1
|
Johnson TW, Holt J, Kleyman A, Zhou S, Sammut E, Bruno VD, Gaupp C, Stanzani G, Martin J, Arina P, Deutsch J, Ascione R, Singer M, Dyson A. Development and translation of thiometallate sulfide donors using a porcine model of coronary occlusion and reperfusion. Redox Biol 2024; 73:103167. [PMID: 38688060 PMCID: PMC11070758 DOI: 10.1016/j.redox.2024.103167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/12/2024] [Accepted: 04/22/2024] [Indexed: 05/02/2024] Open
Abstract
Sulfide-releasing compounds reduce reperfusion injury by decreasing mitochondria-derived reactive oxygen species production. We previously characterised ammonium tetrathiomolybdate (ATTM), a clinically used copper chelator, as a sulfide donor in rodents. Here we assessed translation to large mammals prior to clinical testing. In healthy pigs an intravenous ATTM dose escalation revealed a reproducible pharmacokinetic/pharmacodynamic (PK/PD) relationship with minimal adverse clinical or biochemical events. In a myocardial infarction (1-h occlusion of the left anterior descending coronary artery)-reperfusion model, intravenous ATTM or saline was commenced just prior to reperfusion. ATTM protected the heart (24-h histological examination) in a drug-exposure-dependent manner (r2 = 0.58, p < 0.05). Blood troponin T levels were significantly (p < 0.05) lower in ATTM-treated animals while myocardial glutathione peroxidase activity, an antioxidant selenoprotein, was elevated (p < 0.05). Overall, our study represents a significant advance in the development of sulfides as therapeutics and underlines the potential of ATTM as a novel adjunct therapy for reperfusion injury. Mechanistically, our study suggests that modulating selenoprotein activity could represent an additional mode of action of sulfide-releasing drugs.
Collapse
Affiliation(s)
- Thomas W Johnson
- Translational Biomedical Research Centre (TBRC), Faculty of Health Science, University of Bristol, UK
| | - James Holt
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Anna Kleyman
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Shengyu Zhou
- Institute of Pharmaceutical Science, King's College London, London, UK; Centre for Pharmaceutical Medicine Research, King's College London, London, UK
| | - Eva Sammut
- Translational Biomedical Research Centre (TBRC), Faculty of Health Science, University of Bristol, UK
| | - Vito Domenico Bruno
- Translational Biomedical Research Centre (TBRC), Faculty of Health Science, University of Bristol, UK
| | - Charlotte Gaupp
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Giacomo Stanzani
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - John Martin
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Pietro Arina
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK
| | - Julia Deutsch
- Translational Biomedical Research Centre (TBRC), Faculty of Health Science, University of Bristol, UK
| | - Raimondo Ascione
- Translational Biomedical Research Centre (TBRC), Faculty of Health Science, University of Bristol, UK
| | - Mervyn Singer
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK.
| | - Alex Dyson
- Bloomsbury Institute of Intensive Care Medicine, Division of Medicine, University College London, London, UK; Institute of Pharmaceutical Science, King's College London, London, UK; Centre for Pharmaceutical Medicine Research, King's College London, London, UK.
| |
Collapse
|
2
|
Haouzi P, Lewis T. Hypothalamus pre-optic area and metabolism regulation in humans. Nat Metab 2023; 5:1442. [PMID: 37524786 DOI: 10.1038/s42255-023-00858-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Affiliation(s)
- Philippe Haouzi
- Department of Pulmonary Medicine, Respiratory Institute, Cleveland Clinic, Cleveland, OH, USA.
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA.
| | - Tristan Lewis
- Department of Neurosciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, USA
- Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA
| |
Collapse
|
3
|
Maassen H, Venema LH, Weiss MG, Huijink TM, Hofker HS, Keller AK, Mollnes TE, Eijken M, Pischke SE, Jespersen B, van Goor H, Leuvenink HGD. H2S-Enriched Flush out Does Not Increase Donor Organ Quality in a Porcine Kidney Perfusion Model. Antioxidants (Basel) 2023; 12:antiox12030749. [PMID: 36978997 PMCID: PMC10044751 DOI: 10.3390/antiox12030749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/11/2023] [Accepted: 03/13/2023] [Indexed: 03/29/2023] Open
Abstract
Kidney extraction time has a detrimental effect on post-transplantation outcome. This study aims to improve the flush-out and potentially decrease ischemic injury by the addition of hydrogen sulphide (H2S) to the flush medium. Porcine kidneys (n = 22) were extracted during organ recovery surgery. Pigs underwent brain death induction or a Sham operation, resulting in four groups: donation after brain death (DBD) control, DBD H2S, non-DBD control, and non-DBD H2S. Directly after the abdominal flush, kidneys were extracted and flushed with or without H2S and stored for 13 h via static cold storage (SCS) +/− H2S before reperfusion on normothermic machine perfusion. Pro-inflammatory cytokines IL-1b and IL-8 were significantly lower in H2S treated DBD kidneys during NMP (p = 0.03). The non-DBD kidneys show superiority in renal function (creatinine clearance and FENa) compared to the DBD control group (p = 0.03 and p = 0.004). No differences were seen in perfusion parameters, injury markers and histological appearance. We found an overall trend of better renal function in the non-DBD kidneys compared to the DBD kidneys. The addition of H2S during the flush out and SCS resulted in a reduction in pro-inflammatory cytokines without affecting renal function or injury markers.
Collapse
|
4
|
Haouzi P, MacCann M, Brenner M, Mahon S, Bebarta VS, Chan A, Judenherc-Haouzi A, Tubbs N, Boss GR. Treatment of life-threatening H2S intoxication: Lessons from the trapping agent tetranitrocobinamide. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 96:103998. [PMID: 36228991 DOI: 10.1016/j.etap.2022.103998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 10/05/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
We sought to evaluate the efficacy of trapping free hydrogen sulfide (H2S) following severe H2S intoxication. Sodium hydrosulfide solution (NaHS, 20 mg/kg) was administered intraperitoneally in 69 freely moving rats. In a first group (protocol 1), 40 rats were randomly assigned to receive saline (n = 20) or the cobalt compound tetranitrocobinamide (TNCbi) (n = 20, 75 mg/kg iv), one minute into coma, when free H2S was still present in the blood. A second group of 27 rats received TNCbi or saline, following epinephrine, 5 min into coma, when the concentration of free H2S has drastically decreased in the blood. In protocol 1, TNCbi significantly increased immediate survival (65 vs 20 %, p < 0.01) while in protocol 2, administration of TNCbi led to the same outcome as untreated animals. We hypothesize that the decreased efficacy of TNCbi with time likely reflects the rapid spontaneous disappearance of the pool of free H2S in the blood following H2S exposure.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA.
| | - Marissa MacCann
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Matthew Brenner
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA; Division of Pulmonary and Critical Care Medicine, Department of Medicine, University of California, Irvine, CA, USA
| | - Sari Mahon
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, CA, USA
| | - Vikhyat S Bebarta
- Department of Emergency Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Rocky Mountain Poison and Drug Center, Denver Health and Hospital Authority, Denver, CO, USA
| | - Adriano Chan
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| | - Annick Judenherc-Haouzi
- Heart and Vascular Institute, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Nicole Tubbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Gerry R Boss
- Department of Medicine, University of California, San Diego, La Jolla, CA, USA
| |
Collapse
|
5
|
Hydropersulfides (RSSH) Outperform Post-Conditioning and Other Reactive Sulfur Species in Limiting Ischemia-Reperfusion Injury in the Isolated Mouse Heart. Antioxidants (Basel) 2022; 11:antiox11051010. [PMID: 35624878 PMCID: PMC9137952 DOI: 10.3390/antiox11051010] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/13/2022] [Accepted: 05/18/2022] [Indexed: 01/21/2023] Open
Abstract
Hydrogen sulfide (H2S) exhibits protective effects in cardiovascular disease such as myocardial ischemia/reperfusion (I/R) injury, cardiac hypertrophy, and atherosclerosis. Despite these findings, its mechanism of action remains elusive. Recent studies suggest that H2S can modulate protein activity through redox-based post-translational modifications of protein cysteine residues forming hydropersulfides (RSSH). Furthermore, emerging evidence indicates that reactive sulfur species, including RSSH and polysulfides, exhibit cardioprotective action. However, it is not clear yet whether there are any pharmacological differences in the use of H2S vs. RSSH and/or polysulfides. This study aims to examine the differing cardioprotective effects of distinct reactive sulfur species (RSS) such as H2S, RSSH, and dialkyl trisulfides (RSSSR) compared with canonical ischemic post-conditioning in the context of a Langendorff ex-vivo myocardial I/R injury model. For the first time, a side-by-side study has revealed that exogenous RSSH donation is a superior approach to maintain post-ischemic function and limit infarct size when compared with other RSS and mechanical post-conditioning. Our results also suggest that RSSH preserves mitochondrial respiration in H9c2 cardiomyocytes exposed to hypoxia-reoxygenation via inhibition of oxidative phosphorylation while preserving cell viability.
Collapse
|
6
|
The Hypothermic Effect of Hydrogen Sulfide Is Mediated by the Transient Receptor Potential Ankyrin-1 Channel in Mice. Pharmaceuticals (Basel) 2021; 14:ph14100992. [PMID: 34681216 PMCID: PMC8538668 DOI: 10.3390/ph14100992] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Accepted: 09/25/2021] [Indexed: 12/17/2022] Open
Abstract
Hydrogen sulfide (H2S) has been shown in previous studies to cause hypothermia and hypometabolism in mice, and its thermoregulatory effects were subsequently investigated. However, the molecular target through which H2S triggers its effects on deep body temperature has remained unknown. We investigated the thermoregulatory response to fast-(Na2S) and slow-releasing (GYY4137) H2S donors in C57BL/6 mice, and then tested whether their effects depend on the transient receptor potential ankyrin-1 (TRPA1) channel in Trpa1 knockout (Trpa1−/−) and wild-type (Trpa1+/+) mice. Intracerebroventricular administration of Na2S (0.5–1 mg/kg) caused hypothermia in C57BL/6 mice, which was mediated by cutaneous vasodilation and decreased thermogenesis. In contrast, intraperitoneal administration of Na2S (5 mg/kg) did not cause any thermoregulatory effect. Central administration of GYY4137 (3 mg/kg) also caused hypothermia and hypometabolism. The hypothermic response to both H2S donors was significantly (p < 0.001) attenuated in Trpa1−/− mice compared to their Trpa1+/+ littermates. Trpa1 mRNA transcripts could be detected with RNAscope in hypothalamic and other brain neurons within the autonomic thermoeffector pathways. In conclusion, slow- and fast-releasing H2S donors induce hypothermia through hypometabolism and cutaneous vasodilation in mice that is mediated by TRPA1 channels located in the brain, presumably in hypothalamic neurons within the autonomic thermoeffector pathways.
Collapse
|
7
|
Abstract
Hibernation is a powerful response of a number of mammalian species to reduce energy during the cold winter season, when food is scarce. Mammalian hibernators survive winter by spending most of the time in a state of torpor, where basal metabolic rate is strongly suppressed and body temperature comes closer to ambient temperature. These torpor bouts are regularly interrupted by short arousals, where metabolic rate and body temperature spontaneously return to normal levels. The mechanisms underlying these changes, and in particular the strong metabolic suppression of torpor, have long remained elusive. As summarized in this Commentary, increasing evidence points to a potential key role for hydrogen sulfide (H2S) in the suppression of mitochondrial respiration during torpor. The idea that H2S could be involved in hibernation originated in some early studies, where exogenous H2S gas was found to induce a torpor-like state in mice, and despite some controversy, the idea persisted. H2S is a widespread signaling molecule capable of inhibiting mitochondrial respiration in vitro and studies found significant in vivo changes in endogenous H2S metabolites associated with hibernation or torpor. Along with increased expression of H2S-synthesizing enzymes during torpor, H2S degradation catalyzed by the mitochondrial sulfide:quinone oxidoreductase (SQR) appears to have a key role in controlling H2S availability for inhibiting respiration. Specifically, in thirteen-lined squirrels, SQR is highly expressed and inhibited in torpor, possibly by acetylation, thereby limiting H2S oxidation and causing inhibition of respiration. H2S may also control other aspects associated with hibernation, such as synthesis of antioxidant enzymes and of SQR itself.
Collapse
Affiliation(s)
| | - Angela Fago
- Department of Biology, Aarhus University, Aarhus C 8000, Denmark
| |
Collapse
|
8
|
Giroud S, Habold C, Nespolo RF, Mejías C, Terrien J, Logan SM, Henning RH, Storey KB. The Torpid State: Recent Advances in Metabolic Adaptations and Protective Mechanisms †. Front Physiol 2021; 11:623665. [PMID: 33551846 PMCID: PMC7854925 DOI: 10.3389/fphys.2020.623665] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/21/2020] [Indexed: 12/18/2022] Open
Abstract
Torpor and hibernation are powerful strategies enabling animals to survive periods of low resource availability. The state of torpor results from an active and drastic reduction of an individual's metabolic rate (MR) associated with a relatively pronounced decrease in body temperature. To date, several forms of torpor have been described in all three mammalian subclasses, i.e., monotremes, marsupials, and placentals, as well as in a few avian orders. This review highlights some of the characteristics, from the whole organism down to cellular and molecular aspects, associated with the torpor phenotype. The first part of this review focuses on the specific metabolic adaptations of torpor, as it is used by many species from temperate zones. This notably includes the endocrine changes involved in fat- and food-storing hibernating species, explaining biomedical implications of MR depression. We further compare adaptive mechanisms occurring in opportunistic vs. seasonal heterotherms, such as tropical and sub-tropical species. Such comparisons bring new insights into the metabolic origins of hibernation among tropical species, including resistance mechanisms to oxidative stress. The second section of this review emphasizes the mechanisms enabling heterotherms to protect their key organs against potential threats, such as reactive oxygen species, associated with the torpid state. We notably address the mechanisms of cellular rehabilitation and protection during torpor and hibernation, with an emphasis on the brain, a central organ requiring protection during torpor and recovery. Also, a special focus is given to the role of an ubiquitous and readily-diffusing molecule, hydrogen sulfide (H2S), in protecting against ischemia-reperfusion damage in various organs over the torpor-arousal cycle and during the torpid state. We conclude that (i) the flexibility of torpor use as an adaptive strategy enables different heterothermic species to substantially suppress their energy needs during periods of severely reduced food availability, (ii) the torpor phenotype implies marked metabolic adaptations from the whole organism down to cellular and molecular levels, and (iii) the torpid state is associated with highly efficient rehabilitation and protective mechanisms ensuring the continuity of proper bodily functions. Comparison of mechanisms in monotremes and marsupials is warranted for understanding the origin and evolution of mammalian torpor.
Collapse
Affiliation(s)
- Sylvain Giroud
- Research Institute of Wildlife Ecology, Department of Interdisciplinary Life Sciences, University of Veterinary Medicine, Vienna, Austria
| | - Caroline Habold
- University of Strasbourg, CNRS, IPHC, UMR 7178, Strasbourg, France
| | - Roberto F. Nespolo
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Carlos Mejías
- Instituto de Ciencias Ambientales y Evolutivas, Universidad Austral de Chile, ANID – Millennium Science Initiative Program-iBio, Valdivia, Chile
- Center of Applied Ecology and Sustainability, Departamento de Ecología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Jérémy Terrien
- Unité Mécanismes Adaptatifs et Evolution (MECADEV), UMR 7179, CNRS, Muséum National d’Histoire Naturelle, Brunoy, France
| | | | - Robert H. Henning
- Department of Clinical Pharmacy and Pharmacology, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
9
|
Abstract
This review addresses the plausibility of hydrogen sulfide (H2S) therapy for acute lung injury (ALI) and circulatory shock, by contrasting the promising preclinical results to the present clinical reality. The review discusses how the narrow therapeutic window and width, and potentially toxic effects, the route, dosing, and timing of administration all have to be balanced out very carefully. The development of standardized methods to determine in vitro and in vivo H2S concentrations, and the pharmacokinetics and pharmacodynamics of H2S-releasing compounds is a necessity to facilitate the safety of H2S-based therapies. We suggest the potential of exploiting already clinically approved compounds, which are known or unknown H2S donors, as a surrogate strategy.
Collapse
|
10
|
Shi Z, Qin M, Huang L, Xu T, Chen Y, Hu Q, Peng S, Peng Z, Qu LN, Chen SG, Tuo QH, Liao DF, Wang XP, Wu RR, Yuan TF, Li YH, Liu XM. Human torpor: translating insights from nature into manned deep space expedition. Biol Rev Camb Philos Soc 2020; 96:642-672. [PMID: 33314677 DOI: 10.1111/brv.12671] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/09/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022]
Abstract
During a long-duration manned spaceflight mission, such as flying to Mars and beyond, all crew members will spend a long period in an independent spacecraft with closed-loop bioregenerative life-support systems. Saving resources and reducing medical risks, particularly in mental heath, are key technology gaps hampering human expedition into deep space. In the 1960s, several scientists proposed that an induced state of suppressed metabolism in humans, which mimics 'hibernation', could be an ideal solution to cope with many issues during spaceflight. In recent years, with the introduction of specific methods, it is becoming more feasible to induce an artificial hibernation-like state (synthetic torpor) in non-hibernating species. Natural torpor is a fascinating, yet enigmatic, physiological process in which metabolic rate (MR), body core temperature (Tb ) and behavioural activity are reduced to save energy during harsh seasonal conditions. It employs a complex central neural network to orchestrate a homeostatic state of hypometabolism, hypothermia and hypoactivity in response to environmental challenges. The anatomical and functional connections within the central nervous system (CNS) lie at the heart of controlling synthetic torpor. Although progress has been made, the precise mechanisms underlying the active regulation of the torpor-arousal transition, and their profound influence on neural function and behaviour, which are critical concerns for safe and reversible human torpor, remain poorly understood. In this review, we place particular emphasis on elaborating the central nervous mechanism orchestrating the torpor-arousal transition in both non-flying hibernating mammals and non-hibernating species, and aim to provide translational insights into long-duration manned spaceflight. In addition, identifying difficulties and challenges ahead will underscore important concerns in engineering synthetic torpor in humans. We believe that synthetic torpor may not be the only option for manned long-duration spaceflight, but it is the most achievable solution in the foreseeable future. Translating the available knowledge from natural torpor research will not only benefit manned spaceflight, but also many clinical settings attempting to manipulate energy metabolism and neurobehavioural functions.
Collapse
Affiliation(s)
- Zhe Shi
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China.,Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China
| | - Meng Qin
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lu Huang
- Guangdong-Hongkong-Macau Institute of CNS Regeneration, Ministry of Education CNS Regeneration Collaborative Joint Laboratory, Jinan University, Guangzhou, 510632, China
| | - Tao Xu
- Department of Anesthesiology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Ying Chen
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China
| | - Qin Hu
- College of Life Sciences and Bio-Engineering, Beijing University of Technology, Beijing, 100024, China
| | - Sha Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Zhuang Peng
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Li-Na Qu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Shan-Guang Chen
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Qin-Hui Tuo
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Duan-Fang Liao
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China
| | - Xiao-Ping Wang
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ren-Rong Wu
- National Clinical Research Center for Mental Disorders, and Department of Psychaitry, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Ti-Fei Yuan
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, 200030, China.,Co-innovation Center of Neuroregeneration, Nantong University, Nantong, 226000, China
| | - Ying-Hui Li
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China
| | - Xin-Min Liu
- Key Laboratory for Quality Evaluation of Bulk Herbs of Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, China.,State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, 100094, China.,Research Center for Pharmacology and Toxicology, Institute of Medicinal Plant Development (IMPLAD), Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
11
|
Severe Hypoxemia Prevents Spontaneous and Naloxone-induced Breathing Recovery after Fentanyl Overdose in Awake and Sedated Rats. Anesthesiology 2020; 132:1138-1150. [PMID: 32044798 DOI: 10.1097/aln.0000000000003156] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND As severe acute hypoxemia produces a rapid inhibition of the respiratory neuronal activity through a nonopioid mechanism, we have investigated in adult rats the effects of hypoxemia after fentanyl overdose-induced apnea on (1) autoresuscitation and (2) the antidotal effects of naloxone. METHODS In nonsedated rats, the breath-by-breath ventilatory and pulmonary gas exchange response to fentanyl overdose (300 µg · kg · min iv in 1 min) was determined in an open flow plethysmograph. The effects of inhaling air (nine rats) or a hypoxic mixture (fractional inspired oxygen tension between 7.3 and 11.3%, eight rats) on the ability to recover a spontaneous breathing rhythm and on the effects of naloxone (2 mg · kg) were investigated. In addition, arterial blood gases, arterial blood pressure, ventilation, and pulmonary gas exchange were determined in spontaneously breathing tracheostomized urethane-anesthetized rats in response to (1) fentanyl-induced hypoventilation (7 rats), (2) fentanyl-induced apnea (10 rats) in air and hyperoxia, and (3) isolated anoxic exposure (4 rats). Data are expressed as median and range. RESULTS In air-breathing nonsedated rats, fentanyl produced an apnea within 14 s (12 to 29 s). A spontaneous rhythmic activity always resumed after 85.4 s (33 to 141 s) consisting of a persistent low tidal volume and slow frequency rhythmic activity that rescued all animals. Naloxone, 10 min later, immediately restored the baseline level of ventilation. At fractional inspired oxygen tension less than 10%, fentanyl-induced apnea was irreversible despite a transient gasping pattern; the administration of naloxone had no effects. In sedated rats, when PaO2 reached 16 mmHg during fentanyl-induced apnea, no spontaneous recovery of breathing occurred and naloxone had no rescuing effect, despite circulation being maintained. CONCLUSIONS Hypoxia-induced ventilatory depression during fentanyl induced apnea (1) opposes the spontaneous emergence of a respiratory rhythm, which would have rescued the animals otherwise, and (2) prevents the effects of high dose naloxone.
Collapse
|
12
|
Haouzi P, Mellen N, McCann M, Sternick M, Guck D, Tubbs N. Evidence for the emergence of an opioid-resistant respiratory rhythm following fentanyl overdose. Respir Physiol Neurobiol 2020; 277:103428. [PMID: 32151709 DOI: 10.1016/j.resp.2020.103428] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/12/2020] [Accepted: 03/04/2020] [Indexed: 01/15/2023]
Abstract
Breathing resumes within one to two minutes following fentanyl overdose induced apnea in spontaneously breathing rats. As this regular rhythm is produced at a time wherein fentanyl concentrations and receptor occupancy are likely to be extremely high, the mechanisms initiating and sustaining such a respiratory activity remain unclear. Forty-four un-anesthetized adult rats were studied in an open-flow plethysmograph. Regardless of the dose of fentanyl that was used, i.e. 50 μg.kg-1 (n = 8), 100 μg.kg-1 (n = 8) or 300 μg.kg-1 (n = 7), all rats developed an immediate central apnea followed by a depressed regular rhythm that was produced 118, 97 and 81 s (median) later, respectively. Only one rat did not recover. This inspiratory and regular activity consisted of a low frequency and tidal volume pattern with a significant reduction in V̇E/V̇CO2 ratio, which persisted for at least 30 min and that was not different between 100 or 300 μg.kg-1. The time at which this respiratory rhythm emerged, following the highest dose of fentanyl, was not affected by 100 % O2 or 8% CO2/15 % O2. The absolute level of ventilation was however higher in hypercapnic and moderately hypoxic conditions than in hyperoxia. When a second injection of the highest dose of fentanyl (300 μg.kg-1) was performed at 10 min, ventilation was not significantly affected and no apnea was produced in major contrast to the first injection. When a similar injection was performed 30 min after the first injection, in a separate group of rats, an apnea and breathing depression was produced in 30 % of the animals, while in the other rats, ventilation was unaffected. We conclude that the depressed regular respiratory activity emerging during and following fentanyl overdose is uniquely resistant to fentanyl.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA.
| | - Nicholas Mellen
- Department of Pediatrics, University of Louisville, Louisville, KY 40202, USA
| | - Marissa McCann
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA.
| | - Molly Sternick
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Daniel Guck
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| | - Nicole Tubbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University, College of Medicine, Hershey, PA, USA
| |
Collapse
|
13
|
Maassen H, Hendriks KDW, Venema LH, Henning RH, Hofker SH, van Goor H, Leuvenink HGD, Coester AM. Hydrogen sulphide-induced hypometabolism in human-sized porcine kidneys. PLoS One 2019; 14:e0225152. [PMID: 31743376 PMCID: PMC6863563 DOI: 10.1371/journal.pone.0225152] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/29/2019] [Indexed: 02/06/2023] Open
Abstract
Background Since the start of organ transplantation, hypothermia-forced hypometabolism has been the cornerstone in organ preservation. Cold preservation showed to protect against ischemia, although post-transplant injury still occurs and further improvement in preservation techniques is needed. We hypothesize that hydrogen sulphide can be used as such a new preservation method, by inducing a reversible hypometabolic state in human sized kidneys during normothermic machine perfusion. Methods Porcine kidneys were connected to an ex-vivo isolated, oxygen supplemented, normothermic blood perfusion set-up. Experimental kidneys (n = 5) received a 85mg NaHS infusion of 100 ppm and were compared to controls (n = 5). As a reflection of the cellular metabolism, oxygen consumption, mitochondrial activity and tissue ATP levels were measured. Kidney function was assessed by creatinine clearance and fractional excretion of sodium. To rule out potential structural and functional deterioration, kidneys were studied for biochemical markers and histology. Results Hydrogen sulphide strongly decreased oxygen consumption by 61%, which was associated with a marked decrease in mitochondrial activity/function, without directly affecting ATP levels. Renal biological markers, renal function and histology did not change after hydrogen sulphide treatment. Conclusion In conclusion, we showed that hydrogen sulphide can induce a controllable hypometabolic state in a human sized organ, without damaging the organ itself and could thereby be a promising therapeutic alternative for cold preservation under normothermic conditions in renal transplantation.
Collapse
Affiliation(s)
- Hanno Maassen
- Department of Surgery, UMCG, University of Groningen, Groningen, the Netherlands
- Department of Pathology and Medical Biology, UMCG, University of Groningen, Groningen, the Netherlands
- * E-mail:
| | - Koen D. W. Hendriks
- Department of Surgery, UMCG, University of Groningen, Groningen, the Netherlands
- Department of Clinical Pharmacy and Pharmacology, UMCG, University of Groningen, Groningen, the Netherlands
| | - Leonie H. Venema
- Department of Surgery, UMCG, University of Groningen, Groningen, the Netherlands
| | - Rob H. Henning
- Department of Clinical Pharmacy and Pharmacology, UMCG, University of Groningen, Groningen, the Netherlands
| | - Sijbrand H. Hofker
- Department of Surgery, UMCG, University of Groningen, Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, UMCG, University of Groningen, Groningen, the Netherlands
| | | | - Annemieke M. Coester
- Department of Surgery, UMCG, University of Groningen, Groningen, the Netherlands
| |
Collapse
|
14
|
Haouzi P, Tubbs N, Cheung J, Judenherc-Haouzi A. Methylene Blue Administration During and After Life-Threatening Intoxication by Hydrogen Sulfide: Efficacy Studies in Adult Sheep and Mechanisms of Action. Toxicol Sci 2019; 168:443-459. [PMID: 30590764 PMCID: PMC6516679 DOI: 10.1093/toxsci/kfy308] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Exposure to toxic levels of hydrogen sulfide (H2S) produces an acute cardiac depression that can be rapidly fatal. We sought to characterize the time course of the cardiac effects produced by the toxicity of H2S in sheep, a human sized mammal, and to describe the in vivo and in vitro antidotal properties of methylene blue (MB), which has shown efficacy in sulfide intoxicated rats. Infusing NaHS (720 mg) in anesthetized adult sheep produced a rapid dilation of the left ventricular with a decrease in contractility, which was lethal within about 10 min by pulseless electrical activity. MB (7 mg/kg), administered during sulfide exposure, maintained cardiac contractility and allowed all of the treated animals to recover. At a dose of 350 mg NaHS, we were able to produce an intoxication, which led to a persistent decrease in ventricular function for at least 1 h in nontreated animals. Administration of MB, 3 or 30 min after the end of exposure, whereas all free H2S had already vanished, restored cardiac contractility and the pyruvate/lactate (P/L) ratio. We found that MB exerts its antidotal effects through at least 4 different mechanisms: (1) a direct oxidation of free sulfide; (2) an increase in the pool of "trapped" H2S in red cells; (3) a restoration of the mitochondrial substrate-level phosphorylation; and (4) a rescue of the mitochondrial electron chain. In conclusion, H2S intoxication produces acute and long persisting alteration in cardiac function in large mammals even after all free H2S has vanished. MB exerts its antidotal effects against life-threatening sulfide intoxication via multifarious properties, some of them unrelated to any direct interaction with free H2S.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Nicole Tubbs
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| | - Joseph Cheung
- Center of Translational Medicine
- Department of Medicine, Lewis Katz School of Medicine of Temple University, Philadelphia, Pennsylvania
| | - Annick Judenherc-Haouzi
- Heart and Vascular Institute, Pennsylvania State University College of Medicine, Hershey, Pennsylvania
| |
Collapse
|
15
|
Abstract
While human hibernation would provide many advantages for medical applications and space exploration, the intrinsic risks of the procedure itself, as well as those involved if the procedure were to be misused, need to be assessed. Moreover, the distinctive brain state that is present during a hibernation-like state raises questions regarding the state of consciousness of the subject. Since, in animal studies, the cortical activity of this state differs from that of sleep, coma, or even general anesthesia, and resembles a sort of "slowed wakefulness", it is uncertain whether residual consciousness may still be present. In this review, I will present a brief summary of the literature on hibernation and of the current state of the art in inducing a state of artificial hibernation (synthetic torpor); I will then focus on the brain changes that are observed during hibernation, on how these could modify the neural substrate of consciousness, and on the possible use of hibernation as a model for quantum biology. Finally, some ethical considerations on the use of synthetic torpor technology will be presented.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S.Donato, 2, 40126, Bologna, Italy. Tel.: +39 051 2091731; Fax: +39 051 2091737; E-mail:
| |
Collapse
|
16
|
Exogenous hydrogen sulfide gas does not induce hypothermia in normoxic mice. Sci Rep 2018; 8:3855. [PMID: 29497053 PMCID: PMC5832815 DOI: 10.1038/s41598-018-21729-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 02/07/2018] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S, 80 ppm) gas in an atmosphere of 17.5% oxygen reportedly induces suspended animation in mice; a state analogous to hibernation that entails hypothermia and hypometabolism. However, exogenous H2S in combination with 17.5% oxygen is able to induce hypoxia, which in itself is a trigger of hypometabolism/hypothermia. Using non-invasive thermographic imaging, we demonstrated that mice exposed to hypoxia (5% oxygen) reduce their body temperature to ambient temperature. In contrast, animals exposed to 80 ppm H2S under normoxic conditions did not exhibit a reduction in body temperature compared to normoxic controls. In conclusion, mice induce hypothermia in response to hypoxia but not H2S gas, which contradicts the reported findings and putative contentions.
Collapse
|
17
|
Nakayama S, Taguchi N, Tanaka M. Role of Cranial Temperature in Neuroprotection by Sodium Hydrogen Sulfide After Cardiac Arrest in Mice. Ther Hypothermia Temp Manag 2018; 8:203-210. [PMID: 29431591 DOI: 10.1089/ther.2017.0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The hydrogen sulfide donor sodium hydrogen sulfide (NaHS) is recognized as a neuroprotective agent, which induces a hibernation-like metabolic state and hypothermia. However, it remains unclear whether it is the sulfide itself or the hypothermia induced by the sulfide that mediates treatment outcomes following cardiac arrest (CA) and cardiopulmonary resuscitation (CPR). We therefore tested whether NaHS improved outcomes following CA/CPR in mice maintained at 35.0°C by active warming during recovery. Adult male mice were subjected to 8 minutes CA/CPR and randomly treated intraperitoneally with either implantation of miniosmotic pump with NaHS (50 μmol/kg/day) for 3 days or vehicle 30 minutes after CPR. A normothermia group had cranial temperatures kept >35.0°C for 6 hours with a heat pad, and a hypothermia group was allowed to spontaneous hypothermia at room temperature (26.0°C). Behavioral testing and histological evaluation of neurons in the CA1 hippocampal region and striatum were performed on days 4 and 12 after CA/CPR. Both cranial and body temperature decreased following CA/CPR in the hypothermia group, and this was enhanced by NaHS treatment. In the active warming (normothermia) group, NaHS protected striatal neurons and improved long-term survival, which was comparable to the hypothermia groups. No differences were found in the CA1 region. Following CA/CPR, NaHS treatment decreased the heart rate, but not the mean arterial pressure. Our study demonstrated that post-CPR treatment with NaHS exerted neuroprotection in mice while maintaining a normal cranial temperature, indicating that NaHS-related neuroprotection is independent of the known protective effect of spontaneous hypothermia.
Collapse
Affiliation(s)
- Shin Nakayama
- Department of Anesthesiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Noriko Taguchi
- Department of Anesthesiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Makoto Tanaka
- Department of Anesthesiology, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
18
|
Griko Y, Regan MD. Synthetic torpor: A method for safely and practically transporting experimental animals aboard spaceflight missions to deep space. LIFE SCIENCES IN SPACE RESEARCH 2018; 16:101-107. [PMID: 29475515 DOI: 10.1016/j.lssr.2018.01.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 01/09/2018] [Accepted: 01/11/2018] [Indexed: 06/08/2023]
Abstract
Animal research aboard the Space Shuttle and International Space Station has provided vital information on the physiological, cellular, and molecular effects of spaceflight. The relevance of this information to human spaceflight is enhanced when it is coupled with information gleaned from human-based research. As NASA and other space agencies initiate plans for human exploration missions beyond low Earth orbit (LEO), incorporating animal research into these missions is vitally important to understanding the biological impacts of deep space. However, new technologies will be required to integrate experimental animals into spacecraft design and transport them beyond LEO in a safe and practical way. In this communication, we propose the use of metabolic control technologies to reversibly depress the metabolic rates of experimental animals while in transit aboard the spacecraft. Compared to holding experimental animals in active metabolic states, the advantages of artificially inducing regulated, depressed metabolic states (called synthetic torpor) include significantly reduced mass, volume, and power requirements within the spacecraft owing to reduced life support requirements, and mitigated radiation- and microgravity-induced negative health effects on the animals owing to intrinsic physiological properties of torpor. In addition to directly benefitting animal research, synthetic torpor-inducing systems will also serve as test beds for systems that may eventually hold human crewmembers in similar metabolic states on long-duration missions. The technologies for inducing synthetic torpor, which we discuss, are at relatively early stages of development, but there is ample evidence to show that this is a viable idea and one with very real benefits to spaceflight programs. The increasingly ambitious goals of world's many spaceflight programs will be most quickly and safely achieved with the help of animal research systems transported beyond LEO; synthetic torpor may enable this to be done as practically and inexpensively as possible.
Collapse
Affiliation(s)
- Yuri Griko
- NASA Ames Research Center, Moffett Field, CA 94035, United States.
| | - Matthew D Regan
- University of Wisconsin-Madison, School of Veterinary Medicine, Madison, WI 53706, United States
| |
Collapse
|
19
|
Comparative biochemistry of cytochrome c oxidase in animals. Comp Biochem Physiol B Biochem Mol Biol 2017; 224:170-184. [PMID: 29180239 DOI: 10.1016/j.cbpb.2017.11.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 11/06/2017] [Accepted: 11/07/2017] [Indexed: 12/19/2022]
Abstract
Cytochrome c oxidase (COX), the terminal enzyme of the electron transport system, is central to aerobic metabolism of animals. Many aspects of its structure and function are highly conserved, yet, paradoxically, it is also an important model for studying the evolution of the metabolic phenotype. In this review, part of a special issue honouring Peter Hochachka, we consider the biology of COX from the perspective of comparative and evolutionary biochemistry. The approach is to consider what is known about the enzyme in the context of conventional biochemistry, but focus on how evolutionary researchers have used this background to explore the role of the enzyme in biochemical adaptation of animals. In synthesizing the conventional and evolutionary biochemistry, we hope to identify synergies and future research opportunities. COX represents a rare opportunity for researchers to design studies that span the breadth of biology: molecular genetics, protein biochemistry, enzymology, metabolic physiology, organismal performance, evolutionary biology, and phylogeography.
Collapse
|
20
|
Pharmacologically induced reversible hypometabolic state mitigates radiation induced lethality in mice. Sci Rep 2017; 7:14900. [PMID: 29097738 PMCID: PMC5668348 DOI: 10.1038/s41598-017-15002-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/19/2017] [Indexed: 02/08/2023] Open
Abstract
Therapeutic hypothermia has proven benefits in critical care of a number of diseased states, where inflammation and oxidative stress are the key players. Here, we report that adenosine monophosphate (AMP) triggered hypometabolic state (HMS), 1–3 hours after lethal total body irradiation (TBI) for a duration of 6 hours, rescue mice from radiation-induced lethality and this effect is mediated by the persistent hypothermia. Studies with caffeine and 6N-cyclohexyladenosine, a non-selective antagonist and a selective agonist of adenosine A1 receptor (A1AR) respectively, indicated the involvement of adenosine receptor (AR) signaling. Intracerebroventricular injection of AMP also suggested possible involvement of central activation of AR signaling. AMP, induced HMS in a strain and age independent fashion and did not affect the behavioural and reproductive capacities. AMP induced HMS, mitigated radiation-induced oxidative DNA damage and loss of HSPCs. The increase in IL-6 and IL-10 levels and a shift towards anti-inflammatory milieu during the first 3–4 hours seems to be responsible for the augmented survival of HSPCs. The syngeneic bone marrow transplantation (BMT) studies further supported the role of radiation-induced inflammation in loss of bone marrow cellularity after TBI. We also showed that the clinically plausible mild hypothermia effectively mitigates TBI induced lethality in mice.
Collapse
|
21
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 304] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
22
|
Nußbaum BL, Vogt J, Wachter U, McCook O, Wepler M, Matallo J, Calzia E, Gröger M, Georgieff M, Wood ME, Whiteman M, Radermacher P, Hafner S. Metabolic, Cardiac, and Renal Effects of the Slow Hydrogen Sulfide-Releasing Molecule GYY4137 During Resuscitated Septic Shock in Swine with Pre-Existing Coronary Artery Disease. Shock 2017; 48:175-184. [DOI: 10.1097/shk.0000000000000834] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
23
|
Dyson A, Dal-Pizzol F, Sabbatini G, Lach AB, Galfo F, dos Santos Cardoso J, Pescador Mendonça B, Hargreaves I, Bollen Pinto B, Bromage DI, Martin JF, Moore KP, Feelisch M, Singer M. Ammonium tetrathiomolybdate following ischemia/reperfusion injury: Chemistry, pharmacology, and impact of a new class of sulfide donor in preclinical injury models. PLoS Med 2017; 14:e1002310. [PMID: 28678794 PMCID: PMC5497958 DOI: 10.1371/journal.pmed.1002310] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/26/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Early revascularization of ischemic organs is key to improving outcomes, yet consequent reperfusion injury may be harmful. Reperfusion injury is largely attributed to excess mitochondrial production of reactive oxygen species (ROS). Sulfide inhibits mitochondria and reduces ROS production. Ammonium tetrathiomolybdate (ATTM), a copper chelator, releases sulfide in a controlled and novel manner, and may offer potential therapeutic utility. METHODS AND FINDINGS In vitro, ATTM releases sulfide in a time-, pH-, temperature-, and thiol-dependent manner. Controlled sulfide release from ATTM reduces metabolism (measured as oxygen consumption) both in vivo in awake rats and ex vivo in skeletal muscle tissue, with a superior safety profile compared to standard sulfide generators. Given intravenously at reperfusion/resuscitation to rats, ATTM significantly reduced infarct size following either myocardial or cerebral ischemia, and conferred survival benefit following severe hemorrhage. Mechanistic studies (in vitro anoxia/reoxygenation) demonstrated a mitochondrial site of action (decreased MitoSOX fluorescence), where the majority of damaging ROS is produced. CONCLUSIONS The inorganic thiometallate ATTM represents a new class of sulfide-releasing drugs. Our findings provide impetus for further investigation of this compound as a novel adjunct therapy for reperfusion injury.
Collapse
Affiliation(s)
- Alex Dyson
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Magnus Oxygen, London, United Kingdom
| | - Felipe Dal-Pizzol
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Laboratory of Experimental Pathophysiology, University of Southern Santa Catarina, Criciúma, Brazil
| | - Giovanni Sabbatini
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Anna B. Lach
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Magnus Oxygen, London, United Kingdom
| | - Federica Galfo
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Bruna Pescador Mendonça
- Laboratory of Experimental Pathophysiology, University of Southern Santa Catarina, Criciúma, Brazil
| | - Iain Hargreaves
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Bernardo Bollen Pinto
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Daniel I. Bromage
- Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - John F. Martin
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Magnus Oxygen, London, United Kingdom
| | - Kevin P. Moore
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Mervyn Singer
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Magnus Oxygen, London, United Kingdom
| |
Collapse
|
24
|
Gorr TA. Hypometabolism as the ultimate defence in stress response: how the comparative approach helps understanding of medically relevant questions. Acta Physiol (Oxf) 2017; 219:409-440. [PMID: 27364602 DOI: 10.1111/apha.12747] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2015] [Revised: 01/28/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
First conceptualized from breath-hold diving mammals, later recognized as the ultimate cell autonomous survival strategy in anoxia-tolerant vertebrates and burrowing or hibernating rodents, hypometabolism is typically recruited by resilient organisms to withstand and recover from otherwise life-threatening hazards. Through the coordinated down-regulation of biosynthetic, proliferative and electrogenic expenditures at times when little ATP can be generated, a metabolism turned 'down to the pilot light' allows the re-balancing of energy demand with supply at a greatly suppressed level in response to noxious exogenous stimuli or seasonal endogenous cues. A unifying hallmark of stress-tolerant organisms, the adaptation effectively prevents lethal depletion of ATP, thus delineating a marked contrast with susceptible species. Along with disengaged macromolecular syntheses, attenuated transmembrane ion shuttling and PO2 -conforming respiration rates, the metabolic slowdown in tolerant species usually culminates in a non-cycling, quiescent phenotype. However, such a reprogramming also occurs in leading human pathophysiologies. Ranging from microbial infections through ischaemia-driven infarcts to solid malignancies, cells involved in these disorders may again invoke hypometabolism to endure conditions non-permissive for growth. At the same time, their reduced activities underlie the frequent development of a general resistance to therapeutic interventions. On the other hand, a controlled induction of hypometabolic and/or hypothermic states by pharmacological means has recently stimulated intense research aimed at improved organ preservation and patient survival in situations requiring acutely administered critical care. The current review article therefore presents an up-to-date survey of concepts and applications of a coordinated and reversibly down-regulated metabolic rate as the ultimate defence in stress responses.
Collapse
Affiliation(s)
- T. A. Gorr
- Institute of Veterinary Physiology; Vetsuisse Faculty; University of Zurich; Zurich Switzerland
| |
Collapse
|
25
|
Cerri M, Tinganelli W, Negrini M, Helm A, Scifoni E, Tommasino F, Sioli M, Zoccoli A, Durante M. Hibernation for space travel: Impact on radioprotection. LIFE SCIENCES IN SPACE RESEARCH 2016; 11:1-9. [PMID: 27993187 DOI: 10.1016/j.lssr.2016.09.001] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/02/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
Hibernation is a state of reduced metabolic activity used by some animals to survive in harsh environmental conditions. The idea of exploiting hibernation for space exploration has been proposed many years ago, but in recent years it is becoming more realistic, thanks to the introduction of specific methods to induce hibernation-like conditions (synthetic torpor) in non-hibernating animals. In addition to the expected advantages in long-term exploratory-class missions in terms of resource consumptions, aging, and psychology, hibernation may provide protection from cosmic radiation damage to the crew. Data from over half century ago in animal models suggest indeed that radiation effects are reduced during hibernation. We will review the mechanisms of increased radioprotection in hibernation, and discuss possible impact on human space exploration.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Piazza di Porta S.Donato 2, 40126 Bologna, Italy; National Institute of Nuclear Physics (INFN), Section of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Walter Tinganelli
- National Institute of Nuclear Physics (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy
| | - Matteo Negrini
- National Institute of Nuclear Physics (INFN), Section of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Alexander Helm
- National Institute of Nuclear Physics (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy
| | - Emanuele Scifoni
- National Institute of Nuclear Physics (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy
| | - Francesco Tommasino
- National Institute of Nuclear Physics (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy; Department of Physics, University of Trento, Via Sommarive 14, 38123 Trento, Italy
| | - Maximiliano Sioli
- National Institute of Nuclear Physics (INFN), Section of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy ; Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Antonio Zoccoli
- National Institute of Nuclear Physics (INFN), Section of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy ; Department of Physics and Astronomy, University of Bologna, Viale Berti Pichat 6/2, 40127 Bologna, Italy
| | - Marco Durante
- National Institute of Nuclear Physics (INFN), Trento Institute for Fundamental Physics and Applications (TIFPA), Via Sommarive 14, 38123 Trento, Italy.
| |
Collapse
|
26
|
Abstract
Autonomic thermoregulation is a recently acquired function, as it appears for the first time in mammals and provides the brain with the ability to control energy expenditure. The importance of such control can easily be highlighted by the ability of a heterogeneous group of mammals to actively reduce metabolic rate and enter a condition of regulated hypometabolism known as torpor. The central neural circuits of thermoregulatory cold defense have been recently unraveled and could in theory be exploited to reduce energy expenditure in species that do not normally use torpor, inducing a state called synthetic torpor. This approach may represent the first steps toward the development of a technology to induce a safe and reversible state of hypometabolism in humans, unlocking many applications ranging from new medical procedures to deep space travel.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and Neuromotor Sciences, Physiology Division, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| |
Collapse
|
27
|
Mooyaart EAQ, Gelderman ELG, Nijsten MW, de Vos R, Hirner JM, de Lange DW, Leuvenink HDG, van den Bergh WM. Outcome after hydrogen sulphide intoxication. Resuscitation 2016; 103:1-6. [PMID: 26997477 DOI: 10.1016/j.resuscitation.2016.03.012] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 02/19/2016] [Accepted: 03/09/2016] [Indexed: 11/18/2022]
Abstract
AIM Hydrogen sulphide (H2S) intoxication in man is frequently associated with a fatal outcome. In small animal models hydrogen sulphide has demonstrated profound protection against hypoxia. No reports that focus on a potential protective effect in humans have been published. METHODS The frequency and outcome of a large cohort of hydrogen sulphide intoxications is described. RESULTS From 1980 until 2013, 35 accidents totalling 56 victims occurred of whom at least 24 (43%) survived. Of the 8 patients with documented cardiopulmonary resuscitation on the scene, 6 (75%) survived. In some of these cases with good outcome the exposure time to very high hydrogen sulphide levels before extraction and resuscitation was more than 45min. CONCLUSION Manure related hydrogen sulphide intoxication is associated with a high mortality, although in some cases, recovery appears to be far more favourable than the initial presentation would suggest. Possibly protection from hypoxic injury due to induction of a suspended animation-like state by hydrogen sulphide may be responsible.
Collapse
Affiliation(s)
- Eline A Q Mooyaart
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Egbert L G Gelderman
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maarten W Nijsten
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ronald de Vos
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Mobile Medical Team, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - J Manfred Hirner
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Mobile Medical Team, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Dylan W de Lange
- Department of Intensive Care Medicine and National Poison Information Center (NPIC), University Medical Center Utrecht, University of Utrecht, Utrecht, The Netherlands
| | - Henri D G Leuvenink
- Surgical Research Laboratory, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Walter M van den Bergh
- Department of Critical Care, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands.
| |
Collapse
|
28
|
Abstract
Many environmental conditions can constrain the ability of animals to obtain sufficient food energy, or transform that food energy into useful chemical forms. To survive extended periods under such conditions animals must suppress metabolic rate to conserve energy, water, or oxygen. Amongst small endotherms, this metabolic suppression is accompanied by and, in some cases, facilitated by a decrease in core body temperature-hibernation or daily torpor-though significant metabolic suppression can be achieved even with only modest cooling. Within some ectotherms, winter metabolic suppression exceeds the passive effects of cooling. During dry seasons, estivating ectotherms can reduce metabolism without changes in body temperature, conserving energy reserves, and reducing gas exchange and its inevitable loss of water vapor. This overview explores the similarities and differences of metabolic suppression among these states within adult animals (excluding developmental diapause), and integrates levels of organization from the whole animal to the genome, where possible. Several similarities among these states are highlighted, including patterns and regulation of metabolic balance, fuel use, and mitochondrial metabolism. Differences among models are also apparent, particularly in whether the metabolic suppression is intrinsic to the tissue or depends on the whole-animal response. While in these hypometabolic states, tissues from many animals are tolerant of hypoxia/anoxia, ischemia/reperfusion, and disuse. These natural models may, therefore, serve as valuable and instructive models for biomedical research.
Collapse
Affiliation(s)
- James F Staples
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
29
|
Bos EM, van Goor H, Joles JA, Whiteman M, Leuvenink HGD. Hydrogen sulfide: physiological properties and therapeutic potential in ischaemia. Br J Pharmacol 2016; 172:1479-93. [PMID: 25091411 DOI: 10.1111/bph.12869] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Revised: 06/19/2014] [Accepted: 07/27/2014] [Indexed: 12/19/2022] Open
Abstract
Hydrogen sulfide (H2 S) has become a molecule of high interest in recent years, and it is now recognized as the third gasotransmitter in addition to nitric oxide and carbon monoxide. In this review, we discuss the recent literature on the physiology of endogenous and exogenous H2 S, focusing upon the protective effects of hydrogen sulfide in models of hypoxia and ischaemia.
Collapse
Affiliation(s)
- Eelke M Bos
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands; Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | | | |
Collapse
|
30
|
Zhao Y, Biggs TD, Xian M. Hydrogen sulfide (H2S) releasing agents: chemistry and biological applications. Chem Commun (Camb) 2015; 50:11788-805. [PMID: 25019301 DOI: 10.1039/c4cc00968a] [Citation(s) in RCA: 263] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Hydrogen sulfide (H2S) is a newly recognized signaling molecule with very potent cytoprotective actions. The fields of H2S physiology and pharmacology have been rapidly growing in recent years, but a number of fundamental issues must be addressed to advance our understanding of the biology and clinical potential of H2S in the future. Hydrogen sulfide releasing agents (also known as H2S donors) have been widely used in these fields. These compounds are not only useful research tools, but also potential therapeutic agents. It is therefore important to study the chemistry and pharmacology of exogenous H2S and to be aware of the limitations associated with the choice of donors used to generate H2S in vitro and in vivo. In this review we summarized the developments and limitations of currently available donors including H2S gas, sulfide salts, garlic-derived sulfur compounds, Lawesson's reagent/analogs, 1,2-dithiole-3-thiones, thiol-activated donors, photo-caged donors, and thioamino acids. Some biological applications of these donors were also discussed.
Collapse
Affiliation(s)
- Yu Zhao
- Department of Chemistry, Washington State University, Pullman, WA 99164, USA.
| | | | | |
Collapse
|
31
|
Haouzi P, Van de Louw A. Persistent reduced oxygen requirement following blood transfusion during recovery from hemorrhagic shock. Respir Physiol Neurobiol 2015; 215:39-46. [PMID: 25911557 DOI: 10.1016/j.resp.2015.04.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Revised: 04/15/2015] [Accepted: 04/16/2015] [Indexed: 12/28/2022]
Abstract
Our study intended to determine the effects on oxygen uptake (VO2) of restoring a normal rate of O2 delivery following blood transfusion (BT) after a severe hemorrhage (H). Spontaneously breathing urethane anesthetized rats were bled by removing 20 ml/kg of blood over 30 min. Rats were then infused with their own shed blood 15 min after the end of H. At mid-perfusion, half of the rats received a unique infusion of the decoupling agent 2,4-dinitrophenol (DNP, 6 mg/kg). VO2 and arterial blood pressure (ABP) were continuously measured throughout the study, along with serial determination of blood lactate concentration [La]. Animals were euthanized 45 min after the end of reperfusion; liver and lungs were further analyzed for early expression of oxidative stress gene using RT-PCR. Our bleeding protocol induced a significant decrease in ABP and increase in [La], while VO2 dropped by half. The O2 deficit progressively accumulated during the period of bleeding reached -114 ± 53 ml/kg, just before blood transfusion. Despite the transfusion of blood, a significant O2 deficit persisted (-82 ± 59 ml/kg) 45 min after reperfusion. This slow recovery of VO2 was sped up by DNP injection, leading to a fast recovery of O2 deficit after reperfusion, becoming positive (+460 ± 132 ml/kg) by the end of the protocol, supporting the view that O2 supply is not the main controller of VO2 dynamics after BT. Of note is that DNP also enhanced oxidative stress gene expression (up-regulation of NADPH oxidase 4 in the lung for instance). The mechanism of slow recovery of O2 requirement/demand following BT and the resulting effects on tissues exposed to relatively high O2 partial pressure are discussed.
Collapse
Affiliation(s)
- Philippe Haouzi
- Pennsylvania State University, College of Medicine, Division of Pulmonary and Critical Care Medicine, Penn State Hershey Medical Center, 500 University Dr., Hershey, PO Box 850, Hershey, PA 17033, USA.
| | - Andry Van de Louw
- Pennsylvania State University, College of Medicine, Division of Pulmonary and Critical Care Medicine, Penn State Hershey Medical Center, 500 University Dr., Hershey, PO Box 850, Hershey, PA 17033, USA
| |
Collapse
|
32
|
Satterly SA, Salgar S, Hoffer Z, Hempel J, DeHart MJ, Wingerd M, Raywin H, Stallings JD, Martin M. Hydrogen sulfide improves resuscitation via non-hibernatory mechanisms in a porcine shock model. J Surg Res 2015; 199:197-210. [PMID: 25956183 DOI: 10.1016/j.jss.2015.04.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2014] [Revised: 03/11/2015] [Accepted: 04/01/2015] [Indexed: 01/23/2023]
Abstract
BACKGROUND Hydrogen sulfide (H2S) has been demonstrated to induce a "suspended animation-like" state in rodent models by reversible inhibition of cellular respiration and marked metabolic suppression and has been proposed as a potential pharmacologic adjunct to resuscitation from shock states. There are few data currently available about the mechanisms and efficacy of H2S in larger animals or humans. We examined H2S as a pharmacologic adjunct to resuscitation in a porcine model of severe traumatic shock. METHODS Twenty-one adult swine were assigned to three study arms: sham, H2S, and saline vehicle controls (SC). All pigs underwent laparotomy and instrumentation, and the two study arms then underwent a 35% controlled hemorrhage followed by 50 min of truncal ischemia via aortic cross-clamp. H2S (5 mg/kg) or saline was administered immediately before reperfusion, followed by 6 h of resuscitation. Resuscitation requirements, laboratory parameters, end-organ histology, and inflammatory product gene expression (by reverse transcription-polymerase chain reaction) were measured and compared between groups. RESULTS All animals survived to the 6-h postresuscitation time point. Both treatment arms demonstrated severe shock characterized by fluid and vasopressor requirements, metabolic acidosis, and hypotension compared with sham animals. Animals treated with H2S demonstrated significantly lower resuscitative requirements (total epinephrine 727 versus 3052 μg; P < 0.05), decreased fluid requirements, and lower serum lactate levels (7 versus 10 mmol/L) versus SC. Cardiac output was slightly decreased with H2S treatment but all other hemodynamic and metabolic parameters were equivalent between H2S and C groups. Serum liver and kidney biomarkers were unchanged, but administration of H2S was associated with a significant improvement in histopathologic liver and kidney injury scores compared with SC (both P < 0.05). Both study groups demonstrated significantly increased gene expression of hypoxia-inducible factor 1α and nitric oxide synthase (endogenous nitric oxide synthase, inducible nitric oxide synthase [iNOS]2, iNOS3) relative to sham animals. However, H2S was associated with increased expression of hypoxia-inducible factor 1α and decreased iNOS2 levels compared with SC. CONCLUSIONS Administration of H2S in a large-animal model of severe traumatic shock resulted in a significant decrease in resuscitative requirements, decreased metabolic acidosis, and less end-organ histologic injury compared with standard resuscitation. H2S did not induce profound metabolic suppression as seen in rodents, and appears to have alternative mechanisms of action in large animals.
Collapse
Affiliation(s)
- Steven A Satterly
- Department of Surgery, Madigan Army Medical Center, Tacoma, Washington
| | - Shashikumar Salgar
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington
| | - Zachary Hoffer
- Department of Pathology, Madigan Army Medical Center, Tacoma, Washington
| | - James Hempel
- Department of Pathology, Madigan Army Medical Center, Tacoma, Washington
| | - Mary J DeHart
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington
| | - Mark Wingerd
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington
| | - Huang Raywin
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington
| | - Jonathan D Stallings
- Department of Clinical Investigation, Madigan Army Medical Center, Tacoma, Washington
| | - Matthew Martin
- Department of Surgery, Madigan Army Medical Center, Tacoma, Washington; Trauma and Acute Care Surgery Service, Legacy Emanuel Medical Center, Portland, Oregon.
| |
Collapse
|
33
|
Haouzi P, Chenuel B, Sonobe T. High-dose hydroxocobalamin administered after H2S exposure counteracts sulfide-poisoning-induced cardiac depression in sheep. Clin Toxicol (Phila) 2015; 53:28-36. [PMID: 25546714 DOI: 10.3109/15563650.2014.990976] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
CONTEXT Severe H2S poisoning leads to death by rapid respiratory and cardiac arrest, the latter can occur within seconds or minutes in severe forms of intoxication. OBJECTIVES To determine the time course and the nature of H2S-induced cardiac arrest and the effects of high-dose hydroxocobalamin administered after the end of sulfide exposure. MATERIALS AND METHODS NaHS was infused in 16 sedated mechanically ventilated sheep to reach concentrations of H2S in the blood, which was previously found to lead to cardiac arrest within minutes following the cessation of H2S exposure. High-dose hydroxocobalamin (5 g) or saline solution was administered intravenously, 1 min after the cessation of NaHS infusion. RESULTS All animals were still alive at the cessation of H2S exposure. Three animals (18%) presented a cardiac arrest within 90 s and were unable to receive any antidote or vehicle. In the animals that survived long enough to receive either hydroxocobalamin or saline, 71% (5/7) died in the control group by cardiac arrest within 10 min. In all instances, cardiac arrest was the result of a pulseless electrical activity (PEA). In the group that received the antidote, intravenous injection of 5 g of hydroxocobalamin provoked an abrupt increase in blood pressure and blood flow; PEA was prevented in all instances. However, we could not find any evidence for a recovery in oxidative metabolism in the group receiving hydroxocobalamin, as blood lactate remained elevated and even continued to rise after 1 h, despite restored hemodynamics. This, along with an unaltered recovery of H2S kinetics, suggests that hydroxocobalamin did not act through a mechanism of H2S trapping. CONCLUSION In this sheep model, there was a high risk for cardiac arrest, by PEA, persisting up to 10 min after H2S exposure. Very high dose of hydroxocobalamin (5 g), injected very early after the cessation of H2S exposure, improved cardiac contractility and prevented PEA.
Collapse
Affiliation(s)
- Philippe Haouzi
- Division of Pulmonary and Critical Medicine, Pennsylvania State University College of Medicine , Hershey, PA , USA
| | | | | |
Collapse
|
34
|
Chenuel B, Sonobe T, Haouzi P. Effects of infusion of human methemoglobin solution following hydrogen sulfide poisoning. Clin Toxicol (Phila) 2015; 53:93-101. [PMID: 25634666 DOI: 10.3109/15563650.2014.996570] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
RATIONALE We have recently reported that infusion of a solution containing methemoglobin (MetHb) during exposure to hydrogen sulfide results in a rapid and large decrease in the concentration of the pool of soluble/diffusible H2S in the blood. However, since the pool of dissolved H2S disappears very quickly after H2S exposure, it is unclear if the ability of MetHb to "trap" sulfide in the blood has any clinical interest and relevance in the treatment of sulfide poisoning. METHODS In anesthetized rats, repetition of short bouts of high level of H2S infusions was applied to allow the rapid development of an oxygen deficit. A solution containing MetHb (600 mg/kg) or its vehicle was administered 1 min and a half after the end of H2S intoxication. RESULTS The injection of MetHb solution increased methemoglobinemia to about 6%, almost instantly, but was unable to affect the blood concentration of soluble H2S, which had already vanished at the time of infusion, or to increase combined H2S. In addition, H2S-induced O2 deficit and lactate production as well as the recovery of carotid blood flow and blood pressure were similar in treated and control animals. CONCLUSION Our results do not support the view that administration of MetHb or drugs-induced methemoglobinemia during the recovery phase following severe H2S intoxication in sedated rats can restore cellular oxidative metabolism, as the pool of diffusible sulfide, accessible to MetHb, disappears rapidly from the blood after H2S exposure.
Collapse
Affiliation(s)
- B Chenuel
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Pennsylvania State University College of Medicine , Hershey, PA , USA
| | | | | |
Collapse
|
35
|
Inhalation exposure model of hydrogen sulfide (H₂S)-induced hypometabolism in the male Sprague-Dawley rat. Methods Enzymol 2015; 555:19-35. [PMID: 25747473 DOI: 10.1016/bs.mie.2014.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Hydrogen sulfide (H2S) has been accepted as a physiologically relevant cell-signaling molecule with both toxic and beneficial effects depending on its concentration in mammalian tissues. Notably, exposure to H2S in breathable air has been shown to decrease aerobic metabolism and induce a reversible hypometabolic-like state in laboratory rodent models. Herein, we describe an experimental exposure setup that can be used to define the reversible cardiovascular and metabolic physiology of rodents (rats) during H2S-induced hypometabolism and following recovery.
Collapse
|
36
|
Abstract
Ageing, a progressive structural and functional decline, is considered to be a major risk factor for virtually all ageing-associated pathologies and disabilities, including Alzheimer's disease, Parkinson's disease, stroke, diabetes, atherosclerosis and certain cancers. Biogerontology research has now been largely directed towards finding novel drug targets to decelerate the ageing process and attain healthy ageing in order to delay the onset of all ageing-related diseases. H2S has been reported to exert vasodilatory, antioxidant, antiapoptotic and anti-inflammatory actions and has been shown to act as a signalling molecule, neuromodulator and cytoprotectant. Intriguingly, H2S has been reported to regulate cell cycle and survival in healthy cells which suggests that it may regulate cell fate and hence the ageing process. This chapter sets out to provide an overview of the current knowledge regarding the involvement of H2S in ageing, with a specific focus on the invertebrate model nematode C. elegans.
Collapse
Affiliation(s)
- Bedoor Qabazard
- MRC-HPA Centre for Environment and Health, Analytical and Environmental Sciences Division, Faculty of Life Sciences and Medicine, King's College London, 150 Stamford Street, London, SE1 9NH, UK
| | | |
Collapse
|
37
|
Módis K, Bos EM, Calzia E, van Goor H, Coletta C, Papapetropoulos A, Hellmich MR, Radermacher P, Bouillaud F, Szabo C. Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Br J Pharmacol 2014; 171:2123-46. [PMID: 23991749 DOI: 10.1111/bph.12368] [Citation(s) in RCA: 109] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2013] [Revised: 07/30/2013] [Accepted: 08/05/2013] [Indexed: 12/15/2022] Open
Abstract
Emerging work demonstrates the dual regulation of mitochondrial function by hydrogen sulfide (H2 S), including, at lower concentrations, a stimulatory effect as an electron donor, and, at higher concentrations, an inhibitory effect on cytochrome C oxidase. In the current article, we overview the pathophysiological and therapeutic aspects of these processes. During cellular hypoxia/acidosis, the inhibitory effect of H2 S on complex IV is enhanced, which may shift the balance of H2 S from protective to deleterious. Several pathophysiological conditions are associated with an overproduction of H2 S (e.g. sepsis), while in other disease states H2 S levels and H2 S bioavailability are reduced and its therapeutic replacement is warranted (e.g. diabetic vascular complications). Moreover, recent studies demonstrate that colorectal cancer cells up-regulate the H2 S-producing enzyme cystathionine β-synthase (CBS), and utilize its product, H2 S, as a metabolic fuel and tumour-cell survival factor; pharmacological CBS inhibition or genetic CBS silencing suppresses cancer cell bioenergetics and suppresses cell proliferation and cell chemotaxis. In the last chapter of the current article, we overview the field of H2 S-induced therapeutic 'suspended animation', a concept in which a temporary pharmacological reduction in cell metabolism is achieved, producing a decreased oxygen demand for the experimental therapy of critical illness and/or organ transplantation.
Collapse
Affiliation(s)
- Katalin Módis
- Department of Anesthesiology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
da Silva GSF, Soriano RN, Kwiatkoski M, Giusti H, Glass ML, Branco LGS. Central hydrogen sulphide mediates ventilatory responses to hypercapnia in adult conscious rats. Acta Physiol (Oxf) 2014; 212:239-47. [PMID: 25042027 DOI: 10.1111/apha.12346] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2014] [Revised: 04/30/2014] [Accepted: 07/09/2014] [Indexed: 11/30/2022]
Abstract
AIM Hydrogen sulphide (H2S) is endogenously produced and plays an important role as a modulator of neuronal functions; however, its modulatory role in the central CO2 chemoreception is unknown. The aim of the present study was to assess the role of endogenously produced H2S in the ventilatory response to hypercapnia in adult conscious rats. METHODS Cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE) inhibitors (aminooxyacetate: AOA and propargylglycine: PAG respectively) and a H2S donor (sodium sulphide: Na2S) were microinjected into the fourth ventricle (4V). Ventilation (V̇(E)), oxygen consumption (V̇O2) and body temperature were recorded before (room air) and during a 30-min CO2 exposure (hypercapnia, 7% CO2). Endogenous H2S levels were measured in the nucleus tractus solitarius (NTS). RESULTS Microinjection of Na2S (H2S donor), AOA (CBS inhibitor) or PAG (CSE inhibitor) did not affect baseline of the measured variables compared to control group (vehicle). In all experimental groups, hypercapnia elicited an increase in V̇(E). However, AOA microinjection, but not PAG, attenuated the ventilatory response to hypercapnia (P < 0.05), whereas Na2S elicited a slight, not significant, enhancement. Moreover, endogenous H2S levels were found higher in the NTS after hypercapnia (P < 0.05) compared to room air (normoxia) condition. CONCLUSION There are a few reports on the role of gaseous transmitters in the control of breathing. Importantly, the present data suggest that endogenous H2S via the CBS-H2S pathway mediates the ventilatory response to hypercapnia playing an excitatory role.
Collapse
Affiliation(s)
- G. S. F. da Silva
- Dental School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Sao Paulo Brazil
| | - R. N. Soriano
- Dental School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Sao Paulo Brazil
| | - M. Kwiatkoski
- Medical School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Brazil
| | - H. Giusti
- Medical School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Brazil
| | - M. L. Glass
- Medical School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Brazil
| | - L. G. S. Branco
- Dental School of Ribeirao Preto; University of Sao Paulo; Ribeirao Preto Sao Paulo Brazil
| |
Collapse
|
39
|
Branco LG, Soriano RN, Steiner AA. Gaseous Mediators in Temperature Regulation. Compr Physiol 2014; 4:1301-38. [DOI: 10.1002/cphy.c130053] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
40
|
Donatti AF, Soriano RN, Sabino JP, Branco LGS. Involvement of endogenous hydrogen sulfide (H2S) in the rostral ventrolateral medulla (RVLM) in hypoxia-induced hypothermia. Brain Res Bull 2014; 108:94-9. [PMID: 25262576 DOI: 10.1016/j.brainresbull.2014.08.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Revised: 08/01/2014] [Accepted: 08/28/2014] [Indexed: 01/06/2023]
Abstract
Hypoxia evokes a regulated decrease in deep body temperature (Tb). Hydrogen sulfide (H2S), a signaling molecule that belongs to the gasotransmitter family, has been demonstrated to participate in several brain-mediated responses. Rostral ventrolateral medulla (RVLM) is a brainstem region involved in thermoregulation. Recently, it has been shown that exogenous H2S modulates RVLM activity. In the present study, we investigated whether endogenously produced H2S in the RVLM plays a role in the control of hypoxia-induced hypothermia. Tb was measured before and after bilateral microinjection of aminooxyacetate (AOA, 0.2, 1 and 2 pmol/100 nl, a cystathionine β-synthase, CBS, inhibitor) or vehicle into the RVLM followed by a 60-min normoxia (21% inspired O2) or hypoxia (7% inspired O2) exposure. Microinjection of AOA or vehicle did not change Tb during normoxia. Exposure to hypoxia evoked a typical decrease in Tb. Microinjection of AOA (2 pmol) into the RVLM followed by hypoxia significantly attenuated the decrease in Tb. Thus, endogenous H2S in the RVLM seems to play no role in the maintenance of basal Tb, whereas during hypoxia this gas plays a cryogenic role. Moreover, RVLM homogenates of rats exposed to hypoxia exhibited a decreased rate of H2S production. Our data are consistent with the notion that during hypoxia H2S synthesis is diminished in the RVLM facilitating hypothermia.
Collapse
Affiliation(s)
- Alberto F Donatti
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil
| | - Renato N Soriano
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil
| | - João P Sabino
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
41
|
Donatti AF, Soriano RN, Sabino JP, Branco LGS. Endogenous hydrogen sulfide in the rostral ventrolateral medulla/Bötzinger complex downregulates ventilatory responses to hypoxia. Respir Physiol Neurobiol 2014; 200:97-104. [PMID: 24953676 DOI: 10.1016/j.resp.2014.06.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 06/01/2014] [Accepted: 06/11/2014] [Indexed: 10/25/2022]
Abstract
Hydrogen sulfide (H2S) is now recognized as a new gaseous transmitter involved in several brain-mediated responses. The rostral ventrolateral medulla (RVLM)/Bötzinger complex is a region in the brainstem that is involved in cardiovascular and respiratory functions. Recently, it has been shown that exogenous H2S in the RVLM modulates autonomic function and thus blood pressure. In the present study, we investigated whether H2S, endogenously produced in the RVLM/Bötzinger complex, plays a role in the control of hypoxia-induced hyperventilation. Ventilation (VE) was measured before and after bilateral microinjection of Na2S (H2S donor, 0.04, 1 and 2 pmol/100 nl) or aminooxyacetate (AOA, 0.2, 1 and 2 pmol/100 nl, a cystathionine β-synthase, CBS, inhibitor) into the RVLM/Bötzinger complex followed by a 60-min period of hypoxia (7% inspired O2) or normoxia exposure. Control rats received microinjection of vehicle. Microinjection of vehicle, AOA or Na2S did not change VE in normoxic conditions. Exposure to hypoxia evoked a typical increase in VE. Microinjection of Na2S (2 pmol) followed by hypoxia exposure attenuated the hyperventilation. Conversely, microinjection of AOA (2 pmol) into the RVLM/Bötzinger complex caused an increase in the hypoxia-induced hyperventilation. Thus, endogenous H2S in the RVLM/Bötzinger complex seems to play no role in the maintenance of basal pulmonary ventilation during normoxia whereas during hypoxia H2S has a downmodulatory function. Homogenates of RVLM/Bötzinger complex of animals previously exposed to hypoxia for 60 min exhibited a decreased rate of H2S production. Our data are consistent with the notion that the gaseous messenger H2S synthesis is downregulated in the RVLM/Bötzinger complex during hypoxia favoring hyperventilation.
Collapse
Affiliation(s)
- Alberto F Donatti
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil
| | - Renato N Soriano
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil
| | - João P Sabino
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil
| | - Luiz G S Branco
- Department of Morphology, Physiology and Basic Pathology, Dental School of Ribeirão Preto, University of São Paulo, 14040-904 Ribeirão Preto, SP, Brazil.
| |
Collapse
|
42
|
Quinones QJ, Ma Q, Zhang Z, Barnes BM, Podgoreanu MV. Organ protective mechanisms common to extremes of physiology: a window through hibernation biology. Integr Comp Biol 2014; 54:497-515. [PMID: 24848803 DOI: 10.1093/icb/icu047] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Supply and demand relationships govern survival of animals in the wild and are also key determinants of clinical outcomes in critically ill patients. Most animals' survival strategies focus on the supply side of the equation by pursuing territory and resources, but hibernators are able to anticipate declining availability of nutrients by reducing their energetic needs through the seasonal use of torpor, a reversible state of suppressed metabolic demand and decreased body temperature. Similarly, in clinical medicine the majority of therapeutic interventions to care for critically ill or trauma patients remain focused on elevating physiologic supply above critical thresholds by increasing the main determinants of delivery of oxygen to the tissues (cardiac output, perfusion pressure, hemoglobin concentrations, and oxygen saturation), as well as increasing nutritional support, maintaining euthermia, and other general supportive measures. Techniques, such as induced hypothermia and preconditioning, aimed at diminishing a patient's physiologic requirements as a short-term strategy to match reduced supply and to stabilize their condition, are few and underutilized in clinical settings. Consequently, comparative approaches to understand the mechanistic adaptations that suppress metabolic demand and alter metabolic use of fuel as well as the application of concepts gleaned from studies of hibernation, to the care of critically ill and injured patients could create novel opportunities to improve outcomes in intensive care and perioperative medicine.
Collapse
Affiliation(s)
- Quintin J Quinones
- *Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Qing Ma
- *Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Zhiquan Zhang
- *Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Brian M Barnes
- *Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA
| | - Mihai V Podgoreanu
- *Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA*Department of Anesthesiology, Systems Modeling of Perioperative Organ Injury Laboratory, Duke University, Box 3094, Durham, NC 27710, USA; Institute for Arctic Biology, University of Alaska, Fairbanks, AK, USA
| |
Collapse
|
43
|
Kwiatkoski M, Soriano RN, da Silva GSF, Francescato HD, Coimbra TM, Glass ML, Carnio EC, Branco LGS. Endogenous preoptic hydrogen sulphide attenuates hypoxia-induced hyperventilation. Acta Physiol (Oxf) 2014; 210:913-27. [PMID: 24119224 DOI: 10.1111/apha.12177] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Revised: 07/06/2013] [Accepted: 09/26/2013] [Indexed: 11/27/2022]
Abstract
AIM We hypothesized that hydrogen sulphide (H2 S), acting specifically in the anteroventral preoptic region (AVPO - an important integrating site of thermal and cardiorespiratory responses to hypoxia in which H2 S synthesis has been shown to be increased under hypoxic conditions), modulates the hypoxic ventilatory response. METHODS To test this hypothesis, we measured pulmonary ventilation (V˙E) and deep body temperature of rats before and after intracerebroventricular (icv) or intra-AVPO microinjection of aminooxyacetate (AOA; CBS inhibitor) or Na2 S (H2 S donor) followed by 60 min of hypoxia exposure (7% O2 ). Furthermore, we assessed the AVPO levels of H2 S of rats exposed to hypoxia. Control rats were kept under normoxia. RESULTS Microinjection of vehicle, AOA or Na2 S did not change V˙E under normoxic conditions. Hypoxia caused an increase in ventilation, which was potentiated by microinjection of AOA because of a further augmented tidal volume. Conversely, treatment with Na2 S significantly attenuated this response. The in vivo H2 S data indicated that during hypoxia the lower the deep body temperature the smaller the degree of hyperventilation. Under hypoxia, H2 S production was found to be increased in the AVPO, indicating that its production is responsive to hypoxia. The CBS inhibitor attenuated the hypoxia-induced increase in the H2 S synthesis, suggesting an endogenous synthesis of the gas. CONCLUSION These data provide solid evidence that AVPO H2 S production is stimulated by hypoxia, and this gaseous messenger exerts an inhibitory modulation of the hypoxic ventilatory response. It is probable that the H2 S modulation of hypoxia-induced hyperventilation is at least in part in proportion to metabolism.
Collapse
Affiliation(s)
- M. Kwiatkoski
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - R. N. Soriano
- Nursing School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
- Dental School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - G. S. F. da Silva
- Dental School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - H. D. Francescato
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - T. M. Coimbra
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - M. L. Glass
- Medical School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - E. C. Carnio
- Nursing School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| | - L. G. S. Branco
- Dental School of Ribeirão Preto; University of São Paulo; Ribeirão Preto SP Brazil
| |
Collapse
|
44
|
Asfar P, Calzia E, Radermacher P. Is pharmacological, H₂S-induced 'suspended animation' feasible in the ICU? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2014; 18:215. [PMID: 25028804 PMCID: PMC4060059 DOI: 10.1186/cc13782] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
45
|
Clanton TL, Hogan MC, Gladden LB. Regulation of cellular gas exchange, oxygen sensing, and metabolic control. Compr Physiol 2013; 3:1135-90. [PMID: 23897683 DOI: 10.1002/cphy.c120030] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cells must continuously monitor and couple their metabolic requirements for ATP utilization with their ability to take up O2 for mitochondrial respiration. When O2 uptake and delivery move out of homeostasis, cells have elaborate and diverse sensing and response systems to compensate. In this review, we explore the biophysics of O2 and gas diffusion in the cell, how intracellular O2 is regulated, how intracellular O2 levels are sensed and how sensing systems impact mitochondrial respiration and shifts in metabolic pathways. Particular attention is paid to how O2 affects the redox state of the cell, as well as the NO, H2S, and CO concentrations. We also explore how these agents can affect various aspects of gas exchange and activate acute signaling pathways that promote survival. Two kinds of challenges to gas exchange are also discussed in detail: when insufficient O2 is available for respiration (hypoxia) and when metabolic requirements test the limits of gas exchange (exercising skeletal muscle). This review also focuses on responses to acute hypoxia in the context of the original "unifying theory of hypoxia tolerance" as expressed by Hochachka and colleagues. It includes discourse on the regulation of mitochondrial electron transport, metabolic suppression, shifts in metabolic pathways, and recruitment of cell survival pathways preventing collapse of membrane potential and nuclear apoptosis. Regarding exercise, the issues discussed relate to the O2 sensitivity of metabolic rate, O2 kinetics in exercise, and influences of available O2 on glycolysis and lactate production.
Collapse
Affiliation(s)
- T L Clanton
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, Florida, USA.
| | | | | |
Collapse
|
46
|
Snijder PM, de Boer RA, Bos EM, van den Born JC, Ruifrok WPT, Vreeswijk-Baudoin I, van Dijk MCRF, Hillebrands JL, Leuvenink HGD, van Goor H. Gaseous hydrogen sulfide protects against myocardial ischemia-reperfusion injury in mice partially independent from hypometabolism. PLoS One 2013; 8:e63291. [PMID: 23675473 PMCID: PMC3651205 DOI: 10.1371/journal.pone.0063291] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2012] [Accepted: 04/02/2013] [Indexed: 12/20/2022] Open
Abstract
Background Ischemia-reperfusion injury (IRI) is a major cause of cardiac damage following various pathological processes. Gaseous hydrogen sulfide (H2S) is protective during IRI by inducing a hypometabolic state in mice which is associated with anti-apoptotic, anti-inflammatory and antioxidant properties. We investigated whether gaseous H2S administration is protective in cardiac IRI and whether non-hypometabolic concentrations of H2S have similar protective properties. Methods Male C57BL/6 mice received a 0, 10, or 100 ppm H2S-N2 mixture starting 30 minutes prior to ischemia until 5 minutes pre-reperfusion. IRI was inflicted by temporary ligation of the left coronary artery for 30 minutes. High-resolution respirometry equipment was used to assess CO2-production and blood pressure was measured using internal transmitters. The effects of H2S were assessed by histological and molecular analysis. Results Treatment with 100 ppm H2S decreased CO2-production by 72%, blood pressure by 14% and heart rate by 25%, while treatment with 10 ppm H2S had no effects. At day 1 of reperfusion 10 ppm H2S showed no effect on necrosis, while treatment with 100 ppm H2S reduced necrosis by 62% (p<0.05). Seven days post-reperfusion, both 10 ppm (p<0.01) and 100 ppm (p<0.05) H2S showed a reduction in fibrosis compared to IRI animals. Both 10 ppm and 100 ppm H2S reduced granulocyte-influx by 43% (p<0.05) and 60% (p<0.001), respectively. At 7 days post-reperfusion both 10 and 100 ppm H2S reduced expression of fibronectin by 63% (p<0.05) and 67% (p<0.01) and ANP by 84% and 63% (p<0.05), respectively. Conclusions Gaseous administration of H2S is protective when administered during a cardiac ischemic insult. Although hypometabolism is restricted to small animals, we now showed that low non-hypometabolic concentrations of H2S also have protective properties in IRI. Since IRI is a frequent cause of myocardial damage during percutaneous coronary intervention and cardiac transplantation, H2S treatment might lead to novel therapeutical modalities.
Collapse
Affiliation(s)
- Pauline M Snijder
- Department of Pathology and Medical Biology, University of Groningen, University Medical Center Groningen, Groningen, The Netherlands.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Cerri M, Mastrotto M, Tupone D, Martelli D, Luppi M, Perez E, Zamboni G, Amici R. The inhibition of neurons in the central nervous pathways for thermoregulatory cold defense induces a suspended animation state in the rat. J Neurosci 2013; 33:2984-93. [PMID: 23407956 PMCID: PMC6619194 DOI: 10.1523/jneurosci.3596-12.2013] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/19/2022] Open
Abstract
The possibility of inducing a suspended animation state similar to natural torpor would be greatly beneficial in medical science, since it would avoid the adverse consequence of the powerful autonomic activation evoked by external cooling. Previous attempts to systemically inhibit metabolism were successful in mice, but practically ineffective in nonhibernators. Here we show that the selective pharmacological inhibition of key neurons in the central pathways for thermoregulatory cold defense is sufficient to induce a suspended animation state, resembling natural torpor, in a nonhibernator. In rats kept at an ambient temperature of 15°C and under continuous darkness, the prolonged inhibition (6 h) of the rostral ventromedial medulla, a key area of the central nervous pathways for thermoregulatory cold defense, by means of repeated microinjections (100 nl) of the GABA(A) agonist muscimol (1 mm), induced the following: (1) a massive cutaneous vasodilation; (2) drastic drops in deep brain temperature (reaching a nadir of 22.44 ± 0.74°C), heart rate (from 440 ± 13 to 207 ± 12 bpm), and electroencephalography (EEG) power; (3) a modest decrease in mean arterial pressure; and (4) a progressive shift of the EEG power spectrum toward slow frequencies. After the hypothermic bout, all animals showed a massive increase in NREM sleep Delta power, similarly to that occurring in natural torpor. No behavioral abnormalities were observed in the days following the treatment. Our results strengthen the potential role of the CNS in the induction of hibernation/torpor, since CNS-driven changes in organ physiology have been shown to be sufficient to induce and maintain a suspended animation state.
Collapse
Affiliation(s)
- Matteo Cerri
- Department of Biomedical and NeuroMotor Sciences, Alma Mater Studiorum-University of Bologna, 40126 Bologna Italy.
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Haouzi P, Van de Louw A. Uncoupling mitochondrial activity maintains body [Formula: see text] during hemorrhage-induced O2 deficit in the anesthetized rat. Respir Physiol Neurobiol 2013; 186:87-94. [PMID: 23333818 DOI: 10.1016/j.resp.2012.12.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2012] [Revised: 12/20/2012] [Accepted: 12/21/2012] [Indexed: 01/25/2023]
Abstract
During a hemorrhagic shock (HS), O2 uptake ( [Formula: see text] ) decreases as soon as the rate of O2 delivery ( [Formula: see text] ) drops below a "critical level", a response accounted for by the reduction in mitochondrial O2supply. In urethane-anesthetized rats, [Formula: see text] was decreased within 20min from 21.5 to 2.8mlmin(-1) by slowly withdrawing 18mlkg(-1) of blood. This led to a reduction in [Formula: see text] from 6.1 to 2.4mlmin(-1) (n=5, p<0.01). Decoupling mitochondrial oxidative activity by injecting 2,4-DNP (6mgkg(-1), iv) before HS elevated [Formula: see text] to 11.9±1.2mlmin(-1) (n=6, p<0.01), which remained above control HS values throughout most of the hemorrhage. This was associated with higher levels of O2 extraction, cardiac output and ventilation than in control HS. [Formula: see text] relationship was shifted upward and to the left following DNP. In conclusion, cellular and systemic mechanisms, decreasing O2demand, account for a large part of HS induced [Formula: see text] decline resulting in an additional reduction in [Formula: see text] .
Collapse
Affiliation(s)
- Philippe Haouzi
- Pennsylvania State University, College of Medicine, Division of Pulmonary and Critical Care Medicine, Penn State Hershey Medical Center, Hershey, PA, United States.
| | | |
Collapse
|
49
|
Wei X, Duan L, Bai L, Tian M, Li W, Zhang B. Effects of exogenous hydrogen sulfide on brain metabolism and early neurological function in rabbits after cardiac arrest. Intensive Care Med 2012; 38:1877-85. [PMID: 23011534 DOI: 10.1007/s00134-012-2714-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 09/09/2012] [Indexed: 10/27/2022]
Abstract
PURPOSE Some of the neuroprotective effects of hydrogen sulfide (H(2)S) have been attributed to systemic hypometabolism and hypothermia. However, systemic metabolism may vary more dramatically than brain metabolism after cardiac arrest (CA). The authors investigated the effects of inhaled exogenous hydrogen sulfide on brain metabolism and neurological function in rabbits after CA and resuscitation. METHODS Anesthetized rabbits were randomized into a sham group, a sham/H(2)S group, a CA group, and a CA/H(2)S group. Exogenous 80 ppm H(2)S was administered to the sham/H(2)S group and the CA/H(2)S group which suffered 3 min of untreated CA by asphyxia and resuscitation. Effects on brain metabolism (cerebral extraction of oxygen (CEO(2)), arterio-jugular venous difference of glucose [AJVD(glu)] and lactate clearance), S100B, viable neuron counts, neurological dysfunction score, and survival rate were evaluated. RESULTS CEO(2), AJVD(glu), and lactate increased significantly after CA. Inhalation of 80 ppm H(2)S significantly increased CEO(2) (25.04 ± 7.11 vs. 16.72 ± 6.12 %) and decreased AJVD(glu) (0.77 ± 0.29 vs. 1.18 ± 0.38 mmol/L) and lactate (5.11 ± 0.43 vs. 6.01 ± 0.64 mmol/L) at 30 min after resuscitation when compared with the CA group (all P < 0.05). In addition, neurologic deficit scores, viable neuron counts, and survival rate were significantly better whereas S100B was decreased after H(2)S inhalation. CONCLUSIONS The present study reveals that inhalation of 80 ppm H(2)S reduced neurohistopathological damage and improves early neurological function after CA and resuscitation in rabbits. The increased CEO(2) and decreased AJVD(glu) and enhanced lactate clearance may be involved in the protective effects.
Collapse
Affiliation(s)
- Xia Wei
- Department of Anesthesiology, Second Affiliated Hospital of Harbin Medical University, 150086, Harbin, China
| | | | | | | | | | | |
Collapse
|
50
|
Stein A, Bailey SM. Reply to Haouzi and Van de Louw. J Appl Physiol (1985) 2012. [DOI: 10.1152/japplphysiol.00638.2012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Affiliation(s)
- Asaf Stein
- Department of Environmental Health Sciences and Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| | - Shannon M. Bailey
- Department of Environmental Health Sciences and Pathology, University of Alabama at Birmingham, Birmingham, Alabama
| |
Collapse
|