1
|
Li X, Wang L, Lin J, Gu Y, Liu Z, Hu J. Detection of CRISPR‒Cas and type I R-M systems in Klebsiella pneumoniae of human and animal origins and their relationship to antibiotic resistance and virulence. Microbiol Spectr 2025; 13:e0000924. [PMID: 39699265 PMCID: PMC11792477 DOI: 10.1128/spectrum.00009-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 10/31/2024] [Indexed: 12/20/2024] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)‒CRISPR-associated protein (Cas) and restriction‒modification (R-M) systems are important immune systems in bacteria. Information about the distributions of these two systems in Klebsiella pneumoniae from different hosts and their mutual effect on antibiotic resistance and virulence is still limited. In this study, the whole genomes of 520 strains of K. pneumoniae from GenBank, including 325 from humans and 195 from animals, were collected for CRISPR‒Cas systems and type I R-M systems, virulence genes, antibiotic resistance genes, and multilocus sequence typing detection. The results showed that host origin had no obvious influence on the distributions of the two systems (CRISPR‒Cas systems in 29.8% and 24.1%, type I R-M systems in 9.8% and 11.8% of human-origin and animal-origin strains, respectively) in K. pneumoniae. Identical spacer sequences from different hosts demonstrated there was a risk of human-animal transmission. All virulence genes (yersiniabactin, colibactin, aerobactin, salmochelin, rmpADC, and rmpA2) detection rates were higher when only the CRISPR‒Cas systems were present but were all reduced when coexisting with type I R-M systems. However, a lower prevalence of most antibiotic-resistance genes was found when the CRISPR‒Cas systems were alone, and when type I R-M systems were coexisting, some of the antibiotic resistance gene incidence rates were even lower (quinolones, macrolides, tetracyclines and carbapenems), and some of them were higher instead (aminoglycosides, clindamycins, rifampicin-associated, sulfonamides, methotrexates, beta-lactamases and ultrabroad-spectrum beta-lactamases). The synergistic and opposed effects of the two systems on virulence and antibiotic-resistance genes need further study.IMPORTANCEK. pneumoniae is an important opportunistic pathogen responsible for both human and animal infections, and the emergence of hypervirulent and multidrug-resistant K. pneumoniae has made it difficult to control this pathogen worldwide. Here, we find that CRISPR‒Cas and restriction-modification systems, which function as adaptive and innate immune systems in bacteria, have synergistic and opposed effects on virulence and antibiotic resistance genes in K. pneumoniae. Moreover, this study provides insights into the distributions of the two systems in K. pneumoniae from different hosts, and there is no significant difference in the prevalence of the two systems among K. pneumoniae spp. In addition, this study also characterizes the CRISPR arrays of K. pneumoniae from different hosts, suggesting that the strains sharing the same spacer sequences have the potential to spread between humans and animals.
Collapse
Affiliation(s)
- Xue Li
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Ling Wang
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jinghuan Lin
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yingjuan Gu
- Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhihua Liu
- Department of Infectious Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jing Hu
- Department of Nosocomial Infection Administration, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
2
|
Parra-Sánchez Á, Antequera-Zambrano L, Martínez-Navarrete G, Zorrilla-Muñoz V, Paz JL, Alvarado YJ, González-Paz L, Fernández E. Comparative Analysis of CRISPR-Cas Systems in Pseudomonas Genomes. Genes (Basel) 2023; 14:1337. [PMID: 37510242 PMCID: PMC10379622 DOI: 10.3390/genes14071337] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/15/2023] [Accepted: 06/19/2023] [Indexed: 07/30/2023] Open
Abstract
Pseudomonas is a bacterial genus with some saprophytic species from land and others associated with opportunistic infections in humans and animals. Factors such as pathogenicity or metabolic aspects have been related to CRISPR-Cas, and in silico studies into it have focused more on the clinical and non-environmental setting. This work aimed to perform an in silico analysis of the CRISPR-Cas systems present in Pseudomonas genomes. It analyzed 275 complete genomic sequences of Pseudomonas taken from the NCBI database. CRISPR loci were obtained from CRISPRdb. The genes associated with CRISPR (cas) and CAS proteins, and the origin and diversity of spacer sequences, were identified and compared by BLAST. The presence of self-targeting sequences, PAMs, and the conservation of DRs were visualized using WebLogo 3.6. The CRISPR-like RNA secondary structure prediction was analyzed using RNAFold and MFold. CRISPR structures were identified in 19.6% of Pseudomonas species. In all, 113 typical CRISPR arrays with 18 putative cas were found, as were 2050 spacers, of which 52% showed homology to bacteriophages, 26% to chromosomes, and 22% to plasmids. No potential self-targeting was detected within the CRISPR array. All the found DRs can form thermodynamically stable secondary RNA structures. The comparison of the CRISPR/Cas system can help understand the environmental adaptability of each evolutionary lineage of clinically and environmentally relevant species, providing data support for bacterial typing, traceability, analysis, and exploration of unconventional CRISPR.
Collapse
Affiliation(s)
- Ángel Parra-Sánchez
- Genetics and Molecular Biology Laboratory, Biology Department, Faculty of Sciences, University of Zulia, Maracaibo 4001, Venezuela
- Neuroprosthesis and Visual Rehabilitation Laboratory, Bioengineering Institute, University Miguel Hernández of Elche, 03202 Elche, Spain
| | - Laura Antequera-Zambrano
- Genetics and Molecular Biology Laboratory, Biology Department, Faculty of Sciences, University of Zulia, Maracaibo 4001, Venezuela
| | - Gema Martínez-Navarrete
- Neuroprosthesis and Visual Rehabilitation Laboratory, Bioengineering Institute, University Miguel Hernández of Elche, 03202 Elche, Spain
| | - Vanessa Zorrilla-Muñoz
- Bioengineering Institute, University Miguel Hernández of Elche, 03202 Elche, Spain
- University Institute on Gender Studies, University Carlos III of Madrid, Getafe, 28903 Madrid, Spain
| | - José Luis Paz
- Academic Department of Inorganic Chemistry, Faculty of Chemistry and Chemical Engineering, National University of San Marcos, Lima 15081, Peru
| | - Ysaias J Alvarado
- Laboratory of Theoretical and Experimental Biophysical Chemistry (LQBTE), Center for Molecular Biomedicine (CBM), Venezuelan Institute for Scientific Research (IVIC), Maracaibo 4001, Venezuela
| | - Lenin González-Paz
- Genetics and Molecular Biology Laboratory, Biology Department, Faculty of Sciences, University of Zulia, Maracaibo 4001, Venezuela
- Laboratory of Biocomputing (LB), Center for Molecular Biomedicine (CBM), Venezuelan Institute for Scientific Research (IVIC), Maracaibo 4001, Venezuela
| | - Eduardo Fernández
- Neuroprosthesis and Visual Rehabilitation Laboratory, Bioengineering Institute, University Miguel Hernández of Elche, 03202 Elche, Spain
- Biomedical Research Network Center (CIBER-BBN), 28029 Madrid, Spain
| |
Collapse
|
3
|
Laudanski K. Quo Vadis Anesthesiologist? The Value Proposition of Future Anesthesiologists Lies in Preserving or Restoring Presurgical Health after Surgical Insult. J Clin Med 2022; 11:1135. [PMID: 35207406 PMCID: PMC8879076 DOI: 10.3390/jcm11041135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 02/18/2022] [Indexed: 12/26/2022] Open
Abstract
This Special Issue of the Journal of Clinical Medicine is devoted to anesthesia and perioperative care [...].
Collapse
Affiliation(s)
- Krzysztof Laudanski
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, PA 19104, USA; ; Tel.: +1-215-662-8000
- Leonard Davis Institute for Healthcare Economics, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
4
|
Weissman JL, Alseth EO, Meaden S, Westra ER, Fuhrman JA. Immune lag is a major cost of prokaryotic adaptive immunity during viral outbreaks. Proc Biol Sci 2021; 288:20211555. [PMID: 34666523 PMCID: PMC8527200 DOI: 10.1098/rspb.2021.1555] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Clustered regularly interspaced short palindromic repeat (CRISPR)-Cas adaptive immune systems enable bacteria and archaea to efficiently respond to viral pathogens by creating a genomic record of previous encounters. These systems are broadly distributed across prokaryotic taxa, yet are surprisingly absent in a majority of organisms, suggesting that the benefits of adaptive immunity frequently do not outweigh the costs. Here, combining experiments and models, we show that a delayed immune response which allows viruses to transiently redirect cellular resources to reproduction, which we call ‘immune lag’, is extremely costly during viral outbreaks, even to completely immune hosts. Critically, the costs of lag are only revealed by examining the early, transient dynamics of a host–virus system occurring immediately after viral challenge. Lag is a basic parameter of microbial defence, relevant to all intracellular, post-infection antiviral defence systems, that has to-date been largely ignored by theoretical and experimental treatments of host-phage systems.
Collapse
Affiliation(s)
- Jake L Weissman
- Department of Biological Sciences-Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
| | - Ellinor O Alseth
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| | - Sean Meaden
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| | - Edze R Westra
- Environment and Sustainability Institute, Biosciences, University of Exeter, Penryn Campus, Penryn, UK
| | - Jed A Fuhrman
- Department of Biological Sciences-Marine and Environmental Biology, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
5
|
Alkhnbashi OS, Mitrofanov A, Bonidia R, Raden M, Tran V, Eggenhofer F, Shah S, Öztürk E, Padilha V, Sanches D, de Carvalho A, Backofen R. CRISPRloci: comprehensive and accurate annotation of CRISPR-Cas systems. Nucleic Acids Res 2021; 49:W125-W130. [PMID: 34133710 PMCID: PMC8265192 DOI: 10.1093/nar/gkab456] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
CRISPR–Cas systems are adaptive immune systems in prokaryotes, providing resistance against invading viruses and plasmids. The identification of CRISPR loci is currently a non-standardized, ambiguous process, requiring the manual combination of multiple tools, where existing tools detect only parts of the CRISPR-systems, and lack quality control, annotation and assessment capabilities of the detected CRISPR loci. Our CRISPRloci server provides the first resource for the prediction and assessment of all possible CRISPR loci. The server integrates a series of advanced Machine Learning tools within a seamless web interface featuring: (i) prediction of all CRISPR arrays in the correct orientation; (ii) definition of CRISPR leaders for each locus; and (iii) annotation of cas genes and their unambiguous classification. As a result, CRISPRloci is able to accurately determine the CRISPR array and associated information, such as: the Cas subtypes; cassette boundaries; accuracy of the repeat structure, orientation and leader sequence; virus-host interactions; self-targeting; as well as the annotation of cas genes, all of which have been missing from existing tools. This annotation is presented in an interactive interface, making it easy for scientists to gain an overview of the CRISPR system in their organism of interest. Predictions are also rendered in GFF format, enabling in-depth genome browser inspection. In summary, CRISPRloci constitutes a full suite for CRISPR–Cas system characterization that offers annotation quality previously available only after manual inspection.
Collapse
Affiliation(s)
- Omer S Alkhnbashi
- To whom correspondence should be addressed. Tel: +49 761 2037460; Fax: +49 761 2037462;
| | | | | | - Martin Raden
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Van Dinh Tran
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Florian Eggenhofer
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Shiraz A Shah
- Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Denmark
| | - Ekrem Öztürk
- Bioinformatics Group, Department of Computer Science, University of Freiburg, Georges-Koehler-Allee 106, 79110 Freiburg, Germany
| | - Victor A Padilha
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, SP, Brazil
| | - Danilo S Sanches
- Universidade Tecnológica Federal do Paraná, Campus Cornélio Procópio, 86300000 Cornélio Procópio, PR, Brazil
| | | | - Rolf Backofen
- Correspondence may also be addressed to Rolf Backofen.
| |
Collapse
|
6
|
Padilha VA, Alkhnbashi OS, Tran VD, Shah SA, Carvalho ACPLF, Backofen R. Casboundary: automated definition of integral Cas cassettes. Bioinformatics 2021; 37:1352-1359. [PMID: 33226067 PMCID: PMC8208735 DOI: 10.1093/bioinformatics/btaa984] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/28/2020] [Accepted: 11/11/2020] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION CRISPR-Cas are important systems found in most archaeal and many bacterial genomes, providing adaptive immunity against mobile genetic elements in prokaryotes. The CRISPR-Cas systems are encoded by a set of consecutive cas genes, here termed cassette. The identification of cassette boundaries is key for finding cassettes in CRISPR research field. This is often carried out by using Hidden Markov Models and manual annotation. In this article, we propose the first method able to automatically define the cassette boundaries. In addition, we present a Cas-type predictive model used by the method to assign each gene located in the region defined by a cassette's boundaries a Cas label from a set of pre-defined Cas types. Furthermore, the proposed method can detect potentially new cas genes and decompose a cassette into its modules. RESULTS We evaluate the predictive performance of our proposed method on data collected from the two most recent CRISPR classification studies. In our experiments, we obtain an average similarity of 0.86 between the predicted and expected cassettes. Besides, we achieve F-scores above 0.9 for the classification of cas genes of known types and 0.73 for the unknown ones. Finally, we conduct two additional study cases, where we investigate the occurrence of potentially new cas genes and the occurrence of module exchange between different genomes. AVAILABILITY AND IMPLEMENTATION https://github.com/BackofenLab/Casboundary. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Victor A Padilha
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Omer S Alkhnbashi
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Van Dinh Tran
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Shiraz A Shah
- COPSAC, Copenhagen University Hospitals Herlev and Gentofte, DK-2820 Gentofte, Denmark
| | - André C P L F Carvalho
- Institute of Mathematics and Computer Sciences, University of São Paulo, São Carlos, SP 13566-590, Brazil
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
7
|
Abstract
CRISPR-Cas systems are immune systems that protect bacteria and archaea against their viruses, bacteriophages. Immunity is achieved through the acquisition of short DNA fragments from the viral invader’s genome. CRISPR-Cas immune systems adapt to new threats by acquiring new spacers from invading nucleic acids such as phage genomes. However, some CRISPR-Cas loci lack genes necessary for spacer acquisition despite variation in spacer content between microbial strains. It has been suggested that such loci may use acquisition machinery from cooccurring CRISPR-Cas systems within the same strain. Here, following infection by a virulent phage with a double-stranded DNA (dsDNA) genome, we observed spacer acquisition in the native host Flavobacterium columnare that carries an acquisition-deficient CRISPR-Cas subtype VI-B system and a complete subtype II-C system. We show that the VI-B locus acquires spacers from both the bacterial and phage genomes, while the newly acquired II-C spacers mainly target the viral genome. Both loci preferably target the terminal end of the phage genome, with priming-like patterns around a preexisting II-C protospacer. Through gene deletion, we show that the RNA-cleaving VI-B system acquires spacers in trans using acquisition machinery from the DNA-cleaving II-C system. Our observations support the concept of cross talk between CRISPR-Cas systems and raise further questions regarding the plasticity of adaptation modules.
Collapse
|
8
|
Ten KE, Md Zoqratt MZH, Ayub Q, Tan HS. Characterization of multidrug-resistant Acinetobacter baumannii strain ATCC BAA1605 using whole-genome sequencing. BMC Res Notes 2021; 14:83. [PMID: 33663564 PMCID: PMC7934414 DOI: 10.1186/s13104-021-05493-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 02/16/2021] [Indexed: 01/21/2023] Open
Abstract
Objective The nosocomial pathogen, Acinetobacter baumannii, has acquired clinical significance due to its ability to persist in hospital settings and survive antibiotic treatment, which eventually resulted in the rapid spread of this bacterium with antimicrobial resistance (AMR) phenotypes. This study used a multidrug-resistant A. baumannii (strain ATCC BAA1605) as a model to study the genomic features of this pathogen. Results One circular chromosome and one circular plasmid were discovered in the complete genome of A. baumannii ATCC BAA1605 using whole-genome sequencing. The chromosome is 4,039,171 bp long with a GC content of 39.24%. Many AMR genes, which confer resistance to major classes of antibiotics (beta-lactams, aminoglycosides, tetracycline, sulphonamides), were found on the chromosome. Two genomic islands were predicted on the chromosome, one of which (Genomic Island 1) contains a cluster of AMR genes and mobile elements, suggesting the possibility of horizontal gene transfer. A subtype I-F CRISPR-Cas system was also identified on the chromosome of A. baumannii ATCC BAA1605. This study provides valuable genome data that can be used as a reference for future studies on A. baumannii. The genome of A. baumannii ATCC BAA1605 has been deposited at GenBank under accession no. CP058625 and CP058626.
Collapse
Affiliation(s)
- Kah Ern Ten
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Muhammad Zarul Hanifah Md Zoqratt
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Monash University Malaysia Genomics Facility, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Qasim Ayub
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Monash University Malaysia Genomics Facility, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.,Tropical Medicine and Biology Multidisciplinary Platform, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia
| | - Hock Siew Tan
- School of Science, Monash University Malaysia, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia. .,Tropical Medicine and Biology Multidisciplinary Platform, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
9
|
Affiliation(s)
- Christine Pourcel
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette, France
| |
Collapse
|
10
|
Shmakov SA, Utkina I, Wolf YI, Makarova KS, Severinov KV, Koonin EV. CRISPR Arrays Away from cas Genes. CRISPR J 2020; 3:535-549. [PMID: 33346707 PMCID: PMC7757702 DOI: 10.1089/crispr.2020.0062] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
CRISPR-Cas systems typically consist of a CRISPR array and cas genes that are organized in one or more operons. However, a substantial fraction of CRISPR arrays are not adjacent to cas genes. Definitive identification of such isolated CRISPR arrays runs into the problem of false-positives, with unrelated types of repetitive sequences mimicking CRISPR. We developed a computational pipeline to eliminate false CRISPR predictions and found that up to 25% of the CRISPR arrays in complete bacterial and archaeal genomes are located away from cas genes. Most of the repeats in these isolated arrays are identical to repeats in cas-adjacent CRISPR arrays in the same or closely related genomes, indicating an evolutionary relationship between isolated arrays and arrays in typical CRISPR-cas loci. The spacers in isolated CRISPR arrays show nearly as many matches to viral genomes as spacers from complete CRISPR-cas loci, suggesting that the isolated arrays were either functionally active recently or continue to function. Reconstruction of evolutionary events in closely related bacterial genomes suggests three routes of evolution of isolated CRISPR arrays: (1) loss of cas genes in a CRISPR-cas locus, (2) de novo generation of arrays from off-target spacer integration into sequences resembling the corresponding repeats, and (3) transfer by mobile genetic elements. Both combination of de novo emerging arrays with cas genes and regain of cas genes by isolated arrays via recombination likely contribute to functional diversification in CRISPR-Cas evolution.
Collapse
Affiliation(s)
- Sergey A. Shmakov
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA; Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| | - Irina Utkina
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA; Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
- Skolkovo Institute of Science and Technology, Skolkovo, Russia; Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
- The Hospital for Sick Children, University of Toronto, Toronto, Canada; Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| | - Yuri I. Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA; Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| | - Kira S. Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA; Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| | - Konstantin V. Severinov
- Institute of Molecular Genetics, Russian Academy of Sciences, Moscow, Russia; and Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
- Waksman Institute of Microbiology, Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA; Rutgers, State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
11
|
Artamonova D, Karneyeva K, Medvedeva S, Klimuk E, Kolesnik M, Yasinskaya A, Samolygo A, Severinov K. Spacer acquisition by Type III CRISPR-Cas system during bacteriophage infection of Thermus thermophilus. Nucleic Acids Res 2020; 48:9787-9803. [PMID: 32821943 PMCID: PMC7515739 DOI: 10.1093/nar/gkaa685] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 08/01/2020] [Accepted: 08/05/2020] [Indexed: 12/21/2022] Open
Abstract
Type III CRISPR–Cas systems provide immunity to foreign DNA by targeting its transcripts. Target recognition activates RNases and DNases that may either destroy foreign DNA directly or elicit collateral damage inducing death of infected cells. While some Type III systems encode a reverse transcriptase to acquire spacers from foreign transcripts, most contain conventional spacer acquisition machinery found in DNA-targeting systems. We studied Type III spacer acquisition in phage-infected Thermus thermophilus, a bacterium that lacks either a standalone reverse transcriptase or its fusion to spacer integrase Cas1. Cells with spacers targeting a subset of phage transcripts survived the infection, indicating that Type III immunity does not operate through altruistic suicide. In the absence of selection spacers were acquired from both strands of phage DNA, indicating that no mechanism ensuring acquisition of RNA-targeting spacers exists. Spacers that protect the host from the phage demonstrate a very strong strand bias due to positive selection during infection. Phages that escaped Type III interference accumulated deletions of integral number of codons in an essential gene and much longer deletions in a non-essential gene. This and the fact that Type III immunity can be provided by plasmid-borne mini-arrays open ways for genomic manipulation of Thermus phages.
Collapse
Affiliation(s)
- Daria Artamonova
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Karyna Karneyeva
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Sofia Medvedeva
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Evgeny Klimuk
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia
| | - Matvey Kolesnik
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Anna Yasinskaya
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Aleksei Samolygo
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Konstantin Severinov
- Center of Life Science, Skolkovo Institute of Science and Technology, Moscow 121205, Russia.,Institute of Molecular Genetics, Russian Academy of Sciences, Moscow 123182, Russia.,Waksman Institute, Rutgers, The State University of New Jersey, NJ 08854 USA
| |
Collapse
|
12
|
The CARF Protein MM_0565 Affects Transcription of the Casposon-Encoded cas1-solo Gene in Methanosarcina mazei Gö1. Biomolecules 2020; 10:biom10081161. [PMID: 32784796 PMCID: PMC7465815 DOI: 10.3390/biom10081161] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 08/04/2020] [Accepted: 08/04/2020] [Indexed: 12/25/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR) loci are found in bacterial and archaeal genomes where they provide the molecular machinery for acquisition of immunity against foreign DNA. In addition to the cas genes fundamentally required for CRISPR activity, a second class of genes is associated with the CRISPR loci, of which many have no reported function in CRISPR-mediated immunity. Here, we characterize MM_0565 associated to the type I-B CRISPR-locus of Methanosarcina mazei Gö1. We show that purified MM_0565 composed of a CRISPR-Cas Associated Rossmann Fold (CARF) and a winged helix-turn-helix domain forms a dimer in solution; in vivo, the dimeric MM_0565 is strongly stabilized under high salt stress. While direct effects on CRISPR-Cas transcription were not detected by genetic approaches, specific binding of MM_0565 to the leader region of both CRISPR-Cas systems was observed by microscale thermophoresis and electromobility shift assays. Moreover, overexpression of MM_0565 strongly induced transcription of the cas1-solo gene located in the recently reported casposon, the gene product of which shows high similarity to classical Cas1 proteins. Based on our findings, and taking the absence of the expressed CRISPR locus-encoded Cas1 protein into account, we hypothesize that MM_0565 might modulate the activity of the CRISPR systems on different levels.
Collapse
|
13
|
Kieper SN, Almendros C, Brouns SJJ. Conserved motifs in the CRISPR leader sequence control spacer acquisition levels in Type I-D CRISPR-Cas systems. FEMS Microbiol Lett 2020; 366:5525085. [PMID: 31252430 PMCID: PMC6607411 DOI: 10.1093/femsle/fnz129] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 06/27/2019] [Indexed: 12/20/2022] Open
Abstract
Integrating short DNA fragments at the correct leader-repeat junction is key to successful CRISPR-Cas memory formation. The Cas1-2 proteins are responsible to carry out this process. However, the CRISPR adaptation process additionally requires a DNA element adjacent to the CRISPR array, called leader, to facilitate efficient localization of the correct integration site. In this work, we introduced the core CRISPR adaptation genes cas1 and cas2 from the Type I-D CRISPR-Cas system of Synechocystis sp. 6803 into Escherichia coli and assessed spacer integration efficiency. Truncation of the leader resulted in a significant reduction of spacer acquisition levels and revealed the importance of different conserved regions for CRISPR adaptation rates. We found three conserved sequence motifs in the leader of I-D CRISPR arrays that each affected spacer acquisition rates, including an integrase anchoring site. Our findings support the model in which the leader sequence is an integral part of type I-D adaptation in Synechocystis sp. acting as a localization signal for the adaptation complex to drive CRISPR adaptation at the first repeat of the CRISPR array.
Collapse
Affiliation(s)
- Sebastian N Kieper
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Cristóbal Almendros
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Stan J J Brouns
- Kavli Institute of Nanoscience, Department of Bionanoscience, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands.,Laboratory of Microbiology, Wageningen University, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
14
|
Lopatina A, Medvedeva S, Artamonova D, Kolesnik M, Sitnik V, Ispolatov Y, Severinov K. Natural diversity of CRISPR spacers of Thermus: evidence of local spacer acquisition and global spacer exchange. Philos Trans R Soc Lond B Biol Sci 2020; 374:20180092. [PMID: 30905291 PMCID: PMC6452258 DOI: 10.1098/rstb.2018.0092] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
We investigated the diversity of CRISPR spacers of Thermus communities from two locations in Italy, two in Chile and one location in Russia. Among the five sampling sites, a total of more than 7200 unique spacers belonging to different CRISPR-Cas systems types and subtypes were identified. Most of these spacers are not found in CRISPR arrays of sequenced Thermus strains. Comparison of spacer sets revealed that samples within the same area (separated by few to hundreds of metres) have similar spacer sets, which appear to be largely stable at least over the course of several years. While at further distances (hundreds of kilometres and more) the similarity of spacer sets is decreased, there are still multiple common spacers in Thermus communities from different continents. The common spacers can be reconstructed in identical or similar CRISPR arrays, excluding their independent appearance and suggesting an extensive migration of thermophilic bacteria over long distances. Several new Thermus phages were isolated in the sampling sites. Mapping of spacers to bacteriophage sequences revealed examples of local acquisition of spacers from some phages and distinct patterns of targeting of phage genomes by different CRISPR-Cas systems. This article is part of a discussion meeting issue ‘The ecology and evolution of prokaryotic CRISPR-Cas adaptive immune systems’.
Collapse
Affiliation(s)
- Anna Lopatina
- 1 Institute of Molecular Genetics, Russian Academy of Sciences , Moscow , Russia.,2 Institute of Gene Biology, Russian Academy of Sciences , Moscow , Russia.,7 Department of Molecular Genetics, Weizmann Institute of Science , Rehovot 76100 , Israel
| | - Sofia Medvedeva
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia.,4 Pasteur Institute , Paris , France
| | - Daria Artamonova
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia
| | - Matvey Kolesnik
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia
| | - Vasily Sitnik
- 3 Skolkovo Institute of Science and Technology , Skolkovo , Russia
| | - Yaroslav Ispolatov
- 5 Department of Physics, University of Santiago de Chile , Santiago , Chile
| | - Konstantin Severinov
- 1 Institute of Molecular Genetics, Russian Academy of Sciences , Moscow , Russia.,3 Skolkovo Institute of Science and Technology , Skolkovo , Russia.,6 Waksman Institute, Department of Molecular Biology and Biochemistry, Rutgers, The State University of New Jersey , Piscataway, NJ , USA.,7 Department of Molecular Genetics, Weizmann Institute of Science , Rehovot 76100 , Israel
| |
Collapse
|
15
|
Medvedeva S, Liu Y, Koonin EV, Severinov K, Prangishvili D, Krupovic M. Virus-borne mini-CRISPR arrays are involved in interviral conflicts. Nat Commun 2019; 10:5204. [PMID: 31729390 PMCID: PMC6858448 DOI: 10.1038/s41467-019-13205-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 10/23/2019] [Indexed: 01/21/2023] Open
Abstract
CRISPR-Cas immunity is at the forefront of antivirus defense in bacteria and archaea and specifically targets viruses carrying protospacers matching the spacers catalogued in the CRISPR arrays. Here, we perform deep sequencing of the CRISPRome-all spacers contained in a microbiome-associated with hyperthermophilic archaea of the order Sulfolobales recovered directly from an environmental sample and from enrichment cultures established in the laboratory. The 25 million CRISPR spacers sequenced from a single sampling site dwarf the diversity of spacers from all available Sulfolobales isolates and display complex temporal dynamics. Comparison of closely related virus strains shows that CRISPR targeting drives virus genome evolution. Furthermore, we show that some archaeal viruses carry mini-CRISPR arrays with 1-2 spacers and preceded by leader sequences but devoid of cas genes. Closely related viruses present in the same population carry spacers against each other. Targeting by these virus-borne spacers represents a distinct mechanism of heterotypic superinfection exclusion and appears to promote archaeal virus speciation.
Collapse
Affiliation(s)
- Sofia Medvedeva
- Institut Pasteur, Department of Microbiology, 75015, Paris, France
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Sorbonne Université, Collège doctoral, 75005, Paris, France
| | - Ying Liu
- Institut Pasteur, Department of Microbiology, 75015, Paris, France
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, Bethesda, MD, 20894, USA
| | - Konstantin Severinov
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, Russia
- Waksman Institute, Rutgers University, Piscataway, NJ, 08854, USA
- Institute of Molecular Genetics, Moscow, 123182, Russia
| | - David Prangishvili
- Institut Pasteur, Department of Microbiology, 75015, Paris, France
- Ivane Javakhishvili Tbilisi State University, Tbilisi, 0179, Georgia
| | - Mart Krupovic
- Institut Pasteur, Department of Microbiology, 75015, Paris, France.
| |
Collapse
|
16
|
Garcia-Robledo JE, Barrera MC, Tobón GJ. CRISPR/Cas: from adaptive immune system in prokaryotes to therapeutic weapon against immune-related diseases. Int Rev Immunol 2019; 39:11-20. [PMID: 31625429 DOI: 10.1080/08830185.2019.1677645] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
CRISPR/Cas evolved as an adaptive immune system in bacteria and archaea to inactivate foreign viral and plasmid DNA. However, the capacities of various CRISPR/Cas systems for precise genome editing based on sequence homology also allow their use as tools for genomic and epigenomic modification in eukaryotes. Indeed, these genetic characteristics have proven useful for disease modeling and testing the specific functions of target genes under pathological conditions. Moreover, recent studies provide compelling evidence that CRISPR/Cas systems could be useful therapeutic tools against human diseases, including cancer, monogenic disorders, and autoimmune disorders.HighlightsCRISPR/Cas evolved as an adaptive immune system in bacteria and archaea.CRISPR/Cas systems are nowadays used as tools for genomic modification.CRISPR/Cas systems could be useful therapeutic tools against human disease, including autoimmune conditions.
Collapse
Affiliation(s)
| | - María Claudia Barrera
- Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional; Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| | - Gabriel J Tobón
- Grupo de Investigación en Reumatología, Autoinmunidad y Medicina Traslacional; Fundación Valle Del Lili and Universidad Icesi, Cali, Colombia
| |
Collapse
|
17
|
Zhu A, Liao X, Li S, Zhao H, Chen L, Xu M, Duan X. HBV cccDNA and Its Potential as a Therapeutic Target. J Clin Transl Hepatol 2019; 7:258-262. [PMID: 31608218 PMCID: PMC6783673 DOI: 10.14218/jcth.2018.00054] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Revised: 04/02/2019] [Accepted: 07/10/2019] [Indexed: 12/13/2022] Open
Abstract
Chronic hepatitis B virus infection continues to be a major health burden worldwide. It can cause various degrees of liver damage and is strongly associated with the development of liver cirrhosis and hepatocellular carcinoma. Covalently closed circular DNA in the nucleus of infected cells cannot be disabled by present therapies which may lead to HBV persistence and relapse. In this review, we summarized the current knowledge on hepatitis B virus covalently closed circular DNA and its potential role as a therapeutic target.
Collapse
Affiliation(s)
- Anjing Zhu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Xinzhong Liao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Shuang Li
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Hang Zhao
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Limin Chen
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Min Xu
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| | - Xiaoqiong Duan
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences and Peking Union Medical College, Chengdu, China
| |
Collapse
|
18
|
Scrascia M, D'Addabbo P, Roberto R, Porcelli F, Oliva M, Calia C, Dionisi AM, Pazzani C. Characterization of CRISPR-Cas Systems in Serratia marcescens Isolated from Rhynchophorus ferrugineus (Olivier, 1790) (Coleoptera: Curculionidae). Microorganisms 2019; 7:microorganisms7090368. [PMID: 31546915 PMCID: PMC6780938 DOI: 10.3390/microorganisms7090368] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Revised: 09/09/2019] [Accepted: 09/16/2019] [Indexed: 12/13/2022] Open
Abstract
The CRISPR-Cas adaptive immune system has been attracting increasing scientific interest for biological functions and biotechnological applications. Data on the Serratia marcescens system are scarce. Here, we report a comprehensive characterisation of CRISPR-Cas systems identified in S. marcescens strains isolated as secondary symbionts of Rhynchophorus ferrugineus, also known as Red Palm Weevil (RPW), one of the most invasive pests of major cultivated palms. Whole genome sequencing was performed on four strains (S1, S5, S8, and S13), which were isolated from the reproductive apparatus of RPWs. Subtypes I-F and I-E were harboured by S5 and S8, respectively. No CRISPR-Cas system was detected in S1 or S13. Two CRISPR arrays (4 and 51 spacers) were detected in S5 and three arrays (11, 31, and 30 spacers) were detected in S8. The CRISPR-Cas systems were located in the genomic region spanning from ybhR to phnP, as if this were the only region where CRISPR-Cas loci were acquired. This was confirmed by analyzing the S. marcescens complete genomes available in the NCBI database. This region defines a genomic hotspot for horizontally acquired genes and/or CRISPR-Cas systems. This study also supplies the first identification of subtype I-E in S. marcescens.
Collapse
Affiliation(s)
- Maria Scrascia
- Department of Biology, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Pietro D'Addabbo
- Department of Biology, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Roberta Roberto
- Department of Plants, Food, and Soil Sciences, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Francesco Porcelli
- Department of Plants, Food, and Soil Sciences, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Marta Oliva
- Department of Biology, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Carla Calia
- Department of Biology, University of Bari Aldo Moro, 70124 Bari, Italy.
| | - Anna Maria Dionisi
- Department of Infectious diseases, Istituto Superiore di Sanità, 00161 Rome, Italy.
| | - Carlo Pazzani
- Department of Biology, University of Bari Aldo Moro, 70124 Bari, Italy.
| |
Collapse
|
19
|
Hou S, Brenes-Álvarez M, Reimann V, Alkhnbashi OS, Backofen R, Muro-Pastor AM, Hess WR. CRISPR-Cas systems in multicellular cyanobacteria. RNA Biol 2019; 16:518-529. [PMID: 29995583 PMCID: PMC6546389 DOI: 10.1080/15476286.2018.1493330] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/01/2018] [Accepted: 06/19/2018] [Indexed: 01/12/2023] Open
Abstract
Novel CRISPR-Cas systems possess substantial potential for genome editing and manipulation of gene expression. The types and numbers of CRISPR-Cas systems vary substantially between different organisms. Some filamentous cyanobacteria harbor > 40 different putative CRISPR repeat-spacer cassettes, while the number of cas gene instances is much lower. Here we addressed the types and diversity of CRISPR-Cas systems and of CRISPR-like repeat-spacer arrays in 171 publicly available genomes of multicellular cyanobacteria. The number of 1328 repeat-spacer arrays exceeded the total of 391 encoded Cas1 proteins suggesting a tendency for fragmentation or the involvement of alternative adaptation factors. The model cyanobacterium Anabaena sp. PCC 7120 contains only three cas1 genes but hosts three Class 1, possibly one Class 2 and five orphan repeat-spacer arrays, all of which exhibit crRNA-typical expression patterns suggesting active transcription, maturation and incorporation into CRISPR complexes. The CRISPR-Cas system within the element interrupting the Anabaena sp. PCC 7120 fdxN gene, as well as analogous arrangements in other strains, occupy the genetic elements that become excised during the differentiation-related programmed site-specific recombination. This fact indicates the propensity of these elements for the integration of CRISPR-cas systems and points to a previously not recognized connection. The gene all3613 resembling a possible Class 2 effector protein is linked to a short repeat-spacer array and a single tRNA gene, similar to its homologs in other cyanobacteria. The diversity and presence of numerous CRISPR-Cas systems in DNA elements that are programmed for homologous recombination make filamentous cyanobacteria a prolific resource for their study. Abbreviations: Cas: CRISPR associated sequences; CRISPR: Clustered Regularly Interspaced Short Palindromic Repeats; C2c: Class 2 candidate; SDR: small dispersed repeat; TSS: transcriptional start site; UTR: untranslated region.
Collapse
Affiliation(s)
- Shengwei Hou
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Manuel Brenes-Álvarez
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Viktoria Reimann
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
| | - Omer S. Alkhnbashi
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
- Center for Biological Systems Analysis (ZBSA), University of Freiburg, Freiburg, Germany
- BIOSS Centre for Biological Signaling Studies, University of Freiburg, Freiburg, Germany
| | - Alicia M. Muro-Pastor
- Bioinformatics group, Department of Computer Science, University of Freiburg, Freiburg, Germany
| | - Wolfgang R. Hess
- Faculty of Biology, Genetics and Experimental Bioinformatics, University of Freiburg, Freiburg, Germany
- Freiburg Institute for Advanced Studies,University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Chakraborty S, von Mentzer A, Begum YA, Manzur M, Hasan M, Ghosh AN, Hossain MA, Camilli A, Qadri F. Phenotypic and genomic analyses of bacteriophages targeting environmental and clinical CS3-expressing enterotoxigenic Escherichia coli (ETEC) strains. PLoS One 2018; 13:e0209357. [PMID: 30571788 PMCID: PMC6301781 DOI: 10.1371/journal.pone.0209357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 12/04/2018] [Indexed: 01/21/2023] Open
Abstract
Diarrhea due to infection of enterotoxigenic Escherichia coli (ETEC) is of great concern in several low and middle-income countries. ETEC infection is considered to be the most common cause of diarrhea in Bangladesh and is mainly spread through contaminated water and food. ETEC pathogenesis is mediated by the expression of enterotoxins and colonization factors (CFs) that target the intestinal mucosa. ETEC can survive for extended time periods in water, where they are likely to be attacked by bacteriophages. Antibiotic resistance is common amongst enteric pathogens and therefore is the use of bacteriophages (phage) as a therapeutic tool an interesting approach. This study was designed to identify novel phages that specifically target ETEC virulence factors. In total, 48 phages and 195 ETEC isolates were collected from water sources and stool samples. Amongst the identified ETEC specific phages, an enterobacteria phage T7, designated as IMM-002, showed a significant specificity towards colonization factor CS3-expressing ETEC isolates. Antibody-blocking and phage-neutralization assays revealed that CS3 is used as a host receptor for the IMM-002 phage. The bacterial CRISPR-Cas (Clustered Regularly Interspaced Short Palindromic Repeats-CRISPR-associated) defence mechanism can invoke immunity against phages. Genomic analyses coupled with plaque assay experiments indicate that the ETEC CRISPR-Cas system is involved in the resistance against the CS3-specific phage (IMM-002) and the previously identified CS7-specific phage (IMM-001). As environmental water serves as a reservoir for ETEC, it is important to search for new antimicrobial agents such as phages in environmental water as well as the human gut. A better understanding of how the interplay between ETEC-specific phages and ETEC isolates affects the ETEC diversity, both in environmental ecosystems and within the host, is important for the development of new treatments for ETEC infections.
Collapse
Affiliation(s)
- Sajib Chakraborty
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Mohakhali, Dhaka, Bangladesh
| | - Astrid von Mentzer
- Department of Microbiology and Immunology, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Yasmin Ara Begum
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Mohakhali, Dhaka, Bangladesh
| | - Mehnaz Manzur
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Mahmudul Hasan
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Amar N Ghosh
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - M Anwar Hossain
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka, Bangladesh
| | - Andrew Camilli
- Department of Molecular Biology and Microbiology, and Howard Hughes Medical Institute, Tufts University School of Medicine, Boston, MA, United States of America
| | - Firdausi Qadri
- icddr,b (International Centre for Diarrhoeal Disease Research, Bangladesh), Mohakhali, Dhaka, Bangladesh
| |
Collapse
|
21
|
Weissman JL, Fagan WF, Johnson PLF. Selective Maintenance of Multiple CRISPR Arrays Across Prokaryotes. CRISPR J 2018; 1:405-413. [PMID: 31021246 DOI: 10.1089/crispr.2018.0034] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Prokaryotes are under nearly constant attack by viral pathogens. To protect against this threat of infection, bacteria and archaea have evolved a wide array of defense mechanisms, singly and in combination. While immune diversity in a single organism likely reduces the chance of pathogen evolutionary escape, it remains puzzling why many prokaryotes also have multiple, seemingly redundant, copies of the same type of immune system. Here, we focus on the highly flexible CRISPR adaptive immune system, which is present in multiple copies in a surprising 28% of the prokaryotic genomes in RefSeq. We use a comparative genomics approach looking across all prokaryotes to demonstrate that on average, organisms are under selection to maintain more than one CRISPR array. Given this surprising conclusion, we consider several hypotheses concerning the source of selection and include a theoretical analysis of the possibility that a trade-off between memory span and learning speed could select for both "long-term memory" and "short-term memory" CRISPR arrays.
Collapse
Affiliation(s)
- Jake L Weissman
- Department of Biology, University of Maryland College Park , College Park, Maryland
| | - William F Fagan
- Department of Biology, University of Maryland College Park , College Park, Maryland
| | - Philip L F Johnson
- Department of Biology, University of Maryland College Park , College Park, Maryland
| |
Collapse
|
22
|
Li HY, Kao CY, Lin WH, Zheng PX, Yan JJ, Wang MC, Teng CH, Tseng CC, Wu JJ. Characterization of CRISPR-Cas Systems in Clinical Klebsiella pneumoniae Isolates Uncovers Its Potential Association With Antibiotic Susceptibility. Front Microbiol 2018; 9:1595. [PMID: 30061876 PMCID: PMC6054925 DOI: 10.3389/fmicb.2018.01595] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2018] [Accepted: 06/26/2018] [Indexed: 12/12/2022] Open
Abstract
Prokaryotic CRISPR-Cas systems limit the acquisition of genetic elements and provide immunity against invasive bacteriophage. The characteristics of CRISPR-Cas systems in clinical Klebsiella pneumoniae isolates are still unknown. Here, 97 K. pneumoniae genomes retrieved from the Integrated Microbial Genomes & Microbiomes genome database and 176 clinical isolates obtained from patients with bloodstream (BSI, n = 87) or urinary tract infections (UTI, n = 89) in Taiwan, were used for analysis. Forty out of ninety-seven genomes (41.2%) had CRISPR-Cas systems identified by the combination of CRISPRFinder and cas1 gene sequence alignment. The phylogenetic trees revealed that CRISPR-Cas systems in K. pneumoniae were divided into two types (type I-E, 23; subtype I-E∗, 17) based on the sequences of Cas1 and Cas3 proteins and their location in the chromosome. The distribution of type I-E and I-E∗ CRISPR-Cas systems was associated with the multilocus sequence typing and the pulsed-field gel electrophoresis results. Importantly, no CRISPR-Cas system was identified in published genomes of clonal complex 258 isolates (ST11 and ST258), which comprise the largest multi-drug resistant K. pneumoniae clonal group worldwide. PCR with cas-specific primers showed that 30.7% (54/176) of the clinical isolates had a CRISPR-Cas system. Among clinical isolates, more type I-E CRISPR-Cas systems were found in UTI isolates (BSI, 5.7%; UTI, 11.2%), and subtype I-E∗ CRISPR-Cas systems were dominant in BSI isolates (BSI, 28.7%; UTI, 15.7%) (p = 0.042). Isolates which had subtype I-E∗ CRISPR-Cas system were more susceptible to ampicillin-sulbactam (p = 0.009), cefazolin (p = 0.016), cefuroxime (p = 0.039), and gentamicin (p = 0.012), compared to the CRISPR-negative isolates. The strains containing subtype I-E∗ CRISPR-Cas systems had decreased numbers of plasmids, prophage regions, and acquired antibiotic resistance genes in their published genomes. Here, we first revealed subtype I-E∗ CRISPR-Cas system in K. pneumoniae potentially interfering with the acquisition of phages and plasmids harboring antibiotic resistance determinants, and thus maintained these isolates susceptible to antibiotics.
Collapse
Affiliation(s)
- Hsin-Yu Li
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| | - Cheng-Yen Kao
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| | - Wei-Hung Lin
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Po-Xing Zheng
- Biotechnology Center in Southern Taiwan, Agricultural Biotechnology Research Center, Academia Sinica, Tainan, Taiwan
| | - Jing-Jou Yan
- Department of Pathology, Cheng Ching Hospital at Chung Kang, Taichung, Taiwan
| | - Ming-Cheng Wang
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Ching-Hao Teng
- Institute of Molecular Medicine, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Chin-Chung Tseng
- Department of Internal Medicine, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan, Taiwan
| | - Jiunn-Jong Wu
- Department of Biotechnology and Laboratory Science in Medicine, School of Biomedical Science and Engineering, National Yang Ming University, Taipei, Taiwan
| |
Collapse
|
23
|
Rollie C, Graham S, Rouillon C, White MF. Prespacer processing and specific integration in a Type I-A CRISPR system. Nucleic Acids Res 2018; 46:1007-1020. [PMID: 29228332 PMCID: PMC5815122 DOI: 10.1093/nar/gkx1232] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 11/22/2017] [Accepted: 11/29/2017] [Indexed: 12/15/2022] Open
Abstract
The CRISPR-Cas system for prokaryotic adaptive immunity provides RNA-mediated protection from viruses and mobile genetic elements. Adaptation is dependent on the Cas1 and Cas2 proteins along with varying accessory proteins. Here we analyse the process in Sulfolobus solfataricus, showing that while Cas1 and Cas2 catalyze spacer integration in vitro, host factors are required for specificity. Specific integration also requires at least 400 bp of the leader sequence, and is dependent on the presence of hydrolysable ATP, suggestive of an active process that may involve DNA remodelling. Specific spacer integration is associated with processing of prespacer 3' ends in a PAM-dependent manner. This is reflected in PAM-dependent processing of prespacer 3' ends in vitro in the presence of cell lysate or the Cas4 nuclease, in a reaction consistent with PAM-directed binding and protection of prespacer DNA. These results highlight the diverse interplay between CRISPR-Cas elements and host proteins across CRISPR types.
Collapse
Affiliation(s)
- Clare Rollie
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Shirley Graham
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Christophe Rouillon
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| | - Malcolm F White
- Biomedical Sciences Research Complex, School of Biology, University of St Andrews, North Haugh, St Andrews, Fife KY16 9ST, UK
| |
Collapse
|
24
|
Immune loss as a driver of coexistence during host-phage coevolution. ISME JOURNAL 2018; 12:585-597. [PMID: 29328063 PMCID: PMC5776473 DOI: 10.1038/ismej.2017.194] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 09/18/2017] [Accepted: 10/09/2017] [Indexed: 12/26/2022]
Abstract
Bacteria and their viral pathogens face constant pressure for augmented immune and
infective capabilities, respectively. Under this reciprocally imposed selective regime, we
expect to see a runaway evolutionary arms race, ultimately leading to the extinction of
one species. Despite this prediction, in many systems host and pathogen coexist with
minimal coevolution even when well-mixed. Previous work explained this puzzling phenomenon
by invoking fitness tradeoffs, which can diminish an arms race dynamic. Here we propose
that the regular loss of immunity by the bacterial host can also produce host-phage
coexistence. We pair a general model of immunity with an experimental and theoretical case
study of the CRISPR-Cas immune system to contrast the behavior of tradeoff and loss
mechanisms in well-mixed systems. We find that, while both mechanisms can produce stable
coexistence, only immune loss does so robustly within realistic parameter ranges.
Collapse
|
25
|
Koonin EV. Viruses and mobile elements as drivers of evolutionary transitions. Philos Trans R Soc Lond B Biol Sci 2017; 371:rstb.2015.0442. [PMID: 27431520 PMCID: PMC4958936 DOI: 10.1098/rstb.2015.0442] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/15/2016] [Indexed: 12/22/2022] Open
Abstract
The history of life is punctuated by evolutionary transitions which engender emergence of new levels of biological organization that involves selection acting at increasingly complex ensembles of biological entities. Major evolutionary transitions include the origin of prokaryotic and then eukaryotic cells, multicellular organisms and eusocial animals. All or nearly all cellular life forms are hosts to diverse selfish genetic elements with various levels of autonomy including plasmids, transposons and viruses. I present evidence that, at least up to and including the origin of multicellularity, evolutionary transitions are driven by the coevolution of hosts with these genetic parasites along with sharing of ‘public goods’. Selfish elements drive evolutionary transitions at two distinct levels. First, mathematical modelling of evolutionary processes, such as evolution of primitive replicator populations or unicellular organisms, indicates that only increasing organizational complexity, e.g. emergence of multicellular aggregates, can prevent the collapse of the host–parasite system under the pressure of parasites. Second, comparative genomic analysis reveals numerous cases of recruitment of genes with essential functions in cellular life forms, including those that enable evolutionary transitions. This article is part of the themed issue ‘The major synthetic evolutionary transitions’.
Collapse
Affiliation(s)
- Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
26
|
Alkhnbashi OS, Shah SA, Garrett RA, Saunders SJ, Costa F, Backofen R. Characterizing leader sequences of CRISPR loci. Bioinformatics 2017; 32:i576-i585. [PMID: 27587677 DOI: 10.1093/bioinformatics/btw454] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
MOTIVATION The CRISPR-Cas system is an adaptive immune system in many archaea and bacteria, which provides resistance against invading genetic elements. The first phase of CRISPR-Cas immunity is called adaptation, in which small DNA fragments are excised from genetic elements and are inserted into a CRISPR array generally adjacent to its so called leader sequence at one end of the array. It has been shown that transcription initiation and adaptation signals of the CRISPR array are located within the leader. However, apart from promoters, there is very little knowledge of sequence or structural motifs or their possible functions. Leader properties have mainly been characterized through transcriptional initiation data from single organisms but large-scale characterization of leaders has remained challenging due to their low level of sequence conservation. RESULTS We developed a method to successfully detect leader sequences by focusing on the consensus repeat of the adjacent CRISPR array and weak upstream conservation signals. We applied our tool to the analysis of a comprehensive genomic database and identified several characteristic properties of leader sequences specific to archaea and bacteria, ranging from distinctive sizes to preferential indel localization. CRISPRleader provides a full annotation of the CRISPR array, its strand orientation as well as conserved core leader boundaries that can be uploaded to any genome browser. In addition, it outputs reader-friendly HTML pages for conserved leader clusters from our database. AVAILABILITY AND IMPLEMENTATION CRISPRleader and multiple sequence alignments for all 195 leader clusters are available at http://www.bioinf.uni-freiburg.de/Software/CRISPRleader/ CONTACT costa@informatik.uni-freiburg.de or backofen@informatik.uni-freiburg.de SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Omer S Alkhnbashi
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Shiraz A Shah
- Archaea Centre, Department of Biology, University of Copenhagen N, DK2200 Copenhagen N, Denmark
| | - Roger A Garrett
- Archaea Centre, Department of Biology, University of Copenhagen N, DK2200 Copenhagen N, Denmark
| | - Sita J Saunders
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Fabrizio Costa
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany
| | - Rolf Backofen
- Bioinformatics Group, Department of Computer Science, University of Freiburg, 79110 Freiburg, Germany BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Freiburg im Breisgau, Germany
| |
Collapse
|
27
|
Abstract
Self-replicating genetic material presumably provided the architecture necessary for generating the last universal ancestor of all nucleic-acid-based life. As biological complexity increased in the billions of years that followed, the same genetic material also morphed into a wide spectrum of viruses and other parasitic genetic elements. The resulting struggle for existence drove the evolution of host defenses, giving rise to a perpetual arms race. This Perspective summarizes the antiviral mechanisms evident across the tree of life, discussing each in their evolutionary context to postulate how the coevolution of host and pathogen shaped the cellular antiviral defenses we know today.
Collapse
|
28
|
Mousaei M, Deng L, She Q, Garrett RA. Major and minor crRNA annealing sites facilitate low stringency DNA protospacer binding prior to Type I-A CRISPR-Cas interference in Sulfolobus. RNA Biol 2016; 13:1166-1173. [PMID: 27618562 DOI: 10.1080/15476286.2016.1229735] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The stringency of crRNA-protospacer DNA base pair matching required for effective CRISPR-Cas interference is relatively low in crenarchaeal Sulfolobus species in contrast to that required in some bacteria. To understand its biological significance we studied crRNA-protospacer interactions in Sulfolobus islandicus REY15A which carries multiple, and functionally diverse, interference complexes. A range of mismatches were introduced into a vector-borne protospacer that was identical to spacer 1 of CRISPR locus 2, with a cognate CCN PAM sequence. Two important crRNA annealing regions were identified on the 39 bp protospacer, a strong primary site centered on nucleotides 3 - 7 and a weaker secondary site at nucleotides 21 - 25. Multiple mismatches introduced into remaining protospacer regions did not seriously impair interference. Extending the study to different protospacers demonstrated that the efficacy of the secondary site was greatest for protospacers with higher G+C contents. In addition, the interference effects were assigned specifically to the type I-A dsDNA-targeting module by repeating the experiments with mutated protospacer constructs that were transformed into an S. islandicus mutant lacking type III-Bα and III-Bβ interference gene cassettes, which showed similar interference levels to those of the wild-type strain. Parallels are drawn to the involvement of 2 annealing sites for microRNAs on some eukaryal mRNAs which provide enhanced binding capacity and specificity. A biological rationale for the relatively low crRNA-protospacer base pairing stringency among the Sulfolobales is considered.
Collapse
Affiliation(s)
- Marzieh Mousaei
- a Archaea Centre, Department of Biology , Copenhagen University , Copenhagen N , Denmark
| | - Ling Deng
- a Archaea Centre, Department of Biology , Copenhagen University , Copenhagen N , Denmark
| | - Qunxin She
- a Archaea Centre, Department of Biology , Copenhagen University , Copenhagen N , Denmark
| | - Roger A Garrett
- a Archaea Centre, Department of Biology , Copenhagen University , Copenhagen N , Denmark
| |
Collapse
|
29
|
Liu G, She Q, Garrett RA. Diverse CRISPR-Cas responses and dramatic cellular DNA changes and cell death in pKEF9-conjugated Sulfolobus species. Nucleic Acids Res 2016; 44:4233-42. [PMID: 27098036 PMCID: PMC4872121 DOI: 10.1093/nar/gkw286] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 04/08/2016] [Indexed: 12/26/2022] Open
Abstract
The Sulfolobales host a unique family of crenarchaeal conjugative plasmids some of which undergo complex rearrangements intracellularly. Here we examined the conjugation cycle of pKEF9 in the recipient strain Sulfolobus islandicus REY15A. The plasmid conjugated and replicated rapidly generating high average copy numbers which led to strong growth retardation that was coincident with activation of CRISPR-Cas adaptation. Simultaneously, intracellular DNA was extensively degraded and this also occurred in a conjugated Δcas6 mutant lacking a CRISPR-Cas immune response. Furthermore, the integrated forms of pKEF9 in the donor Sulfolobus solfataricus P1 and recipient host were specifically corrupted by transposable orfB elements, indicative of a dual mechanism for inactivating free and integrated forms of the plasmid. In addition, the CRISPR locus of pKEF9 was progressively deleted when conjugated into the recipient strain. Factors influencing activation of CRISPR-Cas adaptation in the recipient strain are considered, including the first evidence for a possible priming effect in Sulfolobus. The 3-Mbp genome sequence of the donor P1 strain is presented.
Collapse
Affiliation(s)
- Guannan Liu
- Archaea Centre, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Qunxin She
- Archaea Centre, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| | - Roger A Garrett
- Archaea Centre, Department of Biology, University of Copenhagen, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
30
|
Qiu GH. Genome defense against exogenous nucleic acids in eukaryotes by non-coding DNA occurs through CRISPR-like mechanisms in the cytosol and the bodyguard protection in the nucleus. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2016; 767:31-41. [DOI: 10.1016/j.mrrev.2016.01.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 10/22/2015] [Accepted: 01/03/2016] [Indexed: 02/07/2023]
|
31
|
An updated evolutionary classification of CRISPR-Cas systems. NATURE REVIEWS. MICROBIOLOGY 2015. [PMID: 26411297 DOI: 10.1038/nrmicro3569.] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The evolution of CRISPR-cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR-cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR-Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.
Collapse
|
32
|
Makarova KS, Wolf YI, Alkhnbashi OS, Costa F, Shah SA, Saunders SJ, Barrangou R, Brouns SJJ, Charpentier E, Haft DH, Horvath P, Moineau S, Mojica FJM, Terns RM, Terns MP, White MF, Yakunin AF, Garrett RA, van der Oost J, Backofen R, Koonin EV. An updated evolutionary classification of CRISPR-Cas systems. Nat Rev Microbiol 2015; 13:722-36. [PMID: 26411297 DOI: 10.1038/nrmicro3569] [Citation(s) in RCA: 1655] [Impact Index Per Article: 165.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The evolution of CRISPR-cas loci, which encode adaptive immune systems in archaea and bacteria, involves rapid changes, in particular numerous rearrangements of the locus architecture and horizontal transfer of complete loci or individual modules. These dynamics complicate straightforward phylogenetic classification, but here we present an approach combining the analysis of signature protein families and features of the architecture of cas loci that unambiguously partitions most CRISPR-cas loci into distinct classes, types and subtypes. The new classification retains the overall structure of the previous version but is expanded to now encompass two classes, five types and 16 subtypes. The relative stability of the classification suggests that the most prevalent variants of CRISPR-Cas systems are already known. However, the existence of rare, currently unclassifiable variants implies that additional types and subtypes remain to be characterized.
Collapse
Affiliation(s)
- Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Yuri I Wolf
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Omer S Alkhnbashi
- Bioinformatics group, Department of Computer Science, University of Freiberg, Georges-Kohler-Allee 106, 79110 Freiberg, Germany
| | - Fabrizio Costa
- Bioinformatics group, Department of Computer Science, University of Freiberg, Georges-Kohler-Allee 106, 79110 Freiberg, Germany
| | - Shiraz A Shah
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| | - Sita J Saunders
- Bioinformatics group, Department of Computer Science, University of Freiberg, Georges-Kohler-Allee 106, 79110 Freiberg, Germany
| | - Rodolphe Barrangou
- Department of Food, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, North Carolina 27606, USA
| | - Stan J J Brouns
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703HB Wageningen, Netherlands
| | - Emmanuelle Charpentier
- Department of Regulation in Infection Biology, Helmholtz Centre for Infection Research, D-38124 Braunschweig, Germany
| | - Daniel H Haft
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| | - Philippe Horvath
- DuPont Nutrition and Health, BP10, Dangé-Saint-Romain 86220, France
| | - Sylvain Moineau
- Département de Biochimie, de Microbiologie et de Bio-informatique, Faculté des Sciences et de Génie, Groupe de Recherche en Écologie Buccale, Félix d'Hérelle Reference Center for Bacterial Viruses, Faculté de médecine dentaire, Université Laval, Québec City, Québec, Canada
| | - Francisco J M Mojica
- Departamento de Fisiología, Genética y Microbiología. Universidad de Alicante. 03080-Alicante, Spain
| | - Rebecca M Terns
- Biochemistry and Molecular Biology, Genetics and Microbiology, University of Georgia, Davison Life Sciences Complex, Green Street, Athens, Georgia 30602, USA
| | - Michael P Terns
- Biochemistry and Molecular Biology, Genetics and Microbiology, University of Georgia, Davison Life Sciences Complex, Green Street, Athens, Georgia 30602, USA
| | - Malcolm F White
- Biomedical Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, KY16 9TZ, UK
| | - Alexander F Yakunin
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, M5S 3E5, Canada
| | - Roger A Garrett
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University, Dreijenplein 10, 6703HB Wageningen, Netherlands
| | - Rolf Backofen
- Bioinformatics group, Department of Computer Science, University of Freiberg, Georges-Kohler-Allee 106, 79110 Freiberg, Germany.,BIOSS Centre for Biological Signaling Studies, Cluster of Excellence, University of Freiburg, Germany
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland 20894, USA
| |
Collapse
|
33
|
Garrett RA, Shah SA, Erdmann S, Liu G, Mousaei M, León-Sobrino C, Peng W, Gudbergsdottir S, Deng L, Vestergaard G, Peng X, She Q. CRISPR-Cas Adaptive Immune Systems of the Sulfolobales: Unravelling Their Complexity and Diversity. Life (Basel) 2015; 5:783-817. [PMID: 25764276 PMCID: PMC4390879 DOI: 10.3390/life5010783] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/24/2015] [Accepted: 02/27/2015] [Indexed: 12/26/2022] Open
Abstract
The Sulfolobales have provided good model organisms for studying CRISPR-Cas systems of the crenarchaeal kingdom of the archaea. These organisms are infected by a wide range of exceptional archaea-specific viruses and conjugative plasmids, and their CRISPR-Cas systems generally exhibit extensive structural and functional diversity. They carry large and multiple CRISPR loci and often multiple copies of diverse Type I and Type III interference modules as well as more homogeneous adaptation modules. These acidothermophilic organisms have recently provided seminal insights into both the adaptation process, the diverse modes of interference, and their modes of regulation. The functions of the adaptation and interference modules tend to be loosely coupled and the stringency of the crRNA-DNA sequence matching during DNA interference is relatively low, in contrast to some more streamlined CRISPR-Cas systems of bacteria. Despite this, there is evidence for a complex and differential regulation of expression of the diverse functional modules in response to viral infection. Recent work also supports critical roles for non-core Cas proteins, especially during Type III-directed interference, and this is consistent with these proteins tending to coevolve with core Cas proteins. Various novel aspects of CRISPR-Cas systems of the Sulfolobales are considered including an alternative spacer acquisition mechanism, reversible spacer acquisition, the formation and significance of antisense CRISPR RNAs, and a novel mechanism for avoidance of CRISPR-Cas defense. Finally, questions regarding the basis for the complexity, diversity, and apparent redundancy, of the intracellular CRISPR-Cas systems are discussed.
Collapse
Affiliation(s)
- Roger A Garrett
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Shiraz A Shah
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Susanne Erdmann
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, 2052 Sydney NSW, Australia.
| | - Guannan Liu
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Marzieh Mousaei
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Carlos León-Sobrino
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Wenfang Peng
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Soley Gudbergsdottir
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Ling Deng
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Gisle Vestergaard
- Helmholtz Zentrum München, Research Unit Environmental Genomics, Ingolstädter Landstraße 1, 85764 Oberschleißheim, Germany.
| | - Xu Peng
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| | - Qunxin She
- Archaea Centre, Department of Biology, Copenhagen University, Ole Maaløes Vej 5, DK2200 Copenhagen N, Denmark.
| |
Collapse
|
34
|
Alkhnbashi OS, Costa F, Shah SA, Garrett RA, Saunders SJ, Backofen R. CRISPRstrand: predicting repeat orientations to determine the crRNA-encoding strand at CRISPR loci. ACTA ACUST UNITED AC 2015; 30:i489-96. [PMID: 25161238 PMCID: PMC4147912 DOI: 10.1093/bioinformatics/btu459] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
MOTIVATION The discovery of CRISPR-Cas systems almost 20 years ago rapidly changed our perception of the bacterial and archaeal immune systems. CRISPR loci consist of several repetitive DNA sequences called repeats, inter-spaced by stretches of variable length sequences called spacers. This CRISPR array is transcribed and processed into multiple mature RNA species (crRNAs). A single crRNA is integrated into an interference complex, together with CRISPR-associated (Cas) proteins, to bind and degrade invading nucleic acids. Although existing bioinformatics tools can recognize CRISPR loci by their characteristic repeat-spacer architecture, they generally output CRISPR arrays of ambiguous orientation and thus do not determine the strand from which crRNAs are processed. Knowledge of the correct orientation is crucial for many tasks, including the classification of CRISPR conservation, the detection of leader regions, the identification of target sites (protospacers) on invading genetic elements and the characterization of protospacer-adjacent motifs. RESULTS We present a fast and accurate tool to determine the crRNA-encoding strand at CRISPR loci by predicting the correct orientation of repeats based on an advanced machine learning approach. Both the repeat sequence and mutation information were encoded and processed by an efficient graph kernel to learn higher-order correlations. The model was trained and tested on curated data comprising >4500 CRISPRs and yielded a remarkable performance of 0.95 AUC ROC (area under the curve of the receiver operator characteristic). In addition, we show that accurate orientation information greatly improved detection of conserved repeat sequence families and structure motifs. We integrated CRISPRstrand predictions into our CRISPRmap web server of CRISPR conservation and updated the latter to version 2.0. AVAILABILITY CRISPRmap and CRISPRstrand are available at http://rna.informatik.uni-freiburg.de/CRISPRmap. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Omer S Alkhnbashi
- Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany, Department of Biology, University of Copenhagen, Archaea Centre, Ole Maaloes Vej 5, DK2200 Copenhagen, Denmark and BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany
| | - Fabrizio Costa
- Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany, Department of Biology, University of Copenhagen, Archaea Centre, Ole Maaloes Vej 5, DK2200 Copenhagen, Denmark and BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany
| | - Shiraz A Shah
- Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany, Department of Biology, University of Copenhagen, Archaea Centre, Ole Maaloes Vej 5, DK2200 Copenhagen, Denmark and BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany
| | - Roger A Garrett
- Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany, Department of Biology, University of Copenhagen, Archaea Centre, Ole Maaloes Vej 5, DK2200 Copenhagen, Denmark and BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany
| | - Sita J Saunders
- Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany, Department of Biology, University of Copenhagen, Archaea Centre, Ole Maaloes Vej 5, DK2200 Copenhagen, Denmark and BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany
| | - Rolf Backofen
- Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany, Department of Biology, University of Copenhagen, Archaea Centre, Ole Maaloes Vej 5, DK2200 Copenhagen, Denmark and BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany Department of Computer Science, University of Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany, Department of Biology, University of Copenhagen, Archaea Centre, Ole Maaloes Vej 5, DK2200 Copenhagen, Denmark and BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, University of Freiburg, Germany
| |
Collapse
|
35
|
Peng W, Feng M, Feng X, Liang YX, She Q. An archaeal CRISPR type III-B system exhibiting distinctive RNA targeting features and mediating dual RNA and DNA interference. Nucleic Acids Res 2015; 43:406-17. [PMID: 25505143 PMCID: PMC4288192 DOI: 10.1093/nar/gku1302] [Citation(s) in RCA: 128] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 11/30/2014] [Accepted: 12/01/2014] [Indexed: 12/26/2022] Open
Abstract
CRISPR-Cas systems provide a small RNA-based mechanism to defend against invasive genetic elements in archaea and bacteria. To investigate the in vivo mechanism of RNA interference by two type III-B systems (Cmr-α and Cmr-β) in Sulfolobus islandicus, a genetic assay was developed using plasmids carrying an artificial mini-CRISPR (AC) locus with a single spacer. After pAC plasmids were introduced into different strains, Northern analyses confirmed that mature crRNAs were produced from the plasmid-borne CRISPR loci, which then guided gene silencing to target gene expression. Spacer mutagenesis identified a trinucleotide sequence in the 3'-region of crRNA that was crucial for RNA interference. Studying mutants lacking Cmr-α or Cmr-β system showed that each Cmr complex exhibited RNA interference. Strikingly, these analyses further revealed that the two Cmr systems displayed distinctive interference features. Whereas Cmr-β complexes targeted transcripts and could be recycled in RNA cleavage, Cmr-α complexes probably targeted nascent RNA transcripts and remained associated with the substrate. Moreover, Cmr-β exhibited much stronger RNA cleavage activity than Cmr-α. Since we previously showed that S. islandicus Cmr-α mediated transcription-dependent DNA interference, the Cmr-α constitutes the first CRISPR system exhibiting dual targeting of RNA and DNA.
Collapse
Affiliation(s)
- Wenfang Peng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| | - Mingxia Feng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xu Feng
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yun Xiang Liang
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Qunxin She
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 Copenhagen N, Denmark
| |
Collapse
|
36
|
Wietz M, Millán-Aguiñaga N, Jensen PR. CRISPR-Cas systems in the marine actinomycete Salinispora: linkages with phage defense, microdiversity and biogeography. BMC Genomics 2014; 15:936. [PMID: 25344663 PMCID: PMC4223832 DOI: 10.1186/1471-2164-15-936] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/29/2014] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Prokaryotic CRISPR-Cas systems confer resistance to viral infection and thus mediate bacteria-phage interactions. However, the distribution and functional diversity of CRISPRs among environmental bacteria remains largely unknown. Here, comparative genomics of 75 Salinispora strains provided insight into the diversity and distribution of CRISPR-Cas systems in a cosmopolitan marine actinomycete genus. RESULTS CRISPRs were found in all Salinispora strains, with the majority containing multiple loci and different Cas array subtypes. Of the six subtypes identified, three have not been previously described. A lower prophage frequency in S. arenicola was associated with a higher fraction of spacers matching Salinispora prophages compared to S. tropica, suggesting differing defensive capacities between Salinispora species. The occurrence of related prophages in strains from distant locations, as well as spacers matching those prophages inserted throughout spacer arrays, indicate recurring encounters with widely distributed phages over time. Linkages of CRISPR features with Salinispora microdiversity pointed to subclade-specific contacts with mobile genetic elements (MGEs). This included lineage-specific spacer deletions or insertions, which may reflect weak selective pressures to maintain immunity or distinct temporal interactions with MGEs, respectively. Biogeographic patterns in spacer and prophage distributions support the concept that Salinispora spp. encounter localized MGEs. Moreover, the presence of spacers matching housekeeping genes suggests that CRISPRs may have functions outside of viral defense. CONCLUSIONS This study provides a comprehensive examination of CRISPR-Cas systems in a broadly distributed group of environmental bacteria. The ubiquity and diversity of CRISPRs in Salinispora suggests that CRISPR-mediated interactions with MGEs represent a major force in the ecology and evolution of this cosmopolitan marine actinomycete genus.
Collapse
Affiliation(s)
- Matthias Wietz
- />Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037 USA
- />Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, 26129 Oldenburg, Germany
| | - Natalie Millán-Aguiñaga
- />Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037 USA
| | - Paul R Jensen
- />Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA 92037 USA
| |
Collapse
|
37
|
SMV1 virus-induced CRISPR spacer acquisition from the conjugative plasmid pMGB1 in Sulfolobus solfataricus P2. Biochem Soc Trans 2014; 41:1449-58. [PMID: 24256236 PMCID: PMC3839810 DOI: 10.1042/bst20130196] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Organisms of the crenarchaeal order Sulfolobales carry complex CRISPR (clustered regularly interspaced short palindromic repeats) adaptive immune systems. These systems are modular and show extensive structural and functional diversity, especially in their interference complexes. The primary targets are an exceptional range of diverse viruses, many of which propagate stably within cells and follow lytic life cycles without producing cell lysis. These properties are consistent with the difficulty of activating CRISPR spacer uptake in the laboratory, but appear to conflict with the high complexity and diversity of the CRISPR immune systems that are found among the Sulfolobales. In the present article, we re-examine the first successful induction of archaeal spacer acquisition in our laboratory that occurred exclusively for the conjugative plasmid pMGB1 in Sulfolobus solfataricus P2 that was co-infected with the virus SMV1 (Sulfolobus monocaudavirus 1). Although we reaffirm that protospacer selection is essentially a random process with respect to the pMGB1 genome, we identified single spacer sequences specific for each of CRISPR loci C, D and E that, exceptionally, occurred in many sequenced clones. Moreover, the same sequence was reproducibly acquired for a given locus in independent experiments, consistent with it being the first protospacer to be selected. There was also a small protospacer bias (1.6:1) to the antisense strand of protein genes. In addition, new experiments demonstrated that spacer acquisition in the previously inactive CRISPR locus A could be induced on freeze–thawing of the infected cells, suggesting that environmental stress can facilitate activation. Coincidentally with spacer acquisition, a mobile OrfB element was deleted from pMGB1, suggesting that interplay can occur between spacer acquisition and transposition.
Collapse
|
38
|
The RNA- and DNA-targeting CRISPR-Cas immune systems of Pyrococcus furiosus. Biochem Soc Trans 2014; 41:1416-21. [PMID: 24256230 DOI: 10.1042/bst20130056] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Using the hyperthermophile Pyrococcus furiosus, we have delineated several key steps in CRISPR (clustered regularly interspaced short palindromic repeats)-Cas (CRISPR-associated) invader defence pathways. P. furiosus has seven transcriptionally active CRISPR loci that together encode a total of 200 crRNAs (CRISPR RNAs). The 27 Cas proteins in this organism represent three distinct pathways and are primarily encoded in two large gene clusters. The Cas6 protein dices CRISPR locus transcripts to generate individual invader-targeting crRNAs. The mature crRNAs include a signature sequence element (the 5' tag) derived from the CRISPR locus repeat sequence that is important for function. crRNAs are tailored into distinct species and integrated into three distinct crRNA-Cas protein complexes that are all candidate effector complexes. The complex formed by the Cmr [Cas module RAMP (repeat-associated mysterious proteins)] (subtype III-B) proteins cleaves complementary target RNAs and can be programmed to cleave novel target RNAs in a prokaryotic RNAi-like manner. Evidence suggests that the other two CRISPR-Cas systems in P. furiosus, Csa (Cas subtype Apern) (subtype I-A) and Cst (Cas subtype Tneap) (subtype I-B), target invaders at the DNA level. Studies of the CRISPR-Cas systems from P. furiosus are yielding fundamental knowledge of mechanisms of crRNA biogenesis and silencing for three of the diverse CRISPR-Cas pathways, and reveal that organisms such as P. furiosus possess an arsenal of multiple RNA-guided mechanisms to resist diverse invaders. Our knowledge of the fascinating CRISPR-Cas pathways is leading in turn to our ability to co-opt these systems for exciting new biomedical and biotechnological applications.
Collapse
|
39
|
Djukic M, Brzuszkiewicz E, Fünfhaus A, Voss J, Gollnow K, Poppinga L, Liesegang H, Garcia-Gonzalez E, Genersch E, Daniel R. How to kill the honey bee larva: genomic potential and virulence mechanisms of Paenibacillus larvae. PLoS One 2014; 9:e90914. [PMID: 24599066 PMCID: PMC3944939 DOI: 10.1371/journal.pone.0090914] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2013] [Accepted: 02/05/2014] [Indexed: 12/20/2022] Open
Abstract
Paenibacillus larvae, a Gram positive bacterial pathogen, causes American Foulbrood (AFB), which is the most serious infectious disease of honey bees. In order to investigate the genomic potential of P. larvae, two strains belonging to two different genotypes were sequenced and used for comparative genome analysis. The complete genome sequence of P. larvae strain DSM 25430 (genotype ERIC II) consisted of 4,056,006 bp and harbored 3,928 predicted protein-encoding genes. The draft genome sequence of P. larvae strain DSM 25719 (genotype ERIC I) comprised 4,579,589 bp and contained 4,868 protein-encoding genes. Both strains harbored a 9.7 kb plasmid and encoded a large number of virulence-associated proteins such as toxins and collagenases. In addition, genes encoding large multimodular enzymes producing nonribosomally peptides or polyketides were identified. In the genome of strain DSM 25719 seven toxin associated loci were identified and analyzed. Five of them encoded putatively functional toxins. The genome of strain DSM 25430 harbored several toxin loci that showed similarity to corresponding loci in the genome of strain DSM 25719, but were non-functional due to point mutations or disruption by transposases. Although both strains cause AFB, significant differences between the genomes were observed including genome size, number and composition of transposases, insertion elements, predicted phage regions, and strain-specific island-like regions. Transposases, integrases and recombinases are important drivers for genome plasticity. A total of 390 and 273 mobile elements were found in strain DSM 25430 and strain DSM 25719, respectively. Comparative genomics of both strains revealed acquisition of virulence factors by horizontal gene transfer and provided insights into evolution and pathogenicity.
Collapse
Affiliation(s)
- Marvin Djukic
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Elzbieta Brzuszkiewicz
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Anne Fünfhaus
- Department for Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Jörn Voss
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Kathleen Gollnow
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Lena Poppinga
- Department for Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Heiko Liesegang
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| | - Eva Garcia-Gonzalez
- Department for Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Elke Genersch
- Department for Molecular Microbiology and Bee Diseases, Institute for Bee Research, Hohen Neuendorf, Germany
| | - Rolf Daniel
- Department of Genomic and Applied Microbiology and Göttingen Genomics Laboratory, Institute of Microbiology and Genetics, Georg-August-University Göttingen, Göttingen, Germany
| |
Collapse
|
40
|
Abstract
Bacterial genomes are remarkably stable from one generation to the next but are plastic on an evolutionary time scale, substantially shaped by horizontal gene transfer, genome rearrangement, and the activities of mobile DNA elements. This implies the existence of a delicate balance between the maintenance of genome stability and the tolerance of genome instability. In this review, we describe the specialized genetic elements and the endogenous processes that contribute to genome instability. We then discuss the consequences of genome instability at the physiological level, where cells have harnessed instability to mediate phase and antigenic variation, and at the evolutionary level, where horizontal gene transfer has played an important role. Indeed, this ability to share DNA sequences has played a major part in the evolution of life on Earth. The evolutionary plasticity of bacterial genomes, coupled with the vast numbers of bacteria on the planet, substantially limits our ability to control disease.
Collapse
|
41
|
Diversity, evolution, and therapeutic applications of small RNAs in prokaryotic and eukaryotic immune systems. Phys Life Rev 2014; 11:113-34. [DOI: 10.1016/j.plrev.2013.11.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Accepted: 11/05/2013] [Indexed: 12/26/2022]
|
42
|
Biswas A, Fineran PC, Brown CM. Accurate computational prediction of the transcribed strand of CRISPR non-coding RNAs. ACTA ACUST UNITED AC 2014; 30:1805-13. [PMID: 24578404 DOI: 10.1093/bioinformatics/btu114] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
MOTIVATION CRISPR RNAs (crRNAs) are a type of small non-coding RNA that form a key part of an acquired immune system in prokaryotes. Specific prediction methods find crRNA-encoding loci in nearly half of sequenced bacterial, and three quarters of archaeal, species. These Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) arrays consist of repeat elements alternating with specific spacers. Generally one strand is transcribed, producing long pre-crRNAs, which are processed to short crRNAs that base pair with invading nucleic acids to facilitate their destruction. No current software for the discovery of CRISPR loci predicts the direction of crRNA transcription. RESULTS We have developed an algorithm that accurately predicts the strand of the resulting crRNAs. The method uses as input CRISPR repeat predictions. CRISPRDirection uses parameters that are calculated from the CRISPR repeat predictions and flanking sequences, which are combined by weighted voting. The prediction may use prior coding sequence annotation but this is not required. CRISPRDirection correctly predicted the orientation of 94% of a reference set of arrays. AVAILABILITY AND IMPLEMENTATION The Perl source code is freely available from http://bioanalysis.otago.ac.nz/CRISPRDirection.
Collapse
Affiliation(s)
- Ambarish Biswas
- Department of Biochemistry, Department of Microbiology and Immunology and Genetics Otago, University of Otago, Dunedin 9054, New Zealand
| | - Peter C Fineran
- Department of Biochemistry, Department of Microbiology and Immunology and Genetics Otago, University of Otago, Dunedin 9054, New ZealandDepartment of Biochemistry, Department of Microbiology and Immunology and Genetics Otago, University of Otago, Dunedin 9054, New Zealand
| | - Chris M Brown
- Department of Biochemistry, Department of Microbiology and Immunology and Genetics Otago, University of Otago, Dunedin 9054, New ZealandDepartment of Biochemistry, Department of Microbiology and Immunology and Genetics Otago, University of Otago, Dunedin 9054, New Zealand
| |
Collapse
|
43
|
Abstract
CRISPR adaptive immune systems were analyzed for all available completed genomes of archaea, which included representatives of each of the main archaeal phyla. Initially, all proteins encoded within, and proximal to, CRISPR-cas loci were clustered and analyzed using a profile–profile approach. Then cas genes were assigned to gene cassettes and to functional modules for adaptation and interference. CRISPR systems were then classified primarily on the basis of their concatenated Cas protein sequences and gene synteny of the interference modules. With few exceptions, they could be assigned to the universal Type I or Type III systems. For Type I, subtypes I-A, I-B, and I-D dominate but the data support the division of subtype I-B into two subtypes, designated I-B and I-G. About 70% of the Type III systems fall into the universal subtypes III-A and III-B but the remainder, some of which are phyla-specific, diverge significantly in Cas protein sequences, and/or gene synteny, and they are classified separately. Furthermore, a few CRISPR systems that could not be assigned to Type I or Type III are categorized as variant systems. Criteria are presented for assigning newly sequenced archaeal CRISPR systems to the different subtypes. Several accessory proteins were identified that show a specific gene linkage, especially to Type III interference modules, and these may be cofunctional with the CRISPR systems. Evidence is presented for extensive exchange having occurred between adaptation and interference modules of different archaeal CRISPR systems, indicating the wide compatibility of the functionally diverse interference complexes with the relatively conserved adaptation modules.
Collapse
Affiliation(s)
- Gisle Vestergaard
- Archaea Centre; Department of Biology; University of Copenhagen; Copenhagen, Denmark; Molecular Microbial Ecology Group; Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | - Roger A Garrett
- Archaea Centre; Department of Biology; University of Copenhagen; Copenhagen, Denmark
| | - Shiraz A Shah
- Archaea Centre; Department of Biology; University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|
44
|
Almendros C, Mojica FJM, Díez-Villaseñor C, Guzmán NM, García-Martínez J. CRISPR-Cas functional module exchange in Escherichia coli. mBio 2014; 5:e00767-13. [PMID: 24473126 PMCID: PMC3903273 DOI: 10.1128/mbio.00767-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Accepted: 12/05/2013] [Indexed: 12/26/2022] Open
Abstract
UNLABELLED Clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated (cas) genes constitute the CRISPR-Cas systems found in the Bacteria and Archaea domains. At least in some strains they provide an efficient barrier against transmissible genetic elements such as plasmids and viruses. Two CRISPR-Cas systems have been identified in Escherichia coli, pertaining to subtypes I-E (cas-E genes) and I-F (cas-F genes), respectively. In order to unveil the evolutionary dynamics of such systems, we analyzed the sequence variations in the CRISPR-Cas loci of a collection of 131 E. coli strains. Our results show that the strain grouping inferred from these CRISPR data slightly differs from the phylogeny of the species, suggesting the occurrence of recombinational events between CRISPR arrays. Moreover, we determined that the primary cas-E genes of E. coli were altogether replaced with a substantially different variant in a minor group of strains that include K-12. Insertion elements play an important role in this variability. This result underlines the interchange capacity of CRISPR-Cas constituents and hints that at least some functional aspects documented for the K-12 system may not apply to the vast majority of E. coli strains. IMPORTANCE Escherichia coli is a model microorganism for the study of diverse aspects such as microbial evolution and is a component of the human gut flora that may have a direct impact in everyday life. This work was undertaken with the purpose of elucidating the evolutionary pathways that have led to the present situation of its significantly different CRISPR-Cas subtypes (I-E and I-F) in several strains of E. coli. In doing so, this information offers a novel and wider understanding of the variety and relevance of these regions within the species. Therefore, this knowledge may provide clues helping researchers better understand these systems for typing purposes and make predictions of their behavior in strains that, depending on their particular genetic dotation, would result in different levels of immunity to foreign genetic elements.
Collapse
Affiliation(s)
- Cristóbal Almendros
- Departamento de Fisiología, Genética y Microbiología, Universidad de Alicante, Campus de San Vicente, Alicante, Spain
| | | | | | | | | |
Collapse
|
45
|
Erdmann S, Le Moine Bauer S, Garrett RA. Inter-viral conflicts that exploit host CRISPR immune systems of Sulfolobus. Mol Microbiol 2014; 91:900-17. [PMID: 24433295 DOI: 10.1111/mmi.12503] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2013] [Indexed: 12/26/2022]
Abstract
Infection of Sulfolobus islandicus REY15A with mixtures of different Sulfolobus viruses, including STSV2, did not induce spacer acquisition by the host CRISPR immune system. However, coinfection with the tailed fusiform viruses SMV1 and STSV2 generated hyperactive spacer acquisition in both CRISPR loci, exclusively from STSV2, with the resultant loss of STSV2 but not SMV1. SMV1 was shown to activate adaptation while itself being resistant to CRISPR-mediated adaptation and DNA interference. Exceptionally, a single clone S-1 isolated from an SMV1 + STSV2-infected culture, that carried STSV2-specific spacers and had lost STSV2 but not SMV1, acquired spacers from SMV1. This effect was also reproducible on reinfecting wild-type host cells with a variant SMV1 isolated from the S-1 culture. The SMV1 variant lacked a virion protein ORF114 that was shown to bind DNA. This study also provided evidence for: (i) limits on the maximum sizes of CRISPR loci; (ii) spacer uptake strongly retarding growth of infected cultures; (iii) protospacer selection being essentially random and non-directional, and (iv) the reversible uptake of spacers from STSV2 and SMV1. A hypothesis is presented to explain the interactive conflicts between SMV1 and the host CRISPR immune system.
Collapse
Affiliation(s)
- Susanne Erdmann
- Archaea Centre, Department of Biology, University of Copenhagen, Ole Maaløes Vej 5, DK-2200 N, Copenhagen, Denmark
| | | | | |
Collapse
|
46
|
Manica A, Zebec Z, Steinkellner J, Schleper C. Unexpectedly broad target recognition of the CRISPR-mediated virus defence system in the archaeon Sulfolobus solfataricus. Nucleic Acids Res 2013; 41:10509-17. [PMID: 24021627 PMCID: PMC3905844 DOI: 10.1093/nar/gkt767] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2013] [Revised: 08/03/2013] [Accepted: 08/05/2013] [Indexed: 12/26/2022] Open
Abstract
The hyperthermophilic archaeon Sulfolobus solfataricus carries an extensive array of clustered regularly interspaced short palindromic repeats (CRISPR) systems able to mediate DNA degradation of invading genetic elements when complementarity to the small CRISPR-derived (cr)RNAs is given. Studying virus defence in vivo with recombinant viral variants, we demonstrate here that an unexpectedly high number of mutations are tolerated between the CRISPR-derived guide RNAs (crRNAs) and their target sequences (protospacer). Up to 15 mismatches in the crRNA still led to ∼50% of DNA degradation, when these mutations were outside the 'seed' region. More than 15 mutations were necessary to fully abolished interference. Different from other CRISPR systems investigated in vivo, mutations outside the protospacer region indicated no need for a protospacer adjacent motif sequence to confer DNA interference. However, complementarity of only 3 nucleotides between the repeat-derived 5' handle of the crRNA and nucleotides adjacent to the protospacer enabled self-recognition, i.e. protection of the host locus. Our findings show commonalities and differences among the various CRISPR-mediated defence systems and suggest that they should not merely be perceived as a 'first-barrier-defence system' but may be considered to have a broader mechanism that allows host cells to cope with viruses keeping them at reduced levels.
Collapse
Affiliation(s)
| | | | | | - Christa Schleper
- Department of Genetics in Ecology, University of Vienna, Althanstrasse 14, A-1090 Vienna, Austria
| |
Collapse
|
47
|
Acuña LG, Cárdenas JP, Covarrubias PC, Haristoy JJ, Flores R, Nuñez H, Riadi G, Shmaryahu A, Valdés J, Dopson M, Rawlings DE, Banfield JF, Holmes DS, Quatrini R. Architecture and gene repertoire of the flexible genome of the extreme acidophile Acidithiobacillus caldus. PLoS One 2013; 8:e78237. [PMID: 24250794 PMCID: PMC3826726 DOI: 10.1371/journal.pone.0078237] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2013] [Accepted: 09/10/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Acidithiobacillus caldus is a sulfur oxidizing extreme acidophile and the only known mesothermophile within the Acidithiobacillales. As such, it is one of the preferred microbes for mineral bioprocessing at moderately high temperatures. In this study, we explore the genomic diversity of A. caldus strains using a combination of bioinformatic and experimental techniques, thus contributing first insights into the elucidation of the species pangenome. PRINCIPAL FINDINGS Comparative sequence analysis of A. caldus ATCC 51756 and SM-1 indicate that, despite sharing a conserved and highly syntenic genomic core, both strains have unique gene complements encompassing nearly 20% of their respective genomes. The differential gene complement of each strain is distributed between the chromosomal compartment, one megaplasmid and a variable number of smaller plasmids, and is directly associated to a diverse pool of mobile genetic elements (MGE). These include integrative conjugative and mobilizable elements, genomic islands and insertion sequences. Some of the accessory functions associated to these MGEs have been linked previously to the flexible gene pool in microorganisms inhabiting completely different econiches. Yet, others had not been unambiguously mapped to the flexible gene pool prior to this report and clearly reflect strain-specific adaption to local environmental conditions. SIGNIFICANCE For many years, and because of DNA instability at low pH and recurrent failure to genetically transform acidophilic bacteria, gene transfer in acidic environments was considered negligible. Findings presented herein imply that a more or less conserved pool of actively excising MGEs occurs in the A. caldus population and point to a greater frequency of gene exchange in this econiche than previously recognized. Also, the data suggest that these elements endow the species with capacities to withstand the diverse abiotic and biotic stresses of natural environments, in particular those associated with its extreme econiche.
Collapse
Affiliation(s)
- Lillian G. Acuña
- Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Juan Pablo Cárdenas
- Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Paulo C. Covarrubias
- Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | | | | | | | - Gonzalo Riadi
- Centro de Bioinformática y Simulación Molecular, Facultad de Ingenieria, Universidad de Talca, Talca, Chile
| | | | - Jorge Valdés
- Center for Systems Biotechnology, Fraunhofer Chile, Santiago, Chile
| | - Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems (EEMiS), Linnaeus University, Kalmar, Sweden
| | - Douglas E. Rawlings
- Department of Microbiology, University of Stellenbosch, Private Bag X1, Matieland, South Africa
| | - Jillian F. Banfield
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, California, United States of America
| | - David S. Holmes
- Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| | - Raquel Quatrini
- Fundación Ciencia & Vida, Santiago, Chile
- Facultad de Ciencias Biologicas, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
48
|
Lange SJ, Alkhnbashi OS, Rose D, Will S, Backofen R. CRISPRmap: an automated classification of repeat conservation in prokaryotic adaptive immune systems. Nucleic Acids Res 2013; 41:8034-44. [PMID: 23863837 PMCID: PMC3783184 DOI: 10.1093/nar/gkt606] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Central to Clustered Regularly Interspaced Short Palindromic Repeat (CRISPR)-Cas systems are repeated RNA sequences that serve as Cas-protein-binding templates. Classification is based on the architectural composition of associated Cas proteins, considering repeat evolution is essential to complete the picture. We compiled the largest data set of CRISPRs to date, performed comprehensive, independent clustering analyses and identified a novel set of 40 conserved sequence families and 33 potential structure motifs for Cas-endoribonucleases with some distinct conservation patterns. Evolutionary relationships are presented as a hierarchical map of sequence and structure similarities for both a quick and detailed insight into the diversity of CRISPR-Cas systems. In a comparison with Cas-subtypes, I-C, I-E, I-F and type II were strongly coupled and the remaining type I and type III subtypes were loosely coupled to repeat and Cas1 evolution, respectively. Subtypes with a strong link to CRISPR evolution were almost exclusive to bacteria; nevertheless, we identified rare examples of potential horizontal transfer of I-C and I-E systems into archaeal organisms. Our easy-to-use web server provides an automated assignment of newly sequenced CRISPRs to our classification system and enables more informed choices on future hypotheses in CRISPR-Cas research: http://rna.informatik.uni-freiburg.de/CRISPRmap.
Collapse
Affiliation(s)
- Sita J Lange
- Bioinformatics Group, Department of Computer Science, Albert-Ludwigs-University Freiburg, Georges-Köhler-Allee 106, 79110 Freiburg, Germany, ZBSA Centre for Biological Systems Analysis, Albert-Ludwigs-University Freiburg, Habsburgerstr. 49, 79104 Freiburg, Germany, BIOSS Centre for Biological Signalling Studies, Cluster of Excellence, Albert-Ludwigs-University Freiburg, Germany and Center for non-coding RNA in Technology and Health, University of Copenhagen, Gronnegardsvej 3, DK-1870 Frederiksberg C, Denmark
| | | | | | | | | |
Collapse
|
49
|
Shah SA, Erdmann S, Mojica FJ, Garrett RA. Protospacer recognition motifs: mixed identities and functional diversity. RNA Biol 2013; 10:891-9. [PMID: 23403393 PMCID: PMC3737346 DOI: 10.4161/rna.23764] [Citation(s) in RCA: 238] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Revised: 01/21/2013] [Accepted: 01/24/2013] [Indexed: 02/07/2023] Open
Abstract
Protospacer adjacent motifs (PAMs) were originally characterized for CRISPR-Cas systems that were classified on the basis of their CRISPR repeat sequences. A few short 2-5 bp sequences were identified adjacent to one end of the protospacers. Experimental and bioinformatical results linked the motif to the excision of protospacers and their insertion into CRISPR loci. Subsequently, evidence accumulated from different virus- and plasmid-targeting assays, suggesting that these motifs were also recognized during DNA interference, at least for the recently classified type I and type II CRISPR-based systems. The two processes, spacer acquisition and protospacer interference, employ different molecular mechanisms, and there is increasing evidence to suggest that the sequence motifs that are recognized, while overlapping, are unlikely to be identical. In this article, we consider the properties of PAM sequences and summarize the evidence for their dual functional roles. It is proposed to use the terms protospacer associated motif (PAM) for the conserved DNA sequence and to employ spacer acqusition motif (SAM) and target interference motif (TIM), respectively, for acquisition and interference recognition sites.
Collapse
Affiliation(s)
- Shiraz A. Shah
- Archaea Centre; Department of Biology, University of Copenhagen; Copenhagen, Denmark
| | - Susanne Erdmann
- Archaea Centre; Department of Biology, University of Copenhagen; Copenhagen, Denmark
| | - Francisco J.M. Mojica
- Departamento de Fisiología; Genética y Microbiología; Facultad de Ciencias; Universidad de Alicante; Alicante, Spain
| | - Roger A. Garrett
- Archaea Centre; Department of Biology, University of Copenhagen; Copenhagen, Denmark
| |
Collapse
|
50
|
Jaubert C, Danioux C, Oberto J, Cortez D, Bize A, Krupovic M, She Q, Forterre P, Prangishvili D, Sezonov G. Genomics and genetics of Sulfolobus islandicus LAL14/1, a model hyperthermophilic archaeon. Open Biol 2013; 3:130010. [PMID: 23594878 PMCID: PMC3718332 DOI: 10.1098/rsob.130010] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The 2 465 177 bp genome of Sulfolobus islandicus LAL14/1, host of the model rudivirus SIRV2, was sequenced. Exhaustive comparative genomic analysis of S. islandicus LAL14/1 and the nine other completely sequenced S. islandicus strains isolated from Iceland, Russia and USA revealed a highly syntenic common core genome of approximately 2 Mb and a long hyperplastic region containing most of the strain-specific genes. In LAL14/1, the latter region is enriched in insertion sequences, CRISPR (clustered regularly interspaced short palindromic repeats), glycosyl transferase genes, toxin-antitoxin genes and MITE (miniature inverted-repeat transposable elements). The tRNA genes of LAL14/1 are preferential targets for the integration of mobile elements but clusters of atypical genes (CAG) are also integrated elsewhere in the genome. LAL14/1 carries five CRISPR loci with 10 per cent of spacers matching perfectly or imperfectly the genomes of archaeal viruses and plasmids found in the Icelandic hot springs. Strikingly, the CRISPR_2 region of LAL14/1 carries an unusually long 1.9 kb spacer interspersed between two repeat regions and displays a high similarity to pING1-like conjugative plasmids. Finally, we have developed a genetic system for S. islandicus LAL14/1 and created ΔpyrEF and ΔCRISPR_1 mutants using double cross-over and pop-in/pop-out approaches, respectively. Thus, LAL14/1 is a promising model to study virus-host interactions and the CRISPR/Cas defence mechanism in Archaea.
Collapse
Affiliation(s)
- Carole Jaubert
- Département de Microbiologie, Unité Biologie Moléculaire du Gène chez les Extrêmophiles, Institut Pasteur, Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|