1
|
Sun B, Mu Z, Wan Y, Shen J, Yuan Y, Xie X, Meng Z, Ma Q, Xu J. Relationship between sleep-breathing events induced nocturnal blood pressure surge and sympathetic nervous activity in patients with obstructive sleep apnea. Sleep Breath 2025; 29:113. [PMID: 40014171 DOI: 10.1007/s11325-025-03292-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 01/26/2025] [Accepted: 02/24/2025] [Indexed: 02/28/2025]
Abstract
OBJECTIVE Nocturnal blood pressure (BP) surge is a characteristic phenomenon in patients with obstructive sleep apnea (OSA) associated with sympathetic nerve overactivity. This study aimed to explore the relationship between the sleep-breathing events induced nocturnal BP surge and sympathetic nerve activity. METHODS A total of 85 patients with moderate-to-serve OSA and 44 controls were included in the study between April 2022 and October 2023 based on the inclusion and exclusion criteria. Full-night BP and heart rate variability (HRV) were monitored continuously and synchronized with polysomnography (PSG). The average of nocturnal BPs was taken as the asleep BP and the average of the highest BPs induced by all sleep-breathing events as the asleep peak BP. Nocturnal short-term BP variability (BPV) was calculated as follows: event-related systolic BP elevation (ΔSBP) as the gap between the peak and the lowest value of post-apneic SBP, BP index as the number of ΔSBP ≥ 12 mm Hg within 30 s/h, and the percentage of BP fluctuation induced by sleep-breathing events (PBPF) as the ratio of BP index and apnea-hypopnea index. Patients with OSA were divided into two subgroups (high- and low-BP surge groups) according to the median PBPF. The sympathetic nerve activity was reflected by plasma norepinephrine (NE) level and HRV. The PSG and BP parameters were compared among three groups, and the correlation between nocturnal short-term BPV and sympathetic nerve activity was analyzed. RESULTS Patients with OSA were fatter and suffered from dyslipidemia and sympathetic nerve overactivity compared to controls. The high-BP surge group displayed higher sympathetic nerve activity and more severe hypoxia compared with the low-BP surge group. The Pearson correlation analysis showed a positive correlation of the higher nocturnal short-term BPV with increased sympathetic nerve activity (all P < 0.05). After excluding confounding factors, such as age, body mass index, and smoking history, the multiple linear regression revealed a positive correlation of the LF/HF (ratio of low-frequency to high-frequency power, indicating the activity of sympathetic nerve activity) with the BP index (β = 7.337, P < 0.001), ΔSBP (β = 2.797, P < 0.001), and PBPF (β = 9.036, P < 0.001). The plasma NE level also had a positive correlation with the BP index (β = 3.939, P = 0.022) and PBPF (β = 8.752, P < 0.001). CONCLUSION The sleep-breathing events induced nocturnal BP surge was positively correlated with sympathetic nerve activity in patients with moderate-to-serve OSA.
Collapse
Affiliation(s)
- Bo Sun
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu, China
- Department of Respiratory and Critical Care Medicine, Xuzhou Central Hospital, Jiangsu, China
| | - Zhengqing Mu
- Department of Ultrasound, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Yujiao Wan
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Jiani Shen
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Yujie Yuan
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Xiaochen Xie
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Zili Meng
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu, China
| | - Qiyun Ma
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu, China.
| | - Jing Xu
- Department of Respiratory and Critical Care Medicine, The Affiliated Huaian No. 1 People's Hospital of Nanjing Medical University, Jiangsu, China.
| |
Collapse
|
2
|
van Es VAA, de Lathauwer ILJ, Kemps HMC, Handjaras G, Betta M. Remote Monitoring of Sympathovagal Imbalance During Sleep and Its Implications in Cardiovascular Risk Assessment: A Systematic Review. Bioengineering (Basel) 2024; 11:1045. [PMID: 39451420 PMCID: PMC11504514 DOI: 10.3390/bioengineering11101045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/09/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
Nocturnal sympathetic overdrive is an early indicator of cardiovascular (CV) disease, emphasizing the importance of reliable remote patient monitoring (RPM) for autonomic function during sleep. To be effective, RPM systems must be accurate, non-intrusive, and cost-effective. This review evaluates non-invasive technologies, metrics, and algorithms for tracking nocturnal autonomic nervous system (ANS) activity, assessing their CV relevance and feasibility for integration into RPM systems. A systematic search identified 18 relevant studies from an initial pool of 169 publications, with data extracted on study design, population characteristics, technology types, and CV implications. Modalities reviewed include electrodes (e.g., electroencephalography (EEG), electrocardiography (ECG), polysomnography (PSG)), optical sensors (e.g., photoplethysmography (PPG), peripheral arterial tone (PAT)), ballistocardiography (BCG), cameras, radars, and accelerometers. Heart rate variability (HRV) and blood pressure (BP) emerged as the most promising metrics for RPM, offering a comprehensive view of ANS function and vascular health during sleep. While electrodes provide precise HRV data, they remain intrusive, whereas optical sensors such as PPG demonstrate potential for multimodal monitoring, including HRV, SpO2, and estimates of arterial stiffness and BP. Non-intrusive methods like BCG and cameras are promising for heart and respiratory rate estimation, but less suitable for continuous HRV monitoring. In conclusion, HRV and BP are the most viable metrics for RPM, with PPG-based systems offering significant promise for non-intrusive, continuous monitoring of multiple modalities. Further research is needed to enhance accuracy, feasibility, and validation against direct measures of autonomic function, such as microneurography.
Collapse
Affiliation(s)
- Valerie A. A. van Es
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy; (G.H.); (M.B.)
| | - Ignace L. J. de Lathauwer
- Department of Cardiology, Máxima Medical Centre, 5504 DB Veldhoven, The Netherlands
- Department of Industrial Design, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Hareld M. C. Kemps
- Department of Cardiology, Máxima Medical Centre, 5504 DB Veldhoven, The Netherlands
- Department of Industrial Design, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Giacomo Handjaras
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy; (G.H.); (M.B.)
| | - Monica Betta
- MoMiLab Research Unit, IMT School for Advanced Studies Lucca, 55100 Lucca, Italy; (G.H.); (M.B.)
| |
Collapse
|
3
|
Conde SV, Martins FO, Sacramento JF. Carotid body interoception in health and disease. Auton Neurosci 2024; 255:103207. [PMID: 39121687 DOI: 10.1016/j.autneu.2024.103207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/15/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024]
Abstract
Interoception entails perceiving or being aware of the internal state of the body, playing a pivotal role in regulating processes such as heartbeat, digestion, glucose metabolism, and respiration. The carotid body (CB) serves as an interoceptive organ, transmitting information to the brain via its sensitive nerve, the carotid sinus nerve, to maintain homeostasis. While traditionally known for sensing oxygen, carbon dioxide, and pH levels, the CB is now recognized to possess additional interoceptive properties, detecting various mediators involved in blood pressure regulation, inflammation, and glucose homeostasis, among other physiological functions. Furthermore, in the last decades CB dysfunction has been linked to diseases like sleep apnea, essential hypertension, and diabetes. In this review manuscript, we make a concise overview of the traditional interoceptive functions of the CB, acting as a sensor for oxygen levels, carbon dioxide levels, and pH, and introduce the novel interoceptive properties of the CB related to vascular, glucose and energy regulation. Additionally, we revise the contribution of the CB to the onset and progression of metabolic diseases, delving into the potential dysfunction of its interoceptive metabolic functions as a contributing factor to pathophysiology. Finally, we postulate the use of therapeutic interventions targeting the metabolic interoceptive properties of the CB as a potential avenue for addressing metabolic diseases.
Collapse
Affiliation(s)
- Silvia V Conde
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal.
| | - Fatima O Martins
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Joana F Sacramento
- iNOVA4Health, NOVA Medical School, Faculdade de Ciências Médicas, Universidade Nova de Lisboa, Lisboa, Portugal
| |
Collapse
|
4
|
Davies MG, Hart JP. Extracorporal Membrane Oxygenation in Massive Pulmonary Embolism. Ann Vasc Surg 2024; 105:287-306. [PMID: 38588954 DOI: 10.1016/j.avsg.2024.02.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 02/09/2024] [Accepted: 02/10/2024] [Indexed: 04/10/2024]
Abstract
BACKGROUND Massive pulmonary embolism (MPE) carries significant 30-day mortality risk, and a change in societal guidelines has promoted the increasing use of extracorporeal membrane oxygenation (ECMO) in the immediate management of MPE-associated cardiovascular shock. This narrative review examines the current status of ECMO in MPE. METHODS A literature review was performed from 1982 to 2022 searching for the terms "Pulmonary embolism" and "ECMO," and the search was refined by examining those publications that covered MPE. RESULTS In the patient with MPE, veno-arterial ECMO is now recommended as a bridge to interventional therapy. It can reliably decrease right ventricular overload, improve RV function, and allow hemodynamic stability and restoration of tissue oxygenation. The use of ECMO in MPE has been associated with lower mortality in registry reviews, but there has been no significant difference in outcomes between patients treated with and without ECMO in meta-analyses. Applying ECMO is also associated with substantial multisystem morbidity due to systemic inflammatory response, bleeding with coagulopathy, hemorrhagic stroke, renal dysfunction, and acute limb ischemia, which must be factored into the outcomes. CONCLUSIONS The application of ECMO in MPE should be combined with an aggressive interventional pulmonary interventional program and should strictly adhere to the current selection criteria.
Collapse
Affiliation(s)
- Mark G Davies
- Center for Quality, Effectiveness, and Outcomes in Cardiovascular Diseases, Houston, TX; Department of Vascular and Endovascular Surgery, Ascension Health, Waco, TX.
| | - Joseph P Hart
- Division of Vascular Surgery, Medical College of Wisconsin, Milwaukee, WI
| |
Collapse
|
5
|
Maniaci A, Lavalle S, Parisi FM, Barbanti M, Cocuzza S, Iannella G, Magliulo G, Pace A, Lentini M, Masiello E, La Via L. Impact of Obstructive Sleep Apnea and Sympathetic Nervous System on Cardiac Health: A Comprehensive Review. J Cardiovasc Dev Dis 2024; 11:204. [PMID: 39057624 PMCID: PMC11277108 DOI: 10.3390/jcdd11070204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/22/2024] [Accepted: 06/26/2024] [Indexed: 07/28/2024] Open
Abstract
A prevalent condition linked to an elevated risk of cardiovascular disease is sleep apnea. This review examines the connections between cardiac risk, the sympathetic nervous system, and sleep apnea. The increased risk of hypertension, arrhythmias, myocardial infarction, and heart failure was highlighted in the pathophysiology of sleep apnea and its effect on sympathetic activation. It is also important to consider potential processes such as oxidative stress, inflammation, endothelial dysfunction, and autonomic imbalance that may relate sleep apnea-induced sympathetic activation to cardiac risk. With implications for creating innovative diagnostic and treatment approaches to lessen the cardiovascular effects of sleep apnea, the goal of this investigation is to improve the understanding of the intricate link between sympathetic activity, cardiac risk, and sleep apnea. This study aimed to clarify the complex relationship between cardiovascular health and sleep apnea by synthesizing the available research and highlighting the crucial role played by the sympathetic nervous system in moderating this relationship. Our thorough investigation may have important therapeutic ramifications that will direct the creation of focused therapies to enhance cardiovascular outcomes in sleep apnea sufferers.
Collapse
Affiliation(s)
- Antonino Maniaci
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.)
| | - Salvatore Lavalle
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.)
| | - Federica Maria Parisi
- Department of Medical, Surgical Sciences and Advanced Technologies “GF Ingrassia” ENT Section, University of Catania, 95123 Catania, Italy; (F.M.P.); (S.C.)
| | - Marco Barbanti
- Department of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy; (A.M.); (M.B.)
| | - Salvatore Cocuzza
- Department of Medical, Surgical Sciences and Advanced Technologies “GF Ingrassia” ENT Section, University of Catania, 95123 Catania, Italy; (F.M.P.); (S.C.)
| | - Giannicola Iannella
- Otorhinolaryngology Department, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 00161 Rome, Italy; (G.I.); (G.M.); (A.P.)
| | - Giuseppe Magliulo
- Otorhinolaryngology Department, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 00161 Rome, Italy; (G.I.); (G.M.); (A.P.)
| | - Annalisa Pace
- Otorhinolaryngology Department, Sapienza University of Rome, Policlinico Umberto I, Viale del Policlinico, 00161 Rome, Italy; (G.I.); (G.M.); (A.P.)
| | - Mario Lentini
- ASP Ragusa-Hospital Giovanni Paolo II, 97100 Ragusa, Italy;
| | - Edoardo Masiello
- Radiology Unit, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Luigi La Via
- Department of Anesthesia and Intensive Care, Azienda Ospedaliero Universitaria Policlinico “G. Rodolico–San Marco”, 95123 Catania, Italy
| |
Collapse
|
6
|
Self AA, Mesarwi OA. Intermittent Versus Sustained Hypoxemia from Sleep-disordered Breathing: Outcomes in Patients with Chronic Lung Disease and High Altitude. Sleep Med Clin 2024; 19:327-337. [PMID: 38692756 DOI: 10.1016/j.jsmc.2024.02.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2024]
Abstract
In a variety of physiologic and pathologic states, people may experience both chronic sustained hypoxemia and intermittent hypoxemia ("combined" or "overlap" hypoxemia). In general, hypoxemia in such instances predicts a variety of maladaptive outcomes, including excess cardiovascular disease or mortality. However, hypoxemia may be one of the myriad phenotypic effects in such states, making it difficult to ascertain whether adverse outcomes are primarily driven by hypoxemia, and if so, whether these effects are due to intermittent versus sustained hypoxemia.
Collapse
Affiliation(s)
- Alyssa A Self
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, University of California, San Diego, 9500 Gilman Drive Mail Code 0623A, La Jolla, CA 92093, USA
| | - Omar A Mesarwi
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, University of California, San Diego, 9500 Gilman Drive Mail Code 0623A, La Jolla, CA 92093, USA.
| |
Collapse
|
7
|
Karlen-Amarante M, Glovak ZT, Huff A, Oliveira LM, Ramirez JM. Postinspiratory and preBötzinger complexes contribute to respiratory-sympathetic coupling in mice before and after chronic intermittent hypoxia. Front Neurosci 2024; 18:1386737. [PMID: 38774786 PMCID: PMC11107097 DOI: 10.3389/fnins.2024.1386737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/16/2024] [Indexed: 05/24/2024] Open
Abstract
The sympathetic nervous system modulates arterial blood pressure. Individuals with obstructive sleep apnea (OSA) experience numerous nightly hypoxic episodes and exhibit elevated sympathetic activity to the cardiovascular system leading to hypertension. This suggests that OSA disrupts normal respiratory-sympathetic coupling. This study investigates the role of the postinspiratory complex (PiCo) and preBötzinger complex (preBötC) in respiratory-sympathetic coupling under control conditions and following exposure to chronic intermittent hypoxia (CIH) for 21 days (5% O2-80 bouts/day). The surface of the ventral brainstem was exposed in urethane (1.5 g/kg) anesthetized, spontaneously breathing adult mice. Cholinergic (ChAT), glutamatergic (Vglut2), and neurons that co-express ChAT and Vglut2 at PiCo, as well as Dbx1 and Vglut2 neurons at preBötC, were optogenetically stimulated while recording activity from the diaphragm (DIA), vagus nerve (cVN), and cervical sympathetic nerve (cSN). Following CIH exposure, baseline cSN activity increased, breathing frequency increased, and expiratory time decreased. In control mice, stimulating PiCo specific cholinergic-glutamatergic neurons caused a sympathetic burst during all phases of the respiratory cycle, whereas optogenetic activation of cholinergic-glutamatergic PiCo neurons in CIH mice increased sympathetic activity only during postinspiration and late expiration. Stimulation of glutamatergic PiCo neurons increased cSN activity during the postinspiratory phase in control and CIH mice. Optogenetic stimulation of ChAT containing neurons in the PiCo area did not affect sympathetic activity under control or CIH conditions. Stimulating Dbx1 or Vglut2 neurons in preBötC evoked an inspiration and a concomitant cSN burst under control and CIH conditions. Taken together, these results suggest that PiCo and preBötC contribute to respiratory-sympathetic coupling, which is altered by CIH, and may contribute to the hypertension observed in patients with OSA.
Collapse
Affiliation(s)
- Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Zachary T. Glovak
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Luiz M. Oliveira
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
| | - Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children’s Research Institute, Seattle, WA, United States
- Department of Neurological Surgery, University of Washington, Seattle, WA, United States
| |
Collapse
|
8
|
Manferdelli G, Narang BJ, Bourdillon N, Debevec T, Millet GP. Baroreflex sensitivity is blunted in hypoxia independently of changes in inspired carbon dioxide pressure in prematurely born male adults. Physiol Rep 2024; 12:e15857. [PMID: 38172085 PMCID: PMC10764294 DOI: 10.14814/phy2.15857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/19/2023] [Accepted: 10/23/2023] [Indexed: 01/05/2024] Open
Abstract
Premature birth may result in specific cardiovascular responses to hypoxia and hypercapnia, that might hamper high-altitude acclimatization. This study investigated the consequences of premature birth on baroreflex sensitivity (BRS) under hypoxic, hypobaric and hypercapnic conditions. Seventeen preterm born males (gestational age, 29 ± 1 weeks), and 17 age-matched term born adults (40 ± 0 weeks) underwent consecutive 6-min stages breathing different oxygen and carbon dioxide concentrations at both sea-level and high-altitude (3375 m). Continuous blood pressure and ventilatory parameters were recorded in normobaric normoxia (NNx), normobaric normoxic hypercapnia (NNx + CO2 ), hypobaric hypoxia (HHx), hypobaric normoxia (HNx), hypobaric normoxia hypercapnia (HNx + CO2 ), and hypobaric hypoxia with end-tidal CO2 clamped at NNx value (HHx + clamp). BRS was assessed using the sequence method. Across all conditions, BRS was lower in term born compared to preterm (13.0 ± 7.5 vs. 21.2 ± 8.8 ms⋅mmHg-1 , main group effect: p < 0.01) participants. BRS was lower in HHx compared to NNx in term born (10.5 ± 4.9 vs. 16.0 ± 6.0 ms⋅mmHg-1 , p = 0.05), but not in preterm (27.3 ± 15.7 vs. 17.6 ± 8.3 ms⋅mmHg-1 , p = 0.43) participants, leading to a lower BRS in HHx in term born compared to preterm (p < 0.01). In conclusion, this study reports a blunted response of BRS during acute high-altitude exposure without any influence of changes in inspired CO2 in healthy prematurely born adults.
Collapse
Affiliation(s)
| | - Benjamin J. Narang
- Department of Automation, Biocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
- Faculty of SportUniversity of LjubljanaLjubljanaSlovenia
| | | | - Tadej Debevec
- Department of Automation, Biocybernetics and RoboticsJožef Stefan InstituteLjubljanaSlovenia
- Faculty of SportUniversity of LjubljanaLjubljanaSlovenia
| | | |
Collapse
|
9
|
Bizanti A, Zhang Y, Toledo Z, Bendowski KT, Harden SW, Mistareehi A, Chen J, Gozal D, Heal M, Christie R, Hunter PJ, Paton JFR, Cheng ZJ. Chronic intermittent hypoxia remodels catecholaminergic nerve innervation in mouse atria. J Physiol 2024; 602:49-71. [PMID: 38156943 PMCID: PMC10842556 DOI: 10.1113/jp284961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 10/04/2023] [Indexed: 01/03/2024] Open
Abstract
Chronic intermittent hypoxia (CIH, a model for sleep apnoea) is a major risk factor for several cardiovascular diseases. Autonomic imbalance (sympathetic overactivity and parasympathetic withdrawal) has emerged as a causal contributor of CIH-induced cardiovascular disease. Previously, we showed that CIH remodels the parasympathetic pathway. However, whether CIH induces remodelling of the cardiac sympathetic innervation remains unknown. Mice (male, C57BL/6J, 2-3 months) were exposed to either room air (RA, 21% O2 ) or CIH (alternating 21% and 5.7% O2 , every 6 min, 10 h day-1 ) for 8-10 weeks. Flat-mounts of their left and right atria were immunohistochemically labelled for tyrosine hydroxylase (TH, a sympathetic marker). Using a confocal microscope (or fluorescence microscope) and Neurlocudia 360 digitization and tracing system, we scanned both the left and right atria and quantitatively analysed the sympathetic axon density in both groups. The segmentation data was mapped onto a 3D mouse heart scaffold. Our findings indicated that CIH significantly remodelled the TH immunoreactive (-IR) innervation of the atria by increasing its density at the sinoatrial node, the auricles and the major veins attached to the atria (P < 0.05, n = 7). Additionally, CIH increased the branching points of TH-IR axons and decreased the distance between varicosities. Abnormal patterns of TH-IR axons around intrinsic cardiac ganglia were also found following CIH. We postulate that the increased sympathetic innervation may further amplify the effects of enhanced CIH-induced central sympathetic drive to the heart. Our work provides an anatomical foundation for the understanding of CIH-induced autonomic imbalance. KEY POINTS: Chronic intermittent hypoxia (CIH, a model for sleep apnoea) causes sympathetic overactivity, cardiovascular remodelling and hypertension. We determined the effect of CIH on sympathetic innervation of the mouse atria. In vivo CIH for 8-10 weeks resulted in an aberrant axonal pattern around the principal neurons within intrinsic cardiac ganglia and an increase in the density, branching point, tortuosity of catecholaminergic axons and atrial wall thickness. Utilizing mapping tool available from NIH (SPARC) Program, the topographical distribution of the catecholaminergic innervation of the atria were integrated into a novel 3D heart scaffold for precise anatomical distribution and holistic quantitative comparison between normal and CIH mice. This work provides a unique neuroanatomical understanding of the pathophysiology of CIH-induced autonomic remodelling.
Collapse
Affiliation(s)
- Ariege Bizanti
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Yuanyuan Zhang
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Zulema Toledo
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Kohlton T Bendowski
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Scott W Harden
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Anas Mistareehi
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - Jin Chen
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| | - David Gozal
- Joan C. Edwards School of medicine, Marshall University, Huntington, WV, USA
| | - Maci Heal
- MBF Bioscience, Williston, Vermont, USA
| | - Richard Christie
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Peter J Hunter
- Auckland Bioengineering Institute, University of Auckland, Auckland, New Zealand
| | - Julian F R Paton
- Department Physiology, Manaaki Manawa-the Centre for Heart Research, University of Auckland, Auckland, New Zealand
| | - Zixi Jack Cheng
- Burnett School of Biomedical Sciences, College of Medicine, University of Central Florida, Orlando, FL, USA
| |
Collapse
|
10
|
Davies MG, Hart JP. Current status of ECMO for massive pulmonary embolism. Front Cardiovasc Med 2023; 10:1298686. [PMID: 38179509 PMCID: PMC10764581 DOI: 10.3389/fcvm.2023.1298686] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/29/2023] [Indexed: 01/06/2024] Open
Abstract
Massive pulmonary embolism (MPE) carries significant 30-day mortality and is characterized by acute right ventricular failure, hypotension, and hypoxia, leading to cardiovascular collapse and cardiac arrest. Given the continued high mortality associated with MPE, there has been ongoing interest in utilizing extracorporeal membrane oxygenation (ECMO) to provide oxygenation support to improve hypoxia and offload the right ventricular (RV) pressure in the belief that rapid reduction of hypoxia and RV pressure will improve outcomes. Two modalities can be employed: Veno-arterial-ECMO is a reliable process to decrease RV overload and improve RV function, thus allowing for hemodynamic stability and restoration of tissue oxygenation. Veno-venous ECMO can support oxygenation but is not designed to help circulation. Several societal guidelines now suggest using ECMO in MPE with interventional therapy. There are three strategies for ECMO utilization in MPE: bridge to definitive interventional therapy, sole therapy, and recovery after interventional treatment. The use of ECMO in MPE has been associated with lower mortality in registry reviews, but there has been no significant difference in outcomes between patients treated with and without ECMO in meta-analyses. Considerable heterogeneity in studies is a significant weakness of the available literature. Applying ECMO is also associated with substantial multisystem morbidity due to a systemic inflammatory response, hemorrhagic stroke, renal dysfunction, and bleeding, which must be factored into the outcomes. The application of ECMO in MPE should be combined with an aggressive pulmonary interventional program and should strictly adhere to the current selection criteria.
Collapse
Affiliation(s)
- Mark G. Davies
- Center for Quality, Effectiveness, and Outcomes in Cardiovascular Diseases, Houston, TX, United States
- Department of Vascular/Endovascular Surgery, Ascension Health, Waco, TX, United States
| | - Joseph P. Hart
- Division of Vascular Surgery, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
11
|
Li W, Zhang Z, Li Z, Gui Z, Shang Y. Correlation and asynchronization of electroencephalogram and cerebral blood flow in active and passive stimulations. J Neural Eng 2023; 20:066007. [PMID: 37931297 DOI: 10.1088/1741-2552/ad0a02] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Accepted: 11/06/2023] [Indexed: 11/08/2023]
Abstract
Objective.Real-time brain monitoring is of importance for intraoperative surgeries and intensive care unit, in order to take timely clinical interventions. Electroencephalogram (EEG) is a conventional technique for recording neural excitations (e.g. brain waves) in the cerebral cortex, and near infrared diffuse correlation spectroscopy (DCS) is an emerging technique that can directly measure the cerebral blood flow (CBF) in microvasculature system. Currently, the relationship between the neural activities and cerebral hemodynamics that reflects the vasoconstriction features of cerebral vessels, especially under both active and passive situation, has not been elucidated thus far, which triggers the motivation of this study.Approach.We used the verbal fluency test as an active cognitive stimulus to the brain, and we manipulated blood pressure changes as a passive challenge to the brain. Under both protocols, the CBF and EEG responses were longitudinally monitored throughout the cerebral stimulus. Power spectrum approaches were applied the EEG signals and compared with CBF responses.Main results.The results show that the EEG response was significantly faster and larger in amplitude during the active cognitive task, when compared to the CBF, but with larger individual variability. By contrast, CBF is more sensitive when response to the passive task, and with better signal stability. We also found that there was a correlation (p< 0.01,r= 0.866,R2= 0.751) between CBF and EEG in initial response during the active task, but no significant correlation (p> 0.05) was found during the passive task. The similar relations were also found between regional brain waves and blood flow.Significance.The asynchronization and correlation between the two measurements indicates the necessity of monitoring both variables for comprehensive understanding of cerebral physiology. Deep exploration of their relationships provides promising implications for DCS/EEG integration in the diagnosis of various neurovascular and psychiatric diseases.
Collapse
Affiliation(s)
- Weilong Li
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan, People's Republic of China
| | - Zihao Zhang
- School of Electronics and Information Engineering, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Zhiyi Li
- Electronic Information College, Northwestern Polytechnical University, Xian, People's Republic of China
| | - Zhiguo Gui
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan, People's Republic of China
| | - Yu Shang
- State Key Laboratory of Dynamic Measurement Technology, North University of China, Taiyuan, People's Republic of China
| |
Collapse
|
12
|
Pae EK, Harper RM. Intermittent hypoxia in neonatal rodents affects facial bone growth. PLoS One 2023; 18:e0282937. [PMID: 37819881 PMCID: PMC10566710 DOI: 10.1371/journal.pone.0282937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 06/02/2023] [Indexed: 10/13/2023] Open
Abstract
Preterm human infants often show periodic breathing (PB) or apnea of prematurity (AOP), breathing patterns which are accompanied by intermittent hypoxia (IH). We examined cause-effect relationships between transient IH and reduced facial bone growth using a rat model. Neonatal pups from 14 timed pregnant Sprague-Dawley rats were randomly assigned to an IH condition, with oxygen altering between 10% and 21% every 4 min for 1 h immediately after birth, or to a litter-matched control group. The IH pups were compared with their age- and sex-matched control groups in body weight (WT), size of facial bones and nor-epinephrine (NE) levels in blood at 3, 4, and 5-weeks. Markedly increased activity of osteoclasts in sub-condylar regions of 3-week-old IH-treated animals appeared, as well as increased numbers of sympathetic nerve endings in the same region of tissue sections. Male IH-pups showed significantly higher levels of NE levels in sera at 3, 4 as well as 5-week-old time points. NE levels in 4- and-5-week-old female pups did not differ significantly. Intercondylar Width, Mandible Length and Intermolar Width measures consistently declined after IH insults in 3- and 4-week-old male as well as female animals. Three-week-old male IH-pups only showed a significantly reduced (p < 0.05) body weight compared to those of 3-week controls. However, female IH-pups were heavier than age-matched controls at all 3 time-points. Trabecular bone configuration, size of facial bones, and metabolism are disturbed after an IH challenge 1 h immediately after birth. The findings raise the possibility that IH, introduced by breathing patterns such as PB or AOP, induce significantly impaired bone development and metabolic changes in human newborns. The enhanced NE outflow from IH exposure may serve a major role in deficient bone growth, and may affect bone and other tissue influenced by that elevation.
Collapse
Affiliation(s)
- Eung-Kwon Pae
- Department of Orthodontics and Pediatric Dentistry, School of Dentistry, University of Maryland, Baltimore, MA, United States of America
| | - Ronald M. Harper
- Department of Neurobiology, David Geffen School of Medicine, University of California at Los Angeles, Los Angeles, CA, United States of America
| |
Collapse
|
13
|
Stewart JM, Medow MS. Anticipatory central command on standing decreases cerebral blood velocity causing hypocapnia in hyperpneic postural tachycardia syndrome. J Appl Physiol (1985) 2023; 135:26-34. [PMID: 37227184 PMCID: PMC10281786 DOI: 10.1152/japplphysiol.00016.2023] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 05/16/2023] [Accepted: 05/18/2023] [Indexed: 05/26/2023] Open
Abstract
Fifty percent of patients with postural tachycardia syndrome (POTS) are hypocapnic during orthostasis related to initial orthostatic hypotension (iOH). We determined whether iOH drives hypocapnia in POTS by low BP or decreased cerebral blood velocity (CBv). We studied three groups; healthy volunteers (n = 32, 18 ± 3 yr) were compared with POTS, grouped by presence [POTS-low end-tidal CO2 (↓ETCO2), n = 26, 19 ± 2 yr] or absence [POTS-normal upright end-tidal carbon dioxide (nlCO2), n = 28, 19 ± 3 yr] of standing hypocapnia defined by end-tidal CO2 (ETCO2) ≤ 30 mmHg at steady-state, measuring middle cerebral artery CBv, heart rate (HR), and beat-to-beat blood pressure (BP). After 30 min supine, subjects stood for 5 min. Quantities were measured prestanding, at minimum CBv, minimum BP, peak HR, CBv recovery, BP recovery, minimum HR, steady-state, and 5 min. Baroreflex gain was estimated by α index. iOH occurred with similar frequency and minimum BP in POTS-↓ETCO2 and POTS-nlCO2. Minimum CBv was reduced significantly (P < 0.05) in POTS-↓ETCO2 (48 ± 3 cm/s) preceding hypocapnia compared with POTS-nlCO2 (61 ± 3 cm/s) or Control (60 ± 2 cm/s). The anticipatory increased BP was significantly larger (P < 0.05) in POTS (8 ± 1 mmHg vs. 2 ± 1) and began ∼8 s prestanding. HR increased in all subjects, CBv increased significantly (P < 0.05) in both POTS-nlCO2 (76 ± 2 to 85 ± 2 cm/s) and Control (75 ± 2 to 80 ± 2 cm/s) consistent with central command. CBv decreased in POTS-↓ETCO2 (76 ± 3 to 64 ± 3 cm/s) correlating with decreased baroreflex gain. Cerebral conductance [meanCBv/mean arterial blood pressure (MAP)] was reduced in POTS-↓ETCO2 throughout. Data support the hypothesis that excessively reduced CBv during iOH may intermittently reduce carotid body blood flow, sensitizing that organ and producing postural hyperventilation in POTS-↓ETCO2. Excessive fall in CBv occurs in part during prestanding central command and is a facet of defective parasympathetic regulation in POTS.NEW & NOTEWORTHY Dyspnea is frequent in postural tachycardia syndrome (POTS) and is associated with upright hyperpnea and hypocapnia that drives sinus tachycardia. It is initiated by an exaggerated reduction in cerebral conductance and decreased cerebral blood flow (CBF) that precedes the act of standing. This is a form of autonomically mediated "central command." Cerebral blood flow is further reduced by initial orthostatic hypotension common in POTS. Hypocapnia is maintained during the standing response and might account for persistent postural tachycardia.
Collapse
Affiliation(s)
- Julian M Stewart
- Department of Pediatrics, New York Medical College, Valhalla, New York, United States
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| | - Marvin S Medow
- Department of Pediatrics, New York Medical College, Valhalla, New York, United States
- Department of Physiology, New York Medical College, Valhalla, New York, United States
| |
Collapse
|
14
|
Bourdillon N, Aebi MR, Kayser B, Bron D, Millet GP. Both Hypoxia and Hypobaria Impair Baroreflex Sensitivity but through Different Mechanisms. Int J Sports Med 2023; 44:177-183. [PMID: 36455595 PMCID: PMC9977572 DOI: 10.1055/a-1960-3407] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 09/04/2022] [Indexed: 12/05/2022]
Abstract
Baroreflex sensitivity (BRS) is a measure of cardiovagal baroreflex and is lower in normobaric and hypobaric hypoxia compared to normobaric normoxia. The aim of this study was to assess the effects of hypobaria on BRS in normoxia and hypoxia. Continuous blood pressure and ventilation were recorded in eighteen seated participants in normobaric normoxia (NNx), hypobaric normoxia (HNx), normobaric hypoxia (NHx) and hypobaric hypoxia (HHx). Barometric pressure was matched between NNx vs. NHx (723±4 mmHg) and HNx vs. HHx (406±4 vs. 403±5 mmHg). Inspired oxygen pressure (PiO2) was matched between NNx vs. HNx (141.2±0.8 vs. 141.5±1.5 mmHg) and NHx vs. HHx (75.7±0.4 vs. 74.3±1.0 mmHg). BRS was assessed using the sequence method. BRS significantly decreased in HNx, NHx and HHx compared to NNx. Heart rate, mean systolic and diastolic blood pressures did not differ between conditions. There was the specific effect of hypobaria on BRS in normoxia (BRS was lower in HNx than in NNx). The hypoxic and hypobaric effects do not add to each other resulting in comparable BRS decreases in HNx, NHx and HHx. BRS decrease under low barometric pressure requires future studies independently controlling O2 and CO2 to identify central and peripheral chemoreceptors' roles.
Collapse
Affiliation(s)
- Nicolas Bourdillon
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
| | - Mathias Rolland Aebi
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
- Wissenschaft & Technologie, armasuisse, Thun,
Switzerland
| | - Bengt Kayser
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
| | - Denis Bron
- ISSUL, institute of sports sciences, Université de Lausanne,
Lausanne, Switzerland
| | | |
Collapse
|
15
|
Ostrowski D, Heesch CM, Kline DD, Hasser EM. Nucleus tractus solitarii is required for the development and maintenance of phrenic and sympathetic long-term facilitation after acute intermittent hypoxia. Front Physiol 2023; 14:1120341. [PMID: 36846346 PMCID: PMC9949380 DOI: 10.3389/fphys.2023.1120341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Accepted: 01/26/2023] [Indexed: 02/11/2023] Open
Abstract
Exposure to acute intermittent hypoxia (AIH) induces prolonged increases (long term facilitation, LTF) in phrenic and sympathetic nerve activity (PhrNA, SNA) under basal conditions, and enhanced respiratory and sympathetic responses to hypoxia. The mechanisms and neurocircuitry involved are not fully defined. We tested the hypothesis that the nucleus tractus solitarii (nTS) is vital to augmentation of hypoxic responses and the initiation and maintenance of elevated phrenic (p) and splanchnic sympathetic (s) LTF following AIH. nTS neuronal activity was inhibited by nanoinjection of the GABAA receptor agonist muscimol before AIH exposure or after development of AIH-induced LTF. AIH but not sustained hypoxia induced pLTF and sLTF with maintained respiratory modulation of SSNA. nTS muscimol before AIH increased baseline SSNA with minor effects on PhrNA. nTS inhibition also markedly blunted hypoxic PhrNA and SSNA responses, and prevented altered sympathorespiratory coupling during hypoxia. Inhibiting nTS neuronal activity before AIH exposure also prevented the development of pLTF during AIH and the elevated SSNA after muscimol did not increase further during or following AIH exposure. Furthermore, nTS neuronal inhibition after the development of AIH-induced LTF substantially reversed but did not eliminate the facilitation of PhrNA. Together these findings demonstrate that mechanisms within the nTS are critical for initiation of pLTF during AIH. Moreover, ongoing nTS neuronal activity is required for full expression of sustained elevations in PhrNA following exposure to AIH although other regions likely also are important. Together, the data indicate that AIH-induced alterations within the nTS contribute to both the development and maintenance of pLTF.
Collapse
Affiliation(s)
- Daniela Ostrowski
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States,Department of Biology, Truman State University, Kirksville, MO, United States
| | - Cheryl M. Heesch
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - David D. Kline
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States
| | - Eileen M. Hasser
- Department of Biomedical Sciences, University of Missouri, Columbia, MO, United States,Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States,Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, MO, United States,*Correspondence: Eileen M. Hasser,
| |
Collapse
|
16
|
Wang Y, Shen R, Ge J. Association between self-reported snoring and metabolic-associated fatty liver disease: A cross-sectional analysis of the NHANES 2017-2018. Sleep Med 2023; 101:414-420. [PMID: 36516525 DOI: 10.1016/j.sleep.2022.11.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/15/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022]
Abstract
BACKGROUND Snoring may play an important role in a variety of diseases, especially metabolic diseases. However, there are no reports on the relationship between snoring and the risk of metabolic-associated fatty liver disease (MAFLD). This study aimed to investigate the association between snoring and MAFLD. METHODS A cross-sectional analysis was performed based on the National Health and Nutrition Examination Survey (NHANES) 2017-2018. Self-reported snoring frequency was grouped into four categories (never, rarely, occasionally, and frequently). MAFLD was diagnosed based on the evidence of hepatic steatosis and any of the following three conditions: overweight/obesity, diabetes mellitus or metabolic dysfunction. Logistic regression with sampling weights was used to examine the association between snoring and MAFLD. RESULTS A total of 5016 patients were included, and 50.14% of individuals had MAFLD. Compared with nonsnorers, those who snored frequently were associated with increased odds for MAFLD (odds ratio (OR): 1.376, 95% confidence interval (CI): 1.122-1.688, p trend <0.001). The subgroup analyses suggested that no significant interactions were found between snoring and other potential effect modifiers, including age, sex, body mass index (BMI), smoking status, chronic obstructive pulmonary disease (COPD) and hypertension. CONCLUSION Snoring was independently and positively associated with a higher prevalence of MAFLD, suggesting that attention to snoring may contribute to the early detection of MAFLD.
Collapse
Affiliation(s)
- Yang Wang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Ruhua Shen
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| | - Jianjun Ge
- Department of Cardiovascular Surgery, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China.
| |
Collapse
|
17
|
Candia-Rivera D, Sappia MS, Horschig JM, Colier WNJM, Valenza G. Confounding effects of heart rate, breathing rate, and frontal fNIRS on interoception. Sci Rep 2022; 12:20701. [PMID: 36450811 PMCID: PMC9712694 DOI: 10.1038/s41598-022-25119-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022] Open
Abstract
Recent studies have established that cardiac and respiratory phases can modulate perception and related neural dynamics. While heart rate and respiratory sinus arrhythmia possibly affect interoception biomarkers, such as heartbeat-evoked potentials, the relative changes in heart rate and cardiorespiratory dynamics in interoceptive processes have not yet been investigated. In this study, we investigated the variation in heart and breathing rates, as well as higher functional dynamics including cardiorespiratory correlation and frontal hemodynamics measured with fNIRS, during a heartbeat counting task. To further investigate the functional physiology linked to changes in vagal activity caused by specific breathing rates, we performed the heartbeat counting task together with a controlled breathing rate task. The results demonstrate that focusing on heartbeats decreases breathing and heart rates in comparison, which may be part of the physiological mechanisms related to "listening" to the heart, the focus of attention, and self-awareness. Focusing on heartbeats was also observed to increase frontal connectivity, supporting the role of frontal structures in the neural monitoring of visceral inputs. However, cardiorespiratory correlation is affected by both heartbeats counting and controlled breathing tasks. Based on these results, we concluded that variations in heart and breathing rates are confounding factors in the assessment of interoceptive abilities and relative fluctuations in breathing and heart rates should be considered to be a mode of covariate measurement of interoceptive processes.
Collapse
Affiliation(s)
- Diego Candia-Rivera
- Bioengineering and Robotics Research Center E. Piaggio & Department of Information Engineering, School of Engineering, University of Pisa, 56122, Pisa, Italy.
| | - M Sofía Sappia
- Artinis Medical Systems, B.V., Einsteinweg 17, 6662 PW, Elst, The Netherlands
- Donders Institute for Brain, Behaviour and Cognition, Radboud University Nijmegen, 6525 EN, Nijmegen, The Netherlands
| | - Jörn M Horschig
- Artinis Medical Systems, B.V., Einsteinweg 17, 6662 PW, Elst, The Netherlands
| | - Willy N J M Colier
- Artinis Medical Systems, B.V., Einsteinweg 17, 6662 PW, Elst, The Netherlands
| | - Gaetano Valenza
- Bioengineering and Robotics Research Center E. Piaggio & Department of Information Engineering, School of Engineering, University of Pisa, 56122, Pisa, Italy
| |
Collapse
|
18
|
Limberg JK, Baker SE, Ott EP, Jacob DW, Scruggs ZM, Harper JL, Manrique-Acevedo CM. Endothelin-1 receptor blockade does not alter the sympathetic and hemodynamic response to acute intermittent hypoxia in men. J Appl Physiol (1985) 2022; 133:867-875. [PMID: 35952348 PMCID: PMC9560055 DOI: 10.1152/japplphysiol.00837.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 07/18/2022] [Accepted: 08/08/2022] [Indexed: 11/22/2022] Open
Abstract
Repeat exposures to low oxygen (intermittent hypoxia, IH), like that observed in sleep apnea, elicit increases in muscle sympathetic nerve activity (MSNA) and blood pressure (BP) in men. Endothelin (ET) receptor antagonists can attenuate the sympathetic and BP response to IH in rodents; whether these data translate to humans are unclear. We hypothesized that ET-receptor antagonism would ameliorate any rise in MSNA and BP following acute IH in humans. Twelve healthy men (31 ± 1 yr) completed two visits (control, bosentan) separated by at least 1 wk. MSNA, BP, and baroreflex sensitivity (modified Oxford) were assessed during normoxic rest before and following 30 min of IH. The midpoint (T50) for each individual's baroreflex curve was calculated. Acute IH increased plasma ET-1 (P < 0.01), MSNA burst frequency (P = 0.03), and mean BP (P < 0.01). There was no effect of IH on baroreflex sensitivity (P = 0.46), although an increase in T50 was observed (P < 0.01). MSNA burst frequency was higher (P = 0.04) and mean BP (P < 0.01) was lower following bosentan treatment compared with control. There was no effect of bosentan on baroreflex sensitivity (P = 0.53), although a lower T50 was observed on the bosentan visit (P < 0.01). There was no effect of bosentan on increases in MSNA (P = 0.81) or mean BP (P = 0.12) following acute IH. Acute IH results in an increase in ET-1, MSNA, and BP in healthy young men. The effect of IH on MSNA and BP is not attenuated following ET-receptor inhibition. Present data suggest that acute IH does not increase MSNA or BP through activation of ET-receptors in healthy young men.NEW & NOTEWORTHY Repeat exposures to low oxygen (intermittent hypoxia, IH) elicit increases in muscle sympathetic nerve activity (MSNA) and blood pressure (BP) in men. Endothelin (ET) receptor antagonists can attenuate the sympathetic and BP response to IH in rodents; whether these data translate to humans were unclear. We show acute IH results in an increase in ET-1, MSNA, and BP in healthy young men; however, the effect of IH on MSNA and BP does not occur through activation of ET-receptors in healthy young men.
Collapse
Affiliation(s)
- Jacqueline K Limberg
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Sarah E Baker
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | - Elizabeth P Ott
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | | | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Camila M Manrique-Acevedo
- Department of Medicine, University of Missouri, Columbia, Missouri
- Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri
- Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| |
Collapse
|
19
|
Meinhausen C, Prather AA, Sumner JA. Posttraumatic stress disorder (PTSD), sleep, and cardiovascular disease risk: A mechanism-focused narrative review. Health Psychol 2022; 41:663-673. [PMID: 35007121 PMCID: PMC9271141 DOI: 10.1037/hea0001143] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVE Growing longitudinal research has demonstrated that posttraumatic stress disorder (PTSD) precedes and predicts the onset of cardiovascular disease (CVD), and a number of physiological (e.g., dysregulation of the hypothalamic-pituitary-adrenal axis and autonomic nervous system, chronic systemic inflammation) and behavioral (e.g., physical inactivity, smoking, poor diet) factors might underlie this association. In this narrative review, we focus on sleep as a modifiable risk factor linking PTSD with CVD. METHOD We summarize the evidence for sleep disturbance after trauma exposure and the potential cardiotoxic effects of poor sleep, with an emphasis on mechanisms. In addition, we review the literature that has examined sleep in the context of the PTSD-CVD risk relation. RESULTS Although sleep disturbance is a hallmark symptom of PTSD and a well-established risk factor for the development of CVD, the role of sleep in the association between PTSD and CVD has been largely unexamined in the extant literature. However, such work has the potential to improve our understanding of mechanisms of risk and inform intervention efforts to offset elevated CVD risk after trauma. CONCLUSIONS We outline several recommendations for future research and behavioral medicine models in order to help define and address the role of sleep behavior in the development of CVD among trauma-exposed individuals with PTSD. (PsycInfo Database Record (c) 2022 APA, all rights reserved).
Collapse
Affiliation(s)
- Corinne Meinhausen
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aric A. Prather
- Department of Psychiatry and Behavioral Sciences, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer A. Sumner
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
20
|
Bhattacharjee R. Early onset hypertension? Implications of childhood obstructive sleep apnea. Sleep Med Rev 2022; 65:101694. [PMID: 36152500 DOI: 10.1016/j.smrv.2022.101694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 09/02/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Rakesh Bhattacharjee
- Division of Respiratory Medicine, Department of Pediatrics, University of California, San Diego, 9500, California, United States.
| |
Collapse
|
21
|
Sunada N, Hanayama Y, Yamamoto K, Nakano Y, Nada T, Honda H, Hasegawa K, Hagiya H, Otsuka F. Clinical utility of urinary levels of catecholamines and their fraction ratios related to heart rate and thyroid function. Endocr J 2022; 69:417-425. [PMID: 34732615 DOI: 10.1507/endocrj.ej21-0488] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Urinary catecholamines (CAs) have been examined for the screening of pheochromocytomas. The decision to perform screening is based on symptoms suggesting secondary hypertension or hyperactivities of the sympathetic nervous system. To elucidate the usefulness of urinary fractions and ratios of CAs, 79 patients in whom 24-h excretions of urinary CAs including adrenaline (AD), noradrenaline (NA) and dopamine (DA) had been examined from 2015 until 2020 were retrospectively analyzed. There were no significant differences in urinary CA levels between two age groups, gender groups and two BMI groups. Patients with histories of preexisting hypertension and diabetes showed significantly higher levels of urinary NA excretion, and the urinary ratio of NA/DA was also increased in the patients with a history of hypertension. Heart rate (HR) was significantly correlated with the urinary ratio of NA/DA. Serum free thyroxine (FT4) concentration and ratio of FT4/thyrotropin (TSH) were correlated with the level of urinary AD. The levels of TSH and FT4/TSH showed negative and positive correlations, respectively, with the urinary NA/DA ratio. Thus, increases of HR are related to the enhanced conversion of DA to NA and increased thyroid hormones are involved in the increase in urinary AD and the conversion of DA to NA. History of lifestyle-related diseases and changes of HR and thyroid functions need to be considered for the evaluation of urinary CAs and their ratios.
Collapse
Affiliation(s)
- Naruhiko Sunada
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yoshihisa Hanayama
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Koichiro Yamamoto
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Yasuhiro Nakano
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takahiro Nada
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hiroyuki Honda
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kou Hasegawa
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Hideharu Hagiya
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Fumio Otsuka
- Department of General Medicine, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
22
|
Barnes LA, Mesarwi OA, Sanchez-Azofra A. The Cardiovascular and Metabolic Effects of Chronic Hypoxia in Animal Models: A Mini-Review. Front Physiol 2022; 13:873522. [PMID: 35432002 PMCID: PMC9008331 DOI: 10.3389/fphys.2022.873522] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
Animal models are useful to understand the myriad physiological effects of hypoxia. Such models attempt to recapitulate the hypoxemia of human disease in various ways. In this mini-review, we consider the various animal models which have been deployed to understand the effects of chronic hypoxia on pulmonary and systemic blood pressure, glucose and lipid metabolism, atherosclerosis, and stroke. Chronic sustained hypoxia (CSH)-a model of chronic lung or heart diseases in which hypoxemia may be longstanding and persistent, or of high altitude, in which effective atmospheric oxygen concentration is low-reliably induces pulmonary hypertension in rodents, and appears to have protective effects on glucose metabolism. Chronic intermittent hypoxia (CIH) has long been used as a model of obstructive sleep apnea (OSA), in which recurrent airway occlusion results in intermittent reductions in oxyhemoglobin saturations throughout the night. CIH was first shown to increase systemic blood pressure, but has also been associated with other maladaptive physiological changes, including glucose dysregulation, atherosclerosis, progression of nonalcoholic fatty liver disease, and endothelial dysfunction. However, models of CIH have generally been implemented so as to mimic severe human OSA, with comparatively less focus on milder hypoxic regimens. Here we discuss CSH and CIH conceptually, the effects of these stimuli, and limitations of the available data.
Collapse
Affiliation(s)
- Laura A. Barnes
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Omar A. Mesarwi
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
| | - Ana Sanchez-Azofra
- Division of Pulmonary, Critical Care, and Sleep Medicine and Physiology, Department of Medicine, University of California, San Diego, San Diego, CA, United States
- Servicio de Neumología, Hospital Universitario de la Princesa, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
23
|
Kwon Y, Baruch M, Stafford PL, Bonner H, Cho Y, Mazimba S, Logan JG, Shimbo D, Park SH, Lin GM, Azarbarzin A, Calhoun DA, Berry R, Carey RM. Elucidation of obstructive sleep apnoea related blood pressure surge using a novel continuous beat-to-beat blood pressure monitoring system. J Hypertens 2022; 40:520-527. [PMID: 34751170 PMCID: PMC8810587 DOI: 10.1097/hjh.0000000000003041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Obstructive sleep apnoea (OSA) episode related blood pressure (BP) surge may mediate the association of OSA with cardiovascular disease. However, BP is not measured during a clinical sleep study. METHOD We tested the feasibility of incorporating the Caretaker physiological monitor, which utilizes a novel continuous beat-to-beat (b-b) BP monitoring technology, into polysomnography (PSG) and aimed to characterize BP surges related to obstructive respiratory events. B-b BP was concurrently collected and merged with PSG data on a posthoc basis. We compared BP surge between mean respiratory (apnoea, hypopnea and desaturation-alone events) and nonrespiratory events (spontaneous or leg movement-related arousals). We examined the association of the degree of oxygen desaturation with BP surge in a given respiratory event combining all events. A total of 17 consecutive patients (12 men, mean 52 years old, nine diagnostic and eight split-night PSGs) undergoing clinically indicated PSG were included after excluding one patient with poor signal quality due to excessive movement. RESULTS Caretaker was well tolerated. Mean respiratory BP surge ranged from 5 to 19 mmHg [Median (IQR) = 13.9 (9.5--16.2)]. Mean BP surge between the respiratory and nonrespiratory events was similar [13.8 (4.5) vs. 14.9 (5.3) mmHg, P = 0.13]. Accounting for the count distribution of desaturation/BP surge data pair events, there was a linear correlation between the degree of oxygen desaturation and BP surge (R = 0.57, P < 0.001). In eight patients undergoing split-night sleep studies, the number of BP surge events (≥10 mmHg/h) decreased during continuous positive airway pressure in all but one patient. CONCLUSION We demonstrated highly variable OSA-related BP surge patterns using the Caretaker's b-b BP monitoring technology that has the potential to be integrated into sleep studies.
Collapse
Affiliation(s)
- Younghoon Kwon
- Department of Medicine, University of Washington, Seattle, WA
| | | | | | - Heather Bonner
- Department of Medicine, University of Virginia, Charlottesville, VA
| | - Yeilim Cho
- Department of Medicine, University of Washington, Seattle, WA
| | - Sula Mazimba
- Department of Medicine, University of Virginia, Charlottesville, VA
| | | | - Daichi Shimbo
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY
| | - Sung-Ha Park
- Division of Cardiology, Yonsei University, Seoul, Korea
| | - Gen-Min Lin
- Hualien Armed Forces General Hospital, Hualien, and Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Ali Azarbarzin
- Department of Medicine, Brigham and Women’s Hospital, Boston, MA
| | | | - Richard Berry
- Division of Pulmonary, Critical Care and Sleep, Department of Medicine, University of Florida, Gainesville, FL
| | - Robert M. Carey
- Department of Medicine, University of Virginia, Charlottesville, VA
| |
Collapse
|
24
|
Martins FO, Conde SV. Gender Differences in the Context of Obstructive Sleep Apnea and Metabolic Diseases. Front Physiol 2022; 12:792633. [PMID: 34970158 PMCID: PMC8712658 DOI: 10.3389/fphys.2021.792633] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 11/17/2021] [Indexed: 11/13/2022] Open
Abstract
The relationship between obstructive sleep apnea (OSA) and endocrine and metabolic disease is unequivocal. OSA, which is characterized by intermittent hypoxia and sleep fragmentation, leads to and exacerbates obesity, metabolic syndrome, and type 2 diabetes (T2D) as well as endocrine disturbances, such as hypothyroidism and Cushing syndrome, among others. However, this relationship is bidirectional with endocrine and metabolic diseases being considered major risk factors for the development of OSA. For example, polycystic ovary syndrome (PCOS), one of the most common endocrine disorders in women of reproductive age, is significantly associated with OSA in adult patients. Several factors have been postulated to contribute to or be critical in the genesis of dysmetabolic states in OSA including the increase in sympathetic activation, the deregulation of the hypothalamus-pituitary axis, the generation of reactive oxygen species (ROS), insulin resistance, alteration in adipokines levels, and inflammation of the adipose tissue. However, probably the alterations in the hypothalamus-pituitary axis and the altered secretion of hormones from the peripheral endocrine glands could play a major role in the gender differences in the link between OSA-dysmetabolism. In fact, normal sleep is also different between men and women due to the physiologic differences between genders, with sex hormones such as progesterone, androgens, and estrogens, being also connected with breathing pathologies. Moreover, it is very well known that OSA is more prevalent among men than women, however the prevalence in women increases after menopause. At the same time, the step-rise in obesity and its comorbidities goes along with mounting evidence of clinically important sex and gender differences. Metabolic and cardiovascular diseases, seen as a men's illness for decades, presently are more common in women than in men and obesity has a higher association with insulin-resistance-related risk factors in women than in men. In this way, in the present manuscript, we will review the major findings on the overall mechanisms that connect OSA and dysmetabolism giving special attention to the specific regulation of this relationship in each gender. We will also detail the gender-specific effects of hormone replacement therapies on metabolic control and sleep apnea.
Collapse
Affiliation(s)
- Fátima O Martins
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| | - Sílvia V Conde
- Chronic Diseases Research Center (CEDOC), NOVA Medical School, Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisboa, Portugal
| |
Collapse
|
25
|
Uchiyama T, Ota H, Ohbayashi C, Takasawa S. Effects of Intermittent Hypoxia on Cytokine Expression Involved in Insulin Resistance. Int J Mol Sci 2021; 22:12898. [PMID: 34884703 PMCID: PMC8657675 DOI: 10.3390/ijms222312898] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/15/2022] Open
Abstract
Sleep apnea syndrome (SAS) is a prevalent disorder characterized by recurrent apnea or hypoxia episodes leading to intermittent hypoxia (IH) and arousals during sleep. Currently, the relationship between SAS and metabolic diseases is being actively analyzed, and SAS is considered to be an independent risk factor for the development and progression of insulin resistance/type 2 diabetes (T2DM). Accumulating evidence suggests that the short cycles of decreased oxygen saturation and rapid reoxygenation, a typical feature of SAS, contribute to the development of glucose intolerance and insulin resistance. In addition to IH, several pathological conditions may also contribute to insulin resistance, including sympathetic nervous system hyperactivity, oxidative stress, vascular endothelial dysfunction, and the activation of inflammatory cytokines. However, the detailed mechanism by which IH induces insulin resistance in SAS patients has not been fully revealed. We have previously reported that IH stress may exacerbate insulin resistance/T2DM, especially in hepatocytes, adipocytes, and skeletal muscle cells, by causing abnormal cytokine expression/secretion from each cell. Adipose tissues, skeletal muscle, and the liver are the main endocrine organs producing hepatokines, adipokines, and myokines, respectively. In this review, we focus on the effect of IH on hepatokine, adipokine, and myokine expression.
Collapse
Affiliation(s)
- Tomoko Uchiyama
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan;
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8522, Japan;
| | - Hiroyo Ota
- Department of Respiratory Medicine, Nara Medical University, Kashihara 634-8522, Japan;
| | - Chiho Ohbayashi
- Department of Diagnostic Pathology, Nara Medical University, Kashihara 634-8522, Japan;
| | - Shin Takasawa
- Department of Biochemistry, Nara Medical University, Kashihara 634-8521, Japan;
| |
Collapse
|
26
|
Boutou AK, Asimakos A, Kortianou E, Vogiatzis I, Tzouvelekis A. Long COVID-19 Pulmonary Sequelae and Management Considerations. J Pers Med 2021; 11:838. [PMID: 34575615 PMCID: PMC8469288 DOI: 10.3390/jpm11090838] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/12/2021] [Accepted: 08/16/2021] [Indexed: 12/15/2022] Open
Abstract
The human coronavirus 2019 disease (COVID-19) and the associated acute respiratory distress syndrome (ARDS) are responsible for the worst global health crisis of the last century. Similarly, to previous coronaviruses leading to past pandemics, including severe acute respiratory syndrome (SARS) and middle east respiratory syndrome (MERS), a growing body of evidence support that a substantial minority of patients surviving the acute phase of the disease present with long-term sequelae lasting for up to 6 months following acute infection. The clinical spectrum of these manifestations is widespread across multiple organs and consists of the long-COVID-19 syndrome. The aim of the current review is to summarize the current state of knowledge on the pulmonary manifestations of the long COVID-19 syndrome including clinical symptoms, parenchymal, and functional abnormalities, as well as highlight epidemiology, risk factors, and follow-up strategies for early identification and timely therapeutic interventions. The literature data on management considerations including the role of corticosteroids and antifibrotic treatment, as well as the therapeutic potential of a structured and personalized pulmonary rehabilitation program are detailed and discussed.
Collapse
Affiliation(s)
- Afroditi K. Boutou
- Department of Respiratory Medicine, “G. Papanikolaou” Hospital, 57010 Thessaloniki, Greece;
| | - Andreas Asimakos
- Critical Care Department and Pulmonary Unit, Evangelismos Hospital, Medical School, National and Kapodistrian University of Athens, 10676 Athens, Greece;
| | - Eleni Kortianou
- Physiotherapy Department, University of Thessaly, 35100 Lamia, Greece;
| | - Ioannis Vogiatzis
- Department of Sport, Exercise and Rehabilitation, Northumbria University, Newcastle NE1 8ST, UK;
| | - Argyris Tzouvelekis
- Department of Respiratory Medicine, University Hospital of Patras, 26504 Patras, Greece
| |
Collapse
|
27
|
Stute NL, Stickford ASL, Stickford JL, Province VM, Augenreich MA, Bunsawat K, Alpenglow JK, Wray DW, Ratchford SM. Altered central and peripheral haemodynamics during rhythmic handgrip exercise in young adults with SARS-CoV-2. Exp Physiol 2021; 107:708-721. [PMID: 34311498 PMCID: PMC8447425 DOI: 10.1113/ep089820] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 07/23/2021] [Indexed: 12/14/2022]
Abstract
New Findings What is the central question of this study? Are central and peripheral haemodynamics during handgrip exercise different in young adults 3–4 weeks following infection with of SARS‐CoV‐2 compared with young healthy adults. What is the main finding and its importance? Exercising heart rate was higher while brachial artery blood flow and vascular conductance were lower in the SARS‐CoV‐2 compared with the control group. These findings provide evidence for peripheral impairments to exercise among adults with SARS‐CoV‐2, which may contribute to exercise limitations.
Abstract The novel severe acute respiratory syndrome coronavirus 2 (SARS‐CoV‐2) can have a profound impact on vascular function. While exercise intolerance may accompany a variety of symptoms associated with SARS‐CoV‐2 infection, the impact of SARS‐CoV‐2 on exercising blood flow (BF) remains unclear. Central (photoplethysmography) and peripheral (Doppler ultrasound) haemodynamics were determined at rest and during rhythmic handgrip (HG) exercise at 30% and 45% of maximal voluntary contraction (MVC) in young adults with mild symptoms 25 days after testing positive for SARS‐CoV‐2 (SARS‐CoV‐2: n = 8M/5F; age: 21 ± 2 years; height: 176 ± 11 cm; mass: 71 ± 11 kg) and were cross‐sectionally compared with control subjects (Control: n = 8M/5F; age: 27 ± 6 years; height: 178 ± 8 cm; mass: 80 ± 25 kg). Systolic blood pressure, end systolic arterial pressure and rate pressure product were higher in the SARS‐CoV‐2 group during exercise at 45% MVC compared with controls. Brachial artery BF was lower in the SARS‐CoV‐2 group at both 30% MVC (Control: 384.8 ± 93.3 ml min–1; SARS‐CoV‐2: 307.8 ± 105.0 ml min–1; P = 0.041) and 45% MVC (Control: 507.4 ± 109.9 ml min–1; SARS‐CoV‐2: 386.3 ± 132.5 ml min–1; P = 0.002). Brachial artery vascular conductance was lower at both 30% MVC (Control: 3.93 ± 1.07 ml min–1 mmHg–1; SARS‐CoV‐2: 3.11 ± 0.98 ml min–1 mmHg–1; P = 0.022) and 45% MVC (Control: 4.74 ± 1.02 ml min–1 mmHg–1; SARS‐CoV‐2: 3.46 ± 1.10 ml min–1 mmHg–1; P < 0.001) in the SARS‐CoV‐2 group compared to control group. The shear‐induced dilatation of the brachial artery increased similarly across exercise intensities in the two groups, suggesting the decrease in exercising BF may be due to microvascular impairments. Brachial artery BF is attenuated during HG exercise in young adults recently diagnosed with mild SARS‐CoV‐2, which may contribute to diminished exercise capacity among those recovering from SARS‐CoV‐2 like that seen in severe cases.
Collapse
Affiliation(s)
- Nina L Stute
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Abigail S L Stickford
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Jonathon L Stickford
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Valesha M Province
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Marc A Augenreich
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| | - Kanokwan Bunsawat
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA
| | - Jeremy K Alpenglow
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA
| | - D Walter Wray
- Department of Internal Medicine, Division of Geriatrics, University of Utah, Salt Lake City, UT, USA.,Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.,Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, UT, USA
| | - Stephen M Ratchford
- Department of Health & Exercise Science, Appalachian State University, Boone, NC, USA
| |
Collapse
|
28
|
Baratto C, Caravita S, Faini A, Perego GB, Senni M, Badano LP, Parati G. Impact of COVID-19 on exercise pathophysiology: a combined cardiopulmonary and echocardiographic exercise study. J Appl Physiol (1985) 2021; 130:1470-1478. [PMID: 33764166 PMCID: PMC8143785 DOI: 10.1152/japplphysiol.00710.2020] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Survivors from COVID-19 pneumonia can present with persisting multisystem involvement (lung, pulmonary vessels, heart, muscle, red blood cells) that may negatively affect exercise capacity. We sought to determine the extent and the determinants of exercise limitation in patients with COVID-19 at the time of hospital discharge. Eighteen consecutive patients with COVID-19 and 1:1 age-, sex-, and body mass index-matched controls underwent: spirometry, echocardiography, cardiopulmonary exercise test and exercise echocardiography for the study of pulmonary circulation. Arterial blood was sampled at rest and during exercise in patients with COVID-19. Patients with COVID-19 lie roughly on the same oxygen consumption isophlets than controls both at rest and during submaximal exercise, thanks to supernormal cardiac output (P < 0.05). Oxygen consumption at peak exercise was reduced by 30% in COVID-19 (P < 0.001), due to a peripheral extraction limit. In addition, within COVID-19 patients, hemoglobin content was associated with peak oxygen consumption (R2 = 0.46, P = 0.002). Respiratory reserve was not exhausted (median [IRQ], 0.59 [0.15]) in spite of moderate reduction of forced vital capacity (79 ± 40%). Pulmonary artery pressure increase during exercise was not different between patients and controls. Ventilatory equivalents for carbon dioxide were higher in patients with COVID-19 than in controls (39.5 [8.5] vs. 29.5 [8.8], P < 0.001), and such an increase was mainly explained by increased chemosensitivity. When recovering from COVID-19, patients present with reduced exercise capacity and augmented exercise hyperventilation. Peripheral factors, including anemia and reduced oxygen extraction by peripheral muscles were the major determinants of deranged exercise physiology. Pulmonary vascular function seemed unaffected, despite restrictive lung changes.NEW & NOTEWORTHY At the time of hospital discharge, patients with COVID-19 present with reduced functional capacity and exercise hyperventilation. Peripheral factors, namely reduced oxygen extraction (myopathy) and anemia, which are not fully compensated by a supernormal cardiac output response, account for exercise limitation before exhaustion of the respiratory reserve. Enhanced chemoreflex sensitivity, rather increased dead space, mainly accounts for exercise hyperventilation. The pulmonary vascular response to exercise circulation of survived patients with COVID-19 does not present major pathological changes.
Collapse
Affiliation(s)
- Claudia Baratto
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano IRCCS, Ospedale San Luca, Milano, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Sergio Caravita
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano IRCCS, Ospedale San Luca, Milano, Italy.,Department of Management, Information and Production Engineering, University of Bergamo, Dalmine, Italy
| | - Andrea Faini
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano IRCCS, Ospedale San Luca, Milano, Italy
| | - Giovanni Battista Perego
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano IRCCS, Ospedale San Luca, Milano, Italy
| | - Michele Senni
- Cardiovascular Department, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Luigi P Badano
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano IRCCS, Ospedale San Luca, Milano, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| | - Gianfranco Parati
- Department of Cardiovascular, Neural and Metabolic Sciences, Istituto Auxologico Italiano IRCCS, Ospedale San Luca, Milano, Italy.,Department of Medicine and Surgery, University of Milano-Bicocca, Milano, Italy
| |
Collapse
|
29
|
Diaz S, Brown LK. Is idiopathic central sleep apnea a separate entity? J Clin Sleep Med 2021; 16:1999-2001. [PMID: 33063658 DOI: 10.5664/jcsm.8926] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Shanna Diaz
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| | - Lee K Brown
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of New Mexico School of Medicine, Albuquerque, New Mexico
| |
Collapse
|
30
|
Obstructive sleep apnoea increases lipolysis and deteriorates glucose homeostasis in patients with type 2 diabetes mellitus. Sci Rep 2021; 11:3567. [PMID: 33574418 PMCID: PMC7878919 DOI: 10.1038/s41598-021-83018-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Accepted: 01/25/2021] [Indexed: 12/26/2022] Open
Abstract
Obstructive sleep apnoea (OSA) is associated with type 2 diabetes mellitus (T2DM). However, mechanisms mediating association between these two conditions remain unclear. This study investigated, whether the OSA-associated changes in adipose tissue lipolysis might contribute to impaired glucose homeostasis in patient with T2DM. Thirty-five matched subjects were recruited into three groups: T2DM + severe OSA (T2DM + OSA, n = 11), T2DM with mild/no OSA (T2DM, n = 10) and healthy controls (n = 14). Subcutaneous abdominal adipose tissue microdialysis assessed spontaneous, epinephrine- and isoprenaline-stimulated lipolysis. Glucose metabolism was assessed by intravenous glucose tolerance test. Spontaneous lipolysis was higher in the T2DM + OSA compared with the T2DM (60.34 ± 23.40 vs. 42.53 ± 10.16 μmol/L, p = 0.013), as well as epinephrine-stimulated lipolysis (236.84 ± 103.90 vs. 167.39 ± 52.17 µmol/L, p < 0.001). Isoprenaline-stimulated lipolysis was unaffected by the presence of OSA (p = 0.750). The α2 anti-lipolytic effect was decreased in T2DM + OSA by 59% and 315% compared with T2DM and controls (p = 0.045 and p = 0.007, respectively). The severity of OSA (AHI) was positively associated with spontaneous (p = 0.037) and epinephrine-stimulated (p = 0.026) lipolysis. The α2-adrenergic anti-lipolytic effect (p = 0.043) decreased with increasing AHI. Spontaneous lipolysis was positively associated with Insulin resistance (r = 0.50, p = 0.002). Epinephrine-stimulated lipolysis was negatively associated with the Disposition index (r = - 0.34, p = 0.048). AHI was positively associated with Insulin resistance (p = 0.017) and negatively with the Disposition index (p = 0.038). Severe OSA in patients with T2DM increased adipose tissue lipolysis, probably due to inhibition of the α2-adrenergic anti-lipolytic effect. We suggest that dysregulated lipolysis might contribute to OSA-associated impairments in insulin secretion and sensitivity.
Collapse
|
31
|
AlMarabeh S, O'Neill J, Cavers J, Lucking EF, O'Halloran KD, Abdulla MH. Chronic intermittent hypoxia impairs diuretic and natriuretic responses to volume expansion in rats with preserved low-pressure baroreflex control of the kidney. Am J Physiol Renal Physiol 2021; 320:F1-F16. [PMID: 33166181 DOI: 10.1152/ajprenal.00377.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 10/26/2020] [Accepted: 11/03/2020] [Indexed: 12/17/2022] Open
Abstract
We examined the effects of exposure to chronic intermittent hypoxia (CIH) on baroreflex control of renal sympathetic nerve activity (RSNA) and renal excretory responses to volume expansion (VE) before and after intrarenal transient receptor potential vanilloid 1 (TRPV1) blockade by capsaizepine (CPZ). Male Wistar rats were exposed to 96 cycles of hypoxia per day for 14 days (CIH) or normoxia. Urine flow and absolute Na+ excretion during VE were less in CIH-exposed rats, but the progressive decrease in RSNA during VE was preserved. Assessment of the high-pressure baroreflex revealed an increase in the operating and response range of RSNA and decreased slope in CIH-exposed rats with substantial hypertension [+19 mmHg basal mean arterial pressure (MAP)] but not in a second cohort with modest hypertension (+12 mmHg). Intrarenal CPZ caused diuresis, natriuresis, and a reduction in MAP in sham-exposed (sham) and CIH-exposed rats. After intrarenal CPZ, diuretic and natriuretic responses to VE in CIH-exposed rats were equivalent to those of sham rats. TRPV1 expression in the renal pelvic wall was similar in both experimental groups. Exposure to CIH did not elicit glomerular hypertrophy, renal inflammation, or oxidative stress. We conclude that exposure to CIH 1) does not impair the low-pressure baroreflex control of RSNA; 2) has modest effects on the high-pressure baroreflex control of RSNA, most likely indirectly due to hypertension; 3) can elicit hypertension in the absence of kidney injury; and 4) impairs diuretic and natriuretic responses to fluid overload. Our results suggest that exposure to CIH causes renal dysfunction, which may be relevant to obstructive sleep apnea.
Collapse
Affiliation(s)
- Sara AlMarabeh
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Julie O'Neill
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Jeremy Cavers
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Eric F Lucking
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
32
|
Ramirez JM, Karlen-Amarante M, Wang JDJ, Bush NE, Carroll MS, Weese-Mayer DE, Huff A. The Pathophysiology of Rett Syndrome With a Focus on Breathing Dysfunctions. Physiology (Bethesda) 2020; 35:375-390. [PMID: 33052774 PMCID: PMC7864239 DOI: 10.1152/physiol.00008.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 02/07/2023] Open
Abstract
Rett syndrome (RTT), an X-chromosome-linked neurological disorder, is characterized by serious pathophysiology, including breathing and feeding dysfunctions, and alteration of cardiorespiratory coupling, a consequence of multiple interrelated disturbances in the genetic and homeostatic regulation of central and peripheral neuronal networks, redox state, and control of inflammation. Characteristic breath-holds, obstructive sleep apnea, and aerophagia result in intermittent hypoxia, which, combined with mitochondrial dysfunction, causes oxidative stress-an important driver of the clinical presentation of RTT.
Collapse
Affiliation(s)
- Jan-Marino Ramirez
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Departments of Neurological Surgery and Pediatrics, University of Washington School of Medicine, Seattle, Washington
| | - Marlusa Karlen-Amarante
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
- Department of Physiology and Pathology, School of Dentistry of Araraquara, São Paulo State University (UNESP), Araraquara, Brazil
| | - Jia-Der Ju Wang
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Nicholas E Bush
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| | - Michael S Carroll
- Data Analytics and Reporting, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Debra E Weese-Mayer
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, Illinois
- Division of Autonomic Medicine, Ann & Robert H. Lurie Children's Hospital of Chicago, Chicago, Illinois
| | - Alyssa Huff
- Center for Integrative Brain Research, Seattle Children's Research Institute, University of Washington School of Medicine, Seattle, Washington
| |
Collapse
|
33
|
Jacob DW, Ott EP, Baker SE, Scruggs ZM, Ivie CL, Harper JL, Manrique-Acevedo CM, Limberg JK. Sex differences in integrated neurocardiovascular control of blood pressure following acute intermittent hypercapnic hypoxia. Am J Physiol Regul Integr Comp Physiol 2020; 319:R626-R636. [PMID: 32966122 DOI: 10.1152/ajpregu.00191.2020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Repetitive hypoxic apneas, similar to those observed in sleep apnea, result in resetting of the sympathetic baroreflex to higher blood pressures (BP). This baroreflex resetting is associated with hypertension in preclinical models of sleep apnea (intermittent hypoxia, IH); however, the majority of understanding comes from males. There are data to suggest that female rats exposed to IH do not develop high BP. Clinical data further support sex differences in the development of hypertension in sleep apnea, but mechanistic data are lacking. Here we examined sex-related differences in the effect of IH on sympathetic control of BP in humans. We hypothesized that after acute IH we would observe a rise in muscle sympathetic nerve activity (MSNA) and arterial BP in young men (n = 30) that would be absent in young women (n = 19). BP and MSNA were measured during normoxic rest before and after 30 min of IH. Baroreflex sensitivity (modified Oxford) was evaluated before and after IH. A rise in mean BP following IH was observed in men (+2.0 ± 0.7 mmHg, P = 0.03), whereas no change was observed in women (-2.7 ± 1.2 mmHg, P = 0.11). The elevation in MSNA following IH was not different between groups (4.7 ± 1.1 vs. 3.8 ± 1.2 bursts/min, P = 0.65). Sympathetic baroreflex sensitivity did not change after IH in either group (P > 0.05). Our results support sex-related differences in the effect of IH on neurovascular control of BP and show that any BP-raising effects of IH are absent in young women. These data enhance our understanding of sex-specific mechanisms that may contribute to BP changes in sleep apnea.
Collapse
Affiliation(s)
- Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Elizabeth P Ott
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Sarah E Baker
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | | - Clayton L Ivie
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Jennifer L Harper
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Camila M Manrique-Acevedo
- Department of Medicine, University of Missouri, Columbia, Missouri.,Research Service, Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri.,Dalton Cardiovascular Research Center, University of Missouri, Columbia, Missouri
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
34
|
Morra S, Gauthey A, Hossein A, Rabineau J, Racape J, Gorlier D, Migeotte PF, le Polain de Waroux JB, van de Borne P. Influence of sympathetic activation on myocardial contractility measured with ballistocardiography and seismocardiography during sustained end-expiratory apnea. Am J Physiol Regul Integr Comp Physiol 2020; 319:R497-R506. [PMID: 32877240 DOI: 10.1152/ajpregu.00142.2020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Ballistocardiography (BCG) and seismocardiography (SCG) assess vibrations produced by cardiac contraction and blood flow, respectively, through micro-accelerometers and micro-gyroscopes. BCG and SCG kinetic energies (KE) and their temporal integrals (iK) during a single heartbeat are computed in linear and rotational dimensions. Our aim was to test the hypothesis that iK from BCG and SCG are related to sympathetic activation during maximal voluntary end-expiratory apnea. Multiunit muscle sympathetic nerve traffic [burst frequency (BF), total muscular sympathetic nerve activity (tMSNA)] was measured by microneurography during normal breathing and apnea (n = 28, healthy men). iK of BCG and SCG were simultaneously recorded in the linear and rotational dimension, along with oxygen saturation ([Formula: see text]) and systolic blood pressure (SBP). The mean duration of apneas was 25.4 ± 9.4 s. SBP, BF, and tMSNA increased during the apnea compared with baseline (P = 0.01, P = 0.002,and P = 0.001, respectively), whereas [Formula: see text] decreased (P = 0.02). At the end of the apnea compared with normal breathing, changes in iK computed from BCG were related to changes of tMSNA and BF only in the linear dimension (r = 0.85, P < 0.0001; and r = 0.72, P = 0.002, respectively), whereas changes in linear iK of SCG were related only to changes of tMSNA (r = 0.62, P = 0.01). We conclude that maximal end expiratory apnea increases cardiac kinetic energy computed from BCG and SCG, along with sympathetic activity. The novelty of the present investigation is that linear iK of BCG is directly and more strongly related to the rise in sympathetic activity than the SCG, mainly at the end of a sustained apnea, likely because the BCG is more affected by the sympathetic and hemodynamic effects of breathing cessation. BCG and SCG may prove useful to assess sympathetic nerve changes in patients with sleep disturbances.NEW & NOTEWORTHY Ballistocardiography (BCG) and seismocardiography (SCG) assess vibrations produced by cardiac contraction and blood flow, respectively, through micro-accelerometers and micro-gyroscopes. Kinetic energies (KE) and their temporal integrals (iK) during a single heartbeat are computed from the BCG and SCG waveforms in a linear and a rotational dimension. When compared with normal breathing, during an end-expiratory voluntary apnea, iK increased and was positively related to sympathetic nerve traffic rise assessed by microneurography. Further studies are needed to determine whether BCG and SCG can probe sympathetic nerve changes in patients with sleep disturbances.
Collapse
Affiliation(s)
- Sofia Morra
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Anais Gauthey
- Department of Cardiology, Saint-Luc hospital, Université Catholique de Louvain, Brussels, Belgium
| | - Amin Hossein
- Laboratory of Physics and Physiology, Université Libre de Bruxelles, Brussels, Belgium
| | - Jérémy Rabineau
- Laboratory of Physics and Physiology, Université Libre de Bruxelles, Brussels, Belgium
| | - Judith Racape
- Research Centre in Epidemiology, Biostatistics and Clinical Research. School of Public Health. Université Libre de Bruxelles, Brussels, Belgium
| | - Damien Gorlier
- Laboratory of Physics and Physiology, Université Libre de Bruxelles, Brussels, Belgium
| | | | | | - Philippe van de Borne
- Department of Cardiology, Erasme Hospital, Université Libre de Bruxelles, Brussels, Belgium
| |
Collapse
|
35
|
Peripheral Dopamine 2-Receptor Antagonist Reverses Hypertension in a Chronic Intermittent Hypoxia Rat Model. Int J Mol Sci 2020; 21:ijms21144893. [PMID: 32664461 PMCID: PMC7402302 DOI: 10.3390/ijms21144893] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 07/06/2020] [Accepted: 07/09/2020] [Indexed: 12/16/2022] Open
Abstract
The sleep apnea-hypopnea syndrome (SAHS) involves periods of intermittent hypoxia, experimentally reproduced by exposing animal models to oscillatory PO2 patterns. In both situations, chronic intermittent hypoxia (CIH) exposure produces carotid body (CB) hyperactivation generating an increased input to the brainstem which originates sympathetic hyperactivity, followed by hypertension that is abolished by CB denervation. CB has dopamine (DA) receptors in chemoreceptor cells acting as DA-2 autoreceptors. The aim was to check if blocking DA-2 receptors could decrease the CB hypersensitivity produced by CIH, minimizing CIH-related effects. Domperidone (DOM), a selective peripheral DA-2 receptor antagonist that does not cross the blood-brain barrier, was used to examine its effect on CIH (30 days) exposed rats. Arterial pressure, CB secretory activity and whole-body plethysmography were measured. DOM, acute or chronically administered during the last 15 days of CIH, reversed the hypertension produced by CIH, an analogous effect to that obtained with CB denervation. DOM marginally decreased blood pressure in control animals and did not affect hypoxic ventilatory response in control or CIH animals. No adverse effects were observed. DOM, used as gastrokinetic and antiemetic drug, could be a therapeutic opportunity for hypertension in SAHS patients’ resistant to standard treatments.
Collapse
|
36
|
Ferreira CB, Schoorlemmer GH, Rocha AA, Cravo SL. Increased sympathetic responses induced by chronic obstructive sleep apnea are caused by sleep fragmentation. J Appl Physiol (1985) 2020; 129:163-172. [PMID: 32552428 DOI: 10.1152/japplphysiol.00811.2019] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Obstructive sleep apnea (OSA) is often associated with sympathetic overactivity and hypertension. These associations are mainly attributed to hypoxia acting on arterial chemoreceptors. However, the contribution of arousal from sleep is unclear. We measured the effect of OSA and sleep fragmentation on cardiovascular and sympathetic function and gene expression in the brain in rats. Male Wistar rats were fitted with a tracheal balloon and EEG and electromyogram electrodes and assigned to control (n = 6), OSA (n = 9), or arousal (n = 8) treatments. The OSA group was subjected to obstructive apnea, each time the rat entered sleep, for 8 h/day for 15 days. The arousal group was similarly exposed to vibration, which was produced with a miniature vibration motor mounted on the rat's head. Vibration intensity slowly increased until the rat awoke. One day after the last apnea or arousal, rats were anesthetized and arterial blood pressure and splanchnic sympathetic nerve activity (SSNA) were recorded. Baseline mean and diastolic pressure were increased after OSA. Resting SSNA was similar in the three groups, but both OSA and sleep fragmentation increased sympathetic activation in response to airway obstruction and chemoreflex activation by cyanide. OSA increased superoxide dismutases 1 and 2 in the brainstem, whereas sleep fragmentation did not. Our results suggest that sympathetic overactivity to chemoreceptor stimulation was a consequence of arousal from sleep. Our study suggests that sleep disruption may have an important role in the development of apnea-related sympathetic activation.NEW & NOTEWORTHY Obstructive sleep apnea causes a hyperactive chemoreflex, with increased sympathetic activation. However, it is not clear whether this pathophysiologic mechanism is due to repeated hypoxia or to sleep disruption. The present study suggests that sleep fragmentation contributes importantly to increased sympathetic activation after chemoreceptor stimulation. This suggests that sleep fragmentation has an important role in the sympathetic activation seen in sleep apnea patients.
Collapse
Affiliation(s)
- Caroline B Ferreira
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Guus H Schoorlemmer
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Antonio A Rocha
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sergio L Cravo
- Departamento de Fisiologia, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
37
|
Ott EP, Jacob DW, Baker SE, Holbein WW, Scruggs ZM, Shoemaker JK, Limberg JK. Sympathetic neural recruitment strategies following acute intermittent hypoxia in humans. Am J Physiol Regul Integr Comp Physiol 2020; 318:R961-R971. [PMID: 32267729 DOI: 10.1152/ajpregu.00004.2020] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
We examined the effect of acute intermittent hypoxia (IH) on sympathetic neural firing patterns and the role of the carotid chemoreceptors. We hypothesized exposure to acute IH would increase muscle sympathetic nerve activity (MSNA) via an increase in action potential (AP) discharge rates and within-burst firing. We further hypothesized any change in discharge patterns would be attenuated during acute chemoreceptor deactivation (hyperoxia). MSNA (microneurography) was assessed in 17 healthy adults (11 male/6 female; 31 ± 1 yr) during normoxic rest before and after 30 min of experimental IH. Prior to and following IH, participants were exposed to 2 min of 100% oxygen (hyperoxia). AP patterns were studied from the filtered raw MSNA signal using wavelet-based methodology. Compared with baseline, multiunit MSNA burst incidence (P < 0.01), AP incidence (P = 0.01), and AP content per burst (P = 0.01) were increased following IH. There was an increase in the probability of a particular AP cluster firing once (P < 0.01) and more than once (P = 0.03) per burst following IH. There was no effect of hyperoxia on multiunit MSNA at baseline or following IH (P > 0.05); however, hyperoxia following IH attenuated the probability of particular AP clusters firing more than once per burst (P < 0.01). Acute IH increases MSNA by increasing AP discharge rates and within-burst firing. A portion of the increase in within-burst firing following IH can be attributed to the carotid chemoreceptors. These data advance the mechanistic understanding of sympathetic activation following acute IH in humans.
Collapse
Affiliation(s)
- Elizabeth P Ott
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Dain W Jacob
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri
| | - Sarah E Baker
- Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| | | | | | - J Kevin Shoemaker
- School of Kinesiology, University of Western Ontario, London, Ontario, Canada
| | - Jacqueline K Limberg
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri.,Department of Anesthesiology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
38
|
Shimoura CG, Andrade MA, Toney GM. Central AT1 receptor signaling by circulating angiotensin II is permissive to acute intermittent hypoxia-induced sympathetic neuroplasticity. J Appl Physiol (1985) 2020; 128:1329-1337. [PMID: 32240022 DOI: 10.1152/japplphysiol.00094.2020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Acute intermittent hypoxia (AIH) triggers sympathetic long-term facilitation (sLTF), a progressive increase in sympathetic nerve activity (SNA) linked to central AT1 receptor (AT1R) activation by circulating angiotensin II (ANG II). Here, we investigated AIH activation of the peripheral renin-angiotensin system (RAS) and the extent to which the magnitude of RAS activation predicts the magnitude of AIH-induced sLTF. In anesthetized male Sprague-Dawley rats, plasma renin activity (PRA) increased in a linear fashion in response to 5 (P = 0.0342) and 10 (P < 0.0001) cycles of AIH, with PRA remaining at the 10th cycle level 1 h later, a period over which SNA progressively increased. On average, SNA ramping began at the AIH cycle 4.6 ± 0.9 (n = 12) and was similar in magnitude 1 h later whether AIH consisted of 5 or 10 cycles (n = 6/group). Necessity of central AT1R in post-AIH sLTF was affirmed by intracerebroventricular (icv) losartan (40 nmol, 2 µL; n = 5), which strongly attenuated both splanchnic (P = 0.0469) and renal (P = 0.0018) sLTF compared with vehicle [artificial cerebrospinal fluid (aCSF), 2 µL; n = 5]. Bilateral nephrectomy largely prevented sLTF, affirming the necessity of peripheral RAS activation. Sufficiency of central ANG II signaling was assessed in nephrectomized rats. Whereas ICV ANG II (0.5 ng/0.5 µL, 30 min) in nephrectomized rats exposed to sham AIH (n = 4) failed to cause SNA ramping, it rescued sLTF in nephrectomized rats exposed to five cycles of AIH [splanchnic SNA (SSNA), P = 0.0227; renal SNA (RSNA), P = 0.0390; n = 5]. Findings indicate that AIH causes progressive peripheral RAS activation, which stimulates an apparent threshold level of central AT1R signaling that plays a permissive role in triggering sLTF.NEW & NOTEWORTHY Acute intermittent hypoxia (AIH) triggers sympathetic long-term facilitation (sLTF) that relies on peripheral renin-angiotensin system (RAS) activation. Here, increasing AIH cycles from 5 to 10 proportionally increased RAS activity, but not the magnitude of post-AIH sLTF. Brain angiotensin II (ANG II) receptor blockade and nephrectomy each largely prevented sLTF, whereas central ANG II rescued it following nephrectomy. Peripheral RAS activation by AIH induces time-dependent neuroplasticity at an apparent central ANG II signaling threshold, triggering a stereotyped sLTF response.
Collapse
Affiliation(s)
- Caroline G Shimoura
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Mary Ann Andrade
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas
| | - Glenn M Toney
- Department of Cellular and Integrative Physiology, University of Texas Health San Antonio, San Antonio, Texas.,Center for Biomedical Neuroscience, University of Texas Health San Antonio, San Antonio, Texas
| |
Collapse
|
39
|
Mesarwi OA, Loomba R, Malhotra A. Obstructive Sleep Apnea, Hypoxia, and Nonalcoholic Fatty Liver Disease. Am J Respir Crit Care Med 2020; 199:830-841. [PMID: 30422676 DOI: 10.1164/rccm.201806-1109tr] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Recent studies have demonstrated that obstructive sleep apnea (OSA) is associated with the development and evolution of nonalcoholic fatty liver disease (NAFLD), independent of obesity or other shared risk factors. Like OSA, NAFLD is a prevalent disorder associated with major adverse health outcomes: Patients with NAFLD may develop cirrhosis, liver failure, and hepatocellular carcinoma. One major finding that has emerged from these studies is that the OSA-NAFLD association is related to the degree of nocturnal hypoxemia in OSA. Animal models have therefore largely focused on intermittent hypoxia, a key manifestation of OSA, to shed light on the mechanisms by which OSA may give rise to the complex metabolic disturbances that are seen in NAFLD. Intermittent hypoxia leads to tissue hypoxia and can result in oxidative stress, mitochondrial dysfunction, inflammation, and overactivation of the sympathetic nervous system, among many other maladaptive effects. In such models, intermittent hypoxia has been shown to cause insulin resistance, dysfunction of key steps in hepatic lipid metabolism, atherosclerosis, and hepatic steatosis and fibrosis, each of which is pertinent to the development and/or progression of NAFLD. However, many intriguing questions remain unanswered: Principally, how aggressively should the clinician screen for NAFLD in patients with OSA, and vice versa? In this review, we attempt to apply the best evidence from animal and human studies to highlight the relationship between these two disorders and to advocate for further trials aimed at defining these relationships more precisely.
Collapse
Affiliation(s)
- Omar A Mesarwi
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine
| | - Rohit Loomba
- 2 Division of Gastroenterology, Department of Medicine, and.,3 Department of Family Medicine and Public Health, University of California San Diego School of Medicine, La Jolla, California
| | - Atul Malhotra
- 1 Division of Pulmonary, Critical Care, and Sleep Medicine
| |
Collapse
|
40
|
Affiliation(s)
| | - Naima Covassin
- Department of Cardiovascular Diseases (N.C., V.K.S.), Mayo Clinic, Rochester, MN
| | - Virend K Somers
- Department of Cardiovascular Diseases (N.C., V.K.S.), Mayo Clinic, Rochester, MN
| |
Collapse
|
41
|
Veluswamy S, Shah P, Denton CC, Chalacheva P, Khoo MCK, Coates TD. Vaso-Occlusion in Sickle Cell Disease: Is Autonomic Dysregulation of the Microvasculature the Trigger? J Clin Med 2019; 8:jcm8101690. [PMID: 31618931 PMCID: PMC6832215 DOI: 10.3390/jcm8101690] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2019] [Revised: 10/11/2019] [Accepted: 10/11/2019] [Indexed: 02/02/2023] Open
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy characterized by polymerization of hemoglobin S upon deoxygenation that results in the formation of rigid sickled-shaped red blood cells that can occlude the microvasculature, which leads to sudden onsets of pain. The severity of vaso-occlusive crises (VOC) is quite variable among patients, which is not fully explained by their genetic and biological profiles. The mechanism that initiates the transition from steady state to VOC remains unknown, as is the role of clinically reported triggers such as stress, cold and pain. The rate of hemoglobin S polymerization after deoxygenation is an important determinant of vaso-occlusion. Similarly, the microvascular blood flow rate plays a critical role as fast-moving red blood cells are better able to escape the microvasculature before polymerization of deoxy-hemoglobin S causes the red cells to become rigid and lodge in small vessels. The role of the autonomic nervous system (ANS) activity in VOC initiation and propagation has been underestimated considering that the ANS is the major regulator of microvascular blood flow and that most triggers of VOC can alter the autonomic balance. Here, we will briefly review the evidence supporting the presence of ANS dysfunction in SCD, its implications in the onset of VOC, and how differences in autonomic vasoreactivity might potentially contribute to variability in VOC severity.
Collapse
Affiliation(s)
- Saranya Veluswamy
- Hematology Section, Children’s Center for Cancer and Blood Diseases, Children’s Hospital Los Angeles, 4650 Sunset boulevard, Los Angeles, CA 90027, USA; (S.V.); (P.S.); (C.C.D.)
| | - Payal Shah
- Hematology Section, Children’s Center for Cancer and Blood Diseases, Children’s Hospital Los Angeles, 4650 Sunset boulevard, Los Angeles, CA 90027, USA; (S.V.); (P.S.); (C.C.D.)
| | - Christopher C. Denton
- Hematology Section, Children’s Center for Cancer and Blood Diseases, Children’s Hospital Los Angeles, 4650 Sunset boulevard, Los Angeles, CA 90027, USA; (S.V.); (P.S.); (C.C.D.)
| | - Patjanaporn Chalacheva
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA; (P.C.)
| | - Michael C. K. Khoo
- Department of Biomedical Engineering, University of Southern California, 1042 Downey Way, Los Angeles, CA 90089, USA; (P.C.)
| | - Thomas D. Coates
- Hematology Section, Children’s Center for Cancer and Blood Diseases, Children’s Hospital Los Angeles, 4650 Sunset boulevard, Los Angeles, CA 90027, USA; (S.V.); (P.S.); (C.C.D.)
- Correspondence: ; Tel.: +1-323-361-2352
| |
Collapse
|
42
|
Meyring-Wösten A, Luo Y, Zhang H, Preciado P, Thijssen S, Wang Y, Kotanko P. Intradialytic hypertension is associated with low intradialytic arterial oxygen saturation. Nephrol Dial Transplant 2019; 33:1040-1045. [PMID: 29186549 PMCID: PMC5982811 DOI: 10.1093/ndt/gfx309] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 10/08/2017] [Indexed: 11/14/2022] Open
Abstract
Background The pathophysiology of a paradoxical systolic blood pressure (SBP) rise during hemodialysis (HD) is not yet fully understood. Recent research indicated that 10% of chronic HD patients suffer from prolonged intradialytic hypoxemia. Since hypoxemia induces a sympathetic response we entertained the hypothesis that peridialytic SBP change is associated with arterial oxygen saturation (SaO2). Methods We retrospectively analyzed intradialytic SaO2 and peridialytic SBP change in chronic HD patients with arteriovenous vascular access. Patients were followed for 6 months. We defined persistent intradialytic hypertension (piHTN) as average peridialytic SBP increase ≥10 mmHg over 6 months. Linear mixed effects (LME) models were used to explore associations between peridialytic SBP change and intradialytic SaO2 in univariate and adjusted analyses. Results We assessed 982 patients (29 872 HD treatments; 59% males; 53% whites). Pre-dialysis SBP was 146.7 ± 26.5 mmHg and decreased on average by 10.1 ± 24.5 mmHg. Fifty-three (5.7%) patients had piHTN. piHTN patients had lower intradialytic SaO2, body weight and interdialytic weight gain. LME models revealed that with every percentage point lower mean SaO2, the peridialytic SBP change increased by 0.46 mmHg (P < 0.001). This finding was corroborated in multivariate analyses. Conclusion We observed an inverse relationship between intradialytic SaO2 and the blood pressure response to HD. These findings support the notion that hypoxemia activates mechanisms that partially blunt the intradialytic blood pressure decline, possibly by sympathetic activation and endothelin-1 secretion. To further explore that hypothesis, specifically designed prospective studies are required.
Collapse
Affiliation(s)
| | - Ya Luo
- University of California at Santa Barbara, Department of Statistics and Applied Probability, Santa Barbara, CA, USA
| | - Hanjie Zhang
- Renal Research Institute, Research Department, New York, NY, USA
| | | | - Stephan Thijssen
- Renal Research Institute, Research Department, New York, NY, USA
| | - Yuedong Wang
- University of California at Santa Barbara, Department of Statistics and Applied Probability, Santa Barbara, CA, USA
| | - Peter Kotanko
- Renal Research Institute, Research Department, New York, NY, USA.,Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
43
|
Wang Y, Yu D, Yu Y, Zou W, Zeng X, Hu L, Gu Y. Potential role of sympathetic activity on the pathogenesis of massive pulmonary embolism with circulatory shock in rabbits. Respir Res 2019; 20:97. [PMID: 31118045 PMCID: PMC6530066 DOI: 10.1186/s12931-019-1069-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/06/2019] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND We recently showed that intravenous sodium nitroprusside treatment (SNP) could relieve the pulmonary vasospasm of pulmonary embolism (PE) and non-pulmonary embolism (non-PE) regions in a rabbit massive pulmonary embolism (MPE) model associated with shock. The present study explored the potential role of cardiopulmonary sympathetic activity on the pathogenesis and the impact of vasodilators on cardiopulmonary sympathetic activity in this model. METHODS Rabbits were randomly divided into sham operation group (S group, n = 8), model group (M, equal volume of saline intravenously, n = 11), SNP group (3.5 μg/kg/min intravenously, n = 10) and diltiazem group (DLZ, 6.0 μg/kg/min intravenously, n = 10). RESULTS MPE resulted in reduced mean arterial pressure and increased mean pulmonary arterial pressure as well as reduced PaO2 in the M, SNP and DLZ groups. Tyrosine hydroxylase (TH), neuropeptide Y (NPY) and endothelin-1 (ET-1) expression levels were significantly increased, while nitric oxide (NO) levels were reduced in both PE and non-PE regions in the M group. Both SNP and DLZ decreased mean pulmonary arterial pressure, reversed shock status, downregulated the expression of TH, NPY and ET-1, and increased NO levels in PE and non-PE regions. CONCLUSION Present results indicate that upregulation of the sympathetic medium transmitters TH and NPY in whole lung tissues serves one of the pathological features of MPE. The vasodilators SNP and DLZ could relieve pulmonary vasospasm in both embolization and non-embolization regions and reverse circulatory shock, thereby indirectly downregulating the sympathetic activation of the whole lung tissues and breaking a vicious cycle related to sympathetic activation in this model.
Collapse
Affiliation(s)
- Yuting Wang
- Department of Cardiology, Wuhan Fourth Hospital; Puai Hospital affiliated to Tongji Medical College, Huazhong University of Science and Technology, HanZheng Street 473# QiaoKou District, Wuhan, 430033 China
| | - Delong Yu
- Department of Cardiology, Wuhan Fourth Hospital; Puai Hospital affiliated to Tongji Medical College, Huazhong University of Science and Technology, HanZheng Street 473# QiaoKou District, Wuhan, 430033 China
| | - Yijun Yu
- Department of Cardiology, Wuhan Fourth Hospital; Puai Hospital affiliated to Tongji Medical College, Huazhong University of Science and Technology, HanZheng Street 473# QiaoKou District, Wuhan, 430033 China
| | - Wusong Zou
- Department of Cardiology, Wuhan Fourth Hospital; Puai Hospital affiliated to Tongji Medical College, Huazhong University of Science and Technology, HanZheng Street 473# QiaoKou District, Wuhan, 430033 China
| | - Xiaohui Zeng
- Department of Cardiology, Wuhan Fourth Hospital; Puai Hospital affiliated to Tongji Medical College, Huazhong University of Science and Technology, HanZheng Street 473# QiaoKou District, Wuhan, 430033 China
| | - Liqun Hu
- Department of Cardiology, Wuhan Fourth Hospital; Puai Hospital affiliated to Tongji Medical College, Huazhong University of Science and Technology, HanZheng Street 473# QiaoKou District, Wuhan, 430033 China
| | - Ye Gu
- Department of Cardiology, Wuhan Fourth Hospital; Puai Hospital affiliated to Tongji Medical College, Huazhong University of Science and Technology, HanZheng Street 473# QiaoKou District, Wuhan, 430033 China
| |
Collapse
|
44
|
AlMarabeh S, Abdulla MH, O'Halloran KD. Is Aberrant Reno-Renal Reflex Control of Blood Pressure a Contributor to Chronic Intermittent Hypoxia-Induced Hypertension? Front Physiol 2019; 10:465. [PMID: 31105584 PMCID: PMC6491928 DOI: 10.3389/fphys.2019.00465] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 04/04/2019] [Indexed: 12/16/2022] Open
Abstract
Renal sensory nerves are important in the regulation of body fluid and electrolyte homeostasis, and blood pressure. Activation of renal mechanoreceptor afferents triggers a negative feedback reno-renal reflex that leads to the inhibition of sympathetic nervous outflow. Conversely, activation of renal chemoreceptor afferents elicits reflex sympathoexcitation. Dysregulation of reno-renal reflexes by suppression of the inhibitory reflex and/or activation of the excitatory reflex impairs blood pressure control, predisposing to hypertension. Obstructive sleep apnoea syndrome (OSAS) is causally related to hypertension. Renal denervation in patients with OSAS or in experimental models of chronic intermittent hypoxia (CIH), a cardinal feature of OSAS due to recurrent apnoeas (pauses in breathing), results in a decrease in circulating norepinephrine levels and attenuation of hypertension. The mechanism of the beneficial effect of renal denervation on blood pressure control in models of CIH and OSAS is not fully understood, since renal denervation interrupts renal afferent signaling to the brain and sympathetic efferent signals to the kidneys. Herein, we consider the currently proposed mechanisms involved in the development of hypertension in CIH disease models with a focus on oxidative and inflammatory mediators in the kidneys and their potential influence on renal afferent control of blood pressure, with wider consideration of the evidence available from a variety of hypertension models. We draw focus to the potential contribution of aberrant renal afferent signaling in the development, maintenance and progression of high blood pressure, which may have relevance to CIH-induced hypertension.
Collapse
Affiliation(s)
- Sara AlMarabeh
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Mohammed H Abdulla
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| | - Ken D O'Halloran
- Department of Physiology, School of Medicine, College of Medicine and Health, University College Cork, Cork, Ireland
| |
Collapse
|
45
|
Shi T, Min M, Sun C, Cheng C, Zhang Y, Liang M, Rizeq FK, Sun Y. A meta-analysis of the association between gout, serum uric acid level, and obstructive sleep apnea. Sleep Breath 2019; 23:1047-1057. [PMID: 30903565 DOI: 10.1007/s11325-019-01827-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 02/23/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
Abstract
Previous epidemiological investigations have evaluated the association between gout, serum uric acid levels, and obstructive sleep apnea syndrome (OSAS), but with inconsistent results. We conducted this meta-analysis aiming at providing clear evidence about whether OSAS patients have higher serum uric acid levels and more susceptible to gout. Relevant studies were identified via electronic databases from inception to December 17, 2018. Study selection was conducted according to predesigned eligibility criteria, and two authors independently extracted data from included studies. The hazard ratio (HR) and weighted mean difference (WMD) and their corresponding 95% confidence interval (CI) were derived using random-effects models. We conducted meta-, heterogeneity, publication bias, sensitivity, and subgroup analyses. Eighteen studies, involving a total of 157,607 individuals (32,395 with OSAS, 125,212 without OSAS) and 12,262 gout cases, were included. Results show that serum uric acid levels are elevated in patients with OSAS (WMD = 52.25, 95% CI 36.16-64.33); OSAS did not reach statistical significance as a predictor of gout (but there was a trend, HR = 1.25, 95% CI 0.91-1.70) and that the association between OSAS and serum uric acid was quite robust. OSAS may be a potential risk factor for hyperuricemia and the development of gout and thus, effective OSAS therapy may present as a valuable preventive measure against gout. Still, it is vital to undertake clinical studies with better designing to corroborate these associations and shed new light on it.
Collapse
Affiliation(s)
- Tingting Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Min Min
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Chenyu Sun
- The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, Anhui, China
| | - Ce Cheng
- Arizona College of Osteopathic Medicine, Midwestern University, 19555 N 59th Ave, Glendale, AZ, 85308, USA
| | - Yun Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Mingming Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Feras Kamel Rizeq
- Avalon University School of Medicine, Santa Rosaweg 122-124, Willemstad, Curaçao
| | - Yehuan Sun
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China. .,Center for Evidence-Based Practice, Anhui Medical University, No. 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
46
|
Endothelin-1-Mediated Mechanisms in the Carotid Body Modulates Cardiovascular Responses in Rats Exposed to Chronic Intermittent Hypoxia. Int J Pept Res Ther 2018. [DOI: 10.1007/s10989-018-9794-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
47
|
Autonomic regulation during sleep and wakefulness: a review with implications for defining the pathophysiology of neurological disorders. Clin Auton Res 2018; 28:509-518. [PMID: 30155794 DOI: 10.1007/s10286-018-0560-9] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Accepted: 08/18/2018] [Indexed: 02/07/2023]
Abstract
Cardiovascular and respiratory parameters change during sleep and wakefulness. This observation underscores an important, albeit incompletely understood, role for the central nervous system in the differential regulation of autonomic functions. Understanding sleep/wake-dependent sympathetic modulations provides insights into diseases involving autonomic dysfunction. The purpose of this review was to define the central nervous system nuclei regulating sleep and cardiovascular function and to identify reciprocal networks that may underlie autonomic symptoms of disorders such as insomnia, sleep apnea, restless leg syndrome, rapid eye movement sleep behavior disorder, and narcolepsy/cataplexy. In this review, we examine the functional and anatomical significance of hypothalamic, pontine, and medullary networks on sleep, cardiovascular function, and breathing.
Collapse
|
48
|
Stewart JM, Pianosi P, Shaban MA, Terilli C, Svistunova M, Visintainer P, Medow MS. Hemodynamic characteristics of postural hyperventilation: POTS with hyperventilation versus panic versus voluntary hyperventilation. J Appl Physiol (1985) 2018; 125:1396-1403. [PMID: 30138078 DOI: 10.1152/japplphysiol.00377.2018] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Upright hyperventilation occurs in ~25% of our patients with postural tachycardia syndrome (POTS). Poikilocapnic hyperventilation alone causes tachycardia. Here, we examined changes in respiration and hemodynamics comprising cardiac output (CO), systemic vascular resistance (SVR), and blood pressure (BP) measured during head-up tilt (HUT) in three groups: patients with POTS and hyperventilation (POTS-HV), patients with panic disorder who hyperventilate (Panic), and healthy controls performing voluntary upright hyperpnea (Voluntary-HV). Though all were comparably tachycardic during hyperventilation, POTS-HV manifested hyperpnea, decreased CO, increased SVR, and increased BP during HUT; Panic patients showed both hyperpnea and tachypnea, increased CO, and increased SVR as BP increased during HUT; and Voluntary-HV were hyperpneic by design and had increased CO, decreased SVR, and decreased BP during upright hyperventilation. Mechanisms of hyperventilation and hemodynamic changes differed among POTS-HV, Panic, and Voluntary-HV subjects. We hypothesize that the hyperventilation in POTS is caused by a mechanism involving peripheral chemoreflex sensitization by intermittent ischemic hypoxia. NEW & NOTEWORTHY Hyperventilation is common in postural tachycardia syndrome (POTS) and has distinctive cardiovascular characteristics when compared with hyperventilation in panic disorder or with voluntary hyperventilation. Hyperventilation in POTS is hyperpnea only, distinct from panic in which tachypnea also occurs. Cardiac output is decreased in POTS, whereas peripheral resistance and blood pressure (BP) are increased. This is distinct from voluntary hyperventilation where cardiac output is increased and resistance and BP are decreased and from panic where they are all increased.
Collapse
Affiliation(s)
- Julian M Stewart
- Department of Pediatrics, New York Medical College, Valhalla, New York.,Department of Physiology, New York Medical College, Valhalla, New York
| | - Paul Pianosi
- Paediatric Respiratory Medicine, King's College Hospital National Health Surface Foundation Trust , London , United Kingdom
| | - Mohamed A Shaban
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Courtney Terilli
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Maria Svistunova
- Department of Pediatrics, New York Medical College, Valhalla, New York
| | - Paul Visintainer
- Epidemiology and Biostatistics, Baystate Medical Center, University of Massachusetts School of Medicine , Worcester, Massachusetts
| | - Marvin S Medow
- Department of Pediatrics, New York Medical College, Valhalla, New York.,Department of Physiology, New York Medical College, Valhalla, New York
| |
Collapse
|
49
|
Krause BJ, Casanello P, Dias AC, Arias P, Velarde V, Arenas GA, Preite MD, Iturriaga R. Chronic Intermittent Hypoxia-Induced Vascular Dysfunction in Rats is Reverted by N-Acetylcysteine Supplementation and Arginase Inhibition. Front Physiol 2018; 9:901. [PMID: 30087615 PMCID: PMC6066978 DOI: 10.3389/fphys.2018.00901] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 06/21/2018] [Indexed: 01/07/2023] Open
Abstract
Chronic intermittent hypoxia (CIH), the main attribute of obstructive sleep apnea (OSA), produces oxidative stress, endothelial dysfunction, and hypertension. Nitric oxide (NO) plays a critical role in controlling the vasomotor tone. The NO level depends on the L-arginine level, which can be reduced by arginase enzymatic activity, and its reaction with the superoxide radical to produce peroxynitrite. Accordingly, we hypothesized whether a combination of an arginase inhibitor and an antioxidant may restore the endothelial function and reduced arterial blood pressure (BP) in CIH-induced hypertensive rats. Male Sprague-Dawley rats 200 g were exposed either to CIH (5% O2, 12 times/h 8 h/day) or sham condition for 35 days. BP was continuously measured by radio-telemetry in conscious animals. After 14 days, rats were treated with 2(S)-amino-6-boronohexanoic acid (ABH 400 μg/kg day, osmotic pump), N-acetylcysteine (NAC 100 mg/kg day, drinking water), or the combination of both drugs until day 35. At the end of the experiments, external carotid and femoral arteries were isolated to determine vasoactive contractile responses induced by KCL and acetylcholine (ACh) with wire-myography. CIH-induced hypertension (~8 mmHg) was reverted by ABH, NAC, and ABH/NAC administration. Carotid arteries from CIH-treated rats showed higher contraction induced by KCl (3.4 ± 0.4 vs. 2.4 ± 0.2 N/m2) and diminished vasorelaxation elicits by ACh compared to sham rats (12.8 ± 1.5 vs. 30.5 ± 4.6%). ABH reverted the increased contraction (2.5 ± 0.2 N/m2) and the reduced vasorelaxation induced by ACh in carotid arteries from CIH-rats (38.1 ± 4.9%). However, NAC failed to revert the enhanced vasocontraction (3.9 ± 0.6 N/m2) induced by KCl and the diminished ACh-induced vasorelaxation in carotid arteries (10.7 ± 0.8%). Femoral arteries from CIH rats showed an increased contractile response, an effect partially reverted by ABH, but completely reverted by NAC and ABH/NAC. The impaired endothelial-dependent relaxation in femoral arteries from CIH rats was reverted by ABH and ABH/NAC. In addition, ABH/NAC at high doses had no effect on liver and kidney gross morphology and biochemical parameters. Thus, although ABH, and NAC alone and the combination of ABH/NAC were able to normalize the elevated BP, only the combined treatment of ABH/NAC normalized the vascular reactivity and the systemic oxidative stress in CIH-treated rats.
Collapse
Affiliation(s)
- Bernardo J Krause
- Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paola Casanello
- Division of Pediatrics, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile.,Division of Obstetrics & Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Ana C Dias
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Paulina Arias
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Victoria Velarde
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - German A Arenas
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Marcelo D Preite
- Departamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Rodrigo Iturriaga
- Laboratorio de Neurobiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
50
|
Bhatt SP, Guleria R, Vikram NK, Nandhan SV, Singh Y, Gupta AK. Association of inflammatory genes in obstructive sleep apnea and non alcoholic fatty liver disease in Asian Indians residing in north India. PLoS One 2018; 13:e0199599. [PMID: 30001365 PMCID: PMC6042717 DOI: 10.1371/journal.pone.0199599] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 06/11/2018] [Indexed: 01/03/2023] Open
Abstract
BACKGROUND Previous studies have indicated that variants of the high sensitive C-reactive protein (CRP), Interleukin (IL)-6 and leptin receptor (LEPR) genes are associated with the presence of obstructive sleep apnea (OSA) but not in non-alcoholic fatty liver disease (NAFLD) in Asian Indians. The study was conducted to investigate the association of CRP rs1130864 (1444C/T), IL-6 rs1800795 (-174G/C) and LEPR rs1137101 (Q223R) genes with OSA and NAFLD in Asian Indians residing in North India. METHODS 240 overweight/ obese subjects [body mass index (BMI>23kg/m2)], 124 with OSA and with NAFLD (group 1), 47 with OSA without NAFLD (group 2), 44 without OSA and with NAFLD (group 3) and 25 without OSA and without NAFLD (group 4) were recruited in this study. The severity of NAFLD was based on abdomen liver ultrasound and of OSA on overnight polysomnography. Clinical details, anthropometry profile, body composition, biochemical parameters and inflammatory markers were measured. Polymerase chain reaction and restriction fragment length polymorphism of CRP, IL-6 and LEPR gene was performed. The associations of these polymorphisms with clinical, anthropometric and biochemical profiles were investigated. The genotypes were confirmed by DNA sequencing analysis. RESULTS The C, T and R alleles of IL-6, CRP and LEPR genes was more frequent in OSA and NAFLD subjects and significantly correlated with higher protein levels. The prevalence of variant genotypes C/T of CRP, G/C of IL-6 and Q/R of LEPR genes was significantly higher in OSA subjects as compared to non OSA subjects. Further, C/C genotype of IL-6 (G/C), T/T of CRP (C/T) and RR genotype of LEPR (Q/R) was associated with significantly higher BMI, fat mass (kg), % body fat, waist circumference, serum triglycerides, total cholesterol, alkaline phosphate, aspartate transaminase and fasting insulin levels in OSA and NAFLD subjects. Using a multivariate analysis, the combined effect of three polymorphisms of CRP, IL-6 and LEPR gene variants on OSA and NAFLD risk was evaluated. Odds ratio for OSA and NAFLD with the combination of the three gene polymorphisms increased to 2.84 (95% CI: 1.08-6.54; p = 0.04) even when adjusted for sex, age and BMI. CONCLUSION Polymorphisms of pro-inflammatory cytokine genes were associated with increased risk of OSA and NAFLD in Asian Indians.
Collapse
Affiliation(s)
- Surya Prakash Bhatt
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Randeep Guleria
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - Naval K. Vikram
- Department of Medicine, All India Institute of Medical Sciences, New Delhi, India
| | - S. V. Nandhan
- Department of Neuro-Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Yogendra Singh
- Department of Pulmonary Medicine and Sleep Disorders, All India Institute of Medical Sciences, New Delhi, India
| | - A. K. Gupta
- Department of Radiology, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|