1
|
Swierk L. Novel rebreathing adaptation extends dive time in a semi-aquatic lizard. Biol Lett 2024; 20:20240371. [PMID: 39288814 PMCID: PMC11407854 DOI: 10.1098/rsbl.2024.0371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 09/19/2024] Open
Abstract
Bubble use evolved in many small invertebrates to enable underwater respiration, but, until recently, there has been no evidence that vertebrate animals use bubbles in a similar manner. Only one group of vertebrates, semi-aquatic Anolis lizards, may be an exception: these lizards dive underwater when threatened and, while underwater, rebreathe a bubble of air over their nostrils. Although it seems that rebreathing should be adaptive, possibly functioning to extend the time that lizards remain in underwater refugia, this has not been empirically tested. Here, I demonstrate that rebreathing serves to extend dive time in a semi-aquatic anole, Anolis aquaticus. I prevented the formation of normal rebreathing bubbles by applying a commercial emollient on the skin surface where bubbles form to assess the impact of bubbles on rebreathing cycles, gular pumps, and dive times. Lizards that were allowed to rebreathe normally remained underwater an average of 32% longer than those with impaired rebreathing, suggesting a functional role of rebreathing in underwater respiration. Unlike rebreathing, gular pumping was unaffected by treatment and may warrant further research regarding its role in supplementing underwater respiration. This study provides evidence that vertebrates can use bubbles to respire underwater and raises questions about adaptive mechanisms and potential bio-inspired applications.
Collapse
Affiliation(s)
- Lindsey Swierk
- Department of Biological Sciences, Binghamton University, State University of New York, Binghamton, NY13902, USA
- Amazon Conservatory for Tropical Studies, Iquitos, Loreto16001, Peru
| |
Collapse
|
2
|
Ponstein J, MacDougall MJ, Fröbisch J. A comprehensive phylogeny and revised taxonomy of Diadectomorpha with a discussion on the origin of tetrapod herbivory. ROYAL SOCIETY OPEN SCIENCE 2024; 11:231566. [PMID: 39036512 PMCID: PMC11257076 DOI: 10.1098/rsos.231566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 03/23/2024] [Accepted: 04/08/2024] [Indexed: 07/23/2024]
Abstract
Among terrestrial tetrapods, the origin of herbivory marked a key evolutionary event that allowed for the evolution of modern terrestrial ecosystems. A 100 Ma gap separates the oldest terrestrial tetrapods and the first undisputed herbivorous tetrapods. While four clades of early tetrapod herbivores are undisputed amniotes, the phylogenetic position of Diadectomorpha with respect to Amniota has long been controversial. Given that the origin of herbivory coincides with the oldest amniotes, and obligate herbivory is unknown within amphibians, this suggests that a key adaptation necessary to evolve obligate herbivory is unique to amniotes. Historically, phylogenetic analyses have found Diadectomorpha as the sister-group to amniotes, but recent analyses recover Diadectomorpha as sister-group to Synapsida, within Amniota. We tested whether diadectomorphs are amniotes by updating the most recent character-taxon matrix. Specifically, we added new characters from the lower jaw and added diadectomorph taxa, resulting in a dataset of 341 characters and 61 operational taxonomic units. We updated the description of five diadectomorph jaws using microcomputed tomography data. Our majority-rule consensus places Diadectomorpha as sister-group to Synapsida; other methods do not recover this relationship. We revise diadectomorph taxonomy, erecting a new species from the early Permian Bromacker locality, Germany, and a new genus to accommodate 'Diadectes' sanmiguelensis.
Collapse
Affiliation(s)
- Jasper Ponstein
- Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Museum für Naturkunde Berlin, Invalidenstraße 43, 10115 Berlin, Germany
- Oertijdmuseum, Bosscheweg 80, 5283 WB Boxtel, The Netherlands
| | | | - Jörg Fröbisch
- Humboldt-Universität zu Berlin, Unter den Linden 6, 10117 Berlin, Germany
- Museum für Naturkunde Berlin, Invalidenstraße 43, 10115 Berlin, Germany
| |
Collapse
|
3
|
Grand Pré CA, Thielicke W, Diaz Jr RE, Hedrick BP, Elsey RM, Schachner ER. Validating osteological correlates for the hepatic piston in the American alligator ( Alligator mississippiensis). PeerJ 2023; 11:e16542. [PMID: 38144194 PMCID: PMC10749092 DOI: 10.7717/peerj.16542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 11/08/2023] [Indexed: 12/26/2023] Open
Abstract
Unlike the majority of sauropsids, which breathe primarily through costal and abdominal muscle contractions, extant crocodilians have evolved the hepatic piston pump, a unique additional ventilatory mechanism powered by the diaphragmaticus muscle. This muscle originates from the bony pelvis, wrapping around the abdominal viscera, extending cranially to the liver. The liver then attaches to the caudal margin of the lungs, resulting in a sub-fusiform morphology for the entire "pulmo-hepatic-diaphragmatic" structure. When the diaphragmaticus muscle contracts during inspiration, the liver is pulled caudally, lowering pressure in the thoracolumbar cavity, and inflating the lungs. It has been established that the hepatic piston pump requires the liver to be displaced to ventilate the lungs, but it has not been determined if the lungs are freely mobile or if the pleural tissues stretch ventrally. It has been hypothesized that the lungs are able to slide craniocaudally with the liver due to the smooth internal ceiling of the thoracolumbar cavity. We assess this through ultrasound video and demonstrate quantitatively and qualitatively that the pulmonary tissues are sliding craniocaudally across the interior thoracolumbar ceiling in actively ventilating live juvenile, sub-adult, and adult individuals (n = 7) of the American alligator (Alligator mississippiensis) during both natural and induced ventilation. The hepatic piston is a novel ventilatory mechanism with a relatively unknown evolutionary history. Questions related to when and under what conditions the hepatic piston first evolved have previously been left unanswered due to a lack fossilized evidence for its presence or absence. By functionally correlating specific characters in the axial skeleton to the hepatic piston, these osteological correlates can be applied to fossil taxa to reconstruct the evolution of the hepatic piston in extinct crocodylomorph archosaurs.
Collapse
Affiliation(s)
- Clinton A. Grand Pré
- Cell Biology and Anatomy, Louisiana State University Health Sciences Center, New Orleans, LA, USA
| | | | - Raul E. Diaz Jr
- Department of Biological Sciences, California State University Los Angeles, Los Angeles, CA, USA
| | - Brandon P. Hedrick
- Department of Biomedical Sciences, Cornell University, Ithaca, NY, United States of America
| | - Ruth M. Elsey
- Louisiana Department of Wildlife and Fisheries, Grand Chenier, LA, USA
- Murfreesboro, TN, USA
| | - Emma R. Schachner
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL, USA
| |
Collapse
|
4
|
Capano JG, Boback SM, Weller HI, Cieri RL, Zwemer CF, Brainerd EL. Modular lung ventilation in Boa constrictor. J Exp Biol 2022; 225:274764. [PMID: 35325925 DOI: 10.1242/jeb.243119] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 02/11/2022] [Indexed: 12/13/2022]
Abstract
The evolution of constriction and of large prey ingestion within snakes are key innovations that may explain the remarkable diversity, distribution and ecological scope of this clade, relative to other elongate vertebrates. However, these behaviors may have simultaneously hindered lung ventilation such that early snakes may have had to circumvent these mechanical constraints before those behaviors could evolve. Here, we demonstrate that Boa constrictor can modulate which specific segments of ribs are used to ventilate the lung in response to physically hindered body wall motions. We show that the modular actuation of specific segments of ribs likely results from active recruitment or quiescence of derived accessory musculature. We hypothesize that constriction and large prey ingestion were unlikely to have evolved without modular lung ventilation because of their interference with lung ventilation, high metabolic demands and reliance on sustained lung convection. This study provides a new perspective on snake evolution and suggests that modular lung ventilation evolved during or prior to constriction and large prey ingestion, facilitating snakes' remarkable radiation relative to other elongate vertebrates.
Collapse
Affiliation(s)
- John G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Scott M Boback
- Department of Biology, Dickinson College, Carlisle, PA 17013, USA
| | - Hannah I Weller
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Robert L Cieri
- School of Science and Engineering, University of the Sunshine Coast, Maroochydore, QLD 4558, Australia
| | - Charles F Zwemer
- Department of Biology, Dickinson College, Carlisle, PA 17013, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
5
|
Weller H, López-Fernández H, McMahan CD, Brainerd EL. Relaxed feeding constraints facilitate the evolution of mouthbrooding in Neotropical cichlids. Am Nat 2022; 199:E197-E210. [DOI: 10.1086/719235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
6
|
Jones KE, Brocklehurst RJ, Pierce SE. AutoBend: An Automated Approach for Estimating Intervertebral Joint Function from Bone-Only Digital Models. Integr Org Biol 2021; 3:obab026. [PMID: 34661062 PMCID: PMC8514422 DOI: 10.1093/iob/obab026] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 08/06/2021] [Accepted: 09/08/2021] [Indexed: 11/16/2022] Open
Abstract
Deciphering the biological function of rare or extinct species is key to understanding evolutionary patterns across the tree of life. While soft tissues are vital determinants of joint function, they are rarely available for study. Therefore, extracting functional signals from skeletons, which are more widely available via museum collections, has become a priority for the field of comparative biomechanics. While most work has focused on the limb skeleton, the axial skeleton plays a critical role in body support, respiration, and locomotion, and is therefore of central importance for understanding broad-scale functional evolution. Here, we describe and experimentally validate AutoBend, an automated approach to estimating intervertebral joint function from bony vertebral columns. AutoBend calculates osteological range of motion (oROM) by automatically manipulating digitally articulated vertebrae while incorporating multiple constraints on motion, including both bony intersection and the role of soft tissues by restricting excessive strain in both centrum and zygapophyseal articulations. Using AutoBend and biomechanical data from cadaveric experiments on cats and tegus, we validate important modeling parameters required for oROM estimation, including the degree of zygapophyseal disarticulation, and the location of the center of rotation. Based on our validation, we apply a model with the center of rotation located within the vertebral disk, no joint translation, around 50% strain permitted in both zygapophyses and disks, and a small amount of vertebral intersection permitted. Our approach successfully reconstructs magnitudes and craniocaudal patterns of motion obtained from ex vivo experiments, supporting its potential utility. It also performs better than more typical methods that rely solely on bony intersection, emphasizing the importance of accounting for soft tissues. We estimated the sensitivity of the analyses to vertebral model construction by varying joint spacing, degree of overlap, and the impact of landmark placement. The effect of these factors was small relative to biological variation craniocaudally and between bending directions. We also present a new approach for estimating joint stiffness directly from oROM and morphometric measurements that can successfully reconstruct the craniocaudal patterns, but not magnitudes, derived from experimental data. Together, this work represents a significant step forward for understanding vertebral function in difficult-to-study (e.g., rare or extinct) species, paving the way for a broader understanding of patterns of functional evolution in the axial skeleton.
Collapse
Affiliation(s)
- K E Jones
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - R J Brocklehurst
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| | - S E Pierce
- Museum of Comparative Zoology and Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA 02138, USA
| |
Collapse
|
7
|
Milsom WK, Kinkead R, Hedrick MS, Gilmour K, Perry S, Gargaglioni L, Wang T. Evolution of vertebrate respiratory central rhythm generators. Respir Physiol Neurobiol 2021; 295:103781. [PMID: 34481078 DOI: 10.1016/j.resp.2021.103781] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 07/03/2021] [Accepted: 08/29/2021] [Indexed: 12/01/2022]
Abstract
Tracing the evolution of the central rhythm generators associated with ventilation in vertebrates is hindered by a lack of information surrounding key transitions. To begin with, central rhythm generation has been studied in detail in only a few species from four vertebrate groups, lamprey, anuran amphibians, turtles, and mammals (primarily rodents). Secondly, there is a lack of information regarding the transition from water breathing fish to air breathing amniotes (reptiles, birds, and mammals). Specifically, the respiratory rhythm generators of fish appear to be single oscillators capable of generating both phases of the respiratory cycle (expansion and compression) and projecting to motoneurons in cranial nerves innervating bucco-pharyngeal muscles. In the amniotes we find oscillators capable of independently generating separate phases of the respiratory cycle (expiration and inspiration) and projecting to pre-motoneurons in the ventrolateral medulla that in turn project to spinal motoneurons innervating thoracic and abdominal muscles (reptiles, birds, and mammals). Studies of the one group of amphibians that lie at this transition (the anurans), raise intriguing possibilities but, for a variety of reasons that we explore, also raise unanswered questions. In this review we summarize what is known about the rhythm generating circuits associated with breathing that arise from the different rhombomeric segments in each of the different vertebrate classes. Assuming oscillating circuits form in every pair of rhombomeres in every vertebrate during development, we trace what appears to be the evolutionary fate of each and highlight the questions that remain to be answered to properly understand the evolutionary transitions in vertebrate central respiratory rhythm generation.
Collapse
Affiliation(s)
- W K Milsom
- Department of Zoology, University of British Columbia, Canada.
| | - R Kinkead
- Département de Pédiatrie, Université Laval, Canada
| | - M S Hedrick
- Department of Biological Sciences, California State University, Hayward, CA, USA
| | - K Gilmour
- Department of Biology, University of Ottawa, Canada
| | - S Perry
- Department of Biology, University of Ottawa, Canada
| | - L Gargaglioni
- Departamento de Morfologia e Fisiologia Animal, UNESP, Jaboticabal, Brazil
| | - T Wang
- Department of Zoophysiology, Aarhus University, Denmark
| |
Collapse
|
8
|
Rose KAR, Tickle PG, Elsey RM, Sellers WI, Crossley DA, Codd JR. Scaling of axial muscle architecture in juvenile Alligator mississippiensis reveals an enhanced performance capacity of accessory breathing mechanisms. J Anat 2021; 239:1273-1286. [PMID: 34302302 PMCID: PMC8602021 DOI: 10.1111/joa.13523] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 11/30/2022] Open
Abstract
Quantitative functional anatomy of amniote thoracic and abdominal regions is crucial to understanding constraints on and adaptations for facilitating simultaneous breathing and locomotion. Crocodilians have diverse locomotor modes and variable breathing mechanics facilitated by basal and derived (accessory) muscles. However, the inherent flexibility of these systems is not well studied, and the functional specialisation of the crocodilian trunk is yet to be investigated. Increases in body size and trunk stiffness would be expected to cause a disproportionate increase in muscle force demands and therefore constrain the basal costal aspiration mechanism, necessitating changes in respiratory mechanics. Here, we describe the anatomy of the trunk muscles, their properties that determine muscle performance (mass, length and physiological cross‐sectional area [PCSA]) and investigate their scaling in juvenile Alligator mississippiensis spanning an order of magnitude in body mass (359 g–5.5 kg). Comparatively, the expiratory muscles (transversus abdominis, rectus abdominis, iliocostalis), which compress the trunk, have greater relative PCSA being specialised for greater force‐generating capacity, while the inspiratory muscles (diaphragmaticus, truncocaudalis ischiotruncus, ischiopubis), which create negative internal pressure, have greater relative fascicle lengths, being adapted for greater working range and contraction velocity. Fascicle lengths of the accessory diaphragmaticus scaled with positive allometry in the alligators examined, enhancing contractile capacity, in line with this muscle's ability to modulate both tidal volume and breathing frequency in response to energetic demand during terrestrial locomotion. The iliocostalis, an accessory expiratory muscle, also demonstrated positive allometry in fascicle lengths and mass. All accessory muscles of the infrapubic abdominal wall demonstrated positive allometry in PCSA, which would enhance their force‐generating capacity. Conversely, the basal tetrapod expiratory pump (transversus abdominis) scaled isometrically, which may indicate a decreased reliance on this muscle with ontogeny. Collectively, these findings would support existing anecdotal evidence that crocodilians shift their breathing mechanics as they increase in size. Furthermore, the functional specialisation of the diaphragmaticus and compliance of the body wall in the lumbar region against which it works may contribute to low‐cost breathing in crocodilians.
Collapse
Affiliation(s)
- Kayleigh A R Rose
- Department of Biosciences, College of Science, Swansea University, Wales, UK
| | - Peter G Tickle
- School of Biomedical Sciences, Faculty of Biological Sciences, University of Leeds, Leeds, UK
| | - Ruth M Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge, Grand Chenier, LA, USA
| | - William I Sellers
- Department of Earth and Environmental Sciences, Faculty of Science and Engineering, University of Manchester, Manchester, UK
| | - Dane A Crossley
- Department of Biological Sciences, University of North Texas, Denton, TX, USA
| | - Jonathan R Codd
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
9
|
Li S, Wang F. Vertebrate Evolution Conserves Hindbrain Circuits despite Diverse Feeding and Breathing Modes. eNeuro 2021; 8:ENEURO.0435-20.2021. [PMID: 33707205 PMCID: PMC8174041 DOI: 10.1523/eneuro.0435-20.2021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 01/08/2021] [Accepted: 01/12/2021] [Indexed: 12/21/2022] Open
Abstract
Feeding and breathing are two functions vital to the survival of all vertebrate species. Throughout the evolution, vertebrates living in different environments have evolved drastically different modes of feeding and breathing through using diversified orofacial and pharyngeal (oropharyngeal) muscles. The oropharyngeal structures are controlled by hindbrain neural circuits. The developing hindbrain shares strikingly conserved organizations and gene expression patterns across vertebrates, thus begs the question of how a highly conserved hindbrain generates circuits subserving diverse feeding/breathing patterns. In this review, we summarize major modes of feeding and breathing and principles underlying their coordination in many vertebrate species. We provide a hypothesis for the existence of a common hindbrain circuit at the phylotypic embryonic stage controlling oropharyngeal movements that is shared across vertebrate species; and reconfiguration and repurposing of this conserved circuit give rise to more complex behaviors in adult higher vertebrates.
Collapse
Affiliation(s)
- Shun Li
- Department of Neurobiology, Duke University, Durham, NC 27710
| | - Fan Wang
- Department of Neurobiology, Duke University, Durham, NC 27710
| |
Collapse
|
10
|
Capano JG. Reaction Forces and Rib Function During Locomotion in Snakes. Integr Comp Biol 2020; 60:215-231. [PMID: 32396605 DOI: 10.1093/icb/icaa033] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Locomotion in most tetrapods involves coordinated efforts between appendicular and axial musculoskeletal systems, where interactions between the limbs and the ground generate vertical (GV), horizontal (GH), and mediolateral (GML) ground-reaction forces that are transmitted to the axial system. Snakes have a complete absence of external limbs and represent a fundamental shift from this perspective. The axial musculoskeletal system of snakes is their primary structure to exert, transmit, and resist all motive and reaction forces for propulsion. Their lack of limbs makes them particularly dependent on the mechanical interactions between their bodies and the environment to generate the net GH they need for forward locomotion. As organisms that locomote on their bellies, the forces that enable the various modes of snake locomotion involve two important structures: the integument and the ribs. Snakes use the integument to contact the substrate and produce a friction-reservoir that exceeds their muscle-induced propulsive forces through modulation of scale stiffness and orientation, enabling propulsion through variable environments. XROMM work and previous studies suggest that the serially repeated ribs of snakes change their cross-sectional body shape, deform to environmental irregularities, provide synergistic stabilization for other muscles, and differentially exert and transmit forces to control propulsion. The costovertebral joints of snakes have a biarticular morphology, relative to the unicapitate costovertebral joints of other squamates, that appears derived and not homologous with the ancestral bicapitate ribs of Amniota. Evidence suggests that the biarticular joints of snakes may function to buttress locomotor forces, similar to other amniotes, and provide a passive mechanism for resisting reaction forces during snake locomotion. Future comparisons with other limbless lizard taxa are necessary to tease apart the mechanics and mechanisms that produced the locomotor versatility observed within Serpentes.
Collapse
Affiliation(s)
- John G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
11
|
Cieri RL, Hatch ST, Capano JG, Brainerd EL. Locomotor rib kinematics in two species of lizards and a new hypothesis for the evolution of aspiration breathing in amniotes. Sci Rep 2020; 10:7739. [PMID: 32398656 PMCID: PMC7217971 DOI: 10.1038/s41598-020-64140-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/08/2020] [Indexed: 11/09/2022] Open
Abstract
Most lizards walk and run with a sprawling gait in which the limbs are partly advanced by lateral undulation of the axial skeleton. Ribs and vertebrae are integral to this locomotor mode, but 3D motion of the axial skeleton has not been reported for lizard locomotion. Here, we use XROMM to quantify the relative motions of the vertebrae and ribs during slow treadmill locomotion in three savannah monitor lizards (Varanus exanthematicus) and three Argentine black and white tegus (Salvator merianae). To isolate locomotion, we selected strides with no concurrent lung ventilation. Rib rotations can be decomposed into bucket-handle rotation around a dorsoventral axis, pump-handle rotation around a mediolateral axis, and caliper rotations around a craniocaudal axis. During locomotion, every rib measured in both species rotated substantially around its costovertebral joint (8-17 degrees, summed across bucket, pump and caliper rotations). In all individuals from both species, the middle ribs rotated cranially through bucket and pump-handle motion during the propulsive phase of the ipsilateral forelimb. Axial kinematics during swing phase of the ipsilateral forelimb were mirror images of the propulsive phase. Although further work is needed to establish what causes these rib motions, active contraction of the hypaxial musculature may be at least partly responsible. Unilateral locomotor rib movements are remarkably similar to the bilateral pattern used for lung ventilation, suggesting a new hypothesis that rib motion during locomotion may have been an exaptation for the evolution of costal aspiration breathing in stem amniotes.
Collapse
Affiliation(s)
- Robert L Cieri
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA.
| | - Samuel T Hatch
- School of Biological Sciences, University of Utah, Salt Lake City, UT, 84112, USA
| | - John G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02906, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, 02906, USA
| |
Collapse
|
12
|
Anthracopoulos MB, Everard ML. Asthma: A Loss of Post-natal Homeostatic Control of Airways Smooth Muscle With Regression Toward a Pre-natal State. Front Pediatr 2020; 8:95. [PMID: 32373557 PMCID: PMC7176812 DOI: 10.3389/fped.2020.00095] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 02/24/2020] [Indexed: 12/20/2022] Open
Abstract
The defining feature of asthma is loss of normal post-natal homeostatic control of airways smooth muscle (ASM). This is the key feature that distinguishes asthma from all other forms of respiratory disease. Failure to focus on impaired ASM homeostasis largely explains our failure to find a cure and contributes to the widespread excessive morbidity associated with the condition despite the presence of effective therapies. The mechanisms responsible for destabilizing the normal tight control of ASM and hence airways caliber in post-natal life are unknown but it is clear that atopic inflammation is neither necessary nor sufficient. Loss of homeostasis results in excessive ASM contraction which, in those with poor control, is manifest by variations in airflow resistance over short periods of time. During viral exacerbations, the ability to respond to bronchodilators is partially or almost completely lost, resulting in ASM being "locked down" in a contracted state. Corticosteroids appear to restore normal or near normal homeostasis in those with poor control and restore bronchodilator responsiveness during exacerbations. The mechanism of action of corticosteroids is unknown and the assumption that their action is solely due to "anti-inflammatory" effects needs to be challenged. ASM, in evolutionary terms, dates to the earliest land dwelling creatures that required muscle to empty primitive lungs. ASM appears very early in embryonic development and active peristalsis is essential for the formation of the lungs. However, in post-natal life its only role appears to be to maintain airways in a configuration that minimizes resistance to airflow and dead space. In health, significant constriction is actively prevented, presumably through classic negative feedback loops. Disruption of this robust homeostatic control can develop at any age and results in asthma. In order to develop a cure, we need to move from our current focus on immunology and inflammatory pathways to work that will lead to an understanding of the mechanisms that contribute to ASM stability in health and how this is disrupted to cause asthma. This requires a radical change in the focus of most of "asthma research."
Collapse
Affiliation(s)
| | - Mark L. Everard
- Division of Paediatrics & Child Health, Perth Children's Hospital, University of Western Australia, Perth, WA, Australia
| |
Collapse
|
13
|
Brocklehurst RJ, Schachner ER, Codd JR, Sellers WI. Respiratory evolution in archosaurs. Philos Trans R Soc Lond B Biol Sci 2020; 375:20190140. [PMID: 31928195 PMCID: PMC7017431 DOI: 10.1098/rstb.2019.0140] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The Archosauria are a highly successful group of vertebrates, and their evolution is marked by the appearance of diverse respiratory and metabolic strategies. This review examines respiratory function in living and fossil archosaurs, focusing on the anatomy and biomechanics of the respiratory system, and their physiological consequences. The first archosaurs shared a heterogeneously partitioned parabronchial lung with unidirectional air flow; from this common ancestral lung morphology, we trace the diverging respiratory designs of bird- and crocodilian-line archosaurs. We review the latest evidence of osteological correlates for lung structure and the presence and distribution of accessory air sacs, with a focus on the evolution of the avian lung-air sac system and the functional separation of gas exchange and ventilation. In addition, we discuss the evolution of ventilation mechanics across archosaurs, citing new biomechanical data from extant taxa and how this informs our reconstructions of fossils. This improved understanding of respiratory form and function should help to reconstruct key physiological parameters in fossil taxa. We highlight key events in archosaur evolution where respiratory physiology likely played a major role, such as their radiation at a time of relative hypoxia following the Permo-Triassic mass extinction, and their evolution of elevated metabolic rates. This article is part of the theme issue ‘Vertebrate palaeophysiology’.
Collapse
Affiliation(s)
- Robert J Brocklehurst
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| | - Emma R Schachner
- Department of Cell Biology and Anatomy, School of Medicine, Louisiana State University Health Sciences Center, New Orleans, LA 70112, USA
| | - Jonathan R Codd
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - William I Sellers
- School of Earth and Environmental Sciences, University of Manchester, Manchester, UK
| |
Collapse
|
14
|
Witzmann F, Brainerd EL, Konow N. Eye Movements in Frogs and Salamanders-Testing the Palatal Buccal Pump Hypothesis. Integr Org Biol 2019; 1:obz011. [PMID: 33791526 PMCID: PMC7671152 DOI: 10.1093/iob/obz011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
In frogs and salamanders, movements of the eyeballs in association with an open palate have often been proposed to play a functional role in lung breathing. In this "palatal buccal pump," the eyeballs are elevated during the lowering of the buccal floor to suck air in through the nares, and the eyeballs are lowered during elevation of the buccal floor to help press air into the lungs. Here, we used X-Ray Reconstruction of Moving Morphology to investigate eye movements during lung breathing and feeding in bullfrogs and axolotls. Our data do not show eye movements that would be in accordance with the palatal buccal pump. On the contrary, there is a small passive elevation of the eyeballs when the buccal floor is raised. Inward drawing of the eyeballs occurs only during body motion and for prey transport in bullfrogs, but this was not observed in axolotls. Each eye movement in bullfrogs has a vertical, a mediolateral, and an anteroposterior component. Considering the surprisingly weak posterior motion component of the eyeballs, their main role in prey transport might be fixing the prey by pressing it against the buccal floor. The retraction of the buccal floor would then contribute to the posterior push of the prey. Because our study provides no evidence for a palatal buccal pump in frogs and salamanders, there is also no experimental support for the idea of a palatal buccal pump in extinct temnospondyl amphibians, in contrast to earlier suggestions.
Collapse
Affiliation(s)
- F Witzmann
- Museum für Naturkunde, Leibniz Institute for Evolution and Biodiversity Science, Invalidenstrasse 43, 10115 Berlin, Germany
| | - E L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912 USA
| | - N Konow
- Department of Biological Sciences, UMass Lowell, Lowell MA 01854 USA
| |
Collapse
|
15
|
Fogarty MJ, Sieck GC. Evolution and Functional Differentiation of the Diaphragm Muscle of Mammals. Compr Physiol 2019; 9:715-766. [PMID: 30873594 PMCID: PMC7082849 DOI: 10.1002/cphy.c180012] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Symmorphosis is a concept of economy of biological design, whereby structural properties are matched to functional demands. According to symmorphosis, biological structures are never over designed to exceed functional demands. Based on this concept, the evolution of the diaphragm muscle (DIAm) in mammals is a tale of two structures, a membrane that separates and partitions the primitive coelomic cavity into separate abdominal and thoracic cavities and a muscle that serves as a pump to generate intra-abdominal (Pab ) and intrathoracic (Pth ) pressures. The DIAm partition evolved in reptiles from folds of the pleural and peritoneal membranes that was driven by the biological advantage of separating organs in the larger coelomic cavity into separate thoracic and abdominal cavities, especially with the evolution of aspiration breathing. The DIAm pump evolved from the advantage afforded by more effective generation of both a negative Pth for ventilation of the lungs and a positive Pab for venous return of blood to the heart and expulsive behaviors such as airway clearance, defecation, micturition, and child birth. © 2019 American Physiological Society. Compr Physiol 9:715-766, 2019.
Collapse
Affiliation(s)
- Matthew J Fogarty
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| | - Gary C Sieck
- Mayo Clinic, Department of Physiology & Biomedical Engineering, Rochester, Minnesota, USA
| |
Collapse
|
16
|
Capano JG, Moritz S, Cieri RL, Reveret L, Brainerd EL. Rib Motions Don't Completely Hinge on Joint Design: Costal Joint Anatomy and Ventilatory Kinematics in a Teiid Lizard, Salvator merianae. Integr Org Biol 2019; 1:oby004. [PMID: 33791512 PMCID: PMC7780499 DOI: 10.1093/iob/oby004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Rib rotations contribute to lung ventilation in most extant amniotes. These rotations are typically described as bucket-handle rotation about a dorsoventral axis, caliper rotation about a craniocaudal axis, and pump-handle rotation about a mediolateral axis. A synapomorphy for Lepidosauria is single-headed costovertebral articulations derived from the ancestral double-headed articulations of most amniotes. With a single articular surface, the costovertebral joints of squamates have the potential to rotate with three degrees-of-freedom (DOFs), but considerable variation exists in joint shape. We compared the costovertebral morphology of the Argentine black and white tegu, Salvator merianae, with the green iguana, Iguana iguana, and found that the costovertebral articulations of I. iguana were hemispherical, while those of S. merianae were dorsoventrally elongated and hemiellipsoidal. We predicted that the elongate joints in S. merianae would permit bucket-handle rotations while restricting caliper and pump-handle rotations, relative to the rounded joints of I. iguana. We used X-ray reconstruction of moving morphology to quantify rib rotations during breathing in S. merianae for comparison with prior work in I. iguana. Consistent with our hypothesis, we found less caliper motion in S. merianae than in I. iguana, but unexpectedly found similar pump-handle magnitudes in each species. The dorsoventrally elongate costovertebral morphology of S. merianae may provide passive rib support to reduce the conflict between locomotion and ventilation. Moreover, the observation of multiple DOFs during rib rotations in both species suggests that permissive costovertebral morphology may be more related to the biological roles of ribs outside of ventilation and help explain the evolution of this trait.
Collapse
Affiliation(s)
- J G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| | - S Moritz
- Department of Biology, Community College of Rhode Island, Warwick, RI 02886, USA
| | - R L Cieri
- School of Biological Sciences, University of Utah, Salt Lake City, UT 84112, USA
| | - L Reveret
- Inria Grenoble Rhone Alpes, 655 Avenue de l'Europe, 38330 Montbonnot-Saint-Martin, France
| | - E L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| |
Collapse
|
17
|
Cieri RL, Moritz S, Capano JG, Brainerd EL. Breathing with floating ribs: XROMM analysis of lung ventilation in savannah monitor lizards. ACTA ACUST UNITED AC 2018; 221:jeb.189449. [PMID: 30257921 DOI: 10.1242/jeb.189449] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Accepted: 09/20/2018] [Indexed: 11/20/2022]
Abstract
The structures and functions of the vertebrate lung and trunk are linked through the act of ventilation, but the connections between these structures and functions are poorly understood. We used X-ray reconstruction of moving morphology (XROMM) to measure rib kinematics during lung ventilation in three savannah monitor lizards (Varanus exanthematicus). All of the dorsal ribs, including the floating ribs, contributed to ventilation; the magnitude and kinematic pattern showed no detectable cranial-to-caudal gradient. The true ribs acted as two rigid bodies connected by flexible cartilage, with the vertebral rib and ventromedial shaft of each sternal rib remaining rigid and the cartilage between them forming a flexible intracostal joint. Rib rotations can be decomposed into bucket handle rotation around a dorsoventral axis, pump handle rotation around a mediolateral axis and caliper motion around a craniocaudal axis. Dorsal rib motion was dominated by roughly equal contributions of bucket and pump rotation in two individuals and by bucket rotation in the third individual. The recruitment of floating ribs during ventilation in monitor lizards is strikingly different from the situation in iguanas, where only the first few true ribs contribute to breathing. This difference may be related to the design of the pulmonary system and life history traits in these two species. Motion of the floating ribs may maximize ventilation of the caudally and ventrolaterally positioned compliant saccular chambers in the lungs of varanids, while restriction of ventilation to a few true ribs may maximize crypsis in iguanas.
Collapse
Affiliation(s)
- Robert L Cieri
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | - Sabine Moritz
- Department of Biology, Community College of Rhode Island, Warwick, RI 02886, USA
| | - John G Capano
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
18
|
Brocklehurst RJ, Moritz S, Codd J, Sellers WI, Brainerd EL. Rib kinematics during lung ventilation in the American alligator ( Alligator mississippiensis): an XROMM analysis. ACTA ACUST UNITED AC 2018; 220:3181-3190. [PMID: 28855323 PMCID: PMC5612015 DOI: 10.1242/jeb.156166] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 06/15/2017] [Indexed: 11/20/2022]
Abstract
The current hypothesis regarding the mechanics of breathing in crocodylians is that the double-headed ribs, with both a capitulum and tuberculum, rotate about a constrained axis passing through the two articulations; moreover, this axis shifts in the caudal thoracic ribs, as the vertebral parapophysis moves from the centrum to the transverse process. Additionally, the ventral ribcage in crocodylians is thought to possess additional degrees of freedom through mobile intermediate ribs. In this study, X-ray reconstruction of moving morphology (XROMM) was used to quantify rib rotation during breathing in American alligators. Whilst costovertebral joint anatomy predicted overall patterns of motion across the ribcage (decreased bucket handle motion and increased calliper motion), there were significant deviations: anatomical axes overestimated pump handle motion and, generally, ribs in vivo rotate about all three body axes more equally than predicted. The intermediate ribs are mobile, with a high degree of rotation measured about the dorsal intracostal joints, especially in the more caudal ribs. Motion of the sternal ribs became increasingly complex caudally, owing to a combination of the movements of the vertebral and intermediate segments. As the crocodylian ribcage is sometimes used as a model for the ancestral archosaur, these results have important implications for how rib motion is reconstructed in fossil taxa, and illustrate the difficulties in reconstructing rib movement based on osteology alone. Summary: Using XROMM to test how well joint anatomy predicts rib motion during breathing in crocodylians, our best living model for the earliest archosaurs.
Collapse
Affiliation(s)
- Robert J Brocklehurst
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Sabine Moritz
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Jonathan Codd
- Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - William I Sellers
- School of Earth and Environmental Sciences, University of Manchester, Manchester M13 9PT, UK
| | - Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| |
Collapse
|
19
|
Santin JM. How important is the CO 2 chemoreflex for the control of breathing? Environmental and evolutionary considerations. Comp Biochem Physiol A Mol Integr Physiol 2017; 215:6-19. [PMID: 28966145 DOI: 10.1016/j.cbpa.2017.09.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 12/27/2022]
Abstract
Haldane and Priestley (1905) discovered that the ventilatory control system is highly sensitive to CO2. This "CO2 chemoreflex" has been interpreted to dominate control of resting arterial PCO2/pH (PaCO2/pHa) by monitoring PaCO2/pHa and altering ventilation through negative feedback. However, PaCO2/pHa varies little in mammals as ventilation tightly couples to metabolic demands, which may minimize chemoreflex control of PaCO2. The purpose of this synthesis is to (1) interpret data from experimental models with meager CO2 chemoreflexes to infer their role in ventilatory control of steady-state PaCO2, and (2) identify physiological causes of respiratory acidosis occurring normally across vertebrate classes. Interestingly, multiple rodent and amphibian models with minimal/absent CO2 chemoreflexes exhibit normal ventilation, gas exchange, and PaCO2/pHa. The chemoreflex, therefore, plays at most a minor role in ventilatory control at rest; however, the chemoreflex may be critical for recovering PaCO2 following acute respiratory acidosis induced by breath-holding and activity in many ectothermic vertebrates. An apparently small role for CO2 feedback in the genesis of normal breathing contradicts the prevailing view that central CO2/pH chemoreceptors increased in importance throughout vertebrate evolution. Since the CO2 chemoreflex contributes minimally to resting ventilation, these CO2 chemoreceptors may have instead decreased importance throughout tetrapod evolution, particularly with the onset and refinement of neural innovations that improved the matching of ventilation to tissue metabolic demands. This distinct and elusive "metabolic ventilatory drive" likely underlies steady-state PaCO2 in air-breathers. Uncovering the mechanisms and evolution of the metabolic ventilatory drive presents a challenge to clinically-oriented and comparative respiratory physiologists alike.
Collapse
|
20
|
Lambertz M, Shelton CD, Spindler F, Perry SF. A caseian point for the evolution of a diaphragm homologue among the earliest synapsids. Ann N Y Acad Sci 2016; 1385:3-20. [PMID: 27859325 DOI: 10.1111/nyas.13264] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 08/07/2016] [Accepted: 09/01/2016] [Indexed: 01/14/2023]
Abstract
The origin of the diaphragm remains a poorly understood yet crucial step in the evolution of terrestrial vertebrates, as this unique structure serves as the main respiratory motor for mammals. Here, we analyze the paleobiology and the respiratory apparatus of one of the oldest lineages of mammal-like reptiles: the Caseidae. Combining quantitative bone histology and functional morphological and physiological modeling approaches, we deduce a scenario in which an auxiliary ventilatory structure was present in these early synapsids. Crucial to this hypothesis are indications that at least the phylogenetically advanced caseids might not have been primarily terrestrial but rather were bound to a predominantly aquatic life. Such a lifestyle would have resulted in severe constraints on their ventilatory system, which consequently would have had to cope with diving-related problems. Our modeling of breathing parameters revealed that these caseids were capable of only limited costal breathing and, if aquatic, must have employed some auxiliary ventilatory mechanism to quickly meet their oxygen demand upon surfacing. Given caseids' phylogenetic position at the base of Synapsida and under this aquatic scenario, it would be most parsimonious to assume that a homologue of the mammalian diaphragm had already evolved about 50 Ma earlier than previously assumed.
Collapse
Affiliation(s)
- Markus Lambertz
- Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.,Sektion Herpetologie, Zoologisches Forschungsmuseum Alexander Koenig, Bonn, Germany
| | - Christen D Shelton
- Steinmann-Institut für Geologie, Mineralogie und Paläontologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany.,Palaeobiology Research Group, Department of Biological Sciences, University of Cape Town, Rhodes Gift, South Africa
| | - Frederik Spindler
- Institut für Geologie, Technische Universität Bergakademie Freiberg, Freiberg, Germany.,Dinosaurier-Park Altmühltal, Denkendorf, Germany
| | - Steven F Perry
- Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
21
|
Lambertz M. Recent advances on the functional and evolutionary morphology of the amniote respiratory apparatus. Ann N Y Acad Sci 2016; 1365:100-13. [PMID: 27037667 DOI: 10.1111/nyas.13022] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 01/14/2016] [Accepted: 01/19/2016] [Indexed: 12/30/2022]
Abstract
Increased organismic complexity in metazoans was achieved via the specialization of certain parts of the body involved in different faculties (structure-function complexes). One of the most basic metabolic demands of animals in general is a sufficient supply of all tissues with oxygen. Specialized structures for gas exchange (and transport) consequently evolved many times and in great variety among bilaterians. This review focuses on some of the latest advancements that morphological research has added to our understanding of how the respiratory apparatus of the primarily terrestrial vertebrates (amniotes) works and how it evolved. Two main components of the respiratory apparatus, the lungs as the "exchanger" and the ventilatory apparatus as the "active pump," are the focus of this paper. Specific questions related to the exchanger concern the structure of the lungs of the first amniotes and the efficiency of structurally simple snake lungs in health and disease, as well as secondary functions of the lungs in heat exchange during the evolution of sauropod dinosaurs. With regard to the active pump, I discuss how the unique ventilatory mechanism of turtles evolved and how understanding the avian ventilatory strategy affects animal welfare issues in the poultry industry.
Collapse
Affiliation(s)
- Markus Lambertz
- Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Bonn, Germany
| |
Collapse
|
22
|
Ventilation and gas exchange in two turtles: Podocnemis unifilis and Phrynops geoffroanus (Testudines: Pleurodira). Respir Physiol Neurobiol 2016; 224:125-31. [DOI: 10.1016/j.resp.2014.12.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Revised: 12/15/2014] [Accepted: 12/15/2014] [Indexed: 11/24/2022]
|
23
|
Brainerd EL, Moritz S, Ritter DA. XROMM analysis of rib kinematics during lung ventilation in the green iguana, Iguana iguana. ACTA ACUST UNITED AC 2015; 219:404-11. [PMID: 26596531 DOI: 10.1242/jeb.127928] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2015] [Accepted: 11/16/2015] [Indexed: 11/20/2022]
Abstract
The three-dimensional rotations of ribs during breathing are typically described as bucket-handle rotation about a dorsoventrally oriented axis, pump-handle rotation about a mediolateral axis, and caliper rotation about a rostrocaudal axis. In amniotes with double-headed ribs, rib motion is constrained primarily to one degree-of-freedom (DOF) rotation about an axis connecting the two rib articulations. However, in Squamata, the ribs are single headed and the hemispherical costovertebral joints permit rotations with three DOF. In this study, we used X-ray reconstruction of moving morphology (XROMM ) to quantify rib rotation during deep breathing in four green iguanas. We found that rib rotation was strongly dominated by bucket-handle rotation, thus exhibiting nearly hinge-like motion, despite the potential for more complex motions. The vertebral and sternal segments of each rib did not deform measurably during breathing, but they did move relative to each other at a thin, cartilaginous intracostal joint. While standing still and breathing deeply, four individual iguanas showed variability in their rib postures, with two breathing around a highly inflated posture, and two breathing around a posture with the ribs folded halfway back. Bucket-handle rotations showed clear rostrocaudal gradients, with rotation increasing from the third cervical to the first or second dorsal rib, and then decreasing again caudally, a pattern that is consistent with the intercostal muscles in the rostral intercostal spaces being the primary drivers of inspiration. The constrained, primarily bucket-handle rotations observed here during breathing do not help to explain the evolution of permissive, hemispherical costovertebral joints in squamates from the more constrained, double-headed rib articulations of other amniotes.
Collapse
Affiliation(s)
- Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| | - Sabine Moritz
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| | - Dale A Ritter
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02906, USA
| |
Collapse
|
24
|
Diving into the mammalian swamp of respiratory rhythm generation with the bullfrog. Respir Physiol Neurobiol 2015; 224:37-51. [PMID: 26384027 DOI: 10.1016/j.resp.2015.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 09/10/2015] [Accepted: 09/11/2015] [Indexed: 11/20/2022]
Abstract
All vertebrates produce some form of respiratory rhythm, whether to pump water over gills or ventilate lungs. Yet despite the critical importance of ventilation for survival, the architecture of the respiratory central pattern generator has not been resolved. In frogs and mammals, there is increasing evidence for multiple burst-generating regions in the ventral respiratory group. These regions work together to produce the respiratory rhythm. However, each region appears to be pivotally important to a different phase of the motor act. Regions also exhibit differing rhythmogenic capabilities when isolated and have different CO2 sensitivity and pharmacological profiles. Interestingly, in both frogs and rats the regions with the most robust rhythmogenic capabilities when isolated are located in rhombomeres 7/8. In addition, rhombomeres 4/5 in both clades are critical for controlling phases of the motor pattern most strongly modulated by CO2 (expiration in mammals, and recruitment of lung bursts in frogs). These key signatures may indicate that these cell clusters arose in a common ancestor at least 400 million years ago.
Collapse
|
25
|
Li Z, Clarke JA. New insight into the anatomy of the hyolingual apparatus of Alligator mississippiensis and implications for reconstructing feeding in extinct archosaurs. J Anat 2015; 227:45-61. [PMID: 26018316 DOI: 10.1111/joa.12320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2015] [Indexed: 10/23/2022] Open
Abstract
Anatomical studies of the cranium of crocodilians motivated by an interest in its function in feeding largely focused on bite force, the jaw apparatus and associated muscles innervated by the trigeminal nerve. However, the ossified and cartilaginous elements of the hyoid and the associated hyolingual muscles, innervated by the facial, hypoglossal and glossopharyngeal nerves, received much less attention. Crocodilians are known to retain what are ancestrally the 'Rhythmic Hyobranchial Behaviors' such as buccal oscillation, but show diminished freedom and movement for the hyobranchial apparatus and the tongue in food transport and manipulation. Feeding among crocodilians, generally on larger prey items than other reptilian outgroups, involves passive transport of the food within the mouth. The tongue in extant crocodilians is firmly attached to the buccal floor and shows little movement during feeding. Here, we present a detailed anatomical description of the myology of the hyolingual apparatus of Alligator mississippiensis, utilizing contrast-enhanced micro-computed tomography and dissection. We construct the first three-dimensional (3D) description of hyolingual myology in Alligator mississippiensis and discuss the detailed implications of these data for our understanding of hyolingual muscle homology across Reptilia. These anatomical data and an evaluation of the fossil record of hyoid structures also shed light on the evolution of feeding in Reptilia. Simplification of the hyoid occurs early in the evolution of archosaurs. A hyoid with only one pair of ceratobranchials and a weakly ossified or cartilaginous midline basihyal is ancestral to Archosauriformes. The comparison with non-archosaurian reptilian outgroup demonstrates that loss of the second set of ceratobranchials as well as reduced ossification in basihyal occurred prior to the origin of crown-clade archosaurs, crocodilians and birds. Early modification in feeding ecology appears to characterize the early evolution of the clade. Hyoid simplification has been linked to ingestion of large prey items, and this shift in hyoid-related feeding ecology may occur in early archosauriform evolution. A second transformation in hyoid morphology occurs within the crocodilian stem lineage after the split from birds. In Crocodyliformes, deflections in the ceratobrachials become more pronounced. The morphology of the hyoid in Archosauriformes indicates that aspects of the hyolingual apparatus in extant crocodilians are derived, including a strong deflection near the midpoint of the ceratobranchials, and their condition should not be treated as ancestral for Archosauria.
Collapse
Affiliation(s)
- Zhiheng Li
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, TX, USA
| | - Julia A Clarke
- Department of Geological Sciences, Jackson School of Geosciences, University of Texas, Austin, TX, USA
| |
Collapse
|
26
|
Joyce WG. The origin of turtles: a paleontological perspective. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2015; 324:181-93. [PMID: 25712176 DOI: 10.1002/jez.b.22609] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 10/27/2014] [Indexed: 11/10/2022]
Abstract
The origin of turtles and their unusual body plan has fascinated scientists for the last two centuries. Over the course of the last decades, a broad sample of molecular analyses have favored a sister group relationship of turtles with archosaurs, but recent studies reveal that this signal may be the result of systematic biases affecting molecular approaches, in particular sampling, non-randomly distributed rate heterogeneity among taxa, and the use of concatenated data sets. Morphological studies, by contrast, disfavor archosaurian relationships for turtles, but the proposed alternative topologies are poorly supported as well. The recently revived paleontological hypothesis that the Middle Permian Eunotosaurus africanus is an intermediate stem turtle is now robustly supported by numerous characters that were previously thought to be unique to turtles and that are now shown to have originated over the course of tens of millions of years unrelated to the origin of the turtle shell. Although E. africanus does not solve the placement of turtles within Amniota, it successfully extends the stem lineage of turtles to the Permian and helps resolve some questions associated with the origin of turtles, in particular the non-composite origin of the shell, the slow origin of the shell, and the terrestrial setting for the origin of turtles.
Collapse
Affiliation(s)
- Walter G Joyce
- Department of Geoscience, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
27
|
Dzal YA, Jenkin SEM, Lague SL, Reichert MN, York JM, Pamenter ME. Oxygen in demand: How oxygen has shaped vertebrate physiology. Comp Biochem Physiol A Mol Integr Physiol 2015; 186:4-26. [PMID: 25698654 DOI: 10.1016/j.cbpa.2014.10.029] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2014] [Revised: 10/07/2014] [Accepted: 10/10/2014] [Indexed: 10/24/2022]
Abstract
In response to varying environmental and physiological challenges, vertebrates have evolved complex and often overlapping systems. These systems detect changes in environmental oxygen availability and respond by increasing oxygen supply to the tissues and/or by decreasing oxygen demand at the cellular level. This suite of responses is termed the oxygen transport cascade and is comprised of several components. These components include 1) chemosensory detectors that sense changes in oxygen, carbon dioxide, and pH in the blood, and initiate changes in 2) ventilation and 3) cardiac work, thereby altering the rate of oxygen delivery to, and carbon dioxide clearance from, the tissues. In addition, changes in 4) cellular and systemic metabolism alters tissue-level metabolic demand. Thus the need for oxygen can be managed locally when increasing oxygen supply is not sufficient or possible. Together, these mechanisms provide a spectrum of responses that facilitate the maintenance of systemic oxygen homeostasis in the face of environmental hypoxia or physiological oxygen depletion (i.e. due to exercise or disease). Bill Milsom has dedicated his career to the study of these responses across phylogenies, repeatedly demonstrating the power of applying the comparative approach to physiological questions. The focus of this review is to discuss the anatomy, signalling pathways, and mechanics of each step of the oxygen transport cascade from the perspective of a Milsomite. That is, by taking into account the developmental, physiological, and evolutionary components of questions related to oxygen transport. We also highlight examples of some of the remarkable species that have captured Bill's attention through their unique adaptations in multiple components of the oxygen transport cascade, which allow them to achieve astounding physiological feats. Bill's research examining the oxygen transport cascade has provided important insight and leadership to the study of the diverse suite of adaptations that maintain cellular oxygen content across vertebrate taxa, which underscores the value of the comparative approach to the study of physiological systems.
Collapse
Affiliation(s)
- Yvonne A Dzal
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sarah E M Jenkin
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Sabine L Lague
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Michelle N Reichert
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julia M York
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Matthew E Pamenter
- Department of Zoology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
28
|
Rowland LA, Bal NC, Periasamy M. The role of skeletal-muscle-based thermogenic mechanisms in vertebrate endothermy. Biol Rev Camb Philos Soc 2014; 90:1279-97. [PMID: 25424279 DOI: 10.1111/brv.12157] [Citation(s) in RCA: 155] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 10/03/2014] [Accepted: 10/14/2014] [Indexed: 12/17/2022]
Abstract
Thermogenesis is one of the most important homeostatic mechanisms that evolved during vertebrate evolution. Despite its importance for the survival of the organism, the mechanistic details behind various thermogenic processes remain incompletely understood. Although heat production from muscle has long been recognized as a thermogenic mechanism, whether muscle can produce heat independently of contraction remains controversial. Studies in birds and mammals suggest that skeletal muscle can be an important site of non-shivering thermogenesis (NST) and can be recruited during cold adaptation, although unequivocal evidence is lacking. Much research on thermogenesis during the last two decades has been focused on brown adipose tissue (BAT). These studies clearly implicate BAT as an important site of NST in mammals, in particular in newborns and rodents. However, BAT is either absent, as in birds and pigs, or is only a minor component, as in adult large mammals including humans, bringing into question the BAT-centric view of thermogenesis. This review focuses on the evolution and emergence of various thermogenic mechanisms in vertebrates from fish to man. A careful analysis of the existing data reveals that muscle was the earliest facultative thermogenic organ to emerge in vertebrates, long before the appearance of BAT in eutherian mammals. Additionally, these studies suggest that muscle-based thermogenesis is the dominant mechanism of heat production in many species including birds, marsupials, and certain mammals where BAT-mediated thermogenesis is absent or limited. We discuss the relevance of our recent findings showing that uncoupling of sarco(endo)plasmic reticulum Ca(2+)-ATPase (SERCA) by sarcolipin (SLN), resulting in futile cycling and increased heat production, could be the basis for NST in skeletal muscle. The overall goal of this review is to highlight the role of skeletal muscle as a thermogenic organ and provide a balanced view of thermogenesis in vertebrates.
Collapse
Affiliation(s)
- Leslie A Rowland
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Naresh C Bal
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
| | - Muthu Periasamy
- Department of Physiology and Cell Biology, College of Medicine, The Ohio State University, Columbus, OH 43210, U.S.A
| |
Collapse
|
29
|
Lyson TR, Schachner ER, Botha-Brink J, Scheyer TM, Lambertz M, Bever GS, Rubidge BS, de Queiroz K. Origin of the unique ventilatory apparatus of turtles. Nat Commun 2014; 5:5211. [PMID: 25376734 DOI: 10.1038/ncomms6211] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 09/10/2014] [Indexed: 11/09/2022] Open
Abstract
The turtle body plan differs markedly from that of other vertebrates and serves as a model system for studying structural and developmental evolution. Incorporation of the ribs into the turtle shell negates the costal movements that effect lung ventilation in other air-breathing amniotes. Instead, turtles have a unique abdominal-muscle-based ventilatory apparatus whose evolutionary origins have remained mysterious. Here we show through broadly comparative anatomical and histological analyses that an early member of the turtle stem lineage has several turtle-specific ventilation characters: rigid ribcage, inferred loss of intercostal muscles and osteological correlates of the primary expiratory muscle. Our results suggest that the ventilation mechanism of turtles evolved through a division of labour between the ribs and muscles of the trunk in which the abdominal muscles took on the primary ventilatory function, whereas the broadened ribs became the primary means of stabilizing the trunk. These changes occurred approximately 50 million years before the evolution of the fully ossified shell.
Collapse
Affiliation(s)
- Tyler R Lyson
- 1] Department of Earth Sciences, Denver Museum of Nature and Science, Denver, Colorado 80205, USA [2] Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC 20560, USA [3] Evolutionary Studies Institute, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| | - Emma R Schachner
- 1] Department of Veterinary Clinical Sciences, School of Veterinary Medicine, Louisiana State University, Baton Rouge, Louisiana 70803, USA [2] Department of Biology, University of Utah, Salt Lake City, Utah 84112, USA
| | - Jennifer Botha-Brink
- 1] Karoo Palaeontology, National Museum, Box 266, Bloemfontein 9300, South Africa [2] Department of Zoology and Entomology, University of the Free State, Bloemfontein 9300, South Africa
| | - Torsten M Scheyer
- Paläontologisches Institut und Museum, Universität Zürich, Karl Schmid-Strasse 4, 8006 Zürich, Switzerland
| | - Markus Lambertz
- Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Poppelsdorfer Schloss, 53115 Bonn, Germany
| | - G S Bever
- 1] Evolutionary Studies Institute, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa [2] New York Institute of Technology, College of Osteopathic Medicine, Old Westbury, New York 11568, USA [3] Division of Paleontology, American Museum of Natural History, New York, New York 10024, USA
| | - Bruce S Rubidge
- Evolutionary Studies Institute, University of the Witwatersrand, PO Wits 2050, Johannesburg, South Africa
| | - Kevin de Queiroz
- Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington DC 20560, USA
| |
Collapse
|
30
|
Hirasawa T, Pascual-Anaya J, Kamezaki N, Taniguchi M, Mine K, Kuratani S. The evolutionary origin of the turtle shell and its dependence on the axial arrest of the embryonic rib cage. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2014; 324:194-207. [PMID: 24898540 DOI: 10.1002/jez.b.22579] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 04/25/2014] [Accepted: 05/07/2014] [Indexed: 12/22/2022]
Abstract
Turtles are characterized by their possession of a shell with dorsal and ventral moieties: the carapace and the plastron, respectively. In this review, we try to provide answers to the question of the evolutionary origin of the carapace, by revising morphological, developmental, and paleontological comparative analyses. The turtle carapace is formed through modification of the thoracic ribs and vertebrae, which undergo extensive ossification to form a solid bony structure. Except for peripheral dermal elements, there are no signs of exoskeletal components ontogenetically added to the costal and neural bones, and thus the carapace is predominantly of endoskeletal nature. Due to the axial arrest of turtle rib growth, the axial part of the embryo expands laterally and the shoulder girdle becomes encapsulated in the rib cage, together with the inward folding of the lateral body wall in the late phase of embryogenesis. Along the line of this folding develops a ridge called the carapacial ridge (CR), a turtle-specific embryonic structure. The CR functions in the marginal growth of the carapacial primordium, in which Wnt signaling pathway might play a crucial role. Both paleontological and genomic evidence suggest that the axial arrest is the first step toward acquisition of the turtle body plan, which is estimated to have taken place after the divergence of a clade including turtles from archosaurs. The developmental relationship between the CR and the axial arrest remains a central issue to be solved in future.
Collapse
Affiliation(s)
- Tatsuya Hirasawa
- Laboratory for Evolutionary Morphology, RIKEN Center for Developmental Biology, Kobe, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
The evolution of the aspiration pump seen in tetrapod vertebrates from the buccal-pharyngeal force pump seen in air breathing fish and amphibians appears to have first involved the production of active expiration. Active inspiration arose later. This appears to have involved reconfiguration of a parafacial oscillator (now the parafacial respiratory group/retrotrapezoid nucleus (pFRG/RTN)) to produce active expiration, followed by reconfiguration of a paravagal oscillator (now the preBötC) to produce active inspiration. In the ancestral breathing cycle, inspiration follows expiration, which is in turn followed by glottal closure and breath holding. When both rhythms are expressed, as they are in reptiles and birds, and mammals under conditions of elevated respiratory drive, the pFRG/RTN appears to initiate the respiratory cycle. We propose that the coordinated output of this system is a ventilation cycle characterized by four phases. In reptiles, these consist of active inspiration (I), glottal closure (E1), a pause (an apnea or breath hold) (E2), and an active expiration (E3) that initiates the next cycle. In mammals under resting conditions, active expiration (E3) is suppressed and inspiration (I) is followed by airway constriction and diaphragmatic braking (E1) (rather than glottal closure) and a short pause at end-expiration (E2). As respiratory drive increases in mammals, expiratory muscle activity appears. Frequently, it first appears immediately preceding inspiration (E3) just as it does in reptiles. It can also appear in E1, however, and it is not yet clear what mechanisms underlie when and where in the cycle it appears. This may reflect whether the active expiration is recruited to enhance tidal volume, increase breathing frequency, or both.
Collapse
Affiliation(s)
- Sarah E M Jenkin
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada.
| |
Collapse
|
32
|
Evolutionary Origin of the Turtle Shell. Curr Biol 2013; 23:1113-9. [DOI: 10.1016/j.cub.2013.05.003] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2013] [Revised: 04/03/2013] [Accepted: 05/01/2013] [Indexed: 11/30/2022]
|
33
|
Hsia CCW, Schmitz A, Lambertz M, Perry SF, Maina JN. Evolution of air breathing: oxygen homeostasis and the transitions from water to land and sky. Compr Physiol 2013; 3:849-915. [PMID: 23720333 PMCID: PMC3926130 DOI: 10.1002/cphy.c120003] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Life originated in anoxia, but many organisms came to depend upon oxygen for survival, independently evolving diverse respiratory systems for acquiring oxygen from the environment. Ambient oxygen tension (PO2) fluctuated through the ages in correlation with biodiversity and body size, enabling organisms to migrate from water to land and air and sometimes in the opposite direction. Habitat expansion compels the use of different gas exchangers, for example, skin, gills, tracheae, lungs, and their intermediate stages, that may coexist within the same species; coexistence may be temporally disjunct (e.g., larval gills vs. adult lungs) or simultaneous (e.g., skin, gills, and lungs in some salamanders). Disparate systems exhibit similar directions of adaptation: toward larger diffusion interfaces, thinner barriers, finer dynamic regulation, and reduced cost of breathing. Efficient respiratory gas exchange, coupled to downstream convective and diffusive resistances, comprise the "oxygen cascade"-step-down of PO2 that balances supply against toxicity. Here, we review the origin of oxygen homeostasis, a primal selection factor for all respiratory systems, which in turn function as gatekeepers of the cascade. Within an organism's lifespan, the respiratory apparatus adapts in various ways to upregulate oxygen uptake in hypoxia and restrict uptake in hyperoxia. In an evolutionary context, certain species also become adapted to environmental conditions or habitual organismic demands. We, therefore, survey the comparative anatomy and physiology of respiratory systems from invertebrates to vertebrates, water to air breathers, and terrestrial to aerial inhabitants. Through the evolutionary directions and variety of gas exchangers, their shared features and individual compromises may be appreciated.
Collapse
Affiliation(s)
- Connie C W Hsia
- Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | | | | | | | | |
Collapse
|
34
|
Fechner R, Schwarz-Wings D. The Muscles of the Infrapubic Abdominal Wall of a 6-month-oldCrocodylus niloticus(Reptilia: Crocodylia). Anat Histol Embryol 2012; 42:175-82. [DOI: 10.1111/ahe.12000] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Accepted: 07/20/2012] [Indexed: 12/01/2022]
Affiliation(s)
- R. Fechner
- Fakultät für Maschinenbau; Ruhr-Universität Bochum; Universitätstraße 150; 44801; Bochum; Germany
| | - D. Schwarz-Wings
- Leibniz-Institut für Evolutions- und Biodiversitätsforschung an der Humboldt-Universität zu Berlin; Invalidenstraße 43; 10115; Berlin; Germany
| |
Collapse
|
35
|
Affiliation(s)
- Gordon R Ultsch
- Department of Biology, University of Florida, Gainesville, Florida, USA.
| |
Collapse
|
36
|
Champagnat J, Morin-Surun MP, Bouvier J, Thoby-Brisson M, Fortin G. Prenatal development of central rhythm generation. Respir Physiol Neurobiol 2011; 178:146-55. [PMID: 21527363 DOI: 10.1016/j.resp.2011.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2011] [Revised: 04/08/2011] [Accepted: 04/12/2011] [Indexed: 12/01/2022]
Abstract
Foetal breathing in mice results from prenatal activity of the two coupled hindbrain oscillators considered to be responsible for respiratory rhythm generation after birth: the pre-Bötzinger complex (preBötC) is active shortly before the onset of foetal breathing; the parafacial respiratory group (e-pF in embryo) starts activity one day earlier. Transcription factors have been identified that are essential to specify neural progenitors and lineages forming each of these oscillators during early development of the neural tube: Hoxa1, Egr2 (Krox20), Phox2b, Lbx1 and Atoh1 for the e-pF; Dbx1 and Evx1 for the preBötC which eventually grow contralateral axons requiring expression of Robo3. Inactivation of the genes encoding these factors leads to mis-specification of these neurons and distinct breathing abnormalities: apneic patterns and loss of central chemosensitivity for the e-pF (central congenital hypoventilation syndrome, CCHS, in humans), complete loss of breathing for the preBötC, right-left desynchronized breathing in Robo3 mutants. Mutations affecting development in more rostral (pontine) respiratory territories change the shape of the inspiratory drive without affecting the rhythm. Other (primordial) embryonic oscillators start in the mouse three days before the e-pF, to generate low frequency (LF) rhythms that are probably required for activity-dependent development of neurones at embryonic stages; in the foetus, however, they are actively silenced to avoid detrimental interaction with the on-going respiratory rhythm. Altogether, these observations provide a strong support to the previously proposed hypothesis that the functional organization of the respiratory generator is specified at early stages of development and is dual in nature, comprising two serially non-homologous oscillators.
Collapse
Affiliation(s)
- Jean Champagnat
- Neurobiologie et Développement (UPR 3294, CNRS), Neuro-Sud Paris (IFR 144), Centre de Recherche de Gif-sur Yvette (CNRS, FRC 3115), Gif-sur-Yvette, France.
| | | | | | | | | |
Collapse
|
37
|
Genetic factors determining the functional organization of neural circuits controlling rhythmic movements the murine embryonic parafacial rhythm generator. PROGRESS IN BRAIN RESEARCH 2011. [PMID: 21111199 DOI: 10.1016/b978-0-444-53613-6.00003-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register]
Abstract
In mammals, fetal movements governed by central pattern generators are essential for the development of adaptive behaviors such as breathing, walking, and chewing, which are vital after birth. Combining targeted mutations and genetic fate mapping can help to define the molecular determinants that control the development of these central pattern generators. In this chapter, recent results are presented on the embryonic parafacial (e-pF) rhythm generator, one of the two oscillators involved in controlling the breathing behavior and chemosensitive responsiveness.
Collapse
|
38
|
Schilling N. Evolution of the axial system in craniates: morphology and function of the perivertebral musculature. Front Zool 2011; 8:4. [PMID: 21306656 PMCID: PMC3041741 DOI: 10.1186/1742-9994-8-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 02/10/2011] [Indexed: 11/25/2022] Open
Abstract
The axial musculoskeletal system represents the plesiomorphic locomotor engine of the vertebrate body, playing a central role in locomotion. In craniates, the evolution of the postcranial skeleton is characterized by two major transformations. First, the axial skeleton became increasingly functionally and morphologically regionalized. Second, the axial-based locomotion plesiomorphic for craniates became progressively appendage-based with the evolution of extremities in tetrapods. These changes, together with the transition to land, caused increased complexity in the planes in which axial movements occur and moments act on the body and were accompanied by profound changes in axial muscle function. To increase our understanding of the evolutionary transformations of the structure and function of the perivertebral musculature, this review integrates recent anatomical and physiological data (e.g., muscle fiber types, activation patterns) with gross-anatomical and kinematic findings for pivotal craniate taxa. This information is mapped onto a phylogenetic hypothesis to infer the putative character set of the last common ancestor of the respective taxa and to conjecture patterns of locomotor and muscular evolution. The increasing anatomical and functional complexity in the muscular arrangement during craniate evolution is associated with changes in fiber angulation and fiber-type distribution, i.e., increasing obliqueness in fiber orientation and segregation of fatigue-resistant fibers in deeper muscle regions. The loss of superficial fatigue-resistant fibers may be related to the profound gross anatomical reorganization of the axial musculature during the tetrapod evolution. The plesiomorphic function of the axial musculature -mobilization- is retained in all craniates. Along with the evolution of limbs and the subsequent transition to land, axial muscles additionally function to globally stabilize the trunk against inertial and extrinsic limb muscle forces as well as gravitational forces. Associated with the evolution of sagittal mobility and a parasagittal limb posture, axial muscles in mammals also stabilize the trunk against sagittal components of extrinsic limb muscle action as well as the inertia of the body's center of mass. Thus, the axial system is central to the static and dynamic control of the body posture in all craniates and, in gnathostomes, additionally provides the foundation for the mechanical work of the appendicular system.
Collapse
Affiliation(s)
- Nadja Schilling
- Institute of Systematic Zoology and Evolutionary Biology, Friedrich-Schiller-University Jena, Germany.
| |
Collapse
|
39
|
Brainerd EL, Baier DB, Gatesy SM, Hedrick TL, Metzger KA, Gilbert SL, Crisco JJ. X-ray reconstruction of moving morphology (XROMM): precision, accuracy and applications in comparative biomechanics research. ACTA ACUST UNITED AC 2010; 313:262-79. [PMID: 20095029 DOI: 10.1002/jez.589] [Citation(s) in RCA: 231] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
X-Ray Reconstruction of Moving Morphology (XROMM) comprises a set of 3D X-ray motion analysis techniques that merge motion data from in vivo X-ray videos with skeletal morphology data from bone scans into precise and accurate animations of 3D bones moving in 3D space. XROMM methods include: (1) manual alignment (registration) of bone models to video sequences, i.e., Scientific Rotoscoping; (2) computer vision-based autoregistration of bone models to biplanar X-ray videos; and (3) marker-based registration of bone models to biplanar X-ray videos. Here, we describe a novel set of X-ray hardware, software, and workflows for marker-based XROMM. Refurbished C-arm fluoroscopes retrofitted with high-speed video cameras offer a relatively inexpensive X-ray hardware solution for comparative biomechanics research. Precision for our biplanar C-arm hardware and analysis software, measured as the standard deviation of pairwise distances between 1 mm tantalum markers embedded in rigid objects, was found to be +/-0.046 mm under optimal conditions and +/-0.084 mm under actual in vivo recording conditions. Mean error in measurement of a known distance between two beads was within the 0.01 mm fabrication tolerance of the test object, and mean absolute error was 0.037 mm. Animating 3D bone models from sets of marker positions (XROMM animation) makes it possible to study skeletal kinematics in the context of detailed bone morphology. The biplanar fluoroscopy hardware and computational methods described here should make XROMM an accessible and useful addition to the available technologies for studying the form, function, and evolution of vertebrate animals.
Collapse
Affiliation(s)
- Elizabeth L Brainerd
- Department of Ecology and Evolutionary Biology, Brown University, Providence, Rhode Island 02912, USA.
| | | | | | | | | | | | | |
Collapse
|
40
|
Breathing and locomotion: Comparative anatomy, morphology and function. Respir Physiol Neurobiol 2010; 173 Suppl:S26-32. [DOI: 10.1016/j.resp.2010.04.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2010] [Revised: 04/15/2010] [Accepted: 04/16/2010] [Indexed: 11/20/2022]
|
41
|
Milsom WK. Adaptive trends in respiratory control: a comparative perspective. Am J Physiol Regul Integr Comp Physiol 2010; 299:R1-10. [DOI: 10.1152/ajpregu.00069.2010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
In 1941, August Krogh published a monograph entitled The Comparative Physiology of Respiratory Mechanisms (Philadelphia, PA: University of Pennsylvania Press, 1941). Since that time comparative studies have continued to contribute significantly to our understanding of the fundamentals of respiratory physiology and the adaptive trends in these processes that support a broad range of metabolic performance under demanding environmental conditions. This review specifically focuses on recent advances in our understanding of adaptive trends in respiratory control. Respiratory rhythm generators most likely arose from, and must remain integrated with, rhythm generators for chewing, suckling, and swallowing. Within the central nervous system there are multiple “segmental” rhythm generators, and through evolution there is a caudal shift in the predominant respiratory rhythm-generating site. All sites, however, may still be capable of producing or modulating respiratory rhythm under appropriate conditions. Expression of the respiratory rhythm is conditional on (tonic) input. Once the rhythm is expressed, it is often episodic as the basic medullary rhythm is turned on/off subject to a hierarchy of controls. Breathing patterns reflect differences in pulmonary mechanics resulting from differences in body wall and lung architecture and are modulated in different species by various combinations of upper and lower airway mechanoreceptors and arterial chemoreceptors to protect airways, reduce dead space ventilation, enhance gas exchange efficiency, and reduce the cost of breathing.
Collapse
Affiliation(s)
- William K. Milsom
- Department of Zoology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
42
|
Mellen NM. Degeneracy as a substrate for respiratory regulation. Respir Physiol Neurobiol 2010; 172:1-7. [PMID: 20412870 PMCID: PMC2885560 DOI: 10.1016/j.resp.2010.04.013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2009] [Revised: 04/13/2010] [Accepted: 04/13/2010] [Indexed: 11/27/2022]
Abstract
Recent studies in vivo and in vitro suggest that both respiratory rhythmogenesis and its central chemosensory modulation arise from multiple, mechanistically and/or anatomically distinct networks whose outputs are similar. These observations are consistent with degeneracy, defined as the ability of structurally distinct elements to generate similar function. This review argues that degeneracy is an essential feature of respiratory networks, ensuring the survival of the individual organism over the course of development, and accounting for the transformation of respiratory biomechanics over evolutionary time. At faster timescales, respiration must adapt continuously and rapidly to changes in metabolic demand and ambient conditions to maintain blood-gas homeostasis. Control theory, which formalizes homeostasis, states axiomatically that rapid responsiveness can only be achieved with high gain, but high gain comes at the cost of instability. Homeostatic systems displaying highly optimized tolerance (HOT) mitigate the instability accompanying high gain by incorporating regulatory mechanisms that provide protection against expected perturbations, yet these systems remain fragile to catastrophic failure in response to rare events. Because the multiple mechanisms that are conjectured to mediate respiratory rhythmogenesis and chemosensation have distinct ranges of activity and responses to modulatory input, they provide a richer substrate for respiratory regulation than those of any single mechanism. Respiration, though robust, remains fragile to rare perturbations, matching a key feature of HOT. These observations support the conclusion that degeneracy provides the substrate for respiratory regulation, and that the resulting regulatory system conforms to HOT.
Collapse
Affiliation(s)
- Nicholas M Mellen
- Kosair Children's Hospital Research Institute, University of Louisville, 570 S. Preston Street, Baxter Building 1, Suite 304, Louisville, KY 40202, USA.
| |
Collapse
|
43
|
Landberg T, Mailhot JD, Brainerd EL. Lung ventilation during treadmill locomotion in a semi-aquatic turtle,Trachemys scripta. ACTA ACUST UNITED AC 2009; 311:551-62. [DOI: 10.1002/jez.478] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Claessens LP. A cineradiographic study of lung ventilation inAlligator mississippiensis. ACTA ACUST UNITED AC 2009; 311:563-85. [DOI: 10.1002/jez.530] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
45
|
Kinkead R. Phylogenetic trends in respiratory rhythmogenesis: Insights from ectothermic vertebrates. Respir Physiol Neurobiol 2009; 168:39-48. [DOI: 10.1016/j.resp.2009.05.011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 05/27/2009] [Accepted: 05/28/2009] [Indexed: 11/26/2022]
|
46
|
Sagai T, Amano T, Tamura M, Mizushina Y, Sumiyama K, Shiroishi T. A cluster of three long-range enhancers directs regional Shh expression in the epithelial linings. Development 2009; 136:1665-74. [PMID: 19369396 DOI: 10.1242/dev.032714] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The sonic hedgehog (Shh) pathway plays indispensable roles in the morphogenesis of mouse epithelial linings of the oral cavity and respiratory and digestive tubes. However, no enhancers that regulate regional Shh expression within the epithelial linings have been identified so far. In this study, comparison of genomic sequences across mammalian species and teleost fishes revealed three novel conserved non-coding sequences (CNCSs) that cluster in a region 600 to 900 kb upstream of the transcriptional start site of the mouse Shh gene. These CNCSs drive regional transgenic lacZ reporter expression in the epithelial lining of the oral cavity, pharynx, lung and gut. Together, these enhancers recapitulate the endogenous Shh expression domain within the major epithelial linings. Notably, genomic arrangement of the three CNCSs shows co-linearity that mirrors the order of the epithelial expression domains along the anteroposterior body axis. The results suggest that the three CNCSs are epithelial lining-specific long-range Shh enhancers, and that their actions partition the continuous epithelial linings into three domains: ectoderm-derived oral cavity, endoderm-derived pharynx, and respiratory and digestive tubes of the mouse. Targeted deletion of the pharyngeal epithelium specific CNCS results in loss of endogenous Shh expression in the pharynx and postnatal lethality owing to hypoplasia of the soft palate, epiglottis and arytenoid. Thus, this long-range enhancer is indispensable for morphogenesis of the pharyngeal apparatus.
Collapse
Affiliation(s)
- Tomoko Sagai
- Mammalian Genetics Laboratory, National Institute of Genetics, Shizuoka-ken 411-8540, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Riede T, Suthers RA. Vocal tract motor patterns and resonance during constant frequency song: the white-throated sparrow. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:183-92. [PMID: 19082607 PMCID: PMC2826496 DOI: 10.1007/s00359-008-0397-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2008] [Revised: 10/23/2008] [Accepted: 11/23/2008] [Indexed: 11/29/2022]
Abstract
Bird song is a complex behavior that requires the coordination of several motor systems. Sound is produced in the syrinx and then modified by the upper vocal tract. Movements of the hyoid skeleton have been shown in the northern cardinal (Cardinalis cardinalis) to be extensively involved in forming an oropharyngeal-esophageal cavity (OEC), which contributes a major resonance to the vocal tract transfer function. Here we report that a similar relationship exists between the volume of the OEC and the fundamental frequency in the white-throated sparrow (Zonotrichia albicollis) whose song, unlike that of the cardinal, consists of a series of almost constant frequency notes. Cineradiography of singing sparrows shows that the oropharyngeal cavity and cranial end of the esophagus expand abruptly at the start of each note and maintain a relatively constant volume until the end of the note. Computation of the vocal tract transfer function suggests a major resonance of the OEC follows the fundamental frequency, making sound transmission more efficient. The presence of similar prominent song-related vocal tract motor patterns in two Oscine families suggests that the active control of the vocal tract resonance by varying the volume of the OEC may be widespread in songbirds.
Collapse
Affiliation(s)
- Tobias Riede
- National Center for Voice and Speech, 1101 13th Street, Denver, CO 80204, USA.
| | | |
Collapse
|
48
|
Sereno PC, Martinez RN, Wilson JA, Varricchio DJ, Alcober OA, Larsson HCE. Evidence for avian intrathoracic air sacs in a new predatory dinosaur from Argentina. PLoS One 2008; 3:e3303. [PMID: 18825273 PMCID: PMC2553519 DOI: 10.1371/journal.pone.0003303] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 09/09/2008] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Living birds possess a unique heterogeneous pulmonary system composed of a rigid, dorsally-anchored lung and several compliant air sacs that operate as bellows, driving inspired air through the lung. Evidence from the fossil record for the origin and evolution of this system is extremely limited, because lungs do not fossilize and because the bellow-like air sacs in living birds only rarely penetrate (pneumatize) skeletal bone and thus leave a record of their presence. METHODOLOGY/PRINCIPAL FINDINGS We describe a new predatory dinosaur from Upper Cretaceous rocks in Argentina, Aerosteon riocoloradensis gen. et sp. nov., that exhibits extreme pneumatization of skeletal bone, including pneumatic hollowing of the furcula and ilium. In living birds, these two bones are pneumatized by diverticulae of air sacs (clavicular, abdominal) that are involved in pulmonary ventilation. We also describe several pneumatized gastralia ("stomach ribs"), which suggest that diverticulae of the air sac system were present in surface tissues of the thorax. CONCLUSIONS/SIGNIFICANCE We present a four-phase model for the evolution of avian air sacs and costosternal-driven lung ventilation based on the known fossil record of theropod dinosaurs and osteological correlates in extant birds: (1) Phase I-Elaboration of paraxial cervical air sacs in basal theropods no later than the earliest Late Triassic. (2) Phase II-Differentiation of avian ventilatory air sacs, including both cranial (clavicular air sac) and caudal (abdominal air sac) divisions, in basal tetanurans during the Jurassic. A heterogeneous respiratory tract with compliant air sacs, in turn, suggests the presence of rigid, dorsally attached lungs with flow-through ventilation. (3) Phase III-Evolution of a primitive costosternal pump in maniraptoriform theropods before the close of the Jurassic. (4) Phase IV-Evolution of an advanced costosternal pump in maniraptoran theropods before the close of the Jurassic. In addition, we conclude: (5) The advent of avian unidirectional lung ventilation is not possible to pinpoint, as osteological correlates have yet to be identified for uni- or bidirectional lung ventilation. (6) The origin and evolution of avian air sacs may have been driven by one or more of the following three factors: flow-through lung ventilation, locomotory balance, and/or thermal regulation.
Collapse
Affiliation(s)
- Paul C Sereno
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, Illinois, USA.
| | | | | | | | | | | |
Collapse
|