1
|
de Assis E, Azevedo V, de Lima M, Costa F, Paulino L, Barroso P, Matos M, do Monte A, Donato M, Peixoto C, Godinho A, Freire J, Souza A, Silva J, Silva A. Extract of Cimicifuga racemosa (L.) Nutt protects ovarian follicle reserve of mice against in vitro deleterious effects of dexamethasone. Braz J Med Biol Res 2023; 56:e12811. [PMID: 37792779 PMCID: PMC10515502 DOI: 10.1590/1414-431x2023e12811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/10/2023] [Indexed: 10/06/2023] Open
Abstract
The present study aims to investigate if Cimicifuga racemosa (L.) Nutt extract (CIMI) reduces deleterious effects of dexamethasone (DEXA) in ovaries cultured in vitro. Mouse ovaries were collected and cultured in DMEM+ only or supplemented with 5 ng/mL of CIMI, or 4 ng/mL DEXA, or both CIMI and DEXA. The ovaries were cultured at 37.5°C in 5% CO2 for 6 days. Ovarian morphology, follicular ultrastructure, and the levels of mRNA for Bax, Bcl-2, and Caspase-3 were evaluated. The results showed that DEXA reduced the percentage of morphologically normal follicles, while CIMI prevented the deleterious effects caused by DEXA. In addition, DEXA negatively affected the stromal cellular density, while CIMI prevented these adverse effects. Ovaries cultured with DEXA and CIMI showed similar levels of mRNA for Bax, Bcl-2, and Caspase-3 compared to those cultured in control medium, while ovaries cultured with DEXA had increased expression of the above genes. Additionally, the ultrastructure of the ovaries cultured with CIMI was well preserved. Thus, the extract of CIMI was able to prevent the deleterious effects caused by DEXA on cultured mouse ovaries.
Collapse
Affiliation(s)
- E.I.T. de Assis
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - V.A.N. Azevedo
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - M.F. de Lima
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - F.C. Costa
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - L.R.F.M. Paulino
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - P.A.A. Barroso
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - M.H.T. Matos
- Núcleo de Biotecnologia Aplicada ao Desenvolvimento do Folículo Ovariano, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brasil
| | - A.P.O. do Monte
- Núcleo de Biotecnologia Aplicada ao Desenvolvimento do Folículo Ovariano, Universidade Federal do Vale do São Francisco, Petrolina, PE, Brasil
| | - M.A.M. Donato
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM)/FIOCRUZ, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - C.A. Peixoto
- Laboratório de Ultraestrutura, Centro de Pesquisas Aggeu Magalhães (CPqAM)/FIOCRUZ, Universidade Federal de Pernambuco, Recife, PE, Brasil
| | - A.N. Godinho
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - J.M.O. Freire
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - A.L.P. Souza
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - J.R.V. Silva
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| | - A.W.B. Silva
- Laboratório de Biotecnologia e Fisiologia da Reprodução, Universidade Federal do Ceará, Sobral, CE, Brasil
- Núcleo de Pesquisa em Experimentação Animal, Universidade Federal do Ceará, Sobral, CE, Brasil
| |
Collapse
|
2
|
Andrews CJ, Yapura J, Potter MA, McGlade K, Thomas DG. Prolonged glucocorticoid administration affects oocyte morphology in cats (Felis catus) undergoing an ovarian stimulation protocol. Theriogenology 2023; 208:77-87. [PMID: 37302246 DOI: 10.1016/j.theriogenology.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/24/2023] [Accepted: 05/25/2023] [Indexed: 06/13/2023]
Abstract
While captivity-related stress and the associated rise in baseline glucocorticoid (GC) concentrations have been linked to ovarian quiescence in some felid species, no study has examined the effects of elevated GC on oocyte quality. This study examined the effects of exogenous GC administration on the ovarian response and oocyte quality of domestic cats after an ovarian stimulation protocol. Entire mature female cats were divided into treatment (n = 6) and control (n = 6) groups. Cats in the GC treatment (GCT) group were given 1 mg kg-1 oral prednisolone daily from Day 0-45. All cats (n = 12) were given 0.088 mg kg-1 day-1 progesterone orally from Day 0-37, before treatment with 75 IU eCG im to induce follicular growth on Day 40, followed by 50 IU hCG im 80 h later to induce ovulation. Cats were ovariohysterectomised 30 h after the hCG treatment. Blood samples were collected on Days 0, 10, 30 and 40 (prior to eCG treatment), 80 h after eCG treatment, and on Day 45 for cortisol, glucose, prednisolone, oestradiol, and progesterone analysis. Cortisol concentrations did not differ between treatment groups throughout the study. Mean glucose concentrations were higher in the GCT cats (P = 0.004). Prednisolone was undetectable in all samples. Oestradiol and progesterone concentrations confirmed that the eCG treatment stimulated follicular activity and ovulation in all cats. Following ovariohysterectomy, the ovarian responses were graded (1 = excellent, 4 = poor) and oocytes retrieved from the oviducts. Each oocyte was given a total oocyte score (TOS: using an 9-point scale, 8 = best) based on four parameters: oocyte morphology, size, ooplasm uniformity and granularity, and zona pellucida (ZP) thickness and variation. Ovulation was confirmed in all cats, with a mean of 10.5 ± 1.1 ovulations per cat. Ovarian mass, ovarian response, number of ovulations, and oocyte recovery did not differ between groups. Oocyte diameter did not differ between the groups, but the ZP was thinner in the GCT group (3.1 ± 0.3 μm vs. 4.1 ± 0.3 μm, P = 0.03). The TOS was similar between treatment and control cats, but the ooplasm grade was lower (1.5 ± 0.1 vs. 1.9 ± 0.1, P = 0.01) and there was a tendency for ZP grade to be poorer (0.8 ± 0.1 vs. 1.2 ± 0.2; P = 0.08) in the treatment group. In conclusion, the GC treatment resulted in morphological changes to oocytes collected following ovarian stimulation. Whether these changes would affect fertility warrants further investigation.
Collapse
Affiliation(s)
- Christopher J Andrews
- Animal Science Group, School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand.
| | - Jimena Yapura
- School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand.
| | - Murray A Potter
- Wildlife and Ecology Group, School of Natural Sciences, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand.
| | - Kevanne McGlade
- School of Veterinary Science, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand.
| | - David G Thomas
- Animal Science Group, School of Agriculture and Environment, Massey University, Private Bag 11-222, Palmerston North, 4442, New Zealand.
| |
Collapse
|
3
|
Bhaumik S, Lockett J, Cuffe J, Clifton VL. Glucocorticoids and Their Receptor Isoforms: Roles in Female Reproduction, Pregnancy, and Foetal Development. BIOLOGY 2023; 12:1104. [PMID: 37626990 PMCID: PMC10452123 DOI: 10.3390/biology12081104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 08/04/2023] [Accepted: 08/07/2023] [Indexed: 08/27/2023]
Abstract
Alterations in the hypothalamic-pituitary-adrenal (HPA) axis and associated changes in circulating levels of glucocorticoids are integral to an organism's response to stressful stimuli. Glucocorticoids acting via glucocorticoid receptors (GRs) play a role in fertility, reproduction, placental function, and foetal development. GRs are ubiquitously expressed throughout the female reproductive system and regulate normal reproductive function. Stress-induced glucocorticoids have been shown to inhibit reproduction and affect female gonadal function by suppressing the hypothalamic-pituitary-gonadal (HPG) axis at each level. Furthermore, during pregnancy, a mother's exposure to prenatal stress or external glucocorticoids can result in long-lasting alterations to the foetal HPA and neuroendocrine function. Several GR isoforms generated via alternative splicing or translation initiation from the GR gene have been identified in the mammalian ovary and uterus. The GR isoforms identified include the splice variants, GRα and GRβ, and GRγ and GR-P. Glucocorticoids can exert both stimulatory and inhibitory effects and both pro- and anti-inflammatory functions in the ovary, in vitro. In the placenta, thirteen GR isoforms have been identified in humans, guinea pigs, sheep, rats, and mice, indicating they are conserved across species and may be important in mediating a differential response to stress. Distinctive responses to glucocorticoids, differential birth outcomes in pregnancy complications, and sex-based variations in the response to stress could all potentially be dependent on a particular GR expression pattern. This comprehensive review provides an overview of the structure and function of the GR in relation to female fertility and reproduction and discusses the changes in the GR and glucocorticoid signalling during pregnancy. To generate this overview, an extensive non-systematic literature search was conducted across multiple databases, including PubMed, Web of Science, and Google Scholar, with a focus on original research articles, meta-analyses, and previous review papers addressing the subject. This review integrates the current understanding of GR variants and their roles in glucocorticoid signalling, reproduction, placental function, and foetal growth.
Collapse
Affiliation(s)
- Sreeparna Bhaumik
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane 4067, Australia; (S.B.); (J.L.)
| | - Jack Lockett
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane 4067, Australia; (S.B.); (J.L.)
- Department of Diabetes and Endocrinology, Princess Alexandra Hospital, Metro South Health, Brisbane 4102, Australia
| | - James Cuffe
- School of Biomedical Sciences, The University of Queensland, Brisbane 4067, Australia;
| | - Vicki L. Clifton
- Mater Research Institute, Faculty of Medicine, The University of Queensland, Brisbane 4067, Australia; (S.B.); (J.L.)
| |
Collapse
|
4
|
Zhao C, Biondic S, Vandal K, Björklund ÅK, Hagemann-Jensen M, Sommer TM, Canizo J, Clark S, Raymond P, Zenklusen DR, Rivron N, Reik W, Petropoulos S. Single-cell multi-omics of human preimplantation embryos shows susceptibility to glucocorticoids. Genome Res 2022; 32:1627-1641. [PMID: 35948369 PMCID: PMC9528977 DOI: 10.1101/gr.276665.122] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 08/04/2022] [Indexed: 11/25/2022]
Abstract
The preconceptual, intrauterine, and early life environments can have a profound and long-lasting impact on the developmental trajectories and health outcomes of the offspring. Given the relatively low success rates of assisted reproductive technologies (ART; ∼25%), additives and adjuvants, such as glucocorticoids, are used to improve the success rate. Considering the dynamic developmental events that occur during this window, these exposures may alter blastocyst formation at a molecular level, and as such, affect not only the viability of the embryo and the ability of the blastocyst to implant, but also the developmental trajectory of the first three cell lineages, ultimately influencing the physiology of the embryo. In this study, we present a comprehensive single-cell transcriptome, methylome, and small RNA atlas in the day 7 human embryo. We show that, despite no change in morphology and developmental features, preimplantation glucocorticoid exposure reprograms the molecular profile of the trophectoderm (TE) lineage, and these changes are associated with an altered metabolic and inflammatory response. Our data also suggest that glucocorticoids can precociously mature the TE sublineages, supported by the presence of extravillous trophoblast markers in the polar sublineage and presence of X Chromosome dosage compensation. Further, we have elucidated that epigenetic regulation-DNA methylation and microRNAs (miRNAs)-likely underlies the transcriptional changes observed. This study suggests that exposures to exogenous compounds during preimplantation may unintentionally reprogram the human embryo, possibly leading to suboptimal development and longer-term health outcomes.
Collapse
Affiliation(s)
- Cheng Zhao
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
| | - Savana Biondic
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Katherine Vandal
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Åsa K Björklund
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, SE-752 37 Uppsala, Sweden
| | | | - Theresa Maria Sommer
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Jesica Canizo
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Stephen Clark
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
| | - Pascal Raymond
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Daniel R Zenklusen
- Département de Biochimie et Médecine Moléculaire, Université de Montréal, H3T 1J4 Montréal, Canada
| | - Nicolas Rivron
- Institute of Molecular Biotechnology of the Austrian Academy of Sciences (IMBA), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Wolf Reik
- Epigenetics Programme, Babraham Institute, Cambridge CB22 3AT, United Kingdom
- Wellcome Sanger Institute, Cambridge CB10 1RQ, United Kingdom
- Center for Trophoblast Research, University of Cambridge, Cambridge CB2 3EG, United Kingdom
| | - Sophie Petropoulos
- Department of Clinical Science, Intervention and Technology, Division of Obstetrics and Gynecology, Karolinska Institutet, 14186 Stockholm, Sweden
- Centre de Recherche du Centre Hospitalier de l'Université de Montréal, Axe Immunopathologie, H2X 0A9 Montréal, Canada
- Département de Médecine, Université de Montréal, H3T 1J4 Montréal, Canada
| |
Collapse
|
5
|
González R, Pericuesta E, Gutiérrez-Adán A, Sjunnesson YCB. Effect of an altered hormonal environment by blood plasma collected after adrenocorticotropic administration on embryo development and gene expression in porcine embryos. Theriogenology 2020; 162:15-21. [PMID: 33388725 DOI: 10.1016/j.theriogenology.2020.11.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/17/2020] [Accepted: 11/19/2020] [Indexed: 01/17/2023]
Abstract
Early embryonic development may be affected by adrenal hyperactivity in stressful situations which may lead to endocrine changes in the embryo environment. A sensitive period in porcine embryo development is the 4-cell stage when the embryo genome activation occurs. A mixed in vivo-in vitro system was implemented to test whether an altered milieu around this stage could affect embryo development and blastocyst quality in the porcine model. After in vitro maturation and fertilisation, presumptive zygotes were exposed for 24 h to plasma collected after ovulation from adrenocorticotropic hormone (ACTH)-treated, non-ACTH-treated sows; and, medium without plasma, supplemented with bovine serum albumin. Subsequently, embryo development and differences in gene expression were tested among treatments. Cleavage and blastocyst rates did not differ between treatments. Blastocyst quality by morphology assessment was similar when all the resulting blastocysts were included in the analysis. However, when only expanded blastocysts (and onwards) were included in the analysis, the blastocysts from the non-ACTH plasma group showed better quality score. Blastocyst quality by morphological assessment was not mirrored by the transcription levels of various important genes for embryo development whose gene expression profile did not significantly differ among groups. It is likely that the effect of the altered environment provided by plasma from ACTH-treated sows was too short to affect embryo development. Therefore, a brief exposure to an altered endocrine environment may not have harmful consequences for the embryo once fertilisation occurs.
Collapse
Affiliation(s)
- Raquel González
- Department of Clinical Sciences, Reproduction. the Centre for Reproductive Biology in Uppsala (CRU), Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences (SLU), P.O. Box 7054, SE-750 07, Uppsala, Sweden.
| | - Eva Pericuesta
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de La Coruña, Km 5.9, 28040, Madrid, Spain
| | - Alfonso Gutiérrez-Adán
- Departamento de Reproducción Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Ctra de La Coruña, Km 5.9, 28040, Madrid, Spain
| | - Ylva C B Sjunnesson
- Department of Clinical Sciences, Reproduction. the Centre for Reproductive Biology in Uppsala (CRU), Faculty of Veterinary Medicine and Animal Sciences, Swedish University of Agricultural Sciences (SLU), P.O. Box 7054, SE-750 07, Uppsala, Sweden
| |
Collapse
|
6
|
Zhao X, Ma R, Zhang X, Cheng R, Jiang N, Guo M, Rong B, Liu Y, Chen M, Feng W, Xia T. Reduced growth capacity of preimplantation mouse embryos in chronic unpredictable stress model. Mol Reprod Dev 2020; 88:80-95. [PMID: 33216405 DOI: 10.1002/mrd.23439] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/04/2020] [Accepted: 11/08/2020] [Indexed: 12/19/2022]
Abstract
Psychological stress can affect female reproduction by deteriorating oocyte quality, but the molecular mechanism is unclear. In this study, we used the chronic unpredictable stress model to study the effect of psychological stress on mouse oocyte competence during preimplantation stage, and RNA sequencing in single oocytes to analyze differential gene expression at the transcription level. Stress changed the serum levels of glucocorticoids and reduced oocyte developmental potential, depending on the strength of the stress. Strong stress (two stressors per day) reduced the fertilization rate and induced significant apoptosis in blastocysts. Moderate stress (one stressor per day) reduced the cleavage rate and blastocyst formation rate. Weak stress (one stressor every 2 days) did not have any significant negative effect on the fertilization, cleavage, and blastocyst formation. Hatching rate was not affected by stress, but stress retarded the development of the expanded blastocysts and inhibited the embryo development at early stages. Transcriptome analysis revealed that stress disturbed the expression of cell cycle regulators and apoptotic genes. The hub genes identified through protein-protein interaction analysis include Msln, Ceacam12, Psg16, Psg17, and Psg23, which are all carcinoembryonic or related genes involved in cell adhesion, proliferation, and migration. Thus, stress was inhibitory on fertilization and early embryo development in mice.
Collapse
Affiliation(s)
- Xiaoli Zhao
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ruihong Ma
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoyu Zhang
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Rui Cheng
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Nan Jiang
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mengjia Guo
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Beilei Rong
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yan Liu
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Mingli Chen
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Weihua Feng
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Tian Xia
- Reproductive Center, First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Effects of dexamethasone on growth, viability and ultrastructure of bovine secondary follicles cultured in vitro. ZYGOTE 2020; 28:504-510. [PMID: 32847639 DOI: 10.1017/s0967199420000416] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
This study aimed to evaluate the effects of dexamethasone on development, viability, antrum formation and ultrastructural integrity of bovine secondary follicles cultured in vitro for 18 days. Bovine ovaries were obtained from slaughterhouses and secondary follicles of ~150-200 µm diameter were isolated and cultured in the laboratory in TCM-199+ alone or supplemented with different concentrations of dexamethasone (1, 10, 100 and 1000 ng/ml). Follicle viability was evaluated after the culture period, using calcein-AM (viable) and ethidium homodimer (nonviable). Follicle diameters and antrum formation were evaluated at days 0, 6, 12 and 18. Before or after in vitro culture, follicles were fixed for histological and ultrastructural analysis. Follicle diameters were evaluated using analysis of variance and Kruskal-Wallis test, while chi-squared test was used to evaluate the percentage of viable follicles and antrum formation (P < 0.05). Follicles cultured for 6 days with all treatments increased their diameters significantly, but there was no significant difference between treatments at the end of the culture period. In vitro cultured follicles showed antral cavity formation at the end of the culture period, but no influence of dexamethasone was seen. Ultrastructural analysis showed that follicles cultured with dexamethasone (1, 10, 100 and 1000 ng/ml) had well preserved granulosa cells. However, oocytes from follicles cultured with 10, 100 or 1000 ng/ml dexamethasone showed signs of degeneration. It can be concluded that follicles cultured in vitro in the presence of dexamethasone demonstrated continuous in vitro growth, but oocytes from follicles cultured with 10, 100 or 1000 ng/ml dexamethasone had poor ultrastructure.
Collapse
|
8
|
Rozkova I, Brusentsev E, Igonina T, Ragaeva D, Petrova O, Tikhonova MA, Akopyan AA, Amstislavskaya TG, Antonov YV, Amstislavsky S. Sham surgical embryo transfer affects offspring neurodevelopment and manifestation of hypertensive phenotype in ISIAH rats. Hypertens Pregnancy 2020; 39:283-294. [PMID: 32400240 DOI: 10.1080/10641955.2020.1762894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 04/25/2020] [Indexed: 10/24/2022]
Abstract
The study investigates how surgery during pregnancy, i.e., sham operation associated with embryo transfer, affects hypertensive phenotype in ISIAH rats genetically predisposed to hypertension. ISIAH rats born after maternal surgery at fourth day of pregnancy were compared with naturally conceived controls. Surgery during pregnancy in ISIAH rats caused acceleration of neurodevelopment in young offspring, as well as aggravating hypertension, suppressing exploratory activity, reducing hippocampal BDNF expression, and compensatory increasing of hippocampal neuronal density in adult ISIAH offspring. Maternal surgery during early pregnancy caused alterations in offspring phenotype in hypertensive ISIAH rat model.
Collapse
Affiliation(s)
- Irina Rozkova
- Department of Animal Genetics, Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics" , Novosibirsk, Russia
| | - Eugeny Brusentsev
- Department of Animal Genetics, Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics" , Novosibirsk, Russia
| | - Tatyana Igonina
- Department of Animal Genetics, Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics" , Novosibirsk, Russia
| | - Diana Ragaeva
- Department of Animal Genetics, Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics" , Novosibirsk, Russia
| | - Olga Petrova
- Department of Animal Genetics, Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics" , Novosibirsk, Russia
| | - Maria A Tikhonova
- Department of Experimental Neuroscience, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" , Novosibirsk, Russia
| | - Anna A Akopyan
- Department of Experimental Neuroscience, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" , Novosibirsk, Russia
| | - Tamara G Amstislavskaya
- Department of Experimental Neuroscience, Federal State Budgetary Scientific Institution "Scientific Research Institute of Physiology and Basic Medicine" , Novosibirsk, Russia
| | - Yegor V Antonov
- Department of Animal Genetics, Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics" , Novosibirsk, Russia
| | - Sergey Amstislavsky
- Department of Animal Genetics, Federal State Budgetary Scientific Institution "Federal Research Center Institute of Cytology and Genetics" , Novosibirsk, Russia
| |
Collapse
|
9
|
Čikoš Š, Babeľová J, Špirková A, Burkuš J, Kovaříková V, Šefčíková Z, Fabian D, Koppel J. Glucocorticoid receptor isoforms and effects of glucocorticoids in ovulated mouse oocytes and preimplantation embryos†. Biol Reprod 2020; 100:351-364. [PMID: 30188986 DOI: 10.1093/biolre/ioy196] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Revised: 08/06/2018] [Accepted: 09/04/2018] [Indexed: 12/14/2022] Open
Abstract
To investigate possible involvement of glucocorticoid receptor (GR) in mediating effects of maternal stress or therapeutically administered glucocorticoids on early embryo, we analyzed the expression of GR subtypes in ovulated mouse oocytes and preimplantation embryos. RT-PCR analysis results showed that GRα and GRγ transcripts are relatively highly expressed in mouse oocytes, and both transcripts are present at lower amounts in preimplantation embryos. We also detected low expression of two other splice variants, GRβ and a transcript orthologous to the human GR-P subtype, mainly at the blastocyst stage. Using western blot analysis, we detected several GR protein bands that differed in size between oocytes and preimplantation embryos. To compare the effects of corticosterone (a major endogenous glucocorticoid in rodents) and dexamethasone (a synthetic glucocorticoid) on early embryos, we cultured mouse preimplantation embryos in the presence of these glucocorticoids. Corticosterone showed a strong inhibitory effect on embryo development (starting from a 50 μM concentration), without a significant influence on apoptosis incidence. On the other hand, dexamethasone induced apoptosis in early embryo cells (starting from a 1.5 μM concentration), and its effect on embryo development was less detrimental than that found with the same dose of corticosterone. In summary, our results showed that different GR subtypes are expressed in ovulated mouse oocytes and preimplantation embryos and that the composition of GR subtypes changes during early embryo development. Moreover, we found significant differences in the effects of the two glucocorticoids on early embryo development, which might be associated with activation of different GR subtypes.
Collapse
Affiliation(s)
- Štefan Čikoš
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Janka Babeľová
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Alexandra Špirková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Ján Burkuš
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Veronika Kovaříková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Zuzana Šefčíková
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Dušan Fabian
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| | - Juraj Koppel
- Institute of Animal Physiology, Centre of Biosciences of the Slovak Academy of Sciences, Šoltésovej, Košice, Slovakia
| |
Collapse
|
10
|
Sominsky L, Hodgson DM, McLaughlin EA, Smith R, Wall HM, Spencer SJ. Linking Stress and Infertility: A Novel Role for Ghrelin. Endocr Rev 2017; 38:432-467. [PMID: 28938425 DOI: 10.1210/er.2016-1133] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 07/24/2017] [Indexed: 12/23/2022]
Abstract
Infertility affects a remarkable one in four couples in developing countries. Psychological stress is a ubiquitous facet of life, and although stress affects us all at some point, prolonged or unmanageable stress may become harmful for some individuals, negatively impacting on their health, including fertility. For instance, women who struggle to conceive are twice as likely to suffer from emotional distress than fertile women. Assisted reproductive technology treatments place an additional physical, emotional, and financial burden of stress, particularly on women, who are often exposed to invasive techniques associated with treatment. Stress-reduction interventions can reduce negative affect and in some cases to improve in vitro fertilization outcomes. Although it has been well-established that stress negatively affects fertility in animal models, human research remains inconsistent due to individual differences and methodological flaws. Attempts to isolate single causal links between stress and infertility have not yet been successful due to their multifaceted etiologies. In this review, we will discuss the current literature in the field of stress-induced reproductive dysfunction based on animal and human models, and introduce a recently unexplored link between stress and infertility, the gut-derived hormone, ghrelin. We also present evidence from recent seminal studies demonstrating that ghrelin has a principal role in the stress response and reward processing, as well as in regulating reproductive function, and that these roles are tightly interlinked. Collectively, these data support the hypothesis that stress may negatively impact upon fertility at least in part by stimulating a dysregulation in ghrelin signaling.
Collapse
Affiliation(s)
- Luba Sominsky
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Deborah M Hodgson
- School of Psychology, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Eileen A McLaughlin
- School of Biological Sciences, Faculty of Science, The University of Auckland, Auckland 1010, New Zealand.,School of Environmental & Life Sciences, Faculty of Science and IT, The University of Newcastle, New South Wales 2308, Australia
| | - Roger Smith
- Mothers and Babies Research Centre, Hunter Medical Research Institute, Lookout Road, New Lambton Heights, New South Wales 2305, Australia.,Priority Research Centre in Reproductive Science, The University of Newcastle, New South Wales 2308, Australia
| | - Hannah M Wall
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| | - Sarah J Spencer
- School of Health and Biomedical Sciences, RMIT University, Melbourne, Victoria 3083, Australia
| |
Collapse
|
11
|
Roh S, Kim SW, Jung YG, Park JI. Improvement of pregnancy rate by intrauterine administration of dexamethasone and recombinant human leukemia inhibitory factor at the time of embryo transfer in cattle. J Vet Sci 2017; 17:569-576. [PMID: 27030197 PMCID: PMC5204036 DOI: 10.4142/jvs.2016.17.4.569] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 01/28/2016] [Accepted: 03/04/2016] [Indexed: 01/09/2023] Open
Abstract
Bovine embryos (day 5) were cultured to day 10 with or without 100 ng/mL PGF2α in medium supplemented with control; 100 nM Dex; 1,000 U/mL recombinant human leukemia inhibitory factor (rhLIF); or Dex+rhLIF. Although the rates to development to the blastocyst were not significantly different among groups, the hatching rate after additional culture with Dex +/or rhLIF was significantly higher in all supplemented groups than the control (p < 0.05). In the presence of PGF2α, the hatching rate was significantly restored in all supplemented groups relative to the group treated with only PGF2α and the control (p < 0.05). Embryo transfer (ET) was performed with blastocysts (day 7). PGF2α levels of control recipient cows were significantly higher in the circulatory blood samples collected 60 min after ET than in samples collected 60 min before ET (p < 0.005), and were decreased in cows injected with loading medium supplemented with Dex+rhLIF (p < 0.005). Pregnancy rate was significantly higher in the ET group that received supplemented embryo-loading medium than in the non-supplemented control (p < 0.05). The intrauterine administration of Dex and rhLIF at ET prevented increased PGF2α in circulatory blood and resulted in enhanced pregnancy rate.
Collapse
Affiliation(s)
- Sangho Roh
- School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea
| | - Se-Woong Kim
- School of Dentistry and Dental Research Institute, Seoul National University, Seoul 03080, Korea
| | | | - Jong-Im Park
- Department of Theriogenology, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
12
|
Kadam KM, Mande PV, Gawas N, Ahire S, Khole LVV. Autoantibodies to Heat-Shock Protein, HSPA5, and Epitope Spreading: High-Dose Dexamethasone Therapy Rescues Ovarian Function in Experimental Autoimmune Ovarian Insufficiency Mouse Model. Am J Reprod Immunol 2016; 75:580-93. [PMID: 26840828 DOI: 10.1111/aji.12494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Accepted: 01/05/2016] [Indexed: 11/27/2022] Open
Abstract
PROBLEM Role of autoantibodies to heat-shock protein 70 isoform, HSPA5, both alone or in combination with other antigenic peptides in epitope spreading and effect of high-dose dexamethasone to overcome this. METHOD OF STUDY Experimental autoimmune premature ovarian insufficiency mouse model generated by immunization with immunodominant epitopes of HSPA5 alone or in combination with other antigenic peptides. Two doses of dexamethasone treatment are given to the latter group. Immunosorbent assay and Western blot analysis were undertaken to detect cross-reactivity. Hormonal estimations, histological evaluation, and fertility studies were performed to assess treatment efficacy. RESULTS One of the immunodominant epitopes of HSPA5 led to epitope spreading. Of the two doses, 100 mg was more effective in rescuing fertility. CONCLUSIONS We postulate that the shared immunodominant peptide could be included in a peptide array to detect both HSAP5 and HSP90β autoantibodies for early diagnosis or prognosis of aPOI and customized glucocorticoid therapy for such subjects.
Collapse
Affiliation(s)
- Kaushiki M Kadam
- Department of Gamete Immunobiology, National Institute for Research in Reproductive Health, Mumbai, India
| | - Purvi V Mande
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Nilesh Gawas
- Department of Gamete Immunobiology, National Institute for Research in Reproductive Health, Mumbai, India
| | - Sarika Ahire
- Department of Gamete Immunobiology, National Institute for Research in Reproductive Health, Mumbai, India
| | - Late Vrinda V Khole
- Department of Gamete Immunobiology, National Institute for Research in Reproductive Health, Mumbai, India
| |
Collapse
|
13
|
Tetsuka M, Takagi R, Ambo N, Myat TS, Zempo Y, Onuma A. Glucocorticoid metabolism in the bovine cumulus-oocyte complex matured in vitro. Reproduction 2015; 151:73-82. [PMID: 26519454 DOI: 10.1530/rep-15-0363] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Accepted: 10/30/2015] [Indexed: 11/08/2022]
Abstract
Glucocorticoid action in target organs is regulated by relative activities of 11β-HSD type 1 (HSD11B1) that mainly converts cortisone to active cortisol and type 2 (HSD11B2) that inactivates cortisol to cortisone. HSD11Bs have been shown to be expressed in the ovary of various species. However, little is known about the expression and activity of HSD11Bs in the bovine cumulus-oocyte complex (COC). In the present study, we investigated the expression and activities of HSD11Bs in in vitro-matured (IVM) bovine COCs. Bovine COCs were matured in M199 supplemented with or without FSH and FCS. The expression of HSD11B1 and HSD11B2 was measured by using quantitative RT-PCR in denuded oocytes (DO) and cumulus cells (CC). Reductive and oxidative activities of HSD11Bs were determined by radiometric conversion assay using labeled cortisol, cortisone or dexamethasone in intact COCs, DO or CC in the presence or absence of 11-keto-progesterone (11kP), a selective inhibitor of HSD11B2. The presence of HSD11Bs in the oocyte was examined by immunofluorescence microscopy. Oocytes exclusively expressed HSD11B2 and its expression and activity were largely unchanged during IVM. CC, on the other hand, exclusively expressed HSD11B1 and its expression and activity were upregulated as IVM progressed. As a result, the net glucocorticoid metabolism shifted from inactivation to activation towards the end of IVM. These results indicate that the bovine COC is capable of modulating local glucocorticoid concentration and, by doing so, may create an environment that is favorable to ovulating oocyte for maturation, fertilization and subsequent development.
Collapse
Affiliation(s)
- Masafumi Tetsuka
- Department of Life Science and AgricultureObihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Ryo Takagi
- Department of Life Science and AgricultureObihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Nobuhiro Ambo
- Department of Life Science and AgricultureObihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Thet Su Myat
- Department of Life Science and AgricultureObihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Yuta Zempo
- Department of Life Science and AgricultureObihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| | - Asuka Onuma
- Department of Life Science and AgricultureObihiro University of Agriculture and Veterinary Medicine, Obihiro, Hokkaido 080-8555, Japan
| |
Collapse
|
14
|
Heitmann RJ, Tobler KJ, Gillette L, Tercero J, Burney RO. Dexamethasone attenuates the embryotoxic effect of endometriotic peritoneal fluid in a murine model. J Assist Reprod Genet 2015. [PMID: 26198138 DOI: 10.1007/s10815-015-0516-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
PURPOSE The in vitro fertilization (IVF) pregnancy rate of women with advanced stage endometriosis is nearly half that of the general population, suggesting incomplete targeting of the pathophysiology underlying endometriosis-associated infertility. Compelling evidence highlights inflammation as the etiologic link between endometriosis and infertility and a potential target for adjunctive treatment. The objective of this study was to examine the effect of dexamethasone on murine embryos exposed to human endometriotic peritoneal fluid (PF) using the established murine embryo assay model. METHODS PF was obtained from women with and without severe endometriosis. Murine embryos were harvested and randomly allocated to five groups of culture media conditions: (1) human tubal fluid (HTF), (2) HTF and 10 % PF from women without endometriosis, (3) HTF and 10 % PF from women with endometriosis (PF-E), (4) HTF with PF-E and 0.01 mcg/mL dexamethasone, and (5) HTF with PF-E and 0.1 mcg/mL dexamethasone. Embryos were cultured in standard conditions and evaluated for blastocyst development. RESULTS A total of 266 mouse embryos were cultured. Baseline blastulation rates were 63.6 %. The addition of peritoneal fluid from women with endometriosis decreased the blastocyst development rate to 38.9 % (P = 0.008). The addition of 0.1 mcg/mL of dexamethasone to the culture media restored the blastulation rate to near baseline levels (61.2 %; P = 0.019). CONCLUSIONS The results of our in vitro study demonstrate the capacity of dexamethasone to mitigate the deleterious impact of endometriotic PF on embryo development. If confirmed in vivo, dexamethasone may prove a useful adjunct for the treatment of endometriosis-associated infertility.
Collapse
Affiliation(s)
- Ryan J Heitmann
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Kyle J Tobler
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Laurie Gillette
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Juan Tercero
- Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA
| | - Richard O Burney
- Department of Obstetrics and Gynecology, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA. .,Department of Clinical Investigation, Madigan Army Medical Center, 9040 Jackson Ave, Tacoma, WA, 98431, USA. .,Division of Reproductive Endocrinology and Infertility, Department of Obstetrics and Gynecology, Madigan Healthcare Systems, ATTN: MCHJ-OG, 9040A Fitzsimmons Drive, Tacoma, WA, 98431-1100, USA.
| |
Collapse
|
15
|
Burkuš J, Kačmarová M, Kubandová J, Kokošová N, Fabianová K, Fabian D, Koppel J, Čikoš Š. Stress exposure during the preimplantation period affects blastocyst lineages and offspring development. J Reprod Dev 2015; 61:325-31. [PMID: 25985793 PMCID: PMC4547990 DOI: 10.1262/jrd.2015-012] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We found retardation of preimplantation embryo growth after exposure to maternal restraint stress during the preimplantation period in our previous study. In the present study, we evaluated the impact of preimplantation maternal restraint stress on the distribution of inner cell mass (ICM) and trophectoderm (TE) cells in mouse blastocysts, and its possible effect on physiological development of offspring. We exposed spontaneously ovulating female mice to restraint stress for 30 min three times a day during the preimplantation period, and this treatment caused a significant increase in blood serum corticosterone concentration. Microscopic evaluation of embryos showed that restraint stress significantly decreased cell counts per blastocyst. Comparing the effect of restraint stress on the two blastocyst cell lineages, we found that the reduction in TE cells was more substantial than the reduction in ICM cells, which resulted in an increased ICM/TE ratio in blastocysts isolated
from stressed dams compared with controls. Restraint stress reduced the number of implantation sites in uteri, significantly delayed eye opening in delivered mice, and altered their behavior in terms of two parameters (scratching on the base of an open field test apparatus, time spent in central zone) as well. Moreover, prenatally stressed offspring had significantly lower body weights and in 5-week old females delivered from stressed dams, fat deposits were significantly lower. Our results indicate that exposure to stress during very early pregnancy can have a negative impact on embryonic development with consequences reaching into postnatal life.
Collapse
Affiliation(s)
- Ján Burkuš
- Institute of Animal Physiology, Slovak Academy of Sciences, Košice, 04001, Slovak Republic
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Huang Y, Li W, Wang CC, Wu X, Zheng J. Cryptotanshinone reverses ovarian insulin resistance in mice through activation of insulin signaling and the regulation of glucose transporters and hormone synthesizing enzymes. Fertil Steril 2014; 102:589-596.e4. [PMID: 24973798 DOI: 10.1016/j.fertnstert.2014.05.012] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 05/09/2014] [Accepted: 05/09/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE To investigate the effects of cryptotanshinone (CRY), an active component of Chinese medicine, on ovarian androgen production, insulin resistance (IR), and glucose metabolism in mice. DESIGN Animal model and in vitro tissue model. SETTING University-affiliated laboratory. ANIMAL(S) Mice. INTERVENTION(S) Ovarian IR was induced by dexamethasone (DEX) in vivo. Animals were randomized to receive CRY treatment for 3 days or not. Ovulation rates, serum steroid levels, and glucose uptake in ovaries were quantified, and proteins in the phosphatidylinositol 3-hydroxy kinase pathway were measured. In vitro ovarian IR was also induced by DEX for 3 days. Ovarian steroid hormone secretion and glucose uptake were measured, and the hormone-synthesizing enzymes were determined by semiquantitative reverse transcription-polymerase chain reaction. MAIN OUTCOME MEASURE(S) Ovarian glucose uptake, in vivo ovulation rate, serum and culture medium steroid level, and molecular expression of phosphatidylinositol 3-hydroxy kinase and steroidogenic enzymes. RESULT(S) Dexamethasone significantly increased ovulation rates in vivo and increased T and E2 production and decreased ovarian glucose uptake in vivo and in vitro. Cryptotanshinone significantly reduced ovulation rates in vivo and decreased T and estrogen production in vitro. Cryptotanshinone attenuated the inhibition of DEX on AKT2 and suppressed the up-regulation of CYP11 and CYP17 expression by DEX. CONCLUSION(S) Cryptotanshinone reversed DEX-induced androgen excess and ovarian IR in mice through activation of insulin signaling and the regulation of glucose transporters and hormone-synthesizing enzymes. This suggests a potential role for CRY in treating the ovulatory dysfunction associated with PCOS.
Collapse
Affiliation(s)
- Yangang Huang
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China
| | - Wei Li
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin
| | - Chi Chiu Wang
- Department of Obstetrics and Gynecology, The Chinese University of Hong Kong, Hong Kong SAR, People's Republic of China
| | - Xiaoke Wu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital, Heilongjiang University of Chinese Medicine, Harbin
| | - Jianhua Zheng
- Department of Obstetrics and Gynecology, First Affiliated Hospital, Harbin Medical University, Harbin, People's Republic of China.
| |
Collapse
|
17
|
Poulain M, Frydman N, Duquenne C, N'Tumba-Byn T, Benachi A, Habert R, Rouiller-Fabre V, Livera G. Dexamethasone induces germ cell apoptosis in the human fetal ovary. J Clin Endocrinol Metab 2012; 97:E1890-7. [PMID: 22802086 DOI: 10.1210/jc.2012-1681] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
CONTEXT The 21-hydroxylase deficiency is the most common cause of congenital adrenal hyperplasia. Pregnant women presenting a risk of genetic transmission may be treated with synthetic glucocorticoids such as dexamethasone (DEX) to prevent female fetus virilization. OBJECTIVE The aim of this study was to assess the potential deleterious effects of DEX exposure on fetal ovarian development. SETTINGS Human fetal ovaries, ranging from 8-11 weeks after fertilization, were harvested from material available after legally induced abortions. They were cultured in the absence or presence of DEX (2, 10, or 50 μm) over 14 d, and histological analyses were performed. RESULTS The glucocorticoid receptor NR3C1 was present and the signaling pathway active in the fetal ovary as demonstrated by the expression of NR3C1 target genes, such as PLZF and FKBP5, in response to DEX exposure. DEX decreased germ cell density at the 10 and 50 μm doses. Exposure to DEX, even at the highest dose, did not change oogonial proliferation as monitored by 5-bromo-2'-deoxyuridine incorporation and significantly increased the apoptotic rate, detected with cleaved caspase 3 staining. Interestingly, the expression of the prosurvival gene KIT was significantly decreased in the presence of DEX during the course of the culture. CONCLUSION We have demonstrated for the first time that in vitro exposure to high doses of DEX impairs human fetal oogenesis through an increase in apoptosis. These data are of high importance, and additional epidemiological studies are required to investigate the female fertility of those women who have been exposed to DEX during fetal life.
Collapse
Affiliation(s)
- Marine Poulain
- Laboratoire de Développement des Gonades Batiment 05 Porte A011B Commissariat à l'Energie Atomique-DSV/iRCM/SCSR/LDG Route du Panorama, 92265 Fontenay-aux-Roses, France
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Adler S, Basketter D, Creton S, Pelkonen O, van Benthem J, Zuang V, Andersen KE, Angers-Loustau A, Aptula A, Bal-Price A, Benfenati E, Bernauer U, Bessems J, Bois FY, Boobis A, Brandon E, Bremer S, Broschard T, Casati S, Coecke S, Corvi R, Cronin M, Daston G, Dekant W, Felter S, Grignard E, Gundert-Remy U, Heinonen T, Kimber I, Kleinjans J, Komulainen H, Kreiling R, Kreysa J, Leite SB, Loizou G, Maxwell G, Mazzatorta P, Munn S, Pfuhler S, Phrakonkham P, Piersma A, Poth A, Prieto P, Repetto G, Rogiers V, Schoeters G, Schwarz M, Serafimova R, Tähti H, Testai E, van Delft J, van Loveren H, Vinken M, Worth A, Zaldivar JM. Alternative (non-animal) methods for cosmetics testing: current status and future prospects-2010. Arch Toxicol 2011; 85:367-485. [PMID: 21533817 DOI: 10.1007/s00204-011-0693-2] [Citation(s) in RCA: 358] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2011] [Accepted: 03/03/2011] [Indexed: 01/09/2023]
Abstract
The 7th amendment to the EU Cosmetics Directive prohibits to put animal-tested cosmetics on the market in Europe after 2013. In that context, the European Commission invited stakeholder bodies (industry, non-governmental organisations, EU Member States, and the Commission's Scientific Committee on Consumer Safety) to identify scientific experts in five toxicological areas, i.e. toxicokinetics, repeated dose toxicity, carcinogenicity, skin sensitisation, and reproductive toxicity for which the Directive foresees that the 2013 deadline could be further extended in case alternative and validated methods would not be available in time. The selected experts were asked to analyse the status and prospects of alternative methods and to provide a scientifically sound estimate of the time necessary to achieve full replacement of animal testing. In summary, the experts confirmed that it will take at least another 7-9 years for the replacement of the current in vivo animal tests used for the safety assessment of cosmetic ingredients for skin sensitisation. However, the experts were also of the opinion that alternative methods may be able to give hazard information, i.e. to differentiate between sensitisers and non-sensitisers, ahead of 2017. This would, however, not provide the complete picture of what is a safe exposure because the relative potency of a sensitiser would not be known. For toxicokinetics, the timeframe was 5-7 years to develop the models still lacking to predict lung absorption and renal/biliary excretion, and even longer to integrate the methods to fully replace the animal toxicokinetic models. For the systemic toxicological endpoints of repeated dose toxicity, carcinogenicity and reproductive toxicity, the time horizon for full replacement could not be estimated.
Collapse
Affiliation(s)
- Sarah Adler
- Centre for Documentation and Evaluation of Alternatives to Animal Experiments (ZEBET), Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Lopparelli RM, Zancanella V, Giantin M, Ravarotto L, Cozzi G, Montesissa C, Dacasto M. Constitutive expression of drug metabolizing enzymes and related transcription factors in cattle testis and their modulation by illicit steroids. Xenobiotica 2011; 40:670-80. [PMID: 20666625 DOI: 10.3109/00498254.2010.506562] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
In veterinary species, little information about extrahepatic drug metabolism is actually available. Therefore, the presence of foremost drug metabolizing enzymes (DMEs) and related transcription factors mRNAs was initially investigated in cattle testis; then, their possible modulation following the in vivo exposure to illicit growth promoters (GPs), which represent a major issue in cattle farming, was explored. All target genes were expressed in cattle testis, albeit to a lower extent compared to liver ones; furthermore, illicit protocols containing dexamethasone and 17β-oestradiol significantly up-regulated cytochrome P450 1A1, 2E1, oestrogen receptor-α and peroxisome proliferator-activated receptor-α mRNA levels. Overall, the constitutive expression of foremost DMEs and related transcription factors was demonstrated for the first time in cattle testis and illicit GPs were shown to affect pre-transcriptionally some of them, with possible consequences upon testicular xenobiotic drug metabolism.
Collapse
Affiliation(s)
- Rosa Maria Lopparelli
- Dipartimento di Sanità pubblica, Patologia comparata ed Igiene veterinaria, Agripolis Legnaro, Padova, Italy
| | | | | | | | | | | | | |
Collapse
|
20
|
González R, Ruiz-León Y, Gomendio M, Roldan ERS. The effect of glucocorticoids on ERK-1/2 phosphorylation during maturation of lamb oocytes and their subsequent fertilization and cleavage ability in vitro. Reprod Toxicol 2009; 29:198-205. [PMID: 19892010 DOI: 10.1016/j.reprotox.2009.10.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/15/2009] [Accepted: 10/22/2009] [Indexed: 10/20/2022]
Abstract
High levels of glucocorticoids may alter reproduction, but little is known about their direct actions on oocyte maturation, fertilization and subsequent development. Earlier work suggested negative effects of cortisol or dexamethasone on oocyte maturation but differences were noted between animal models. Both glucocorticoids reduce the p34(cdc2)-cyclin B1 complex but it is unknown if other signaling pathways important for meiosis progression are affected. In this study, using sheep oocytes as a model system, we assessed in vitro the effects of increasing concentration of glucocorticoids (0-250 microM) on oocyte maturation and underlying changes in the MAP kinase pathway, and the ability of oocytes to undergo fertilization and embryo development. Cortisol decreased oocyte maturation but only at the highest concentration, whereas dexamethasone had no effect. Fertilization and cleavage were not affected. On the other hand, both cortisol and dexamethasone inhibited ERK-1/2 activation in a concentration-dependent manner. It thus seems that oocytes can overcome deleterious effects of glucocorticoids during maturation despite the decrease in ERK-1/2 activity, but repercussions in vivo should be further explored.
Collapse
Affiliation(s)
- Raquel González
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), 28006 Madrid, Spain
| | | | | | | |
Collapse
|
21
|
González R, Ruiz-León Y, Gomendio M, Roldan ERS. The effect of glucocorticoids on mouse oocyte in vitro maturation and subsequent fertilization and embryo development. Toxicol In Vitro 2009; 24:108-15. [PMID: 19733225 DOI: 10.1016/j.tiv.2009.08.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 08/22/2009] [Accepted: 08/26/2009] [Indexed: 11/27/2022]
Abstract
Increased glucocorticoid levels, due to medical therapy or stress-related, may affect reproduction via the hypothalamus-pituitary-axis or directly at the oocyte level. We examined the effects of natural (corticosterone) or synthetic (dexamethasone) glucocorticoids on mouse oocyte maturation and underlying changes in extracellular signal-regulated kinase (ERK) phosphorylation patterns. Fertilization and progression up to the blastocyst stage were also evaluated. Oocytes were exposed to corticosterone or dexamethasone (0, 0.25, 2.5, 25 or 250microM) for 17h during in vitro maturation. After maturation, ERK-1/2 activation in oocytes was assessed by SDS-PAGE and immunoblotting, and fertilization and developmental capacity were examined in vitro. Corticosterone exposure during oocyte maturation significantly decreased progression to metaphase II, fertilization and embryo development at the highest concentration. Corticosterone caused a concentration-dependent inhibition of ERK-1/2 activation, with the highest concentration resulting in considerable inhibition of oocyte ERK-1/2 phosphorylation and no blastocyst development. In contrast, dexamethasone had no effect on maturation, fertilization and cleavage, and no effect was seen on ERK-1/2 phosphorylation. Based on these in vitro findings, high glucocorticoid levels may have consequences for subsequent development, although a short exposure to physiologic or stress-related glucocorticoid levels may not represent a hazard to meiosis progression of the oocyte.
Collapse
Affiliation(s)
- Raquel González
- Reproductive Ecology and Biology Group, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | | | | | | |
Collapse
|
22
|
Reprotoxicity of intrauterine insemination and in vitro fertilization-embryo transfer disposables and products: a 4-year survey. Fertil Steril 2009; 92:527-35. [DOI: 10.1016/j.fertnstert.2008.07.011] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2007] [Revised: 05/26/2008] [Accepted: 07/09/2008] [Indexed: 11/17/2022]
|
23
|
Rockwell LC, Koos RD. Dexamethasone enhances fertility and preovulatory serum prolactin levels in eCG/hCG primed immature rats. J Reprod Dev 2009; 55:247-51. [PMID: 19202320 DOI: 10.1262/jrd.20108] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glucocorticoids have heterogeneous effects on reproductive function. We used a gonadotropin-primed, immature rat model to study the influence of dexamethasone (1 mg/kg), given during the latter stages of follicular development, on litter size, the number of oocytes released, and pituitary hormone levels. Dexamethasone-treated females released a larger number of oocytes at ovulation and gave birth to larger litters indicating the oocytes were viable. Survival to weaning age was not affected but average weight at weaning was lower for pups born to DEX-treated females. Serum FSH and LH were assayed at 12, 24 and 48 h following eCG and did not differ between dexamethasone-treated and control animals, but prolactin showed a prolonged pattern of elevation in DEX-treated females. Prolactin, which normally exhibits an elevation on proestrous, may modulate follicular development. Dexamethasone enhances fertility and fecundity possible through an effect of prolactin on follicle development, or by other direct effects on the ovary. These results may improve our understanding of the usefulness of DEX in assisted reproductive therapies for women.
Collapse
|
24
|
Bibliography. Current world literature. Adrenal cortex. Curr Opin Endocrinol Diabetes Obes 2008; 15:284-299. [PMID: 18438178 DOI: 10.1097/med.0b013e3283040e80] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Lemeire K, Van Merris V, Cortvrindt R. The antibiotic streptomycin assessed in a battery of in vitro tests for reproductive toxicology. Toxicol In Vitro 2007; 21:1348-53. [PMID: 17596909 DOI: 10.1016/j.tiv.2007.05.004] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2006] [Revised: 04/03/2007] [Accepted: 05/04/2007] [Indexed: 11/24/2022]
Abstract
Streptomycin is one of the most widely used antibiotics and is frequently added to cell culture media to prevent bacterial growth. We tested streptomycin in a battery of in vitro assays for assessment of reproductive toxicity. The follicle bio-assay (FBA) is a multiparametric long-term follicle culture system mimicking ovarian function; in vitro fertilisation (IVF) of exposed oocytes enables gamete quality determination through fecundability; the mouse embryo assay (MEA) analyses pre-implantation embryo development whereas the embryonic stem cell test (EST) studies post-implantation embryotoxicity. The FBA revealed a concentration-dependent decrease in oocyte nuclear maturation during continuous exposure from 50 microg/ml streptomycin onwards, characterised by a significantly reduced polar body-rate (40% vs. 92% in the control group). Oocytes that remained arrested in metaphase I (germinal vesicle breakdown) had aberrant spindle formation. IVF of long-term exposed oocytes in the FBA to 50 microg/ml streptomycin resulted in a significantly lower fertilisation rate of 23% vs. 74% in the control group and were unable to develop to the blastocyst stage. The MEA revealed no effect at pre-implantation embryo development and quality. Furthermore, no embryo-toxic effects of streptomycin were observed in the EST. In conclusion, oocytes are vulnerable to streptomycin treatment. Long-term exposure might cause fertility problems in the female and caution should be taken using streptomycin in cell culture media for assisted reproductive technology (ART).
Collapse
Affiliation(s)
- K Lemeire
- EggCentris NV, Z.1 Researchpark 310, B-1731 Zellik, Belgium.
| | | | | |
Collapse
|