1
|
Borgert CJ. Hypothesis-driven weight of evidence evaluation indicates ethylbenzene lacks endocrine disruption potential by EATS pathways. EXCLI JOURNAL 2025; 24:479-507. [PMID: 40376433 PMCID: PMC12078780 DOI: 10.17179/excli2024-7822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Accepted: 02/25/2025] [Indexed: 05/18/2025]
Abstract
Ethylbenzene (EB) was placed on List 2 for Tier 1 endocrine screening in the U.S. EPA's two-tiered Endocrine Disruptor Screening Program (EDSP) and was scheduled for evaluation under TSCA. Results of toxicology studies on EB were used to evaluate estrogen, androgen, thyroid, and steroidogenic (EATS) endpoints by a Weight of Evidence (WoE) methodology, as required by U.S. EPA and OECD guidelines for evaluating a chemical's endocrine disruptive potential. The WoE method involved problem formulation, systematic literature search and selection, data quality evaluation, relevance weighting of endpoint data, and application of specific interpretive criteria. Data on EB were sufficient to assess its effects on endpoints that would be expected to respond to chemicals that operate via EATS modes of action (MoAs) in various screening assays (Tier 1) and toxicity tests (Tier 2) that evaluate reproduction, development, and sub-chronic and chronic toxicity. In those studies, EB produced a pattern of responses inconsistent with the responses that would be expected for hormones and chemicals known to operate via EATS MoAs. Endocrine-sensitive endpoints that respond to EB administration generally do so only at dose levels above its kinetic maximum dose, indicating a lack of relevance to potential effects at lower dose levels in either the test species or humans. This comprehensive WoE evaluation demonstrates that EB lacks the potential to exhibit endocrine disruptive properties and cannot be deemed an endocrine disruptor or potential endocrine disruptor. Because this WoE evaluation was based largely on Tier 2-level studies of the type considered by the U.S. EPA and OECD to be more definitive than results of Tier 1 EDSP screening results, no additional useful information would be obtained by subjecting EB to further endocrine screening. As such, further endocrine screening of EB would be unjustified from animal welfare perspectives. This analysis supports a regulatory decision to halt further testing of EB for endocrine disruption unless unique and compelling data to the contrary arise. See also the graphical abstract(Fig. 1).
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology and Toxicology Inc, Gainesville FL, 32605 and University of Florida College of Veterinary Medicine, Dept. Physiological Sciences, Gainesville FL, 32610
| |
Collapse
|
2
|
Borgert CJ. Hypothesis-driven weight of evidence evaluation indicates styrene lacks endocrine disruption potential. Crit Rev Toxicol 2023:1-16. [PMID: 37216681 DOI: 10.1080/10408444.2022.2112652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 08/01/2022] [Accepted: 08/02/2022] [Indexed: 05/24/2023]
Abstract
Styrene is among the U.S. EPA's List 2 chemicals for Tier 1 endocrine screening subject to the agency's two-tiered Endocrine Disruptor Screening Program (EDSP). Both U.S. EPA and OECD guidelines require a Weight of Evidence (WoE) to evaluate a chemical's potential for disrupting the endocrine system. Styrene was evaluated for its potential to disrupt estrogen, androgen, thyroid, and steroidogenic (EATS) pathways using a rigorous WoE methodology that included problem formulation, systematic literature search and selection, data quality evaluation, relevance weighting of endpoint data, and application of specific interpretive criteria. Sufficient data were available to assess the endocrine disruptive potential of styrene based on endpoints that would respond to EATS modes of action in some Tier 1-type and many Tier 2-type reproductive, developmental, and repeat dose toxicity studies. Responses to styrene were inconsistent with patterns of responses expected for chemicals and hormones known to operate via EATS MoAs, and thus, styrene cannot be deemed an endocrine disruptor, a potential endocrine disruptor, or to exhibit endocrine disruptive properties. Because Tier 1 EDSP screening results would trigger Tier 2 studies, like those evaluated here, subjecting styrene to further endocrine screening would produce no additional useful information and would be unjustified from animal welfare perspectives.
Collapse
Affiliation(s)
- Christopher J Borgert
- Applied Pharmacology and Toxicology Inc, Gainesville, FL, USA
- Department of Physiological Sciences, University of Florida College of Veterinary Medicine, Gainesville, FL, USA
| |
Collapse
|
3
|
Luan M, Liang H, Chen Y, Chen D, Ji H, Chen H, Miao M, Yuan W. Prenatal exposure to organophosphate esters is associated with decreased anogenital distance in offspring. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:159050. [PMID: 36174683 DOI: 10.1016/j.scitotenv.2022.159050] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
BACKGROUND Evidence from in vitro and rodent studies suggests that organophosphate esters (OPEs) may disrupt sex steroid hormone homeostasis, but no human studies, to date, have examined the effects of in utero exposure to OPEs on offspring reproductive development. OBJECTIVE Anogenital distance (AGD) is a sensitive biomarker of fetal hormonal milieu and has been used to assess reproductive toxicity. We evaluated the longitudinal effects of prenatal exposure to OPEs on the AGD of offspring from birth to 4 years. METHODS Based on Shanghai-Minhang Birth Cohort Study, pregnant women provided urine samples at a gestational age of 12-16 weeks, which were analyzed for eight OPE metabolites. AGD was measured in offspring at birth and 0.5, 1, and 4 years of age. We used generalized estimating equations (GEE) and Bayesian kernel machine regression (BKMR) models to estimate the associations of prenatal exposure to individual OPE metabolites and OPE mixtures with AGD stratified by sex. RESULTS A total of 733 mother-infant pairs were analyzed. Prenatal exposure to diphenyl phosphate and bis-(2-ethylhexyl) phosphate was associated with decreased AGD in boys in GEE models. Bis-(1-chloro-2-propyl) phosphate (BCIPP) showed a similar but marginally significant effect. Prenatal exposure to most OPE metabolites was associated with decreased AGD in girls, with the most profound association observed for bis (2-butoxyethyl) phosphate (BBOEP) and alkyl-OPEs. The OPE mixture was also inversely associated with AGD in both sexes. The single-exposure effects of BKMR models were largely consistent with those observed in the GEE models. In addition, alkyl-OPEs, particularly BBOEP, contributed the most to the decreased AGD in girls, while BCIPP contributed the most to the decreased AGD in boys. CONCLUSIONS This study provides the first human evidence that prenatal exposure to OPEs is associated with decreased AGD in offspring. The magnitude of these effects may vary depending on the structure of OPEs.
Collapse
Affiliation(s)
- Min Luan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Hong Liang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Yafei Chen
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environment Pollution and Health, Jinan University, Guangzhou, China
| | - Honglei Ji
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| | - Hexia Chen
- School of Environment and Guangdong Key Laboratory of Environment Pollution and Health, Jinan University, Guangzhou, China
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China.
| | - Wei Yuan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute for Biomedical and Pharmaceutical Technologies), Shanghai, China
| |
Collapse
|
4
|
Chromatin modifiers: A new class of pollutants with potential epigenetic effects revealed by in vitro assays and transcriptomic analyses. Toxicology 2023; 484:153413. [PMID: 36581016 DOI: 10.1016/j.tox.2022.153413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/14/2022] [Accepted: 12/24/2022] [Indexed: 12/27/2022]
Abstract
A great variety of endocrine-disrupting chemicals (EDCs) have been used extensively and become widespread in the environment nowadays. Limited mammalian studies have shown that certain EDCs may target chromosome and epigenome of the germline, leading to adverse effects in subsequent generations, despite these progenies having never been exposed to the EDC before. However, the underlying mechanisms of chromosomal changes induced by these pollutants remain poorly known. Using the human ovarian granulosa tumor cell line COV434 as a model, we investigated and compared the transcriptomic changes induced by nine EDCs with diverse chemical structures (i.e. BDE-47, BPA, BP-3, DEHP, DHP, EE2, TCS, TDCPP and NP), to inquire if there is any common epigenetic modification associated with reproductive functions induced by these EDCs. Our results showed that COV434 cells were more responsive to BP-3, NP, DEHP and EE2, and more importantly, these four EDCs altered the expression of gene clusters related to DNA damage response, cell cycle, proliferation, and chromatin remodeling, which can potentially lead to epigenetic modifications and transgenerational inheritance. Furthermore, dysregulation of similar gene clusters was common in DEHP and NP treatments. Bioinformatics analysis further revealed that BP-3 disturbed signaling pathways associated with reproductive functions, whereas alterations in telomere-related pathways were highlighted upon EE2 exposure. Overall, this study highlighted chromatin modifications caused by a class of chemicals which that may potentially lead to epigenetic changes and transgenerational reproductive impairments.
Collapse
|
5
|
García-Villarino M, Signes-Pastor AJ, Riaño-Galán I, Rodríguez-Dehli AC, Vizcaíno E, Grimalt JO, Fernández-Somoano A, Tardón A. Serum concentrations of persistent organic pollutants mixture during pregnancy and anogenital distance in 8-year-old children from the INMA-Asturias cohort. ENVIRONMENTAL RESEARCH 2022; 213:113607. [PMID: 35690090 DOI: 10.1016/j.envres.2022.113607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND During pregnancy, women are commonly exposed to several endocrine-disrupting chemicals, including persistent organic pollutants (POPs). These compounds can transfer to the fetus through the placenta. Prenatal POP exposure is related to altered fetal genital and reproductive tract development. However, the relationship between exposure to POP mixtures and anogenital distance (AGD) is poorly investigated. This study investigated the association between prenatal exposure to POP mixtures and AGD in 8-year-old children. METHODS Data were collected from the INMA-Asturias cohort. Maternal serum POP concentrations were measured during the first trimester of pregnancy. Anoscrotal distance (AGDAS) and anopenile distance (AGDAP) in males and anofourchetal distance (AGDAF) and anoclitoral distance (AGDAC) in females were recorded in 362 8-years-olds. Conventional linear regression, and the novel weighted quantile sum regression (WQSR) and Bayesian kernel machine regression (BKMR) models were applied to assess the relationships between AGD and POPs exposure stratified by sex. RESULTS Among males, in the linear regression, b-hexachlorocyclohexane, PCB138, PCB153, and PCB180 were inversely associated with the anogenital index (AGI)AS (-0.06 mm/kg (95% confidence interval [CI]: -0.11, -0.02), -0.07 mm/kg (95% CI: -0.14, -0.01), -0.07 mm/kg (95% CI: -0.13, -0.01), and -0.08 mm/kg (95% CI: -0.14, -0.02), respectively). Among females, polybrominated diphenyl ether (PBDE)47 and PBDE154 were positively associated with increased AGIAF (0.02 mm/kg (95% CI: 0.00, 0.03) and 0.09 mm/kg (95% CI: 0.01, 0.17), respectively). BKMR confirmed these associations. WQSR found a negative combined effect of the POP mixture on AGD, and PCB138, PCB153, and PCB180 (weighted 0.18, 0.13, and 0.09, respectively) were identified as the most impacting chemicals. In females, WQSR found a positive combined effect and determined PBDE47 (weighted 0.35) as the most impacting. CONCLUSIONS Maternal exposure to a POP mixture was negatively associated with AGD in male children and positively associated with AGD in female children, thus providing evidence of the adverse effects of POPs on genital development.
Collapse
Affiliation(s)
- Miguel García-Villarino
- Spanish Consortium for Reseaiologrch on Epidemy and Public Health (CIBERESP), Monforte de Lemos Avenue, 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular del Cáncer, Instituto Universitario de Oncología del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street s/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Roma Avenue s/n, 33001, Oviedo, Spain
| | - Antonio J Signes-Pastor
- Spanish Consortium for Reseaiologrch on Epidemy and Public Health (CIBERESP), Monforte de Lemos Avenue, 3-5, 28029, Madrid, Spain; Unidad de Epidemiología de la Nutrición, Universidad Miguel Hernández, Alicante, Spain; Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL), Spain
| | - Isolina Riaño-Galán
- Spanish Consortium for Reseaiologrch on Epidemy and Public Health (CIBERESP), Monforte de Lemos Avenue, 3-5, 28029, Madrid, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Roma Avenue s/n, 33001, Oviedo, Spain; Servicio de Pediatría, Endocrinología Pediátrica, HUCA, Roma Avenue s/n, 33001, Oviedo, Asturias, Spain
| | - Ana Cristina Rodríguez-Dehli
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Roma Avenue s/n, 33001, Oviedo, Spain; Servicio de Pediatría, Hospital San Agustín, Heros Street, 4, 33410, Avilés, Asturias, Spain
| | - Esther Vizcaíno
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street, 18-26, 08034, Barcelona, Cataluña, Spain
| | - Joan O Grimalt
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona Street, 18-26, 08034, Barcelona, Cataluña, Spain
| | - Ana Fernández-Somoano
- Spanish Consortium for Reseaiologrch on Epidemy and Public Health (CIBERESP), Monforte de Lemos Avenue, 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular del Cáncer, Instituto Universitario de Oncología del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street s/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Roma Avenue s/n, 33001, Oviedo, Spain.
| | - Adonina Tardón
- Spanish Consortium for Reseaiologrch on Epidemy and Public Health (CIBERESP), Monforte de Lemos Avenue, 3-5, 28029, Madrid, Spain; Unidad de Epidemiología Molecular del Cáncer, Instituto Universitario de Oncología del Principado de Asturias (IUOPA) - Departamento de Medicina, Universidad de Oviedo, Julián Clavería Street s/n, 33006, Oviedo, Asturias, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Roma Avenue s/n, 33001, Oviedo, Spain
| |
Collapse
|
6
|
Qin X, Lai KP, Wu RSS, Kong RYC. Continuous 17α-ethinylestradiol exposure impairs the sperm quality of marine medaka (Oryzias melastigma). MARINE POLLUTION BULLETIN 2022; 183:114093. [PMID: 36084614 DOI: 10.1016/j.marpolbul.2022.114093] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
17α-ethinylestradiol (EE2) is an anthropogenic estrogen that is widely used for hormone therapy and oral contraceptives. It was reported that EE2 exposure induced reproductive impairments through processes affecting reproduction behavior and inducing ovotestis. However, the effects of continuous EE2 exposure on the reproductive performance remain largely unknown. In this study, adult marine medaka fish (Oryzias melastigma) were exposed to EE2 (85 ng/L) for one (F0) and two (F1) generations. Our results indicate that continuous EE2 exposure reduced fecundity and sperm motility. The testicular transcriptome, followed by bioinformatic analysis revealed the dysregulation of pathways related to steroidogenesis, sperm motility, and reproductive system development. Collectively, our findings indicate that continuous EE2 exposure directly affected sperm quality via the alteration of steroidogenesis and dysregulation of reproductive system development. The identified key factors including DNM1, PINK1, PDE7B, and SLC12A7 can serve as biomarkers to assess EE2-reduced sperm motility.
Collapse
Affiliation(s)
- Xian Qin
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Guilin Medical University, Education Department of Guangxi Zhuang Autonomous Region, China; Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| | - Rudolf Shiu Sun Wu
- State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China; Department of Science and Environmental Studies, The Education University of Hong Kong, Hong Kong SAR, China
| | - Richard Yuen Chong Kong
- Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; State Key Laboratory of Marine Pollution, City University of Hong Kong, Hong Kong SAR, China.
| |
Collapse
|
7
|
Lecante LL, Gaye B, Delbes G. Impact of in Utero Rat Exposure to 17Alpha-Ethinylestradiol or Genistein on Testicular Development and Germ Cell Gene Expression. FRONTIERS IN TOXICOLOGY 2022; 4:893050. [PMID: 35722060 PMCID: PMC9201280 DOI: 10.3389/ftox.2022.893050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 05/04/2022] [Indexed: 11/30/2022] Open
Abstract
Although the decline in male fertility is believed to partially result from environmental exposures to xenoestrogens during critical developmental windows, the underlying mechanisms are still poorly understood. Experimental in utero exposures in rodents have demonstrated the negative impact of xenoestrogens on reproductive development, long-term adult reproductive function and offspring health. In addition, transcriptomic studies have demonstrated immediate effects on gene expression in fetal reproductive tissues, However, the immediate molecular effects on the developing germ cells have been poorly investigated. Here, we took advantage of a transgenic rat expressing the green fluorescent protein specifically in germ cells allowing purification of perinatal GFP-positive germ cells. Timed-pregnant rats were exposed to ethinylestradiol (EE2, 2 μg/kg/d), genistein (GE, 10 mg/kg/d) or vehicle by gavage, from gestational days (GD) 13–19; testes were sampled at GD20 or post-natal (PND) 5 for histological analysis and sorting of GFP-positive cells. While EE2-exposed females gained less weight during treatment compared to controls, neither treatment affected the number of pups per litter, sex ratio, anogenital distance, or body and gonadal weights of the offspring. Although GE significantly decreased circulating testosterone at GD20, no change was observed in either testicular histology or germ cell and sertoli cell densities. Gene expression was assessed in GFP-positive cells using Affymetrix Rat Gene 2.0 ST microarrays. Analysis of differentially expressed genes (DEGs) (p < 0.05; fold change 1.5) identified expression changes of 149 and 128 transcripts by EE2 and GE respectively at GD20, and 287 and 207 transcripts at PND5, revealing an increased effect after the end of treatment. Only about 1% of DEGs were common to both stages for each treatment. Functional analysis of coding DEG revealed an overrepresentation of olfactory transduction in all groups. In parallel, many non-coding RNAs were affected by both treatments, the most represented being small nucleolar and small nuclear RNAs. Our data suggest that despite no immediate toxic effects, fetal exposure to xenoestrogens can induce subtle immediate changes in germ cell gene expression. Moreover, the increased number of DEGs between GD20 and PND5 suggests an effect of early exposures with latent impact on later germ cell differentiation.
Collapse
|
8
|
Impact of Estrogens Present in Environment on Health and Welfare of Animals. Animals (Basel) 2021; 11:ani11072152. [PMID: 34359280 PMCID: PMC8300725 DOI: 10.3390/ani11072152] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 07/07/2021] [Accepted: 07/19/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Estrogens are a group of steroid hormones that recently have gained even more attention in the eyes of scientists. There is an ongoing discussion in the scientific community about their relevance as environmental contaminants and the danger they pose to animal health and welfare. In available literature we can find many examples of their negative effects and mechanisms that are involved with such phenomena. Abstract Nowadays, there is a growing interest in environmental pollution; however, knowledge about this aspect is growing at an insufficient pace. There are many potential sources of environmental contamination, including sex hormones—especially estrogens. The analyzed literature shows that estrone (E1), estradiol (E2), estriol (E3), and synthetic ethinyloestradiol (EE2) are the most significant in terms of environmental impact. Potential sources of contamination are, among others, livestock farms, slaughterhouses, and large urban agglomerations. Estrogens occurring in the environment can negatively affect the organisms, such as animals, through phenomena such as feminization, dysregulation of natural processes related to reproduction, lowering the physiological condition of the organisms, disturbances in the regulation of both proapoptotic and anti-apoptotic processes, and even the occurrence of neoplastic processes thus drastically decreasing animal welfare. Unfortunately, the amount of research conducted on the negative consequences of their impact on animal organisms is many times smaller than that of humans, despite the great richness and diversity of the fauna. Therefore, there is a need for further research to help fill the gaps in our knowledge.
Collapse
|
9
|
You HH, Song G. Review of endocrine disruptors on male and female reproductive systems. Comp Biochem Physiol C Toxicol Pharmacol 2021; 244:109002. [PMID: 33610819 DOI: 10.1016/j.cbpc.2021.109002] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 02/03/2021] [Accepted: 02/11/2021] [Indexed: 12/21/2022]
Abstract
Endocrine disruptors (EDs) interfere with different hormonal and metabolic processes and disrupt the development of organs and tissues, as well as the reproductive system. In toxicology research, various animal models have been utilized to compare and characterize the effects of EDs. We reviewed studies assessing the effect of ED exposure in humans, zebrafish, and mouse models and the adverse effects of EDs on male and female reproductive systems. This review outlines the distinctive morphological characteristics, as well as gene expression, factors, and mechanisms that are known to occur in response to EDs. In each animal model, disturbances in the reproductive system were associated with certain factors of apoptosis, the hypothalamic-pituitary-gonadal axis, estrogen receptor pathway-induced meiotic disruption, and steroidogenesis. The effects of bisphenol A, phthalate, and 17α-ethinylestradiol have been investigated in animal models, each providing supporting outcomes and elaborating the key regulators of male and female reproductive systems.
Collapse
Affiliation(s)
- Hyekyoung Hannah You
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Gwonhwa Song
- Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
10
|
Sridevi V, Naveen P, Karnam VS, Reddy PR, Arifullah M. Beneficiary and Adverse Effects of Phytoestrogens: A Potential Constituent of Plant-based Diet. Curr Pharm Des 2021; 27:802-815. [PMID: 32942973 DOI: 10.2174/1381612826999200917154747] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 08/01/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Phytoestrogens are non-endocrine, non-steroidal secondary derivatives of plants and consumed through a plant-based diet also named as "dietary estrogens". The major sources of phytoestrogens are soy and soy-based foods, flaxseed, chickpeas, green beans, dairy products, etc. The dietary inclusion of phytoestrogen based foods plays a crucial role in the maintenance of metabolic syndrome cluster, including obesity, diabetes, blood pressure, cancer, inflammation, cardiovascular diseases, postmenopausal ailments and their complications. In recent days, phytoestrogens are the preferred molecules for hormone replacement therapy. On the other hand, they act as endocrine disruptors via estrogen receptor-mediated pathways. These effects are not restricted to adult males or females and identified even in development. OBJECTIVE Since phytoestrogenic occurrence is high at daily meals for most people worldwide, they focused to study for its beneficiary effects towards developing pharmaceutical drugs for treating various metabolic disorders by observing endocrine disruption. CONCLUSION The present review emphasizes the pros and cons of phytoestrogens on human health, which may help to direct the pharmaceutical industry to produce various phytoestrongen based drugs against various metabolic disorders.
Collapse
Affiliation(s)
- Vaadala Sridevi
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | - Ponneri Naveen
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | | | - Pamuru R Reddy
- Department of Biochemistry, Yogi Vemana Universiti, Vemanapuram, Kadapa-516005, A.P, India
| | - Mohammed Arifullah
- Institute of Food Security and Sustainable Agriculture (IFSSA) & Faculty of Agrobased Industry (FIAT), Universiti Malaysia Kelantan Campus Jeli, Locked Bag 100, Jeli 17600, Kelantan, Malaysia
| |
Collapse
|
11
|
Chaves FP, Gomes G, Della-Flora A, Dallegrave A, Sirtori C, Saggioro EM, Bila DM. Comparative endocrine disrupting compound removal from real wastewater by UV/Cl and UV/H 2O 2: Effect of pH, estrogenic activity, transformation products and toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141041. [PMID: 32768778 DOI: 10.1016/j.scitotenv.2020.141041] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/13/2020] [Accepted: 07/16/2020] [Indexed: 06/11/2023]
Abstract
Extensive use of endocrine disruptor compounds (EDCs) and their release through various pathways into the environment are emerging environmental concerns. In this context, H2O2 and chlorine UV-based treatments were carried out to evaluate their efficiency in the removal of the bisphenol A (BPA), 17β-estradiol (E2) and 17α-ethinylestradiol (EE2) at 100 μg L-1 from ultrapure water and from wastewater treatment plants (WWTP). Photolysis was performed under different irradiation sources, i.e. UVC and UVA. The effect of H2O2 (3 and 30 mg·L-1), free chlorine concentrations (1 and 2 mg·L-1) and pH (5, 7 and 9) were also investigated. Toxicity (Raphidocelis subcapitata) and estrogenic activity (yeast estrogen screen - YES assay) were assessed during the processes. Compound removal at optimal operating parameters reached 100% after 15 and 2 min for UVC/H2O2 (pH 9 and 3 mg L-1 of H2O2), and UVC/Cl (pH 9 and 2 mg L-1 of chlorine), respectively. Total organic carbon (TOC) removal achieved 37% and 45% for the H2O2 and Cl-UV based process, respectively. The in vitro YES assay indicated that the formed by-products were non-estrogenic compounds, while the toxicity evaluation revealed high cell growth inhibition due to UVC/Cl byproducts. During the UV-based processes, 30 transformation products (TPs) were identified, in which three new chlorinated TPs from E2 and EE2 may be responsible for toxicity effects. EDC degradation by UV/Cl is faster than by UV/H2O2, although chlorinated toxic byproducts were also formed during the UV/Cl process.
Collapse
Affiliation(s)
- Fernanda Pereira Chaves
- Department of Sanitary and Environment Engineering, State University of Rio de Janeiro, 524 São Francisco Xavier Street, room 5029-F, 20550-900 Rio de Janeiro, Brazil
| | - Giselle Gomes
- Department of Sanitary and Environment Engineering, State University of Rio de Janeiro, 524 São Francisco Xavier Street, room 5029-F, 20550-900 Rio de Janeiro, Brazil
| | - Alexandre Della-Flora
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Alexsandro Dallegrave
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Carla Sirtori
- Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves 9500, CEP 91501-970 Porto Alegre, RS, Brazil
| | - Enrico Mendes Saggioro
- Center of Studies on Worker's Health and Human Ecology, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões, 1480, 21041-210 Rio de Janeiro, RJ, Brazil; Sanitation and Environment Health Department, Sergio Arouca National School of Public Health, Oswaldo Cruz Foundation, Av. Leopoldo Bulhões, 1480, 21041-210 Rio de Janeiro, RJ, Brazil.
| | - Daniele Maia Bila
- Department of Sanitary and Environment Engineering, State University of Rio de Janeiro, 524 São Francisco Xavier Street, room 5029-F, 20550-900 Rio de Janeiro, Brazil.
| |
Collapse
|
12
|
Sun X, Liu C, Wang Z, Yang F, Liang H, Miao M, Yuan W, Kan H. Prenatal exposure to residential PM 2.5 and anogenital distance in infants at birth: A birth cohort study from Shanghai, China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 264:114684. [PMID: 32380398 DOI: 10.1016/j.envpol.2020.114684] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 03/24/2020] [Accepted: 04/25/2020] [Indexed: 06/11/2023]
Abstract
Fine particulate matter (PM2.5) is believed to be one of the most hazardous air pollution with a ubiquitous presence. Animal studies have reported the association between prenatal exposure to traffic pollutant (not exclusively including PM2.5) and reproductive development in male offspring. However, the effects of prenatal exposure to PM2.5 on reproductive health in children are still unknown. The present study was based on the Shanghai-Minhang Birth Cohort Study (S-MBCS). A total of 876 pregnant women and their infants were included. Infants' anogenital distance (AGD, the distance from the anus to the genitals; AGDap [anus-penis] and AGDas [anus-scrotum] for boys, and AGDac [anus-clitoris] and AGDaf [anus-fourchette] for girls) were measured at birth. PM2.5 concentrations during pregnancy were estimated using satellite based modeling approach. Multiple linear regression analysis and multiple informant model were conducted to examine the associations between prenatal exposure to PM2.5 (pre μg/m3) and offspring's AGDs (mm). In order to minimize the misclassification of exposure, a sensitivity analysis restricted to mothers being off work during pregnancy was performed. In multiple linear regression models, we found that prenatal exposure to PM2.5 during the 1st and 3rd trimesters was associated with shorter AGDs. In multiple informant model, similar patterns were found, and statistically significant reductions were observed in AGDap (β=-0.278, 95%CI: -0.343∼-0.212), AGDac (β=-0.188, 95%CI: -0.247∼-0.130) and AGDaf (β= -0.163, 95%CI: -0.238∼-0.088) with PM2.5 exposure during the 1st trimester, and AGDap (β=-0.201, 95%CI: -0.247∼-0.155), AGDas (β=-0.158, 95%CI: -0.198∼-0.117), AGDac (β=-0.128, 95%CI: -0.167∼-0.089) and AGDaf (β = -0.144, 95%CI: -0.194∼-0.094) with PM2.5 exposure during the 3rd trimester. The sensitivity analysis restricted to women being off work during pregnancy showed similar results. PM2.5 exposure during the 1st and 3rd trimesters was associated with shortened AGDs in offspring at birth. Our findings provide preliminary evidence that prenatal exposure to PM2.5 might be associated with the reproductive development of offspring.
Collapse
Affiliation(s)
- Xiaowei Sun
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, 779 Old Hu Min Road, Shanghai, 200237, China
| | - Cong Liu
- School of Public Health, Fudan University, 130 Dong An Road, Shanghai, 200032, China
| | - Ziliang Wang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, 779 Old Hu Min Road, Shanghai, 200237, China
| | - Fen Yang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, 779 Old Hu Min Road, Shanghai, 200237, China
| | - Hong Liang
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, 779 Old Hu Min Road, Shanghai, 200237, China
| | - Maohua Miao
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, 779 Old Hu Min Road, Shanghai, 200237, China
| | - Wei Yuan
- NHC Key Lab. of Reproduction Regulation (Shanghai Institute of Planned Parenthood Research), School of Public Health, Fudan University, 779 Old Hu Min Road, Shanghai, 200237, China.
| | - Haidong Kan
- School of Public Health, Fudan University, 130 Dong An Road, Shanghai, 200032, China
| |
Collapse
|
13
|
Helppi J, Naumann R, Zierau O. Phytoestrogen-containing diets offer benefits for mouse embryology but lead to fewer offspring being produced. Lab Anim 2020; 54:536-545. [PMID: 32050842 DOI: 10.1177/0023677219898486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
One of the most commonly used protein sources in rodent diets is soy, which is naturally rich in phytoestrogens. Although phytoestrogens have shown potential health benefits in humans, they may also have the ability to disrupt reproduction. Consequently, there has been a tendency to try to exclude them from rodent diets. In the current study, we investigated whether phytoestrogen content in the mouse diet could affect reproduction in mice used as embryo donors. Donor mice (C57BL/6JOlaHsd) were maintained with three different diets: high phytoestrogen (ca. 400 mg/kg genistein), low phytoestrogen (ca. 10 mg/kg genistein) and standard breeding diet (ca. 120 mg/kg genistein). Mice fed a high phytoestrogen diet had a high yield of plugs, embryos, and injectable embryos, as well as producing good quality embryos. Results from donor mice fed a low phytoestrogen diet were consistently but only slightly inferior, whereas mice fed a standard diet performed the poorest. Interestingly, the largest number of born and weaned offspring were observed when recipient females received embryos from the standard diet group. Sperm yield and quality of stud males did not differ between the groups. We surmize that for experimental endpoints requiring fertilized embryos it may be more beneficial to feed mice a diet containing phytoestrogen, but if the goal is to produce transgenic mice, a diet high in phytoestrogen may be inadvisable. In conclusion, care should be taken when selecting a diet for experimental mouse colonies as phytoestrogen could influence the study outcome.
Collapse
Affiliation(s)
- Jussi Helppi
- Max Planck Institute of Molecular Cell Biology and Genetics, Germany
| | - Ronald Naumann
- Max Planck Institute of Molecular Cell Biology and Genetics, Germany
| | - Oliver Zierau
- Institute of Zoology, Technische Universität Dresden, Germany
| |
Collapse
|
14
|
Zaccaroni M, Massolo A, Beani L, Seta DD, Farabollini F, Giannelli G, Fusani L, Dessì-Fulgheri F. Developmental exposure to low levels of ethinylestradiol affects social play in juvenile male rats. Toxicol Res 2020; 36:301-310. [PMID: 33005589 DOI: 10.1007/s43188-019-00035-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 10/21/2019] [Accepted: 11/27/2019] [Indexed: 11/29/2022] Open
Abstract
Juvenile social play contributes to the development of adult social and emotional skills in humans and non-human animals and is therefore a useful endpoint to study the effects of endocrine disrupters on behavior in animal models. Ethinylestradiol (EE2), a widely produced, powerful synthetic estrogen is widespread in the environment mainly because it is a component of the contraceptive pill. To understand whether clinical or environmental exposure to EE2 during critical perinatal periods can affect male social play, we exposed 72 male Sprague-Dawley rats to EE2 or vehicle either during gestation (from gestation day (GD) 5 through 20) or during lactation (from postnatal day (PND) 1 through 21). Two doses of EE2 were used to treat the dams: a lower dose in the range of possible environmental exposure (4 ng/kg/day) and a higher dose similar to that received during contraceptive treatment (400 ng/kg/day). Social play was observed between PND 40 and 45. A principal component analysis (PCA) of frequencies of behavioral items observed during play sessions allowed to allocate behaviors to the two main components that we named aggressive-like play and defensive-like play. Aggressive-like play was increased by gestational and decreased by lactational exposure. Defensive-like play was decreased by treatment. For both types of play the lower dose (4 ng/kg/day) was as effective as the higher one. Total social activity was increased by gestational and decreased by lactational exposure. These findings provide further evidence that exposure to low and to very low doses of EE2 during critical periods of development can affect essential aspects of social behavior, and that the timing of exposure is critical to understand its developmental action.
Collapse
Affiliation(s)
- Marco Zaccaroni
- Department di Biology, University of Firenze, Florence, Italy
| | - Alessandro Massolo
- Ethology Unit, Department of Biology, University of Pisa, Pisa, Italy and Laboratoire Chrono-environnement, Université Bourgogne Franche-Comté, Besançon, France
| | - Laura Beani
- Department di Biology, University of Firenze, Florence, Italy
| | - Daniele Della Seta
- Department of Medicine, Surgery and Neuroscience University of Siena, Siena, Italy
| | | | | | - Leonida Fusani
- Department of Cognitive Biology, University of Vienna, and Konrad Lorenz Institute of Ethology, University of Veterinary Medicine, Vienna, Austria
| | | |
Collapse
|
15
|
Possible role of phytoestrogens in breast cancer via GPER-1/GPR30 signaling. Clin Sci (Lond) 2018; 132:2583-2598. [PMID: 30545896 DOI: 10.1042/cs20180885] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 11/12/2018] [Accepted: 11/15/2018] [Indexed: 02/07/2023]
Abstract
Estrogens generated within endocrine organs and the reproductive system act as ligands for at least three types of estrogen receptors. Estrogen receptors α (ERα) and β (ERβ) belong to the so-called classical family of estrogen receptors, whereas the G protein-coupled receptor GPR30, also known as GPER-1, has been described as a novel estrogen receptor sited in the cell membrane of target cells. Furthermore, these receptors are under stimulation of a family of exogenous estrogens, known as phytoestrogens, which are a diverse group of non-steroidal plant compounds derived from plant food consumed by humans and animals. Because phytoestrogens are omnipresent in our daily diet, they are becoming increasingly important in both human health and disease. Recent evidence indicates that in addition to classical estrogen receptors, phytoestrogens also activate GPER-1 a relevant observation since GPER-1 is involved in several physiopathological disorders and especially in estrogen-dependent diseases such as breast cancer.The first estrogen receptors discovered were the classical ERα and ERβ, but from an evolutionary point of view G protein-coupled receptors trace their origins in history to over a billion years ago suggesting that estrogen receptors like GPER-1 may have been the targets of choice for ancient phytoestrogens and/or estrogens.This review provides a comprehensive and systematic literature search on phytoestrogens and its relationship with classical estrogen receptors and GPER-1 including its role in breast cancer, an issue still under discussion.
Collapse
|
16
|
Schwartz CL, Christiansen S, Vinggaard AM, Axelstad M, Hass U, Svingen T. Anogenital distance as a toxicological or clinical marker for fetal androgen action and risk for reproductive disorders. Arch Toxicol 2018; 93:253-272. [PMID: 30430187 DOI: 10.1007/s00204-018-2350-5] [Citation(s) in RCA: 133] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 11/08/2018] [Indexed: 11/30/2022]
Abstract
Male reproductive development is intricately dependent on fetal androgen action. Consequently, disrupted androgen action during fetal life can interfere with the development of the reproductive system resulting in adverse effects on reproductive function later in life. One biomarker used to evaluate fetal androgen action is the anogenital distance (AGD), the distance between the anus and the external genitalia. A short male AGD is strongly associated with genital malformations at birth and reproductive disorders in adulthood. AGD is therefore used as an effect readout in rodent toxicity studies aimed at testing compounds for endocrine activity and anti-androgenic properties, and in human epidemiological studies to correlate fetal exposure to endocrine disrupting chemicals to feminization of new-born boys. In this review, we have synthesized current data related to intrauterine exposure to xenobiotics and AGD measurements. We discuss the utility of AGD as a retrospective marker of in utero anti-androgenicity and as a predictive marker for male reproductive disorders, both with respect to human health and rodent toxicity studies. Finally, we highlight four areas that need addressing to fully evaluate AGD as a biomarker in both a regulatory and clinical setting.
Collapse
Affiliation(s)
- Camilla Lindgren Schwartz
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Sofie Christiansen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Anne Marie Vinggaard
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Marta Axelstad
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Ulla Hass
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark
| | - Terje Svingen
- Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
17
|
Anandhi Senthilkumar H, Fata JE, Kennelly EJ. Phytoestrogens: The current state of research emphasizing breast pathophysiology. Phytother Res 2018; 32:1707-1719. [DOI: 10.1002/ptr.6115] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 01/08/2023]
Affiliation(s)
- Harini Anandhi Senthilkumar
- Department of Biological Sciences, Lehman College; City University of New York; Bronx New York NY 10468 USA
- Biochemistry and Biology Ph.D. Programs, The Graduate Center; City University of New York; New York NY 10016 USA
| | - Jimmie E. Fata
- Biochemistry and Biology Ph.D. Programs, The Graduate Center; City University of New York; New York NY 10016 USA
- Department of Biological Sciences; College of Staten Island; Staten Island New York NY 10314 USA
| | - Edward J. Kennelly
- Department of Biological Sciences, Lehman College; City University of New York; Bronx New York NY 10468 USA
- Biochemistry and Biology Ph.D. Programs, The Graduate Center; City University of New York; New York NY 10016 USA
| |
Collapse
|
18
|
Dere E, Anderson LM, Huse SM, Spade DJ, McDonnell-Clark E, Madnick SJ, Hall SJ, Camacho L, Lewis SM, Vanlandingham MM, Boekelheide K. Effects of continuous bisphenol A exposure from early gestation on 90 day old rat testes function and sperm molecular profiles: A CLARITY-BPA consortium study. Toxicol Appl Pharmacol 2018; 347:1-9. [PMID: 29596923 DOI: 10.1016/j.taap.2018.03.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 02/28/2018] [Accepted: 03/19/2018] [Indexed: 12/17/2022]
Abstract
Bisphenol A (BPA) is a ubiquitous industrial chemical that has been identified as an endocrine disrupting compound (EDC). There is growing concern that early life exposures to EDCs, such as BPA, can adversely affect the male reproductive tract and function. This study was conducted as part of the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA) to further delineate the toxicities associated with continuous exposure to BPA from early gestation, and to comprehensively examine the elicited effects on testes and sperm. NCTR Sprague Dawley rat dams were gavaged from gestational day (GD) 6 until parturition, and their pups were directly gavaged daily from postnatal day (PND) 1 to 90 with BPA (2.5, 25, 250, 2500, 25,000, 250,000 μg/kg/d) or vehicle control. At PND 90, the testes and sperm were collected for evaluation. The testes were histologically evaluated for altered germ cell apoptosis, sperm production, and altered spermiation. RNA and DNA isolated from sperm were assessed for elicited changes in global mRNA transcript abundance and altered DNA methylation. Effects of BPA were observed in changes in body, testis and epididymis weights only at the highest administered dose of BPA of 250,000 μg/kg/d. Genome-wide transcriptomic and epigenomic analyses failed to detect robust alterations in sperm mRNA and DNA methylation levels. These data indicate that prolonged exposure starting in utero to BPA over a wide range of levels has little, if any, impact on the testes and sperm molecular profiles of 90 day old rats as assessed by the histopathologic, morphometric, and molecular endpoints evaluated.
Collapse
Affiliation(s)
- Edward Dere
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States; Division of Urology, Rhode Island Hospital, Providence, RI, United States
| | - Linnea M Anderson
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Susan M Huse
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Daniel J Spade
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | | | - Samantha J Madnick
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Susan J Hall
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States
| | - Luísa Camacho
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, United States
| | - Sherry M Lewis
- Office of Scientific Coordination, National Center for Toxicological Research, Jefferson, AR, United States
| | - Michelle M Vanlandingham
- Division of Biochemical Toxicology, National Center for Toxicological Research, Jefferson, AR, United States
| | - Kim Boekelheide
- Department of Pathology and Laboratory Medicine, Brown University, Providence, RI, United States.
| |
Collapse
|
19
|
Gaffer GG, Elgawish RA, Abdelrazek HMA, Ebaid HM, Tag HM. Dietary soy isoflavones during pregnancy suppressed the immune function in male offspring albino rats. Toxicol Rep 2018; 5:296-301. [PMID: 29854598 PMCID: PMC5978017 DOI: 10.1016/j.toxrep.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 02/05/2018] [Accepted: 02/06/2018] [Indexed: 12/13/2022] Open
Abstract
Less attention has been paid to the immune effects of phytoestrogens during pregnancy on the first generation. Soy isoflavones fed to pregnant rats could modulate the immune response of the male offspring. Isoflavones reduced spleen and thymus weights in rats born to dams fed dietary soy. Soy isoflavones possibly mediated its effect through reduction of IFN-γ that interacts with the IL-12 production pathway.
Phytoestrogens have an impact on both animals and humans due to use of legumes in animal diets as well as the increase of vegetarian diets in some human populations. Phytoestrogens thought to have varieties of adverse effects, among which immune system was involved. The present study aimed to investigate the effect of prenatal exposure to dietary soy isoflavones on some immunological parameters in male albino rat offspring. The pregnant rats were divided to three groups (12/group). Control group (free soy isoflavones), low soy isoflavones group (6.5%) and high soy isoflavones group (26%). The male offspring cell-mediated immune response was determined using phytohemagglutinin (PHA) injection and the intumesce index which was calculated on postnatal day 50 (PND 50). At PND 50, blood samples were collected for interleukin 12 (IL-12), interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) determination. Spleen, thymus, and PHA injected footpads were fixed for histopathology. Intumesce index, IL-12, IFN-γ, spleen and thymus relative weights were significantly (P < 0.05) decreased in offspring born to dams fed low and high dietary soy isoflavones. In contrary, TNF-α was significantly (P < 0.05) increased in offspring born to dams fed high dietary soy isoflavones. Spleen of rats born to dams fed high dose of dietary soy isoflavones showed coagulative necrosis in white pulp. In conclusion, male offspring born to dams fed different levels of soy isoflavones showed marked immunosuppression after PHA stimulation. This effect was mediated through the reduced IFN-γ that interacts with the IL-12 production pathway.
Collapse
Affiliation(s)
- Ghada Gamal Gaffer
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Rania Abdelrahman Elgawish
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Hala M Ebaid
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Hend M Tag
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt.,University of Jeddah Branch of Khulais Governorate - Girls Section, Saudi Arabia
| |
Collapse
|
20
|
Zaccaroni M, Massolo A, Della Seta D, Farabollini F, Giannelli G, Fusani L, Dessì-Fulgheri F. Developmental Exposure to Low Levels of Ethinylestradiol Affects Play Behavior in Juvenile Female Rats. Neurotox Res 2017; 33:876-886. [PMID: 29260494 DOI: 10.1007/s12640-017-9852-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 12/10/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
Abstract
Juvenile social play contributes to the development of adult social and emotional skills in humans and non-human animals, and is therefore a useful endpoint to study the effects of endocrine disrupters on behavior in animal models. Ethinylestradiol (EE2) is a widely produced, powerful synthetic estrogen that is widespread in the environment mainly because is a component of the contraceptive pill. In addition, fetuses may be exposed to EE2 when pregnancy is undetected during contraceptive treatment. To understand whether exposure to EE2 during gestation or lactation affects social play, we exposed 72 female Sprague-Dawley rats to EE2 or vehicle either during gestation (gestation day (GD) 5 through GD 20) or during lactation (from postnatal day (PND) 1 through PND 21). Two doses of EE2 were used to treat the dams: a lower dose in the range of possible environmental exposure (4 ng/kg/day) and a higher dose equivalent to that received during contraceptive treatment (400 ng/kg/day). Behavioral testing was carried out between PND 40 and 45. A principal component analysis of frequencies of behavioral items observed during play sessions identified three main components: defensive-like play, aggressive-like play, and exploration. Aggressive-like play was significantly increased by both doses of EE2, and the gestational administration was in general more effective than the lactational one. Defensive-like play and exploration were not significantly affected by treatment. This research showed that low and very low doses of EE2 that mimic clinical or environmental exposure during development can affect important aspects of social behavior even during restricted time windows.
Collapse
Affiliation(s)
- Marco Zaccaroni
- Department di Biology, University of Firenze, Florence, Italy.
| | - Alessandro Massolo
- Ethology Unit, Department of Biology, University of Pisa, Pisa, Italy.,Laboratoire Chrono-environnement, Université Bourgogne Franche-Comté, Besançon, France
| | - Daniele Della Seta
- Department of Medicine, Surgery and Neuroscience University of Siena, Siena, Italy
| | | | | | - Leonida Fusani
- Department of Cognitive Biology, University of Vienna, and Konrad Lorenz Institute for Ethology, University of Veterinary Medicine, Vienna, Austria
| | | |
Collapse
|
21
|
Chen Y, Li M, Yuan L, Xie Y, Li B, Xu W, Meng F, Wang R. Growth, blood health, antioxidant status and immune response in juvenile yellow catfish Pelteobagrus fulvidraco exposed to α-ethinylestradiol (EE2). FISH & SHELLFISH IMMUNOLOGY 2017; 69:1-5. [PMID: 28826621 DOI: 10.1016/j.fsi.2017.08.003] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Revised: 07/29/2017] [Accepted: 08/03/2017] [Indexed: 06/07/2023]
Abstract
Triplicate groups of juvenile yellow catfish Pelteobagrus fulvidraco were exposed to three levels of α-ethinylestradiol (EE2) (0, 0.1 and 1 ng L-1) for 56 days. Fish survival rate (>93.33%) was not different among experimental groups. Weight gain and specific growth rate of fish exposed to EE2 were higher than those of control fish. Hepatosomatic index of fish exposed to 1 ng L-1 EE2 was the highest. Serum total protein, albumin, globulin, alanine aminotransferase, aspartate transaminase, cholesterol and triglyceride increased with increasing EE2 exposure levels. Liver total anti-oxidative capacity, malondialdehyde content and lysozyme activity of fish exposed to EE2 were higher than those of control fish. Phagocytic indices of fish exposed to 1 ng L-1 EE2 was lower than that of control fish. This study indicates that although EE2 exposure can promote the growth of yellow catfish in short-term, EE2 exerts its toxic effects by inducing reactive oxygen species generation and malondialdehyde accumulation, leading to blood deterioration and interfering with immune response.
Collapse
Affiliation(s)
- Yushi Chen
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Ming Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| | - Lixia Yuan
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Yuxin Xie
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Bing Li
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Wenbin Xu
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Fanxing Meng
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China
| | - Rixin Wang
- School of Marine Sciences, Ningbo University, Ningbo, 315211, China.
| |
Collapse
|
22
|
Barrett ES, Sathyanarayana S, Mbowe O, Thurston SW, Redmon JB, Nguyen RHN, Swan SH. First-Trimester Urinary Bisphenol A Concentration in Relation to Anogenital Distance, an Androgen-Sensitive Measure of Reproductive Development, in Infant Girls. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:077008. [PMID: 28728138 PMCID: PMC5744699 DOI: 10.1289/ehp875] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 01/18/2017] [Accepted: 01/19/2017] [Indexed: 05/20/2023]
Abstract
INTRODUCTION Evidence from animal models suggests that prenatal exposure to bisphenol A (BPA), a ubiquitous endocrine-disrupting chemical, is associated with adverse reproductive outcomes in females. Exposure during early gestation, a critical period for reproductive development, is of particular concern. Anogenital distance (AGD) is a sensitive biomarker of the fetal hormonal milieu and a measure of reproductive toxicity in animal models. In some studies, the daughters of BPA-exposed dams have shorter AGD than controls. Here, we investigate this relationship in humans. METHODS BPA was assayed in first-trimester urine samples from 385 participants who delivered infant girls in a multicenter pregnancy cohort study. After birth, daughters underwent exams that included two measures of AGD (AGD-AC: distance from center of anus to clitoris; AGD-AF: distance from center of anus to fourchette). We fit linear regression models to examine the association between specific gravity-adjusted (SPG-adj) maternal BPA concentrations and infant AGD, adjusting for covariates. RESULTS BPA was detectable in 94% of women. In covariate-adjusted models fit on 381 eligible subjects, the natural logarithm of SpG-adj maternal BPA concentration was inversely associated with infant AGD-AC [β=−0.56, 95% confidence interval (CI): −0.97, −0.15]. We observed no association between maternal BPA and infant AGD-AF. CONCLUSION BPA may have toxic effects on the female reproductive system in humans, as it does in animal models. Higher first-trimester BPA exposure was associated with significantly shorter AGD in daughters, suggesting that BPA may alter the hormonal environment of the female fetus. https://doi.org/10.1289/EHP875.
Collapse
Affiliation(s)
- Emily S Barrett
- Department of Epidemiology, Environmental and Occupational Health Sciences Institute, Rutgers University School of Public Health, Piscataway, New Jersey, USA
- Department of Obstetrics and Gynecology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, Washington, USA
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Omar Mbowe
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - Sally W Thurston
- Department of Biostatistics and Computational Biology, University of Rochester School of Medicine and Dentistry, Rochester, New York, USA
| | - J Bruce Redmon
- Department of Medicine, University of Minnesota, Minneapolis, Minnesota, USA
| | - Ruby H N Nguyen
- Department of Epidemiology and Community Health, University of Minnesota, Minneapolis, Minnesota, USA
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| |
Collapse
|
23
|
Arambula SE, Belcher SM, Planchart A, Turner SD, Patisaul HB. Impact of Low Dose Oral Exposure to Bisphenol A (BPA) on the Neonatal Rat Hypothalamic and Hippocampal Transcriptome: A CLARITY-BPA Consortium Study. Endocrinology 2016; 157:3856-3872. [PMID: 27571134 PMCID: PMC5045502 DOI: 10.1210/en.2016-1339] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2016] [Accepted: 08/23/2016] [Indexed: 11/19/2022]
Abstract
Bisphenol A (BPA) is an endocrine disrupting, high volume production chemical found in a variety of products. Evidence of prenatal exposure has raised concerns that developmental BPA may disrupt sex-specific brain organization and, consequently, induce lasting changes on neurophysiology and behavior. We and others have shown that exposure to BPA at doses below the no-observed-adverse-effect level can disrupt the sex-specific expression of estrogen-responsive genes in the neonatal rat brain including estrogen receptors (ERs). The present studies, conducted as part of the Consortium Linking Academic and Regulatory Insights of BPA Toxicity program, expanded this work by examining the hippocampal and hypothalamic transcriptome on postnatal day 1 with the hypothesis that genes sensitive to estrogen and/or sexually dimorphic in expression would be altered by prenatal BPA exposure. NCTR Sprague-Dawley dams were gavaged from gestational day 6 until parturition with BPA (0-, 2.5-, 25-, 250-, 2500-, or 25 000-μg/kg body weight [bw]/d). Ethinyl estradiol was used as a reference estrogen (0.05- or 0.5-μg/kg bw/d). Postnatal day 1 brains were microdissected and gene expression was assessed with RNA-sequencing (0-, 2.5-, and 2500-μg/kg bw BPA groups only) and/or quantitative real-time PCR (all exposure groups). BPA-related transcriptional changes were mainly confined to the hypothalamus. Consistent with prior observations, BPA induced sex-specific effects on hypothalamic ERα and ERβ (Esr1 and Esr2) expression and hippocampal and hypothalamic oxytocin (Oxt) expression. These data demonstrate prenatal BPA exposure, even at doses below the current no-observed-adverse-effect level, can alter gene expression in the developing brain.
Collapse
Affiliation(s)
- Sheryl E Arambula
- Department of Biological Sciences (S.E.A., S.M.B., A.P., H.B.P.), Keck Center for Behavioral Biology (S.E.A., H.B.P.), and Center for Human Health and the Environment (S.E.A., S.M.B., A.P., H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Public Health Sciences (S.D.T.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Scott M Belcher
- Department of Biological Sciences (S.E.A., S.M.B., A.P., H.B.P.), Keck Center for Behavioral Biology (S.E.A., H.B.P.), and Center for Human Health and the Environment (S.E.A., S.M.B., A.P., H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Public Health Sciences (S.D.T.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Antonio Planchart
- Department of Biological Sciences (S.E.A., S.M.B., A.P., H.B.P.), Keck Center for Behavioral Biology (S.E.A., H.B.P.), and Center for Human Health and the Environment (S.E.A., S.M.B., A.P., H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Public Health Sciences (S.D.T.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Stephen D Turner
- Department of Biological Sciences (S.E.A., S.M.B., A.P., H.B.P.), Keck Center for Behavioral Biology (S.E.A., H.B.P.), and Center for Human Health and the Environment (S.E.A., S.M.B., A.P., H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Public Health Sciences (S.D.T.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| | - Heather B Patisaul
- Department of Biological Sciences (S.E.A., S.M.B., A.P., H.B.P.), Keck Center for Behavioral Biology (S.E.A., H.B.P.), and Center for Human Health and the Environment (S.E.A., S.M.B., A.P., H.B.P.), North Carolina State University, Raleigh, North Carolina 27695; and Department of Public Health Sciences (S.D.T.), University of Virginia School of Medicine, Charlottesville, Virginia 22908
| |
Collapse
|
24
|
Zaccaroni M, Seta DD, Farabollini F, Fusani L, Dessì-Fulgheri F. Developmental Exposure to Very Low Levels of Ethynilestradiol Affects Anxiety in a Novelty Place Preference Test of Juvenile Rats. Neurotox Res 2016; 30:553-562. [DOI: 10.1007/s12640-016-9645-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 06/17/2016] [Accepted: 06/20/2016] [Indexed: 11/24/2022]
|
25
|
Comparison of endpoints relevant to toxicity assessments in 3 generations of CD-1 mice fed irradiated natural and purified ingredient diets with varying soy protein and isoflavone contents. Food Chem Toxicol 2016; 94:39-56. [PMID: 27234134 DOI: 10.1016/j.fct.2016.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/10/2016] [Accepted: 05/21/2016] [Indexed: 01/31/2023]
Abstract
Diet is an important variable in toxicology. There are mixed reports on the impact of soy components on energy utilization, fat deposition, and reproductive parameters. Three generations of CD-1 mice were fed irradiated natural ingredient diets with varying levels of soy (NIH-41, 5K96, or 5008/5001), purified irradiated AIN-93 diet, or the AIN-93 formulation modified with ethanol-washed soy protein concentrate (SPC) or SPC with isoflavones (SPC-IF). NIH-41 was the control for pairwise comparisons. Minimal differences were observed among natural ingredient diet groups. F0 males fed AIN-93, SPC, and SPC-IF diets had elevated glucose levels and lower insulin levels compared with the NIH-41 group. In both sexes of the F1 and F2 generations, the SPC and SPC-IF groups had lower body weight gains than the NIH-41 controls and the AIN-93 group had an increased percent body fat at postnatal day 21. AIN-93 F1 pups had higher baseline glucose than NIH-41 controls, but diet did not significantly affect breeding performance or responses to glucose or uterotrophic challenges. Reduced testes weight and sperm in the AIN-93 group may be related to low thiamine levels. Our observations underline the importance of careful selection, manufacturing procedures, and nutritional characterization of diets used in toxicological studies.
Collapse
|
26
|
Ebaid HM, Elgawish RAR, Abdelrazek HMA, Gaffer G, Tag HM. Prenatal Exposure to Soy Isoflavones Altered the Immunological Parameters in Female Rats. Int J Toxicol 2016; 35:274-83. [PMID: 26758869 DOI: 10.1177/1091581815625595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Information on the effects of phytoestrogens on animals has increased recently; however, there were only few studies on prenatal exposure on cellular immune response. Pregnant rats were assigned to 3 groups (12 rats per group), the first was fed control diet, the second was fed low-dose (6.5 g/100 g of diet) soy isoflavones, while the third was fed high-dose (26 g/100 g of diet) soy isoflavones. The female offspring cell-mediated immune response was determined using phytohemagglutinin (PHA) injection, and intumesce index was calculated on postnatal day 50. After 24 hours of PHA injection, blood samples were collected for tumor necrosis factor α, interferon γ (IFN-γ), and interleukin (IL)-12 determination. Spleen, thymus, and PHA-injected footpads were fixed for histopathology. Intumesce index was significantly (P < 0.05) reduced in rats' offspring born from dams fed low- and high-dietary soy isoflavones than that in control groups. Thymic relative weights in offspring of rats fed high-dietary soy isoflavones showed a significant (P < 0.05) decrease compared to that in the control group. Female offspring where low and high-dietary soy isoflavones were fed to their dams showed a significant (P < 0.05) decrease in IFN-γ and IL-12 than that in control ones. Spleen of rats born from dams fed high dose of dietary soy isoflavones showed lymphocytic depletion in white pulp. Taking together, it is clear that dietary soy isoflavones at prenatal period had immunosuppressive effect on female offspring after PHA stimulation. This effect was mediated through reduced IFN-γ that interplayed in IL-12 production pathway thus reducing its level.
Collapse
Affiliation(s)
- Hala M Ebaid
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Rania Abdel Rahman Elgawish
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Heba M A Abdelrazek
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Ghada Gaffer
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Hend M Tag
- Department of Zoology, Faculty of Science, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
27
|
Delayed adverse effects of neonatal exposure to polymeric nanoparticle poly(ethylene glycol)-block-polylactide methyl ether on hypothalamic–pituitary–ovarian axis development and function in Wistar rats. Reprod Toxicol 2015; 57:165-75. [DOI: 10.1016/j.reprotox.2015.07.072] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Revised: 07/08/2015] [Accepted: 07/09/2015] [Indexed: 01/23/2023]
|
28
|
Frontistis Z, Kouramanos M, Moraitis S, Chatzisymeon E, Hapeshi E, Fatta-Kassinos D, Xekoukoulotakis NP, Mantzavinos D. UV and simulated solar photodegradation of 17α-ethynylestradiol in secondary-treated wastewater by hydrogen peroxide or iron addition. Catal Today 2015. [DOI: 10.1016/j.cattod.2014.10.012] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
29
|
NIEHS/FDA CLARITY-BPA research program update. Reprod Toxicol 2015; 58:33-44. [PMID: 26232693 PMCID: PMC5545120 DOI: 10.1016/j.reprotox.2015.07.075] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Revised: 07/13/2015] [Accepted: 07/17/2015] [Indexed: 01/03/2023]
Abstract
Bisphenol A (BPA) is a chemical used in the production of numerous consumer products resulting in potential daily human exposure to this chemical. The FDA previously evaluated the body of BPA toxicology data and determined that BPA is safe at current exposure levels. Although consistent with the assessment of some other regulatory agencies around the world, this determination of BPA safety continues to be debated in scientific and popular publications, resulting in conflicting messages to the public. Thus, the National Toxicology Program (NTP), National Institute of Environmental Health Sciences (NIEHS), and U.S Food and Drug Administration (FDA) developed a consortium-based research program to link more effectively a variety of hypothesis-based research investigations and guideline-compliant safety testing with BPA. This collaboration is known as the Consortium Linking Academic and Regulatory Insights on BPA Toxicity (CLARITY-BPA). This paper provides a detailed description of the conduct of the study and a midterm update on progress of the CLARITY-BPA research program.
Collapse
|
30
|
Autrup H, Barile FA, Blaauboer BJ, Degen GH, Dekant W, Dietrich D, Domingo JL, Gori GB, Greim H, Hengstler JG, Kacew S, Marquardt H, Pelkonen O, Savolainen K, Vermeulen NP. Principles of Pharmacology and Toxicology Also Govern Effects of Chemicals on the Endocrine System. Toxicol Sci 2015; 146:11-5. [PMID: 26026993 DOI: 10.1093/toxsci/kfv082] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The present debate on chemicals with Hormonal activity, often termed 'endocrine disruptors', is highly controversial and includes challenges of the present paradigms used in toxicology and in hazard identification and risk characterization. In our opinion, chemicals with hormonal activity can be subjected to the well-evaluated health risk characterization approach used for many years including adverse outcome pathways. Many of the points arguing for a specific approach for risk characterization of chemicals with hormonal activity are based on highly speculative conclusions. These conclusions are not well supported when evaluating the available information.
Collapse
Affiliation(s)
- Herman Autrup
- International Union of Toxicologists, Institute of Public Health, University of Aarhus, Aarhus, Denmark
| | - Frank A Barile
- College of Pharmacy and Health Sciences, St John's University, Queens, New York, USA
| | - Bas J Blaauboer
- Division of Toxicology, Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Gisela H Degen
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund, Dortmund, Germany
| | - Wolfgang Dekant
- Department of Toxicology, University of Wuerzburg, Wuerzburg, Germany;
| | - Daniel Dietrich
- Faculty of Biology, University of Konstanz, Konstanz, Germany
| | - Jose L Domingo
- Laboratory of Toxicology and Environmental Health, School of Medicine, IISPV, Universitat 'Rovira i Virgili', Reus, Spain
| | | | | | - Jan G Hengstler
- Leibniz Research Centre for Working Environment and Human Factors (IfADo), TU Dortmund, Dortmund, Germany
| | - Sam Kacew
- McLaughlin Centre for Risk Assessment, University of Ottawa, Ottawa, Canada
| | | | - Olavi Pelkonen
- Department of Pharmacology and Toxicology, University of Oulu, Oulu, Finland
| | - Kai Savolainen
- Nanosafety Research Centre, Finnish Institute of Occupational Health, Helsinki Finland
| | - Nico P Vermeulen
- Department of Chemistry & Pharmaceutical Sciences, Vrije Universiteit, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Blei T, Soukup ST, Schmalbach K, Pudenz M, Möller FJ, Egert B, Wörtz N, Kurrat A, Müller D, Vollmer G, Gerhäuser C, Lehmann L, Kulling SE, Diel P. Dose-dependent effects of isoflavone exposure during early lifetime on the rat mammary gland: Studies on estrogen sensitivity, isoflavone metabolism, and DNA methylation. Mol Nutr Food Res 2015; 59:270-83. [PMID: 25410811 DOI: 10.1002/mnfr.201400480] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Revised: 10/23/2014] [Accepted: 10/29/2014] [Indexed: 12/23/2022]
Abstract
SCOPE Isoflavone (ISO) exposure during adolescence modulates 17β-estradiol (E2) sensitivity of the adult mammary gland. The present study investigated the dose dependency of these effects focusing on proliferation, estrogen receptor dependent and independent gene expression, as well as DNA methylation and ISO metabolism. METHODS AND RESULTS Female Wistar rats were lifelong exposed to an ISO-depleted diet or to diets enriched with a soy ISO extract (ISO-rich diet (IRD)) causing plasma concentrations as observed minimally (IRDlow) and maximally (IRDhigh) in Asian women. The extract was characterized by both phytochemical analysis and E-Screen. Rats were ovariectomized at postnatal day (PND) 80 and treated with E2 from PND94 to 97. In contrast to uterine response, body weight and visceral fat mass were affected by ISO. In the mammary gland, both E2-induced proliferation (proliferating cell nuclear antigen staining) and estrogen receptor activation (progesterone receptor staining) were significantly reduced by IRDhigh but not by IRDlow, which however attenuated Gdf15 mRNA expression. DNA methylation analysis revealed significant differences in the promoter regions of Aldhl1, Extl1, and WAP between IRDhigh and ISO-depleted diet. CONCLUSION Lifelong exposure to ISO results in dose-dependent differential effects on proliferation, gene expression, and DNA methylation in rat mammary glands. Yet, a decrease in estrogen responsiveness was only achieved by IRDhigh.
Collapse
Affiliation(s)
- Tina Blei
- German Sports University Cologne, Köln, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Talsness C, Grote K, Kuriyama S, Presibella K, Sterner-Kock A, Poça K, Chahoud I. Prenatal exposure to the phytoestrogen daidzein resulted in persistent changes in ovarian surface epithelial cell height, folliculogenesis, and estrus phase length in adult Sprague-Dawley rat offspring. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2015; 78:635-644. [PMID: 26039681 DOI: 10.1080/15287394.2015.1006711] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Daidzein (DZ), an isoflavone with the potential to interfere with estrogen signaling, is found in soy products, which have gained popularity due to purported beneficial effects on the cardiovascular and skeletal systems and potential antineoplastic properties. However, the ingestion of phytoestrogens has been associated with impaired reproductive function in many species. The aim of this study was to determine the long-term effects on the ovaries of rat offspring exposed to DZ or ethinyl estradiol (EE) during prenatal development. Gravid rats were administered either vehicle or 5 or 60 mg DZ/kg body weight/d or 0.002 mg 17-α EE /kg body weight/d on gestational days 6-21. Ovarian-related endpoints were investigated during adulthood in female offspring. The mean cell height of the ovarian surface epithelium was significantly reduced in all treated groups. Alterations in folliculogenesis included increased follicular atresia, a reduction in secondary and tertiary follicle numbers, and cyst formation. An elevated prevalence of a slightly prolonged estrus phase was also observed. The morphological changes to the ovarian surface epithelium are consistent with an antiproliferative effect, while ovarian folliculogenesis was adversely affected. The effects of the high dose DZ were similar to those observed with 17-α EE.
Collapse
Affiliation(s)
- Chris Talsness
- a Charité Universitaetsmedizin Berlin , Berlin , Germany
| | | | | | | | | | | | | |
Collapse
|
33
|
Li R, El Zowalaty AE, Chen W, Dudley EA, Ye X. Segregated responses of mammary gland development and vaginal opening to prepubertal genistein exposure in Bscl2(-/-) female mice with lipodystrophy. Reprod Toxicol 2014; 54:76-83. [PMID: 25462787 DOI: 10.1016/j.reprotox.2014.10.023] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 09/12/2014] [Accepted: 10/19/2014] [Indexed: 10/24/2022]
Abstract
Berardinelli-Seip congenital lipodystrophy 2-deficient (Bscl2(-/-)) mice recapitulate human BSCL2 disease with lipodystrophy. Bscl2-encoded seipin is detected in adipocytes and epithelium of mammary gland. Postnatal mammary gland growth spurt and vaginal opening signify pubertal onset in female mice. Bscl2(-/-) females have longer and dilated mammary gland ducts at 5-week old and delayed vaginal opening. Prepubertal exposure to 500ppm genistein diet increases mammary gland area and accelerates vaginal opening in both control and Bscl2(-/-) females. However, genistein treatment increases ductal length in control but not Bscl2(-/-) females. Neither prepubertal genistein treatment nor Bscl2-deficiency affects phospho-estrogen receptor α or progesterone receptor expression patterns in 5-week old mammary gland. Interestingly, Bscl2-deficiency specifically reduces estrogen receptor β expression in mammary gland ductal epithelium. In summary, Bscl2(-/-) females have accelerated postnatal mammary ductal development but delayed vaginal opening; they display segregated responses in mammary gland development and vaginal opening to prepubertal genistein treatment.
Collapse
Affiliation(s)
- Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Ahmed E El Zowalaty
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Weiqin Chen
- Department of Physiology, Georgia Regents University, Augusta, GA 30912, USA.
| | - Elizabeth A Dudley
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
34
|
Ramirez T, Buechse A, Dammann M, Melching-Kollmuß S, Woitkowiak C, van Ravenzwaay B. Effect of estrogenic binary mixtures in the yeast estrogen screen (YES). Regul Toxicol Pharmacol 2014; 70:286-96. [DOI: 10.1016/j.yrtph.2014.07.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Revised: 05/31/2014] [Accepted: 07/06/2014] [Indexed: 11/26/2022]
|
35
|
Ferguson SA, Law CD, Kissling GE. Developmental treatment with ethinyl estradiol, but not bisphenol A, causes alterations in sexually dimorphic behaviors in male and female Sprague Dawley rats. Toxicol Sci 2014; 140:374-92. [PMID: 24798382 PMCID: PMC4133561 DOI: 10.1093/toxsci/kfu077] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2014] [Accepted: 04/17/2014] [Indexed: 01/26/2023] Open
Abstract
The developing central nervous system may be particularly sensitive to bisphenol A (BPA)-induced alterations. Here, pregnant Sprague Dawley rats (n = 11-12/group) were gavaged daily with vehicle, 2.5 or 25.0 μg/kg BPA, or 5.0 or 10.0 μg/kg ethinyl estradiol (EE2) on gestational days 6-21. The BPA doses were selected to be below the no-observed-adverse-effect level (NOAEL) of 5 mg/kg/day. On postnatal days 1-21, all offspring/litter were orally treated with the same dose. A naïve control group was not gavaged. Body weight, pubertal age, estrous cyclicity, and adult serum hormone levels were measured. Adolescent play, running wheel activity, flavored solution intake, female sex behavior, and manually elicited lordosis were assessed. No significant differences existed between the vehicle and naïve control groups. Vehicle controls exhibited significant sexual dimorphism for most behaviors, indicating these evaluations were sensitive to sex differences. However, only EE2 treatment caused significant effects. Relative to female controls, EE2-treated females were heavier, exhibited delayed vaginal opening, aberrant estrous cyclicity, increased play behavior, decreased running wheel activity, and increased aggression toward the stimulus male during sexual behavior assessments. Relative to male controls, EE2-treated males were older at testes descent and preputial separation and had lower testosterone levels. These results suggest EE2-induced masculinization/defeminization of females and are consistent with increased volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA) at weaning in female siblings of these subjects (He, Z., Paule, M. G. and Ferguson, S. A. (2012) Low oral doses of bisphenol A increase volume of the sexually dimorphic nucleus of the preoptic area in male, but not female, rats at postnatal day 21. Neurotoxicol. Teratol. 34, 331-337). Although EE2 treatment caused pubertal delays and decreased testosterone levels in males, their behaviors were within the range of control males. Conversely, BPA treatment did not alter any measured endpoint. Similar to our previous reports (Ferguson, S. A., Law, C. D. Jr and Abshire, J. S. (2011) Developmental treatment with bisphenol A or ethinyl estradiol causes few alterations on early preweaning measures. Toxicol. Sci. 124, 149-160; Ferguson, S. A., Law, C. D. and Abshire, J. S. (2012) Developmental treatment with bisphenol A causes few alterations on measures of postweaning activity and learning. Neurotoxicol. Teratol. 34, 598-606), the BPA doses and design used here produced few alterations.
Collapse
Affiliation(s)
- Sherry A Ferguson
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, Arkansas 72079
| | - Charles Delbert Law
- Division of Neurotoxicology, National Center for Toxicological Research/Food and Drug Administration, Jefferson, Arkansas 72079
| | - Grace E Kissling
- Biostatistics Branch, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
36
|
Aris AZ, Shamsuddin AS, Praveena SM. Occurrence of 17α-ethynylestradiol (EE2) in the environment and effect on exposed biota: a review. ENVIRONMENT INTERNATIONAL 2014; 69:104-19. [PMID: 24825791 DOI: 10.1016/j.envint.2014.04.011] [Citation(s) in RCA: 334] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 04/06/2014] [Accepted: 04/13/2014] [Indexed: 05/17/2023]
Abstract
17α-ethynylestradiol (EE2) is a synthetic hormone, which is a derivative of the natural hormone, estradiol (E2). EE2 is an orally bio-active estrogen, and is one of the most commonly used medications for humans as well as livestock and aquaculture activity. EE2 has become a widespread problem in the environment due to its high resistance to the process of degradation and its tendency to (i) absorb organic matter, (ii) accumulate in sediment and (iii) concentrate in biota. Numerous studies have reported the ability of EE2 to alter sex determination, delay sexual maturity, and decrease the secondary sexual characteristics of exposed organisms even at a low concentration (ng/L) by mimicking its natural analogue, 17β-estradiol (E2). Thus, the aim of this review is to provide an overview of the science regarding EE2, the concentration levels in the environment (water, sediment and biota) and summarize the effects of this compound on exposed biota at various concentrations, stage life, sex, and species. The challenges in respect of EE2 include the extension of the limited database on the EE2 pollution profile in the environment, its fate and transport mechanism, as well as the exposure level of EE2 for better prediction and definition revision of EE2 toxicity end points, notably for the purpose of environmental risk assessment.
Collapse
Affiliation(s)
- Ahmad Zaharin Aris
- Environmental Forensics Research Centre, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Department of Environmental Sciences, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - Aida Soraya Shamsuddin
- Environmental Forensics Research Centre, Faculty of Environmental Studies, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Sarva Mangala Praveena
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
37
|
Solak KA, Wijnolts FMJ, Nijmeijer SM, Blaauboer BJ, van den Berg M, van Duursen MBM. Excessive levels of diverse phytoestrogens can modulate steroidogenesis and cell migration of KGN human granulosa-derived tumor cells. Toxicol Rep 2014; 1:360-372. [PMID: 28962252 PMCID: PMC5598505 DOI: 10.1016/j.toxrep.2014.06.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 06/10/2014] [Accepted: 06/10/2014] [Indexed: 12/17/2022] Open
Abstract
Phytoestrogens are plant-derived estrogen-like compounds that are increasingly used for their suggested health promoting properties, even by healthy, young women. However, scientific concerns exist regarding potential adverse effects on female reproduction. In this study, naringenin (NAR), 8-prenylnaringenin (8-PN), genistein (GEN), coumestrol (COU), quercetin (QUE) and resveratrol (RSV) up-regulated steroidogenic acute regulatory protein (StaR) mRNA levels in KGN human granulosa-like tumor cells. Most of the phytoestrogens tested also increased CYP19A1 (aromatase) mRNA levels via activation of ovary-specific I.3 and II promoters. Yet, only NAR (3 and 10 μM), COU (10 and 30 μM) and QUE (10 μM) also statistically significantly induced aromatase activity in KGN cells after 24 h. 8-PN, aromatase inhibitor letrozole and estrogen receptor antagonist ICI 182,780 concentration-dependently inhibited aromatase activity with IC50 values of 8 nM, 10 nM and 72 nM, respectively. Co-exposure with ICI 182,780 (0.1 μM) statistically significantly attenuated the induction of aromatase activity by QUE and COU, but not NAR. Cell cycle status and proliferation of KGN cells were not affected by any of the phytoestrogens tested. Nonetheless, the migration of KGN cells was significantly reduced with approximately 30% by COU, RSV and QUE and 46% by GEN at 10 μM, but not NAR and 8-PN. Our results indicate that phytoestrogens can affect various pathways in granulosa-like cells in vitro at concentrations that can be found in plasma upon supplement intake. This implies that phytoestrogens may interfere with ovarian function and caution is in place regarding the use of supplements with high contents of phytoestrogens.
Collapse
Affiliation(s)
- Kamila A Solak
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Fiona M J Wijnolts
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Sandra M Nijmeijer
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Bas J Blaauboer
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Martin van den Berg
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| | - Majorie B M van Duursen
- Institute for Risk Assessment Sciences, Faculty of Veterinary Medicine Utrecht University, Yalelaan 104, 3584 CM Utrecht, The Netherlands
| |
Collapse
|
38
|
Zhao F, Li R, Xiao S, Diao H, El Zowalaty AE, Ye X. Multigenerational exposure to dietary zearalenone (ZEA), an estrogenic mycotoxin, affects puberty and reproduction in female mice. Reprod Toxicol 2014; 47:81-8. [PMID: 24972337 DOI: 10.1016/j.reprotox.2014.06.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2014] [Revised: 06/13/2014] [Accepted: 06/17/2014] [Indexed: 11/19/2022]
Abstract
This study investigated potential cumulative effects of multiple pregnancy and multigenerational exposure to dietary ZEA (0, 0.8, 4, or 20ppm) on female puberty and reproduction in C57BL/6J mice. Multiple pregnancies did not significantly affect litter size or offspring puberty. Significant effects were observed in 20ppm ZEA-treated females: advanced puberty onset in F0, F1, and F2 generations; decreased implantation rate, pregnancy rate, and litter size, and increased pregnancy gap and gestation period in F1 and F2 generations; and reduced fertility index in F2 generation. F3 females from 0 and 20ppm groups were split into 0 or 20ppm ZEA diets at weaning, with advanced puberty onset seen in 0-20 and 20-20 groups and decreased implantation rate observed in 20-20 group. In summary, 20ppm dietary ZEA advanced puberty onset without obvious cumulative effect and impaired fertility with multigenerational cumulative effect, which could be partially alleviated upon exposure cessation.
Collapse
Affiliation(s)
- Fei Zhao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Shuo Xiao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Honglu Diao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Ahmed E El Zowalaty
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
39
|
Christiansen S, Axelstad M, Boberg J, Vinggaard AM, Pedersen GA, Hass U. Low-dose effects of bisphenol A on early sexual development in male and female rats. Reproduction 2014; 147:477-87. [PMID: 24298045 DOI: 10.1530/rep-13-0377] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Bisphenol A (BPA) is widely detected in human urine and blood. BPA has been reported to impair many endpoints for reproductive and neurological development; however, it is controversial whether BPA has effects in the microgram per kilogram dose range. The aim of the current study was to examine the influence of BPA on early sexual development in male and female rats at dose levels covering both regulatory no observed adverse effect levels (NOAELs) (5 and 50 mg/kg bw per day) as well as doses in the microgram per kilogram dose range (0.025 and 0.25 mg/kg bw per day). Time-mated Wistar rats (n=22) were gavaged during pregnancy and lactation from gestation day 7 to pup day 22 with 0, 0.025, 0.25, 5 or 50 mg/kg bw per day BPA. From 0.250 mg/kg and above, male anogenital distance (AGD) was significantly decreased, whereas decreased female AGD was seen from 0.025 mg/kg bw per day and above. Moreover, the incidence of nipple retention in males appeared to increase dose relatedly and the increase was statistically significant at 50 mg/kg per day. No significant changes in reproductive organ weights in the 16-day-old males and females and no signs of maternal toxicity were seen. The decreased AGD at birth in both sexes indicates effects on prenatal sexual development and provides new evidence of low-dose adverse effects of BPA in rats in the microgram per kilogram dose range. The NOAEL in this study is clearly below 5 mg/kg for BPA, which is used as the basis for establishment of the current tolerable daily intake (TDI) by EFSA; thus a reconsideration of the current TDI of BPA appears warranted.
Collapse
|
40
|
Delclos KB, Camacho L, Lewis SM, Vanlandingham MM, Latendresse JR, Olson GR, Davis KJ, Patton RE, Gamboa da Costa G, Woodling KA, Bryant MS, Chidambaram M, Trbojevich R, Juliar BE, Felton RP, Thorn BT. Toxicity evaluation of bisphenol A administered by gavage to Sprague Dawley rats from gestation day 6 through postnatal day 90. Toxicol Sci 2014; 139:174-97. [PMID: 24496637 DOI: 10.1093/toxsci/kfu022] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Bisphenol A (BPA) is a high production volume industrial chemical to which there is widespread human oral exposure. Guideline studies used to set regulatory limits detected adverse effects only at doses well above human exposures and established a no-observed-adverse-effect level (NOAEL) of 5 mg/kg body weight (bw)/day. However, many reported animal studies link BPA to potentially adverse effects on multiple organ systems at doses below the NOAEL. The primary goals of the subchronic study reported here were to identify adverse effects induced by orally (gavage) administered BPA below the NOAEL, to characterize the dose response for such effects and to determine doses for a subsequent chronic study. Sprague Dawley rat dams were dosed daily from gestation day 6 until the start of labor, and their pups were directly dosed from day 1 after birth to termination. The primary focus was on seven equally spaced BPA doses (2.5-2700 μg/kg bw/day). Also included were a naïve control, two doses of ethinyl estradiol (EE2) to demonstrate the estrogen responsiveness of the animal model, and two high BPA doses (100,000 and 300,000 μg/kg bw/day) expected from guideline studies to produce adverse effects. Clear adverse effects of BPA, including depressed gestational and postnatal body weight gain, effects on the ovary (increased cystic follicles, depleted corpora lutea, and antral follicles), and serum hormones (increased serum estradiol and prolactin and decreased progesterone), were observed only at the two high doses of BPA. BPA-induced effects partially overlapped those induced by EE2, consistent with the known weak estrogenic activity of BPA.
Collapse
Affiliation(s)
- K Barry Delclos
- Division of Biochemical Toxicology, 3900 NCTR Road, Jefferson, Arkansas 72079
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Li R, Zhao F, Diao H, Xiao S, Ye X. Postweaning dietary genistein exposure advances puberty without significantly affecting early pregnancy in C57BL/6J female mice. Reprod Toxicol 2013; 44:85-92. [PMID: 24365114 DOI: 10.1016/j.reprotox.2013.12.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2013] [Revised: 12/12/2013] [Accepted: 12/12/2013] [Indexed: 01/06/2023]
Abstract
An epidemiological study indicates higher plasma level of genistein in girls with earlier puberty. This study tests the hypothesis in C57BL/6J mice that postweaning (peripubertal) dietary genistein exposure could result in earlier puberty in females assessed by vaginal opening, estrous cyclicity, corpus luteum and mammary gland development. Newly weaned female mice were fed with 0, 5, 100, or 500 ppm genistein diets. Decreased age at vaginal opening, increased length on estrus stage, and accelerated mammary gland development were detected in 100 and 500 ppm genistein-treated groups. Increased presence of corpus luteum was found in 5 ppm genistein-treated group at 6 weeks old only. Increased expression of epithelial-specific genes but not that of ERα or ERβ was detected in 500 ppm genistein-treated mammary glands at 5 weeks old. No significant adverse effect on embryo implantation was observed. These data demonstrate causal effect of dietary genistein on earlier puberty in female mice.
Collapse
Affiliation(s)
- Rong Li
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Fei Zhao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Honglu Diao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA.
| | - Shuo Xiao
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| | - Xiaoqin Ye
- Department of Physiology and Pharmacology, College of Veterinary Medicine, University of Georgia, Athens, GA 30602, USA; Interdisciplinary Toxicology Program, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
42
|
Effects of perinatal ethinyl estradiol exposure in male and female Wistar rats. Reprod Toxicol 2013; 42:180-91. [DOI: 10.1016/j.reprotox.2013.09.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2013] [Revised: 07/08/2013] [Accepted: 09/04/2013] [Indexed: 11/23/2022]
|
43
|
Testai E, Galli CL, Dekant W, Marinovich M, Piersma AH, Sharpe RM. A plea for risk assessment of endocrine disrupting chemicals. Toxicology 2013; 314:51-9. [DOI: 10.1016/j.tox.2013.07.018] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Accepted: 07/30/2013] [Indexed: 12/20/2022]
|
44
|
Jašarević E, Williams SA, Vandas GM, Ellersieck MR, Liao C, Kannan K, Roberts RM, Geary DC, Rosenfeld CS. Sex and dose-dependent effects of developmental exposure to bisphenol A on anxiety and spatial learning in deer mice (Peromyscus maniculatus bairdii) offspring. Horm Behav 2013; 63:180-9. [PMID: 23051835 PMCID: PMC3540128 DOI: 10.1016/j.yhbeh.2012.09.009] [Citation(s) in RCA: 97] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2012] [Revised: 09/27/2012] [Accepted: 09/28/2012] [Indexed: 02/02/2023]
Abstract
Bisphenol A (BPA) is a widely produced, endocrine disrupting compound that is pervasive in the environment. Data suggest that developmental exposure to BPA during sexual differentiation of the brain leads to later behavioral consequences in offspring. Outbred deer mice (Peromyscus maniculatus bairdii) are an excellent animal model for such studies as they exhibit well-defined sex- and steroid-dependent behaviors. Here, dams during gestation and lactation were fed with a phytoestrogen-free control diet, the same diet supplemented with either ethinyl estradiol (0.1 ppb), or one of the three doses of BPA (50 mg, 5 mg, 50 μg/kg feed weight). After weaning, the pups were maintained on control diet until they reached sexual maturity and then assessed for both spatial learning capabilities and anxiety-like and exploratory behaviors. Relative to controls, males exposed to the two upper but not the lowest dose of BPA demonstrated similar impairments in spatial learning, increased anxiety and reduced exploratory behaviors as ethinyl estradiol-exposed males, while females exposed to ethinyl estradiol, but not to BPA, consistently exhibited masculinized spatial abilities. We also determined whether dams maintained chronically on the upper dose of BPA contained environmentally relevant concentrations of BPA in their blood. While serum concentrations of unconjugated BPA in controls were below the minimum level of detection, those from dams on the BPA diet were comparable (5.48±2.07 ng/ml) to concentrations that have been observed in humans. Together, these studies demonstrate that developmental exposure to environmentally relevant concentrations of BPA can disrupt adult behaviors in a dose- and sex-dependent manner.
Collapse
Affiliation(s)
- Eldin Jašarević
- Interdisciplinary Neuroscience Program, Center for Translational Neuroscience, University of Missouri, Columbia MO 65211
- Department of Psychological Sciences, University of Missouri, Columbia MO 65211
- Thompson Center for Autism and Neurodevelopmental Disorders, University of Missouri, Columbia MO 65211
| | - Scott A. Williams
- Division of Biological Sciences, University of Missouri, Columbia MO 65211
- Bond Life Sciences Center, University of Missouri, Columbia MO 65211
| | - Gregory M. Vandas
- Division of Biological Sciences, University of Missouri, Columbia MO 65211
- Bond Life Sciences Center, University of Missouri, Columbia MO 65211
| | - Mark R. Ellersieck
- College of Agriculture Food and Nutritional Resources-Statitician, University of Missouri, Columbia MO 65211
| | - Chunyang Liao
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health, and Department of Environmental Health Sciences, School of Public Health, State University of New York at Albany, Albany, NY
| | - R. Michael Roberts
- Bond Life Sciences Center, University of Missouri, Columbia MO 65211
- Department of Animal Sciences, University of Missouri, Columbia MO 65211
- Department of Biochemistry, University of Missouri, Columbia MO 65211
| | - David C. Geary
- Interdisciplinary Neuroscience Program, Center for Translational Neuroscience, University of Missouri, Columbia MO 65211
- Department of Psychological Sciences, University of Missouri, Columbia MO 65211
| | - Cheryl S. Rosenfeld
- Bond Life Sciences Center, University of Missouri, Columbia MO 65211
- Department of Biomedical Sciences, University of Missouri, Columbia MO 65211
- Corresponding author: Biomedical Sciences and Bond Life Sciences Center, University of Missouri, 440F Bond Life Sciences Center, 1201 E. Rollins Rd., Columbia, MO 65211. , phone: (573) 882-5132, and fax: (573) 884-9395.
| |
Collapse
|
45
|
Ferguson SA, Law CD, Abshire JS. Developmental treatment with bisphenol A causes few alterations on measures of postweaning activity and learning. Neurotoxicol Teratol 2012; 34:598-606. [DOI: 10.1016/j.ntt.2012.09.006] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Revised: 09/19/2012] [Accepted: 09/19/2012] [Indexed: 01/13/2023]
|
46
|
Cederroth CR, Zimmermann C, Nef S. Soy, phytoestrogens and their impact on reproductive health. Mol Cell Endocrinol 2012; 355:192-200. [PMID: 22210487 DOI: 10.1016/j.mce.2011.05.049] [Citation(s) in RCA: 107] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/06/2011] [Accepted: 05/13/2011] [Indexed: 11/24/2022]
Abstract
There is growing interest in the potential health threats posed by endocrine-disrupting chemicals (EDCs) to the reproductive system. Soybean is the most important dietary source of isoflavones, an important class of phytoestrogen. While consumption of soy food or phytoestrogen supplements has been frequently associated with beneficial health effects, the potentially adverse effects on development, fertility, and the reproductive and endocrine systems are likely underappreciated. Here we review the available epidemiological, clinical and animal data on the effects of soy and phytoestrogens on the development and function of the male and female reproductive system, and weigh the evidence as to their detrimental impact.
Collapse
Affiliation(s)
- Christopher Robin Cederroth
- Department of Genetic Medicine and Development, University of Geneva Medical School, 1211 Geneva, Switzerland
| | | | | |
Collapse
|
47
|
Retana-Márquez S, Aguirre FG, Alcántara M, García-Díaz E, Muñoz-Gutiérrez M, Arteaga-Silva M, López G, Romero C, Chemineau P, Keller M, Delgadillo JA. Mesquite pod extract modifies the reproductive physiology and behavior of the female rat. Horm Behav 2012; 61:549-58. [PMID: 22366692 DOI: 10.1016/j.yhbeh.2012.02.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Revised: 01/16/2012] [Accepted: 02/05/2012] [Indexed: 10/28/2022]
Abstract
Phytoestrogens are non steroidal compounds that can bind to estrogen receptors, mimicking some effects of estradiol (E(2)). These compounds are widespread among legumes, which are used as pasture, and their importance in animal agriculture has increased. Mesquite (Prosopis sp) is a widespread legume, widely used to feed several livestock species in Mexico. The main product of mesquite is the pod, which is considered high quality food. As a legume, it could be assumed that mesquite contains some amounts of phytoestrogens which might induce potential estrogenic effects. However, to our knowledge, there are no reports regarding the possible estrogenic activity of this legume either in livestock or in animal models such as the rat. Therefore, in this study, we evaluated the potential estrogenic effects of mesquite pod extract on several aspects of behavior and reproductive physiology of the female rat. The effects of the extract were compared with those of E(2) and two isoflavones: daidzein (DAI) and genistein (GEN). The following treatments were given to groups of intact and ovariectomized (OVX) female rats: vehicle; mesquite pod extract; E(2); GEN; DAI. Compared to vehicle groups, mesquite pod extract, DAI, GEN, and E(2) increased uterine weight and induced growth in vaginal and uterine epithelia. In intact rats, mesquite pod extract, GEN and DAI altered estrous cyclicity, decreased lordotic quotient and intensity of lordosis. In OVX rats, mesquite pod extract, DAI and GEN induced vaginal estrus, increased vaginal epithelium height, and induced lordosis, although its intensity was reduced, compared with intact rats in estrus and E2-treated rats. These results suggest that mesquite pod extract could have estrogenic activity. However, the presence of phytoestrogens in this legume remains to be confirmed.
Collapse
Affiliation(s)
- S Retana-Márquez
- Departamento Biología de la Reproducción, Universidad Autónoma Metropolitana-Iztapalapa, San Rafael Atlixco 186, México City CP 09340, Mexico.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Jefferson WN, Patisaul HB, Williams CJ. Reproductive consequences of developmental phytoestrogen exposure. Reproduction 2012; 143:247-60. [PMID: 22223686 PMCID: PMC3443604 DOI: 10.1530/rep-11-0369] [Citation(s) in RCA: 125] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Phytoestrogens, estrogenic compounds derived from plants, are ubiquitous in human and animal diets. These chemicals are generally much less potent than estradiol but act via similar mechanisms. The most common source of phytoestrogen exposure to humans is soybean-derived foods that are rich in the isoflavones genistein and daidzein. These isoflavones are also found at relatively high levels in soy-based infant formulas. Phytoestrogens have been promoted as healthy alternatives to synthetic estrogens and are found in many dietary supplements. The aim of this review is to examine the evidence that phytoestrogen exposure, particularly in the developmentally sensitive periods of life, has consequences for future reproductive health.
Collapse
Affiliation(s)
- Wendy N. Jefferson
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| | - Heather B. Patisaul
- Department of Biology, North Carolina State University, Raleigh NC 27695, USA
| | - Carmen J. Williams
- Reproductive Medicine Group, Laboratory of Reproductive and Developmental Toxicology, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC 27709, USA
| |
Collapse
|
49
|
McCarver G, Bhatia J, Chambers C, Clarke R, Etzel R, Foster W, Hoyer P, Leeder JS, Peters JM, Rissman E, Rybak M, Sherman C, Toppari J, Turner K. NTP-CERHR expert panel report on the developmental toxicity of soy infant formula. ACTA ACUST UNITED AC 2011; 92:421-68. [PMID: 21948615 DOI: 10.1002/bdrb.20314] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2011] [Accepted: 05/17/2011] [Indexed: 12/11/2022]
Abstract
Soy infant formula contains soy protein isolates and is fed to infants as a supplement to or replacement for human milk or cow milk. Soy protein isolates contains estrogenic isoflavones (phytoestrogens) that occur naturally in some legumes, especially soybeans. Phytoestrogens are nonsteroidal, estrogenic compounds. In plants, nearly all phytoestrogens are bound to sugar molecules and these phytoestrogen-sugar complexes are not generally considered hormonally active. Phytoestrogens are found in many food products in addition to soy infant formula, especially soy-based foods such as tofu, soy milk, and in some over-the-counter dietary supplements. Soy infant formula was selected for National Toxicology Program (NTP) evaluation because of (1) the availability of large number of developmental toxicity studies in laboratory animals exposed to the isoflavones found in soy infant formula (namely, genistein) or other soy products, as well as few studies on human infants fed soy infant formula, (2) the availability of information on exposures in infants fed soy infant formula, and (3) public concern for effects on infant or child development. On October 2, 2008 (73 FR 57360), the NTP Center for the Evaluation of Risks to Human Reproduction (CERHR) announced its intention to conduct an updated review of soy infant formula to complete a previous evaluation that was initiated in 2005. Both the current and previous evaluations relied on expert panels to assist the NTP in developing its conclusions on the potential developmental effects associated with the use of soy infant formula, presented in the NTP Brief on Soy Infant Formula. The initial expert panel met on March 15 to 17, 2006, to reach conclusions on the potential developmental and reproductive toxicities of soy infant formula and its predominant isoflavone constituent genistein. The expert panel reports were released for public comment on May 5, 2006 (71 FR 28368). On November 8, 2006 (71 FR 65537), CERHR staff released draft NTP Briefs on Genistein and Soy Formula that provided the NTP's interpretation of the potential for genistein and soy infant formula to cause adverse reproductive and/or developmental effects in exposed humans. However, CERHR did not complete these evaluations, finalize the briefs, or issue NTP Monographs on these substances based on this initial evaluation. Between 2006 and 2009, a substantial number of new publications related to human exposure or reproductive and/or developmental toxicity were published for these substances. Thus, CERHR determined that updated evaluations of genistein and soy infant formula were needed. However, the current evaluation focuses only on soy infant formula and the potential developmental toxicity of its major isoflavone components, e.g. genistein, daidzein (and estrogenic metabolite, equol), and glycitein. This updated evaluation does not include an assessment on the potential reproductive toxicity of genistein following exposures during adulthood as was carried out in the 2006 evaluation. CERHR narrowed the scope of the evaluation because the assessment of reproductive effects of genistein following exposure to adults was not considered relevant to the consideration of soy infant formula use in infants during the 2006 evaluation. To obtain updated information about soy infant formula for the CERHR evaluation, the PubMed (Medline) database was searched from February 2006 to August 2009 with genistein/genistin, daidzein/daidzin, glycitein/glycitin, equol, soy, and other relevant keywords. References were also identified from the bibliographies of published literature. The updated expert panel report represents the efforts of a 14-member panel of government and nongovernment scientists, and was prepared with assistance from NTP staff. The finalized report, released on January 15, 2010 (75 FR 2545), reflects consideration of public comments received on a draft report that was released on October 19, 2009, for public comment and discussions that occurred at a public meeting of the expert panel held December 16 to 18, 2009 (74 FR 53509). The finalized report presents conclusions on (1) the strength of scientific evidence that soy infant formula or its isoflavone constituents are developmental toxicants based on data from in vitro, animal, or human studies; (2) the extent of exposures in infants fed soy infant formula; (3) the assessment of the scientific evidence that adverse developmental health effects may be associated with such exposures; and (4) knowledge gaps that will help establish research and testing priorities to reduce uncertainties and increase confidence in future evaluations. The Expert Panel expressed minimal concern for adverse developmental effects in infants fed soy infant formula. This level of concern represents a "2" on the five-level scale of concern used by the NTP that ranges from negligible concern ("1") to serious concern ("5"). The Expert Panel Report on Soy Infant Formula was considered extensively by NTP staff in preparing the 2010 NTP Brief on Soy Infant Formula, which represents the NTP's opinion on the potential for exposure to soy infant formula to cause adverse developmental effects in humans. The NTP concurred with the expert panel that there is minimal concern for adverse effects on development in infants who consume soy infant formula. This conclusion was based on information about soy infant formula provided in the expert panel report, public comments received during the course of the expert panel evaluation, additional scientific information made available since the expert panel meeting, and peer reviewer critiques of the draft NTP Brief by the NTP Board of Scientific Counselors (BSC) on May 10, 2010 (Meeting materials are available at http://ntp.niehs.nih.gov/go/9741.). The BSC voted in favor of the minimal concern conclusion with 7 yes votes, 3 no votes, and 0 abstentions. One member thought that the conclusion should be negligible concern and two members thought that the level of concern should be higher than minimal concern. The NTP's response to the May 10, 2010 review ("peer-review report") is available on the NTP website at http://ntp.niehs.nih.gov/go/9741. The monograph includes the NTP Brief on Soy Infant Formula as well as the entire final Expert Panel Report on Soy Infant Formula. Public comments received as part of the NTP's evaluation of soy infant formula and other background materials are available at http://cerhr.niehs.nih.gov/evals/index.html.
Collapse
Affiliation(s)
- Gail McCarver
- Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Ferguson SA, Law CD, Abshire JS. Developmental Treatment with Bisphenol A or Ethinyl Estradiol Causes Few Alterations on Early Preweaning Measures. Toxicol Sci 2011; 124:149-60. [DOI: 10.1093/toxsci/kfr201] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
|