collapse
|
17
|
Simões e Silva AC, Silveira KD, Ferreira AJ, Teixeira MM. ACE2, angiotensin-(1-7) and Mas receptor axis in inflammation and fibrosis. Br J Pharmacol 2014; 169:477-92. [PMID: 23488800 DOI: 10.1111/bph.12159] [Citation(s) in RCA: 416] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2012] [Revised: 02/04/2013] [Accepted: 02/13/2013] [Indexed: 12/14/2022] Open
Abstract
Recent advances have improved our understanding of the renin-angiotensin system (RAS). These have included the recognition that angiotensin (Ang)-(1-7) is a biologically active product of the RAS cascade. The identification of the ACE homologue ACE2, which forms Ang-(1-7) from Ang II, and the GPCR Mas as an Ang-(1-7) receptor have provided the necessary biochemical and molecular background and tools to study the biological significance of Ang-(1-7). Most available evidence supports a counter-regulatory role for Ang-(1-7) by opposing many actions of Ang II on AT₁ receptors, especially vasoconstriction and proliferation. Many studies have now shown that Ang-(1-7) by acting via Mas receptor exerts inhibitory effects on inflammation and on vascular and cellular growth mechanisms. Ang-(1-7) has also been shown to reduce key signalling pathways and molecules thought to be relevant for fibrogenesis. Here, we review recent findings related to the function of the ACE2/Ang-(1-7)/Mas axis and focus on the role of this axis in modifying processes associated with acute and chronic inflammation, including leukocyte influx, fibrogenesis and proliferation of certain cell types. More attention will be given to the involvement of the ACE2/Ang-(1-7)/Mas axis in the context of renal disease because of the known relevance of the RAS for the function of this organ and for the regulation of kidney inflammation and fibrosis. Taken together, this knowledge may help in paving the way for the development of novel treatments for chronic inflammatory and renal diseases.
Collapse
Affiliation(s)
- A C Simões e Silva
- Departamento de Pediatria, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | |
Collapse
|
18
|
Mori Y, Aritomi S, Niinuma K, Nakamura T, Matsuura K, Yokoyama J, Utsunomiya K. Additive effects of cilnidipine, an L-/N-type calcium channel blocker, and an angiotensin II receptor blocker on reducing cardiorenal damage in Otsuka Long-Evans Tokushima Fatty rats with type 2 diabetes mellitus. Drug Des Devel Ther 2014; 8:799-810. [PMID: 24970998 PMCID: PMC4069052 DOI: 10.2147/dddt.s47441] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Cilnidipine (Cil), which is an L-/N-type calcium channel blocker (CCB), has been known to provide renal protection by decreasing the activity of the sympathetic nervous system (SNS) and the renin–angiotensin system. In this study, we compared the effects of the combination of Cil and amlodipine (Aml), which is an L-type CCB, with an angiotensin (Ang) II receptor blocker on diabetic cardiorenal damage in spontaneously type 2 diabetic rats. Seventeen-week-old Otsuka Long-Evans Tokushima Fatty rats were randomly assigned to receive Cil, Aml, valsartan (Val), Cil + Val, Aml + Val, or a vehicle (eight rats per group) for 22 weeks. Antihypertensive potencies were nearly equal among the CCB monotherapy groups and the combination therapy groups. The lowering of blood pressure by either treatment did not significantly affect the glycemic variables. However, exacerbations of renal and heart failure were significantly suppressed in rats administered Cil or Val, and additional suppression was observed in those administered Cil + Val. Although Val increased the renin–Ang system, Aml + Val treatment resulted in additional increases in these parameters, while Cil + Val did not show such effects. Furthermore, Cil increased the ratio of Ang-(1–7) to Ang-I, despite the fact that Val and Aml + Val decreased the Ang-(1–7) levels. These actions of Cil + Val might be due to their synergistic inhibitory effect on the activity of the SNS, and on aldosterone secretion through N-type calcium channel antagonism and Ang II receptor type 1 antagonism. Thus, Cil may inhibit the progression of cardiorenal disease in type 2 diabetes patients by acting as an N-type CCB and inhibiting the aldosterone secretion and SNS activation when these drugs were administered in combination with an Ang II receptor blocker.
Collapse
Affiliation(s)
- Yutaka Mori
- Division of Diabetes and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Japan ; Department of Clinical Research, National Hospital Organization, Utsunomiya National Hospital, Utsunomiya, Japan
| | - Shizuka Aritomi
- Research Center, Ajinomoto Pharmaceuticals Co, Ltd, Kanagawa, Japan
| | - Kazumi Niinuma
- Research Center, Ajinomoto Pharmaceuticals Co, Ltd, Kanagawa, Japan
| | - Tarou Nakamura
- Research Center, Ajinomoto Pharmaceuticals Co, Ltd, Kanagawa, Japan
| | - Kenichi Matsuura
- Division of Diabetes and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Junichi Yokoyama
- Division of Diabetes and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| | - Kazunori Utsunomiya
- Division of Diabetes and Endocrinology, Department of Internal Medicine, The Jikei University School of Medicine, Minato-ku, Japan
| |
Collapse
|
19
|
Abstract
The prevalence of Type 2 diabetes mellitus is predicted to increase dramatically over the coming years and the clinical implications and healthcare costs from this disease are overwhelming. In many cases, this pathological condition is linked to a cluster of metabolic disorders, such as obesity, systemic hypertension and dyslipidaemia, defined as the metabolic syndrome. Insulin resistance has been proposed as the key mediator of all of these features and contributes to the associated high cardiovascular morbidity and mortality. Although the molecular mechanisms behind insulin resistance are not completely understood, a negative cross-talk between AngII (angiotensin II) and the insulin signalling pathway has been the focus of great interest in the last decade. Indeed, substantial evidence has shown that anti-hypertensive drugs that block the RAS (renin-angiotensin system) may also act to prevent diabetes. Despite its long history, new components within the RAS continue to be discovered. Among them, Ang-(1-7) [angiotensin-(1-7)] has gained special attention as a counter-regulatory hormone opposing many of the AngII-related deleterious effects. Specifically, we and others have demonstrated that Ang-(1-7) improves the action of insulin and opposes the negative effect that AngII exerts at this level. In the present review, we provide evidence showing that insulin and Ang-(1-7) share a common intracellular signalling pathway. We also address the molecular mechanisms behind the beneficial effects of Ang-(1-7) on AngII-mediated insulin resistance. Finally, we discuss potential therapeutic approaches leading to modulation of the ACE2 (angiotensin-converting enzyme 2)/Ang-(1-7)/Mas receptor axis as a very attractive strategy in the therapy of the metabolic syndrome and diabetes-associated diseases.
Collapse
|
20
|
The effect of the intracerebroventricular injection of Ghrelin agonist on diabetes type 2 disease in male wistar rats. Int J Diabetes Dev Ctries 2013. [DOI: 10.1007/s13410-013-0165-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
21
|
Wang L, Leung PS. The role of renin-angiotensin system in cellular differentiation: implications in pancreatic islet cell development and islet transplantation. Mol Cell Endocrinol 2013; 381:261-71. [PMID: 23994025 DOI: 10.1016/j.mce.2013.08.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 08/15/2013] [Accepted: 08/16/2013] [Indexed: 01/02/2023]
Abstract
In addition to the well-characterized circulating renin-angiotensin system (RAS), local RAS has been identified recently in diverse tissues and organs. The presence of key components of the RAS in local tissues is important for our understanding of the patho-physiological mechanism(s) of several metabolic diseases, and may serve as a major therapeutic target for cardiometabolic syndromes. Locally generated and physiologically active RAS components have functions that are distinct from the classical vasoconstriction and fluid homeostasis actions of systemic RAS and cater specifically for local tissues. Local RAS can affect islet-cell function and structure in the adult pancreas as well as proliferation and differentiation of pancreatic stem/progenitor cells during development. Differentiation of stem/progenitor cells into insulin-expressing cells suitable for therapeutic transplantation offers a desperately needed new approach for replacement of glucose-responsive insulin producing cells in diabetic patients. Given that the generation of functional and transplantable islet cells has proven to be difficult, elucidation of RAS involvement in cellular regeneration and differentiation may propel pancreatic stem/progenitor cell development and thus β-cell regeneration forward. This review provides a critical appraisal of current research progress on the role of the RAS, including the newly characterized ACE2/Ang-(1-7)/Mas axis in the proliferation, differentiation, and maturation of pancreatic stem/progenitor cells. It is thus plausible to propose that the AT1 stimulation could be a repair mechanism involving the AT2R as well as the ACE2/Ang-(1-7)/Mas axis in directing β-cell development in diabetic patients using genetic and pharmaceutical manipulation of the RAS.
Collapse
Affiliation(s)
- Lin Wang
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | | |
Collapse
|
22
|
Chhabra KH, Chodavarapu H, Lazartigues E. Angiotensin converting enzyme 2: a new important player in the regulation of glycemia. IUBMB Life 2013; 65:731-8. [PMID: 23893738 DOI: 10.1002/iub.1190] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 05/28/2013] [Indexed: 12/14/2022]
Abstract
In spite of the novel antidiabetic drugs available on the market, type 2 diabetes mellitus (T2DM) affects nearly 25 million people in the USA and causes about 5% of all deaths globally each year. Given the rate and proportion by which T2DM is affecting human beings, it is indispensable to identify new therapeutic targets that can control the disease. Recent preclinical and clinical studies suggest that attenuating the activity of the renin-angiotensin system (RAS) could improve glycemia in diabetic patients. Angiotensin-converting enzyme 2 (ACE2) counteracts RAS overactivity by degrading angiotensin-II (Ang-II), a vasoconstrictor, to Ang-(1-7) which is a vasodilator. A decrease in ACE2 and an increase in A disintegrin and metalloproteinase (ADAM17)-mediated shedding activity have been observed with the progression of T2DM, suggesting the importance of this mechanism in the disease. Indeed, restoration of ACE2 improves glycemia in db/db and Ang-II-infused mice. The beneficial effects of ACE2 can be attributed to reduced oxidative stress and ADAM17 expression in the islets of Langerhans in addition to the improvement of blood flow to the β-cells. The advantage of ACE2 over other RAS blockers is that ACE2 not only counteracts the negative effects of Ang-II but also increases Ang-(1-7)/Mas receptor (MasR) [a receptor through which Ang-(1-7) produces its actions] signaling in the cells. Increased Ang-(1-7)/MasR signaling has been reported to improve insulin sensitivity and glycemia in diabetic animals. Altogether, ACE2/Ang-(1-7)/MasR axis of the RAS appears to be protective in T2DM and strategies to restore ACE2 levels in the disease seem to be a promising therapy for Ang-II-mediated T2DM.
Collapse
Affiliation(s)
- Kavaljit H Chhabra
- Department of Pharmacology and Experimental Therapeutics, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | | |
Collapse
|
23
|
Fetal sex and the circulating renin–angiotensin system during early gestation in women who later develop preeclampsia or gestational hypertension. J Hum Hypertens 2013; 28:133-9. [DOI: 10.1038/jhh.2013.51] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2012] [Revised: 04/28/2013] [Accepted: 05/06/2013] [Indexed: 11/08/2022]
|
24
|
Sykes SD, Pringle KG, Zhou A, Dekker GA, Roberts CT, Lumbers ER. The balance between human maternal plasma angiotensin II and angiotensin 1-7 levels in early gestation pregnancy is influenced by fetal sex. J Renin Angiotensin Aldosterone Syst 2013; 15:523-31. [DOI: 10.1177/1470320313477174] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
- Shane D Sykes
- Hunter Medical Research Institute, University of Newcastle, Australia
- Robinson Institute, University of Adelaide, Australia
| | - Kirsty G Pringle
- Hunter Medical Research Institute, University of Newcastle, Australia
| | - Ang Zhou
- Robinson Institute, University of Adelaide, Australia
| | - Gustaaf A Dekker
- Robinson Institute, University of Adelaide, Australia
- Women’s and Children’s Division, Lyell McEwin Hospital, Australia
| | | | - Eugenie R Lumbers
- Hunter Medical Research Institute, University of Newcastle, Australia
| | | |
Collapse
|
25
|
Marcinkevage JA, Narayan KMV. Gestational diabetes mellitus: taking it to heart. Prim Care Diabetes 2011; 5:81-88. [PMID: 21106447 DOI: 10.1016/j.pcd.2010.10.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 10/10/2010] [Indexed: 01/11/2023]
Abstract
Globally, cardiovascular disease (CVD) accounts for 1/3 of all deaths to women. While much research identifies the increased risk in CVD associated with pre-diabetes measurements, there is growing interest in the role of gestational diabetes mellitus (GDM)-a condition of glucose intolerance diagnosed during pregnancy-as a potential CVD risk factor. This article reviews existing evidence supporting this association, particularly regarding GDM and type 2 diabetes, hypertension, atherogenic dyslipedmia, and CVD events. Finally, it discusses the research and clinical ramifications of identifying GDM as a CVD risk factor, highlighting the need for more rigorous research on this topic.
Collapse
|
26
|
Schainberg A, Ribeiro-Oliveira Jr. A, Ribeiro JM. Is there a link between glucose levels and heart failure? An update. ACTA ACUST UNITED AC 2010; 54:488-97. [DOI: 10.1590/s0004-27302010000500010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2010] [Accepted: 05/01/2010] [Indexed: 12/21/2022]
Abstract
It has been well documented that there is an increased prevalence of standard cardiovascular (CV) risk factors in association with diabetes and with diabetes-related abnormalities. Hyperglycemia, in particular, also plays an important role. Heart failure (HF) has become a frequent manifestation of cardiovascular disease (CVD) among individuals with diabetes mellitus. Epidemiological studies suggest that the effect of hyperglycemia on HF risk is independent of other known risk factors. Analysis of datasets from populations including individuals with dysglycemia suggests the pathogenic role of hyperglycemia on left ventricular function and on the natural history of HF. Despite substantial epidemiological evidence of the relationship between diabetes and HF, data from available interventional trials assessing the effect of a glucose-lowering strategy on CV outcomes are limited. To provide some insight into these issues, we describe in this review the recent important data to understand the natural course of CV disease in diabetic individuals and the role of hyperglycemia at different times in the progression of HF.
Collapse
Affiliation(s)
- Arnaldo Schainberg
- Instituto de Previdência dos Servidores do Estado de Minas Gerais, Brazil
| | | | | |
Collapse
|
27
|
Ferrario CM, Ahmad S, Joyner J, Varagic J. Advances in the renin angiotensin system focus on angiotensin-converting enzyme 2 and angiotensin-(1-7). ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 59:197-233. [PMID: 20933203 PMCID: PMC5863743 DOI: 10.1016/s1054-3589(10)59007-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The contribution of the renin angiotensin system to physiology and pathology is undergoing a rapid reconsideration of its mechanisms from emerging new concepts implicating angiotensin-converting enzyme 2 and angiotensin-(1-7) as new elements negatively influencing the vasoconstrictor, trophic, and pro-inflammatory actions of angiotensin II. This component of the system acts to oppose the vasoconstrictor and proliferative effects on angiotensin II through signaling mechanisms mediated by the mas receptor. In addition, a reduced expression of the vasodepressor axis composed by angiotensin-converting enzyme 2 and angiotensin-(1-7) may contribute to the expression of essential hypertension, the remodeling of heart and renal function associated with this disease, and even the physiology of pregnancy and the development of eclampsia.
Collapse
Affiliation(s)
- Carlos M Ferrario
- Hypertension and Vascular Disease Research Center, Wake Forest University School of Medicine, Winston Salem, North Carolina, USA
| | | | | | | |
Collapse
|
28
|
Pereira RM, Santos RASD, Dias FLDC, Teixeira MM, Silva ACSE. Renin-angiotensin system in the pathogenesis of liver fibrosis. World J Gastroenterol 2009; 15:2579-2586. [PMID: 19496186 PMCID: PMC2691487 DOI: 10.3748/wjg.15.2579] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2008] [Revised: 05/05/2009] [Accepted: 05/12/2009] [Indexed: 02/06/2023] Open
Abstract
Hepatic fibrosis is considered a common response to many chronic hepatic injuries. It is a multifunctional process that involves several cell types, cytokines, chemokines and growth factors leading to a disruption of homeostatic mechanisms that maintain the liver ecosystem. In spite of many studies regarding the development of fibrosis, the understanding of the pathogenesis remains obscure. The hepatic tissue remodeling process is highly complex, resulting from the balance between collagen degradation and synthesis. Among the many mediators that take part in this process, the components of the Renin angiotensin system (RAS) have progressively assumed an important role. Angiotensin (Ang) II acts as a profibrotic mediator and Ang-(1-7), the newly recognized RAS component, appears to exert a counter-regulatory role in liver tissue. We briefly review the liver fibrosis process and current aspects of the RAS. This review also aims to discuss some experimental evidence regarding the participation of RAS mediators in the pathogenesis of liver fibrosis, focusing on the putative role of the ACE2-Ang-(1-7)-Mas receptor axis.
Collapse
|
29
|
Vilas-Boas WW, Ribeiro-Oliveira Jr A, Pereira RM, Ribeiro RDC, Almeida J, Nadu AP, Simões e Silva AC, Santos RASD. Relationship between angiotensin-(1-7) and angiotensin II correlates with hemodynamic changes in human liver cirrhosis. World J Gastroenterol 2009; 15:2512-9. [PMID: 19469002 PMCID: PMC2686910 DOI: 10.3748/wjg.15.2512] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To measure circulating angiotensins at different stages of human cirrhosis and to further evaluate a possible relationship between renin angiotensin system (RAS) components and hemodynamic changes.
METHODS: Patients were allocated into 4 groups: mild-to-moderate liver disease (MLD), advanced liver disease (ALD), patients undergoing liver transplantation, and healthy controls. Blood was collected to determine plasma renin activity (PRA), angiotensin (Ang) I, Ang II, and Ang-(1-7) levels using radioimmunoassays. During liver transplantation, hemodynamic parameters were determined and blood was simultaneously obtained from the portal vein and radial artery in order to measure RAS components.
RESULTS: PRA and angiotensins were elevated in ALD when compared to MLD and controls (P < 0.05). In contrast, Ang II was significantly reduced in MLD. Ang-(1-7)/Ang II ratios were increased in MLD when compared to controls and ALD. During transplantation, Ang II levels were lower and Ang-(1-7)/Ang II ratios were higher in the splanchnic circulation than in the peripheral circulation (0.52 ± 0.08 vs 0.38 ± 0.04, P < 0.02), whereas the peripheral circulating Ang II/Ang I ratio was elevated in comparison to splanchnic levels (0.18 ± 0.02 vs 0.13 ± 0.02, P < 0.04). Ang-(1-7)/Ang II ratios positively correlated with cardiac output (r = 0.66) and negatively correlated with systemic vascular resistance (r = -0.70).
CONCLUSION: Our findings suggest that the relationship between Ang-(1-7) and Ang II may play a role in the hemodynamic changes of human cirrhosis.
Collapse
|
30
|
Giani JF, Mayer MA, Muñoz MC, Silberman EA, Höcht C, Taira CA, Gironacci MM, Turyn D, Dominici FP. Chronic infusion of angiotensin-(1-7) improves insulin resistance and hypertension induced by a high-fructose diet in rats. Am J Physiol Endocrinol Metab 2009; 296:E262-71. [PMID: 19001546 DOI: 10.1152/ajpendo.90678.2008] [Citation(s) in RCA: 142] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The current study was undertaken to determine whether Ang-(1-7) is effective in improving metabolic parameters in fructose-fed rats (FFR), a model of metabolic syndrome. Six-week-old male Sprague-Dawley rats were fed either normal rat chow (control) or the same diet plus 10% fructose in drinking water. For the last 2 wk of a 6-wk period of either diet, control and FFR were implanted with subcutaneous osmotic pumps that delivered Ang-(1-7) (100 ng.kg(-1).min(-1)). A subgroup of each group of animals (control or FFR) underwent a sham surgery. We measured systolic blood pressure (SBP) together with plasma levels of insulin, triglycerides, and glucose. A glucose tolerance test (GTT) was performed, with plasma insulin levels determined before and 15 and 120 min after glucose administration. In addition, we evaluated insulin signaling through the IR/IRS-1/PI3K/Akt pathway as well as the phosphorylation levels of IRS-1 at inhibitory site Ser(307) in skeletal muscle and adipose tissue. FFR displayed hypertriglyceridemia, hyperinsulinemia, increased SBP, and an exaggerated release of insulin during a GTT, together with decreased activation of insulin signaling through the IR/IRS-1/PI3K/Akt pathway in skeletal muscle, liver, and adipose tissue, as well as increased levels of IRS-1 phospho-Ser(307) in skeletal muscle and adipose tissue, alterations that correlated with increased activation of the kinases mTOR and JNK. Chronic Ang-(1-7) treatment resulted in normalization of all alterations. These results show that Ang-(1-7) ameliorates insulin resistance in a model of metabolic syndrome via a mechanism that could involve the modulation of insulin signaling.
Collapse
Affiliation(s)
- Jorge F Giani
- IQUIFIB, Facultad de Farmacia y Bioquímica, Universidad de Buenos Aires, Junín 956, (1113) Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Vilas-Boas WW, Jr ARO, Ribeiro RDC, Vieira RLP, Almeida J, Nadu AP, Silva ACSE, Santos RAS. Effect of propranolol on the splanchnic and peripheral renin angiotensin system in cirrhotic patients. World J Gastroenterol 2008; 14:6824-30. [PMID: 19058308 PMCID: PMC2773877 DOI: 10.3748/wjg.14.6824] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To evaluate the effect of β-blockade on angiotensins in the splanchnic and peripheral circulation of cirrhotic patients and also to compare hemodynamic parameters during liver transplantation according to propranolol pre-treatment or not.
METHODS: Patients were allocated into two groups: outpatients with advanced liver disease(LD) and during liver transplantation(LT). Both groups were subdivided according to treatment with propranolol or not. Plasma was collected through peripheral venipuncture to determine plasma renin activity(PRA), Angiotensin(Ang) I, Ang II, and Ang-(1-7) levels by radioimmunoassay in LD group. During liver transplantation, hemodynamic parameters were determined and blood samples were obtained from the portal vein to measure renin angiotensin system(RAS) components.
RESULTS: PRA, Ang I, Ang II and Ang-(1-7) were significantly lower in the portal vein and periphery in all subgroups treated with propranolol as compared to non-treated. The relationships between Ang-(1-7) and Ang I levels and between Ang II and Ang I were significantly increased in LD group receiving propranolol. The ratio between Ang-(1-7) and Ang II remained unchanged in splanchnic and peripheral circulation in patients under β-blockade, whereas the relationship between Ang II and Ang I was significantly increased in splanchnic circulation of LT patients treated with propranolol. During liver transplantation, cardiac output and index as well systemic vascular resistance and index were reduced in propranolol-treated subgroup.
CONCLUSION: In LD group, propranolol treatment reduced RAS mediators, but did not change the ratio between Ang-(1-7) and Ang II in splanchnic and peripheral circulation. Furthermore, the modification of hemodynamic parameters in propranolol treated patients was not associated with changes in the angiotensin ratio.
Collapse
|
32
|
Leandro SM, Furukawa LNS, Shimizu MHM, Casarini DE, Seguro AC, Patriarca G, Coelho MS, Dolnikoff MS, Heimann JC. Low birth weight in response to salt restriction during pregnancy is not due to alterations in uterine-placental blood flow or the placental and peripheral renin-angiotensin system. Physiol Behav 2008; 95:145-51. [PMID: 18572207 DOI: 10.1016/j.physbeh.2008.05.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2007] [Revised: 05/12/2008] [Accepted: 05/13/2008] [Indexed: 11/25/2022]
Abstract
A number of studies conducted in humans and in animals have observed that events occurring early in life are associated with the development of diseases in adulthood. Salt overload and restriction during pregnancy and lactation are responsible for functional (hemodynamic and hormonal) and structural alterations in adult offspring. Our group observed that lower birth weight and insulin resistance in adulthood is associated with salt restriction during pregnancy. On the other hand, perinatal salt overload is associated with higher blood pressure and higher renal angiotensin II content in adult offspring. Therefore, we hypothesised that renin-angiotensin system (RAS) function is altered by changes in sodium intake during pregnancy. Such changes may influence fetoplacental blood flow and thereby fetal nutrient supply, with effects on growth in utero and, consequently, on birth weight. Female Wistar rats were fed low-salt (LS), normal-salt (NS), or high-salt (HS) diet, starting before conception and continuing until day 19 of pregnancy. Blood pressure, heart rate, fetuses and dams' body weight, placentae weight and litter size were measured on day 19 of pregnancy. Cardiac output, uterine and placental blood flow were also determined on day 19. Expressions of renin-angiotensin system components and of the TNF-alpha gene were evaluated in the placentae. Plasma renin activity (PRA) and plasma and tissue angiotensin-converting enzyme (ACE) activity, as well as plasma and placental levels of angiotensins I, II, and 1-7 were measured. Body weight and kidney mass were greater in HS than in NS and LS dams. Food intake did not differ among the maternal groups. Placental weight was lower in LS dams than in NS and HS dams. Fetal weight was lower in the LS group than in the NS and HS groups. The PRA was greater in LS dams than in NS and HS dams, although ACE activity (serum, cardiac, renal, and placental) was unaffected by the level of sodium intake. Placental levels of angiotensins I and II were lower in the HS group than in the NS and LS groups. Placental angiotensin receptor type 1 (AT(1)) gene expression and levels of thiobarbituric acid reactive substances (TBARS) were higher in HS dams, as were uterine blood flow and cardiac output. The degree of salt intake did not influence plasma sodium, potassium or creatinine. Although fractional sodium excretion was higher in HS dams than in NS and LS dams, fractional potassium excretion was unchanged. In conclusion, findings from this study indicate that the reduction in fetal weight in response to salt restriction during pregnancy does not involve alterations in uterine-placental perfusion or the RAS. Moreover, no change in fetal weight is observed in response to salt overload during pregnancy. However, salt overload did lead to an increase in placental weight and uterine blood flow associated with alterations in maternal plasma and placental RAS. Therefore, these findings indicate that changes in salt intake during pregnancy lead to alterations in uterine-placental perfusion and fetal growth.
Collapse
Affiliation(s)
- Sandra Márcia Leandro
- Department of Internal Medicine, Laboratory of Experimental Hypertension, University of São Paulo School of Medicine, São Paulo, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|