1
|
Zubieta-Calleja G. Redefining chronic mountain sickness: insights from high-altitude research and clinical experience. MEDICAL REVIEW (2021) 2025; 5:44-65. [PMID: 39974561 PMCID: PMC11834750 DOI: 10.1515/mr-2024-0036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 07/31/2024] [Indexed: 02/21/2025]
Abstract
Chronic Mountain Sickness (CMS), characterized by increased red blood cells above average values traditionally attributed to chronic hypobaric hypoxia exposure, is being redefined in light of recent research and clinical experience. We propose a shift in perspective, viewing CMS not as a singular entity but as Poly-erythrocythemia (PEH), as the Hematocrit/Hemoglobin/Red Blood Cells (Ht/Hb/RBCs) increase constitutes a sign, not a disease reflecting a spectrum of oxygen transport alterations in multiple diseases in the chronic hypoxia environment in high-altitude populations. Drawing on over five decades of experience at the High Altitude Pulmonary and Pathology Institute (HAPPI-IPPA) in Bolivia, we advocate for altitude-specific blood parameter norms and emphasize the importance of correct etiological diagnosis for effective management. This updated understanding not only aids in managing chronically hypoxemic patients at various altitudes but also offers valuable insights into global health challenges, including the recovery from COVID-19.
Collapse
|
2
|
Marin MJ, van Wijk XMR, Boothe PD, Harris NS, Winter WE. An Introduction to the Complete Blood Count for Clinical Chemists: Red Blood Cells. J Appl Lab Med 2024; 9:1025-1039. [PMID: 38646908 DOI: 10.1093/jalm/jfae031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 03/06/2024] [Indexed: 04/23/2024]
Abstract
BACKGROUND The most frequently ordered laboratory test worldwide is the complete blood count (CBC). CONTENT In this primer, the red blood cell test components of the CBC are introduced, followed by a discussion of the laboratory evaluation of anemia and polycythemia. SUMMARY As clinical chemists are increasingly tasked to direct laboratories outside of the traditional clinical chemistry sections such as hematology, expertise must be developed. This review article is a dedication to that effort.
Collapse
Affiliation(s)
- Maximo J Marin
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | | | - Paul D Boothe
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - Neil S Harris
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| | - William E Winter
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida, Gainesville, FL, United States
| |
Collapse
|
3
|
Ji P, Zhang Z, Mingyao E, Liu Q, Qi H, Hou T, Zhao D, Li X. Ginsenosides ameliorates high altitude-induced hypoxia injury in lung and kidney tissues by regulating PHD2/HIF-1α/EPO signaling pathway. Front Pharmacol 2024; 15:1396231. [PMID: 39101138 PMCID: PMC11295002 DOI: 10.3389/fphar.2024.1396231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/02/2024] [Indexed: 08/06/2024] Open
Abstract
Background: The primary constituent of ginseng, known as ginsenosides (GS), has been scientifically demonstrated to possess anti-fatigue, anti-hypoxia, anti-inflammatory, and antioxidant properties. However, the effect and mechanisms of GS on tissue injury induced by high-altitude hypoxia still remain unclear. Aim of the study: This study aims to investigate the protective effect of GS on a high-altitude hypoxia model and explore its mechanism. Materials and methods: Sprague-Dawley rats were placed in a high-altitude simulation chamber for 48 h (equivalent to an altitude of 6,000 m) to establish a high-altitude hypoxia model. We assessed the anti-hypoxic efficacy of GS through blood gas analysis, complete blood count, and hemorheology analysis. We used H&E and hypoxia probe assays to evaluate the protective effect of GS on organ ischemia-induced injury. Further, we used ELISA and qPCR analysis to detect the levels of inflammatory factors and oxidative stress markers. Immunohistochemistry and immunofluorescence staining were performed to determinate protein expression of hypoxia inducible factor 1-alpha (HIF-1α), erythropoietin (EPO), and prolyl hydroxylase 2 (PHD2). Results: In the survival experiment of anoxic mice, 100 mg/kg of GS had the best anti-anoxic effect. GS slowed down the weight loss rate of rats in hypoxic environment. In the fluorescence detection of hypoxia, GS reduced the fluorescence signal value of lung and kidney tissue and alleviated the hypoxia state of tissue. Meanwhile GS improved blood biochemical and hematological parameters. We also observed that GS treatment significantly decreased oxidative stress damage in lung and kidney tissues. Further, the levels of inflammatory factors, IL-1β, IL-6, and TNF-α were reduced by GS. Finally, GS regulated the PHD2/HIF-1α/EPO signaling pathway to improve blood viscosity and tissue hyperemia damage. Conclusion: GS could alleviate high-altitude induced lung and kidney damage by reducing the level of inflammation and oxidative stress, improving blood circulation through the PHD2/HIF-1α/EPO pathway.
Collapse
Affiliation(s)
- Peng Ji
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Zepeng Zhang
- Research Center of Traditional Chinese Medicine, College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - E. Mingyao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Qing Liu
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongyu Qi
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Tong Hou
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Daqing Zhao
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiangyan Li
- Key Laboratory of Active Substances and Biological Mechanisms of Ginseng Efficacy, Jilin Provincial Key Laboratory of Bio-Macromolecules of Chinese Medicine, Northeast Asia Research Institute of Traditional Chinese Medicine, Ministry of Education, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
4
|
Lee Y, Seo SH, Kim J, Kim SA, Lee JY, Lee JO, Bang SM, Park KU, Hwang SM. Diagnostic Approaches to Investigate JAK2-Unmutated Erythrocytosis Based on a Single Tertiary Center Experience. Mol Diagn Ther 2024; 28:311-318. [PMID: 38568469 PMCID: PMC11068693 DOI: 10.1007/s40291-024-00703-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2024] [Indexed: 05/04/2024]
Abstract
INTRODUCTION Erythrocytosis is attributed to various clinical and molecular factors. Many cases of JAK2-unmutated erythrocytosis remain undiagnosed. We investigated the characteristics and causes of JAK2-unmutated erythrocytosis. METHODS We assessed the clinical and laboratory results of patients with erythrocytosis without JAK2 mutations and performed targeted next-generation sequencing (NGS) panels for somatic and germline mutations. RESULTS In total, 117 patients with JAK2-unmutated erythrocytosis were included. The median hemoglobin and hematocrit levels were 17.9 g/dL and 53.4%, respectively. Erythropoietin levels were not below the reference range. Thrombotic events were reported in 17 patients (14.5%). Among JAK2-unmutated patients, 44 had undergone targeted panel sequencing consisting of myeloid neoplasm-related genes, and 16 had one or more reportable variants in ASXL1 (5/44), TET2, CALR, FLT3, and SH2B3 (2/44). Additional testing for germline causes revealed eight variants in seven genes in eight patients, including NF1, BPGM, EPAS1, PIEZO1, RHAG, SH2B3, and VHL genes. One NF1 pathogenic, one BPGM likely pathogenic, and six variants of undetermined significance were detected. CONCLUSION Somatic and germline mutations were identified in 36.4% and 33.3 % of the JAK2-unmutated group; most variants had unknown clinical significance. Not all genetic causes have been identified; comprehensive diagnostic approaches are crucial for identifying the cause of erythrocytosis.
Collapse
Affiliation(s)
- Youngeun Lee
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
- Department of Laboratory Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, Korea
| | - Soo Hyun Seo
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
- Department of Laboratory Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, Korea
| | - Jinho Kim
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
- Department of Laboratory Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, Korea
- Precision Medicine Center, Future Innovation Research Division, Seoul National University Bundang Hospital, Seongnam, Korea
| | - Sang-A Kim
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Ji Yun Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Jeong-Ok Lee
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Soo-Mee Bang
- Department of Internal Medicine, Seoul National University Bundang Hospital, Seoul National University College of Medicine, Seongnam, Korea
| | - Kyoung Un Park
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea
- Department of Laboratory Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, Korea
| | - Sang Mee Hwang
- Department of Laboratory Medicine, Seoul National University Bundang Hospital, 82, Gumi-ro 173beon-gil, Bundang-gu, Seongnam-si, Gyeonggi-do, Korea.
- Department of Laboratory Medicine, Seoul National University College of Medicine, 103, Daehak-ro, Jongno-gu, Seoul, Korea.
| |
Collapse
|
5
|
Komninaka V, Flevari P, Ntelaki EE, Yfanti E, Androutsakos T, Ntanasis-Stathopoulos I, Terpos E. High-Oxygen-Affinity Hemoglobins-Case Series and Review of the Literature. J Clin Med 2024; 13:458. [PMID: 38256595 PMCID: PMC10815990 DOI: 10.3390/jcm13020458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Modifications of the hemoglobin (Hb) structure in regions involving the regulation of oxygen transport may lead to an increased oxygen affinity for the hemoglobin molecule and impaired oxygen delivery to the tissues. Herein, we present six patients with high-oxygen-affinity Hb variants, either in heterozygous form or in compound heterozygosity (such as heterozygosity for Hb Hiroshima, Köln, Crete, and compound heterozygosity Hb Crete with β or δβ thalassemia), in order to demonstrate the need for prompt and accurate diagnosis and enrich the limited literature due to the rarity of such cases. Hb Crete, Hb Hiroshima, and Hb Köln have distinct pathophysiologies and may result in different clinical phenotypes. In conclusion, high-oxygen-affinity hemoglobins are rare and inherited within a dominant autosomal manner, have various clinical presentations, and should always be suspected in patients with erythrocytosis. Their management (as phlebotomy or low-dose aspirin) should be based on an individualized assessment of the risk of complications, the medical history, concomitant symptoms, and quality of life.
Collapse
Affiliation(s)
- Veroniki Komninaka
- Centre of Excellence in Rare Haematological (Haemoglobinopathies) & Rare Metabolic (Gaucher Disease) Diseases, Laiko General Hospital, 11527 Athens, Greece; (V.K.); (P.F.); (E.-E.N.); (E.Y.)
| | - Pagona Flevari
- Centre of Excellence in Rare Haematological (Haemoglobinopathies) & Rare Metabolic (Gaucher Disease) Diseases, Laiko General Hospital, 11527 Athens, Greece; (V.K.); (P.F.); (E.-E.N.); (E.Y.)
| | - Evangelia-Eleni Ntelaki
- Centre of Excellence in Rare Haematological (Haemoglobinopathies) & Rare Metabolic (Gaucher Disease) Diseases, Laiko General Hospital, 11527 Athens, Greece; (V.K.); (P.F.); (E.-E.N.); (E.Y.)
| | - Eleni Yfanti
- Centre of Excellence in Rare Haematological (Haemoglobinopathies) & Rare Metabolic (Gaucher Disease) Diseases, Laiko General Hospital, 11527 Athens, Greece; (V.K.); (P.F.); (E.-E.N.); (E.Y.)
| | - Theodoros Androutsakos
- Department of Pathophysiology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Ioannis Ntanasis-Stathopoulos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| | - Evangelos Terpos
- Department of Clinical Therapeutics, School of Medicine, National and Kapodistrian University of Athens, 11528 Athens, Greece
| |
Collapse
|
6
|
Barakat A, Jasuja R, Tomlinson L, Wenzel Z, Ramaiah L, Petterson BA, Kapinos B, Sawant A, Pagan V, Lintner N, Field D, Ahn Y, Knee KM. Effects of 2,3-DPG knockout on SCD phenotype in Townes SCD model mice. Am J Hematol 2023; 98:1838-1846. [PMID: 37688507 DOI: 10.1002/ajh.27082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 08/07/2023] [Accepted: 08/21/2023] [Indexed: 09/11/2023]
Abstract
Sickle cell disease (SCD) is a severe, multisystemic hematological disorder that impacts nearly every major organ in adults. The current approved treatments for SCD directly target mutant hemoglobin or address downstream disease pathology. Several compounds targeting reduction of 2,3-DPG by activation of Pyruvate Kinase-R are currently being evaluated in SCD patients. In this study, we genetically engineered a mouse lacking 2,3-DPG on the Townes SCD mouse model background and evaluated the effects of 2,3-DPG loss on disease pathology. Animals lacking 2,3-DPG showed improvements in hematological markers and reductions in RBC sickling relative to native Townes mice, however, minimal difference in organ damage was observed in 2,3-DPG deficient mice compared to native Townes animals. When animals lacking 2,3-DPG were dosed with a compound designed to increase hemoglobin oxygen affinity, oxygen delivery related toxicity was observed.
Collapse
Affiliation(s)
- Amey Barakat
- Rare Disease Research Unit, Worldwide Research, Development, and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Reema Jasuja
- Rare Disease Research Unit, Worldwide Research, Development, and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Lindsay Tomlinson
- Drug Safety Research and Development, Worldwide Research, Development, and Medical, Pfizer Inc, Groton, Connecticut, USA
| | - Zane Wenzel
- Discovery Sciences, Worldwide Research, Development, and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Lila Ramaiah
- Drug Safety Research and Development, Worldwide Research, Development, and Medical, Pfizer Inc, Groton, Connecticut, USA
| | - Betty A Petterson
- Drug Safety Research and Development, Worldwide Research, Development, and Medical, Pfizer Inc, Groton, Connecticut, USA
| | - Brendon Kapinos
- Discovery Sciences, Worldwide Research, Development, and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Anagha Sawant
- Rare Disease Research Unit, Worldwide Research, Development, and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Vicente Pagan
- Rare Disease Research Unit, Worldwide Research, Development, and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Nathanael Lintner
- Biomedicine Design, Worldwide Research, Development, and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Denise Field
- Medicine Design, Worldwide Research, Development, and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Youngwook Ahn
- Target Sciences, Worldwide Research, Development, and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| | - Kelly M Knee
- Rare Disease Research Unit, Worldwide Research, Development, and Medical, Pfizer Inc, Cambridge, Massachusetts, USA
| |
Collapse
|
7
|
Ramsook AH, Dominelli PB, Angus SA, Senefeld JW, Wiggins CC, Joyner MJ. The oxygen transport cascade and exercise: Lessons from comparative physiology. Comp Biochem Physiol A Mol Integr Physiol 2023; 282:111442. [PMID: 37182787 PMCID: PMC10330610 DOI: 10.1016/j.cbpa.2023.111442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 05/09/2023] [Accepted: 05/11/2023] [Indexed: 05/16/2023]
Abstract
Studies of animal physiology not only provide valuable knowledge for the species in question, but also offer insights into human physiology. This thought is best highlighted by the 'Krogh Principle', which states "for many problems there is an animal on which it can be most conveniently studied". This graphical review focuses on three distinct stages of the oxygen transport cascade in which human exercise physiology knowledge has been enhanced by studies carried out in animal models. We begin by exploring ventilation, and the detrimental effects of cold, dry air on the airways in two sets of elite athletes, the cross-country skier and the racing sled dog. We then discuss the transport of oxygen via hemoglobin in humans and deer mice with relatively shifted oxygen dissociation curves. Finally, we consider the technical difficulties of measuring respiratory muscle blood flow in exercising humans and how an equine model can provide an understanding of the distribution of blood flow during exercise. These cases illustrate the complementary nature of physiological studies across species.
Collapse
Affiliation(s)
- Andrew H Ramsook
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, USA. https://twitter.com/ahramsook
| | - Paolo B Dominelli
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Sarah A Angus
- Department of Kinesiology and Health Sciences, University of Waterloo, Waterloo, ON, Canada
| | - Jonathon W Senefeld
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, USA; Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA. https://twitter.com/jwsenefeld
| | - Chad C Wiggins
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, USA; Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA. https://twitter.com/cwiggs5
| | - Michael J Joyner
- Department of Anesthesia and Perioperative Medicine, Mayo Clinic, Rochester, USA; Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
8
|
Pruter WW, Klassen SA, Dominelli PB, Wiggins CC, Senefeld JW, Roy TK, Joyner MJ, Baker SE. Attenuated cardiac autonomic function in humans with high-affinity hemoglobin and compensatory polycythemia. Am J Physiol Regul Integr Comp Physiol 2023; 324:R625-R634. [PMID: 36878486 PMCID: PMC10085552 DOI: 10.1152/ajpregu.00113.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/28/2023] [Accepted: 03/01/2023] [Indexed: 03/08/2023]
Abstract
During hypoxic exposure, humans with high-affinity hemoglobin (and compensatory polycythemia) have blunted increases in heart rate compared with healthy humans with typical oxyhemoglobin dissociation curves. This response may be associated with altered autonomic control of heart rate. Our hypothesis-generating study aimed to investigate cardiac baroreflex sensitivity and heart rate variability among nine humans with high-affinity hemoglobin [6 females, O2 partial pressure at 50% [Formula: see text] (P50) = 16 ± 1 mmHg] compared with 12 humans with typical affinity hemoglobin (6 F, P50 = 26 ± 1 mmHg). Participants breathed normal room air for a 10-min baseline, followed by 20 min of isocapnic hypoxic exposure, designed to lower the arterial partial pressure O2 ([Formula: see text]) to ∼50 mmHg. Beat-by-beat heart rate and arterial blood pressure were recorded. Data were averaged in 5-min periods throughout the hypoxia exposure, beginning with the last 5 min of baseline in normoxia. Spontaneous cardiac baroreflex sensitivity and heart rate variability were determined using the sequence method and the time and frequency domain analyses, respectively. Cardiac baroreflex sensitivity was lower in humans with high-affinity hemoglobin than controls at baseline and during isocapnic hypoxic exposure (normoxia: 7 ± 4 vs. 16 ± 10 ms/mmHg, hypoxia minutes 15-20: 4 ± 3 vs. 14 ± 11 ms/mmHg; group effect: P = 0.02, high-affinity hemoglobin vs. control, respectively). Heart rate variability calculated in both the time (standard deviation of the N-N interval) and frequency (low frequency) domains was lower in humans with high-affinity hemoglobin than in controls (all P < 0.05). Our data suggest that humans with high-affinity hemoglobin may have attenuated cardiac autonomic function.
Collapse
Affiliation(s)
- Wyatt W Pruter
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Stephen A Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
- Department of Kinesiology, Brock University, St. Catharines, Ontario, Canada
| | - Paolo B Dominelli
- Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Tuhin K Roy
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah E Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
9
|
Kosenko E, Tikhonova L, Alilova G, Montoliu C. Erythrocytes Functionality in SARS-CoV-2 Infection: Potential Link with Alzheimer's Disease. Int J Mol Sci 2023; 24:5739. [PMID: 36982809 PMCID: PMC10051442 DOI: 10.3390/ijms24065739] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/19/2023] Open
Abstract
Coronavirus disease 2019 (COVID-19) is a rapidly spreading acute respiratory infection caused by SARS-CoV-2. The pathogenesis of the disease remains unclear. Recently, several hypotheses have emerged to explain the mechanism of interaction between SARS-CoV-2 and erythrocytes, and its negative effect on the oxygen-transport function that depends on erythrocyte metabolism, which is responsible for hemoglobin-oxygen affinity (Hb-O2 affinity). In clinical settings, the modulators of the Hb-O2 affinity are not currently measured to assess tissue oxygenation, thereby providing inadequate evaluation of erythrocyte dysfunction in the integrated oxygen-transport system. To discover more about hypoxemia/hypoxia in COVID-19 patients, this review highlights the need for further investigation of the relationship between biochemical aberrations in erythrocytes and oxygen-transport efficiency. Furthermore, patients with severe COVID-19 experience symptoms similar to Alzheimer's, suggesting that their brains have been altered in ways that increase the likelihood of Alzheimer's. Mindful of the partly assessed role of structural, metabolic abnormalities that underlie erythrocyte dysfunction in the pathophysiology of Alzheimer's disease (AD), we further summarize the available data showing that COVID-19 neurocognitive impairments most probably share similar patterns with known mechanisms of brain dysfunctions in AD. Identification of parameters responsible for erythrocyte function that vary under SARS-CoV-2 may contribute to the search for additional components of progressive and irreversible failure in the integrated oxygen-transport system leading to tissue hypoperfusion. This is particularly relevant for the older generation who experience age-related disorders of erythrocyte metabolism and are prone to AD, and provide an opportunity for new personalized therapies to control this deadly infection.
Collapse
Affiliation(s)
- Elena Kosenko
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Lyudmila Tikhonova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Gubidat Alilova
- Institute of Theoretical and Experimental Biophysics of Russian Academy of Sciences, 142290 Pushchino, Russia
| | - Carmina Montoliu
- Hospital Clinico Research Foundation, INCLIVA Health Research Institute, 46010 Valencia, Spain
- Pathology Department, Faculty of Medicine, University of Valencia, 46010 Valencia, Spain
| |
Collapse
|
10
|
Amaru R, Song J, Reading NS, Gordeuk VR, Prchal JT. "What We Know and What We Do Not Know about Evolutionary Genetic Adaptation to High Altitude Hypoxia in Andean Aymaras". Genes (Basel) 2023; 14:640. [PMID: 36980912 PMCID: PMC10048644 DOI: 10.3390/genes14030640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/08/2023] Open
Abstract
Three well-studied populations living at high altitudes are Tibetans, Andeans (Aymaras and Quechuas), and Ethiopians. Unlike Tibetans and Ethiopians who have similar hemoglobin (Hb) levels as individuals living at sea level, Aymara Hb levels increase when living at higher altitudes. Our previous whole genome study of Aymara people revealed several selected genes that are involved in cardiovascular functions, but their relationship with Hb levels was not elucidated. Here, we studied the frequencies of known evolutionary-selected variants in Tibetan and Aymara populations and their correlation with high Hb levels in Aymara. We genotyped 177 Aymaras at three different altitudes: 400 m (Santa Cruz), 4000 m (La Paz), and 5000 m (Chorolque), and correlated the results with the elevation of residence. Some of the Tibetan-selected variants also exist in Aymaras, but at a lower prevalence. Two of 10 Tibetan selected variants of EPAS1 were found (rs13005507 and rs142764723) and these variants did not correlate with Hb levels. Allele frequencies of 5 Aymara selected SNPs (heterozygous and homozygous) at 4000 m (rs11578671_BRINP3, rs34913965_NOS2, rs12448902_SH2B1, rs10744822_TBX5, and rs487105_PYGM) were higher compared to Europeans. The allelic frequencies of rs11578671_BRINP3, rs34913965_NOS2, and rs10744822_SH2B1 were significantly higher for Aymaras living at 5000 m than those at 400 m elevation. Variant rs11578671, close to the BRINP3 coding region, correlated with Hb levels in females. Variant rs34913965 (NOS2) correlated with leukocyte counts. Variants rs12448902 (SH2B1) and rs34913965 (NOS2) associated with higher platelet levels. The correlation of these SNPs with blood cell counts demonstrates that the selected genetic variants in Aymara influence hematopoiesis and cardiovascular effects.
Collapse
Affiliation(s)
- Ricardo Amaru
- Cell Biology Unit, School of Medicine, San Andres University, La Paz 0201, Bolivia
| | - Jihyun Song
- Division of Hematology, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| | - N. Scott Reading
- Division of Hematology, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
- Department of Pathology-ARUP Laboratories, University of Utah, Salt Lake City, UT 84132, USA
| | - Victor R. Gordeuk
- Department of Medicine, University of Illinois at Chicago, Chicago, IL 61820, USA
| | - Josef T. Prchal
- Division of Hematology, School of Medicine, University of Utah, Salt Lake City, UT 84132, USA
| |
Collapse
|
11
|
Resveratrol, a New Allosteric Effector of Hemoglobin, Enhances Oxygen Supply Efficiency and Improves Adaption to Acute Severe Hypoxia. Molecules 2023; 28:molecules28052050. [PMID: 36903296 PMCID: PMC10004267 DOI: 10.3390/molecules28052050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/09/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023] Open
Abstract
Acute altitude hypoxia represents the cause of multiple adverse consequences. Current treatments are limited by side effects. Recent studies have shown the protective effects of resveratrol (RSV), but the mechanism remains unknown. To address this, the effects of RSV on the structure and function of hemoglobin of adult (HbA) were preliminarily analyzed using surface plasmon resonance (SPR) and oxygen dissociation assays (ODA). Molecular docking was conducted to specifically analyze the binding regions between RSV and HbA. The thermal stability was characterized to further validate the authenticity and effect of binding. Changes in the oxygen supply efficiency of HbA and rat RBCs incubated with RSV were detected ex vivo. The effect of RSV on the anti-hypoxic capacity under acute hypoxic conditions in vivo was evaluated. We found that RSV binds to the heme region of HbA following a concentration gradient and affects the structural stability and rate of oxygen release of HbA. RSV enhances the oxygen supply efficiency of HbA and rat RBCs ex vivo. RSV prolongs the tolerance times of mice suffering from acute asphyxia. By enhancing the oxygen supply efficiency, it alleviates the detrimental effects of acute severe hypoxia. In conclusion, RSV binds to HbA and regulates its conformation, which enhances oxygen supply efficiency and improves adaption to acute severe hypoxia.
Collapse
|
12
|
Yesilaltay A, Degirmenci H, Bilgen T, Sirin DY, Bayir D, Degirmenci P, Tekinalp A, Alpsoy S, Okuturlar Y, Turgut B. Effects of idiopathic erythrocytosis on the left ventricular diastolic functions and the spectrum of genetic mutations: A case control study. Medicine (Baltimore) 2022; 101:e29881. [PMID: 35960118 PMCID: PMC9371516 DOI: 10.1097/md.0000000000029881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND We have aimed at exposing left ventricular diastolic functions and the presence of known genetic mutations for familial erythrocytosis, in patients who exhibit idiopathic erythrocytosis. METHODS Sixty-four patients with idiopathic erythrocytosis (mean age, 46.4 ± 2.7 years) and 30 age-matched healthy subjects were prospectively evaluated. The regions of interest of the erythropoietin receptor, hemoglobin beta-globin, von Hippel-Lindau, hypoxia-inducible factor 2 alpha, and Egl-9 family hypoxia-inducible factor genes were amplified by PCR. Left ventricular (LV) mass was measured by M-mode and 2-dimensional echocardiography. LV diastolic functions were assessed by conventional echocardiography and tissue Doppler imaging. RESULTS As a result of genetic analyses, genetic mutations for familial erythrocytosis were detected in 5 patients. It has been observed in our study that the risk of cardiovascular disorders is higher in patients. Interventricular septum thickness, left atrial diameter, and some diastolic function parameters such as deceleration time and isovolumetric relaxation time have been found to be significantly higher in idiopathic erythrocytosis group than in the controls. CONCLUSION This study has shown that LV diastolic functions were impaired in patients with idiopathic erythrocytosis. In this patient group with increased risk of cardiovascular disorders, the frequent genetic mutations have been detected in 5 patients only. Therefore, further clinical investigations are needed as novel genetic mutations may be discovered in patients with idiopathic erythrocytosis because of cardiovascular risk.
Collapse
Affiliation(s)
- Alpay Yesilaltay
- Division of Hematology, Department of Internal Medicine, Başkent University School of Medicine, İstanbul, Turkey
- Division of Hematology, Department of Internal Medicine, Acibadem Mehmet Ali Aydinlar University School of Medicine, İstanbul, Turkey
| | - Hasan Degirmenci
- Department of Cardiology, Tekirdag State Hospital, Tekirdag, Turkey
| | - Turker Bilgen
- Department of Nutrition and Dietetics, Tekirdag Namik Kemal University, School of Health, Tekirdag, Turkey
| | - Duygu Yasar Sirin
- Department of Molecular Biology and Genetics, Tekirdag Namik Kemal University, Faculty of Arts and Sciences, Tekirdag, Turkey
| | - Duygu Bayir
- Department of Internal Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Pelin Degirmenci
- Department of Internal Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Atakan Tekinalp
- Division of Hematology, Department of Internal Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Seref Alpsoy
- Department of Cardiology, Tekirdag Namik Kemal University, Tekirdag, Turkey
| | - Yildiz Okuturlar
- Department of Internal Medicine, Acibadem University School of Medicine, İstanbul, Turkey
- *Correspondence: Yildiz Okuturlar, Halkali Merkez, Turgut Ozal Bulvari No:16, Department of Internal Medicine, Acibadem Mehmet Ali Aydinlar University School of Medicine, Atakent Hospital, 34303 Kucukcekmece, İstanbul, Turkey (e-mail: )
| | - Burhan Turgut
- Division of Hematology, Department of Internal Medicine, Tekirdag Namik Kemal University, Tekirdag, Turkey
| |
Collapse
|
13
|
Charbe NB, Castillo F, Tambuwala MM, Prasher P, Chellappan DK, Carreño A, Satija S, Singh SK, Gulati M, Dua K, González-Aramundiz JV, Zacconi FC. A new era in oxygen therapeutics? From perfluorocarbon systems to haemoglobin-based oxygen carriers. Blood Rev 2022; 54:100927. [PMID: 35094845 DOI: 10.1016/j.blre.2022.100927] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Revised: 12/14/2021] [Accepted: 01/12/2022] [Indexed: 02/09/2023]
Abstract
Blood transfusion is the key to life in case of traumatic emergencies, surgeries and in several pathological conditions. An important goal of whole blood or red blood cell transfusion is the fast delivery of oxygen to vital organs and restoration of circulation volume. Whole blood or red blood cell transfusion has several limitations. Free haemoglobin not only loses its tetrameric configuration and extracts via the kidney leading to nephrotoxicity but also scavenges nitric oxide (NO), leading to vasoconstriction and hypertension. PFC based formulations transport oxygen in vivo, the contribution in terms of clinical outcome is challenging. The oxygen-carrying capacity is not the only criterion for the successful development of haemoglobin-based oxygen carriers (HBOCs). This review is a bird's eye view on the present state of the PFCs and HBOCs in which we analyzed the current modifications made or which are underway in development, their promises, and hurdles in clinical implementation.
Collapse
Affiliation(s)
- Nitin B Charbe
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; Department of Pharmaceutical Sciences, Rangel College of Pharmacy, Texas A&M University, Kingsville, TX 78363, USA
| | - Francisco Castillo
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile
| | - Murtaza M Tambuwala
- School of Pharmacy & Pharmaceutical Sciences, Ulster University, Coleraine, County Londonderry, BT52 1SA, Northern Ireland, UK
| | - Parteek Prasher
- UGC-Sponsored Centre for Advanced Studies, Department of Chemistry, Guru Nanak Dev University, Amritsar, India; Department of Chemistry, University of Petroleum & Energy Studies, Dehradun, India
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University, Kuala Lumpur, Malaysia
| | - Aurora Carreño
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; Laboratorio de Química Orgánica y Biomolecular, Escuela de Química, Universidad Industrial de Santander, Bucaramanga A.A 678, Colombia
| | - Saurabh Satija
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia; Faculty of Health, Australian Research Centre in Complementary & Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - José Vicente González-Aramundiz
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; Centro de Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile.
| | - Flavia C Zacconi
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; Centro de Investigación en Nanotecnología y Materiales Avanzados, CIEN-UC, Pontificia Universidad Católica de Chile, Av. Vicuña Mackenna 4860, Macul, Santiago 7820436, Chile; Institute for Biological and Medical Engineering, Schools of Engineering, Medicine and Biological Sciences, Pontificia Universidad Católica de Chile, Santiago, Chile.
| |
Collapse
|
14
|
Webb KL, Elshaer AN, Dominelli PB, Senefeld JW, Hammer SM, Baker SE, Shepherd JRA, Roy TK, Joyner MJ, Wiggins CC. Muscle oxygenation during normoxic and hypoxic cycling exercise in humans with high affinity haemoglobin. Exp Physiol 2022; 107:854-863. [PMID: 35603981 PMCID: PMC9357130 DOI: 10.1113/ep090308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022]
Abstract
NEW FINDINGS What is the central question of this study? Do humans with high affinity haemoglobin (HAH) demonstrate attenuated skeletal muscle deoxygenation during normoxic and hypoxic exercise? What is the main finding and its importance? Examination of NIRS-derived muscle oxygenation profiles suggests that fractional oxygen extraction is blunted during hypoxic exercise in humans with HAH compared to controls. However, muscle tissue oxygen saturation levels were higher in humans with HAH during exercise in normoxia compared to controls. These alterations in fractional oxygen extraction in humans with HAH may influence blood flow regulation and exercise capacity during hypoxia. ABSTRACT Recently, our lab has shown that humans with genetic mutations resulting in high affinity haemoglobin (HAH) demonstrate better maintained aerobic capacity and peak power output during hypoxic exercise versus normoxic exercise compared to humans with normal affinity haemoglobin. However, the influence of HAH on tissue oxygenation within exercising muscle during normoxia and hypoxia is unknown. Therefore, we examined near-infrared spectroscopy (NIRS)-derived oxygenation profiles of the vastus lateralis during graded cycling exercise in normoxia and hypoxia among humans with HAH (n = 5) and controls with normal affinity haemoglobin (n = 12). The HAH group elicited a blunted increase of deoxygenated haemoglobin+myoglobin during hypoxic exercise compared to the control group (P = 0.03), suggesting reduced fractional oxygen extraction in the HAH group. In addition, the HAH group maintained a higher level of muscle tissue oxygen saturation during normoxic exercise (HAH, 75 ± 4% vs. controls, 65 ± 3%, P = 0.049) and there were no differences between groups in muscle tissue oxygen saturation during hypoxic exercise (HAH, 68 ± 3% vs. controls, 68 ± 2%, P = 0.943). Overall, our results suggest that humans with HAH may demonstrate divergent patterns of fractional oxygen extraction during hypoxic exercise and elevated muscle tissue oxygenation during normoxic exercise compared to controls. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Kevin L Webb
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Ahmed N Elshaer
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States.,College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Paolo B Dominelli
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States.,Department of Kinesiology, University of Waterloo, Waterloo, Ontario, Canada
| | - Jonathon W Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Shane M Hammer
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Sarah E Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - John R A Shepherd
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Tuhin K Roy
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Michael J Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| | - Chad C Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, Minnesota, United States
| |
Collapse
|
15
|
Webb KL, Dominelli PB, Baker SE, Klassen SA, Joyner MJ, Senefeld JW, Wiggins CC. Influence of High Hemoglobin-Oxygen Affinity on Humans During Hypoxia. Front Physiol 2022; 12:763933. [PMID: 35095551 PMCID: PMC8795792 DOI: 10.3389/fphys.2021.763933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 12/22/2021] [Indexed: 01/11/2023] Open
Abstract
Humans elicit a robust series of physiological responses to maintain adequate oxygen delivery during hypoxia, including a transient reduction in hemoglobin-oxygen (Hb-O2) affinity. However, high Hb-O2 affinity has been identified as a beneficial adaptation in several species that have been exposed to high altitude for generations. The observed differences in Hb-O2 affinity between humans and species adapted to high altitude pose a central question: is higher or lower Hb-O2 affinity in humans more advantageous when O2 availability is limited? Humans with genetic mutations in hemoglobin structure resulting in high Hb-O2 affinity have shown attenuated cardiorespiratory adjustments during hypoxia both at rest and during exercise, providing unique insight into this central question. Therefore, the purpose of this review is to examine the influence of high Hb-O2 affinity during hypoxia through comparison of cardiovascular and respiratory adjustments elicited by humans with high Hb-O2 affinity compared to those with normal Hb-O2 affinity.
Collapse
Affiliation(s)
- Kevin L. Webb
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | | | - Sarah E. Baker
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Stephen A. Klassen
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- Department of Kinesiology, Brock University, St. Catharines, ON, Canada
| | - Michael J. Joyner
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Jonathon W. Senefeld
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
| | - Chad C. Wiggins
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN, United States
- *Correspondence: Chad C. Wiggins,
| |
Collapse
|
16
|
Dautova A, Khazhieva E, Isaeva E, Khabibulinna I, Shamratova V. Influence of motor activity and polymorphism I/D of ACE on the affinity of oxygen for hemoglobin. BIO WEB OF CONFERENCES 2022. [DOI: 10.1051/bioconf/20224801020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
The influence of rs4646994 polymorphism of the ACE gene on the affinity of oxygen for hemoglobin among young men with different levels of physical activity has been studied. 245 young men aged 20-22 years were included in the study. All young men were divided into three groups depending on their motor activity: low (LMA), average (AMA) and high (HMA). SatO2, pO2, pCO2, p50 and HbO2 were analyzed in capillary blood of all examined young men. It was found out that I/I genotype of the ACE gene is associated with a decrease in the affinity of oxygen for hemoglobin both in LMA (p=0.022) and in HMA (p=0.000096). The intensification of physical activity among I/D and D/D genotypes is accompanied by an increase in the level of hemoglobin oxygenation in blood, while the I/I genotype with part of HbO2 does not change depending on motor activity. These features can be explained by the shift of the oxygen dissociation curve to the left among young men with the *D allele genotype, with an increase in physical activity. On the contrary, the I/I genotype of the ACE gene have efficient oxygen extraction to tissues, regardless of the level of motor activity compared to the D/D genotype.
Collapse
|
17
|
Gangat N, Oliveira JL, Hoyer JD, Patnaik MM, Pardanani A, Tefferi A. High-oxygen-affinity hemoglobinopathy-associated erythrocytosis: Clinical outcomes and impact of therapy in 41 cases. Am J Hematol 2021; 96:1647-1654. [PMID: 34633117 DOI: 10.1002/ajh.26375] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/04/2021] [Accepted: 10/05/2021] [Indexed: 12/18/2022]
Abstract
We describe presenting features, treatment strategies, and follow-up events involving 41 patients (median age 39 years, range 1-81; 54% males) with high oxygen affinity (HOA) hemoglobinopathy-associated erythrocytosis, seen at our institution (1973-2020). Thirty-four (83%) patients carried β-chain (13 Malmo, 4 Olympia, 3 San Diego, 2 Wood) and 7 (17%) α-chain (4 Dallas and one each Columbia-Missouri, Jackson, and Wayne) variants. Median (range) hemoglobin (Hgb)/hematocrit (Hct), serum erythropoietin and p50 were 18 g/dL/52.9% (16-21.9/48-66), 10.4 mIU (4-36.3), and 20 mmHg (12-25), respectively. Family history was documented in 24 patients and history of thrombosis in two (5%). Treatment included phlebotomy in 23 and antiplatelet therapy in 21 patients. At a median follow-up of 10 years, 23 (56%) patients reported one or more symptoms that were thought to be related to their increased Hct while thrombosis was documented in 10 (24%) patients. Neither Hgb/Hct level nor active phlebotomy showed a significant correlation with either thrombotic or nonthrombotic symptoms (p > .1 in all instances). Among 23 pregnancies recorded, 78% resulted in live births and no fetal loss was attributed to erythrocytosis. The current study does not implicate Hgb/Hct level as a major contributor of morbidity in HOA hemoglobinopathy-associated erythrocytosis and suggests limited therapeutic value for phlebotomy.
Collapse
Affiliation(s)
- Naseema Gangat
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| | - Jennifer L. Oliveira
- Division of Hematopathology, Department of Laboratory Medicine Mayo Clinic Rochester Minnesota USA
| | - James D. Hoyer
- Division of Hematopathology, Department of Laboratory Medicine Mayo Clinic Rochester Minnesota USA
| | - Mrinal M. Patnaik
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| | - Animesh Pardanani
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| | - Ayalew Tefferi
- Division of Hematology, Department of Internal Medicine Mayo Clinic Rochester Minnesota USA
| |
Collapse
|
18
|
Testa ER, Masotti A, Valeri P, Geremia L, Brunetta V, Bontadini A. Unusual finding of high oxygen affinity haemoglobinopathy treated with phlebotomy: A rare but predictable union. Transfus Apher Sci 2021; 61:103290. [PMID: 34656444 DOI: 10.1016/j.transci.2021.103290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/16/2021] [Accepted: 10/07/2021] [Indexed: 10/20/2022]
Affiliation(s)
- Epifania Rita Testa
- Blood Transfusion Department, Santa Maria degli Angeli Hospital, Pordenone, Italy.
| | - Adriana Masotti
- Blood Transfusion Department, Santa Maria degli Angeli Hospital, Pordenone, Italy
| | - Patrizia Valeri
- Blood Transfusion Department, Santa Maria degli Angeli Hospital, Pordenone, Italy
| | - Luciana Geremia
- Blood Transfusion Department, Santa Maria degli Angeli Hospital, Pordenone, Italy
| | - Valeria Brunetta
- Blood Transfusion Department, Santa Maria degli Angeli Hospital, Pordenone, Italy
| | - Andrea Bontadini
- Blood Transfusion Department, Santa Maria degli Angeli Hospital, Pordenone, Italy
| |
Collapse
|
19
|
Woyke S, Ströhle M, Brugger H, Strapazzon G, Gatterer H, Mair N, Haller T. High-throughput determination of oxygen dissociation curves in a microplate reader-A novel, quantitative approach. Physiol Rep 2021; 9:e14995. [PMID: 34427400 PMCID: PMC8383715 DOI: 10.14814/phy2.14995] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/10/2021] [Indexed: 11/24/2022] Open
Abstract
In vitro determination of the hemoglobin oxygen dissociation curve (ODC) requires highly elaborate, specialized, and costly technical equipment. In addition, there is a lack of methods that combine reliable ODC recordings with high throughput in small blood samples for routine analysis. We here introduce a modified, commercial 96-well plate with an integrated unidirectional gas flow system specifically adapted for use in fluorescence microplate readers. Up to 92 samples of whole or hemolyzed, buffered or unbuffered blood, including appropriate controls or internal standard hemoglobin solutions, can be analyzed within ~25 min. Oxygen saturation is measured in each well with dual wavelength spectroscopy, and oxygen partial pressure using fluorescence lifetime of commercial oxygen sensors at the in- and outlet ports of the gas-flow system. Precision and accuracy of this method have been determined and were compared with those of a standard method. We further present two applications that exemplarily highlight the usefulness and impact of this novel approach for clinical diagnostics or basic research.
Collapse
Affiliation(s)
- Simon Woyke
- Department of Anaesthesiology and Critical Care MedicineMedical University of InnsbruckInnsbruckAustria
- Institute of Mountain Emergency MedicineEurac ResearchBolzanoItaly
| | - Mathias Ströhle
- Department of Anaesthesiology and Critical Care MedicineMedical University of InnsbruckInnsbruckAustria
| | - Hermann Brugger
- Department of Anaesthesiology and Critical Care MedicineMedical University of InnsbruckInnsbruckAustria
- Institute of Mountain Emergency MedicineEurac ResearchBolzanoItaly
| | - Giacomo Strapazzon
- Department of Anaesthesiology and Critical Care MedicineMedical University of InnsbruckInnsbruckAustria
- Institute of Mountain Emergency MedicineEurac ResearchBolzanoItaly
| | - Hannes Gatterer
- Institute of Mountain Emergency MedicineEurac ResearchBolzanoItaly
| | - Norbert Mair
- Department of Physiology and Medical PhysicsInstitute of PhysiologyMedical University of InnsbruckInnsbruckAustria
| | - Thomas Haller
- Department of Physiology and Medical PhysicsInstitute of PhysiologyMedical University of InnsbruckInnsbruckAustria
| |
Collapse
|
20
|
Tavakoli J, Ho G, Kavecansky J, Pai AP. A New High Affinity Hemoglobin Variant: Hb San Francisco-KP ( HBB: c.104T>C). Hemoglobin 2021; 45:154-156. [PMID: 34167411 DOI: 10.1080/03630269.2021.1943430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The evaluation of erythrocytosis can fail to detect hemoglobin (Hb) variants if a thorough and systemic investigation is not undertaken. Here we report the identification of a novel high-oxygen affinity Hb that was previously misclassified as polycythemia vera (PV). Given that treatment recommendations can vary significantly based on the etiology of erythrocytosis, familiarity with reference laboratories and their methodologies is of crucial importance to conducting a precise consultation, as in the case of our Hb variant, named Hb San Francisco-KP [β34(B16)Val→Ala, HBB: c.104T>C] for the city and medical center where it was discovered. The Mayo Clinic's (Rochester, MN, USA) Erythrocytosis Evaluation (REVE) panel was instrumental in establishing a final diagnosis. Of note, the patient's clinical response to phlebotomy distinguishes this subtype from many of the other high affinity Hbs where the erythrocytosis is primarily compensatory and not in need of venesection.
Collapse
Affiliation(s)
- Jahan Tavakoli
- Department of Hematology Oncology, San Francisco Medical Center, Kaiser Permanente Northern California, San Francisco, CA, USA
| | - Gwendolyn Ho
- Department of Hematology Oncology, Sacramento Medical Center, Kaiser Permanente Northern California, Sacramento, CA, USA
| | - Juraj Kavecansky
- Department of Hematology Oncology, Antioch Medical Center, Kaiser Permanente Northern California, Antioch, CA, USA
| | - Ashok P Pai
- Department of Hematology Oncology, Oakland Medical Center, Kaiser Permanente Northern California, Oakland, CA, USA
| |
Collapse
|
21
|
Anžej Doma S, Drnovšek E, Kristan A, Fink M, Sever M, Podgornik H, Belčič Mikič T, Debeljak N, Preložnik Zupan I. Diagnosis and management of non-clonal erythrocytosis remains challenging: a single centre clinical experience. Ann Hematol 2021; 100:1965-1973. [PMID: 34013406 PMCID: PMC8285333 DOI: 10.1007/s00277-021-04546-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 05/01/2021] [Indexed: 12/31/2022]
Abstract
Erythrocytosis has a diverse background. While polycythaemia vera has well defined criteria, the diagnostic approach and management of other types of erythrocytosis are more challenging. The aim of study was to retrospectively analyse the aetiology and management of non-clonal erythrocytosis patients referred to a haematology outpatient clinic in an 8-year period using a 3-step algorithm. The first step was inclusion of patients with Hb > 185 g/L and/or Hct > 0.52 in men and Hb > 165 g/L and/or Hct > 0.48 in women on two visits ≥ two months apart, thus confirming true erythrocytosis. Secondly, polycythaemia vera was excluded and secondary causes of erythrocytosis (SE) identified. Thirdly, idiopathic erythrocytosis patients (IE) were referred to next-generation sequencing for possible genetic background evaluation. Of the 116 patients, 75 (65%) are men and 41 (35%) women, with non-clonal erythrocytosis 34/116 (29%) had SE, 15/116 (13%) IE and 67/116 (58%) stayed incompletely characterized (ICE). Patients with SE were significantly older and had significantly higher Hb and Hct compared to patients with IE. Most frequently, SE was attributed to obstructive sleep apnoea and smoking. Phlebotomies were performed in 56, 53 and 40% of patients in the SE, IE, and ICE group, respectively. Approx. 70% of patients in each group received aspirin. Thrombotic events were registered in 12, 20 and 15% of SE, IE and ICE patients, respectively. Congenital erythrocytosis type 4 (ECYT4) was diagnosed in one patient. The study demonstrates real-life management of non-clonal erythrocytosis which could be optimized using a 3-step diagnostic algorithm.
Collapse
Affiliation(s)
- Saša Anžej Doma
- Department of Haematology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Eva Drnovšek
- Department of Haematology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.,Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Aleša Kristan
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Martina Fink
- Department of Haematology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia
| | - Matjaž Sever
- Department of Haematology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Helena Podgornik
- Department of Haematology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.,Faculty of Pharmacy, University of Ljubljana, Aškerčeva 7, 1000, Ljubljana, Slovenia
| | - Tanja Belčič Mikič
- Department of Haematology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia.,Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia
| | - Nataša Debeljak
- Medical Centre for Molecular Biology, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000, Ljubljana, Slovenia
| | - Irena Preložnik Zupan
- Department of Haematology, University Medical Centre Ljubljana, Zaloška 7, 1000, Ljubljana, Slovenia. .,Faculty of Medicine, University of Ljubljana, Korytkova 2, 1000, Ljubljana, Slovenia.
| |
Collapse
|
22
|
Vihinen M. Functional effects of protein variants. Biochimie 2020; 180:104-120. [PMID: 33164889 DOI: 10.1016/j.biochi.2020.10.009] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022]
Abstract
Genetic and other variations frequently affect protein functions. Scientific articles can contain confusing descriptions about which function or property is affected, and in many cases the statements are pure speculation without any experimental evidence. To clarify functional effects of protein variations of genetic or non-genetic origin, a systematic conceptualisation and framework are introduced. This framework describes protein functional effects on abundance, activity, specificity and affinity, along with countermeasures, which allow cells, tissues and organisms to tolerate, avoid, repair, attenuate or resist (TARAR) the effects. Effects on abundance discussed include gene dosage, restricted expression, mis-localisation and degradation. Enzymopathies, effects on kinetics, allostery and regulation of protein activity are subtopics for the effects of variants on activity. Variation outcomes on specificity and affinity comprise promiscuity, specificity, affinity and moonlighting. TARAR mechanisms redress variations with active and passive processes including chaperones, redundancy, robustness, canalisation and metabolic and signalling rewiring. A framework for pragmatic protein function analysis and presentation is introduced. All of the mechanisms and effects are described along with representative examples, most often in relation to diseases. In addition, protein function is discussed from evolutionary point of view. Application of the presented framework facilitates unambiguous, detailed and specific description of functional effects and their systematic study.
Collapse
Affiliation(s)
- Mauno Vihinen
- Department of Experimental Medical Science, BMC B13, Lund University, SE-22 184, Lund, Sweden.
| |
Collapse
|
23
|
Ponomarenko M, Sharypova E, Drachkova I, Chadaeva I, Arkova O, Podkolodnaya O, Ponomarenko P, Kolchanov N, Savinkova L. Unannotated single nucleotide polymorphisms in the TATA box of erythropoiesis genes show in vitro positive involvements in cognitive and mental disorders. BMC MEDICAL GENETICS 2020; 21:165. [PMID: 33092544 PMCID: PMC7579878 DOI: 10.1186/s12881-020-01106-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 08/11/2020] [Indexed: 12/20/2022]
Abstract
BACKGROUND Hemoglobin is a tetramer consisting of two α-chains and two β-chains of globin. Hereditary aberrations in the synthesis of one of the globin chains are at the root of thalassemia, one of the most prevalent monogenic diseases worldwide. In humans, in addition to α- and β-globins, embryonic zeta-globin and fetal γ-globin are expressed. Immediately after birth, the expression of fetal Aγ- and Gγ-globin ceases, and then adult β-globin is mostly expressed. It has been shown that in addition to erythroid cells, hemoglobin is widely expressed in nonerythroid cells including neurons of the cortex, hippocampus, and cerebellum in rodents; embryonic and adult brain neurons in mice; and mesencephalic dopaminergic brain cells in humans, mice, and rats. Lately, there is growing evidence that different forms of anemia (changes in the number and quality of blood cells) may be involved in (or may accompany) the pathogenesis of various cognitive and mental disorders, such as Alzheimer's and Parkinson's diseases, depression of various severity levels, bipolar disorders, and schizophrenia. Higher hemoglobin concentrations in the blood may lead to hyperviscosity, hypovolemia, and lung diseases, which may cause brain hypoxia and anomalies of brain function, which may also result in cognitive deficits. METHODS In this study, a search for unannotated single-nucleotide polymorphisms (SNPs) of erythroid genes was initially performed using our previously created and published SNP-TATA_Z-tester, which is a Web service for computational analysis of a given SNP for in silico estimation of its influence on the affinity of TATA-binding protein (TBP) for TATA and TATA-like sequences. The obtained predictions were finally verified in vitro by an electrophoretic mobility shift assay (EMSA). RESULTS On the basis of these experimental in vitro results and literature data, we studied TATA box SNPs influencing both human erythropoiesis and cognitive abilities. For instance, TBP-TATA affinity in the HbZ promoter decreases 6.6-fold as a result of a substitution in the TATA box (rs113180943), thereby possibly disrupting stage-dependent events of "switching" of hemoglobin genes and thus causing erythroblastosis. Therefore, rs113180943 may be a candidate marker of severe hemoglobinopathies with comorbid cognitive and mental disorders associated with cerebral blood flow disturbances. CONCLUSIONS The literature data and experimental and computations results suggest that the uncovered candidate SNP markers of erythropoiesis anomalies may also be studied in cohorts of patients with cognitive and/or mental disorders with comorbid erythropoiesis diseases in comparison to conventionally healthy volunteers. Research into the regulatory mechanisms by which the identified SNP markers contribute to the development of hemoglobinopathies and of the associated cognitive deficits will allow physicians not only to take timely and adequate measures against hemoglobinopathies but also to implement strategies preventing cognitive and mental disorders.
Collapse
Affiliation(s)
- Mikhail Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia. .,Novosibirsk State University, 1 Pirogova Street, Novosibirsk, 630090, Russia.
| | - Ekaterina Sharypova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina Drachkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Irina Chadaeva
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Olga Arkova
- Institute of Gene Biology Russian Academy of Sciences, 34/5 Vavilova Street, Moscow, 119334, Russia
| | - Olga Podkolodnaya
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Petr Ponomarenko
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Nikolay Kolchanov
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| | - Ludmila Savinkova
- Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, 10 Lavrentyev Ave, Novosibirsk, 630090, Russia
| |
Collapse
|
24
|
Jamwal M, Mallik N, Aravindan AV, Jain A, Sharma P, Malhotra P, Das R. Hemolytic erythrocytosis: an amalgamated phenotype from coinherited Chuvash polycythemia and G6PD Kerala-Kalyan with acquired transient stomatocytosis. Ann Hematol 2020; 100:2107-2109. [PMID: 33033909 DOI: 10.1007/s00277-020-04295-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 10/03/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Manu Jamwal
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Nabhajit Mallik
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Arun Vijayalakshmi Aravindan
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Arihant Jain
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Prashant Sharma
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India
| | - Pankaj Malhotra
- Department of Internal Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Reena Das
- Department of Hematology, Postgraduate Institute of Medical Education and Research, Sector 12, Chandigarh, 160012, India.
| |
Collapse
|
25
|
Oo TH. Secondary erythrocytosis due to hemoglobin San Diego. Proc (Bayl Univ Med Cent) 2020; 34:159-160. [PMID: 33456185 DOI: 10.1080/08998280.2020.1824980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
High-oxygen-affinity hemoglobin variants are a rare clinical entity that can present with secondary erythrocytosis. Herein, the author reports a case of a 41-year-old man with a 4-year history of secondary erythrocytosis of unknown etiology. Physical examination was unremarkable except for plethora of the palms. Myeloproliferative neoplasms and common causes of secondary erythrocytosis were ruled out. The P50 oxygen-hemoglobin dissociation curve was left shifted. Hemoglobin electrophoresis was silent; however, globin mass spectrometry revealed a β-globin variant. Globin sequencing confirmed hemoglobin San Diego. This case highlights the fact that rare high-oxygen-affinity variants should be considered in the differential diagnoses of secondary erythrocytosis.
Collapse
Affiliation(s)
- Thein Hlaing Oo
- Section of Benign Hematology, University of Texas M.D. Anderson Cancer Center, Houston, Texas
| |
Collapse
|
26
|
Chu Z, Wang Y, You G, Wang Q, Ma N, Li B, Zhao L, Zhou H. The P50 value detected by the oxygenation-dissociation analyser and blood gas analyser. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2020; 48:867-874. [DOI: 10.1080/21691401.2020.1770272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Affiliation(s)
- Zongtang Chu
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People’s Liberation Army, Beijing, P.R. China
| | - Ying Wang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People’s Liberation Army, Beijing, P.R. China
| | - Guoxing You
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People’s Liberation Army, Beijing, P.R. China
| | - Quan Wang
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People’s Liberation Army, Beijing, P.R. China
| | - Ning Ma
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People’s Liberation Army, Beijing, P.R. China
| | - Bingting Li
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People’s Liberation Army, Beijing, P.R. China
| | - Lian Zhao
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People’s Liberation Army, Beijing, P.R. China
| | - Hong Zhou
- Institute of Health Service and Transfusion Medicine, Academy of Military Medical Sciences, Academy of Military Science of the Chinese People’s Liberation Army, Beijing, P.R. China
| |
Collapse
|
27
|
Xiong H, Chen S. First Description of Hb San Diego ( HBB: c.328G>A) in a Chinese Family with Congenital Erythrocytosis. Hemoglobin 2019; 43:126-128. [PMID: 31304856 DOI: 10.1080/03630269.2019.1615940] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Congenital erythrocytosis is a rare and hereditary disorder of red blood cell (RBC) production that can be caused by high oxygen affinity hemoglobin (Hb) variants. We applied a genetic approach including whole exome sequencing and Sanger sequencing. We identified a heterozygous β-globin gene (Hb San Diego or HBB: c.328G>A) in exon 3 as a causative germline mutation in a Chinese family with congenital erythrocytosis. We concluded that in erythrocytosis with a dominant inheritance and normal or inappropriately high erythropoietin (EPO) levels, the high oxygen affinity Hb variants should be considered. In addition, as a tool for identification of mutations in congenital erythrocytosis, whole exome sequencing improves diagnostic accuracy and provides the opportunity for discovery of novel variants.
Collapse
Affiliation(s)
- Huixia Xiong
- a Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University , Suzhou , Jiangsu Province , People's Republic of China
| | - Suning Chen
- a Jiangsu Institute of Hematology, The First Affiliated Hospital of Soochow University , Suzhou , Jiangsu Province , People's Republic of China
| |
Collapse
|
28
|
McMullin MFF, Mead AJ, Ali S, Cargo C, Chen F, Ewing J, Garg M, Godfrey A, Knapper S, McLornan DP, Nangalia J, Sekhar M, Wadelin F, Harrison CN. A guideline for the management of specific situations in polycythaemia vera and secondary erythrocytosis: A British Society for Haematology Guideline. Br J Haematol 2019; 184:161-175. [PMID: 30426472 PMCID: PMC6519221 DOI: 10.1111/bjh.15647] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
| | - Adam J. Mead
- MRC Molecular Haematology UnitMRC Weatherall Institute of Molecular MedicineRadcliffe Department of MedicineUniversity of OxfordOxfordUK
| | - Sahra Ali
- Castle Hill HospitalHull and East Yorkshire Hospitals NHS TrustHullUK
| | | | - Frederick Chen
- The Royal London HospitalBart's Health NHS TrustLondonUK
| | - Joanne Ewing
- Birmingham Heart of England NHS Foundation TrustBirminghamUK
| | - Mamta Garg
- University Hospital of Leicester NHS TrustLeicester (BSH representative)UK
| | - Anna Godfrey
- Department of Haematology and Haematopathology and Oncology Diagnostic ServiceCambridge University Hospitals NHS Foundation TrustCambridgeUK
| | | | | | | | - Mallika Sekhar
- Royal Free London NHS Foundation TrustUniversity College London HospitalLondonUK
| | | | | | | |
Collapse
|
29
|
Boster J, Howells J, Devine R. Hemoglobin San Diego: An Uncommon Cause of Hereditary Erythrocytosis Discovered Incidentally in a Military Trainee. Mil Med 2018; 184:e486-e488. [DOI: 10.1093/milmed/usy295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 10/08/2018] [Accepted: 10/15/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Joshua Boster
- Department of Medicine, Internal Medicine Residency, Brooke Army Medical Center, San Antonio, TX
| | - Joseph Howells
- Department of Medicine, Division of Hematology Oncology, Brooke Army Medical Center, San Antonio, TX
| | - Ryan Devine
- Department of Medicine, Division of Hematology Oncology, Brooke Army Medical Center, San Antonio, TX
| |
Collapse
|
30
|
Yılmaz Keskin E, Fettah A, Oliveira AC, Toprak Ş, Lopes A, Bento C. First Observation of Hemoglobin San Diego, a High Oxygen Affinity Hemoglobin Variant, in Turkey. Turk J Haematol 2017; 34:372-373. [PMID: 28832008 PMCID: PMC5774358 DOI: 10.4274/tjh.2017.0213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Ebru Yılmaz Keskin
- Süleyman Demirel University Faculty of Medicine, Department of Pediatric Hematology and Oncology, Isparta, Turkey
| | - Ali Fettah
- Süleyman Demirel University Faculty of Medicine, Department of Pediatric Hematology and Oncology, Isparta, Turkey
| | | | - Şule Toprak
- Süleyman Demirel University Faculty of Medicine, Department of Pediatric Hematology and Oncology, Isparta, Turkey
| | - Andreia Lopes
- Coimbra University, Centro Hospital, Clinic of Hematology, Coimbra, Portugal
| | - Celeste Bento
- Coimbra University, Centro Hospital, Clinic of Hematology, Coimbra, Portugal.,CIAS, Coimbra University, Department of Life Sciences, Coimbra, Portugal
| |
Collapse
|
31
|
Li C, Li X, Liu J, Fan X, You G, Zhao L, Zhou H, Li J, Lei H. Investigation of the differences between the Tibetan and Han populations in the hemoglobin–oxygen affinity of red blood cells and in the adaptation to high-altitude environments. Hematology 2017; 23:309-313. [PMID: 29130390 DOI: 10.1080/10245332.2017.1396046] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Cuiying Li
- Department of Blood Transfusion, General Hospital of Air Force, Beijing, People’s Republic of China
| | - Xiaowei Li
- Department of Blood Transfusion, General Hospital of Air Force, Beijing, People’s Republic of China
| | - Juan Liu
- Department of Blood Transfusion, General Hospital of Air Force, Beijing, People’s Republic of China
| | - Xiu Fan
- Department of Blood Transfusion, General Hospital of Air Force, Beijing, People’s Republic of China
| | - Guoxing You
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing Institute of Transfusion Medicine, Beijing, People’s Republic of China
| | - Lian Zhao
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing Institute of Transfusion Medicine, Beijing, People’s Republic of China
| | - Hong Zhou
- Beijing Key Laboratory of Blood Safety and Supply Technologies, Beijing Institute of Transfusion Medicine, Beijing, People’s Republic of China
| | - Jingqi Li
- Department of Blood Transfusion, General Hospital of Air Force, Beijing, People’s Republic of China
| | - Huifen Lei
- Department of Blood Transfusion, General Hospital of Air Force, Beijing, People’s Republic of China
| |
Collapse
|
32
|
Altinoz MA, Ince B. Hemoglobins emerging roles in mental disorders. Metabolical, genetical and immunological aspects. Int J Dev Neurosci 2017; 61:73-85. [PMID: 28694195 DOI: 10.1016/j.ijdevneu.2017.06.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 06/23/2017] [Accepted: 06/26/2017] [Indexed: 12/13/2022] Open
Abstract
Hemoglobin (Hb) expression in the central nervous system is recently shown. Cooccurences of mental disorders (mainly bipolar disorder (BD) and tic disorders) with β- or α-thalassemia trait or erythrocytosis were witnessed, which may be due to peripheral or central hypoxia/hyperoxia or haplotypal gene interactions. β-Globin genes reside at 11p15.5 close to tyrosine hydroxylase, dopamine receptor DRD4 and Brain Derived Neurotrophic Factor, which involve in psychiatric diseases. α-Globin genes reside at 16p13.3 which associates with BD, tic disorders, ATR-16 Syndrome and Rubinstein Taybi Syndrome (RTS). CREB-Binding Protein (CEBBP)-gene is mutated in RTS, which commonly associates with mood disorders. 16p13.3 region also contains GRIN2A gene encoding N-methyl-d-aspartate receptor-2A and SSTR5 (Somatostatin Receptor-5), again involving in mental disorders. We demonstrated a protective role of minor HbA2 against post-partum episodes in BD and association of higher minor HbF (fetal hemoglobin) levels with family history of psychosis in a BD-patient cohort. HbA2 increases in cardiac ischemia and in mountain dwellers indicating its likely protection against ischemia/hypoxia. HMGIY, a repressive transcription factor of δ-globin chain of HbA2 is increased in lymphocytes of schizophrenics. In autism, deletional mutations were found in BCL11A gene, which cause persistence of HbF at high levels in adulthood. Also, certain polymorphisms in BCL11A strongly associate with schizophrenia. Further, many drugs from anabolic steroids to antimalarial agents elevate HbF and may cause mania. We ascribe a protective role to HbA2 and a maladaptive detrimental role to HbF in psychopathology. We believe that future studies on hemoglobins may pave to discover novel pathogenesis mechanisms in mental disorders.
Collapse
Affiliation(s)
| | - Bahri Ince
- Department of Psychiatry, Bakirkoy Education and Research Hospital for Psychiatry, Turkey
| |
Collapse
|