1
|
Wang Y, Hermetz K, Burt A, Lesseur C, Panuwet P, Fiedler N, Prapamontol T, Suttiwan P, Nimmapirat P, Sittiwang S, Naksen W, Yakimavets V, Barr DB, Hao K, Chen J, Marsit CJ. Prenatal exposure to pesticide mixtures and the placental transcriptome: Insights from trimester-specific, sex-specific and metabolite-scaled analyses in the SAWASDEE cohort. ENVIRONMENTAL RESEARCH 2025; 267:120637. [PMID: 39675449 PMCID: PMC11794011 DOI: 10.1016/j.envres.2024.120637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 12/17/2024]
Abstract
We investigated the effect of exposure to pesticide mixtures during pregnancy on the placental transcriptome, to link these exposures and placental functions. The Study of Asian Women and their Offspring's Development and Environmental Exposures (SAWASDEE) enrolled pregnant farmworkers from Thailand (n = 248), who were primarily exposed to organophosphate (OP) and pyrethroid pesticides. We measured maternal urinary levels of six non-specific OP metabolites expressed as three summary measures (dimethylalkylphosphates (DMAP), diethylalkylphosphates (DEAP), and dialkylphosphates (DAP) and three pyrethroid metabolites (3-phenoxybenzoic acid (3-PBA), cis- and trans-3-(2,2-dichlorovinyl)-2,2-dimethylcyclopropane carboxylic acid (cis-DCCA, trans-DCCA) during early, middle, and late pregnancy, and adjusted for urine dilution using creatinine. RNA-sequencing was used to profile the placental transcriptome from which 21 co-expression network modules were identified by Weighted Gene Co-expression Network Analysis. Quantile g-computation analysis identified a positive mixture exposure effect on the E2f Target Module (β = 0.013 per SD, p = 0.012) and a negative mixture exposure effect (β = -0.016 per SD, p = 0.008) on the Myogenesis Module. The pesticide metabolites driving the associations differed for each module on each module varied, highlighting differential susceptibilities within the placental transcriptome to various pesticides. The Myogenesis Module exhibited a consistently significant negative association in both the second trimester (β = -0.013 per SD, p = 0.015) and the third trimester (β = -0.012 per SD, p = 0.028). When stratifying by infant sex, the mixture exhibited a significant negative effect (β = -0.018 per SD, P = 0.016) on the Myogenesis Module only in females. Other modules, such as epithelial-mesenchymal transition, though not demonstrating an overall mixture effect, did demonstrate differential impacts of the mixture by sex. These findings underscore the importance of considering the prenatal environment more holistically, understanding the placenta's susceptibility to contaminants, and incorporating sex-specific analyses to understand differential impacts.
Collapse
Affiliation(s)
- Yewei Wang
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Karen Hermetz
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Amber Burt
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Corina Lesseur
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Nancy Fiedler
- Rutgers University School of Public Health, Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Tippawan Prapamontol
- Research Institute for Health Sciences, Chiang Mai University, Chiang Mai, Thailand
| | - Panrapee Suttiwan
- Life Di Center, Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | - Pimjuta Nimmapirat
- Life Di Center, Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | - Supattra Sittiwang
- Life Di Center, Faculty of Psychology, Chulalongkorn University, Bangkok, Thailand
| | - Warangkana Naksen
- Faculty of Public Health, Chiang Mai University, Chiang Mai, Thailand
| | - Volha Yakimavets
- Laboratory of Exposure Assessment and Development for Environmental Research (LEADER), Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Ke Hao
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jia Chen
- Department of Environmental Medicine and Climate Science, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Carmen J Marsit
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA.
| |
Collapse
|
2
|
Sharma P, Sethi RS. In Vivo Exposure of Deltamethrin Dysregulates the NFAT Signalling Pathway and Induces Lung Damage. J Toxicol 2024; 2024:5261994. [PMID: 39239465 PMCID: PMC11377118 DOI: 10.1155/2024/5261994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/23/2024] [Accepted: 08/10/2024] [Indexed: 09/07/2024] Open
Abstract
Deltamethrin is an insecticide used to control harmful agricultural insects that otherwise damage crops and to control vector-borne diseases. Long-term exposure to deltamethrin results in the inflammation of the lungs. The present study elucidates the molecular mechanism underlying the deltamethrin-induced lung damage. The lung samples were extracted from the Swiss albino mice following the treatment of low (2.5 mg/kg) and high (5 mg/kg) doses of deltamethrin. The mRNA expression of TCR, IL-4, and IL-13 showed upregulation, while the expression of NFAT and FOS was downregulated following a low dose of deltamethrin. Moreover, the expression of TCR was downregulated with the exposure of a high dose of deltamethrin. Furthermore, the immunohistochemistry data confirmed the pattern of protein expression for TCR, FOS, IL-4, and IL-13 following a low dose of deltamethrin exposure. However, no change was seen in the TCR, NFAT, FOS, JUN, IL-4, and IL-13 immunopositive cells of the high-dose treatment group. Also, ELISA results showed increased expression of IL-13 in the BAL fluid of animals exposed to low doses of deltamethrin. Overall, the present study showed that deltamethrin exposure induces lung damage and immune dysregulation via dysregulating the NFAT signalling pathway.
Collapse
Affiliation(s)
- Prakriti Sharma
- Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| | - R S Sethi
- Guru Angad Dev Veterinary and Animal Sciences University, Ludhiana, India
| |
Collapse
|
3
|
Zúñiga-Venegas LA, Hyland C, Muñoz-Quezada MT, Quirós-Alcalá L, Butinof M, Buralli R, Cardenas A, Fernandez RA, Foerster C, Gouveia N, Gutiérrez Jara JP, Lucero BA, Muñoz MP, Ramírez-Santana M, Smith AR, Tirado N, van Wendel de Joode B, Calaf GM, Handal AJ, Soares da Silva A, Cortés S, Mora AM. Health Effects of Pesticide Exposure in Latin American and the Caribbean Populations: A Scoping Review. ENVIRONMENTAL HEALTH PERSPECTIVES 2022; 130:96002. [PMID: 36173136 PMCID: PMC9521041 DOI: 10.1289/ehp9934] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/08/2022] [Accepted: 08/12/2022] [Indexed: 05/23/2023]
Abstract
BACKGROUND Multiple epidemiological studies have shown that exposure to pesticides is associated with adverse health outcomes. However, the literature on pesticide-related health effects in the Latin American and the Caribbean (LAC) region, an area of intensive agricultural and residential pesticide use, is sparse. We conducted a scoping review to describe the current state of research on the health effects of pesticide exposure in LAC populations with the goal of identifying knowledge gaps and research capacity building needs. METHODS We searched PubMed and SciELO for epidemiological studies on pesticide exposure and human health in LAC populations published between January 2007 and December 2021. We identified 233 publications from 16 countries that met our inclusion criteria and grouped them by health outcome (genotoxicity, neurobehavioral outcomes, placental outcomes and teratogenicity, cancer, thyroid function, reproductive outcomes, birth outcomes and child growth, and others). RESULTS Most published studies were conducted in Brazil (37%, n = 88 ) and Mexico (20%, n = 46 ), were cross-sectional in design (72%, n = 167 ), and focused on farmworkers (45%, n = 105 ) or children (21%, n = 48 ). The most frequently studied health effects included genotoxicity (24%, n = 62 ) and neurobehavioral outcomes (21%, n = 54 ), and organophosphate (OP) pesticides were the most frequently examined (26%, n = 81 ). Forty-seven percent (n = 112 ) of the studies relied only on indirect pesticide exposure assessment methods. Exposure to OP pesticides, carbamates, or to multiple pesticide classes was consistently associated with markers of genotoxicity and adverse neurobehavioral outcomes, particularly among children and farmworkers. DISCUSSION Our scoping review provides some evidence that exposure to pesticides may adversely impact the health of LAC populations, but methodological limitations and inconsistencies undermine the strength of the conclusions. It is critical to increase capacity building, integrate research initiatives, and conduct more rigorous epidemiological studies in the region to address these limitations, better inform public health surveillance systems, and maximize the impact of research on public policies. https://doi.org/10.1289/EHP9934.
Collapse
Affiliation(s)
- Liliana A. Zúñiga-Venegas
- Centro de Investigaciones de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Carly Hyland
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- School of Public Health and Population Science, Boise State University, Boise, Idaho, USA
| | - María Teresa Muñoz-Quezada
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - Lesliam Quirós-Alcalá
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, John Hopkins University, Baltimore, Maryland, USA
- Maryland Institute of Applied Environmental Health, School of Public Health, University of Maryland, College Park, Maryland, USA
| | - Mariana Butinof
- Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Rafael Buralli
- Departamento de Saúde Ambiental, Faculdade de Saúde Pública, Universidade de São Paulo, São Paulo, Brasil
| | - Andres Cardenas
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Ricardo A. Fernandez
- Facultad de Ciencias de la Salud, Universidad Católica de Córdoba, Córdoba, Argentina
| | - Claudia Foerster
- Instituto de Ciencias de la Agroalimentarias, Animales y Ambientales, Universidad de O’Higgins, San Fernando, Chile
| | - Nelson Gouveia
- Departamento de Medicina Preventiva, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brasil
| | - Juan P. Gutiérrez Jara
- Centro de Investigaciones de Estudios Avanzados del Maule, Universidad Católica del Maule, Talca, Chile
| | - Boris A. Lucero
- Centro de Investigación en Neuropsicología y Neurociencias Cognitivas, Facultad de Ciencias de la Salud, Universidad Católica del Maule, Talca, Chile
| | - María Pía Muñoz
- Escuela de Salud Pública, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Muriel Ramírez-Santana
- Departamento de Salud Pública, Facultad de Medicina, Universidad Católica del Norte, Coquimbo, Chile
| | - Anna R. Smith
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
| | - Noemi Tirado
- Instituto de Genética, Facultad de Medicina, Universidad Mayor de San Andrés, La Paz, Bolivia
| | - Berna van Wendel de Joode
- Infants’ Environmental Health Study, Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| | - Gloria M. Calaf
- Instituto de Alta Investigación, Universidad de Tarapacá, Arica, Chile
- Columbia University Medical Center, New York, New York, USA
| | - Alexis J. Handal
- Department of Epidemiology, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | | | - Sandra Cortés
- Centro Avanzado de Enfermedades Crónicas (ACCDiS), Centro de Desarrollo Urbano Sustentable, Departamento de Salud Pública, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana M. Mora
- Center for Environmental Research and Community Health, School of Public Health, University of California, Berkeley, Berkeley, California, USA
- Infants’ Environmental Health Study, Central American Institute for Studies on Toxic Substances, Universidad Nacional, Heredia, Costa Rica
| |
Collapse
|
4
|
Ahmed YH, AbuBakr HO, Ahmad IM, Ahmed ZSO. Histopathological, Immunohistochemical, And Molecular Alterations In Brain Tissue And Submandibular Salivary Gland Of Atrazine-Induced Toxicity In Male Rats. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30697-30711. [PMID: 34994930 DOI: 10.1007/s11356-021-18399-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 12/25/2021] [Indexed: 06/14/2023]
Abstract
Atrazine (ATZ) is herbicide that has been widely used for different crops. This extensive use has resulted in severe deleterious effects in different species. In this work, we investigated the potentially harmful effect of atrazine herbicide on the brain and submandibular salivary gland. Our investigation was carried out on 20 adult male albino rats that were equally divided into two groups. The first group received distilled water as control, while the second group received ATZ at 200 mg/kg body weight/ day via stomach gavage for 30 successive days of the experiment; the oral LD50 for ATZ is 3090 mg/kg. Our findings revealed the ability of ATZ to cause damage to the cerebrum, hippocampus, and submandibular salivary gland. This damage resulted from the induced oxidative stress, which was indicated by a significant elevation in malondialdehyde (MDA) concentration, DNA fragmentation, tumor necrotic factor-alpha (TNF-α) expression, with a significant decrease in reduced glutathione (GSH) level and reduction of B cell lymphoma 2 (BCL2), dopamine receptor D1 (Drd1), cAMP-responsive element-binding protein 1 (Creb1) genes expression after ATZ exposure. Moreover, degeneration of cells, cytoplasmic vacuolation, congestion of blood vessels, a strong immune reaction to caspase 3, and negligible immune expression of a glial fibrillary acidic protein (GFAP) were also noticed in the ATZ-treated group. We concluded that ATZ induces oxidative stress and has a toxic and apoptotic effects on the cerebrum, hippocampus, and salivary gland of adult male albino rats.
Collapse
Affiliation(s)
- Yasmine H Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Huda O AbuBakr
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Ismail M Ahmad
- Biochemistry and Chemistry of Nutrition Department, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Zainab Sabry Othman Ahmed
- Cytology and Histology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
- King Salman International University, Ras Sudr, South Sinai, Egypt.
| |
Collapse
|
5
|
Fu H, Tan P, Wang R, Li S, Liu H, Yang Y, Wu Z. Advances in organophosphorus pesticides pollution: Current status and challenges in ecotoxicological, sustainable agriculture, and degradation strategies. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127494. [PMID: 34687999 DOI: 10.1016/j.jhazmat.2021.127494] [Citation(s) in RCA: 145] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 10/05/2021] [Accepted: 10/09/2021] [Indexed: 06/13/2023]
Abstract
Organophosphorus pesticides (OPPs) are one of the most widely used types of pesticide that play an important role in the production process due to their effects on preventing pathogen infection and increasing yield. However, in the early development and application of OPPs, their toxicological effects and the issue of environmental pollution were not considered. With the long-term overuse of OPPs, their hazards to the ecological environment (including soil and water) and animal health have attracted increasing attention. Therefore, this review first clarified the classification, characteristics, applications of various OPPs, and the government's restriction requirements on various OPPs. Second, the toxicological effects and metabolic mechanisms of OPPs and their metabolites were introduced in organisms. Finally, the existing methods of degrading OPPs were summarized, and the challenges and further addressing strategy of OPPs in the sustainable development of agriculture, the environment, and ecology were prospected. However, methods to solve the environmental and ecological problems caused by OPPs from the three aspects of use source, use process, and degradation methods were proposed, which provided a theoretical basis for addressing the stability of the ecological environment and improving the structure of the pesticide industry in the future.
Collapse
Affiliation(s)
- Huiyang Fu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Peng Tan
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Renjie Wang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Senlin Li
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Haozhen Liu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China
| | - Ying Yang
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China.
| | - Zhenlong Wu
- State Key Laboratory of Animal Nutrition, Department of Animal Nutrition and Feed Science, China Agricultural University, Beijing 100193, China; Beijing Advanced Innovation Center for Food Nutrition and Human Health, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
6
|
Cecchi A, Alvarez G, Quidel N, Bertone MC, Anderle S, Sabino G, Magnarelli GG, Rovedatti MG. Residential proximity to pesticide applications in Argentine Patagonia: impact on pregnancy and newborn parameters. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:56565-56579. [PMID: 34060016 DOI: 10.1007/s11356-021-14574-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 05/20/2021] [Indexed: 06/12/2023]
Abstract
Among residents living close to agricultural fields who are potentially exposed to pesticides, pregnant women and their fetuses are of particular concern for their vulnerability to environmental chemicals. In this collaborative multicenter study, we covered a wide distribution of participants in the most important fruit production zone of north Patagonia (Argentina) to investigate whether maternal residential proximity to fruit croplands with intense pesticide applications (rural group -RG-) is associated with pregnancy complications and alterations in their newborn parameters compared to the urban population (urban group -UG-). A total of 776 pregnant women met the inclusion criteria. The percentage of threatened miscarriage was significantly higher in the RG than in the UG. The percentage of miscarriage, threat of premature labor, intrauterine fetal death, preterm premature rupture of membranes, and intrauterine growth retardation were similar in both groups. Newborn anthropometric parameters were corrected by sex and gestational age prior to statistical analysis. Length at birth and head circumference were lower in the RG than in the UG. Birth weight was similar in both groups. The percentage of head circumference less than the 5th percentile and the ponderal index were greater in the RG than in the UG. Our results suggest that proximity to pesticide applications may increase the risk of pregnancy complications and altered newborn parameters.
Collapse
Affiliation(s)
- Amalia Cecchi
- Hospital Allen Dr. Ernesto Accame, Ingeniero Quesnel s/n, Allen, Río Negro, Argentina
| | - Gabriel Alvarez
- Hospital Provincial Neuquén Dr. Castro Rendón, Buenos Aires 450, (8300) Neuquén, 450, Neuquén, Argentina
| | - Natalia Quidel
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Av. Luis Toschi y Los Arrayanes, (8324) Cipolletti, Río Negro, Argentina
| | - María Cecilia Bertone
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Av. Luis Toschi y Los Arrayanes, (8324) Cipolletti, Río Negro, Argentina
| | - Sofia Anderle
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Av. Luis Toschi y Los Arrayanes, (8324) Cipolletti, Río Negro, Argentina
| | - Guillermo Sabino
- Facultad de Economía y Administración, Universidad Nacional del Comahue, Buenos Aires 1400, (8300), Neuquén, Argentina
| | - Gladis G Magnarelli
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Av. Luis Toschi y Los Arrayanes, (8324) Cipolletti, Río Negro, Argentina
| | - María Gabriela Rovedatti
- Departamento de Biodiversidad y Biología Experimental, and Laboratorio de Toxicología de Mezclas Químicas (LATOMEQ), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 4to piso. Intendente Güiraldes 2160, (C1428EGA), Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
7
|
Bazhenov DO, Khokhlova EV, Viazmina LP, Furaeva KN, Mikhailova VA, Kostin NA, Selkov SA, Sokolov DI. Characteristics of Natural Killer Cell Interaction with Trophoblast Cells During Pregnancy. Curr Mol Med 2021; 20:202-219. [PMID: 31393246 DOI: 10.2174/1566524019666190808103227] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 07/19/2019] [Accepted: 07/30/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Maternal natural killer cells (NK cells) are a prevailing leukocyte population in the uteroplacental bed. Current descriptions of the effect of cytokines from the placental microenvironment on the expression of receptors by trophoblast and NK cells are inadequate and contradictory. There is insufficient information about the ability of NK cells to migrate through trophoblast cells. OBJECTIVE To assess the impact of conditioned media obtained during culturing of placentas from the first and the third trimesters of healthy pregnancies on the phenotype of trophoblast and NK cells and impact on adhesion and transmigration of NK cells through trophoblast cell layer. RESULTS We established that conditioned media obtained from both first and third trimester placentas increased the intensity of CD106, CD49e, CD49a, CD31, CD51/61, and integrin β6 expression by trophoblast cells. Conditioned media obtained from first trimester placentas increased the intensity of CD11a, CD29, CD49d, CD58, CD29 expression by NK cells. The presence of conditioned media from third trimester placentas resulted in more intense CD29, CD49d, CD11a, CD29, CD49d, and CD58 expression by NK cells. Migration of NK cells through trophoblast cells in the presence of conditioned media from first trimester placentas was increased compared with the migration level in the presence of conditioned media from third trimester placentas. This may be associated with increased expression of CD18 by NK cells. CONCLUSION First trimester placental secretory products increase adhesion receptor expression by both trophoblast and NK cells. Under these conditions, trophoblast is capable of ensuring NK cell adhesion and transmigration.
Collapse
Affiliation(s)
- Dmitry Olegovich Bazhenov
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Mendeleevskya line, 199034, Saint-Petersburg, Russian Federation.,Federal State Budgetary Scientific Institution Research Institute of Experimental Medicine, Russian Federation
| | - Evgeniya Valerevna Khokhlova
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Mendeleevskya line, 199034, Saint-Petersburg, Russian Federation
| | - Larisa Pavlovna Viazmina
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Mendeleevskya line, 199034, Saint-Petersburg, Russian Federation
| | - Kseniya Nikolaevna Furaeva
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Mendeleevskya line, 199034, Saint-Petersburg, Russian Federation
| | - Valentina Anatolievna Mikhailova
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Mendeleevskya line, 199034, Saint-Petersburg, Russian Federation
| | - Nikolay Anatolievich Kostin
- Resource Centre for the Molecular and Cell Technologies Development, Saint Petersburg State University, Saint- Petersburg, Russian Federation
| | - Sergey Alekseevich Selkov
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Mendeleevskya line, 199034, Saint-Petersburg, Russian Federation
| | - Dmitry Igorevich Sokolov
- Federal State Budgetary Scientific Institution Research Institute of Obstetrics, Gynecology and Reproductology named after D.O. Ott, Mendeleevskya line, 199034, Saint-Petersburg, Russian Federation.,Federal State Budgetary Scientific Institution Research Institute of Experimental Medicine, Russian Federation
| |
Collapse
|
8
|
Lozano-Paniagua D, Parrón T, Alarcón R, Requena M, López-Guarnido O, Lacasaña M, Hernández AF. Evaluation of conventional and non-conventional biomarkers of liver toxicity in greenhouse workers occupationally exposed to pesticides. Food Chem Toxicol 2021; 151:112127. [PMID: 33722595 DOI: 10.1016/j.fct.2021.112127] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/01/2021] [Accepted: 03/09/2021] [Indexed: 01/14/2023]
Abstract
The liver plays a prominent role in maintenance of homeostasis and is the major organ for xenobiotic metabolism, including pesticides. Conventional liver function tests are widely used to assess hepatocellular and biliary system dysfunction by measuring serum levels of aminotransferases (ALT, AST) and cholestasis enzymes (alkaline phosphatase -ALP- and γ-glutamyl transferase -GGT-), respectively. Although these tests are not entirely specific for liver damage, their specificity increases when measured concurrently, but still have limited usefulness to predict early liver dysfunction. Hence, non-conventional biomarkers may have a better performance for the early detection of biochemical hepatotoxicity with a greater specificity and sensitivity. A cross-sectional study with a follow-up component was conducted on 175 greenhouse workers regularly exposed to pesticides under integrated production system, and 91 controls living in the same geographical area. All individuals were evaluated for conventional (ALT, AST, ALP, GGT) and non-conventional biomarkers of hepatotoxicity (ornithine transcarbamylase (-OTC-), Arginase-1 -ARG1- and glutathione S-transferase alpha -GSTα-) over two periods of the same crop season, one of high pesticide exposure and other of low exposure. A slight increase in AST was observed in greenhouse workers relative to controls, suggestive of subtle hepatocellular toxicity. Although ALP, ARG1 and GST-α levels were decreased in greenhouse workers, this might be related to a potential homeostatic mechanism that regulates their expression. Altogether, these findings do not represent unambiguous evidence of liver dysfunction (e.g., hepatocellular or biliary system impairment) but may be the result of the low-toxicity pesticides used by greenhouse workers.
Collapse
Affiliation(s)
| | - Tesifón Parrón
- University of Almería School of Health Sciences, Almería, Spain
| | - Raquel Alarcón
- University of Almería School of Health Sciences, Almería, Spain
| | - Mar Requena
- University of Almería School of Health Sciences, Almería, Spain
| | - Olga López-Guarnido
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain
| | - Marina Lacasaña
- Escuela Andaluza de Salud Pública, Granada, Spain; Centro de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Spain; Instituto de Investigación Biosanitaria, Granada (ibs.GRANADA), Spain
| | - Antonio F Hernández
- Department of Legal Medicine and Toxicology, University of Granada School of Medicine, Granada, Spain; Instituto de Investigación Biosanitaria, Granada (ibs.GRANADA), Spain.
| |
Collapse
|
9
|
Silvia SC, Magnarelli G, Rovedatti MG. Evaluation of endocrine disruption and gestational disorders in women residing in areas with intensive pesticide application: An exploratory study. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 73:103280. [PMID: 31683255 DOI: 10.1016/j.etap.2019.103280] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2019] [Revised: 10/14/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
The proximity to areas of intensive pesticide application is a risk factor that favors xenobiotic exposure. Pesticides may interfere with hormonal function and cause alterations in the reproductive system, pregnancy complications, and adverse fetal development. We evaluated potential endocrine disruption and the evolution of the third trimester of pregnancy in women residing in a rural area of Argentina with intense pesticide applications, and the characteristics of their newborns. Blood samples were collected from healthy women in the third trimester of pregnancy during the pesticide spraying (SP) (n = 26) and nonspraying (NSP) (n = 27) periods. Plasma cholinesterase activity and cortisol and DHEA-S levels were lower in SP than in NSP. The percentage of preterm premature rupture of membranes was higher in SP than in NSP. Macrosomia at birth was17% in both periods. This study reinforces the importance of preventing potential cases of cumulative toxicity during the perinatal period through monitoring and epidemiological studies.
Collapse
Affiliation(s)
- Santa Cruz Silvia
- Sanatorio del Personal de Industrias Químicas. Belgrano 305, Cinco Saltos (8303), Río Negro, Argentina.
| | - Gladis Magnarelli
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET, Universidad Nacional del Comahue, Buenos Aires 1400, Neuquén, 8300, Argentina.
| | - María Gabriela Rovedatti
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina; Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, Ciudad Autónoma de Buenos Aires, C1428EGA, Argentina.
| |
Collapse
|
10
|
Stavrou S, Gratz M, Tremmel E, Kuhn C, Hofmann S, Heidegger H, Peryanova M, Hermelink K, Hutter S, Toth B, Mayr D, Mahner S, Jeschke U, Vattai A. TAAR1 induces a disturbed GSK3β phosphorylation in recurrent miscarriages through the ODC. Endocr Connect 2018; 7:372-384. [PMID: 29472377 PMCID: PMC5825928 DOI: 10.1530/ec-17-0272] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 01/30/2018] [Indexed: 01/29/2023]
Abstract
OBJECTIVES Thyroid hormones play an important role in the maintenance of pregnancy. Their derivates, endogenous amines, act via binding to the trace amine-associated receptor (TAAR1). The aim of our study was to analyse the regulation of TAAR1, serine/threonine kinase (pGSK3β) and ornithine decarboxylase (ODC) in placentas of healthy pregnancies, spontaneous (SM) and recurrent miscarriages (RM) and to investigate the influence of thyroid hormone derivates on TAAR1 expression in trophoblast model cells in vitro. METHODS Patients with SM (n = 15) and RM (n = 15) were compared with patients with healthy pregnancies (n = 15) (pregnancy weeks 7-13 each). Immunohistochemistry was applied to analyse placental TAAR1, pGSK3β and ODC expression. Protein expression of the receptors after stimulation with T3, T1AM and RO5203548 in BeWo trophoblast model cells was determined via Western blot. Double-immunofluorescence was used to determine placental expression of TAAR1 and ODC. RESULTS Levels of TAAR1, pGSK3β and ODC were higher in placentas of RM in comparison to healthy controls. Stimulation of BeWo cells with T3, T1AM and RO5203548 significantly increased TAAR1 expression. ODC expression in BeWo cells was upregulated through T3. Via double-immunofluorescence, TAAR1 and ODC-positive EVT could be detected. CONCLUSIONS Upregulation of placental TAAR1 may indicate an increased decarboxylation of thyroid hormones in miscarriages. Patients with RM may have a lack of T3 through an enhanced transformation of T3 into T1AM induced by the ODC. Future investigations could be carried out to analyse what role a prophylactic T3 substitution plays for patients.
Collapse
Affiliation(s)
- Stavroula Stavrou
- Department of Gynecology and ObstetricsHospital of the LMU, Munich, Germany
| | - Michael Gratz
- Department of Gynecology and ObstetricsHospital of the LMU, Munich, Germany
| | - Eileen Tremmel
- Department of Gynecology and ObstetricsHospital of the LMU, Munich, Germany
| | - Christina Kuhn
- Department of Gynecology and ObstetricsHospital of the LMU, Munich, Germany
| | - Simone Hofmann
- Department of Gynecology and ObstetricsHospital of the LMU, Munich, Germany
| | - Helene Heidegger
- Department of Gynecology and ObstetricsHospital of the LMU, Munich, Germany
| | - Mina Peryanova
- Department of Gynecology and ObstetricsHospital of the LMU, Munich, Germany
| | - Kerstin Hermelink
- Department of Gynecology and ObstetricsHospital of the LMU, Munich, Germany
| | - Stefan Hutter
- Department of Gynecology and ObstetricsHospital of the LMU, Munich, Germany
| | - Bettina Toth
- Department of Gynaecological Endocrinology and Reproductive MedicineMedical University Innsbruck, Innsbruck, Austria
| | - Doris Mayr
- Department of PathologyHospital of the LMU, Munich, Germany
| | - Sven Mahner
- Department of Gynecology and ObstetricsHospital of the LMU, Munich, Germany
| | - Udo Jeschke
- Department of Gynecology and ObstetricsHospital of the LMU, Munich, Germany
| | - Aurelia Vattai
- Department of Gynecology and ObstetricsHospital of the LMU, Munich, Germany
| |
Collapse
|
11
|
Quintana MM, Vera B, Magnarelli G, Guiñazú N, Rovedatti MG. Neonatal, placental, and umbilical cord blood parameters in pregnant women residing in areas with intensive pesticide application. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:20736-20746. [PMID: 28718019 DOI: 10.1007/s11356-017-9642-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 06/26/2017] [Indexed: 06/07/2023]
Abstract
In rural populations, the proximity to areas with intensive pesticide application represents a risk factor of xenobiotic exposure. Here, we investigated whether newborns born to mothers residing in an area with intensive pesticide application show alterations in placental and neonatal morphometric standards, umbilical cord blood (UCB) biochemical parameters, and/or biomarkers related to oxidative stress and oxidative damage. Samples were collected from 151 healthy pregnant women residing in a rural area (rural group; RG) during the pesticide spraying (SS) and nonspraying (NSS) seasons, as well as from women from an urban population (control group; CG), and grouped according to the delivery type (vaginal or cesarean). In the vaginal delivery group, the placental weight and placental index were higher in the RG groups than in the CG (p = 0.01), whereas in the cesarean delivery group, newborn weight was lower in the RG-SS group than in the CG. In the RG-SS group, UCB erythrocyte osmotic fragility and the DNA damage index (DI) were higher, and superoxide dismutase (SOD) activity was lower than in the RG-NSS group. Acetylcholinesterase and SOD activities were found to be inversely correlated with the DI.
Collapse
Affiliation(s)
- María Martha Quintana
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Av. Luis Toschi y Los Arrayanes, 8324, Cipolletti, Río Negro, Argentina
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET, Universidad Nacional del Comahue, Buenos Aires 1400, 8300, Neuquén, Argentina
| | - Berta Vera
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Av. Luis Toschi y Los Arrayanes, 8324, Cipolletti, Río Negro, Argentina
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET, Universidad Nacional del Comahue, Buenos Aires 1400, 8300, Neuquén, Argentina
| | - Gladis Magnarelli
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Av. Luis Toschi y Los Arrayanes, 8324, Cipolletti, Río Negro, Argentina
| | - Natalia Guiñazú
- Centro de Investigaciones en Toxicología Ambiental y Agrobiotecnología del Comahue (CITAAC), CONICET, Universidad Nacional del Comahue, Buenos Aires 1400, 8300, Neuquén, Argentina
- Departamento de Ciencias del Ambiente, Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, Buenos Aires 1400, 8300, Neuquén, Argentina
| | - María Gabriela Rovedatti
- Departamento de Biodiversidad y Biología Experimental, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina.
- Laboratorio de Toxicología de Mezclas Químicas (LATOMEQ), Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Ciudad Universitaria, Pabellón II, 4to piso, Intendente Güiraldes 2160, C1428EGA, Buenos Aires, Argentina.
| |
Collapse
|
12
|
Impact of chlorpyrifos on human villous trophoblasts and chorionic villi. Toxicol Appl Pharmacol 2017; 329:26-39. [DOI: 10.1016/j.taap.2017.05.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 04/29/2017] [Accepted: 05/22/2017] [Indexed: 01/01/2023]
|
13
|
Rivero Osimani VL, Valdez SR, Guiñazú N, Magnarelli G. Alteration of syncytiotrophoblast mitochondria function and endothelial nitric oxide synthase expression in the placenta of rural residents. Reprod Toxicol 2016; 61:47-57. [PMID: 26939719 DOI: 10.1016/j.reprotox.2016.02.018] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 12/30/2015] [Accepted: 02/25/2016] [Indexed: 11/24/2022]
Abstract
The impact of environmental organophosphate (OP) pesticide exposure on respiratory complexes, enzymatic antioxidant defense activities, and oxidative damage markers in the syncytiotrophoblast and cytotrophoblast mitochondria was evaluated. Placental progesterone (PG) levels and endothelial nitric oxide synthase (eNOS) expression were studied. Samples from women non-exposed (control group-CG) and women living in a rural area (rural group-RG) were collected during pesticide spraying season (RG-SS) and non-spraying season (RG-NSS). In RG-SS, the exposure biomarker placental carboxylesterase decreased and syncytiotrophoblast cytochrome c oxidase activity increased, while 4-hydroxynonenal levels decreased. PG levels decreased in RG-SS and in the RG. Nitric oxide synthase expression decreased in RG, RG-SS and RG-NSS. No significant changes in mitochondrial antioxidant enzyme activities were found. These results suggest that the alteration of syncytiotrophoblast mitochondrial complex IV activity and steroidogenic function may be associated to pesticide exposure. Reduction in placental PG and eNOS expression may account for low newborn weight in RG.
Collapse
Affiliation(s)
- Valeria L Rivero Osimani
- LIBIQUIMA, Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Cipolletti, Río Negro, Argentina
| | - Susana R Valdez
- Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Cuyo, Mendoza, Argentina; IMBECU-CONICET, Mendoza, Argentina
| | - Natalia Guiñazú
- LIBIQUIMA, Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina; Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, Neuquén, Argentina.
| | - Gladis Magnarelli
- LIBIQUIMA, Departamento de Química, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina; Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Cipolletti, Río Negro, Argentina
| |
Collapse
|
14
|
Espinoza M, Rivero Osimani V, Sánchez V, Rosenbaum E, Guiñazú N. B-esterase determination and organophosphate insecticide inhibitory effects in JEG-3 trophoblasts. Toxicol In Vitro 2016; 32:190-7. [PMID: 26790371 DOI: 10.1016/j.tiv.2016.01.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 12/15/2015] [Accepted: 01/06/2016] [Indexed: 01/31/2023]
Abstract
The placenta and trophoblasts express several B-esterases. This family includes acethylcholinesterase (AChE), carboxylesterase (CES) and butyrylcholinesterase (BChE), which are important targets of organophosphate insecticide (OP) toxicity. To better understand OP effects on trophoblasts, B-esterase basal activity and kinetic behavior were studied in JEG-3 choriocarcinoma cell cultures. Effects of the OP azinphos-methyl (Am) and chlorpyrifos (Cp) on cellular enzyme activity were also evaluated. JEG-3 cells showed measurable activity levels of AChE and CES, while BChE was undetected. Recorded Km for AChE and CES were 0.33 and 0.26 mM respectively. Native gel electrophoresis and RT-PCR analysis demonstrated CES1 and CES2 isoform expression. Cells exposed for 4 and 24 h to the OP Am or Cp, showed a differential CES and AChE inhibition profiles. Am inhibited CES and AChE at 4 h treatment while Cp showed the highest inhibition profile at 24 h. Interestingly, both insecticides differentially affected CES1 and CES2 activities. Results demonstrated that JEG-3 trophoblasts express AChE, CES1 and CES2. B-esterase enzymes were inhibited by in vitro OP exposure, indicating that JEG-3 cells metabolization capabilities include phase I enzymes, able to bioactivate OP. In addition, since CES enzymes are important for medicinal drug activation/deactivation, OP exposure may interfere with trophoblast CES metabolization, probably being relevant in a co-exposure scenario during pregnancy.
Collapse
Affiliation(s)
- Marlon Espinoza
- Departamento de Ciencias del Ambiente, Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, Neuquén, Argentina
| | | | - Victoria Sánchez
- LIBIQUIMA, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Enrique Rosenbaum
- LIBIQUIMA, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina
| | - Natalia Guiñazú
- Departamento de Ciencias del Ambiente, Facultad de Ciencias del Ambiente y la Salud, Universidad Nacional del Comahue, Neuquén, Argentina; LIBIQUIMA, Facultad de Ingeniería, Universidad Nacional del Comahue, Neuquén, Argentina.
| |
Collapse
|
15
|
Gore AC, Chappell VA, Fenton SE, Flaws JA, Nadal A, Prins GS, Toppari J, Zoeller RT. EDC-2: The Endocrine Society's Second Scientific Statement on Endocrine-Disrupting Chemicals. Endocr Rev 2015; 36:E1-E150. [PMID: 26544531 PMCID: PMC4702494 DOI: 10.1210/er.2015-1010] [Citation(s) in RCA: 1407] [Impact Index Per Article: 140.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Accepted: 09/01/2015] [Indexed: 02/06/2023]
Abstract
The Endocrine Society's first Scientific Statement in 2009 provided a wake-up call to the scientific community about how environmental endocrine-disrupting chemicals (EDCs) affect health and disease. Five years later, a substantially larger body of literature has solidified our understanding of plausible mechanisms underlying EDC actions and how exposures in animals and humans-especially during development-may lay the foundations for disease later in life. At this point in history, we have much stronger knowledge about how EDCs alter gene-environment interactions via physiological, cellular, molecular, and epigenetic changes, thereby producing effects in exposed individuals as well as their descendants. Causal links between exposure and manifestation of disease are substantiated by experimental animal models and are consistent with correlative epidemiological data in humans. There are several caveats because differences in how experimental animal work is conducted can lead to difficulties in drawing broad conclusions, and we must continue to be cautious about inferring causality in humans. In this second Scientific Statement, we reviewed the literature on a subset of topics for which the translational evidence is strongest: 1) obesity and diabetes; 2) female reproduction; 3) male reproduction; 4) hormone-sensitive cancers in females; 5) prostate; 6) thyroid; and 7) neurodevelopment and neuroendocrine systems. Our inclusion criteria for studies were those conducted predominantly in the past 5 years deemed to be of high quality based on appropriate negative and positive control groups or populations, adequate sample size and experimental design, and mammalian animal studies with exposure levels in a range that was relevant to humans. We also focused on studies using the developmental origins of health and disease model. No report was excluded based on a positive or negative effect of the EDC exposure. The bulk of the results across the board strengthen the evidence for endocrine health-related actions of EDCs. Based on this much more complete understanding of the endocrine principles by which EDCs act, including nonmonotonic dose-responses, low-dose effects, and developmental vulnerability, these findings can be much better translated to human health. Armed with this information, researchers, physicians, and other healthcare providers can guide regulators and policymakers as they make responsible decisions.
Collapse
Affiliation(s)
- A C Gore
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - V A Chappell
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - S E Fenton
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J A Flaws
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - A Nadal
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - G S Prins
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - J Toppari
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| | - R T Zoeller
- Pharmacology and Toxicology (A.C.G.), College of Pharmacy, The University of Texas at Austin, Austin, Texas 78734; Division of the National Toxicology Program (V.A.C., S.E.F.), National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709; Department of Comparative Biosciences (J.A.F.), University of Illinois at Urbana-Champaign, Urbana, Illinois 61802; Institute of Bioengineering and CIBERDEM (A.N.), Miguel Hernandez University of Elche, 03202 Elche, Alicante, Spain; Departments of Urology, Pathology, and Physiology & Biophysics (G.S.P.), College of Medicine, University of Illinois at Chicago, Chicago, Illinois 60612; Departments of Physiology and Pediatrics (J.T.), University of Turku and Turku University Hospital, 20520 Turku, Finland; and Biology Department (R.T.Z.), University of Massachusetts at Amherst, Amherst, Massachusetts 01003
| |
Collapse
|
16
|
Changes in Functional Activity of JEG-3 Trophoblast Cell Line in the Presence of Factors Secreted by Placenta. Arch Med Res 2015; 46:245-56. [PMID: 26003221 DOI: 10.1016/j.arcmed.2015.05.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 05/12/2015] [Indexed: 01/02/2023]
Abstract
BACKGROUND AND AIMS Cells in the maternal-fetal interface secrete cytokines that regulate proliferation, migration, and trophoblast invasion during the first trimester of pregnancy and the limitation of these processes during the third trimester. The aim of the study was to evaluate the influence of factors secreted by human placenta during the first and third trimester of pregnancy on cytokine receptor expression and proliferative and migratory activity of JEG-3 trophoblast cells. METHODS The research was conducted using the explant conditioned media of placentas obtained from healthy women with elective termination of pregnancy at 9-11 weeks and placentas of women whose pregnancy progressed without complications at 38-39 weeks. Assessment of surface molecule expression was performed using FACS Canto II flow cytometer (BD, USA). The proliferative activity of JEG-3 trophoblast cells was evaluated by dyeing with crystal violet vital dye. The migration activity of JEG-3 was evaluated using 24-well insert plates with polycarbonate inserts (pore size 8 microns). RESULTS Expression of CD116, CD118, CD119, IFNγ-R2, CD120b, CD183, CD192, CD295, EGFR, and TGFβ-R2 on JEG-3 was higher when the cells were incubated in the presence of the third trimester placental factors in comparison with the first trimester placental factors. Factors secreted by the placenta during the third trimester of pregnancy had more pronounced stimulatory effect on the proliferation and migration of trophoblast in comparison with baseline levels and with the effect of the first trimester placental factors. CONCLUSIONS The findings suggest that the behavior of trophoblasts in vitro might not be representative of in vivo behavior in the absence of additional local factors that influence the trophoblast in vivo.
Collapse
|
17
|
Chen D, Zhang Z, Yao H, Cao Y, Xing H, Xu S. Pro- and anti-inflammatory cytokine expression in immune organs of the common carp exposed to atrazine and chlorpyrifos. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2014; 114:8-15. [PMID: 25175644 DOI: 10.1016/j.pestbp.2014.07.011] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 07/26/2014] [Accepted: 07/27/2014] [Indexed: 06/03/2023]
Abstract
Atrazine (ATR) and chlorpyrifos (CPF) are toxic and subject to long-term in vivo accumulation in different aquatic species throughout the world. The purpose of the present study was to examine the effect of ATR, CPF and combined ATR/CPF exposure on cytokines in the head kidney and spleen of common carp (Cyprinus carpio L.). The carp were sampled after a 40-d exposure to CPF and ATR, individually or in combination, followed by a 40-d recovery to measure the mRNA expression of IL-6fam (IL-6), IL-8, TNF-α, IL-10 and TGF-β1 (TGF-β) in the head kidney and spleen tissues. These results showed that the expression of cytokines IL-6, IL-8 and TNF-α in the head kidney and spleen was upregulated following ATR, CPF and mixed ATR/CPF exposure compared with the control group. The expression of IL-10 and TGF-β mRNA was significantly inhibited in both head kidney and spleen of carp exposed to ATR, CPF and the ATR/CPF mixture. The results suggested that long-term exposure of ATR, CPF and the ATR/CPF mixture in aquatic environments can induce the dysregulation of pro-/anti-inflammatory cytokine expression. The information regarding the effects of ATR and CPF on cytokine mRNA expression generated in this study will be important information for pesticides toxicology evaluation.
Collapse
Affiliation(s)
- Dechun Chen
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China; Department of Biological Engineering, Jilin Engineering Vocational College, 1299 Changfa Road, Siping 136001, China
| | - Ziwei Zhang
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China
| | - Haidong Yao
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China
| | - Ye Cao
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China
| | - Houjuan Xing
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China; Animal Health Supervision Institute of Heilongjiang Province, 243 Haping Road, Xiangfang District, Harbin 150069, China.
| | - Shiwen Xu
- College of Veterinary Medicine, Northeast Agricultural University, 59 Mucai Street, Harbin 150030, China.
| |
Collapse
|
18
|
Chiapella G, Genti-Raimondi S, Magnarelli G. Placental oxidative status in rural residents environmentally exposed to organophosphates. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2014; 38:220-229. [PMID: 24959959 DOI: 10.1016/j.etap.2014.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Accepted: 06/03/2014] [Indexed: 06/03/2023]
Abstract
The impact of environmental organophosphate pesticide exposure on the placenta oxidative status was assessed. Placental samples were collected from women residing in an agricultural area during pesticide pulverization period, non-pulverization period and from control group. Carboxylesterase activity was significantly decreased in pulverization period group. Enzymatic and non-enzymatic defense system, the oxidative stress biomarkers and the nuclear factor erythroid 2-related factor levels showed no differences among groups. However, in the pulverization period group, an inverse association between catalase activity and placental index, a useful metric for estimating placental inefficiency, was found. This result suggests that catalase may serve as a potential placental biomarker of susceptibility to pesticides. Further studies designed from a gene-environment perspective are needed.
Collapse
Affiliation(s)
- Graciela Chiapella
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Cipolletti, Río Negro, Argentina; LIBIQUIMA, Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA), CONICET - Universidad Nacional del Comahue, Neuquén, Argentina.
| | - Susana Genti-Raimondi
- Centro de Investigaciones en Bioquímica Clínica e Inmunología (CIBICI-CONICET), Departamento de Bioquímica Clínica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| | - Gladis Magnarelli
- Facultad de Ciencias Médicas, Universidad Nacional del Comahue, Cipolletti, Río Negro, Argentina; LIBIQUIMA, Instituto Multidisciplinario de Investigación y Desarrollo de la Patagonia Norte (IDEPA), CONICET - Universidad Nacional del Comahue, Neuquén, Argentina.
| |
Collapse
|