1
|
Sebastian A, Shanmuganathan MAA, Tripathy C, Chakravarty S, Ghosh S. Understanding Neurogenesis and Neuritogenesis via Molecular Insights, Gender Influence, and Therapeutic Implications: Intervention of Nanomaterials. ACS APPLIED BIO MATERIALS 2025; 8:12-41. [PMID: 39718903 DOI: 10.1021/acsabm.4c01079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Neurological disorders impact global health by affecting both central and peripheral nervous systems. Understanding the neurogenic processes, i.e., neurogenesis and neuritogenesis, is of paramount importance in the context of nervous system development and regeneration as they hold promising therapeutic implications. Neurogenesis forms functional neurons from precursor cells, while neuritogenesis involves extending neurites for neuron connections. This review discusses how these processes are influenced by genetics, epigenetics, neurotrophic factors, environment, neuroinflammation, and neurotransmitters. It also covers gender-specific aspects of neurogenesis and neuritogenesis, their impact on brain plasticity, and susceptibility to neurological disorders. Alterations in these processes, under the influence of cytokines, growth factors, neurotransmitters, and aging, are linked to neurological disorders and potential therapeutic targets. Gender-specific effects of pharmacological interventions, like SSRIs, TCAs, atypical antipsychotics, and lithium, are explored in this review. Hormone-mediated effects of BDNF and PPAR-γ agonists, as well as variations in efficacy and tolerability of MAOIs, AEDs, NMDA receptor modulators, and ampakines, are detailed for accurate therapeutic design. The review also discusses nanotechnology's significant contribution to neural tissue regeneration for mending neurodegenerative disorders, enhancing neuronal connectivity, and stem cell differentiation. Gold nanoparticles support hippocampal neurogenesis, while other nanoparticles aid neuron growth and neurite outgrowth. Quantum dots and nanolayered double hydroxides assist neuroregeneration, which improves brain drug delivery. Gender-specific responses to nanomedicines designed to enhance neuroregeneration have not been extensively investigated. However, we have specified certain gender-related variables that should be taken into account during the development of nanomedicines in an aim to improve therapeutic efficacy. Further research on gender-specific responses to nanomedicines in neural processes could enhance personalized treatments for neurological disorders, paving the way for novel therapeutic approaches in neuroscience.
Collapse
Affiliation(s)
- Aishwarya Sebastian
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
| | - Mohanraj Alias Ayyappan Shanmuganathan
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chinmayee Tripathy
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumana Chakravarty
- Applied Biology Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sutapa Ghosh
- Polymers & Functional Materials Division, CSIR- Indian Institute of Chemical Technology, Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
2
|
Poley M, Chen G, Sharf-Pauker N, Avital A, Kaduri M, Sela M, Raimundo PM, Koren L, Arber S, Egorov E, Shainsky J, Shklover J, Schroeder A. Sex‐Based Differences in the Biodistribution of Nanoparticles and Their Effect on Hormonal, Immune, and Metabolic Function. ADVANCED NANOBIOMED RESEARCH 2022. [DOI: 10.1002/anbr.202200089] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Maria Poley
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Gal Chen
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Noga Sharf-Pauker
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Aviram Avital
- The Norman Seiden Multidisciplinary Program for Nanoscience and Nanotechnology Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Maya Kaduri
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Mor Sela
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Patricia Mora Raimundo
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Lilach Koren
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Sivan Arber
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Egor Egorov
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Janna Shainsky
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Jeny Shklover
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| | - Avi Schroeder
- Laboratory for Targeted Drug Delivery and Personalized Medicine Technologies Department of Chemical Engineering Technion – Israel Institute of Technology Haifa 32000 Israel
| |
Collapse
|
3
|
Saber AT, Hadrup N, Williams A, Mortensen A, Szarek J, Kyjovska Z, Kurz A, Jacobsen NR, Wallin H, Halappanavar S, Vogel U. Unchanged pulmonary toxicity of ZnO nanoparticles formulated in a liquid matrix for glass coating. Nanotoxicology 2022; 16:812-827. [PMID: 36480659 DOI: 10.1080/17435390.2022.2152751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The inclusion of nanoparticles can increase the quality of certain products. One application is the inclusion of Zinc oxide (ZnO) nanoparticles in a glass coating matrix to produce a UV-absorbing coating for glass sheets. Yet, the question is whether the inclusion of ZnO in the matrix induces toxicity at low exposure levels. To test this, mice were given single intratracheal instillation of 1) ZnO powder (ZnO), 2) ZnO in a glass matrix coating in its liquid phase (ZnO-Matrix), and 3) the matrix with no ZnO (Matrix). Doses of ZnO were 0.23, 0.67, and 2 µg ZnO/mouse. ZnO Matrix doses had equal amounts of ZnO, while Matrix was adjusted to have an equal volume of matrix as ZnO Matrix. Post-exposure periods were 1, 3, or 28 d. Endpoints were pulmonary inflammation as bronchoalveolar lavage (BAL) fluid cellularity, genotoxicity in lung and liver, measured by comet assay, histopathology of lung and liver, and global gene expression in lung using microarrays. Neutrophil numbers were increased to a similar extent with ZnO and ZnO-Matrix at 1 and 3 d. Only weak genotoxicity without dose-response effects was observed in the lung. Lung histology showed an earlier onset of inflammation in material-exposed groups as compared to controls. Microarray analysis showed a stronger response in terms of the number of differentially regulated genes in ZnO-Matrix exposed mice as compared to Matrix only. Activated canonical pathways included inflammatory and cardiovascular ones. In conclusion, the pulmonary toxicity of ZnO was not changed by formulation in a liquid matrix for glass coating.
Collapse
Affiliation(s)
| | - Niels Hadrup
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark.,Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Copenhagen, Denmark
| | - Andrew Williams
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Alicja Mortensen
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | - Jozef Szarek
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | - Zdenka Kyjovska
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark
| | | | | | - Håkan Wallin
- National Institute of Occupational Health, Oslo, Norway
| | - Sabina Halappanavar
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Canada
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), Copenhagen, Denmark.,DTU Food, Technical University of Denmark, Lyngby, Denmark
| |
Collapse
|
4
|
Reproductive and Developmental Nanotoxicity of Carbon Nanoparticles. NANOMATERIALS 2022; 12:nano12101716. [PMID: 35630937 PMCID: PMC9144754 DOI: 10.3390/nano12101716] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/25/2022]
Abstract
The presented review aims to summarize the knowledge regarding the reproductive and developmental toxicity of different types of carbon nanoparticles, such as graphene, graphene oxide, multi- and single-walled nanotubes, fullerenes, and nanodiamonds. Carbon nanoparticles have unique chemical and physical properties that make them an excellent material that can be applied in many fields of human activity, including industry, food processing, the pharmaceutical industry, or medicine. Although it has a high degree of biocompatibility, possible toxic effects on different tissue types must also be taken into account. Carbon nanoparticles are known to be toxic to the respiratory, cardiovascular, nervous, digestive system, etc., and, according to current studies, they also have a negative effect on reproduction and offspring development.
Collapse
|
5
|
EFSA Scientific Committee, More S, Bampidis V, Benford D, Bragard C, Halldorsson T, Hernández‐Jerez A, Bennekou SH, Koutsoumanis K, Lambré C, Machera K, Naegeli H, Nielsen S, Schlatter J, Schrenk D, Silano (deceased) V, Turck D, Younes M, Castenmiller J, Chaudhry Q, Cubadda F, Franz R, Gott D, Mast J, Mortensen A, Oomen AG, Weigel S, Barthelemy E, Rincon A, Tarazona J, Schoonjans R. Guidance on technical requirements for regulated food and feed product applications to establish the presence of small particles including nanoparticles. EFSA J 2021; 19:e06769. [PMID: 34377191 PMCID: PMC8331058 DOI: 10.2903/j.efsa.2021.6769] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Following a mandate from the European Commission, EFSA has developed a Guidance on Technical Requirements (Guidance on Particle-TR), defining the criteria for assessing the presence of a fraction of small particles, and setting out information requirements for applications in the regulated food and feed product areas (e.g. novel food, food/feed additives, food contact materials and pesticides). These requirements apply to particles requiring specific assessment at the nanoscale in conventional materials that do not meet the definition of engineered nanomaterial as set out in the Novel Food Regulation (EU) 2015/2283. The guidance outlines appraisal criteria grouped in three sections, to confirm whether or not the conventional risk assessment should be complemented with nanospecific considerations. The first group addresses solubility and dissolution rate as key physicochemical properties to assess whether consumers will be exposed to particles. The second group establishes the information requirements for assessing whether the conventional material contains a fraction or consists of small particles, and its characterisation. The third group describes the information to be presented for existing safety studies to demonstrate that the fraction of small particles, including particles at the nanoscale, has been properly evaluated. In addition, in order to guide the appraisal of existing safety studies, recommendations for closing the data gaps while minimising the need for conducting new animal studies are provided. This Guidance on Particle-TR complements the Guidance on risk assessment of nanomaterials to be applied in the food and feed chain, human and animal health updated by the EFSA Scientific Committee as co-published with this Guidance. Applicants are advised to consult both guidance documents before conducting new studies.
Collapse
|
6
|
Teng C, Jiang C, Gao S, Liu X, Zhai S. Fetotoxicity of Nanoparticles: Causes and Mechanisms. NANOMATERIALS 2021; 11:nano11030791. [PMID: 33808794 PMCID: PMC8003602 DOI: 10.3390/nano11030791] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/12/2022]
Abstract
The application of nanoparticles in consumer products and nanomedicines has increased dramatically in the last decade. Concerns for the nano-safety of susceptible populations are growing. Due to the small size, nanoparticles have the potential to cross the placental barrier and cause toxicity in the fetus. This review aims to identify factors associated with nanoparticle-induced fetotoxicity and the mechanisms involved, providing a better understanding of nanotoxicity at the maternal–fetal interface. The contribution of the physicochemical properties of nanoparticles (NPs), maternal physiological, and pathological conditions to the fetotoxicity is highlighted. The underlying molecular mechanisms, including oxidative stress, DNA damage, apoptosis, and autophagy are summarized. Finally, perspectives and challenges related to nanoparticle-induced fetotoxicity are also discussed.
Collapse
Affiliation(s)
- Chuanfeng Teng
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
| | - Cuijuan Jiang
- School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China;
| | - Sulian Gao
- Jinan Eco-Environmental Monitoring Center of Shandong Province, Jinan 250101, China;
| | - Xiaojing Liu
- Department of Occupational and Environmental Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China;
| | - Shumei Zhai
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China;
- Correspondence: ; Tel.: +86-531-8836-4464
| |
Collapse
|
7
|
Carbon Nanotubes: Probabilistic Approach for Occupational Risk Assessment. NANOMATERIALS 2021; 11:nano11020409. [PMID: 33562871 PMCID: PMC7916016 DOI: 10.3390/nano11020409] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 02/01/2021] [Accepted: 02/03/2021] [Indexed: 01/06/2023]
Abstract
In this study, the occupational risk assessment of carbon nanotubes (CNTs) was performed by means of a probabilistic approach. Chronic and subchronic inhalation exposure studies were retrieved during the hazard identification phase of the study. These studies were then used to obtain a guidance value (BMCh, expressed as a lognormal distribution with geometric mean ± geometric standard deviation = 10.0 ± 4.2 µg/m3) for occupational inhalation exposure to CNTs. An exposure scenario was selected from the scientific literature: three different work events (WEs) related to the production of conductive films were considered: (WE1) manufacturing of single walled carbon nanotubes films during normal operation using local exhaust ventilation (LEV); (WE2) manufacturing of SWCNT film without LEV; and (WE3) cleaning of one of the reactors. For each WE, a probability distribution function was applied, considering exposure expressed as mass concentration, as derived from three different measurement techniques. The ratio of the exposure and the BMCh distributions (i.e., the risk characterization ratio-RCR) was used to calculate the probability of occurrence of a relevant occupational risk. All the considered WEs indicated the presence of a risk (i.e., RCR distributions ≥ 1); however, only WE2 resulted in a statistically significant level of risk.
Collapse
|
8
|
Farshad O, Heidari R, Zamiri MJ, Retana-Márquez S, Khalili M, Ebrahimi M, Jamshidzadeh A, Ommati MM. Spermatotoxic Effects of Single-Walled and Multi-Walled Carbon Nanotubes on Male Mice. Front Vet Sci 2020; 7:591558. [PMID: 33392285 PMCID: PMC7775657 DOI: 10.3389/fvets.2020.591558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/04/2020] [Indexed: 12/27/2022] Open
Abstract
Carbon-based nanomaterials possess a remarkably high potential for biomedical applications due to their physical properties; however, their detrimental effects on reproduction are also concerned. Several reports indicate the toxicity of carbon nanotubes (CNT); nevertheless, their impact on intracellular organelles in the male reproductive organs has not been fully elucidated. Herein, we report on the reprotoxicity of single-walled (SWCNT) and multi-walled carbon nanotubes (MWCN) on several intracellular events and histological criteria in pubertal male BALB/c mice orally treated with 0, 10, and 50 mg/kg/day doses for 5 weeks. Biomarkers of oxidative stress and mitochondrial functionality, histopathological alterations, and epididymal sperm characteristics were determined. Oral administration of CNTs at 10 and 50 mg/kg evoked a significant decrement in weight coefficient, sperm viability and motility, hypo-osmotic swelling (HOS) test, sperm count, mitochondrial dehydrogenase activity, ATP content, total antioxidant capacity, and GSH/GSSH ratio in the testis and epididymal spermatozoa. On the other hand, percent abnormal sperm, testicular and sperm TBARS contents, protein carbonylation, ROS formation, oxidized glutathione level, and sperm mitochondrial depolarization were considerably increased. Significant histopathological and stereological alterations in the testis occurred in the groups challenged with CNTs. The current findings indicated that oxidative stress and mitochondrial impairment might substantially impact CNTs-induced reproductive system injury and sperm toxicity. The results can also be used to establish environmental standards for CNT consumption by mammals, produce new chemicals for controlling the rodent populations, and develop therapeutic approaches against CNTs-associated reproductive anomalies in the males exposed daily to these nanoparticles.
Collapse
Affiliation(s)
- Omid Farshad
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Reza Heidari
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Socorro Retana-Márquez
- Department of Reproductive Biology, Universidad Autónoma Metropolitana-Iztapalapa, Mexico, Mexico
| | - Meghdad Khalili
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Melika Ebrahimi
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Akram Jamshidzadeh
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | | |
Collapse
|
9
|
Pregnancy exposure to carbon black nanoparticles induced neurobehavioral deficits that are associated with altered m6A modification in offspring. Neurotoxicology 2020; 81:40-50. [DOI: 10.1016/j.neuro.2020.07.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 06/19/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022]
|
10
|
Fournier SB, D'Errico JN, Adler DS, Kollontzi S, Goedken MJ, Fabris L, Yurkow EJ, Stapleton PA. Nanopolystyrene translocation and fetal deposition after acute lung exposure during late-stage pregnancy. Part Fibre Toxicol 2020; 17:55. [PMID: 33099312 PMCID: PMC7585297 DOI: 10.1186/s12989-020-00385-9] [Citation(s) in RCA: 231] [Impact Index Per Article: 46.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Accepted: 10/15/2020] [Indexed: 01/02/2023] Open
Abstract
BACKGROUND Plastic is everywhere. It is used in food packaging, storage containers, electronics, furniture, clothing, and common single-use disposable items. Microplastic and nanoplastic particulates are formed from bulk fragmentation and disintegration of plastic pollution. Plastic particulates have recently been detected in indoor air and remote atmospheric fallout. Due to their small size, microplastic and nanoplastic particulate in the atmosphere can be inhaled and may pose a risk for human health, specifically in susceptible populations. When inhaled, nanosized particles have been shown to translocate across pulmonary cell barriers to secondary organs, including the placenta. However, the potential for maternal-to-fetal translocation of nanosized-plastic particles and the impact of nanoplastic deposition or accumulation on fetal health remain unknown. In this study we investigated whether nanopolystyrene particles can cross the placental barrier and deposit in fetal tissues after maternal pulmonary exposure. RESULTS Pregnant Sprague Dawley rats were exposed to 20 nm rhodamine-labeled nanopolystyrene beads (2.64 × 1014 particles) via intratracheal instillation on gestational day (GD) 19. Twenty-four hours later on GD 20, maternal and fetal tissues were evaluated using fluorescent optical imaging. Fetal tissues were fixed for particle visualization with hyperspectral microscopy. Using isolated placental perfusion, a known concentration of nanopolystyrene was injected into the uterine artery. Maternal and fetal effluents were collected for 180 min and assessed for polystyrene particle concentration. Twenty-four hours after maternal exposure, fetal and placental weights were significantly lower (7 and 8%, respectively) compared with controls. Nanopolystyrene particles were detected in the maternal lung, heart, and spleen. Polystyrene nanoparticles were also observed in the placenta, fetal liver, lungs, heart, kidney, and brain suggesting maternal lung-to-fetal tissue nanoparticle translocation in late stage pregnancy. CONCLUSION These studies confirm that maternal pulmonary exposure to nanopolystyrene results in the translocation of plastic particles to placental and fetal tissues and renders the fetoplacental unit vulnerable to adverse effects. These data are vital to the understanding of plastic particulate toxicology and the developmental origins of health and disease.
Collapse
Affiliation(s)
- Sara B Fournier
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Jeanine N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA
| | - Derek S Adler
- Molecular Imaging Center, Rutgers University, 41 Gordon Rd, Piscataway, NJ, 08854, USA
| | - Stamatina Kollontzi
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Michael J Goedken
- Research Pathology Services, Rutgers University, Piscataway, NJ, 08854, USA
| | - Laura Fabris
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd, Piscataway, NJ, 08854, USA
| | - Edward J Yurkow
- Molecular Imaging Center, Rutgers University, 41 Gordon Rd, Piscataway, NJ, 08854, USA
| | - Phoebe A Stapleton
- Environmental and Occupational Health Sciences Institute, Rutgers University, 170 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd, Piscataway, NJ, 08854, USA.
| |
Collapse
|
11
|
Hansen JS, Rosengren TS, Johansson HKL, Barfod KK, Larsen ST, Sørli JB, da Silva É, Vogel U, Hougaard KS. Pre-conceptional exposure to multiwalled carbon nanotubes suppresses antibody production in mouse offspring. Nanotoxicology 2020; 14:711-724. [PMID: 32374645 DOI: 10.1080/17435390.2020.1755468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Prenatal particle exposure has been shown to increase allergic responses in offspring. Carbon nanotubes (CNTs) possess immunomodulatory properties, but it is unknown whether maternal exposure to CNTs interferes with offspring immune development. Here, C57Bl/6J female mice were intratracheally instilled with 67 of μg multiwalled CNTs on the day prior to mating. After weaning, tolerance and allergy responses were assessed in the offspring. Offspring of CNT-exposed (CNT offspring) and of sham-exposed dams (CTRL offspring) were intranasally exposed to ovalbumin (OVA) once weekly for 5 weeks to induce airway mucosal tolerance. Subsequent OVA sensitization and aerosol inhalation caused low or no OVA-specific IgE production and no inflammation. However, the CNT offspring presented with significantly lower OVA-specific IgG1 levels than CTRL offspring. In other groups of 5-week-old offspring, low-dose sensitization with OVA and subsequent OVA aerosol inhalation led to significantly lower OVA-specific IgG1 production in CNT compared to CTRL offspring. OVA-specific IgE and airway inflammation were non-significantly reduced in CNT offspring. The immunomodulatory effects of pre-gestational exposure to multiwalled CNTs were unexpected, but very consistent. The observations of suppressed antigen-specific IgG1 production may be of importance for infection or vaccination responses and warrant further investigation.
Collapse
Affiliation(s)
- Jitka S Hansen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Thomas S Rosengren
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Hannah K L Johansson
- The National Research Centre for the Working Environment, Copenhagen, Denmark.,Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Kenneth K Barfod
- The National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Søren T Larsen
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Jorid B Sørli
- The National Research Centre for the Working Environment, Copenhagen, Denmark
| | - Émilie da Silva
- The National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Environmental Engineering, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Ulla Vogel
- The National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Health Technology, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Karin S Hougaard
- The National Research Centre for the Working Environment, Copenhagen, Denmark.,Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
12
|
Hansen SF, Lennquist A. Carbon nanotubes added to the SIN List as a nanomaterial of Very High Concern. NATURE NANOTECHNOLOGY 2020; 15:3-4. [PMID: 31925393 DOI: 10.1038/s41565-019-0613-9] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Affiliation(s)
- Steffen Foss Hansen
- Technical University of Denmark, Department of Environmental Engineering, Kongens Lyngby, Denmark.
| | - Anna Lennquist
- ChemSec - The International Chemical Secretariat, Gothenburg, Sweden
| |
Collapse
|
13
|
Duan M, Liu L, Da G, Géhin E, Nielsen PV, Weinreich UM, Lin B, Wang Y, Zhang T, Sun W. Measuring the administered dose of particles on the facial mucosa of a realistic human model. INDOOR AIR 2020; 30:108-116. [PMID: 31608493 DOI: 10.1111/ina.12612] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 09/22/2019] [Accepted: 10/10/2019] [Indexed: 05/20/2023]
Abstract
Exposure to particulate contaminants can cause serious adverse health effects. Deposition on the facial mucosa is an important path of exposure, but it is difficult to conduct direct dose measurement on real human subjects. In this study, we propose an in vitro method to assess the administered doses of micron-sized particles on the eyes and lips in which computed tomographic scanning and three-dimensional printing were used to create a model that includes a face, oropharynx, trachea, the first five generations of bronchi, and lung volume. This realistic model of a face and airway was exposed to monodispersed fluorescent particles released from an incoming jet. The administered dose of particles deposited upon the eyes and lips, as quantified by fluorescence intensity, was determined via a standard wiping protocol. The results show that, in this scenario, the administered doses normalized by source were 2.15%, 1.02%, 0.88%, 2.13%, and 1.55% for 0.6-, 1.0-, 2.0-, 3.0-, and 5.0-µm particles, respectively. The administered dose of large particles on the mucosa within a given exposure time has great significance. Moreover, the lips suffer a much greater risk of exposure than the eyes and account for more than 80% of total facial mucosa deposition. Our study provides a fast and economical method to assess the administered dose on the facial mucosa on an individual basis.
Collapse
Affiliation(s)
- Mengjie Duan
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, China
- Université Paris-Est, CERTES (EA 3481), UPEC, Créteil, France
| | - Li Liu
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, China
- State Key laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an, China
- Department of Civil Engineering, Aalborg University, Aalborg, Denmark
| | - Guillaume Da
- Université Paris-Est, CERTES (EA 3481), UPEC, Créteil, France
| | - Evelyne Géhin
- Université Paris-Est, CERTES (EA 3481), UPEC, Créteil, France
| | - Peter V Nielsen
- Department of Civil Engineering, Aalborg University, Aalborg, Denmark
| | - Ulla M Weinreich
- Department of Respiratory Diseases, Aalborg University Hospital, Aalborg, Denmark
- The Clinical Institute, Aalborg University, Aalborg, Denmark
| | - Borong Lin
- Department of Building Science, School of Architecture, Tsinghua University, Beijing, China
| | - Yi Wang
- State Key laboratory of Green Building in Western China, Xi'an University of Architecture and Technology, Xi'an, China
- School of Building Services Science and Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Ting Zhang
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, China
| | - Wei Sun
- Department of Mechanical Engineering, Biomanufacturing Center, Tsinghua University, Beijing, China
| |
Collapse
|
14
|
Maternal inflammation has a profound effect on cortical interneuron development in a stage and subtype-specific manner. Mol Psychiatry 2020; 25:2313-2329. [PMID: 31595033 PMCID: PMC7515848 DOI: 10.1038/s41380-019-0539-5] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Revised: 09/10/2019] [Accepted: 09/24/2019] [Indexed: 01/21/2023]
Abstract
Severe infections during pregnancy are one of the major risk factors for cognitive impairment in the offspring. It has been suggested that maternal inflammation leads to dysfunction of cortical GABAergic interneurons that in turn underlies cognitive impairment of the affected offspring. However, the evidence comes largely from studies of adult or mature brains and how the impairment of inhibitory circuits arises upon maternal inflammation is unknown. Here we show that maternal inflammation affects multiple steps of cortical GABAergic interneuron development, i.e., proliferation of precursor cells, migration and positioning of neuroblasts, as well as neuronal maturation. Importantly, the development of distinct subtypes of cortical GABAergic interneurons was discretely impaired as a result of maternal inflammation. This translated into a reduction in cell numbers, redistribution across cortical regions and layers, and changes in morphology and cellular properties. Furthermore, selective vulnerability of GABAergic interneuron subtypes was associated with the stage of brain development. Thus, we propose that maternally derived insults have developmental stage-dependent effects, which contribute to the complex etiology of cognitive impairment in the affected offspring.
Collapse
|
15
|
Carvalho CR, Silva-Correia J, Oliveira JM, Reis RL. Nanotechnology in peripheral nerve repair and reconstruction. Adv Drug Deliv Rev 2019; 148:308-343. [PMID: 30639255 DOI: 10.1016/j.addr.2019.01.006] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 09/20/2018] [Accepted: 01/05/2019] [Indexed: 02/07/2023]
Affiliation(s)
- Cristiana R Carvalho
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Joana Silva-Correia
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Joaquim M Oliveira
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal
| | - Rui L Reis
- 3B's Research Group, I3Bs - Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark, Parque de Ciência e Tecnologia, Zona Industrial da Gandra, 4805-017, Barco, Guimarães, Portugal; ICVS/3B's - PT Government Associate Laboratory, Braga/Guimarães, Portugal; The Discoveries Centre for Regenerative and Precision Medicine, Headquarters at University of Minho, AvePark, 4805-017 Barco, Guimarães, Portugal.
| |
Collapse
|
16
|
Comparative in Vitro Cytotoxicity of Realistic Doses of Benchmark Multi-Walled Carbon Nanotubes towards Macrophages and Airway Epithelial Cells. NANOMATERIALS 2019; 9:nano9070982. [PMID: 31284615 PMCID: PMC6669589 DOI: 10.3390/nano9070982] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 06/28/2019] [Accepted: 07/03/2019] [Indexed: 01/27/2023]
Abstract
Multi-walled carbon nanotubes (MWCNT) have many outstanding physical and chemical properties that make them useful in many applications in nanotechnology. However, these properties are reported to be potentially harmful for the human body. The effects of low and realistic doses of three well-characterized preparations of MWCNT, obtained from the Joint Research Centre (JRC) (NM-400, NM-401, and NM-402), were assessed in two murine macrophage lines, Raw264.7, of peritoneal origin, and MH-S, derived from alveolar macrophages. Macrophage viability, evaluated with two distinct methods, was significantly lowered by NM-401 (needle-like, average length 4 μm, diameter 67 nm) with IC50 values of 10 μg/cm2, whereas NM-400 and NM-402 (tangled, average lengths 846–1372 nm, diameter 11 nm) had much smaller effects. In contrast, at 10 μg/cm2, NM-400 and NM-402 induced the M1 marker Nos2 and, consistently, a sizable accumulation of nitrites in the medium, whereas NM-401 had no significant effect. None of the MWCNT preparations induced the M2 marker Arg1. Phagocytic activity, assessed in Raw264.7 macrophages, was significantly reduced in cells exposed to NM-401, but not to NM-400 or NM-402. When tested on Calu-3 bronchial epithelial cell monolayers, the three MWCNT preparations did not affect cell viability, but decreased the trans-epithelial electrical resistance at the maximal dose tested (80 μg/cm2), with the most evident effect detected for NM-401, even at 10 μg/cm2. In conclusion, among the possible structural determinants of the toxic effects exerted by MWCNT towards macrophages and airway epithelial cells, shape and length appear the most relevant at low, realistic doses.
Collapse
|
17
|
D'Errico JN, Doherty C, Fournier SB, Renkel N, Kallontzi S, Goedken M, Fabris L, Buckley B, Stapleton PA. Identification and quantification of gold engineered nanomaterials and impaired fluid transfer across the rat placenta via ex vivo perfusion. Biomed Pharmacother 2019; 117:109148. [PMID: 31347503 DOI: 10.1016/j.biopha.2019.109148] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 06/14/2019] [Accepted: 06/17/2019] [Indexed: 02/07/2023] Open
Abstract
Development and implementation of products incorporating nanoparticles are occurring at a rapid pace. These particles are widely utilized in domestic, occupational, and biomedical applications. Currently, it is unclear if pregnant women will be able to take advantage of the potential biomedical nanoproducts out of concerns associated with placental transfer and fetal interactions. We recently developed an ex vivo rat placental perfusion technique to allow for the evaluation of xenobiotic transfer and placental physiological perturbations. In this study, a segment of the uterine horn and associated placenta was isolated from pregnant (gestational day 20) Sprague-Dawley rats and placed into a modified pressure myography vessel chamber. The proximal and distal ends of the maternal uterine artery and the vessels of the umbilical cord were cannulated, secured, and perfused with physiological salt solution (PSS). The proximal uterine artery and umbilical artery were pressurized at 80 mmHg and 50 mmHg, respectively, to allow countercurrent flow through the placenta. After equilibration, a single 900 μL bolus dose of 20 nm gold engineered nanoparticles (Au-ENM) was introduced into the proximal maternal artery. Distal uterine and umbilical vein effluents were collected every 10 min for 180 min to measure placental fluid dynamics. The quantification of Au-ENM transfer was conducted via inductively coupled plasma mass spectrometry (ICP-MS). Overall, we were able to measure Au-ENM within uterine and umbilical effluent with 20 min of material infusion. This novel methodology may be widely incorporated into studies of pharmacology, toxicology, and placental physiology.
Collapse
Affiliation(s)
- J N D'Errico
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - C Doherty
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - S B Fournier
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - N Renkel
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - S Kallontzi
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd., Piscataway, NJ 08854, USA
| | - M Goedken
- Research Pathology Services, Rutgers University, Piscataway, NJ 08854, USA
| | - L Fabris
- Department of Material Science and Engineering, School of Engineering, Rutgers University, 607 Taylor Rd., Piscataway, NJ 08854, USA
| | - B Buckley
- Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA
| | - P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, 160 Frelinghuysen Rd., Piscataway, NJ 08854, USA; Environmental and Occupational Health Sciences Institute, 170 Frelinghuysen Rd., Piscataway, NJ 08854, USA.
| |
Collapse
|
18
|
Riediker M, Zink D, Kreyling W, Oberdörster G, Elder A, Graham U, Lynch I, Duschl A, Ichihara G, Ichihara S, Kobayashi T, Hisanaga N, Umezawa M, Cheng TJ, Handy R, Gulumian M, Tinkle S, Cassee F. Particle toxicology and health - where are we? Part Fibre Toxicol 2019; 16:19. [PMID: 31014371 PMCID: PMC6480662 DOI: 10.1186/s12989-019-0302-8] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 04/08/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Particles and fibres affect human health as a function of their properties such as chemical composition, size and shape but also depending on complex interactions in an organism that occur at various levels between particle uptake and target organ responses. While particulate pollution is one of the leading contributors to the global burden of disease, particles are also increasingly used for medical purposes. Over the past decades we have gained considerable experience in how particle properties and particle-bio interactions are linked to human health. This insight is useful for improved risk management in the case of unwanted health effects but also for developing novel medical therapies. The concepts that help us better understand particles' and fibres' risks include the fate of particles in the body; exposure, dosimetry and dose-metrics and the 5 Bs: bioavailability, biopersistence, bioprocessing, biomodification and bioclearance of (nano)particles. This includes the role of the biomolecule corona, immunity and systemic responses, non-specific effects in the lungs and other body parts, particle effects and the developing body, and the link from the natural environment to human health. The importance of these different concepts for the human health risk depends not only on the properties of the particles and fibres, but is also strongly influenced by production, use and disposal scenarios. CONCLUSIONS Lessons learned from the past can prove helpful for the future of the field, notably for understanding novel particles and fibres and for defining appropriate risk management and governance approaches.
Collapse
Affiliation(s)
- Michael Riediker
- Swiss Centre for Occupational and Environmental Health (SCOEH), Binzhofstrasse 87, CH-8404 Winterthur, Switzerland
| | - Daniele Zink
- Institute of Bioengineering and Nanotechnology, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Wolfgang Kreyling
- Institute of Epidemiology, Helmholtz Center Munich – German Research Center for Environmental Health, Neuherberg, Munich Germany
| | - Günter Oberdörster
- Department of Environmental Medicine, University of Rochester, Rochester, NY USA
| | - Alison Elder
- Department of Environmental Medicine, University of Rochester, Rochester, NY USA
| | | | - Iseult Lynch
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, UK
| | - Albert Duschl
- Department of Biosciences, Allergy Cancer BioNano Research Centre, University of Salzburg, Salzburg, Austria
| | | | | | | | | | | | | | - Richard Handy
- School of Biological Sciences, Plymouth University, Plymouth, UK
| | - Mary Gulumian
- National Institute for Occupational Health and Haematology and Molecular Medicine, University of the Witwatersrand, Johannesburg, South Africa
| | - Sally Tinkle
- Science and Technology Policy Institute, Washington, DC USA
| | - Flemming Cassee
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Institute for Risk Assessment Studies (IRAS), Utrrecht University, Utrecht, The Netherlands
| |
Collapse
|
19
|
Zhang D, Zhang Z, Wu Y, Fu K, Chen Y, Li W, Chu M. Systematic evaluation of graphene quantum dot toxicity to male mouse sexual behaviors, reproductive and offspring health. Biomaterials 2019; 194:215-232. [DOI: 10.1016/j.biomaterials.2018.12.001] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 11/09/2018] [Accepted: 12/04/2018] [Indexed: 12/17/2022]
|
20
|
Stapleton P. Should Perturbation of the Preconceptive Environment be Considered a Risk Factor for the Development of Cardiovascular Disease Later in Life? J Am Heart Assoc 2018; 7:e011249. [PMID: 30561259 PMCID: PMC6405617 DOI: 10.1161/jaha.118.011249] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
See Article by Tanwar et al
Collapse
Affiliation(s)
- Phoebe Stapleton
- 1 Department of Pharmacology and Toxicology Ernest Mario School of Pharmacy Rutgers University Piscataway NJ.,2 Environmental and Occupational Health Sciences Institute Piscataway NJ
| |
Collapse
|
21
|
Wang R, Song B, Wu J, Zhang Y, Chen A, Shao L. Potential adverse effects of nanoparticles on the reproductive system. Int J Nanomedicine 2018; 13:8487-8506. [PMID: 30587973 PMCID: PMC6294055 DOI: 10.2147/ijn.s170723] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
With the vigorous development of nanometer-sized materials, nanoproducts are becoming widely used in all aspects of life. In medicine, nanoparticles (NPs) can be used as nanoscopic drug carriers and for nanoimaging technologies. Thus, substantial attention has been paid to the potential risks of NPs. Previous studies have shown that numerous types of NPs are able to pass certain biological barriers and exert toxic effects on crucial organs, such as the brain, liver, and kidney. Only recently, attention has been directed toward the reproductive toxicity of nanomaterials. NPs can pass through the blood–testis barrier, placental barrier, and epithelial barrier, which protect reproductive tissues, and then accumulate in reproductive organs. NP accumulation damages organs (testis, epididymis, ovary, and uterus) by destroying Sertoli cells, Leydig cells, and germ cells, causing reproductive organ dysfunction that adversely affects sperm quality, quantity, morphology, and motility or reduces the number of mature oocytes and disrupts primary and secondary follicular development. In addition, NPs can disrupt the levels of secreted hormones, causing changes in sexual behavior. However, the current review primarily examines toxicological phenomena. The molecular mechanisms involved in NP toxicity to the reproductive system are not fully understood, but possible mechanisms include oxidative stress, apoptosis, inflammation, and genotoxicity. Previous studies have shown that NPs can increase inflammation, oxidative stress, and apoptosis and induce ROS, causing damage at the molecular and genetic levels which results in cytotoxicity. This review provides an understanding of the applications and toxicological effects of NPs on the reproductive system.
Collapse
Affiliation(s)
- Ruolan Wang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China,
| | - Bin Song
- Guizhou Provincial People's Hospital, Guiyang 550002, China
| | - Junrong Wu
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China,
| | - Yanli Zhang
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China,
| | - Aijie Chen
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China,
| | - Longquan Shao
- Nanfang Hospital, Southern Medical University, Guangzhou 510515, China, .,Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Guangzhou 510515, China,
| |
Collapse
|
22
|
Russ KA, Thompson JA, Kashon M, Porter DW, Friend SA, McKinney W, Fedan JS. Comparison of multi-wall carbon nanotube and nitrogen-doped multi-wall carbon nanotube effects on lung function and airway reactivity in rats. Toxicol Appl Pharmacol 2018; 364:153-163. [PMID: 30423287 DOI: 10.1016/j.taap.2018.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 11/06/2018] [Accepted: 11/09/2018] [Indexed: 10/27/2022]
Abstract
Incorporation of multi-wall carbon nanotubes (MWCNT) into materials has raised concerns about their potential hazards to manufacturing workers. In animal models, airway inflammation and lung fibrosis follow aspiration, instillation, and inhalation exposures to MWCNT. However, the effects of MWCNT on pulmonary function, airway reactivity and airway epithelium function following inhalation exposure has not been studied. We investigated whether inhaled MWCNT affects lung resistance (RL) and dynamic compliance (Cdyn), reactivity to inhaled methacholine (MCh), epithelial regulation of airway reactivity to MCh in vitro, and airway epithelial ion transport. Male rats were exposed by whole body inhalation for 6 h to air or aerosolized MWCNT (0.5, 1 or 5 mg/m3) for one or nine days. Eighteen h after 1 d exposure to 5 mg/m3 MWCNT, basal RL was increased and basal Cdyn was decreased; changes did not persist for 7 d. Reactivity to MCh (RL) was increased and Cdyn responses were decreased at 18 h, but not 7 d after exposure to 1 and 5 mg/m3 MWCNT. The effects of i.t.-instilled MWCNT and nitrogen-doped MWCNT (N-MWCNT) on pulmonary function and reactivity to MCh at doses comparable to deposition after inhalation of 5 mg/m3 at 1 d and 0.5, 1, and 5 mg/m3 MWCNT 9 d-exposures were compared. Both nanoparticles increased airway reactivity (RL); N-MWCNT did not affect Cdyn responses. Lung function and airway reactivity are altered following a single MWCNT inhalation and generally subside over time. Given i.t., MWCNT's and N-MWCNT's effects were comparable, but N-MWCNT evoke smaller changes in Cdyn responses.
Collapse
Affiliation(s)
- Kristen A Russ
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Janet A Thompson
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Michael Kashon
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Dale W Porter
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Sherri A Friend
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Walter McKinney
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA
| | - Jeffrey S Fedan
- Health Effects Laboratory Division, National Institute for Occupational Safety and Health, Morgantown, WV 26505, USA.
| |
Collapse
|
23
|
Umezawa M, Onoda A, Korshunova I, Jensen ACØ, Koponen IK, Jensen KA, Khodosevich K, Vogel U, Hougaard KS. Maternal inhalation of carbon black nanoparticles induces neurodevelopmental changes in mouse offspring. Part Fibre Toxicol 2018; 15:36. [PMID: 30201004 PMCID: PMC6131790 DOI: 10.1186/s12989-018-0272-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023] Open
Abstract
Background Engineered nanoparticles are smaller than 100 nm and designed to improve or creating even new physico-chemical properties. Consequently, toxicological properties of materials may change as size reaches the nm size-range. We examined outcomes related to the central nervous system in the offspring following maternal inhalation exposure to nanosized carbon black particles (Printex 90). Methods Time-mated mice (NMRI) were exposed by inhalation, for 45 min/day to 0, 4.6 or 37 mg/m3 aerosolized carbon black on gestation days 4–18, i.e. for a total of 15 days. Outcomes included maternal lung inflammation (differential cell count in bronchoalveolar lavage fluid and Saa3 mRNA expression in lung tissue), offspring neurohistopathology and behaviour in the open field test. Results Carbon black exposure did not cause lung inflammation in the exposed females, measured 11 or 28–29 days post-exposure. Glial fibrillary acidic protein (GFAP) expression levels were dose-dependently increased in astrocytes around blood vessels in the cerebral cortex and hippocampus in six weeks old offspring, indicative of reactive astrogliosis. Also enlarged lysosomal granules were observed in brain perivascular macrophages (PVMs) in the prenatally exposed offspring. The number of parvalbumin-positive interneurons and the expression levels of parvalbumin were decreased in the motor and prefrontal cortices at weaning and 120 days of age in the prenatally exposed offspring. In the open field test, behaviour was dose-dependently altered following maternal exposure to Printex 90, at 90 days of age. Prenatally exposed female offspring moved a longer total distance, and especially males spent significantly longer time in the central zone of the maze. In the offspring, the described effects were long-lasting as they were present at all time points investigated. Conclusion The present study reports for the first time that maternal inhalation exposure to Printex 90 carbon black induced dose-dependent denaturation of PVM and reactive astrocytes, similarly to the findings observed following maternal exposure to Printex 90 by airway instillation. Of note, some of the observed effects have striking similarities with those observed in mouse models of neurodevelopmental disorders. Electronic supplementary material The online version of this article (10.1186/s12989-018-0272-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Masakazu Umezawa
- Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba, Japan.,Department of Materials Science and Technology, Faculty of Industrial Science and Technology, Tokyo University of Science, Katsushika, Tokyo, Japan
| | - Atsuto Onoda
- Research Institute for Science and Technology, Organization for Research Advancement, Tokyo University of Science, Noda, Chiba, Japan.,Department of Hygienic Chemistry, Graduate School of Pharmaceutical Sciences, Tokyo University of Science, Noda, Chiba, Japan.,Japan Society for the Promotion of Science, Chiyoda, Tokyo, 102-0083, Japan
| | - Irina Korshunova
- Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen K, Denmark
| | - Alexander C Ø Jensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Ismo K Koponen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Keld A Jensen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark
| | - Konstantin Khodosevich
- Biotech Research and Innovation Centre (BRIC), Faculty of Health, University of Copenhagen, Copenhagen K, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark.,Department of Micro- and Nanotechnology, Technical University of Denmark, Lyngby, Denmark
| | - Karin S Hougaard
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100, Copenhagen Ø, Denmark. .,Institute of Public Health, University of Copenhagen, Copenhagen K, Denmark.
| |
Collapse
|
24
|
Stapleton PA, McBride CR, Yi J, Abukabda AB, Nurkiewicz TR. Estrous cycle-dependent modulation of in vivo microvascular dysfunction after nanomaterial inhalation. Reprod Toxicol 2018; 78:20-28. [PMID: 29545171 PMCID: PMC6034709 DOI: 10.1016/j.reprotox.2018.03.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 02/08/2018] [Accepted: 03/05/2018] [Indexed: 12/11/2022]
Abstract
Preconceptive health encompasses male and female reproductive capability. In females, this takes into account each of the stages of the estrous cycle. Microvascular reactivity varies throughout the estrous cycle in response to hormonal changes and in preparation for pregnancy. Microvascular alterations in response to engineered nanomaterial (ENM) exposure have been described within 24-h of inhalation; however, the impact upon the uterine vasculature at differing estrous stages and at late-stage pregnancy is unclear. Female Sprague Dawley (SD) rats (virgin and late stage pregnancy [GD 19]) were exposed to nano-TiO aerosols (173.2 ± 6.4 nm, 10.2 ± 0.46 mg/m3, 5 h) 24-h prior to experimentation leading to a single calculated deposition of 42.2 ± 1.9 µg nano- TiO2 (exposed) or 0µg (control). Animals were anesthetized, estrous status verified, and prepared for in situ assessment of leukocyte trafficking and vascular function by means of intravital microscopy, Uterine basal arteriolar reactivity was stimulated using iontophoretically applied chemicals: acetylcholine (ACh, 0.025 M; 20, 40, 100, 200 nA), sodium nitroprusside (SNP, 0.05 M; 20, 40, 100 nA), phenylephrine (PE, 0.05 M; 20, 40, 100 nA). Finally, adenosine (ADO, 10−4 M) was superfused over the tissue to identify maximum diameter. In situ vessel reactivity after exposure was significantly blunted based on estrous stage, but not at late-stage pregnancy. Local uterine venular leukocyte trafficking and systemic inflammatory markers were also significantly affected during preparatory (proestrus), fertile (estrus), and infertile (diestrus) periods after ENM inhalation. Overall, these deficits in reactivity and increased inflammatory activity may impair female fertility after ENM exposure.
Collapse
Affiliation(s)
- P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA; Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA.
| | - C R McBride
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA; Toxicology Working Group, West Virginia University, Morgantown, WV, USA
| | - J Yi
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA
| | - A B Abukabda
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA; Toxicology Working Group, West Virginia University, Morgantown, WV, USA
| | - T R Nurkiewicz
- Department of Physiology, Pharmacology, and Neuroscience, West Virginia University, Morgantown, WV, USA; Toxicology Working Group, West Virginia University, Morgantown, WV, USA
| |
Collapse
|
25
|
Pietroiusti A, Stockmann-Juvala H, Lucaroni F, Savolainen K. Nanomaterial exposure, toxicity, and impact on human health. WILEY INTERDISCIPLINARY REVIEWS-NANOMEDICINE AND NANOBIOTECHNOLOGY 2018; 10:e1513. [PMID: 29473695 DOI: 10.1002/wnan.1513] [Citation(s) in RCA: 99] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 01/03/2018] [Accepted: 01/16/2018] [Indexed: 12/17/2022]
Abstract
The use of engineered nanomaterials (ENM) has grown after the turn of the 21st century. Also, the production of ENM has globally grown, and exposure of workers especially via the lungs to ENM has increased. This review tackles with effects of ENM on workers' health because occupational environment is the main source of exposure to ENM. Assessment of exposure to ENM is demanding, and today there are no occupational exposure level (OEL) for ENM. This is partly due to challenges of such measurements, and in part to the unknown causality between ENM metrics and effects. There are also marked gaps in systematic knowledge on ENM hazards. Human health surveys of exposed workers, or human field studies have not identified specific effects of ENM linking them with a specific exposure. There is, however, a consensus that material characteristics such as size, and chemistry influence effects of ENM. Available data suggest that multiwalled carbon nanotubes (MWCNT) affect the immunological system and cause inflammation of the lungs, or signs of asthma whereas carbon nanofibers (CNF) may cause interstitial fibrosis. Metallic and metal oxide nanoparticles together with MWCNT induce genotoxicity, and a given type of MWCNT has been identified as a possible human carcinogen. Currently, lack of understanding of mechanisms of effects of ENM renders assessment of hazards and risks of ENM material-by-material a necessity. The so called "omics" approaches utilizing ENM-induced alterations in gene and protein expression may be useful in the development of a new paradigm for ENM hazard and risk assessment. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials.
Collapse
Affiliation(s)
- Antonio Pietroiusti
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | | | - Francesca Lucaroni
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Kai Savolainen
- Work Environment, Finnish Institute of Occupational Health, Helsinki, Finland
| |
Collapse
|
26
|
Stapleton PA, Hathaway QA, Nichols CE, Abukabda AB, Pinti MV, Shepherd DL, McBride CR, Yi J, Castranova VC, Hollander JM, Nurkiewicz TR. Maternal engineered nanomaterial inhalation during gestation alters the fetal transcriptome. Part Fibre Toxicol 2018; 15:3. [PMID: 29321036 PMCID: PMC5763571 DOI: 10.1186/s12989-017-0239-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Accepted: 12/21/2017] [Indexed: 01/19/2023] Open
Abstract
Background The integration of engineered nanomaterials (ENM) is well-established and widespread in clinical, commercial, and domestic applications. Cardiovascular dysfunctions have been reported in adult populations after exposure to a variety of ENM. As the diversity of these exposures continues to increase, the fetal ramifications of maternal exposures have yet to be determined. We, and others, have explored the consequences of ENM inhalation during gestation and identified many cardiovascular and metabolic outcomes in the F1 generation. The purpose of these studies was to identify genetic alterations in the F1 generation of Sprague-Dawley rats that result from maternal ENM inhalation during gestation. Pregnant dams were exposed to nano-titanium dioxide (nano-TiO2) aerosols (10 ± 0.5 mg/m3) for 7-8 days (calculated, cumulative lung deposition = 217 ± 1 μg) and on GD (gestational day) 20 fetal hearts were isolated. DNA was extracted and immunoprecipitated with modified chromatin marks histone 3 lysine 4 tri-methylation (H3K4me3) and histone 3 lysine 27 tri-methylation (H3K27me3). Following chromatin immunoprecipitation (ChIP), DNA fragments were sequenced. RNA from fetal hearts was purified and prepared for RNA sequencing and transcriptomic analysis. Ingenuity Pathway Analysis (IPA) was then used to identify pathways most modified by gestational ENM exposure. Results The results of the sequencing experiments provide initial evidence that significant epigenetic and transcriptomic changes occur in the cardiac tissue of maternal nano-TiO2 exposed progeny. The most notable alterations in major biologic systems included immune adaptation and organismal growth. Changes in normal physiology were linked with other tissues, including liver and kidneys. Conclusions These results are the first evidence that maternal ENM inhalation impacts the fetal epigenome. Electronic supplementary material The online version of this article (10.1186/s12989-017-0239-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- P A Stapleton
- Department of Pharmacology and Toxicology, Ernest Mario School of Pharmacy, Rutgers University, Piscataway, NJ, USA.,Environmental and Occupational Health Sciences Institute, Piscataway, NJ, USA
| | - Q A Hathaway
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - C E Nichols
- Immunity, Inflammation, and Disease Laboratory, National Institute of Environmental Health Sciences, Research Triangle Park, NC, USA
| | - A B Abukabda
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, USA
| | - M V Pinti
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - D L Shepherd
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - C R McBride
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Physiology, Pharmacology, and Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506-9229, USA
| | - J Yi
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Physiology, Pharmacology, and Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506-9229, USA
| | - V C Castranova
- Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Department of Pharmaceutical Sciences, West Virginia University School of Pharmacy, Morgantown, USA
| | - J M Hollander
- Division of Exercise Physiology, West Virginia University School of Medicine, Morgantown, WV, USA.,Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA.,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA
| | - T R Nurkiewicz
- Mitochondria, Metabolism & Bioenergetics Working Group, West Virginia University School of Medicine, Morgantown, WV, USA. .,Toxicology Working Group, West Virginia University School of Medicine, Morgantown, WV, USA. .,Department of Physiology, Pharmacology, and Neuroscience, Robert C. Byrd Health Sciences Center, West Virginia University School of Medicine, 1 Medical Center Drive, Morgantown, WV, 26506-9229, USA.
| |
Collapse
|
27
|
Zhang Y, Wu J, Feng X, Wang R, Chen A, Shao L. Current understanding of the toxicological risk posed to the fetus following maternal exposure to nanoparticles. Expert Opin Drug Metab Toxicol 2017; 13:1251-1263. [PMID: 29086601 DOI: 10.1080/17425255.2018.1397131] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION With the broad use of nanotechnology, the number and variety of nanoparticles that humans can be exposed to has further increased. Consequently, there is growing concern about the potential effect of maternal exposure to various nanoparticles during pregnancy on a fetus. However, the nature of this risk is not fully known. Areas covered: In this review, materno-fetal transfer of nanoparticles through the placenta is described. Both prenatal and postnatal adverse effects, such as fetal resorption, malformation and injury to various organs in mice exposed to nanoparticles are reviewed. The potential mechanisms of toxicity are also discussed. Expert opinion: The toxicology and safe application of recently developed nanoparticles has attracted much attention in the past few years. Although many studies have demonstrated the toxicology of nanoparticles in various species, only a small number of studies have examined the effect on a fetus after maternal exposure to nanoparticles. This is particularly important, because the developing fetus is especially vulnerable to the toxic effects of nanoparticles during fetal development due to the unique physical stage of the fetus. Nanoparticles may directly or indirectly impair fetal development and growth after maternal exposure to nanoparticles.
Collapse
Affiliation(s)
- Yanli Zhang
- a Department of Stomatology , Nanfang Hospital, Southern Medical University , Guangzhou , PR China
| | - Junrong Wu
- a Department of Stomatology , Nanfang Hospital, Southern Medical University , Guangzhou , PR China
| | - Xiaoli Feng
- a Department of Stomatology , Nanfang Hospital, Southern Medical University , Guangzhou , PR China
| | - Ruolan Wang
- a Department of Stomatology , Nanfang Hospital, Southern Medical University , Guangzhou , PR China
| | - Aijie Chen
- a Department of Stomatology , Nanfang Hospital, Southern Medical University , Guangzhou , PR China
| | - Longquan Shao
- a Department of Stomatology , Nanfang Hospital, Southern Medical University , Guangzhou , PR China
| |
Collapse
|
28
|
Kobayashi N, Izumi H, Morimoto Y. Review of toxicity studies of carbon nanotubes. J Occup Health 2017; 59:394-407. [PMID: 28794394 PMCID: PMC5635148 DOI: 10.1539/joh.17-0089-ra] [Citation(s) in RCA: 162] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 07/13/2017] [Indexed: 01/20/2023] Open
Abstract
OBJECTIVE We reviewed studies on pulmonary, reproductive, and developmental toxicity caused by carbon nanotubes (CNTs). In paricular, we analyzed how CNT exposure affects the several processes of pulmonary toxicity, including inflammation, injury, fibrosis, and pulmonary tumors. METHODS In pulmonary toxicity, there are various processes, including inflammation, injury, fibrosis, respiratory tumor in the lungs, and biopersistence of CNTs and genotoxicity as tumor-related factors, to develop the respiratory tumor. We evaluated the evidence for the carcinogenicity of CNTs in each process. In the fields of reproductive and developmental toxicity, studies of CNTs have been conducted mainly with mice. We summarized the findings of reproductive and developmental toxicity studies of CNTs. RESULTS In animal studies, exposure to CNTs induced sustained inflammation, fibrosis, lung cancer following long-term inhalation, and gene damage in the lung. CNTs also showed high biopersistence in animal studies. Fetal malformations after intravenous and intraperitoneal injections and intratracheal instillation, fetal loss after intravenous injection, behavioral changes in offsprings after intraperitoneal injection, and a delay in the delivery of the first litter after intratracheal instillation were reported in mice-administered multi-walled carbon nanotubes (MWCNTs). Single-walled carbon nanotubes (SWCNTs) appeared to be embryolethal and teratogenic in mice when given by intravenous injection; moreover, the tubes induced death and growth retardation in chicken embryos. CONCLUSION CNTs are considered to have carcinogenicity and can cause lung tumors. However, the carcinogenicity of CNTs may attenuate if the fiber length is shorter. The available data provide initial information on the potential reproductive and developmental toxicity of CNTs.
Collapse
Affiliation(s)
- Norihiro Kobayashi
- Division of Environmental Chemistry, National Institute of Health Sciences
| | - Hiroto Izumi
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health
| | - Yasuo Morimoto
- Department of Occupational Pneumology, Institute of Industrial Ecological Science, University of Occupational and Environmental Health
| |
Collapse
|
29
|
Brohi RD, Wang L, Talpur HS, Wu D, Khan FA, Bhattarai D, Rehman ZU, Farmanullah F, Huo LJ. Toxicity of Nanoparticles on the Reproductive System in Animal Models: A Review. Front Pharmacol 2017; 8:606. [PMID: 28928662 PMCID: PMC5591883 DOI: 10.3389/fphar.2017.00606] [Citation(s) in RCA: 147] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2017] [Accepted: 08/21/2017] [Indexed: 12/13/2022] Open
Abstract
In the last two decades, nanotechnologies demonstrated various applications in different fields, including detection, sensing, catalysis, electronics, and biomedical sciences. However, public concerns regarding the well-being of human may hinder the wide utilization of this promising innovation. Although, humans are exposed to airborne nanosized particles from an early age, exposure to such particles has risen dramatically within the last century due to anthropogenic sources of nanoparticles. The wide application of nanomaterials in industry, consumer products, and medicine has raised concerns regarding the potential toxicity of nanoparticles in humans. In this review, the effects of nanomaterials on the reproductive system in animal models are discussed. Females are particularly more vulnerable to nanoparticle toxicity, and toxicity in this population may affect reproductivity and fetal development. Moreover, various types of nanoparticles have negative impacts on male germ cells, fetal development, and the female reproductive system. These impacts are associated with nanoparticle modification, composition, concentration, route of administration, and the species of the animal. Therefore, understanding the impacts of nanoparticles on animal growth and reproduction is essential. Many studies have examined the effects of nanoparticles on primary and secondary target organs, with a concentration on the in vivo and in vitro effects of nanoparticles on the male and female reproductive systems at the clinical, cellular, and molecular levels. This review provides important information regarding organism safety and the potential hazards of nanoparticle use and supports the application of nanotechnologies by minimizing the adverse effects of nanoparticles in vulnerable populations.
Collapse
Affiliation(s)
- Rahim Dad Brohi
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| | - Li Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| | - Hira Sajjad Talpur
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| | - Di Wu
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| | - Farhan Anwar Khan
- The State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural UniversityWuhan, China
| | - Dinesh Bhattarai
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| | - Zia-Ur Rehman
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| | - F Farmanullah
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| | - Li-Jun Huo
- Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction, Education Ministry of China, College of Animal Science and Technology, Huazhong Agricultural UniversityWuhan, China.,Department of Hubei Province's Engineering Research Center in Buffalo Breeding and Products, Huazhong Agricultural UniversityWuhan, China
| |
Collapse
|
30
|
Johansson HKL, Hansen JS, Elfving B, Lund SP, Kyjovska ZO, Loft S, Barfod KK, Jackson P, Vogel U, Hougaard KS. Airway exposure to multi-walled carbon nanotubes disrupts the female reproductive cycle without affecting pregnancy outcomes in mice. Part Fibre Toxicol 2017; 14:17. [PMID: 28558787 PMCID: PMC5450058 DOI: 10.1186/s12989-017-0197-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Accepted: 05/17/2017] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND The use of multiwalled carbon nanotubes (MWCNT) is increasing due to a growing use in a variety of products across several industries. Thus, occupational exposure is also of increasing concern, particularly since airway exposure to MWCNTs can induce sustained pulmonary acute phase response and inflammation in experimental animals, which may affect female reproduction. This proof-of-principle study therefore aimed to investigate if lung exposure by intratracheal instillation of the MWCNT NM-400 would affect the estrous cycle and reproductive function in female mice. RESULTS Estrous cycle regularity was investigated by comparing vaginal smears before and after exposure to 67 μg of NM-400, whereas reproductive function was analyzed by measuring time to delivery of litters after instillation of 2, 18 or 67 μg of NM-400. Compared to normal estrous cycling determined prior to exposure, exposure to MWCNT significantly prolonged the estrous cycle during which exposure took place, but significantly shortened the estrous cycle immediately after the exposed cycle. No consistent effects were seen on time to delivery of litter or other gestational or litter parameters, such as litter size, sex ratio, implantations and implantation loss. CONCLUSION Lung exposure to MWCNT interfered with estrous cycling. Effects caused by MWCNTs depended on the time of exposure: the estrous stage was particularly sensitive to exposure, as animals exposed during this stage showed a higher incidence of irregular cycling after exposure. Our data indicates that MWCNT exposure may interfere with events leading to ovulation.
Collapse
Affiliation(s)
- H. K. L. Johansson
- National Research Centre for the Working Environment, Copenhagen Ø, DK-2100 Denmark
- Present Address: Division of Diet, Disease Prevention and Toxicology, National Food Institute, Technical University of Denmark, Søborg, DK-2860 Denmark
| | - J. S. Hansen
- National Research Centre for the Working Environment, Copenhagen Ø, DK-2100 Denmark
| | - B. Elfving
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Risskov, DK-8240 Denmark
| | - S. P. Lund
- National Research Centre for the Working Environment, Copenhagen Ø, DK-2100 Denmark
| | - Z. O. Kyjovska
- National Research Centre for the Working Environment, Copenhagen Ø, DK-2100 Denmark
| | - S. Loft
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen K, DK-1014 Denmark
| | - K. K. Barfod
- National Research Centre for the Working Environment, Copenhagen Ø, DK-2100 Denmark
| | - P. Jackson
- National Research Centre for the Working Environment, Copenhagen Ø, DK-2100 Denmark
| | - U. Vogel
- National Research Centre for the Working Environment, Copenhagen Ø, DK-2100 Denmark
- Department of Micro- and Nanotechnology, DTU-Nanotech, Technical University of Denmark, Lyngby, DK-2800 Denmark
| | - K. S. Hougaard
- National Research Centre for the Working Environment, Copenhagen Ø, DK-2100 Denmark
- Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen K, DK-1014 Denmark
| |
Collapse
|
31
|
Aschberger K, Campia I, Pesudo LQ, Radovnikovic A, Reina V. Chemical alternatives assessment of different flame retardants - A case study including multi-walled carbon nanotubes as synergist. ENVIRONMENT INTERNATIONAL 2017; 101:27-45. [PMID: 28161204 PMCID: PMC5357113 DOI: 10.1016/j.envint.2016.12.017] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Revised: 12/16/2016] [Accepted: 12/16/2016] [Indexed: 05/11/2023]
Abstract
Flame retardants (FRs) are a diverse group of chemicals used as additives in a wide range of products to inhibit, suppress, or delay ignition and to prevent the spread of fire. Halogenated FRs (HFRs) are widely used because of their low impact on other material properties and the low loading levels necessary to meet the required flame retardancy. Health and environmental hazards associated with some halogenated FRs have driven research for identifying safer alternatives. A variety of halogen-free FRs are available on the market, including organic (phosphorus and nitrogen based chemicals) and inorganic (metals) materials. Multi-walled carbon nanotubes (MWCNT) have been demonstrated to act as an effective/synergistic co-additive in some FR applications and could thereby contribute to reducing the loading of FRs in products and improving their performance. As part of the FP7 project DEROCA we carried out a chemical alternatives assessment (CAA). This is a methodology for identifying, comparing and selecting safer alternatives to chemicals of concern based on criteria for categorising human and environmental toxicity as well as environmental fate. In the project we assessed the hazard data of different halogen-free FRs to be applied in 5 industrial and consumer products and here we present the results for MWCNT, aluminium diethylphosphinate, aluminium trihydroxide, N-alkoxy hindered amines and red phosphorus compared to the HFR decabromodiphenylether. We consulted the REACH guidance, the criteria of the U.S.-EPA Design for Environment (DfE) and the GreenScreen® Assessment to assess and compare intrinsic properties affecting the hazard potential. A comparison/ranking of exposure reference values such as Derived No Effect Levels (DNELs) showed that FRs of concern are not identified by a low DNEL. A comparison based on hazard designations according to the U.S.-EPA DfE and GreenScreen® for human health endpoints, aquatic toxicity and environmental fate showed that the major differences between FRs of concern and their proposed alternatives are the potential for bioaccumulation and CMR (carcinogenic, mutagenic or reprotoxic) effects. As most alternatives are inorganic chemicals, persistence (alone) is not a suitable criterion. From our experiences in carrying out a CAA we conclude: i) REACH registration dossiers provide a comprehensive source of hazard information for an alternative assessment. It is important to consider that the presented data is subject to changes and its quality is variable. ii) Correct identification of the chemicals is crucial to retrieve the right data. This can be challenging for mixtures, reaction products or nanomaterials or when only trade names are available. iii) The quality of the data and the practice on how to fill data gaps can have a huge impact on the results and conclusions. iv) Current assessment criteria have mainly been developed for organic chemicals and create challenges when applied to inorganic solids, including nanomaterials. It is therefore crucial to analyse and report uncertainties for each decision making step.
Collapse
Affiliation(s)
- Karin Aschberger
- European Commission, Joint Research Centre (JRC), Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, I-21027 Ispra, VA, Italy.
| | - Ivana Campia
- European Commission, Joint Research Centre (JRC), Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, I-21027 Ispra, VA, Italy
| | - Laia Quiros Pesudo
- European Commission, Joint Research Centre (JRC), Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, I-21027 Ispra, VA, Italy
| | - Anita Radovnikovic
- European Commission, Joint Research Centre (JRC), Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, I-21027 Ispra, VA, Italy
| | - Vittorio Reina
- European Commission, Joint Research Centre (JRC), Directorate for Health, Consumers and Reference Materials, Via E. Fermi 2749, I-21027 Ispra, VA, Italy
| |
Collapse
|
32
|
Wallin H, Kyjovska ZO, Poulsen SS, Jacobsen NR, Saber AT, Bengtson S, Jackson P, Vogel U. Surface modification does not influence the genotoxic and inflammatory effects of TiO2 nanoparticles after pulmonary exposure by instillation in mice. Mutagenesis 2016; 32:47-57. [PMID: 27658823 PMCID: PMC5180170 DOI: 10.1093/mutage/gew046] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The influence of surface charge of nanomaterials on toxicological effects is not yet fully understood. We investigated the inflammatory response, the acute phase response and the genotoxic effect of two different titanium dioxide nanoparticles (TiO2 NPs) following a single intratracheal instillation. NRCWE-001 was unmodified rutile TiO2 with endogenous negative surface charge, whereas NRCWE-002 was surface modified to be positively charged. C57BL/6J BomTac mice received 18, 54 and 162 µg/mouse and were humanely killed 1, 3 and 28 days post-exposure. Vehicle controls were tested alongside for comparison. The cellular composition and protein concentration were determined in bronchoalveolar lavage (BAL) fluid as markers for an inflammatory response. Pulmonary and systemic genotoxicity was analysed by the alkaline comet assay as DNA strand breaks in BAL cells, lung and liver tissue. The pulmonary and hepatic acute phase response was analysed by Saa3 mRNA levels in lung tissue or Saa1 mRNA levels in liver tissue by real-time quantitative polymerase chain reaction. Instillation of NRCWE-001 and -002 both induced a dose-dependent neutrophil influx into the lung lining fluid and Saa3 mRNA levels in lung tissue at all assessed time points. There was no statistically significant difference between NRCWE-001 and NRCWE-002. Exposure to both TiO2 NPs induced increased levels of DNA strand breaks in lung tissue at all doses 1 and 28 days post-exposure and NRCWE-002 at the low and middle dose 3 days post-exposure. The DNA strand break levels were statistically significantly different for NRCWE-001 and -002 for liver and for BAL cells, but no consistent pattern was observed. In conclusion, functionalisation of reactive negatively charged rutile TiO2 to positively charged did not consistently influence pulmonary toxicity of the studied TiO2 NPs.
Collapse
Affiliation(s)
- Håkan Wallin
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark.,Institute of Public Health, University of Copenhagen, DK-1353 Copenhagen K, Denmark and
| | - Zdenka O Kyjovska
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Sarah S Poulsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Anne T Saber
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Stefan Bengtson
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Petra Jackson
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark
| | - Ulla Vogel
- National Research Centre for the Working Environment, Lersø Parkallé 105, DK-2100 Copenhagen Ø, Denmark, .,Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark
| |
Collapse
|
33
|
Das J, Choi YJ, Song H, Kim JH. Potential toxicity of engineered nanoparticles in mammalian germ cells and developing embryos: treatment strategies and anticipated applications of nanoparticles in gene delivery. Hum Reprod Update 2016; 22:588-619. [PMID: 27385359 DOI: 10.1093/humupd/dmw020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2015] [Accepted: 05/16/2016] [Indexed: 01/06/2025] Open
Abstract
BACKGROUND Engineered nanoparticles (ENPs) offer technological advantages for a variety of industrial and consumer products as well as show promise for biomedical applications. Recent progress in the field of nanotechnology has led to increased exposure to nanoparticles by humans. To date, little is known about the adverse effects of these ENPs on reproductive health, although interest in nanotechnology area is growing. A few biocompatible ENPs have a high loading capacity for exogenous substances, including drugs, DNA or proteins, and can selectively deliver molecular cargo into cells; however, they represent a potential tool for gene delivery into gametes and embryos. OBJECTIVE AND RATIONALE Understanding the reprotoxicological aspects of these ENPs is of the utmost importance to reliably estimate its potential impact on human health. In addition, a search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Therefore, in this review we summarize the toxic effects of a few ENPs (metal and metal oxides, carbon-based nanoparticles, quantum dots and chitosan) in mammalian germ cells and developing embryos, and propose some treatment strategies that could mitigate nanoparticle-mediated toxicity. In addition, we outline the anticipated applications of ENPs in transgenic animal production in order to generate models for investigations into the mechanisms for human disease. SEARCH METHODS A literature search was performed using the National Center for Biotechnology Information PubMed database up until March 2016 and relevant keywords were used to obtain information regarding mammalian germ cell-specific toxicity and embryotoxicity of ENPs, possible treatment strategies, as well as the anticipated applications of nanoparticles in gene delivery in germ cells and embryos. Only English language publications were included. OUTCOMES Here, we demonstrate the toxicological effects of ENPs in mammalian germ cells and developing embryos by considering both in vitro and in vivo experimental models based on the existing literature. The biodistribution and cellular uptake of ENPs and the observed toxicities are mostly dependent on ENP size and surface-coating agents (surface functional groups/surface charge). ENPs have been shown to induce toxicity via oxidative stress, inflammation and DNA damage in both human and mouse germ cells. Use of antioxidant, anti-inflammatory drugs and selective metal chelators would be beneficial against nanoparticle-induced toxicity. WIDER IMPLICATIONS Our review provides the reproductive scientists a mechanistic insight into the reprotoxicological aspects of ENPs to reliably estimate its potential impact on human health and help to select/design protective agents to combat ENP-mediated toxicity. Furthermore, research regarding the detailed mechanism(s) of ENP toxicity in mammalian germ cells and developing embryos as well as the search for protective agents to combat ENP-mediated reproductive toxicity is warranted. Furthermore, we anticipate that investigations into the possibility of applying nanovectors to gene delivery in germ cells and early embryos will open new horizons in reproductive biology.
Collapse
Affiliation(s)
- Joydeep Das
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Yun-Jung Choi
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Hyuk Song
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| | - Jin-Hoi Kim
- Department of Stem Cell and Regenerative Biology, Humanized Pig Research Center (SRC), Konkuk University, Seoul 143-701, South Korea
| |
Collapse
|
34
|
Park EJ, Choi J, Kim JH, Lee BS, Yoon C, Jeong U, Kim Y. Subchronic immunotoxicity and screening of reproductive toxicity and developmental immunotoxicity following single instillation of HIPCO-single-walled carbon nanotubes: purity-based comparison. Nanotoxicology 2016; 10:1188-202. [DOI: 10.1080/17435390.2016.1202348] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Eun-Jung Park
- Myunggok Eye Research Institute, Konyang University, Daejeon, Republic of Korea,
| | - Je Choi
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea,
| | - Jae-Ho Kim
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea,
| | - Byoung-Seok Lee
- Toxicologic Pathology Center, Korea Institute of Toxicology, Daejeon, Republic of Korea,
| | - Cheolho Yoon
- Seoul Center, Korea Basic Science Institute, Seoul, Republic of Korea, and
| | - Uiseok Jeong
- Department of Chemical Engineering, Kwangwoon University, Seoul, Republic of Korea
| | - Younghun Kim
- Department of Chemical Engineering, Kwangwoon University, Seoul, Republic of Korea
| |
Collapse
|
35
|
Farombi EO, Adedara IA, Forcados GE, Anao OO, Agbowo A, Patlolla AK. Responses of testis, epididymis, and sperm of pubertal rats exposed to functionalized multiwalled carbon nanotubes. ENVIRONMENTAL TOXICOLOGY 2016; 31:543-551. [PMID: 25410135 DOI: 10.1002/tox.22067] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
The present study investigated the response of testes, epididymides and sperm in pubertal Wistar rats following exposure to 0, 0.25, 0.5, 0.75, and 1.0 mg kg(-1) functionalized multi-walled carbon nanotubes (f-MWCNTs) for 5 days. The results showed that administration of (f-MWCNTs) significantly increased the activities of superoxide dismutase, catalase, and glutathione peroxidase in a dose-dependent manner in both testes and sperm compared with control group. Moreover, the significant decrease in the activity of glutathione-S-transferase and glutathione level was accompanied with significant elevation in the levels of hydrogen peroxide and malondialdehyde in both testes and sperm of (f-MWCNTs)-treated rats. The spermiogram of (f-MWCNTs)-treated rats indicated significant decrease in epididymal sperm number, sperm progressive motility, testicular sperm number and daily sperm production with elevated sperm abnormalities when compared with the control. Exposure to (f-MWCNTs) decreased plasma testosterone level and produced marked morphological changes including decreased geminal epithelium, edema, congestion, reduced spermatogenic cells and focal areas of tubular degeneration in the testes. The lumen of the epididymides contained reduced sperm cells and there was mild to severe hyperplasia epithelial cells lining the duct of the epididymis. Collectively, pubertal exposure of male rats to (f-MWCNTs) elicited oxidative stress response resulting in marked testicular and epididymides dysfunction.
Collapse
Affiliation(s)
- Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Gilead E Forcados
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Osemudiamen O Anao
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Agatha Agbowo
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Anita K Patlolla
- College of Science Engineering and Technology, NIH-RCMI Center for Environmental Health, Jackson State University, Jackson, Mississippi, USA
| |
Collapse
|
36
|
Holt BD, Shawky JH, Dahl KN, Davidson LA, Islam MF. Distribution of single wall carbon nanotubes in the Xenopus laevis embryo after microinjection. J Appl Toxicol 2016; 36:568-78. [PMID: 26510384 PMCID: PMC4943752 DOI: 10.1002/jat.3255] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/22/2015] [Accepted: 09/26/2015] [Indexed: 01/16/2023]
Abstract
Single wall carbon nanotubes (SWCNTs) are advanced materials with the potential for a myriad of diverse applications, including biological technologies and large-scale usage with the potential for environmental impacts. SWCNTs have been exposed to developing organisms to determine their effects on embryogenesis, and results have been inconsistent arising, in part, from differing material quality, dispersion status, material size, impurity from catalysts and stability. For this study, we utilized highly purified SWCNT samples with short, uniform lengths (145 ± 17 nm) well dispersed in solution. To test high exposure doses, we microinjected > 500 µg ml(-1) SWCNT concentrations into the well-established embryogenesis model, Xenopus laevis, and determined embryo compatibility and subcellular localization during development. SWCNTs localized within cellular progeny of the microinjected cells, but were heterogeneously distributed throughout the target-injected tissue. Co-registering unique Raman spectral intensity of SWCNTs with images of fluorescently labeled subcellular compartments demonstrated that even at regions of highest SWCNT concentration, there were no gross alterations to subcellular microstructures, including filamentous actin, endoplasmic reticulum and vesicles. Furthermore, SWCNTs did not aggregate and localized to the perinuclear subcellular region. Combined, these results suggest that purified and dispersed SWCNTs are not toxic to X. laevis animal cap ectoderm and may be suitable candidate materials for biological applications.
Collapse
Affiliation(s)
- Brian D. Holt
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Joseph H. Shawky
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Kris Noel Dahl
- Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| | - Lance A. Davidson
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mohammad F. Islam
- Department of Materials Science and Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
37
|
Developmental toxicity of engineered nanomaterials in rodents. Toxicol Appl Pharmacol 2015; 299:47-52. [PMID: 26721308 DOI: 10.1016/j.taap.2015.12.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2015] [Revised: 12/10/2015] [Accepted: 12/21/2015] [Indexed: 01/12/2023]
Abstract
We summarized significant effects reported in the literature on the developmental toxicity of engineered nanomaterials (ENMs) in rodents. The developmental toxicity of ENMs included not only structural abnormalities, but also death, growth retardation, and behavioral and functional abnormalities. Most studies were performed on mice using an injection route of exposure. Teratogenic effects were indicated when multi-walled carbon nanotubes (MWCNTs), single-walled carbon nanotubes (SWCNTs), and TiO2-nanoparticles were administered to mice during early gestation. Reactive oxygen species levels were increased in placentas and malformed fetuses and their placentas after prenatal exposure to MWCNTs and SWCNTs, respectively. The pre- and postnatal mortalities and growth retardation in offspring increased after prenatal exposure to ENMs. Histopathological and functional abnormalities were also induced in placentas after prenatal exposure to ENMs. Maternal exposure to ENMs induced behavioral alterations, histopathological and biochemical changes in the central nervous system, increased susceptibility to allergy, transplacental genotoxicity, and vascular, immunological, and reproductive effects in offspring. The size- and developmental stage-dependent placental transfer of ENMs was noted after maternal exposure. Silver accumulated in the visceral yolk sac after being injected with Ag-NPs during early gestation. Although currently available data has provided initial information on the potential developmental toxicity of ENMs, that on the developmental toxicity of ENMs is still very limited. Further studies using well-characterized ENMs, state-of the-art study protocols, and appropriate routes of exposure are required in order to clarify these developmental effects and provide information suitable for risk assessments of ENMs.
Collapse
|
38
|
Vasyukova I, Gusev A, Tkachev A. Reproductive toxicity of carbon nanomaterials: a review. ACTA ACUST UNITED AC 2015. [DOI: 10.1088/1757-899x/98/1/012001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
39
|
Barfod KK, Vrankx K, Mirsepasi-Lauridsen HC, Hansen JS, Hougaard KS, Larsen ST, Ouwenhand AC, Krogfelt KA. The Murine Lung Microbiome Changes During Lung Inflammation and Intranasal Vancomycin Treatment. Open Microbiol J 2015; 9:167-79. [PMID: 26668669 PMCID: PMC4676059 DOI: 10.2174/1874285801509010167] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Revised: 09/01/2015] [Accepted: 09/02/2015] [Indexed: 12/15/2022] Open
Abstract
Most microbiome research related to airway diseases has focused on the gut microbiome. This is despite advances
in culture independent microbial identification techniques revealing that even healthy lungs possess a unique dynamic
microbiome. This conceptual change raises the question; if lung diseases could be causally linked to local dysbiosis
of the local lung microbiota. Here, we manipulate the murine lung and gut microbiome, in order to show that the lung microbiota
can be changed experimentally. We have used four different approaches: lung inflammation by exposure to carbon
nano-tube particles, oral probiotics and oral or intranasal exposure to the antibiotic vancomycin. Bacterial DNA was
extracted from broncho-alveolar and nasal lavage fluids, caecum samples and compared by DGGE. Our results show that:
the lung microbiota is sex dependent and not just a reflection of the gut microbiota, and that induced inflammation can
change lung microbiota. This change is not transferred to offspring. Oral probiotics in adult mice do not change lung microbiome
detectible by DGGE. Nasal vancomycin can change the lung microbiome preferentially, while oral exposure
does not. These observations should be considered in future studies of the causal relationship between lung microbiota
and lung diseases.
Collapse
Affiliation(s)
| | - Katleen Vrankx
- Applied Maths, Keistraat 120, 9830 Sint-Martens-Latem, Belgium
| | | | - Jitka Stilund Hansen
- National Research Centre for the Working Environment, Lersø parkallé 105, 2100 Denmark
| | - Karin Sørig Hougaard
- National Research Centre for the Working Environment, Lersø parkallé 105, 2100 Denmark
| | - Søren Thor Larsen
- National Research Centre for the Working Environment, Lersø parkallé 105, 2100 Denmark
| | - Arthur C Ouwenhand
- Active Nutrition, Dupont Nutrition & Health, Sokeritehtaantie 20, 02460 Kantvik Finland
| | | |
Collapse
|
40
|
Stapleton PA. Gestational nanomaterial exposures: microvascular implications during pregnancy, fetal development and adulthood. J Physiol 2015; 594:2161-73. [PMID: 26332609 DOI: 10.1113/jp270581] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Accepted: 08/13/2015] [Indexed: 12/24/2022] Open
Abstract
Air pollution particulate matter and engineered nanomaterials are encompassed in the broad definition of xenobiotic particles. While the effects of perinatal air pollution exposure have been investigated, elucidation of outcomes associated with nanomaterial exposure, the focus of this review, is still in its infancy. As the potential uses of nanomaterials, and therefore exposures, increase exponentially so does the need for thorough evaluation. Up to this point, the majority of research in the field of cardiovascular nanotoxicology has focused on the coronary and vascular reactions to pulmonary exposures in young adult, healthy, male models; however, as intentional and unintentional contacts persist, the non-pulmonary risks to under-represented populations become a critical concern. Development of the maternal-fetal circulation during successful mammalian gestation is one of the most unusual complex, dynamic, and acutely demanding physiological systems. Fetal development in a hostile gestational environment can lead to systemic alterations, which may encourage adult disease. Therefore, the purpose of this review is to highlight the few knowns associated with gestational engineered nanomaterial exposure segmented by physiological periods of development or systemic targets: preconception and maternal, gestational, fetal and progeny (Abstract figure). Overall, the limited studies currently available provide compelling evidence of maternal, fetal and offspring dysfunctions after engineered nanomaterial exposure. Understanding the mechanisms associated with these multigenerational effects may allow pregnant women to safely reap the benefits of nanotechnology-enabled products and assist in the implementation of exposure controls to protect the mother and fetus allowing for development of safety by design for engineered nanomaterials.
Collapse
Affiliation(s)
- P A Stapleton
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV, 26506, USA.,Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV, 26506, USA
| |
Collapse
|
41
|
Ema M, Hougaard KS, Kishimoto A, Honda K. Reproductive and developmental toxicity of carbon-based nanomaterials: A literature review. Nanotoxicology 2015; 10:391-412. [DOI: 10.3109/17435390.2015.1073811] [Citation(s) in RCA: 104] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
42
|
Stapleton PA, McBride CR, Yi J, Nurkiewicz TR. Uterine microvascular sensitivity to nanomaterial inhalation: An in vivo assessment. Toxicol Appl Pharmacol 2015; 288:420-8. [PMID: 26375943 DOI: 10.1016/j.taap.2015.08.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 07/30/2015] [Accepted: 08/19/2015] [Indexed: 12/21/2022]
Abstract
With the tremendous number and diverse applications of engineered nanomaterials incorporated in daily human activity, exposure can no longer be solely confined to occupational exposures of healthy male models. Cardiovascular and endothelial cell dysfunction have been established using in vitro and in situ preparations, but the translation to intact in vivo models is limited. Intravital microscopy has been used extensively to understand microvascular physiology while maintaining in vivo neurogenic, humoral, and myogenic control. However, a tissue specific model to assess the influences of nanomaterial exposure on female reproductive health has not been fully elucidated. Female Sprague Dawley (SD) rats were exposed to nano-TiO2 aerosols (171 ± 6 nm, 10.1 ± 0.39 mg/m(3), 5h) 24-hours prior to experimentation, leading to a calculated deposition of 42.0 ± 1.65 μg. After verifying estrus status, vital signs were monitored and the right horn of the uterus was exteriorized, gently secured over an optical pedestal, and enclosed in a warmed tissue bath using intravital microscopy techniques. After equilibration, significantly higher leukocyte-endothelium interactions were recorded in the exposed group. Arteriolar responsiveness was assessed using ionophoretically applied agents: muscarinic agonist acetylcholine (0.025 M; ACh; 20, 40, 100, and 200 nA), and nitric oxide donor sodium nitroprusside (0.05 M; SNP; 20, 40, and 100 nA), or adrenergic agonist phenylephrine (0.05 M; PE; 20, 40, and 100 nA) using glass micropipettes. Passive diameter was established by tissue superfusion with 10(-4)M adenosine. Similar to male counterparts, female SD rats present systemic microvascular dysfunction; however the ramifications associated with female health and reproduction have yet to be elucidated.
Collapse
Affiliation(s)
- P A Stapleton
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - C R McBride
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - J Yi
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States
| | - T R Nurkiewicz
- Center for Cardiovascular and Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV 26506, United States; Department of Physiology and Pharmacology, West Virginia University School of Medicine, Morgantown, WV 26506, United States.
| |
Collapse
|
43
|
Stapleton PA, Nichols CE, Yi J, McBride CR, Minarchick VC, Shepherd DL, Hollander JM, Nurkiewicz TR. Microvascular and mitochondrial dysfunction in the female F1 generation after gestational TiO2 nanoparticle exposure. Nanotoxicology 2015; 9:941-51. [PMID: 25475392 DOI: 10.3109/17435390.2014.984251] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Due to the ongoing evolution of nanotechnology, there is a growing need to assess the toxicological outcomes in under-studied populations in order to properly consider the potential of engineered nanomaterials (ENM) and fully enhance their safety. Recently, we and others have explored the vascular consequences associated with gestational nanomaterial exposure, reporting microvascular dysfunction within the uterine circulation of pregnant dams and the tail artery of fetal pups. It has been proposed (via work derived by the Barker Hypothesis) that mitochondrial dysfunction and subsequent oxidative stress mechanisms as a possible link between a hostile gestational environment and adult disease. Therefore, in this study, we exposed pregnant Sprague-Dawley rats to nanosized titanium dioxide aerosols after implantation (gestational day 6). Pups were delivered, and the progeny grew into adulthood. Microvascular reactivity, mitochondrial respiration and hydrogen peroxide production of the coronary and uterine circulations of the female offspring were evaluated. While there were no significant differences within the maternal or litter characteristics, endothelium-dependent dilation and active mechanotransduction in both coronary and uterine arterioles were significantly impaired. In addition, there was a significant reduction in maximal mitochondrial respiration (state 3) in the left ventricle and uterus. These studies demonstrate microvascular dysfunction and coincide with mitochondrial inefficiencies in both the cardiac and uterine tissues, which may represent initial evidence that prenatal ENM exposure produces microvascular impairments that persist throughout multiple developmental stages.
Collapse
Affiliation(s)
- Phoebe A Stapleton
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Cody E Nichols
- a Center for Cardiovascular and Respiratory Sciences .,c Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Jinghai Yi
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Carroll R McBride
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Valerie C Minarchick
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| | - Danielle L Shepherd
- a Center for Cardiovascular and Respiratory Sciences .,c Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - John M Hollander
- a Center for Cardiovascular and Respiratory Sciences .,c Division of Exercise Physiology , West Virginia University School of Medicine , Morgantown , WV , USA
| | - Timothy R Nurkiewicz
- a Center for Cardiovascular and Respiratory Sciences .,b Department of Physiology and Pharmacology , and
| |
Collapse
|
44
|
Kermanizadeh A, Balharry D, Wallin H, Loft S, Møller P. Nanomaterial translocation–the biokinetics, tissue accumulation, toxicity and fate of materials in secondary organs–a review. Crit Rev Toxicol 2015; 45:837-72. [DOI: 10.3109/10408444.2015.1058747] [Citation(s) in RCA: 107] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
45
|
A perspective on the developmental toxicity of inhaled nanoparticles. Reprod Toxicol 2015; 56:118-40. [PMID: 26050605 DOI: 10.1016/j.reprotox.2015.05.015] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 05/18/2015] [Accepted: 05/26/2015] [Indexed: 12/25/2022]
Abstract
This paper aimed to clarify whether maternal inhalation of engineered nanoparticles (NP) may constitute a hazard to pregnancy and fetal development, primarily based on experimental animal studies of NP and air pollution particles. Overall, it is plausible that NP may translocate from the respiratory tract to the placenta and fetus, but also that adverse effects may occur secondarily to maternal inflammatory responses. The limited database describes several organ systems in the offspring to be potentially sensitive to maternal inhalation of particles, but large uncertainties exist about the implications for embryo-fetal development and health later in life. Clearly, the potential for hazard remains to be characterized. Considering the increased production and application of nanomaterials and related consumer products a testing strategy for NP should be established. Due to large gaps in data, significant amounts of groundwork are warranted for a testing strategy to be established on a sound scientific basis.
Collapse
|
46
|
Poulsen SS, Saber AT, Mortensen A, Szarek J, Wu D, Williams A, Andersen O, Jacobsen NR, Yauk CL, Wallin H, Halappanavar S, Vogel U. Changes in cholesterol homeostasis and acute phase response link pulmonary exposure to multi-walled carbon nanotubes to risk of cardiovascular disease. Toxicol Appl Pharmacol 2015; 283:210-22. [PMID: 25620056 DOI: 10.1016/j.taap.2015.01.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/07/2015] [Accepted: 01/12/2015] [Indexed: 10/24/2022]
Abstract
Adverse lung effects following pulmonary exposure to multi-walled carbon nanotubes (MWCNTs) are well documented in rodents. However, systemic effects are less understood. Epidemiological studies have shown increased cardiovascular disease risk after pulmonary exposure to airborne particles, which has led to concerns that inhalation exposure to MWCNTs might pose similar risks. We analyzed parameters related to cardiovascular disease, including plasma acute phase response (APR) proteins and plasma lipids, in female C57BL/6 mice exposed to a single intratracheal instillation of 0, 18, 54 or 162μg/mouse of small, entangled (CNTSmall, 0.8±0.1μm long) or large, thick MWCNTs (CNTLarge, 4±0.4μm long). Liver tissues and plasma were harvested 1, 3 and 28days post-exposure. In addition, global hepatic gene expression, hepatic cholesterol content and liver histology were used to assess hepatic effects. The two MWCNTs induced similar systemic responses despite their different physicochemical properties. APR proteins SAA3 and haptoglobin, plasma total cholesterol and low-density/very low-density lipoprotein were significantly increased following exposure to either MWCNTs. Plasma SAA3 levels correlated strongly with pulmonary Saa3 levels. Analysis of global gene expression revealed perturbation of the same biological processes and pathways in liver, including the HMG-CoA reductase pathway. Both MWCNTs induced similar histological hepatic changes, with a tendency towards greater response following CNTLarge exposure. Overall, we show that pulmonary exposure to two different MWCNTs induces similar systemic and hepatic responses, including changes in plasma APR, lipid composition, hepatic gene expression and liver morphology. The results link pulmonary exposure to MWCNTs with risk of cardiovascular disease.
Collapse
Affiliation(s)
- Sarah S Poulsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde, Denmark.
| | - Anne T Saber
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark.
| | - Alicja Mortensen
- National Food Institute, Technical University of Denmark, Søborg, Denmark.
| | - Józef Szarek
- Faculty of Veterinary Medicine, University of Warmia and Mazury in Olsztyn, 10-719 Olsztyn, Poland.
| | - Dongmei Wu
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada.
| | - Andrew Williams
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada.
| | - Ole Andersen
- Department of Science, Systems and Models, Roskilde University, DK-4000 Roskilde, Denmark.
| | - Nicklas R Jacobsen
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark.
| | - Carole L Yauk
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada.
| | - Håkan Wallin
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; Department of Public Health, University of Copenhagen, DK-1014 Copenhagen K, Denmark.
| | - Sabina Halappanavar
- Environmental and Radiation Health Sciences Directorate, Health Canada, Ottawa, Ontario K1A 0K9, Canada.
| | - Ulla Vogel
- National Research Centre for the Working Environment, DK-2100 Copenhagen, Denmark; Department of Micro- and Nanotechnology, Technical University of Denmark, DK-2800 Kgs. Lyngby, Denmark.
| |
Collapse
|
47
|
Abstract
The widespread entry of nanomaterials into manifold life fields posed serious concerns on environmental health and safety issues. Potential adverse effects of nanoparticles (NPs) are continuously faced using in vitro cell systems and by mean of cell and molecular biology tools, several mechanisms have been found beyond their toxicity. The evaluation of the in vivo possible consequences derived from exposure of living organisms to NPs is instead more complex but compulsory in view of their application for diagnosis or therapeutic purposes. Here the effects of NP-induced genetic alteration on the progeny of treated animals will be treated, considering selected species from invertebrate and vertebrates as examples of transgenerational transmission of NP toxicity. The effects on reproductive capability, fertility and embryogenesis observed in different animal species upon treatment with different materials will provide an overview of the current knowledge on the heritable feature of nanotoxicity.
Collapse
|
48
|
Adsorption of bisphenol A to a carbon nanotube reduced its endocrine disrupting effect in mice male offspring. Int J Mol Sci 2014; 15:15981-93. [PMID: 25210847 PMCID: PMC4200835 DOI: 10.3390/ijms150915981] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 09/01/2014] [Accepted: 09/02/2014] [Indexed: 12/24/2022] Open
Abstract
Soluble carbon nanotubes (CNTs) have shown promise as materials for adsorption of environmental contaminants such as Bisphenol A (BPA), due to the high adsorption capacity and strong desorption hysteresis of BPA on CNTs. The adsorption of BPA to CNTs may change the properties of both BPA and CNTs, and induce different toxicity to human and living systems from that of BPA and CNTs alone. Herein, we report that oral exposure of BPA/MWCNT–COOH (carboxylated multi-walled carbon nantubes) adduct to mice during gestation and lactation period decreased the male offspring reproductive toxicity compared with those induced by BPA alone. The adduct decreased malondialdehyde (MDA) level in testis and follicle-stimulating hormone (FSH) in serum, but increased the level of serum testosterone in male offspring in comparison to BPA alone. Our investigations broadened the knowledge of nanotoxicity and provided important information on the safe application of CNTs.
Collapse
|
49
|
Stapleton PA, Nurkiewicz TR. Maternal nanomaterial exposure: a double threat to maternal uterine health and fetal development? Nanomedicine (Lond) 2014; 9:929-31. [PMID: 24978457 PMCID: PMC4128482 DOI: 10.2217/nnm.14.61] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Phoebe A Stapleton
- Center for Cardiovascular & Respiratory Sciences, West Virginia University School of Medicine, Morgantown, WV, USA
| | | |
Collapse
|