1
|
Portas A, Carriot N, Barry-Martinet R, Ortalo-Magné A, Hajjoul H, Dormoy B, Culioli G, Quillien N, Briand JF. Shear stress controls prokaryotic and eukaryotic biofilm communities together with EPS and metabolomic expression in a semi-controlled coastal environment in the NW Mediterranean Sea. ENVIRONMENTAL MICROBIOME 2024; 19:109. [PMID: 39695832 DOI: 10.1186/s40793-024-00647-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/21/2024] [Indexed: 12/20/2024]
Abstract
While waves, swells and currents are important drivers of the ocean, their specific influence on the biocolonization of marine surfaces has been little studied. The aim of this study was to determine how hydrodynamics influence the dynamics of microbial communities, metabolic production, macrofoulers and the associated vagile fauna. Using a field device simulating a shear stress gradient, a multi-scale characterization of attached communities (metabarcoding, LC-MS, biochemical tests, microscopy) was carried out for one month each season in Toulon Bay (northwestern Mediterranean). Shear stress appeared to be the primary factor influencing biomass, EPS production and community structure and composition. Especially, the transition from static to dynamic conditions, characterized by varying shear stress intensities, had a more pronounced effect on prokaryotic and eukaryotic beta-diversity than changes in shear stress intensity or seasonal physico-chemical parameters. In static samples, mobile microbe feeders such as arthropods and nematodes were predominant, whereas shear stress favored the colonization of sessile organisms and heterotrophic protists using the protective structure of biofilms for growth. The increase in shear stress resulted in a decrease in biomass but an overproduction of EPS, specifically exopolysaccharides, suggesting an adaptive response to withstand shear forces. Metabolite analysis highlighted the influence of shear stress on community dynamics. Specific metabolites associated with static conditions correlated positively with certain bacterial and algal groups, indirectly indicating reduced grazer control with increasing shear stress.
Collapse
Affiliation(s)
- Aurélie Portas
- France Energies Marines, Plouzané, France.
- Laboratoire MAPIEM, Université de Toulon, Toulon, France.
| | - Nathan Carriot
- Laboratoire MAPIEM, Université de Toulon, Toulon, France
| | | | | | - Houssam Hajjoul
- Université de Toulon, Aix Marseille Univ., CNRS, IRD, MIO, Toulon, France
| | - Bruno Dormoy
- Laboratoire d'Analyses de Surveillance et d'Expertise de La Marine (LASEM), Toulon, France
| | - Gérald Culioli
- Laboratoire MAPIEM, Université de Toulon, Toulon, France
- IMBE, Aix Marseille Université, Avignon Université, CNRS, IRD, Avignon, France
| | | | | |
Collapse
|
2
|
Salemi RI, Cruz AK, Hershey DM. A flagellar accessory protein links chemotaxis to surface sensing. J Bacteriol 2024; 206:e0040424. [PMID: 39422484 PMCID: PMC11580411 DOI: 10.1128/jb.00404-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 10/01/2024] [Indexed: 10/19/2024] Open
Abstract
Bacteria find suitable locations for colonization by sensing and responding to surfaces. Complex signaling repertoires control surface colonization, and surface contact sensing by the flagellum plays a central role in activating colonization programs. Caulobacter crescentus adheres to surfaces using a polysaccharide adhesin called the holdfast. In C. crescentus, disruption of the flagellum through interactions with a surface or mutation of flagellar genes increases holdfast production. Our group previously identified several C. crescentus genes involved in flagellar surface sensing. One of these, fssF, codes for a protein with homology to the flagellar C-ring protein FliN. We show here that a fluorescently tagged FssF protein localizes to the flagellated pole of the cell and requires all components of the flagellar C-ring for proper localization, supporting the model that FssF associates with the C-ring. Deleting fssF results in a severe motility defect, which we show is due to a disruption of chemotaxis. Epistasis experiments demonstrate that fssF promotes adhesion through a stator-dependent pathway when late-stage flagellar mutants are disrupted. Separately, we find that disruption of chemotaxis through deletion of fssF or other chemotaxis genes results in a hyperadhesion phenotype. Key genes in the surface sensing network (pleD, motB, and dgcB) contribute to both ∆flgH-dependent and ∆fssF-dependent hyperadhesion, but these genes affect adhesion differently in the two hyperadhesive backgrounds. Our results support a model in which the stator subunits of the flagella incorporate both mechanical and chemical signals to regulate adhesion.IMPORTANCEBacterial biofilms pose a threat in clinical and industrial settings. Surface sensing is one of the first steps in biofilm formation. Studying surface sensing can improve our understanding of biofilm formation and develop preventative strategies. In this study, we use the freshwater bacterium Caulobacter crescentus to study surface sensing and the regulation of surface attachment. We characterize a previously unstudied gene, fssF, and find that it localizes to the cell pole in the presence of three proteins that make up a component of the flagellum called the C-ring. Additionally, we find that fssF is required for chemotaxis behavior but dispensable for swimming motility. Lastly, our results indicate that deletion of fssF and other genes required for chemotaxis results in a hyperadhesive phenotype. These results support that surface sensing requires chemotaxis for a robust response to a surface.
Collapse
Affiliation(s)
- Rachel I. Salemi
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Ana K. Cruz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - David M. Hershey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
3
|
Braham A, Lemelle L, Ducasse R, Toukabri H, Mottin E, Fabrèges B, Calvez V, Place C. Surface conversion of the dynamics of bacteria escaping chemorepellents. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2024; 47:56. [PMID: 39278991 PMCID: PMC11402855 DOI: 10.1140/epje/s10189-024-00450-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 09/03/2024] [Indexed: 09/18/2024]
Abstract
Flagellar swimming hydrodynamics confers a recognized advantage for attachment on solid surfaces. Whether this motility further enables the following environmental cues was experimentally explored. Motile E. coli (OD ~ 0.1) in a 100 µm-thick channel were exposed to off-equilibrium gradients set by a chemorepellent Ni(NO3)2-source (250 mM). Single bacterial dynamics at the solid surface was analyzed by dark-field videomicroscopy at a fixed position. The number of bacteria indicated their congregation into a wave escaping from the repellent source. Besides the high velocity drift in the propagation direction within the wave, an unexpectedly high perpendicular component drift was also observed. Swimming hydrodynamics CW-bends the bacteria trajectories during their primo approach to the surface (< 2 µm), and a high enough tumbling frequency likely preserves a notable lateral drift. This comprehension substantiates a survival strategy tailored to toxic environments, which involves drifting along surfaces, promoting the inception of colonization at the most advantageous sites.
Collapse
Affiliation(s)
- Asma Braham
- Laboratoire de Géologie de Lyon-Terre Planètes Et Environnement, ENS de Lyon, University Claude Bernard, CNRS, 69342, Lyon, France
- Laboratoire de Physique, ENS de Lyon, CNRS, 69342, Lyon, France
| | - Laurence Lemelle
- Laboratoire de Géologie de Lyon-Terre Planètes Et Environnement, ENS de Lyon, University Claude Bernard, CNRS, 69342, Lyon, France.
| | - Romain Ducasse
- Laboratoire Jacques-Louis Lions, Université Paris Cité, Sorbonne University, CNRS, 75005, Paris, France
| | - Houyem Toukabri
- Laboratoire de Géologie de Lyon-Terre Planètes Et Environnement, ENS de Lyon, University Claude Bernard, CNRS, 69342, Lyon, France
- Centre for Genomic Regulation, C/ Dr Aiguader, 88, 08003, Barcelone, Spain
| | - Eleonore Mottin
- Laboratoire de Géologie de Lyon-Terre Planètes Et Environnement, ENS de Lyon, University Claude Bernard, CNRS, 69342, Lyon, France
| | - Benoit Fabrèges
- Institut Camille Jordan, University Claude Bernard, CNRS, 69100, Villeurbanne, France
| | - Vincent Calvez
- Institut Camille Jordan, University Claude Bernard, CNRS, 69100, Villeurbanne, France
| | - Christophe Place
- Laboratoire de Physique, ENS de Lyon, CNRS, 69342, Lyon, France.
| |
Collapse
|
4
|
Rajewska M, Maciąg T, Narajczyk M, Jafra S. Carbon Source and Substrate Surface Affect Biofilm Formation by the Plant-Associated Bacterium Pseudomonas donghuensis P482. Int J Mol Sci 2024; 25:8351. [PMID: 39125921 PMCID: PMC11312691 DOI: 10.3390/ijms25158351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
The ability of bacteria to colonize diverse environmental niches is often linked to their competence in biofilm formation. It depends on the individual characteristics of a strain, the nature of the colonized surface (abiotic or biotic), or the availability of certain nutrients. Pseudomonas donghuensis P482 efficiently colonizes the rhizosphere of various plant hosts, but a connection between plant tissue colonization and the biofilm formation ability of this strain has not yet been established. We demonstrate here that the potential of P482 to form biofilms on abiotic surfaces and the structural characteristics of the biofilm are influenced by the carbon source available to the bacterium, with glycerol promoting the process. Also, the type of substratum, polystyrene or glass, impacts the ability of P482 to attach to the surface. Moreover, P482 mutants in genes associated with motility or chemotaxis, the synthesis of polysaccharides, and encoding proteases or regulatory factors, which affect biofilm formation on glass, were fully capable of colonizing the root tissue of both tomato and maize hosts. Investigating the role of cellular factors in biofilm formation using these plant-associated bacteria shows that the ability of bacteria to form biofilm on abiotic surfaces does not necessarily mirror its ability to colonize plant tissues. Our research provides a broader perspective on the adaptation of these bacteria to various environments.
Collapse
Affiliation(s)
- Magdalena Rajewska
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| | - Tomasz Maciąg
- Institute of Biology, Department of Botany, Warsaw University of Life Sciences, Nowoursynowska 159, 02-776 Warsaw, Poland;
| | - Magdalena Narajczyk
- Laboratory of Electron Microscopy, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Sylwia Jafra
- Laboratory of Plant Microbiology, Intercollegiate Faculty of Biotechnology of University of Gdansk and Medical University of Gdansk, Abrahama 58, 80-307 Gdansk, Poland;
| |
Collapse
|
5
|
Geiger CJ, Wong GCL, O'Toole GA. A bacterial sense of touch: T4P retraction motor as a means of surface sensing by Pseudomonas aeruginosa PA14. J Bacteriol 2024; 206:e0044223. [PMID: 38832786 PMCID: PMC11270903 DOI: 10.1128/jb.00442-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/05/2024] Open
Abstract
Most microbial cells found in nature exist in matrix-covered, surface-attached communities known as biofilms. This mode of growth is initiated by the ability of the microbe to sense a surface on which to grow. The opportunistic pathogen Pseudomonas aeruginosa (Pa) PA14 utilizes a single polar flagellum and type 4 pili (T4P) to sense surfaces. For Pa, T4P-dependent "twitching" motility is characterized by effectively pulling the cell across a surface through a complex process of cooperative binding, pulling, and unbinding. T4P retraction is powered by hexameric ATPases. Pa cells that have engaged a surface increase production of the second messenger cyclic AMP (cAMP) over multiple generations via the Pil-Chp system. This rise in cAMP allows cells and their progeny to become better adapted for surface attachment and activates virulence pathways through the cAMP-binding transcription factor Vfr. While many studies have focused on mechanisms of T4P twitching and regulation of T4P production and function by the Pil-Chp system, the mechanism by which Pa senses and relays a surface-engagement signal to the cell is still an open question. Here we review the current state of the surface sensing literature for Pa, with a focus on T4P, and propose an integrated model of surface sensing whereby the retraction motor PilT senses and relays the signal to the Pil-Chp system via PilJ to drive cAMP production and adaptation to a surface lifestyle.
Collapse
Affiliation(s)
- C. J. Geiger
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - G. C. L. Wong
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, California, USA
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California, USA
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California, USA
| | - G. A. O'Toole
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
6
|
Salemi RI, Cruz AK, Hershey DM. A flagellar accessory protein links chemotaxis to surface sensing. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.20.599946. [PMID: 38948737 PMCID: PMC11212940 DOI: 10.1101/2024.06.20.599946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Bacteria find suitable locations for colonization by sensing and responding to surfaces. Complex signaling repertoires control surface colonization, and surface contact sensing by the flagellum plays a central role in activating colonization programs. Caulobacter crescentus adheres to surfaces using a polysaccharide adhesin called the holdfast. In C. crescentus, disruption of the flagellum through interactions with a surface or mutation of flagellar genes increases holdfast production. Our group previously identified several C. crescentus genes involved in flagellar surface sensing. One of these, called fssF, codes for a protein with homology to the flagellar C-ring protein FliN. We show here that a fluorescently tagged FssF protein localizes to the flagellated pole of the cell and requires all components of the flagellar C-ring for proper localization, supporting the model that FssF associates with the C-ring. Deleting fssF results in a severe motility defect that we show is due to a disruption of chemotaxis. Epistasis experiments demonstrate that fssF promotes adhesion through a stator-dependent pathway when late-stage flagellar mutants are disrupted. Separately, we find that disruption of chemotaxis through deletion of fssF or other chemotaxis genes results in a hyperadhesion phenotype. Key genes in the surface sensing network (pleD, motB, and dgcB) contribute to both ∆flgH-dependent and ∆fssF-dependent hyperadhesion, but these genes affect adhesion differently in the two hyperadhesive backgrounds. Our results support a model in which the stator subunits of the flagella incorporate both mechanical and chemical signals to regulate adhesion.
Collapse
Affiliation(s)
- Rachel I. Salemi
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Ana K. Cruz
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - David M. Hershey
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| |
Collapse
|
7
|
Meng Y, Zhang X, Zhai Y, Li Y, Shao Z, Liu S, Zhang C, Xing XH, Zheng H. Identification of the mutual gliding locus as a factor for gut colonization in non-native bee hosts using the ARTP mutagenesis. MICROBIOME 2024; 12:93. [PMID: 38778376 PMCID: PMC11112851 DOI: 10.1186/s40168-024-01813-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 04/09/2024] [Indexed: 05/25/2024]
Abstract
BACKGROUND The gut microbiota and their hosts profoundly affect each other's physiology and evolution. Identifying host-selected traits is crucial to understanding the processes that govern the evolving interactions between animals and symbiotic microbes. Current experimental approaches mainly focus on the model bacteria, like hypermutating Escherichia coli or the evolutionary changes of wild stains by host transmissions. A method called atmospheric and room temperature plasma (ARTP) may overcome the bottleneck of low spontaneous mutation rates while maintaining mild conditions for the gut bacteria. RESULTS We established an experimental symbiotic system with gnotobiotic bee models to unravel the molecular mechanisms promoting host colonization. By in vivo serial passage, we tracked the genetic changes of ARTP-treated Snodgrassella strains from Bombus terrestris in the non-native honeybee host. We observed that passaged isolates showing genetic changes in the mutual gliding locus have a competitive advantage in the non-native host. Specifically, alleles in the orphan mglB, the GTPase activating protein, promoted colonization potentially by altering the type IV pili-dependent motility of the cells. Finally, competition assays confirmed that the mutations out-competed the ancestral strain in the non-native honeybee gut but not in the native host. CONCLUSIONS Using the ARTP mutagenesis to generate a mutation library of gut symbionts, we explored the potential genetic mechanisms for improved gut colonization in non-native hosts. Our findings demonstrate the implication of the cell mutual-gliding motility in host association and provide an experimental system for future study on host-microbe interactions. Video Abstract.
Collapse
Affiliation(s)
- Yujie Meng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China
- MGI Tech, Qingdao, 266426, China
| | - Xue Zhang
- Department of Entomology, College of Plant Protection, China Agricultural University, Beijing, 100083, China
| | - Yifan Zhai
- Institute of Plant Protection, Shandong Academy of Agricultural Sciences, Jinan, 250100, China
| | - Yuan Li
- MGI Tech, Qingdao, 266426, China
| | | | | | - Chong Zhang
- Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xin-Hui Xing
- Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Hao Zheng
- Faculty of Food Science and Engineering, Kunming University of Science and Technology, Kunming, 650500, China.
| |
Collapse
|
8
|
Shao L, Shen Z, Li M, Guan C, Fan B, Chai Y, Zhao Y. ccdC Regulates Biofilm Dispersal in Bacillus velezensis FZB42. Int J Mol Sci 2024; 25:5201. [PMID: 38791239 PMCID: PMC11120784 DOI: 10.3390/ijms25105201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/06/2024] [Indexed: 05/26/2024] Open
Abstract
Bacillus velezensis FZB42 is a plant growth-promoting rhizobacterium (PGPR) and a model microorganism for biofilm studies. Biofilms are required for the colonization and promotion of plant growth in the rhizosphere. However, little is known about how the final stage of the biofilm life cycle is regulated, when cells regain their motility and escape the mature biofilm to spread and colonize new niches. In this study, the non-annotated gene ccdC was found to be involved in the process of biofilm dispersion. We found that the ccdC-deficient strain maintained a wrinkled state at the late stage of biofilm formation in the liquid-gas interface culture, and the bottom solution showed a clear state, indicating that no bacterial cells actively escaped, which was further evidenced by the formation of a cellular ring (biofilm pellicle) located on top of the preformed biofilm. It can be concluded that dispersal, a biofilm property that relies on motility proficiency, is also positively affected by the unannotated gene ccdC. Furthermore, we found that the level of cyclic diguanylate (c-di-GMP) in the ccdC-deficient strain was significantly greater than that in the wild-type strain, suggesting that B. velezensis exhibits a similar mechanism by regulating the level of c-di-GMP, the master regulator of biofilm formation, dispersal, and cell motility, which controls the fitness of biofilms in Pseudomonas aeruginosain. In this study, we investigated the mechanism regulating biofilm dispersion in PGPR.
Collapse
Affiliation(s)
- Lin Shao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Zizhu Shen
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Meiju Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
| | - Chenyun Guan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
| | - Ben Fan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
- College of Life Science, Nanjing Forestry University, Nanjing 210037, China
| | - Yunrong Chai
- Department of Biology, Northeastern University, Boston, MA 02115, USA
| | - Yinjuan Zhao
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forestry and Grass, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Hernández-Sánchez A, Páez-Pérez ED, Alfaro-Saldaña E, Olivares-Illana V, García-Meza JV. Understanding a Core Pilin of the Type IVa Pili of Acidithiobacillus thiooxidans, PilV. J Microbiol Biotechnol 2024; 34:527-537. [PMID: 38346803 PMCID: PMC11016768 DOI: 10.4014/jmb.2310.10033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/22/2023] [Accepted: 12/29/2023] [Indexed: 04/17/2024]
Abstract
Pilins are protein subunits of pili. The pilins of type IV pili (T4P) in pathogenic bacteria are well characterized, but anything is known about the T4P proteins in acidophilic chemolithoautotrophic microorganisms such as the genus Acidithiobacillus. The interest in T4P of A. thiooxidans is because of their possible role in cell recruitment and bacterial aggregation on the surface of minerals during biooxidation of sulfide minerals. In this study we present a successful ad hoc methodology for the heterologous expression and purification of extracellular proteins such as the minor pilin PilV of the T4P of A. thiooxidans, a pilin exposed to extreme conditions of acidity and high oxidation-reduction potentials, and that interact with metal sulfides in an environment rich in dissolved minerals. Once obtained, the model structure of A. thiooxidans PilV revealed the core basic architecture of T4P pilins. Because of the acidophilic condition, we carried out in silico characterization of the protonation status of acidic and basic residues of PilV in order to calculate the ionization state at specific pH values and evaluated their pH stability. Further biophysical characterization was done using UV-visible and fluorescence spectroscopy and the results showed that PilV remains soluble and stable even after exposure to significant changes of pH. PilV has a unique amino acid composition that exhibits acid stability, with significant biotechnology implications such as biooxidation of sulfide minerals. The biophysics profiles of PilV open new paradigms about resilient proteins and stimulate the study of other pilins from extremophiles.
Collapse
Affiliation(s)
- Araceli Hernández-Sánchez
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - Edgar D. Páez-Pérez
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - Elvia Alfaro-Saldaña
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y Cáncer. Instituto de Física, Universidad Autónoma de San Luis Potosí, Av. Parque Chapultepec 1570, Privadas del Pedregal, San Luis Potosí, 78210, SLP, México
| | - J. Viridiana García-Meza
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, Sierra Leona 550, San Luis Potosí, 78210, SLP, México
| |
Collapse
|
10
|
Liu C, Zhao C, Wang L, Du X, Zhu L, Wang J, Mo Kim Y, Wang J. Biodegradation mechanism of chlorpyrifos by Bacillus sp. H27: Degradation enzymes, products, pathways and whole genome sequencing analysis. ENVIRONMENTAL RESEARCH 2023; 239:117315. [PMID: 37805180 DOI: 10.1016/j.envres.2023.117315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023]
Abstract
Chlorpyrifos (CP) is a pesticide widely used in agricultural production. However, excessive use of CP is risky for human health and the ecological environment. Microbial remediation has become a research hotspot of environmental pollution control. In this study, the effective CP-degrading strain H27 (Bacillus cereus) was screened from farmland soil, and the degradation ratio was more than 80%. Then, the degradation mechanism was discussed in terms of enzymes, pathways, products and genes, and the mechanism was improved in terms of cell motility, secretory transport system and biofilm formation. The key CP-degrading enzymes were mainly intracellular enzymes (IE), and the degradation ratio reached 49.6% within 30 min. The optimal pH for IE was 7.0, and the optimal temperature was 25 °C. Using DFT and HPLC‒MS analysis, it was found that degradation mainly involved oxidation, hydrolysis and other reactions, and 3 degradation pathways and 14 products were identified, among which TCP (3,5,6-trichloro-2-pyridinol) was the main primary degradation product in addition to small molecules such as CO2 and H2O. Finally, the whole genome of strain H27 was sequenced, and the related degrading genes and enzymes were investigated to improve the metabolic pathways. Strain H27 had perfect genes related to flagellar assembly and chemotaxis and tended to tolerate CP. Moreover, it can secrete esterase, phosphatase and other substances, which can form biofilms and degrade CP in the environment. In addition, CP enters the cell under the action of permeases or transporters, and it is metabolized by IE. The degradation mechanism of CP by strain H27 is speculated in this study, which provided a theoretical basis for enriching CP-degrading bacteria resources, improving degradation metabolic pathways and mechanisms, and applying strain H27 to environmental pollution remediation.
Collapse
Affiliation(s)
- Changrui Liu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Changyu Zhao
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Lanjun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Xiaomin Du
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Lusheng Zhu
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Jun Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| | - Young Mo Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seongdong-gu, Seoul, 04763, Republic of Korea.
| | - Jinhua Wang
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Key Laboratory of Agricultural Environment in Universities of Shandong, College of Resources and Environment, Shandong Agricultural University, Taian, 271018, China.
| |
Collapse
|
11
|
Biagini F, Botte E, Calvigioni M, De Maria C, Mazzantini D, Celandroni F, Ghelardi E, Vozzi G. A Millifluidic Chamber for Controlled Shear Stress Testing: Application to Microbial Cultures. Ann Biomed Eng 2023; 51:2923-2933. [PMID: 37713099 PMCID: PMC10632311 DOI: 10.1007/s10439-023-03361-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/03/2023] [Indexed: 09/16/2023]
Abstract
In vitro platforms such as bioreactors and microfluidic devices are commonly designed to engineer tissue models as well as to replicate the crosstalk between cells and microorganisms hosted in the human body. These systems promote nutrient supply and waste removal through culture medium recirculation; consequently, they intrinsically expose cellular structures to shear stress, be it a desired mechanical stimulus to drive the cell fate or a potential inhibitor for the model maturation. Assessing the impact of shear stress on cellular or microbial cultures thus represents a crucial step to define proper environmental conditions for in vitro models. In this light, the aim of this study was to develop a millifluidic device enabling to generate fully controlled shear stress profiles for quantitatively probing its influence on tissue or bacterial models, overcoming the limitations of previous reports proposing similar devices. Relying on this millifluidic tool, we present a systematic methodology to test how adherent cellular structures react to shear forces, which was applied to the case of microbial biofilms as a proof of concept. The results obtained suggest our approach as a suitable testbench to evaluate culture conditions in terms of shear stress faced by cells or microorganisms.
Collapse
Affiliation(s)
- Francesco Biagini
- Research Center "E. Piaggio", University of Pisa, Largo L. Lazzarino 1, 56122, Pisa, Italy
| | - Ermes Botte
- Research Center "E. Piaggio", University of Pisa, Largo L. Lazzarino 1, 56122, Pisa, Italy
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122, Pisa, Italy
| | - Marco Calvigioni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 35, 56123, Pisa, Italy
| | - Carmelo De Maria
- Research Center "E. Piaggio", University of Pisa, Largo L. Lazzarino 1, 56122, Pisa, Italy
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122, Pisa, Italy
| | - Diletta Mazzantini
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 35, 56123, Pisa, Italy
| | - Francesco Celandroni
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 35, 56123, Pisa, Italy
| | - Emilia Ghelardi
- Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, Via San Zeno 35, 56123, Pisa, Italy
| | - Giovanni Vozzi
- Research Center "E. Piaggio", University of Pisa, Largo L. Lazzarino 1, 56122, Pisa, Italy.
- Department of Information Engineering, University of Pisa, Via G. Caruso 16, 56122, Pisa, Italy.
| |
Collapse
|
12
|
Elius M, Boyle K, Chang WS, Moisander PH, Ling H. Comparison of three-dimensional motion of bacteria with and without wall accumulation. Phys Rev E 2023; 108:014409. [PMID: 37583224 DOI: 10.1103/physreve.108.014409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 07/01/2023] [Indexed: 08/17/2023]
Abstract
A comparison of the movement characteristics between bacteria with and without wall accumulation could potentially elucidate the mechanisms of biofilm formation. However, authors of previous studies have mostly focused on the motion of bacteria that exhibit wall accumulation. Here, we applied digital holographic microscopy to compare the three-dimensional (3D) motions of two bacterial strains (Shewanella japonica UMDC19 and Shewanella sp. UMDC1): one exhibiting higher concentrations near the solid surfaces, and the other showing similar concentrations in near-wall and bulk regions. We found that the movement characteristics of the two strains are similar in the near-wall region but are distinct in the bulk region. Near the wall, both strains have small velocities and mostly perform subdiffusive motions. In the bulk, however, the bacteria exhibiting wall accumulation have significantly higher motility (including faster swimming speeds and longer movement trajectories) than the one showing no wall accumulation. Furthermore, we found that bacteria exhibiting wall accumulation slowly migrate from the bulk region to the near-wall region, and the hydrodynamic effect alone is insufficient to generate this migration speed. Future studies are required to test if the current findings apply to other bacterial species and strains.
Collapse
Affiliation(s)
- Md Elius
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Kenneth Boyle
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Wei-Shun Chang
- Department of Chemistry & Biochemistry, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Pia H Moisander
- Department of Biology, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| | - Hangjian Ling
- Department of Mechanical Engineering, University of Massachusetts Dartmouth, Dartmouth, Massachusetts 02747, USA
| |
Collapse
|
13
|
Chu PL, Feng YM, Long ZQ, Xiao WL, Ji J, Zhou X, Qi PY, Zhang TH, Zhang H, Liu LW, Yang S. Novel Benzothiazole Derivatives as Potential Anti-Quorum Sensing Agents for Managing Plant Bacterial Diseases: Synthesis, Antibacterial Activity Assessment, and SAR Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:6525-6540. [PMID: 37073686 DOI: 10.1021/acs.jafc.2c07810] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
As quorum sensing (QS) regulates bacterial pathogenicity, antiquorum sensing agents have powerful application potential for controlling bacterial infections and overcoming pesticide/drug resistance. Identifying anti-QS agents thus represents a promising approach in agrochemical development. In this study, the anti-QS potency of 53 newly prepared benzothiazole derivatives containing an isopropanolamine moiety was analyzed, and structure-activity relationships were examined. Compound D3 exhibited the strongest antibacterial activity, with an in vitro EC50 of 1.54 μg mL-1 against Xanthomonas oryzae pv oryzae (Xoo). Compound D3 suppressed QS-regulated virulence factors (e.g., biofilm, extracellular polysaccharides, extracellular enzymes, and flagella) to inhibit bacterial infection. In vivo anti-Xoo assays indicated good control efficiency (curative activity, 47.8%; protective activity, 48.7%) at 200 μg mL-1. Greater control efficiency was achieved with addition of 0.1% organic silicone or orange peel essential oil. The remarkable anti-QS potency of these benzothiazole derivatives could facilitate further novel bactericidal compound development.
Collapse
Affiliation(s)
- Pan-Long Chu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Yu-Mei Feng
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Zhou-Qing Long
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Wan-Lin Xiao
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Jin Ji
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Xiang Zhou
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Pu-Ying Qi
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Tai-Hong Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Heng Zhang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Li-Wei Liu
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| | - Song Yang
- National Key Laboratory of Green Pesticide, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for R&D of Fine Chemicals of Guizhou University, Guiyang 550025, China
| |
Collapse
|
14
|
Anbumani S, da Silva AM, Alaferdov A, Puydinger dos Santos MV, Carvalho IGB, de Souza e Silva M, Moshkalev S, Carvalho HF, de Souza AA, Cotta MA. Physiochemically Distinct Surface Properties of SU-8 Polymer Modulate Bacterial Cell-Surface Holdfast and Colonization. ACS APPLIED BIO MATERIALS 2022; 5:4903-4912. [PMID: 36162102 PMCID: PMC9580523 DOI: 10.1021/acsabm.2c00632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 09/13/2022] [Indexed: 11/28/2022]
Abstract
SU-8 polymer is an excellent platform for diverse applications due to its high aspect ratio of micro/nanostructure fabrication and exceptional physicochemical and biocompatible properties. Although SU-8 polymer has often been investigated for various biological applications, how its surface properties influence the interaction of bacterial cells with the substrate and its colonization is poorly understood. In this work, we tailor SU-8 nanoscale surface properties to investigate single-cell motility, adhesion, and successive colonization of phytopathogenic bacteria, Xylella fastidiosa. Different surface properties of SU-8 thin films have been prepared using photolithography processing and oxygen plasma treatment. A more significant density of carboxyl groups in hydrophilic plasma-treated SU-8 surfaces promotes faster cell motility in the earlier growth stage. The hydrophobic nature of pristine SU-8 surfaces shows no trackable bacterial motility and 5-10 times more single cells adhered to the surface than its plasma-treated counterpart. In addition, plasma-treated SU-8 samples suppressed bacterial adhesion, with surfaces showing less than 5% coverage. These results not only showcase that SU-8 surface properties can impact the spatiotemporal bacterial behavior but also provide insights into pathogens' prominent ability to evolve and adapt to different surface properties.
Collapse
Affiliation(s)
- Silambarasan Anbumani
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Aldeliane M. da Silva
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| | - Andrei Alaferdov
- Center
for Semiconductor Components and Nanotechnologies, University of Campinas, Campinas, SP 13083-870, Brazil
| | | | - Isis G. B. Carvalho
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Mariana de Souza e Silva
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Stanislav Moshkalev
- Center
for Semiconductor Components and Nanotechnologies, University of Campinas, Campinas, SP 13083-870, Brazil
| | - Hernandes F. Carvalho
- Department
of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, SP 13083-862, Brazil
| | - Alessandra A. de Souza
- Citrus
Center APTA “Sylvio Moreira” Agronomic Institute of
Campinas, Cordeirópolis, SP 13490-970, Brazil
| | - Monica A. Cotta
- Institute
of Physics “Gleb Wataghin”, University of Campinas, Campinas, SP 13083-859, Brazil
| |
Collapse
|
15
|
Li Y, Chi Y, Li S, Jia T, Mao Z. Characterization of 4 deletion mutants of Pseudomonas plecoglossicida and their potential for live attenuated vaccines in large yellow croaker (Larimichthys crocea). FISH & SHELLFISH IMMUNOLOGY 2022; 127:264-270. [PMID: 35752370 DOI: 10.1016/j.fsi.2022.06.034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 06/07/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
To search for live attenuated vaccines (LAV) candidates against Pseudomonas plecoglossicida, the causative agent of the visceral granulomas disease in farmed large yellow croaker (Larimichthys crocea), two type Ⅵ secretion systems (T6SS) and a predicted α/β fold family hydrolase encoding gene, ORF4885 were targeted to construct deletion mutants. The biological profiles of 4 mutants were characterized; LD50 to the croakers detected, in vivo survival post-infection investigated, relative percent of survival (RPS) of the croakers 28d post-vaccination determined, and transcription of five immunity-related genes of the treated fish was quantified. On comparison to the WT, the mutants revealed similar growth curves in 11h; swarming motility of Δ4885 declined significantly at 72h post-incubation (P < 0.05); ΔS1Δ4885 showed significantly poor biofilm formation and weak resistance to fish serum bactericidal activity (P < 0.05). LD50 of the mutants were much higher than the WT, indication of strong virulence attenuation; in vivo survival test showed the mutant ΔS1Δ4885 and ΔS1ΔS3 were eliminated by the host 10d post-infection, demonstration of the safety and potentiality to be LAV candidates. Immunization with the mutant ΔS1Δ4885 provided higher RPS than ΔS1ΔS3. Transcription of IgT was significant in all immunized groups while IgM increased only in intraperitoneally injected groups. This study successfully searched a quite safe and strong immunogenic LAV candidate to defeat P. plecoglossicida infection.
Collapse
Affiliation(s)
- Yiying Li
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, 315100, China
| | - Yu Chi
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, 315100, China
| | - Shanshan Li
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, 315100, China
| | - Tingting Jia
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, 315100, China
| | - Zhijuan Mao
- Biological and Environmental College, Zhejiang Wanli University, Ningbo, 315100, China.
| |
Collapse
|
16
|
Qi X, Xu X, Li H, Pan Y, Katharine Kraco E, Zheng J, Lin M, Jiang X. fliA, flrB, and fliR regulate adhesion by controlling the expression of critical virulence genes in Vibrio harveyi. Gene 2022; 839:146726. [PMID: 35835408 DOI: 10.1016/j.gene.2022.146726] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 06/07/2022] [Accepted: 07/08/2022] [Indexed: 11/16/2022]
Abstract
Bacteria adhesion to fish mucus is a crucial virulence mechanism. As the initial step of bacterial infection, adhesion is impacted by bacterial motility and environmental conditions. However, its molecular mechanism is yet unclear. In this study, a significant decrease in gene expression of adhesion-deficient Vibrio harveyi was observed when the bacteria were subjected by Cu2+(50 mg/L), Pb2+(100 mg/L), Hg2+(25 mg/L), and Zn2+(50 mg/L). The genes fliA, fliR, and flrB were responsible for flagellation; being crucial for adhesion, these genes were identified and silenced via RNAi. After silencing of these genes by RNAi technology, the ability of adhesion, biofilm formation, motility, and flagella synthesis of V. harveyi were considerably reduced. Compared with the control group, it was observed that the expression levels of fliS, fliD, flgH, and flrC were significant down-regulated in fliR-RNAi, flrB-RNAi, and fliA-RNAi. This data indicates that the expression levels of most virulence genes are affected by fliA, fliR, and flrB. Also, the expression of fliA, fliR, and flrB can be influenced by the salinity, temperature, and pH. The results show that: (1) fliA, fliR, and flrB have important roles in the adhesion of V. harveyi; (2) fliA, fliR, and flrB can regulate bacterial adhesion by affecting its motility, and biofilm formation; (3) fliA, fliR, and flrB can regulate adhesion ability of V. harveyi in different environments.
Collapse
Affiliation(s)
- Xin Qi
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co. Ltd., Ningde 352103, China; Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, Fujian, China
| | - Xiaojin Xu
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co. Ltd., Ningde 352103, China; Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, Fujian, China; Fujian Province Key Laboratory of Special Aquatic Formula Feed (Fujian Tianma Science and Technology Group Co., Ltd., China; School of Freshwater Sciences, University of Wisconsin-Milwaukee, 600 East Greenfield Avenue, Milwaukee, WI 53204, USA.
| | - Huiyao Li
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co. Ltd., Ningde 352103, China; Fisheries Research Institute of Fujian, Xiamen 361013, China
| | - Ying Pan
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co. Ltd., Ningde 352103, China
| | | | - Jiang Zheng
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, Fujian, China
| | - Mao Lin
- Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, Fujian, China
| | - Xinglong Jiang
- State Key Laboratory of Large Yellow Croaker Breeding, Fujian Fuding Seagull Fishing Food Co. Ltd., Ningde 352103, China; Fisheries College, Jimei University, Engineering Research Center of the Modern Technology for Eel Industry, Ministry of Education, Xiamen 361021, Fujian, China.
| |
Collapse
|
17
|
Gujinović L, Maravić A, Kalinić H, Dželalija M, Šestanović S, Zanchi D, Šamanić I. Metagenomic analysis of pioneer biofilm-forming marine bacteria with emphasis on Vibrio gigantis adhesion dynamics. Colloids Surf B Biointerfaces 2022; 217:112619. [PMID: 35700566 DOI: 10.1016/j.colsurfb.2022.112619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/23/2022] [Accepted: 06/06/2022] [Indexed: 11/17/2022]
Abstract
Marine biofilms occur frequently and spontaneously in seawater, on almost any submerged solid surface. At the early stages of colonization, it consists of bacteria and evolves into a more complex community. Using 16S rRNA amplicon sequencing and comparative metagenomics, the composition and predicted functional potential of one- to three-day old bacterial communities in surface biofilms were investigated and compared to that of seawater. This confirmed the autochthonous marine bacterium Vibrio gigantis as an early and very abundant biofilm colonizer, also functionally linked to the genes associated with cell motility, surface attachment, and communication via signaling molecules (quorum sensing), all crucial for biofilm formation. The dynamics of adhesion on a solid surface of V. gigantis alone was also monitored in controlled laboratory conditions, using a newly designed and easily implementable protocol. Resulting in a calculated percentage of bacteria-covered surface, a convincing tendency of spontaneous adhering was confirmed. From the multiple results, its quantified and reproducible adhesion dynamics will be used as a basis for future experiments involving surface modifications and coatings, with the goal of preventing adhesion.
Collapse
Affiliation(s)
- Luka Gujinović
- Faculty of Chemistry and Technology, University of Split, Croatia; Doctoral study of Biophysics, Faculty of Science, University of Split, Croatia
| | - Ana Maravić
- Faculty of Science, University of Split, Croatia
| | | | | | | | - Dražen Zanchi
- Laboratoire Matières et Systèmes Complexes, UMR 7057 du CNRS and Université de Paris Cité, Paris, France.
| | | |
Collapse
|
18
|
Mondino S, San Martin F, Buschiazzo A. 3D cryo-electron microscopic imaging of bacterial flagella: novel structural and mechanistic insights into cell motility. J Biol Chem 2022; 298:102105. [PMID: 35671822 PMCID: PMC9254593 DOI: 10.1016/j.jbc.2022.102105] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 10/26/2022] Open
Abstract
Bacterial flagella are nanomachines that enable cells to move at high speeds. Comprising ≳25 different types of proteins, the flagellum is a large supramolecular assembly organized into three widely conserved substructures: a basal body including the rotary motor, a connecting hook, and a long filament. The whole flagellum from Escherichia coli weighs ∼20 MDa, without considering its filament portion, which is by itself a ∼1.6 GDa structure arranged as a multimer of ∼30,000 flagellin protomers. Breakthroughs regarding flagellar structure and function have been achieved in the last few years, mainly due to the revolutionary improvements in 3D cryo-electron microscopy methods. This review discusses novel structures and mechanistic insights derived from such high-resolution studies, advancing our understanding of each one of the three major flagellar segments. The rotation mechanism of the motor has been unveiled with unprecedented detail, showing a two-cogwheel machine propelled by a Brownian ratchet device. Additionally, by imaging the flagellin-like protomers that make up the hook in its native bent configuration, their unexpected conformational plasticity challenges the paradigm of a two-state conformational rearrangement mechanism for flagellin-fold proteins. Finally, imaging of the filaments of periplasmic flagella, which endow Spirochete bacteria with their singular motility style, uncovered a strikingly asymmetric protein sheath that coats the flagellin core, challenging the view of filaments as simple homopolymeric structures that work as freely whirling whips. Further research will shed more light on the functional details of this amazing nanomachine, but our current understanding has definitely come a long way.
Collapse
Affiliation(s)
- Sonia Mondino
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay
| | - Fabiana San Martin
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay
| | - Alejandro Buschiazzo
- Laboratory of Molecular & Structural Microbiology, Institut Pasteur de Montevideo, Montevideo, Uruguay; Integrative Microbiology of Zoonotic Agents IMiZA Unit, Joint International Unit, Institut Pasteur/Institut Pasteur de Montevideo, France/Uruguay; Microbiology Department, Institut Pasteur, Paris, France.
| |
Collapse
|
19
|
Abstract
Type IV pili (T4P) are retractable multifunctional nanofibers present on the surface of numerous bacterial and archaeal species. Their importance to microbiology is difficult to overstate. The scientific journey leading to our current understanding of T4P structure and function has included many innovative research milestones. Although multiple T4P reviews over the years have emphasized recent advances, we find that current reports often omit many of the landmark discoveries in this field. Here, we attempt to highlight chronologically the most important work on T4P, from the discovery of pili to the application of sophisticated contemporary methods, which has brought us to our current state of knowledge. As there remains much to learn about the complex machine that assembles and retracts T4P, we hope that this review will increase the interest of current researchers and inspire innovative progress.
Collapse
|
20
|
Ramírez M, Debut A. Control of vibriosis in shrimp through the management of the microbiota and the immune system. BIONATURA 2022. [DOI: 10.21931/rb/2022.07.02.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Shrimp aquaculture is constantly threatened by recurrent outbreaks of diseases caused by pathogenic bacteria of the genus Vibrio. Acute hepatopancreatic necrosis disease (AHPND) is one of the most aggressive vibriosis reported to date in the shrimp industry. AHPND provokes massive mortalities, causing economic losses with strong social impacts. Control of vibriosis requires the application of multifactorial strategies. This includes vibrio exclusion, shrimp microbiota, particularly in the digestive tract, and shrimp health management through immune stimulation. This paper reviews these two strategies for the prophylactic control of vibriosis. First, we describe the devastating effects of AHPND and the cellular and humoral effectors of the shrimp immune system to cope with this pathology. Secondly, the mechanisms of action of probiotics and their positive impacts are highlighted, including their immunostimulant effects and their role in the balance of the shrimp microbiota. Finally, we reviewed immunostimulants and prebiotics polysaccharides that together with probiotics act benefiting growth, feed efficiency and the microbiota of the digestive tract of farmed shrimp.
Collapse
Affiliation(s)
- Mery Ramírez
- Escuela Superior Politécnica del Litoral, ESPOL, Centro Nacional de Investigaciones Marinas (CENAIM), Campus Gustavo Galindo Km. 30.5 Vía Perimetral, P.O. Box 09-01-5863, Guayaquil, Ecuador
| | - Alexis Debut
- Universidad de las Fuerzas Armadas ESPE, Centro de Nanociencia y Nanotecnología, Avenida General Rumiñahui S/N y Ambato, P.O. Box 171-5-231B, Sangolquí, Ecuador
| |
Collapse
|
21
|
Zhang W, Wei Y, Jin X, Lv X, Liu Z, Ni L. Spoilage of tilapia by Pseudomonas putida with different adhesion abilities. Curr Res Food Sci 2022; 5:710-717. [PMID: 35479657 PMCID: PMC9035656 DOI: 10.1016/j.crfs.2022.04.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 03/19/2022] [Accepted: 04/05/2022] [Indexed: 01/17/2023] Open
Abstract
Four Pseudomonas putida strains isolated from spoiled tilapia were divided into three adhesion abilities—high, medium, and low—by an in vitro mucus model. Four strains had no significant difference in spoilage ability to the inoculated fish fillets. However, according to the in vivo experiment, the spoilage caused by the four P.putida was positively correlated with their adhesion abilities. High adhesion strains not only caused more TVB-N in chilled fish, but also activated the spoilage activity of intestinal flora. The diversity of intestinal flora and the changes in volatile components in fish were detected by high-throughput sequencing and SPME-GC/MS. The strains with high adhesion abilities significantly changed the intestinal flora, which led to a significant increase in low-grade aldehydes, indole, and esters in flesh of fish, as well as the production of a fishy and pungent odor. The intestinal adhesion ability of spoilage bacteria was considered the key factor in spoilage of chilled fish. A positive correlation between the intestinal adhesion ability of P.putida and the spoilage ability in vivo. P.putida affected the intestinal microflora and led to increase in fishy and pungent odor. The intestinal adhesion ability of P.putida was considered as a key factor in spoilage.
Collapse
|
22
|
Kong W, Tian Q, Yang Q, Liu Y, Wang G, Cao Y, Wang L, Xia S, Sun Y, Zhao C, Wang S. Sodium Selenite Enhances Antibiotics Sensitivity of Pseudomonas aeruginosa and Deceases Its Pathogenicity by Inducing Oxidative Stress and Inhibiting Quorum Sensing System. Antioxidants (Basel) 2021; 10:antiox10121873. [PMID: 34942975 PMCID: PMC8698442 DOI: 10.3390/antiox10121873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/18/2021] [Accepted: 11/19/2021] [Indexed: 12/22/2022] Open
Abstract
Pseudomonas aeruginosa, a Gram-negative opportunistic pathogen, is commonly found in clinical settings and immuno-compromised patients. It is difficult to be eradicated due to its strong antibiotic resistance, and novel inactivation strategies have yet to be developed. Selenium is an essential microelement for humans and has been widely used in dietary supplement and chemoprevention therapy. In this study, the physiological and biochemical effects of sodium selenite on P. aeruginosa PAO1 were investigated. The results showed that 0~5 mM sodium selenite did not impact the growth of PAO1, but increased the lethality rate of PAO1 with antibiotics or H2O2 treatment and the antibiotics susceptibility both in planktonic and biofilm states. In addition, sodium selenite significantly reduced the expression of quorum sensing genes and inhibited various virulence factors of this bacterium, including pyocyanin production, bacterial motilities, and the type III secretion system. Further investigation found that the content of ROS in cells was significantly increased and the expression levels of most genes involved in oxidative stress were up-regulated, which indicated that sodium selenite induced oxidative stress. The RNA-seq result confirmed the phenotypes of virulence attenuation and the expression of quorum sensing and antioxidant-related genes. The assays of Chinese cabbage and Drosophila melanogaster infection models showed that the combination of sodium selenite and antibiotics significantly alleviated the infection of PAO1. In summary, the results revealed that sodium selenite induced oxidative stress and inhibited the quorum sensing system of P. aeruginosa, which in turn enhanced the antibiotic susceptibility and decreased the pathogenicity of this bacterium. These findings suggest that sodium selenite may be used as an effective strategy for adjunct treatment of the infections caused by P. aeruginosa.
Collapse
Affiliation(s)
- Weina Kong
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Qianqian Tian
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Qiaoli Yang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Yu Liu
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Gongting Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Yanjun Cao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Liping Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Sizhe Xia
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Yanmei Sun
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Cheng Zhao
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, The College of Life Sciences, Northwest University, Xi’an 710069, China; (W.K.); (Q.T.); (Q.Y.); (Y.L.); (G.W.); (Y.C.); (L.W.); (S.X.); (Y.S.); (C.Z.)
- Provincial Key Laboratory of Biotechnology of Shaanxi Province, College of Life Sciences, Northwest University, Xi’an 710069, China
- Correspondence:
| |
Collapse
|
23
|
Interactions of E. coli with cylindrical micro-pillars of different geometric modifications. Colloids Surf B Biointerfaces 2021; 209:112190. [PMID: 34749195 DOI: 10.1016/j.colsurfb.2021.112190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/24/2021] [Accepted: 10/26/2021] [Indexed: 11/20/2022]
Abstract
Understanding the behavior of bacteria at the proximity of different surfaces is of great importance and interest. Despite recent exciting progress in geometric control of bacterial behavior around surfaces, a detailed comparison on the interaction of bacteria with cylindrical surfaces of different geometric modifications is still missing. Here, we investigated how bacteria interacted with cylindrical micro-pillars and modified cylindrical micro-pillars with sprocket, gear, and flower-like wall surface features. Using phase-contrast microscopy, we examined the motion of bacteria around the micro-pillars, and observed different responses of bacteria to each geometric modification. In addition, we extracted the trajectories of the bacteria and characterized several parameters (instantaneous velocity v, change of direction δ, approaching angle ϕ) to quantitatively compare the effects of the geometric modifications on the micro-pillars. We found that sharp spikes showed the largest effect, compared to smooth surface, convex and concave ripples. Lastly, we carried out numerical simulations, which explained the experimental observations and showed that the observed effects were due to the geometric modifications.
Collapse
|
24
|
Transcriptomic analysis of the food spoilers Pseudomonas fluorescens reveals the antibiofilm of carvacrol by interference with intracellular signaling processes. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108115] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
25
|
Samrot AV, Abubakar Mohamed A, Faradjeva E, Si Jie L, Hooi Sze C, Arif A, Chuan Sean T, Norbert Michael E, Yeok Mun C, Xiao Qi N, Ling Mok P, Kumar SS. Mechanisms and Impact of Biofilms and Targeting of Biofilms Using Bioactive Compounds-A Review. MEDICINA (KAUNAS, LITHUANIA) 2021; 57:839. [PMID: 34441045 PMCID: PMC8401077 DOI: 10.3390/medicina57080839] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Accepted: 08/10/2021] [Indexed: 12/31/2022]
Abstract
Biofilms comprising aggregates of microorganisms or multicellular communities have been a major issue as they cause resistance against antimicrobial agents and biofouling. To date, numerous biofilm-forming microorganisms have been identified, which have been shown to result in major effects including biofouling and biofilm-related infections. Quorum sensing (which describes the cell communication within biofilms) plays a vital role in the regulation of biofilm formation and its virulence. As such, elucidating the various mechanisms responsible for biofilm resistance (including quorum sensing) will assist in developing strategies to inhibit and control the formation of biofilms in nature. Employing biological control measures (such as the use of bioactive compounds) in targeting biofilms is of great interest since they naturally possess antimicrobial activity among other favorable attributes and can also possibly act as potent antibiofilm agents. As an effort to re-establish the current notion and understanding of biofilms, the present review discuss the stages involved in biofilm formation, the factors contributing to its development, the effects of biofilms in various industries, and the use of various bioactive compounds and their strategies in biofilm inhibition.
Collapse
Affiliation(s)
- Antony V. Samrot
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Amira Abubakar Mohamed
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Etel Faradjeva
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Lee Si Jie
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Chin Hooi Sze
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Akasha Arif
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Tan Chuan Sean
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Emmanuel Norbert Michael
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Chua Yeok Mun
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Ng Xiao Qi
- School of Bioscience, Faculty of Medicine, Bioscience and Nursing, MAHSA University, Jenjarom 42610, Selangor, Malaysia; (A.A.M.); (E.F.); (L.S.J.); (C.H.S.); (A.A.); (T.C.S.); (E.N.M.); (C.Y.M.); (N.X.Q.)
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
| | - Suresh S. Kumar
- Department of Medical Microbiology and Parasitology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia (UPM), Serdang 43400, Selangor, Malaysia
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Agharam Road Selaiyur, Chennai 600 073, Tamil Nadu, India
| |
Collapse
|
26
|
Abstract
Bacteria thrive both in liquids and attached to surfaces. The concentration of bacteria on surfaces is generally much higher than in the surrounding environment, offering bacteria ample opportunity for mutualistic, symbiotic, and pathogenic interactions. To efficiently populate surfaces, they have evolved mechanisms to sense mechanical or chemical cues upon contact with solid substrata. This is of particular importance for pathogens that interact with host tissue surfaces. In this review we discuss how bacteria are able to sense surfaces and how they use this information to adapt their physiology and behavior to this new environment. We first survey mechanosensing and chemosensing mechanisms and outline how specific macromolecular structures can inform bacteria about surfaces. We then discuss how mechanical cues are converted to biochemical signals to activate specific cellular processes in a defined chronological order and describe the role of two key second messengers, c-di-GMP and cAMP, in this process.
Collapse
Affiliation(s)
| | - Urs Jenal
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland; ,
| |
Collapse
|
27
|
Hydrodynamics and surface properties influence biofilm proliferation. Adv Colloid Interface Sci 2021; 288:102336. [PMID: 33421727 DOI: 10.1016/j.cis.2020.102336] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 12/20/2022]
Abstract
A biofilm is an interface-associated colloidal dispersion of bacterial cells and excreted polymers in which microorganisms find protection from their environment. Successful colonization of a surface by a bacterial community is typically a detriment to human health and property. Insight into the biofilm life-cycle provides clues on how their proliferation can be suppressed. In this review, we follow a cell through the cycle of attachment, growth, and departure from a colony. Among the abundance of factors that guide the three phases, we focus on hydrodynamics and stratum properties due to the synergistic effect such properties have on bacteria rejection and removal. Cell motion, whether facilitated by the environment via medium flow or self-actuated by use of an appendage, drastically improves the survivability of a bacterium. Once in the vicinity of a stratum, a single cell is exposed to near-surface interactions, such as van der Waals, electrostatic and specific interactions, similarly to any other colloidal particle. The success of the attachment and the potential for detachment is heavily influenced by surface properties such as material type and topography. The growth of the colony is similarly guided by mainstream flow and the convective transport throughout the biofilm. Beyond the growth phase, hydrodynamic traction forces on a biofilm can elicit strongly non-linear viscoelastic responses from the biofilm soft matter. As the colony exhausts the means of survival at a particular location, a set of trigger signals activates mechanisms of bacterial release, a life-cycle phase also facilitated by fluid flow. A review of biofilm-relevant hydrodynamics and startum properties provides insight into future research avenues.
Collapse
|
28
|
Rozman V, Accetto T, Duncan SH, Flint HJ, Vodovnik M. Type IV pili are widespread among non-pathogenic Gram-positive gut bacteria with diverse carbohydrate utilization patterns. Environ Microbiol 2021; 23:1527-1540. [PMID: 33331146 DOI: 10.1111/1462-2920.15362] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 12/15/2020] [Indexed: 12/23/2022]
Abstract
Type IV pili (T4P) are bacterial surface-exposed appendages that have been extensively studied in Gram-negative pathogenic bacteria. Despite recent sequencing efforts, little is known regarding these structures in non-pathogenic anaerobic Gram-positive species, particularly commensals of the mammalian gut. Early studies revealed that T4P in two ruminal Gram-positive species are associated with growth on cellulose, suggesting possible associations of T4P with substrate utilization patterns. In the present study, genome sequences of 118 taxonomically diverse, mainly Gram-positive, bacterial strains isolated from anaerobic (gastrointestinal) environments, have been analysed. The genes likely to be associated with T4P biogenesis were analysed and grouped according to T4P genetic organization. In parallel, consortia of Carbohydrate Active enZYmes (CAZymes) were also analysed and used to predict carbohydrate utilization abilities of selected strains. The predictive power of this approach was additionally confirmed by experimental assessment of substrate-related growth patterns of selected strains. Our analysis revealed that T4P systems with diverse genetic organization are widespread among Gram-positive anaerobic non-pathogenic bacteria isolated from different environments, belonging to two phylogenetically distantly related phyla: Firmicutes and Actinobacteria.
Collapse
Affiliation(s)
- Vita Rozman
- Chair of Microbiology and Microbial Biotechnology, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Tomaž Accetto
- Chair of Microbiology and Microbial Biotechnology, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| | - Sylvia H Duncan
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Harry J Flint
- Gut Health Group, Rowett Institute, University of Aberdeen, Aberdeen, UK
| | - Maša Vodovnik
- Chair of Microbiology and Microbial Biotechnology, Biotechnical Faculty, University of Ljubljana, Domžale, Slovenia
| |
Collapse
|
29
|
Schiller H, Schulze S, Mutan Z, de Vaulx C, Runcie C, Schwartz J, Rados T, Bisson Filho AW, Pohlschroder M. Haloferax volcanii Immersed Liquid Biofilms Develop Independently of Known Biofilm Machineries and Exhibit Rapid Honeycomb Pattern Formation. mSphere 2020; 5:e00976-20. [PMID: 33328348 PMCID: PMC7771232 DOI: 10.1128/msphere.00976-20] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 11/19/2020] [Indexed: 12/21/2022] Open
Abstract
The ability to form biofilms is shared by many microorganisms, including archaea. Cells in a biofilm are encased in extracellular polymeric substances that typically include polysaccharides, proteins, and extracellular DNA, conferring protection while providing a structure that allows for optimal nutrient flow. In many bacteria, flagella and evolutionarily conserved type IV pili are required for the formation of biofilms on solid surfaces or floating at the air-liquid interface of liquid media. Similarly, in many archaea it has been demonstrated that type IV pili and, in a subset of these species, archaella are required for biofilm formation on solid surfaces. Additionally, in the model archaeon Haloferax volcanii, chemotaxis and AglB-dependent glycosylation play important roles in this process. H. volcanii also forms immersed biofilms in liquid cultures poured into petri dishes. This study reveals that mutants of this haloarchaeon that interfere with the biosynthesis of type IV pili or archaella, as well as a chemotaxis-targeting transposon and aglB deletion mutants, lack obvious defects in biofilms formed in liquid cultures. Strikingly, we have observed that these liquid-based biofilms are capable of rearrangement into honeycomb-like patterns that rapidly form upon removal of the petri dish lid, a phenomenon that is not dependent on changes in light or oxygen concentration but can be induced by controlled reduction of humidity. Taken together, this study demonstrates that H. volcanii requires novel, unidentified strategies for immersed liquid biofilm formation and also exhibits rapid structural rearrangements.IMPORTANCE This first molecular biological study of archaeal immersed liquid biofilms advances our basic biological understanding of the model archaeon Haloferax volcanii Data gleaned from this study also provide an invaluable foundation for future studies to uncover components required for immersed liquid biofilms in this haloarchaeon and also potentially for liquid biofilm formation in general, which is poorly understood compared to the formation of biofilms on surfaces. Moreover, this first description of rapid honeycomb pattern formation is likely to yield novel insights into the underlying structural architecture of extracellular polymeric substances and cells within immersed liquid biofilms.
Collapse
Affiliation(s)
- Heather Schiller
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Stefan Schulze
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zuha Mutan
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Charlotte de Vaulx
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Catalina Runcie
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jessica Schwartz
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Theopi Rados
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Alexandre W Bisson Filho
- Department of Biology, Rosenstiel Basic Medical Science Research Center, Brandeis University, Waltham, Massachusetts, USA
| | - Mechthild Pohlschroder
- Department of Biology, Leidy Laboratories, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
30
|
Pinel ISM, Kim LH, Proença Borges VR, Farhat NM, Witkamp GJ, van Loosdrecht MCM, Vrouwenvelder JS. Effect of phosphate availability on biofilm formation in cooling towers. BIOFOULING 2020; 36:800-815. [PMID: 32883093 DOI: 10.1080/08927014.2020.1815011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 08/20/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Phosphate limitation has been suggested as a preventive method against biofilms. P-limited feed water was studied as a preventive strategy against biofouling in cooling towers (CTs). Three pilot-scale open recirculating CTs were operated in parallel for five weeks. RO permeate was fed to the CTs (1) without supplementation (reference), (2) with supplementation by biodegradable carbon (P-limited) and (3) with supplementation of all nutrients (non-P-limited). The P-limited water contained ≤10 µg PO4 l-1. Investigating the CT-basins and coupons showed that P-limited water (1) did not prevent biofilm formation and (2) resulted in a higher volume of organic matter per unit of active biomass compared with the other CTs. Exposure to external conditions and cycle of concentration were likely factors that allowed a P concentration sufficient to cause extensive biofouling despite being the limiting compound. In conclusion, phosphate limitation in cooling water is not a suitable strategy for CT biofouling control.
Collapse
Affiliation(s)
- Ingrid S M Pinel
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Lan Hee Kim
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Vitor R Proença Borges
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Nadia M Farhat
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Geert-Jan Witkamp
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
| | - Johannes S Vrouwenvelder
- Department of Biotechnology, Faculty of Applied Sciences, Delft University of Technology, Delft, The Netherlands
- Division of Biological and Environmental Science and Engineering (BESE), Water Desalination and Reuse Center (WDRC), King Abdullah University of Science and Technology (KAUST), Thuwal, Saudi Arabia
| |
Collapse
|
31
|
Collective Dynamics of Model Pili-Based Twitcher-Mode Bacilliforms. Sci Rep 2020; 10:10747. [PMID: 32612117 PMCID: PMC7330051 DOI: 10.1038/s41598-020-67212-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Accepted: 05/27/2020] [Indexed: 11/29/2022] Open
Abstract
Pseudomonas aeruginosa, like many bacilliforms, are not limited only to swimming motility but rather possess many motility strategies. In particular, twitching-mode motility employs hair-like pili to transverse moist surfaces with a jittery irregular crawl. Twitching motility plays a critical role in redistributing cells on surfaces prior to and during colony formation. We combine molecular dynamics and rule-based simulations to study twitching-mode motility of model bacilliforms and show that there is a critical surface coverage fraction at which collective effects arise. Our simulations demonstrate dynamic clustering of twitcher-type bacteria with polydomains of local alignment that exhibit spontaneous correlated motions, similar to rafts in many bacterial communities.
Collapse
|
32
|
Qi YH, Huang L, Liu GF, Leng M, Lu GT. PilG and PilH antagonistically control flagellum-dependent and pili-dependent motility in the phytopathogen Xanthomonas campestris pv. campestris. BMC Microbiol 2020; 20:37. [PMID: 32070276 PMCID: PMC7029496 DOI: 10.1186/s12866-020-1712-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 01/27/2020] [Indexed: 12/27/2022] Open
Abstract
Background The virulence of the plant pathogen Xanthomonas campestris pv. campestris (Xcc) involves the coordinate expression of many virulence factors, including surface appendages flagellum and type IV pili, which are required for pathogenesis and the colonization of host tissues. Despite many insights gained on the structure and functions played by flagellum and pili in motility, biofilm formation, surface attachment and interactions with bacteriophages, we know little about how these appendages are regulated in Xcc. Results Here we present evidence demonstrating the role of two single domain response regulators PilG and PilH in the antagonistic control of flagellum-dependent (swimming) and pili-dependent (swarming) motility. Using informative mutagenesis, we reveal PilG positively regulates swimming motility while and negatively regulating swarming motility. Conversely, PilH negatively regulates swimming behaviour while and positively regulating swarming motility. By transcriptome analyses (RNA-seq and RT-PCR) we confirm these observations as PilG is shown to upregulate many genes involved chemotaxis and flagellar biosynthesis but these similar genes were downregulated by PilH. Co-immunoprecipitation, bacterial two-hybrid and pull-down analyses showed that PilH and PilG were able to interact with district subsets of proteins that potentially account for their regulatory impact. Additionally, we present evidence, using mutagenesis that PilG and PilH are involved in other cellular processes, including chemotaxis and virulence. Conclusions Taken together, we demonstrate that for the conditions tested PilG and PilH have inverse regulatory effects on flagellum-dependent and pili-dependent motility in Xcc and that this regulatory impact depends on these proteins influences on genes/proteins involved in flagellar biosynthesis and pilus assembly.
Collapse
Affiliation(s)
- Yan-Hua Qi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Li Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Guo-Fang Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Ming Leng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China
| | - Guang-Tao Lu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, 530004, Guangxi, China.
| |
Collapse
|
33
|
Chang YR, Weeks ER, Barton D, Dobnikar J, Ducker WA. Effect of Topographical Steps on the Surface Motility of the Bacterium Pseudomonas aeruginosa. ACS Biomater Sci Eng 2019; 5:6436-6445. [DOI: 10.1021/acsbiomaterials.9b00729] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Yow-Ren Chang
- Department of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Eric R. Weeks
- Department of Physics, Emory University, Atlanta, Georgia 30322, United States
| | - Daniel Barton
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Jure Dobnikar
- Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, P. R. China
- Department of Chemistry, University of Cambridge, Lensfield Road, CB21EW Cambridge, U.K
| | - William A. Ducker
- Department of Chemical Engineering and Center for Soft Matter and Biological Physics, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
34
|
Aschtgen MS, Brennan CA, Nikolakakis K, Cohen S, McFall-Ngai M, Ruby EG. Insights into flagellar function and mechanism from the squid-vibrio symbiosis. NPJ Biofilms Microbiomes 2019; 5:32. [PMID: 31666982 PMCID: PMC6814793 DOI: 10.1038/s41522-019-0106-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/03/2019] [Indexed: 02/07/2023] Open
Abstract
Flagella are essential and multifunctional nanomachines that not only move symbionts towards their tissue colonization site, but also play multiple roles in communicating with the host. Thus, untangling the activities of flagella in reaching, interacting, and signaling the host, as well as in biofilm formation and the establishment of a persistent colonization, is a complex problem. The squid-vibrio system offers a unique model to study the many ways that bacterial flagella can influence a beneficial association and, generally, other bacteria-host interactions. Vibrio fischeri is a bioluminescent bacterium that colonizes the Hawaiian bobtail squid, Euprymna scolopes. Over the last 15 years, the structure, assembly, and functions of V. fischeri flagella, including not only motility and chemotaxis, but also biofilm formation and symbiotic signaling, have been revealed. Here we discuss these discoveries in the perspective of other host-bacteria interactions.
Collapse
Affiliation(s)
- Marie-Stephanie Aschtgen
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706 USA
- Present Address: Department of Microbiology, Tumor and Cell Biology, Karolinska Institute, Solna, 171 76 Sweden
| | - Caitlin A. Brennan
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706 USA
- Present Address: Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Boston, MA 02115 USA
| | - Kiel Nikolakakis
- Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, WI 53706 USA
- Present Address: Department of Natural and Applied Sciences, University of Wisconsin – Green Bay, Green Bay, WI 54311 USA
| | - Stephanie Cohen
- Laboratory for Biological Geochemistry, School of Architecture, Civil and Environmental Engineering, Ecole Polytechnique Fédérale de Lausanne, and Center for Advanced Surface Analysis, Institute of Earth Sciences, Université de Lausanne, CH-1015 Lausanne, Switzerland
- Kewalo Marine Laboratory, University of Hawaii-Manoa, Honolulu, HI 96813 USA
| | | | - Edward G. Ruby
- Kewalo Marine Laboratory, University of Hawaii-Manoa, Honolulu, HI 96813 USA
| |
Collapse
|
35
|
Hook AL, Flewellen JL, Dubern JF, Carabelli AM, Zaid IM, Berry RM, Wildman RD, Russell N, Williams P, Alexander MR. Simultaneous Tracking of Pseudomonas aeruginosa Motility in Liquid and at the Solid-Liquid Interface Reveals Differential Roles for the Flagellar Stators. mSystems 2019; 4:e00390-19. [PMID: 31551402 PMCID: PMC6759568 DOI: 10.1128/msystems.00390-19] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/01/2019] [Indexed: 01/19/2023] Open
Abstract
Bacteria sense chemicals, surfaces, and other cells and move toward some and away from others. Studying how single bacterial cells in a population move requires sophisticated tracking and imaging techniques. We have established quantitative methodology for label-free imaging and tracking of individual bacterial cells simultaneously within the bulk liquid and at solid-liquid interfaces by utilizing the imaging modes of digital holographic microscopy (DHM) in three dimensions (3D), differential interference contrast (DIC), and total internal reflectance microscopy (TIRM) in two dimensions (2D) combined with analysis protocols employing bespoke software. To exemplify and validate this methodology, we investigated the swimming behavior of a Pseudomonas aeruginosa wild-type strain and isogenic flagellar stator mutants (motAB and motCD) within the bulk liquid and at the surface at the single-cell and population levels. Multiple motile behaviors were observed that could be differentiated by speed and directionality. Both stator mutants swam slower and were unable to adjust to the near-surface environment as effectively as the wild type, highlighting differential roles for the stators in adapting to near-surface environments. A significant reduction in run speed was observed for the P. aeruginosa mot mutants, which decreased further on entering the near-surface environment. These results are consistent with the mot stators playing key roles in responding to the near-surface environment.IMPORTANCE We have established a methodology to enable the movement of individual bacterial cells to be followed within a 3D space without requiring any labeling. Such an approach is important to observe and understand how bacteria interact with surfaces and form biofilm. We investigated the swimming behavior of Pseudomonas aeruginosa, which has two flagellar stators that drive its swimming motion. Mutants that had only either one of the two stators swam slower and were unable to adjust to the near-surface environment as effectively as the wild type. These results are consistent with the mot stators playing key roles in responding to the near-surface environment and could be used by bacteria to sense via their flagella when they are near a surface.
Collapse
Affiliation(s)
- Andrew L Hook
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| | - James L Flewellen
- Immune Receptor Activation Laboratory, The Francis Crick Institute, London, United Kingdom
- Division of Immunology and Inflammation, Department of Medicine, Imperial College London, London, United Kingdom
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Jean-Frédéric Dubern
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Alessandro M Carabelli
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Irwin M Zaid
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Richard M Berry
- Department of Physics, Clarendon Laboratory, University of Oxford, Oxford, United Kingdom
| | - Ricky D Wildman
- Department of Chemical and Environmental Engineering, School of Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Noah Russell
- Marine Biological Association, The Laboratory, Plymouth, United Kingdom
| | - Paul Williams
- Centre for Biomolecular Sciences, School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Morgan R Alexander
- Advanced Materials and Healthcare Technologies Division, School of Pharmacy, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
36
|
Makarchuk S, Braz VC, Araújo NAM, Ciric L, Volpe G. Enhanced propagation of motile bacteria on surfaces due to forward scattering. Nat Commun 2019; 10:4110. [PMID: 31511558 PMCID: PMC6739365 DOI: 10.1038/s41467-019-12010-1] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022] Open
Abstract
How motile bacteria move near a surface is a problem of fundamental biophysical interest and is key to the emergence of several phenomena of biological, ecological and medical relevance, including biofilm formation. Solid boundaries can strongly influence a cell's propulsion mechanism, thus leading many flagellated bacteria to describe long circular trajectories stably entrapped by the surface. Experimental studies on near-surface bacterial motility have, however, neglected the fact that real environments have typical microstructures varying on the scale of the cells' motion. Here, we show that micro-obstacles influence the propagation of peritrichously flagellated bacteria on a flat surface in a non-monotonic way. Instead of hindering it, an optimal, relatively low obstacle density can significantly enhance cells' propagation on surfaces due to individual forward-scattering events. This finding provides insight on the emerging dynamics of chiral active matter in complex environments and inspires possible routes to control microbial ecology in natural habitats.
Collapse
Affiliation(s)
- Stanislaw Makarchuk
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK
| | - Vasco C Braz
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
| | - Nuno A M Araújo
- Centro de Física Teórica e Computacional, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
- Departamento de Física, Faculdade de Ciências, Universidade de Lisboa, P-1749-016, Lisboa, Portugal
| | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, WC1E 6BT, UK
| | - Giorgio Volpe
- Department of Chemistry, University College London, 20 Gordon Street, London, WC1H 0AJ, UK.
| |
Collapse
|
37
|
Mok R, Dunkel J, Kantsler V. Geometric control of bacterial surface accumulation. Phys Rev E 2019; 99:052607. [PMID: 31212480 DOI: 10.1103/physreve.99.052607] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Indexed: 06/09/2023]
Abstract
Controlling and suppressing bacterial accumulation at solid surfaces is essential for preventing biofilm formation and biofouling. Whereas various chemical surface treatments are known to reduce cell accumulation and attachment, the role of complex surface geometries remains less well understood. Here, we report experiments and simulations that explore the effects of locally varying boundary curvature on the scattering and accumulation dynamics of swimming Escherichia coli bacteria in quasi-two-dimensional microfluidic channels. Our experimental and numerical results show that a concave periodic boundary geometry can decrease the average cell concentration at the boundary by more than 50% relative to a flat surface.
Collapse
Affiliation(s)
- Rachel Mok
- Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139-4307, USA
| | - Vasily Kantsler
- Department of Physics, University of Warwick, Coventry CV4 7AL, United Kingdom
| |
Collapse
|
38
|
Rosenzweig R, Perinbam K, Ly VK, Ahrar S, Siryaporn A, Yee AF. Nanopillared Surfaces Disrupt Pseudomonas aeruginosa Mechanoresponsive Upstream Motility. ACS APPLIED MATERIALS & INTERFACES 2019; 11:10532-10539. [PMID: 30789254 DOI: 10.1021/acsami.8b22262] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic, multidrug-resistant, human pathogen that forms biofilms in environments with fluid flow, such as the lungs of cystic fibrosis patients, industrial pipelines, and medical devices. P. aeruginosa twitches upstream on surfaces by the cyclic extension and retraction of its mechanoresponsive type IV pili motility appendages. The prevention of upstream motility, host invasion, and infectious biofilm formation in fluid flow systems remains an unmet challenge. Here, we describe the design and application of scalable nanopillared surface structures fabricated using nanoimprint lithography that reduce upstream motility and colonization by P. aeruginosa. We used flow channels to induce shear stress typically found in catheter tubes and microscopy analysis to investigate the impact of nanopillared surfaces with different packing fractions on upstream motility trajectory, displacement, velocity, and surface attachment. We found that densely packed, subcellular nanopillared surfaces, with pillar periodicities ranging from 200 to 600 nm and widths ranging from 70 to 215 nm, inhibit the mechanoresponsive upstream motility and surface attachment. This bacteria-nanostructured surface interface effect allows us to tailor surfaces with specific nanopillared geometries for disrupting cell motility and attachment in fluid flow systems.
Collapse
|
39
|
Alfaro-Saldaña E, Hernández-Sánchez A, Patrón-Soberano OA, Astello-García M, Méndez-Cabañas JA, García-Meza JV. Sequence analysis and confirmation of the type IV pili-associated proteins PilY1, PilW and PilV in Acidithiobacillus thiooxidans. PLoS One 2019; 14:e0199854. [PMID: 30615628 PMCID: PMC6322766 DOI: 10.1371/journal.pone.0199854] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Accepted: 11/24/2018] [Indexed: 11/19/2022] Open
Abstract
Acidithiobacillus thiooxidans is an acidophilic chemolithoautotrophic bacterium widely used in the mining industry due to its metabolic sulfur-oxidizing capability. The biooxidation of sulfide minerals is enhanced through the attachment of At. thiooxidans cells to the mineral surface. The Type IV pili (TfP) of At. thiooxidans may play an important role in the bacteria attachment since TfP play a key adhesive role in the attachment and colonization of different surfaces. In this work, we report for the first time the mRNA sequence of three TfP proteins from At. thiooxidans, the adhesin protein PilY1 and the TfP pilins PilW and PilV. The nucleotide sequences of these TfP proteins show changes in some nucleotide positions with respect to the corresponding annotated sequences. The bioinformatic analyses and 3D-modeling of protein structures sustain their classification as TfP proteins, as structural homologs of the corresponding proteins of Ps. aeruginosa, results that sustain the role of PilY1, PilW and PilV in pili assembly. Also, that PilY1 comprises the conserved Neisseria-PilC (superfamily) domain of the tip-associated adhesin, while PilW of the superfamily of putative TfP assembly proteins and PilV belongs to the superfamily of TfP assembly protein. In addition, the analyses suggested the presence of specific functional domains involved in adhesion, energy transduction and signaling functions. The phylogenetic analysis indicated that the PilY1 of Acidithiobacillus genus forms a cohesive group linked with iron- and/or sulfur-oxidizing microorganisms from acid mine drainage or mine tailings.
Collapse
Affiliation(s)
- Elvia Alfaro-Saldaña
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- Biofísica Molecular, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - Araceli Hernández-Sánchez
- Biofísica Molecular, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - O. Araceli Patrón-Soberano
- División de Biología Molecular, Instituto Potosino de Investigación Científica y Tecnológica, San Luis Potosí, México
| | - Marizel Astello-García
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - J. Alfredo Méndez-Cabañas
- Biofísica Molecular, Instituto de Física, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
| | - J. Viridiana García-Meza
- Geomicrobiología, Metalurgia, Universidad Autónoma de San Luis Potosí, San Luis Potosí, México
- * E-mail:
| |
Collapse
|
40
|
Latif M, May EE. A Multiscale Agent-Based Model for the Investigation of E. coli K12 Metabolic Response During Biofilm Formation. Bull Math Biol 2018; 80:2917-2956. [PMID: 30218278 DOI: 10.1007/s11538-018-0494-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Accepted: 08/24/2018] [Indexed: 12/14/2022]
Abstract
Bacterial biofilm formation is an organized collective response to biochemical cues that enables bacterial colonies to persist and withstand environmental insults. We developed a multiscale agent-based model that characterizes the intracellular, extracellular, and cellular scale interactions that modulate Escherichia coli MG1655 biofilm formation. Each bacterium's intracellular response and cellular state were represented as an outcome of interactions with the environment and neighboring bacteria. In the intracellular model, environment-driven gene expression and metabolism were captured using statistical regression and Michaelis-Menten kinetics, respectively. In the cellular model, growth, death, and type IV pili- and flagella-dependent movement were based on the bacteria's intracellular state. We implemented the extracellular model as a three-dimensional diffusion model used to describe glucose, oxygen, and autoinducer 2 gradients within the biofilm and bulk fluid. We validated the model by comparing simulation results to empirical quantitative biofilm profiles, gene expression, and metabolic concentrations. Using the model, we characterized and compared the temporal metabolic and gene expression profiles of sessile versus planktonic bacterial populations during biofilm formation and investigated correlations between gene expression and biofilm-associated metabolites and cellular scale phenotypes. Based on our in silico studies, planktonic bacteria had higher metabolite concentrations in the glycolysis and citric acid cycle pathways, with higher gene expression levels in flagella and lipopolysaccharide-associated genes. Conversely, sessile bacteria had higher metabolite concentrations in the autoinducer 2 pathway, with type IV pili, autoinducer 2 export, and cellular respiration genes upregulated in comparison with planktonic bacteria. Having demonstrated results consistent with in vitro static culture biofilm systems, our model enables examination of molecular phenomena within biofilms that are experimentally inaccessible and provides a framework for future exploration of how hypothesized molecular mechanisms impact bulk community behavior.
Collapse
Affiliation(s)
- Majid Latif
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA
| | - Elebeoba E May
- Department of Biomedical Engineering, University of Houston, Houston, TX, USA.
| |
Collapse
|
41
|
Volke DC, Nikel PI. Getting Bacteria in Shape: Synthetic Morphology Approaches for the Design of Efficient Microbial Cell Factories. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800111] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Daniel C. Volke
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| | - Pablo I. Nikel
- The Novo Nordisk Foundation Center for Biosustainability; Technical University of Denmark; Kemitorvet 2800 Kgs. Lyngby Denmark
| |
Collapse
|
42
|
Mattingly AE, Weaver AA, Dimkovikj A, Shrout JD. Assessing Travel Conditions: Environmental and Host Influences On Bacterial Surface Motility. J Bacteriol 2018; 200:e00014-18. [PMID: 29555698 PMCID: PMC5952383 DOI: 10.1128/jb.00014-18] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The degree to which surface motile bacteria explore their surroundings is influenced by aspects of their local environment. Accordingly, regulation of surface motility is controlled by numerous chemical, physical, and biological stimuli. Discernment of such regulation due to these multiple cues is a formidable challenge. Additionally inherent ambiguity and variability from the assays used to assess surface motility can be an obstacle to clear delineation of regulated surface motility behavior. Numerous studies have reported single environmental determinants of microbial motility and lifestyle behavior but the translation of these data to understand surface motility and bacterial colonization of human host or environmental surfaces is unclear. Here, we describe the current state of the field and our understanding of exogenous factors that influence bacterial surface motility.
Collapse
Affiliation(s)
- Anne E. Mattingly
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Abigail A. Weaver
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Aleksandar Dimkovikj
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| | - Joshua D. Shrout
- Department of Civil and Environmental Engineering and Earth Sciences, University of Notre Dame, Notre Dame, Indiana, USA
- Department of Biological Sciences, University of Notre Dame, Notre Dame, Indiana, USA
| |
Collapse
|
43
|
Desai N, Ardekani AM. Modeling of active swimmer suspensions and their interactions with the environment. SOFT MATTER 2017; 13:6033-6050. [PMID: 28884775 DOI: 10.1039/c7sm00766c] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
In this article, we review mathematical models used to study the behaviour of suspensions of micro-swimmers and the accompanying biophysical phenomena, with specific focus on stimulus response. The methods discussed encompass a range of interactions exhibited by the micro-swimmers; including passive hydrodynamic (gyrotaxis) and gravitational (gravitaxis) effects, and active responses to chemical cues (chemotaxis) and light intensities (phototaxis). We introduce the simplest models first, and then build towards more sophisticated recent developments, in the process, identifying the limitations of the former and the new results obtained by the latter. We comment on the accuracy/validity of the models adopted, based on the agreement between theoretical results and experimental observations. We conclude by identifying some of the open problems and associated challenges faced by researchers in the realm of active suspensions.
Collapse
Affiliation(s)
- Nikhil Desai
- School of Mechanical Engineering, Purdue University, West Lafayette, Indiana, 47907, USA.
| | | |
Collapse
|
44
|
Yang P, Zhang M, van Elsas JD. Role of flagella and type four pili in the co-migration of Burkholderia terrae BS001 with fungal hyphae through soil. Sci Rep 2017; 7:2997. [PMID: 28592860 PMCID: PMC5462819 DOI: 10.1038/s41598-017-02959-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 04/21/2017] [Indexed: 12/25/2022] Open
Abstract
Burkholderia terrae BS001 has previously been found to be able to disperse along with growing fungal hyphae in soil, with the type-3 secretion system having a supportive role in this movement. In this study, we focus on the role of two motility- and adherence-associated appendages, i.e. type-4 pili (T4P) and flagella. Electron microcopy and motility testing revealed that strain BS001 produces polar flagella and can swim on semi-solid R2A agar. Flagellum- and T4P-negative mutants were then constructed to examine the ecological roles of the respective systems. Both in liquid media and on swimming agar, the mutant strains showed similar fitness to the wild-type strain in mixed culture. The flagellar mutant had completely lost its flagella, as well as its swimming capacity. It also lost its co-migration ability with two soil-exploring fungi, Lyophyllum sp. strain Karsten and Trichoderma asperellum 302, in soil microcosms. In contrast, the T4P mutant showed reduced surface twitching motility, whereas its co-migration ability in competition with the wild-type strain was slightly reduced. We conclude that the co-migration of strain BS001 with fungal hyphae through soil is dependent on the presence of functional flagella conferring swimming motility, with the T4P system having a minor effect.
Collapse
Affiliation(s)
- Pu Yang
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Miaozhi Zhang
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands
| | - Jan Dirk van Elsas
- Microbial Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, Nijenborgh 7, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
45
|
Brill-Karniely Y, Jin F, Wong GCL, Frenkel D, Dobnikar J. Emergence of complex behavior in pili-based motility in early stages of P. aeruginosa surface adaptation. Sci Rep 2017; 7:45467. [PMID: 28393835 PMCID: PMC5385500 DOI: 10.1038/srep45467] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2016] [Accepted: 02/28/2017] [Indexed: 12/20/2022] Open
Abstract
Pseudomonas aeruginosa move across surfaces by using multiple Type IV Pili (TFP), motorized appendages capable of force generation via linear extension/retraction cycles, to generate surface motions collectively known as twitching motility. Pseudomonas cells arrive at a surface with low levels of piliation and TFP activity, which both progressively increase as the cells sense the presence of a surface. At present, it is not clear how twitching motility emerges from these initial minimal conditions. Here, we build a simple model for TFP-driven surface motility without complications from viscous and solid friction on surfaces. We discover the unanticipated structural requirement that TFP motors need to have a minimal amount of effective angular rigidity in order for cells to perform the various classes of experimentally-observed motions. Moreover, a surprisingly small number of TFP are needed to recapitulate movement signatures associated with twitching: Two TFP can already produce movements reminiscent of recently observed slingshot type motion. Interestingly, jerky slingshot motions characteristic of twitching motility comprise the transition region between different types of observed crawling behavior in the dynamical phase diagram, such as self-trapped localized motion, 2-D diffusive exploration, and super-diffusive persistent motion.
Collapse
Affiliation(s)
- Yifat Brill-Karniely
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK.,Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel
| | - Fan Jin
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Polymer Science and Engineering, CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, Hefei 230026, P. R. China.,Bioengineering Department, Chemistry and Biochemistry Department, California Nano Systems Institute, University of California, Los Angeles, CA 90095, USA
| | - Gerard C L Wong
- Bioengineering Department, Chemistry and Biochemistry Department, California Nano Systems Institute, University of California, Los Angeles, CA 90095, USA
| | - Daan Frenkel
- Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK
| | - Jure Dobnikar
- Beijing national laboratory for condensed matter physics &CAS key laboratory of soft matter physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China.,School of physical sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
46
|
Evaluation of Clogging during Sand-Filtered Surface Water Injection for Aquifer Storage and Recovery (ASR): Pilot Experiment in the Llobregat Delta (Barcelona, Spain). WATER 2017. [DOI: 10.3390/w9040263] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Mathijssen AJTM, Doostmohammadi A, Yeomans JM, Shendruk TN. Hotspots of boundary accumulation: dynamics and statistics of micro-swimmers in flowing films. J R Soc Interface 2016; 13:20150936. [PMID: 26841796 DOI: 10.1098/rsif.2015.0936] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Biological flows over surfaces and interfaces can result in accumulation hotspots or depleted voids of microorganisms in natural environments. Apprehending the mechanisms that lead to such distributions is essential for understanding biofilm initiation. Using a systematic framework, we resolve the dynamics and statistics of swimming microbes within flowing films, considering the impact of confinement through steric and hydrodynamic interactions, flow and motility, along with Brownian and run-tumble fluctuations. Micro-swimmers can be peeled off the solid wall above a critical flow strength. However, the interplay of flow and fluctuations causes organisms to migrate back towards the wall above a secondary critical value. Hence, faster flows may not always be the most efficacious strategy to discourage biofilm initiation. Moreover, we find run-tumble dynamics commonly used by flagellated microbes to be an intrinsically more successful strategy to escape from boundaries than equivalent levels of enhanced Brownian noise in ciliated organisms.
Collapse
Affiliation(s)
| | - Amin Doostmohammadi
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| | - Julia M Yeomans
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| | - Tyler N Shendruk
- The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, UK
| |
Collapse
|
48
|
Laganenka L, Colin R, Sourjik V. Chemotaxis towards autoinducer 2 mediates autoaggregation in Escherichia coli. Nat Commun 2016; 7:12984. [PMID: 27687245 PMCID: PMC5056481 DOI: 10.1038/ncomms12984] [Citation(s) in RCA: 124] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 08/23/2016] [Indexed: 12/18/2022] Open
Abstract
Bacteria communicate by producing and sensing extracellular signal molecules called autoinducers. Such intercellular signalling, known as quorum sensing, allows bacteria to coordinate and synchronize behavioural responses at high cell densities. Autoinducer 2 (AI-2) is the only known quorum-sensing molecule produced by Escherichia coli but its physiological role remains elusive, although it is known to regulate biofilm formation and virulence in other bacterial species. Here we show that chemotaxis towards self-produced AI-2 can mediate collective behaviour-autoaggregation-of E. coli. Autoaggregation requires motility and is strongly enhanced by chemotaxis to AI-2 at physiological cell densities. These effects are observed regardless whether cell-cell interactions under particular growth conditions are mediated by the major E. coli adhesin (antigen 43) or by curli fibres. Furthermore, AI-2-dependent autoaggregation enhances bacterial stress resistance and promotes biofilm formation.
Collapse
Affiliation(s)
- Leanid Laganenka
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, 35043 Marburg, Germany
| | - Remy Colin
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, 35043 Marburg, Germany
| | - Victor Sourjik
- Max Planck Institute for Terrestrial Microbiology and LOEWE Center for Synthetic Microbiology (SYNMIKRO), Karl-von-Frisch Strasse 16, 35043 Marburg, Germany
| |
Collapse
|
49
|
Mori Y, Inoue K, Ikeda K, Nakayashiki H, Higashimoto C, Ohnishi K, Kiba A, Hikichi Y. The vascular plant-pathogenic bacterium Ralstonia solanacearum produces biofilms required for its virulence on the surfaces of tomato cells adjacent to intercellular spaces. MOLECULAR PLANT PATHOLOGY 2016; 17:890-902. [PMID: 26609568 PMCID: PMC6638453 DOI: 10.1111/mpp.12335] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 10/08/2015] [Accepted: 10/13/2015] [Indexed: 05/18/2023]
Abstract
The mechanism of colonization of intercellular spaces by the soil-borne and vascular plant-pathogenic bacterium Ralstonia solanacearum strain OE1-1 after invasion into host plants remains unclear. To analyse the behaviour of OE1-1 cells in intercellular spaces, tomato leaves with the lower epidermis layers excised after infiltration with OE1-1 were observed under a scanning electron microscope. OE1-1 cells formed microcolonies on the surfaces of tomato cells adjacent to intercellular spaces, and then aggregated surrounded by an extracellular matrix, forming mature biofilm structures. Furthermore, OE1-1 cells produced mushroom-type biofilms when incubated in fluids of apoplasts including intercellular spaces, but not xylem fluids from tomato plants. This is the first report of biofilm formation by R. solanacearum on host plant cells after invasion into intercellular spaces and mushroom-type biofilms produced by R. solanacearum in vitro. Sugar application led to enhanced biofilm formation by OE1-1. Mutation of lecM encoding a lectin, RS-IIL, which reportedly exhibits affinity for these sugars, led to a significant decrease in biofilm formation. Colonization in intercellular spaces was significantly decreased in the lecM mutant, leading to a loss of virulence on tomato plants. Complementation of the lecM mutant with native lecM resulted in the recovery of mushroom-type biofilms and virulence on tomato plants. Together, our findings indicate that OE1-1 produces mature biofilms on the surfaces of tomato cells after invasion into intercellular spaces. RS-IIL may contribute to biofilm formation by OE1-1, which is required for OE1-1 virulence.
Collapse
Affiliation(s)
- Yuka Mori
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kanako Inoue
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Mihogaoka, Ibaraki, Osaka 567-0047, Japan
| | - Kenichi Ikeda
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Hitoshi Nakayashiki
- Graduate School of Agricultural Science, Kobe University, 1-1 Rokkodai, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chikaki Higashimoto
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan
| |
Collapse
|
50
|
Purcell EB, Tamayo R. Cyclic diguanylate signaling in Gram-positive bacteria. FEMS Microbiol Rev 2016; 40:753-73. [PMID: 27354347 DOI: 10.1093/femsre/fuw013] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/19/2016] [Indexed: 12/14/2022] Open
Abstract
The nucleotide second messenger 3'-5' cyclic diguanylate monophosphate (c-di-GMP) is a central regulator of the transition between motile and non-motile lifestyles in bacteria, favoring sessility. Most research investigating the functions of c-di-GMP has focused on Gram-negative species, especially pathogens. Recent work in Gram-positive species has revealed that c-di-GMP plays similar roles in Gram-positives, though the precise targets and mechanisms of regulation may differ. The majority of bacterial life exists in a surface-associated state, with motility allowing bacteria to disseminate and colonize new environments. c-di-GMP signaling regulates flagellum biosynthesis and production of adherence factors and appears to be a primary mechanism by which bacteria sense and respond to surfaces. Ultimately, c-di-GMP influences the ability of a bacterium to alter its transcriptional program, physiology and behavior upon surface contact. This review discusses how bacteria are able to sense a surface via flagella and type IV pili, and the role of c-di-GMP in regulating the response to surfaces, with emphasis on studies of Gram-positive bacteria.
Collapse
Affiliation(s)
- Erin B Purcell
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rita Tamayo
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|