1
|
Rahman MA, Akter S, Ashrafudoulla M, Rapak MT, Lee KO, Ha SD. Targeted insights into Aeromonas hydrophila biofilms: Surface preferences, resistance mechanisms, and gene expression. Poult Sci 2025; 104:104851. [PMID: 40043669 PMCID: PMC11927691 DOI: 10.1016/j.psj.2025.104851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 03/24/2025] Open
Abstract
This study provides a comprehensive analysis of biofilm formation, antibiotic resistance, motility, and gene expression in four Aeromonas hydrophila strains-ATCC 15467, ATCC 7966, KCTC 2358, and KCTC 11533-on stainless steel (SS), silicon rubber (SR), polyethylene terephthalate (PET), and high-density polyethylene (HDPE) surfaces over 24, 48, 72, and 96 h. Biofilm formation peaked at 72 h, with ATCC 7966 demonstrating the highest biofilm density on PET (6.50 ± 0.08 log CFU/cm²), underscoring PET's role as a favorable substrate for biofilm development. In contrast, HDPE consistently exhibited the lowest biofilm levels, reflecting its potential as a biofilm-resistant material. Antibiotic susceptibility profiling revealed multidrug resistance (MDR) in ATCC 15467 and KCTC 11533 (MARI = 0.80), particularly against beta-lactams, aminoglycosides, and fluoroquinolones while ATCC 7966 and KCTC 2358 displayed moderate resistance. Motility assays highlighted strain-specific capabilities, with KCTC 11533 exhibiting the highest swimming motility (76.0 ± 6.6 mm) and KCTC 2358 excelling in swarming (47.7 ± 3.5 mm). Genetic analysis confirmed the presence of luxS and ahyR in all strains, while csgA was exclusive to ATCC 7966, correlating with its superior biofilm formation. Confocal microscopy revealed biofilm maturation dynamics, with red fluorescence indicating cell death and aging at 96 h, while SEM images captured intricate surface-specific biofilm architectures. These findings elucidate the critical interplay between strain characteristics, surface properties, and incubation time, providing a foundation for developing targeted strategies to control A. hydrophila biofilms in food processing environments.
Collapse
Affiliation(s)
- Md Ashikur Rahman
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea; Bangladesh Fisheries Research Institute, Mymensingh 2201, Bangladesh
| | - Shirin Akter
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea; Department of Fisheries and Marine Bioscience, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Md Ashrafudoulla
- National Institute of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Food Science, Center for Food Safety, University of Arkansas System Division of Agriculture, Fayetteville, AR 72704, USA
| | - Meidistria Tandi Rapak
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea
| | - Kyung Ok Lee
- Food Safety Division Research Institute of Food Hygiene, Hyundai green food, Yongin, Republic of Korea
| | - Sang-Do Ha
- Food Safety and Regulatory Science, Chung-Ang University, Anseong-Si, Republic of Korea; GreenTech-based Food Safety Research Group, BK21 Four, Chung-Ang University, 4726 Seodong-daero, Anseong, Gyeonggido 17546, Republic of Korea.
| |
Collapse
|
2
|
Dong J, Li S, Zhou S, Liu Y, Yang Q, Xu N, Yang Y, Cheng B, Ai X. Novel Insights into the Therapeutic Effect of Amentoflavone Against Aeromonas hydrophila Infection by Blocking the Activity of Aerolysin. Int J Mol Sci 2025; 26:2370. [PMID: 40076989 PMCID: PMC11900166 DOI: 10.3390/ijms26052370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/03/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025] Open
Abstract
Aeromonas hydrophila (A. hydrophila) is an opportunistic and foodborne pathogen widely spread in the environments, particularly aquatic environments. Diseases caused by A. hydrophila in freshwater aquaculture result in huge economic losses every year. The increasing emergence of antibiotic resistance has limited the application of antibiotics in aquaculture. Aerolysin (AerA), the main virulence factor produced by A. hydrophila, has been identified as a promising target for developing drugs controlling A. hydrophila infection. Here, we found that the natural compound amentoflavone (AMF) with the MIC of 512 μg/mL against A. hydrophila could dose-dependently reduce the hemolysis of AerA, ranging from 0.5 to 4 μg/mL. Molecular docking and dynamics simulation results predicted that AMF could directly bind to domain 3 of AerA via Pro333 and Trp375 residues. Then, the binding sites were confirmed by fluorescence quenching assays. The results of heptamer formation demonstrated that the binding of AMF could affect the formation of oligomers and result in the loss of pore-forming activity. Cell viability assay showed that AerA after treatment with AMF ranging from 0.5 to 4 μg/mL could significantly reduce AerA-mediated cytotoxicity. Moreover, experimental therapeutics results showed that channel catfish infected with A. hydrophila and then administered with 20 mg/kg AMF at intervals of 12 h for 3 days could increase the survival rate by 35% compared with the positive control after a 10-day observation. These findings provided a novel approach to developing anti-infective drugs and a promising candidate for controlling A. hydrophila infection in aquaculture.
Collapse
Affiliation(s)
- Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Shengping Li
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
- College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Shun Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Yibin Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| | - Bo Cheng
- Key Laboratory of Aquatic Product Quality and Safety Control, Ministry of Agriculture and Rural Affairs, Chinese Academy of Fishery Sciences, Beijing 100141, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan 430223, China
| |
Collapse
|
3
|
Lubis AR, Sumon MAA, Dinh-Hung N, Dhar AK, Delamare-Deboutteville J, Kim DH, Shinn AP, Kanjanasopa D, Permpoonpattana P, Doan HV, Linh NV, Brown CL. Review of quorum-quenching probiotics: A promising non-antibiotic-based strategy for sustainable aquaculture. JOURNAL OF FISH DISEASES 2024; 47:e13941. [PMID: 38523339 DOI: 10.1111/jfd.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/25/2024] [Accepted: 03/01/2024] [Indexed: 03/26/2024]
Abstract
The emergence of antibiotic-resistant bacteria (ARBs) and genes (ARGs) in aquaculture underscores the urgent need for alternative veterinary strategies to combat antimicrobial resistance (AMR). These measures are vital to reduce the likelihood of entering a post-antibiotic era. Identifying environmentally friendly biotechnological solutions to prevent and treat bacterial diseases is crucial for the sustainability of aquaculture and for minimizing the use of antimicrobials, especially antibiotics. The development of probiotics with quorum-quenching (QQ) capabilities presents a promising non-antibiotic strategy for sustainable aquaculture. Recent research has demonstrated the effectiveness of QQ probiotics (QQPs) against a range of significant fish pathogens in aquaculture. QQ disrupts microbial communication (quorum sensing, QS) by inhibiting the production, replication, and detection of signalling molecules, thereby reducing bacterial virulence factors. With their targeted anti-virulence approach, QQPs have substantial promise as a potential alternative to antibiotics. The application of QQPs in aquaculture, however, is still in its early stages and requires additional research. Key challenges include determining the optimal dosage and treatment regimens, understanding the long-term effects, and integrating QQPs with other disease control methods in diverse aquaculture systems. This review scrutinizes the current literature on antibiotic usage, AMR prevalence in aquaculture, QQ mechanisms and the application of QQPs as a sustainable alternative to antibiotics.
Collapse
Affiliation(s)
- Anisa Rilla Lubis
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Md Afsar Ahmed Sumon
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nguyen Dinh-Hung
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | - Arun K Dhar
- Aquaculture Pathology Laboratory, School of Animal & Comparative Biomedical Sciences, The University of Arizona, Tucson, Arizona, USA
| | | | - Do-Hyung Kim
- Department of Aquatic Life Medicine, College of Fisheries Science, Pukyong National University, Busan, Republic of Korea
| | | | - Duangkhaetita Kanjanasopa
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand
| | - Patima Permpoonpattana
- Agricultural Science and Technology Program, Faculty of Innovative Agriculture and Fishery Establishment Project, Prince of Songkla University, Surat Thani Campus, Surat Thani, Thailand
| | - Hien Van Doan
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Nguyen Vu Linh
- Department of Animal and Aquatic Sciences, Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
- Functional Feed Innovation Center (FuncFeed), Faculty of Agriculture, Chiang Mai University, Chiang Mai, Thailand
| | - Christopher L Brown
- FAO World Fisheries University Pilot Programme, Pukyong National University, Busan, South Korea
| |
Collapse
|
4
|
Neil B, Cheney GL, Rosenzweig JA, Sha J, Chopra AK. Antimicrobial resistance in aeromonads and new therapies targeting quorum sensing. Appl Microbiol Biotechnol 2024; 108:205. [PMID: 38349402 PMCID: PMC10864486 DOI: 10.1007/s00253-024-13055-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/31/2024] [Accepted: 02/05/2024] [Indexed: 02/15/2024]
Abstract
Aeromonas species (spp.) are well-known fish pathogens, several of which have been recognized as emerging human pathogens. The organism is capable of causing a wide spectrum of diseases in humans, ranging from gastroenteritis, wound infections, and septicemia to devastating necrotizing fasciitis. The systemic form of infection is often fatal, particularly in patients with underlying chronic diseases. Indeed, recent trends demonstrate rising numbers of hospital-acquired Aeromonas infections, especially in immuno-compromised individuals. Additionally, Aeromonas-associated antibiotic resistance is an increasing challenge in combating both fish and human infections. The acquisition of antibiotic resistance is related to Aeromonas' innate transformative properties including its ability to share plasmids and integron-related gene cassettes between species and with the environment. As a result, alternatives to antibiotic treatments are desperately needed. In that vein, many treatments have been proposed and studied extensively in the fish-farming industry, including treatments that target Aeromonas quorum sensing. In this review, we discuss current strategies targeting quorum sensing inhibition and propose that such studies empower the development of novel chemotherapeutic approaches to combat drug-resistant Aeromonas spp. infections in humans. KEY POINTS: • Aeromonas notoriously acquires and maintains antimicrobial resistance, making treatment options limited. • Quorum sensing is an essential virulence mechanism in Aeromonas infections. • Inhibiting quorum sensing can be an effective strategy in combating Aeromonas infections in animals and humans.
Collapse
Affiliation(s)
- Blake Neil
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Gabrielle L Cheney
- John Sealy School of Medicine, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Jason A Rosenzweig
- Department of Biology, Texas Southern University, Houston, TX, 77004, USA
| | - Jian Sha
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA
| | - Ashok K Chopra
- Department of Microbiology and Immunology, Medical Branch, University of Texas, Galveston, TX, 77555, USA.
| |
Collapse
|
5
|
Zhang T, Zhang M, Xu Z, He Y, Zhao X, Cheng H, Chen X, Xu J, Ding Z. The Screening of the Protective Antigens of Aeromonas hydrophila Using the Reverse Vaccinology Approach: Potential Candidates for Subunit Vaccine Development. Vaccines (Basel) 2023; 11:1266. [PMID: 37515081 PMCID: PMC10383140 DOI: 10.3390/vaccines11071266] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/14/2023] [Accepted: 07/19/2023] [Indexed: 07/30/2023] Open
Abstract
The threat of bacterial septicemia caused by Aeromonas hydrophila infection to aquaculture growth can be prevented through vaccination, but differences among A. hydrophila strains may affect the effectiveness of non-conserved subunit vaccines or non-inactivated A. hydrophila vaccines, making the identification and development of conserved antigens crucial. In this study, a bioinformatics analysis of 4268 protein sequences encoded by the A. hydrophila J-1 strain whole genome was performed based on reverse vaccinology. The specific analysis included signal peptide prediction, transmembrane helical structure prediction, subcellular localization prediction, and antigenicity and adhesion evaluation, as well as interspecific and intraspecific homology comparison, thereby screening the 39 conserved proteins as candidate antigens for A. hydrophila vaccine. The 9 isolated A. hydrophila strains from diseased fish were categorized into 6 different molecular subtypes via enterobacterial repetitive intergenic consensus (ERIC)-PCR technology, and the coding regions of 39 identified candidate proteins were amplified via PCR and sequenced to verify their conservation in different subtypes of A. hydrophila and other Aeromonas species. In this way, conserved proteins were screened out according to the comparison results. Briefly, 16 proteins were highly conserved in different A. hydrophila subtypes, of which 2 proteins were highly conserved in Aeromonas species, which could be selected as candidate antigens for vaccines development, including type IV pilus secretin PilQ (AJE35401.1) and TolC family outer membrane protein (AJE35877.1). The present study screened the conserved antigens of A. hydrophila by using reverse vaccinology, which provided basic foundations for developing broad-spectrum protective vaccines of A. hydrophila.
Collapse
Affiliation(s)
- Ting Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Minying Zhang
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zehua Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yang He
- Key Laboratory of Sichuan Province for Fishes Conservation and Utilization in the Upper Reaches of the Yangtze River, Neijiang Normal University, Neijiang 641000, China
| | - Xiaoheng Zhao
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Hanliang Cheng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiangning Chen
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jianhe Xu
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
| | - Zhujin Ding
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Co-Innovation Center of Jiangsu Marine Bio-Industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Key Laboratory of Marine Biotechnology, School of Marine Science and Fisheries, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Lianyungang 222005, China
| |
Collapse
|
6
|
Enhanced Hemolytic Activity of Mesophilic Aeromonas salmonicida SRW-OG1 Is Brought about by Elevated Temperatures. Microorganisms 2022; 10:microorganisms10102033. [PMID: 36296309 PMCID: PMC9609485 DOI: 10.3390/microorganisms10102033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 11/17/2022] Open
Abstract
Aeromonas salmonicida is a well-known cold-water pathogenic bacterium. Previously, we reported the first isolation of pathogenic A. salmonicida from diseased Epinephelus coioides, a kind of warm-water fish, and it was proved to be a putative mesophilic strain with potent pathogenicity to humans. In order to investigate the mechanisms underlying mesophilic growth ability and virulence, the transcriptome of A. salmonicida SRW-OG1 at 18, 28, and 37 °C was analyzed. The transcriptome of A. salmonicida SRW-OG1 at different temperatures showed a clear separation boundary, which might provide valuable information for the temperature adaptation and virulence regulation of A. salmonicida SRW-OG1. Interestingly, aerA and hlyA, the hemolytic genes encoding aerolysin and hemolysin, were found to be significantly up-regulated at 28 and 37 °C. Since aerolysin and hemolysin are the most well-known and -characterized virulence factors of pathogenic Aeromonas strains, the induction of aerA and hlyA was associated with the mesophilic virulence. Further study proved that the extracellular products (ECPs) purchased from A. salmonicida SRW-OG1 cultured at 28 and 37 °C showed elevated hemolytic activity and virulence than those at 18 °C. Moreover, the silence of aerA and hlyA led to significantly decreased hemolysis and virulence. Taken together, our results revealed that the mesophilic virulence of A. salmonicida SRW-OG1 might be due to the enhanced expression of aerA and hlyA induced by elevated temperatures.
Collapse
|
7
|
Heyse J, Props R, Kongnuan P, De Schryver P, Rombaut G, Defoirdt T, Boon N. Rearing water microbiomes in white leg shrimp (Litopenaeus vannamei) larviculture assemble stochastically and are influenced by the microbiomes of live feed products. Environ Microbiol 2020; 23:281-298. [PMID: 33169932 DOI: 10.1111/1462-2920.15310] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/21/2020] [Accepted: 11/06/2020] [Indexed: 01/22/2023]
Abstract
The development of effective management strategies to reduce the occurrence of diseases in aquaculture is hampered by the limited knowledge on the microbial ecology of these systems. In this study, the dynamics and dominant community assembly processes in the rearing water of Litopenaeus vannamei larviculture tanks were determined. Additionally, the contribution of peripheral microbiomes, such as those of live and dry feeds, to the rearing water microbiome were quantified. The community assembly in the hatchery rearing water over time was dominated by stochasticity, which explains the observed heterogeneity between replicate cultivations. The community undergoes two shifts that match with the dynamics of the algal abundances in the rearing water. Source tracking analysis revealed that 37% of all bacteria in the hatchery rearing water were introduced either by the live or dry feeds, or during water exchanges. The contribution of the microbiome from the algae was the largest, followed by that of the Artemia, the exchange water and the dry feeds. Our findings provide fundamental knowledge on the assembly processes and dynamics of rearing water microbiomes and illustrate the crucial role of these peripheral microbiomes in maintaining health-promoting rearing water microbiomes.
Collapse
Affiliation(s)
- Jasmine Heyse
- Center for Microbial Ecology and Technology (CMET), Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Ruben Props
- Center for Microbial Ecology and Technology (CMET), Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | | | | | - Geert Rombaut
- INVE Technologies NV, Hoogveld 93, Dendermonde, 9200, Belgium
| | - Tom Defoirdt
- Center for Microbial Ecology and Technology (CMET), Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Department of Biochemical and Microbial Technology, Ghent University, Coupure Links 653, Ghent, 9000, Belgium
| |
Collapse
|
8
|
Barger PC, Liles MR, Newton JC. Type II Secretion Is Essential for Virulence of the Emerging Fish Pathogen, Hypervirulent Aeromonas hydrophila. Front Vet Sci 2020; 7:574113. [PMID: 33088835 PMCID: PMC7544816 DOI: 10.3389/fvets.2020.574113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/24/2020] [Indexed: 11/18/2022] Open
Abstract
Hypervirulent Aeromonas hydrophila (vAh) is an emerging pathogen in freshwater aquaculture systems. In the U.S.A., outbreaks of motile aeromonad septicemia associated with vAh result in the loss of over 3 million pounds of channel catfish from Southeastern production systems each year. A. hydrophila is a well-known opportunistic pathogen that secretes degradative and potentially toxigenic proteins, and the rapid mortality that occurs when catfish are challenged with vAh by intraperitoneal injection suggests that vAh-induced motile aeromonad septicemia may be, in part, a toxin-mediated disease. While vAh isolates from carp isolated in China possess complete Type I, Type II, and Type VI secretion systems, many of the US catfish isolates only possess complete Type I and Type II secretions systems. In order to determine the role of secreted proteins in vAh-induced disease, and to determine the extent of protein secretion by the Type II secretion pathway, an exeD secretin mutant was constructed using a recombineering method in the well-characterized US vAh strain, ML09-119. Wild-type and mutant secretomes were analyzed for protein content by SDS-PAGE and by assays for specific enzymes and toxins. Type II secretion-deficient mutants had a near complete loss of secreted proteins and enzyme/toxin activity, including hemolytic and proteolytic activity. The intact Type II secretion system was cloned and used to complement the deletion mutant, ML09-119 exeD, which restored protein secretion and the degradative and toxigenic potential. In vivo challenges in channel catfish resulted in complete attenuation of virulence in ML09-119 exeD, while the complemented mutant was observed to have restored virulence. These results indicate that secreted proteins are critical to vAh virulence, and that the Type II secretion system is the primary secretory pathway utilized for multiple effectors of vAh pathogenesis.
Collapse
Affiliation(s)
- Priscilla C. Barger
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
- Biological Sciences, College of Sciences and Math, Auburn University, Auburn, AL, United States
| | - Mark R. Liles
- Biological Sciences, College of Sciences and Math, Auburn University, Auburn, AL, United States
| | - Joseph C. Newton
- Department of Pathobiology, College of Veterinary Medicine, Auburn University, Auburn, AL, United States
| |
Collapse
|
9
|
Complete genome sequence of fish-pathogenic Aeromonas hydrophila HX-3 and a comparative analysis: insights into virulence factors and quorum sensing. Sci Rep 2020; 10:15479. [PMID: 32968153 PMCID: PMC7512022 DOI: 10.1038/s41598-020-72484-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 08/31/2020] [Indexed: 12/19/2022] Open
Abstract
The gram-negative, aerobic, rod-shaped bacterium Aeromonas hydrophila, the causative agent of motile aeromonad septicaemia, has attracted increasing attention due to its high pathogenicity. Here, we constructed the complete genome sequence of a virulent strain, A. hydrophila HX-3 isolated from Pseudosciaena crocea and performed comparative genomics to investigate its virulence factors and quorum sensing features in comparison with those of other Aeromonas isolates. HX-3 has a circular chromosome of 4,941,513 bp with a 61.0% G + C content encoding 4483 genes, including 4318 protein-coding genes, and 31 rRNA, 127 tRNA and 7 ncRNA operons. Seventy interspersed repeat and 153 tandem repeat sequences, 7 transposons, 8 clustered regularly interspaced short palindromic repeats, and 39 genomic islands were predicted in the A. hydrophila HX-3 genome. Phylogeny and pan-genome were also analyzed herein to confirm the evolutionary relationships on the basis of comparisons with other fully sequenced Aeromonas genomes. In addition, the assembled HX-3 genome was successfully annotated against the Cluster of Orthologous Groups of proteins database (76.03%), Gene Ontology database (18.13%), and Kyoto Encyclopedia of Genes and Genome pathway database (59.68%). Two-component regulatory systems in the HX-3 genome and virulence factors profiles through comparative analysis were predicted, providing insights into pathogenicity. A large number of genes related to the AHL-type 1 (ahyI, ahyR), LuxS-type 2 (luxS, pfs, metEHK, litR, luxOQU) and QseBC-type 3 (qseB, qseC) autoinducer systems were also identified. As a result of the expression of the ahyI gene in Escherichia coli BL21 (DE3), combined UPLC-MS/MS profiling led to the identification of several new N-acyl-homoserine lactone compounds synthesized by AhyI. This genomic analysis determined the comprehensive QS systems of A. hydrophila, which might provide novel information regarding the mechanisms of virulence signatures correlated with QS.
Collapse
|
10
|
Ethnobotanical biosynthesis of gold nanoparticles and its downregulation of Quorum Sensing-linked AhyR gene in Aeromonas hydrophila. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2368-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
11
|
Sun L, Yao Z, Guo Z, Zhang L, Wang Y, Mao R, Lin Y, Fu Y, Lin X. Comprehensive analysis of the lysine acetylome in Aeromonas hydrophila reveals cross-talk between lysine acetylation and succinylation in LuxS. Emerg Microbes Infect 2020; 8:1229-1239. [PMID: 31448697 PMCID: PMC6735345 DOI: 10.1080/22221751.2019.1656549] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Lysine acetylation and succinylation are both prevalent protein post-translational modifications (PTMs) in bacteria species, whereas the effect of the cross-talk between both PTMs on bacterial biological function remains largely unknown. Our previously study found lysine succinylated sites on proteins play important role on metabolic pathways in fish pathogenic Aeromonas hydrophila. A total of 3189 lysine-acetylation sites were further identified on 1013 proteins of this pathogen using LC-MS/MS in this study. Functional examination of these PTMs peptides showed associations with basal biological processes, especially metabolic pathways. Additionally, when comparing the obtained lysine acetylome to a previously obtained lysine succinylome, 1198 sites in a total of 547 proteins were found to be in common and associated with various metabolic pathways. As the autoinducer-2 (AI-2) synthase involved in quorum sensing of bacteria, the site-directed mutagenesis of LuxS at the K165 site was performed and revealed that the cross-talk between lysine acetylation and succinylation exerts an inverse influence on bacterial quorum sensing and on LuxS enzymatic activity. In summary, this study provides an in-depth A. hydrophila lysine acetylome profile and for the first time reveals the role of cross-talk between lysine acetylation and succinylation, and its potential impact on bacterial physiological functions.
Collapse
Affiliation(s)
- Lina Sun
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China
| | - Zujie Yao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China.,Shanghai Key Laboratory of Plant Functional Genomics and Resources, Shanghai Chenshan Plant Science Research Center, Chinese Academy of Sciences , Shanghai , People's Republic of China
| | - Zhuang Guo
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China
| | - Lishan Zhang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China
| | - Yuqian Wang
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China
| | - Ranran Mao
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China
| | - Yuexu Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China
| | - Yuying Fu
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China
| | - Xiangmin Lin
- Fujian Provincial Key Laboratory of Agroecological Processing and Safety Monitoring, School of Life Sciences, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China.,Key Laboratory of Crop Ecology and Molecular Physiology, Fujian Agriculture and Forestry University, Fujian Province University , Fuzhou , People's Republic of China.,Key Laboratory of Marine Biotechnology of Fujian Province, Institute of Oceanology, Fujian Agriculture and Forestry University , Fuzhou , People's Republic of China
| |
Collapse
|
12
|
John N, Vidyalakshmi VB, Hatha AAM. Effect of pH and Salinity on the Production of Extracellular Virulence Factors by Aeromonas from Food Sources. J Food Sci 2019; 84:2250-2255. [PMID: 31313323 DOI: 10.1111/1750-3841.14729] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 06/08/2019] [Accepted: 06/10/2019] [Indexed: 11/29/2022]
Abstract
The ability to produce various extracellular enzymes is considered as an important virulence feature in Aeromonas spp., in addition to producing specific virulence factors such as aerolysin and hemolysin. In this study, the effect of salinity and pH on the production of extracellular virulence factors by Aeromonas was investigated. Aeromonas was obtained from different food sources. A comparative study of the activities of extracellular enzymes secreted by these bacteria at different environmental conditions can widen our understanding on their pathogenicity. The activities of various extracellular enzymes such as amylase, gelatinase, and caseinase, which are implicated as virulence factors, were measured in vitro by calculating the enzymatic activity index (EAI) of each enzyme using standard laboratory protocols. For all enzymes, a significant change (P < 0.05) in the EAI was observed when the concentration of NaCl in the media increased from 0.5% to 3%. Among three enzymes tested, caseinase was found to be affected the most by salinity, with a significant difference in EAI when NaCl concentration in the media increased from 0.5% to 2%. Similarly, amylase was found to be affected the most by acidity. The pH values ranging from 6 to 9 did not exert any significant change in EAI of amylase; however, a pH value of 5 had a significant effect. Overall, compared to salinity, the change in pH was found to be less effective in controlling the extracellular virulence factor production in Aeromonas. PRACTICAL APPLICATIONS: The practical application is to minimize the extracellular virulence factor production by Aeromonas in food commodities by altering the salt content and pH. The results demonstrate that an increase in salinity and a decrease in pH can minimize the extracellular virulence factor production by Aeromonas spp.
Collapse
Affiliation(s)
- Nifty John
- Dept. of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Lakeside Campus, Cochin Univ. of Science and Technology, Cochin, 682 016, Kerala, India
| | - V B Vidyalakshmi
- Dept. of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Lakeside Campus, Cochin Univ. of Science and Technology, Cochin, 682 016, Kerala, India
| | - A A Mohamed Hatha
- Dept. of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Lakeside Campus, Cochin Univ. of Science and Technology, Cochin, 682 016, Kerala, India
| |
Collapse
|
13
|
Zhang DX, Kang YH, Song MF, Shu HP, Guo SN, Jia JP, Tao LT, Zhao ZL, Zhang L, Wang CF, Wang GQ, Qian AD, Shan XF. Identity and virulence properties of Aeromonas isolates from healthy Northern snakehead (Channa argus) in China. Lett Appl Microbiol 2019; 69:100-109. [PMID: 31107978 DOI: 10.1111/lam.13172] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Revised: 04/16/2019] [Accepted: 05/07/2019] [Indexed: 12/29/2022]
Abstract
Members of the genus Aeromonas are opportunistic pathogen of a variety of aquatic animals that exhibits multidrug resistance, phenotypes, virulence genes and virulence. The present study described the species distribution and the potential pathogenicity of Aeromonas isolated from healthy Northern snakehead (Channa argus) in China. Molecular identification revealed that A. veronii biovar veronii (69/167; 41·3%) and A. hydrophila (41/167; 24·6%) were the most common species found in Northern snakehead intestine based on sequencing of the 16S rRNA gene and DNA gyrase subunit B protein. The distribution of seven virulence factors including aer (84·4%), act (80·8%), ser (40·1%), Aha (27·5%), lip (23·4%), exu (15·0%) and LuxS (12·6%) were determined exclusively in Aeromonas isolates. All the seven virulence genes were present in 9·6% (16/167), among which 11 strains were identified as A. veronii biovar veronii. For the strains harbouring seven virulence genes, the 50% lethal doses (LD50 ) of isolates were lower compared to the isolates carrying two virulence genes. The challenge tests revealed that isolate W31 had the lowest lethal dose, causing 50% mortality at 4·5 × 103 colony-forming units (CFU) per ml. Furthermore, histopathology of Northern snakehead infected with Aeromonas strains showed necrosis and congestion in liver, spleen and kidney and also damage to the intestine. This study confirms that the Aeromonas strains isolated from healthy Northern snakehead may be a cause of concern for public health. SIGNIFICANCE AND IMPACT OF THE STUDY: Aeromonas species are widely distributed in aquatic environments and have considerable virulence potential. The aim of this study was to identify Aeromonas strains isolated from healthy Northern snakehead, and to investigate if Aeromonas species isolated from healthy fish potential pathogenicity with special reference to virulence and epidemiology studies.
Collapse
Affiliation(s)
- D-X Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Y-H Kang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - M-F Song
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - H-P Shu
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - S-N Guo
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - J-P Jia
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - L-T Tao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - Z-L Zhao
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - L Zhang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - C-F Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - G-Q Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - A-D Qian
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| | - X-F Shan
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, China
| |
Collapse
|
14
|
Liu L, Yan Y, Feng L, Zhu J. Quorum sensing asaI mutants affect spoilage phenotypes, motility, and biofilm formation in a marine fish isolate of Aeromonas salmonicida. Food Microbiol 2018; 76:40-51. [DOI: 10.1016/j.fm.2018.04.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Revised: 04/14/2018] [Accepted: 04/15/2018] [Indexed: 10/17/2022]
|
15
|
Dong J, Liu Y, Xu N, Yang Q, Ai X. Morin Protects Channel Catfish From Aeromonas hydrophila Infection by Blocking Aerolysin Activity. Front Microbiol 2018; 9:2828. [PMID: 30519232 PMCID: PMC6258893 DOI: 10.3389/fmicb.2018.02828] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Accepted: 11/05/2018] [Indexed: 11/13/2022] Open
Abstract
Aeromonas hydrophila (A. hydrophila) is an opportunistic bacterial pathogen widely distributed in the environments, particular aquatic environment. The pathogen can cause a range of infections in both human and animals including fishes. However, the application of antibiotics in treatment of A. hydrophila infections leads to the emergence of resistant strains. Consequently, new approaches need to be developed in fighting this pathogen. Aerolysin, the chief virulence factor produced by pathogenic A. hydrophila strains has been employed as target identifying new drugs. In our present study, we found that morin, a flavonoid without anti-bacterial activity isolated from traditional Chinese medicine, could directly inhibit the hemolytic activity of aerolysin. To determine the binding sites and the action of mechanism of morin against AerA, several assays were performed. Ser36, Pro347, and Arg356 were identified as the main binding sites affecting the conformation of AerA and resulted in block of the heptameric formation. Moreover, morin could protect Vero cells from cell injury mediated by aerolysin. In vivo study showed that morin could provide a protection to channel catfish against A. hydrophila infection. These results demonstrated that morin could be developed as a promising candidate for the treatment of A. hydrophila infections by decreasing the pathogenesis of A. hydrophila.
Collapse
Affiliation(s)
- Jing Dong
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Yongtao Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Ning Xu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Qiuhong Yang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| | - Xiaohui Ai
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, China.,Key Laboratory of Control of Quality and Safety for Aquatic Products, Ministry of Agriculture, Beijing, China
| |
Collapse
|
16
|
See-Too WS, Convey P, Pearce DA, Chan KG. Characterization of a novel N-acylhomoserine lactonase, AidP, from Antarctic Planococcus sp. Microb Cell Fact 2018; 17:179. [PMID: 30445965 PMCID: PMC6240239 DOI: 10.1186/s12934-018-1024-6] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 11/07/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND N-acylhomoserine lactones (AHLs) are well-studied signalling molecules produced by some Gram-negative Proteobacteria for bacterial cell-to-cell communication or quorum sensing. We have previously demonstrated the degradation of AHLs by an Antarctic bacterium, Planococcus versutus L10.15T, at low temperature through the production of an AHL lactonase. In this study, we cloned the AHL lactonase gene and characterized the purified novel enzyme. RESULTS Rapid resolution liquid chromatography analysis indicated that purified AidP possesses high AHL-degrading activity on unsubstituted, and 3-oxo substituted homoserine lactones. Liquid chromatography-mass spectrometry analysis confirmed that AidP functions as an AHL lactonase that hydrolyzes the ester bond of the homoserine lactone ring of AHLs. Multiple sequence alignment analysis and phylogenetic analysis suggested that the aidP gene encodes a novel AHL lactonase enzyme. The amino acid composition analysis of aidP and the homologous genes suggested that it might be a cold-adapted enzyme, however, the optimum temperature is 28 °C, even though the thermal stability is low (reduced drastically above 32 °C). Branch-site analysis of several aidP genes of Planococcus sp. branch on the phylogenetic trees also showed evidence of episodic positive selection of the gene in cold environments. Furthermore, we demonstrated the effects of covalent and ionic bonding, showing that Zn2+ is important for activity of AidP in vivo. The pectinolytic inhibition assay confirmed that this enzyme attenuated the pathogenicity of the plant pathogen Pectobacterium carotovorum in Chinese cabbage. CONCLUSION We demonstrated that AidP is effective in attenuating the pathogenicity of P. carotovorum, a plant pathogen that causes soft-rot disease. This anti-quorum sensing agent is an enzyme with low thermal stability that degrades the bacterial signalling molecules (AHLs) that are produced by many pathogens. Since the enzyme is most active below human body temperature (below 28 °C), and lose its activity drastically above 32 °C, the results of a pectinolytic inhibition assay using Chinese cabbage indicated the potential of this anti-quorum sensing agent to be safely applied in the field trials.
Collapse
Affiliation(s)
- Wah Seng See-Too
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia
- National Antarctic Research Centre, IPS Building, University Malaya, 50603, Kuala Lumpur, Malaysia
| | - Peter Convey
- National Antarctic Research Centre, IPS Building, University Malaya, 50603, Kuala Lumpur, Malaysia
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 OET, UK
| | - David A Pearce
- National Antarctic Research Centre, IPS Building, University Malaya, 50603, Kuala Lumpur, Malaysia
- British Antarctic Survey, NERC, High Cross, Madingley Road, Cambridge, CB3 OET, UK
- Applied Sciences, University of Northumbria at Newcastle, Newcastle-upon-Tyne, NE1 8ST, UK
| | - Kok-Gan Chan
- Division of Genetics and Molecular Biology, Institute of Biological Sciences, Faculty of Science, University of Malaya, 50603, Kuala Lumpur, Malaysia.
- International Genome Centre, Jiangsu University, Zhenjiang, China.
| |
Collapse
|
17
|
Dong Y, Wang Y, Liu J, Ma S, Awan F, Lu C, Liu Y. Discovery of lahS as a Global Regulator of Environmental Adaptation and Virulence in Aeromonas hydrophila. Int J Mol Sci 2018; 19:E2709. [PMID: 30208624 PMCID: PMC6163582 DOI: 10.3390/ijms19092709] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 01/06/2023] Open
Abstract
Aeromonas hydrophila is an important aquatic microorganism that can cause fish hemorrhagic septicemia. In this study, we identified a novel LysR family transcriptional regulator (LahS) in the A. hydrophila Chinese epidemic strain NJ-35 from a library of 947 mutant strains. The deletion of lahS caused bacteria to exhibit significantly decreased hemolytic activity, motility, biofilm formation, protease production, and anti-bacterial competition ability when compared to the wild-type strain. In addition, the determination of the fifty percent lethal dose (LD50) in zebrafish demonstrated that the lahS deletion mutant (ΔlahS) was highly attenuated in virulence, with an approximately 200-fold increase in LD50 observed as compared with that of the wild-type strain. However, the ΔlahS strain exhibited significantly increased antioxidant activity (six-fold). Label-free quantitative proteome analysis resulted in the identification of 34 differentially expressed proteins in the ΔlahS strain. The differentially expressed proteins were involved in flagellum assembly, metabolism, redox reactions, and cell density induction. The data indicated that LahS might act as a global regulator to directly or indirectly regulate various biological processes in A. hydrophila NJ-35, contributing to a greater understanding the pathogenic mechanisms of A. hydrophila.
Collapse
Affiliation(s)
- Yuhao Dong
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yao Wang
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Jin Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Shuiyan Ma
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Furqan Awan
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Chengping Lu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
18
|
Zhou Y, Fan Y, Jiang N, Liu W, Shi Y, Zhao J, Zeng L. Molecular characteristics and virulence analysis of eight Aeromonas hydrophila isolates obtained from diseased Amur sturgeon Acipenser schrenckii Brandt, 1869. J Vet Med Sci 2018; 80:421-426. [PMID: 29367518 PMCID: PMC5880820 DOI: 10.1292/jvms.17-0529] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Aeromonas hydrophila is an opportunistic pathogen of a variety of aquatic animals that displays extreme diversity in drug resistance, phenotypes, virulence genes, and virulence. In this study, eight
pathogenic A. hydrophila strains were isolated from diseased Amur sturgeons and investigated for their sensitivity to select antibiotics, their phenotype, virulence genes, and virulence. According to the
phylogenetic analysis of the DNA gyrase subunit B protein, the eight isolates formed a single branch in the A. hydrophila group. The antibiotics ceftazidime, cefuroxime, cefoperazone, cefotaxime,
ceftriaxone, aztreonam, and cefepime appeared effective against them. All of the isolates possessed the virulence genes for aerolysin, flagellin, heat-stable cytotonic enterotoxin, heat-labile cytotonic enterotoxin,
hemolysin, and elastase, while only one isolate, HZ8, possessed the gene for lateral flagella. The cytolytic enterotoxin and lipase genes were present in all isolates, except in ZJ10 and ZJ12. Enterobacterial repetitive
intergenic consensus sequence PCR indicated that the eight A. hydrophila isolates could be divided into four types. Isolates YW2, TR3, HZ8 and ZJ10, each representing a different type, were selected for
challenge experiments. The challenge tests revealed that isolate HZ8 had the lowest lethal dose, causing 50% mortality at 2.30 × 104 colony forming units (cfu)/ml. The isolate ZJ10 had the
highest LD50, 1.25 × 106 cfu/ml. Knowledge of the characteristics of the A. hydrophila isolates obtained from Amur sturgeon will be beneficial in developing
potential disease control strategies.
Collapse
Affiliation(s)
- Yong Zhou
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Yuding Fan
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Nan Jiang
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Wenzhi Liu
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Yuheng Shi
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Jianqing Zhao
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| | - Lingbing Zeng
- Yangtze River Fisheries Research Institute, Chinese Academy of Fishery Sciences, Wuhan, Hubei, 430223, China
| |
Collapse
|
19
|
Talagrand-Reboul E, Jumas-Bilak E, Lamy B. The Social Life of Aeromonas through Biofilm and Quorum Sensing Systems. Front Microbiol 2017; 8:37. [PMID: 28163702 PMCID: PMC5247445 DOI: 10.3389/fmicb.2017.00037] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Accepted: 01/06/2017] [Indexed: 01/25/2023] Open
Abstract
Bacteria of the genus Aeromonas display multicellular behaviors herein referred to as “social life”. Since the 1990s, interest has grown in cell-to-cell communication through quorum sensing signals and biofilm formation. As they are interconnected, these two self-organizing systems deserve to be considered together for a fresh perspective on the natural history and lifestyles of aeromonads. In this review, we focus on the multicellular behaviors of Aeromonas, i.e., its social life. First, we review and discuss the available knowledge at the molecular and cellular levels for biofilm and quorum sensing. We then discuss the complex, subtle, and nested interconnections between the two systems. Finally, we focus on the aeromonad multicellular coordinated behaviors involved in heterotrophy and virulence that represent technological opportunities and applied research challenges.
Collapse
Affiliation(s)
- Emilie Talagrand-Reboul
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire (CHRU) de MontpellierMontpellier, France
| | - Estelle Jumas-Bilak
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département d'Hygiène Hospitalière, Centre Hospitalier Régional Universitaire (CHRU) de MontpellierMontpellier, France
| | - Brigitte Lamy
- Équipe Pathogènes Hydriques Santé Environnements, UMR 5569 HSM, Université de MontpellierMontpellier, France; Département de Bactériologie, Centre Hospitalier Universitaire (CHU) de NiceNice, France
| |
Collapse
|
20
|
Guo X, Liu X, Wu L, Pan J, Yang H. The algicidal activity of Aeromonas sp. strain GLY-2107 against bloom-forming Microcystis aeruginosa is regulated by N-acyl homoserine lactone-mediated quorum sensing. Environ Microbiol 2016; 18:3867-3883. [PMID: 27105123 DOI: 10.1111/1462-2920.13346] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 04/15/2016] [Indexed: 11/27/2022]
Abstract
Cyanobacterial blooms have disrupted the efficient utilization of freshwater worldwide. A new freshwater bacterial strain with strong algicidal activity, GLY-2107, was isolated from Lake Taihu and identified as Aeromonas sp. It produced two algicidal compounds: 2107-A (3-benzyl-piperazine-2,5-dione) and 2107-B (3-methylindole). Both compounds exhibited potent algicidal activities against Microcystis aeruginosa, the dominant bloom-forming cyanobacterium in Lake Taihu. The EC50 values (concentration for 50% maximal effect) of 3-benzyl-piperazine-2,5-dione and 3-methylindole were 4.72 and 1.10 μg ml-1 respectively. Based on a thin-layer chromatography biosensor assay and ultra-performance liquid chromatography-coupled high resolution-tandem mass spectrometry (UPLC-HRMS/MS), the N-acyl homoserine lactone (AHL) profile of strain GLY-2107 was identified as two short side-chain AHLs: N-butyryl-homoserine lactone (C4-HSL) and N-hexanoyl-homoserine lactone (C6-HSL). The production of the two algicidal compounds was controlled by AHL-mediated quorum sensing (QS), and C4-HSL was the key QS signal for the algicidal activity of the strain GLY-2107. Moreover, 3-methylindole was found to be positively regulated by C4-HSL-mediated QS, whereas 3-benzyl-piperazine-2,5-dione might be negatively controlled by C4-HSL-mediated QS. This study suggests that a QS-regulated algicidal system may have potential use for the development of a novel control strategy for harmful cyanobacterial blooms.
Collapse
Affiliation(s)
- Xingliang Guo
- State Key Laboratory of Microbial metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Xianglong Liu
- State Key Laboratory of Microbial metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Lishuang Wu
- State Key Laboratory of Microbial metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Jianliang Pan
- State Key Laboratory of Microbial metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| | - Hong Yang
- State Key Laboratory of Microbial metabolism, School of Life Science & Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, P.R. China
| |
Collapse
|
21
|
Quorum sensing regulated phenotypes in Aeromonas hydrophila ATCC 7966 deficient in AHL production. ANN MICROBIOL 2016. [DOI: 10.1007/s13213-016-1196-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
22
|
Wang N, Wu Y, Pang M, Liu J, Lu C, Liu Y. Protective efficacy of recombinant hemolysin co-regulated protein (Hcp) of Aeromonas hydrophila in common carp (Cyprinus carpio). FISH & SHELLFISH IMMUNOLOGY 2015; 46:297-304. [PMID: 26093203 DOI: 10.1016/j.fsi.2015.06.019] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 06/12/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
Motile aeromonad septicemia (MAS) caused by Aeromonas hydrophila is one of the common bacterial causes of fish mortalities. Prophylactic vaccination against this and other diseases is essential for continued growth of aquaculture. The type VI secretion system (T6SS) plays a crucial role in the virulence of A. hydrophila. The hemolysin co-regulated protein (Hcp) is an integral component of the T6SS apparatus and is considered a hallmark of T6SS function. Here, the T6SS effector Hcp was expressed and characterized, and its immunogenicity and protective efficacy were evaluated in common carp (Cyprinus carpio). Hcp secretion was found to be strongly induced by low temperature in A. hydrophila. Immunoblot analysis demonstrated that Hcp is conserved among A. hydrophila strains of different origins. The vaccination with recombinant Hcp resulted in an increased survival (46.67%) in common carp during a 10-day challenge time compared to non-vaccinated fish (7.14%). The vaccinated fish also showed the significantly increased levels of IgM antibody in serum and cytokines such as inerleukin-1β (IL-1β) and tumor necrosis factor-α (TNF-α) in kidney, spleen and gills. The recombinant Hcp shows promise as a vaccine candidate against A. hydrophila.
Collapse
Affiliation(s)
- Nannan Wang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yafeng Wu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Maoda Pang
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Jin Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China
| | - Yongjie Liu
- College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China.
| |
Collapse
|
23
|
Zhao J, Chen M, Quan CS, Fan SD. Mechanisms of quorum sensing and strategies for quorum sensing disruption in aquaculture pathogens. JOURNAL OF FISH DISEASES 2015; 38:771-786. [PMID: 25219871 DOI: 10.1111/jfd.12299] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2014] [Revised: 07/02/2014] [Accepted: 07/07/2014] [Indexed: 06/03/2023]
Abstract
In many countries, infectious diseases are a considerable threat to aquaculture. The pathogenicity of micro-organisms that infect aquaculture systems is closely related to the release of virulence factors and the formation of biofilms, both of which are regulated by quorum sensing (QS). Thus, QS disruption is a potential strategy for preventing disease in aquaculture systems. QS inhibitors (QSIs) not only inhibit the expression of virulence-associated genes but also attenuate the virulence of aquaculture pathogens. In this review, we discuss QS systems in important aquaculture pathogens and focus on the relationship between QS mechanisms and bacterial virulence in aquaculture. We further elucidate QS disruption strategies for targeting aquaculture pathogens. Four main types of QSIs that target aquaculture pathogens are discussed based on their mechanisms of action.
Collapse
Affiliation(s)
- J Zhao
- Key Laboratory of Biochemical Engineering State Ethnic Affairs Commission-Ministry of Education, Dalian Nationalities University, Dalian, China
- College of Life Science, Dalian Nationalities University, Dalian, China
| | - M Chen
- College of Bioengineering, Dalian Polytechnic University, Dalian, China
| | - C S Quan
- Key Laboratory of Biochemical Engineering State Ethnic Affairs Commission-Ministry of Education, Dalian Nationalities University, Dalian, China
- College of Life Science, Dalian Nationalities University, Dalian, China
| | - S D Fan
- Key Laboratory of Biochemical Engineering State Ethnic Affairs Commission-Ministry of Education, Dalian Nationalities University, Dalian, China
- College of Life Science, Dalian Nationalities University, Dalian, China
| |
Collapse
|
24
|
Effect of salinity and incubation time of planktonic cells on biofilm formation, motility, exoprotease production, and quorum sensing of Aeromonas hydrophila. Food Microbiol 2015; 49:142-51. [DOI: 10.1016/j.fm.2015.01.016] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 11/29/2014] [Accepted: 01/31/2015] [Indexed: 01/13/2023]
|
25
|
Rowe HM, Withey JH, Neely MN. Zebrafish as a model for zoonotic aquatic pathogens. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 46:96-107. [PMID: 24607289 PMCID: PMC4096445 DOI: 10.1016/j.dci.2014.02.014] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/22/2014] [Accepted: 02/22/2014] [Indexed: 06/03/2023]
Abstract
Aquatic habitats harbor a multitude of bacterial species. Many of these bacteria can act as pathogens to aquatic species and/or non-aquatic organisms, including humans, that come into contact with contaminated water sources or colonized aquatic organisms. In many instances, the bacteria are not pathogenic to the aquatic species they colonize and are only considered pathogens when they come into contact with humans. There is a general lack of knowledge about how the environmental lifestyle of these pathogens allows them to persist, replicate and produce the necessary pathogenic mechanisms to successfully transmit to the human host and cause disease. Recently, the zebrafish infectious disease model has emerged as an ideal system for examining aquatic pathogens, both in the aquatic environment and during infection of the human host. This review will focus on how the zebrafish has been used successfully to analyze the pathogenesis of aquatic bacterial pathogens.
Collapse
Affiliation(s)
- Hannah M Rowe
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Jeffrey H Withey
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA.
| | - Melody N Neely
- Department of Immunology and Microbiology, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
26
|
Beaz-Hidalgo R, Figueras MJ. Aeromonas spp. whole genomes and virulence factors implicated in fish disease. JOURNAL OF FISH DISEASES 2013; 36:371-388. [PMID: 23305319 DOI: 10.1111/jfd.12025] [Citation(s) in RCA: 175] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Revised: 09/20/2012] [Accepted: 09/23/2012] [Indexed: 05/27/2023]
Abstract
It is widely recognized that Aeromonas infections produce septicaemia, and ulcerative and haemorrhagic diseases in fish, causing significant mortality in both wild and farmed freshwater and marine fish species that damage the economics of the aquaculture sector. The descriptions of the complete genomes of Aeromonas species have allowed the identification of an important number of virulence genes that affect the pathogenic potential of these bacteria. This review will focus on the most relevant information derived from the available Aeromonas genomes in relation to virulence and on the diverse virulence factors that actively participate in host adherence, colonization and infection, including structural components, extracellular factors, secretion systems, iron acquisition and quorum sensing mechanisms.
Collapse
Affiliation(s)
- R Beaz-Hidalgo
- Unitat de Microbiologia, Departament de Ciènces Médiques Bàsiques, Facultat de Medicina i Ciències de la Salut, IISPV, Universitat Rovira i Virgili, Reus, Spain
| | | |
Collapse
|
27
|
Rouis Z, Abid N, Koudja S, Yangui T, Elaissi A, Cioni PL, Flamini G, Aouni M. Evaluation of the cytotoxic effect and antibacterial, antifungal, and antiviral activities of Hypericum triquetrifolium Turra essential oils from Tunisia. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:24. [PMID: 23360506 PMCID: PMC3637322 DOI: 10.1186/1472-6882-13-24] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 01/23/2013] [Indexed: 11/21/2022]
Abstract
Background A number of bio-active secondary metabolites have been identified and reported for several Hypericum species. Many studies have reported the potential use of the plant extracts against several pathogens. However, Hypericum triquetrifolium is one of the least studied species for its antimicrobial activity. The aim of the present study was to evaluate the cytotoxic effect of the essential oils of Hypericum triquetrifolium as well as their antimicrobial potential against coxsakievirus B3 and a range of bacterial and fungal strains. Methods The essential oils of Hypericum triquetrifolium harvested from five different Tunisian localities (Fondouk DJedid, Bou Arada, Bahra, Fernana and Dhrea Ben Jouder) were evaluated for their antimicrobial activities by micro-broth dilution methods against bacterial and fungal strains. In addition, the cytotoxic effect and the antiviral activity of these oils were carried out using Vero cell lines and coxsakievirus B3. Results The results showed a good antibacterial activities against a wide range of bacterial strains, MIC values ranging between 0.39-12.50 mg/ml and MBC values between 1.56-25.0 mg/ml. In addition, the essential oils showed promising antifungal activity with MIC values ranging between 0.39 μg/mL and 12.50 μg/mL; MFC values ranged between 3.12 μg/mL and 25.00 μg/mL; a significant anticandidal activity was noted (MIC values comprised between 0.39 μg/mL and 12.50 μg/mL). Although their low cytotoxic effect (CC50 ranged between 0.58 mg/mL and 12.00 mg/mL), the essential oils did not show antiviral activity against coxsakievirus B3. Conclusion The essential oils obtained from Hypericum triquetrifolium can be used as antimicrobial agents and could be safe at non cytotoxic doses. As shown for the tested essential oils, comparative analysis need to be undertaken to better characterize also the antimicrobial activities of Hypericum triquetrifolium extracts with different solvents as well as their purified fractions and their pure secondary metabolites.
Collapse
|
28
|
Wang N, Yang Z, Zang M, Liu Y, Lu C. Identification of Omp38 by immunoproteomic analysis and evaluation as a potential vaccine antigen against Aeromonas hydrophila in Chinese breams. FISH & SHELLFISH IMMUNOLOGY 2013; 34:74-81. [PMID: 23063539 DOI: 10.1016/j.fsi.2012.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 08/21/2012] [Accepted: 10/01/2012] [Indexed: 06/01/2023]
Abstract
Aeromonas hydrophila is a fish pathogen causing systemic infections in aquatic environments, and determining its antigenic proteins is important for vaccine development to reduce economic losses in aquaculture worldwide. Here, an immunoproteomic approach was used to identify immunogenic outer membrane proteins (OMPs) of the Chinese vaccine strain J-1 using convalescent sera from Chinese breams. Seven unique immunogenic proteins were identified by two-dimensional (2-D) electrophoresis and matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-TOF-MS). One protein of interest, Omp38, was expressed, and its immunogenicity and protective efficacy were evaluated in Chinese breams. The two groups of fish immunized with the inactivated vaccine and recombinant Omp38 protein showed significant serum IgM antibody levels after vaccination, compared with the fish injected with PBS buffer. In addition, the superoxide dismutase (SOD) activity, lysozyme (LSZ) activity and phagocytosis activity of head kidney lymphocytes of immunized groups were significantly higher than those of the control. The fish receiving inactivated vaccine and recombinant Omp38 protein developed a protective response to a live A. hydrophila challenge 45 days post-immunization, as demonstrated by increased survival of vaccinated fish over the control and by decreased histological alterations in vaccinated fish. Furthermore, protective effect was better in Omp38 group than in the inactivated vaccine group. These results suggest that the recombinant Omp38 protein could effectively stimulate both specific and non-specific immune responses and protect against A. hydrophila infection. Therefore, Omp38 may be developed as a potential vaccine candidate against A. hydrophila infection.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Animal Bacteriology, Ministry of Agriculture, Nanjing Agricultural University, No. 1 Weigang, Nanjing 210095, China
| | | | | | | | | |
Collapse
|
29
|
Tetrahymena: an alternative model host for evaluating virulence of Aeromonas strains. PLoS One 2012; 7:e48922. [PMID: 23145022 PMCID: PMC3493589 DOI: 10.1371/journal.pone.0048922] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 10/03/2012] [Indexed: 01/28/2023] Open
Abstract
An easier assessment model would be helpful for high-throughput screening of Aeromonas virulence. The previous study indicated the potential of Tetrahymena as a permissive model to examine virulence of Aeromonas hydrophila. Here our aim was to assess virulence of Aeromonas spp. using two model hosts, a zebrafish assay and Tetrahymena-Aeromonas co-culture, and to examine whether data from the Tetrahymena thermophila model reflects infections in the well-established animal model. First, virulence of 39 Aeromonas strains was assessed by determining the 50% lethal dose (LD(50)) in zebrafish. LD(50) values ranging from 1.3×10(2) to 3.0×10(7) indicated that these strains represent a high to moderate degree of virulence and could be useful to assess virulence in the Tetrahymena model. In Tetrahymena-Aeromonas co-culture, we evaluated the virulence of Aeromonas by detecting relative survival of Aeromonas and Tetrahymena. An Aeromonas isolate was considered virulent when its relative survival was greater than 60%, while the Aeromonas isolate was considered avirulent if its relative survival was below 40%. When relative survival of T. thermophila was lower than 40% after co-culture with an Aeromonas isolate, the bacterial strain was regarded as virulent. In contrast, the strain was classified as avirulent if relative survival of T. thermophila was greater than 50%. Encouragingly, data from the 39 Aeromonas strains showed good correlation in zebrafish and Tetrahymena-Aeromonas co-culture models. The results provide sufficient data to demonstrate that Tetrahymena can be a comparable alternative to zebrafish for determining the virulence of Aeromonas isolates.
Collapse
|
30
|
Riedel T, Rohlfs M, Buchholz I, Wagner-Döbler I, Reck M. Complete sequence of the suicide vector pJP5603. Plasmid 2012; 69:104-7. [PMID: 22902299 DOI: 10.1016/j.plasmid.2012.07.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 07/16/2012] [Accepted: 07/30/2012] [Indexed: 11/17/2022]
Abstract
We have sequenced the complete R6K-based and mobilizable suicide vector pJP5603. For the replication of the vector a trans supply of the pir-encoded π protein of plasmid R6K is essential. The 3.126 kb plasmid encodes a kanamycin resistance cassette for selection and contains a lacZ-α-system that allows a blue-white selection of cloned fragments.
Collapse
Affiliation(s)
- Thomas Riedel
- Helmholtz-Centre for Infection Research, Group Microbial Communication, Braunschweig, Germany.
| | | | | | | | | |
Collapse
|
31
|
Impact of QseBC system in c-di-GMP-dependent quorum sensing regulatory network in a clinical isolate SSU of Aeromonas hydrophila. Microb Pathog 2012; 53:115-24. [PMID: 22664750 DOI: 10.1016/j.micpath.2012.05.008] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2012] [Revised: 05/12/2012] [Accepted: 05/16/2012] [Indexed: 11/20/2022]
Abstract
Our earlier studies showed that AhyRI- (AI-1) and LuxS-based (AI-2) quorum sensing (QS) systems were positive and negative regulators of virulence, respectively, in a diarrheal isolate SSU of Aeromonas hydrophila. Recently, we demonstrated that deletion of the QseBC two-component signal transduction system (AI-3 QS in enterohemorrhagic Escherichia coli) also led to an attenuation of A. hydrophila in a septicemic mouse model of infection, and that interplay exists between AI-1, AI-2, and the second-messenger cyclic-di-guanosine monophosphate (c-di-GMP) in modulating bacterial virulence. To further explore a network connection between all of the three QS systems in A. hydrophila SSU and their cross talk with c-di-GMP, we overproduced a protein with a GGDEF domain, which increases c-di-GMP levels in bacteria, and studied phenotypes and transcriptional profiling of genes involved in biofilm formation and motility of the wild-type (WT) A. hydrophila and its ΔqseB mutant. Over-expression of the GGDEF domain-encoding gene (aha0701h) resulted in a significantly reduced motility of the WT A. hydrophila similar to that of the ΔqseB mutant. While enhanced protease production was noted in WT A. hydrophila that had increased c-di-GMP, no enzymatic activity was detected in the ΔqseB mutant overexpressing the aha0701h gene. Likewise, denser biofilm formation was noted for WT bacteria when c-di-GMP was overproduced compared to its respective control; however, overproduction of c-di-GMP in the ΔqseB mutant led to reduced biofilm formation, a finding similar to that noted for the parental A. hydrophila strain. These effects on bacterial motility and biofilm formation in the ΔqseB mutant or the mutant with increased c-di-GMP were correlated with altered levels of fleN and vpsT genes. While we noted transcript levels of qseB and qseC genes to be increased in the ahyRI mutant, down-regulation of the ahyR and ahyI genes was observed in the ΔqseB mutant, which correlated with decreased protease activity. Finally, an enhanced virulence of WT A. hydrophila with increased c-di-GMP was noted in a mouse model when compared to findings in the parental strain with vector alone. Overall, we conclude that cross talk between AI-1 and QseBC systems exists in A. hydrophila SSU, and c-di-GMP modulation on QseBC system is dependent on the expression of the AI-1 system.
Collapse
|
32
|
Orally administered thermostable N-acyl homoserine lactonase from Bacillus sp. strain AI96 attenuates Aeromonas hydrophila infection in zebrafish. Appl Environ Microbiol 2012; 78:1899-908. [PMID: 22247159 DOI: 10.1128/aem.06139-11] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
N-Acylated homoserine lactone (AHL) lactonases are capable of degrading signal molecules involved in bacterial quorum sensing and therefore represent a new approach to control bacterial infection. Here a gene responsible for the AHL lactonase activity of Bacillus sp. strain AI96, 753 bp in length, was cloned and then expressed in Escherichia coli. The deduced amino acid sequence of Bacillus sp. AI96 AiiA (AiiA(AI96)) is most similar to those of other Bacillus sp. AHL lactonases (~80% sequence identity) and was consequently categorized as a member of the metallo-β-lactamase superfamily. AiiA(AI96) maintains ~100% of its activity at 10°C to 40°C at pH 8.0, and it is very stable at 70°C at pH 8.0 for at least 1 h; no other Bacillus AHL lactonase has been found to be stable under these conditions. AiiA(AI96) resists digestion by proteases and carp intestinal juice, and it has broad-spectrum substrate specificity. The supplementation of AiiA(AI96) into fish feed by oral administration significantly attenuated Aeromonas hydrophila infection in zebrafish. This is the first report of the oral administration of an AHL lactonase for the efficient control of A. hydrophila.
Collapse
|
33
|
Zhou Z, He S, Liu Y, Cao Y, Meng K, Yao B, Ringø E, Yoon I. Gut microbial status induced by antibiotic growth promoter alters the prebiotic effects of dietary DVAQUA® on Aeromonas hydrophila-infected tilapia: Production, intestinal bacterial community and non-specific immunity. Vet Microbiol 2011; 149:399-405. [DOI: 10.1016/j.vetmic.2010.11.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2010] [Revised: 11/11/2010] [Accepted: 11/12/2010] [Indexed: 12/16/2022]
|
34
|
Natrah FMI, Defoirdt T, Sorgeloos P, Bossier P. Disruption of bacterial cell-to-cell communication by marine organisms and its relevance to aquaculture. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2011; 13:109-126. [PMID: 21246235 DOI: 10.1007/s10126-010-9346-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2010] [Accepted: 12/15/2010] [Indexed: 05/30/2023]
Abstract
Bacterial disease is one of the most critical problems in commercial aquaculture. Although various methods and treatments have been developed to curb the problem, yet they still have significant drawbacks. A novel and environmental-friendly approach in solving this problem is through the disruption of bacterial communication or quorum sensing (QS). In this communication scheme, bacteria regulate their own gene expression by producing, releasing, and sensing chemical signals from the environment. There seems to be a link between QS and diseases through the regulation of certain phenotypes and the induction of virulence factors responsible for pathogen-host association. Several findings have reported that numerous aquatic organisms such as micro-algae, macro-algae, invertebrates, or even other bacteria have the potential to disrupt QS. The mechanism of action varies from degradation of signals through enzymatic or chemical inactivation to antagonistic as well as agonistic activities. This review focuses on the existing marine organisms that are able to interfere with QS with potential application for aquaculture as bacterial control.
Collapse
Affiliation(s)
- F M I Natrah
- Laboratory of Aquaculture and Artemia Reference Center, Ghent University, Rozier 44, 9000, Ghent, Belgium.
| | | | | | | |
Collapse
|
35
|
Li J, Ni X, Liu Y, Lu C. Detection of three virulence genes alt, ahp and aerA in Aeromonas hydrophila and their relationship with actual virulence to zebrafish. J Appl Microbiol 2011; 110:823-30. [DOI: 10.1111/j.1365-2672.2011.04944.x] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
36
|
Li J, Zhang XL, Liu YJ, Lu CP. Development of an Aeromonas hydrophila infection model using the protozoan Tetrahymena thermophila. FEMS Microbiol Lett 2011; 316:160-8. [PMID: 21204941 DOI: 10.1111/j.1574-6968.2010.02208.x] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Aeromonas hydrophila is a motile bacterium present in numerous freshwater habitats worldwide and is frequently the cause of infections in fish and numerous terrestrial vertebrates including humans. Because A. hydrophila is also a component of the normal intestinal flora of healthy fish, virulence mechanisms are not well understood. Considering that fish models used for the examination of A. hydrophila genes associated with virulence have not been well defined, we established an infection model using the free-living, ciliate protozoa Tetrahymena thermophila. The expression of A. hydrophila virulence genes following infection of T. thermophila was assessed by reverse transcription-PCR and demonstrated that the aerolysin (aerA) and Ahe2 serine protease (ahe2) genes (not present in the avirulent A. hydrophila NJ-4 strain) in the virulent J-1 strain were upregulated 4-h postinfection. Furthermore, the presence of intact A. hydrophila J-1 within T. thermophila suggested that these bacteria could interfere with phagocytosis, resulting in the death of the infected protozoan 48-h postinfection. Conversely, A. hydrophila NJ-4-infected T. thermophila survived the infection. This study established a novel T. thermophila infection model that will provide a novel means of examining virulence mechanisms of A. hydrophila.
Collapse
Affiliation(s)
- Jing Li
- Key Laboratory of Animal Disease Diagnostic and Immunology, Ministry of Agriculture, Nanjing Agricultural University, Nanjing, China
| | | | | | | |
Collapse
|
37
|
Schwenteit J, Gram L, Nielsen KF, Fridjonsson OH, Bornscheuer UT, Givskov M, Gudmundsdottir BK. Quorum sensing in Aeromonas salmonicida subsp. achromogenes and the effect of the autoinducer synthase AsaI on bacterial virulence. Vet Microbiol 2011; 147:389-97. [DOI: 10.1016/j.vetmic.2010.07.020] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2010] [Revised: 07/15/2010] [Accepted: 07/19/2010] [Indexed: 10/19/2022]
|
38
|
Ni XD, Wang N, Liu YJ, Lu CP. Immunoproteomics of extracellular proteins of theAeromonas hydrophilaChina vaccine strain J-1 reveal a highly immunoreactive outer membrane protein. ACTA ACUST UNITED AC 2010; 58:363-73. [DOI: 10.1111/j.1574-695x.2009.00646.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Quorum sensing regulation in Aeromonas hydrophila. J Mol Biol 2010; 396:849-57. [PMID: 20064524 DOI: 10.1016/j.jmb.2010.01.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2009] [Revised: 12/06/2009] [Accepted: 01/05/2010] [Indexed: 11/21/2022]
Abstract
We present detailed results on the C4-HSL-mediated quorum sensing (QS) regulatory system of the opportunistic Gram-negative bacterium Aeromonas hydrophila. This bacterium contains a particularly simple QS system that allows for a detailed modeling of kinetics. In a model system (i.e., the Escherichia coli monitor strain MH205), the C4-HSL production of A. hydrophila is interrupted by fusion of gfp(ASV). In the present in vitro study, we measure the response of the QS regulatory ahyRI locus in the monitor strain to predetermined concentrations of C4-HSL signal molecules. A minimal kinetic model describes the data well. It can be solved analytically, providing substantial insight into the QS mechanism: at high concentrations of signal molecules, a slow decay of the activated regulator sets the timescale for the QS regulation loop. Slow saturation ensures that, in an A. hydrophila cell, the QS system is activated only by signal molecules produced by other A. hydrophila cells. Separate information on the ahyR and ahyI loci can be extracted, thus allowing the probe to be used in identifying the target when testing QS inhibitors.
Collapse
|
40
|
Khajanchi BK, Sha J, Kozlova EV, Erova TE, Suarez G, Sierra JC, Popov VL, Horneman AJ, Chopra AK. N-acylhomoserine lactones involved in quorum sensing control the type VI secretion system, biofilm formation, protease production, and in vivo virulence in a clinical isolate of Aeromonas hydrophila. MICROBIOLOGY (READING, ENGLAND) 2009; 155:3518-3531. [PMID: 19729404 PMCID: PMC2888131 DOI: 10.1099/mic.0.031575-0] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/31/2009] [Accepted: 09/02/2009] [Indexed: 11/18/2022]
Abstract
In this study, we delineated the role of N-acylhomoserine lactone(s) (AHLs)-mediated quorum sensing (QS) in the virulence of diarrhoeal isolate SSU of Aeromonas hydrophila by generating a double knockout Delta ahyRI mutant. Protease production was substantially reduced in the Delta ahyRI mutant when compared with that in the wild-type (WT) strain. Importantly, based on Western blot analysis, the Delta ahyRI mutant was unable to secrete type VI secretion system (T6SS)-associated effectors, namely haemolysin coregulated protein and the valine-glycine repeat family of proteins, while significant levels of these effectors were detected in the culture supernatant of the WT A. hydrophila. In contrast, the production and translocation of the type III secretion system (T3SS) effector AexU in human colonic epithelial cells were not affected when the ahyRI genes were deleted. Solid surface-associated biofilm formation was significantly reduced in the Delta ahyRI mutant when compared with that in the WT strain, as determined by a crystal violet staining assay. Scanning electron microscopic observations revealed that the Delta ahyRI mutant was also defective in the formation of structured biofilm, as it was less filamentous and produced a distinct exopolysaccharide on its surface when compared with the structured biofilm produced by the WT strain. These effects of AhyRI could be complemented either by expressing the ahyRI genes in trans or by the exogeneous addition of AHLs to the Delta ahyRI/ahyR(+) complemented strain. In a mouse lethality experiment, 50 % attenuation was observed when we deleted the ahyRI genes from the parental strain of A. hydrophila. Together, our data suggest that AHL-mediated QS modulates the virulence of A. hydrophila SSU by regulating the T6SS, metalloprotease production and biofilm formation.
Collapse
Affiliation(s)
- Bijay K. Khajanchi
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Jian Sha
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Elena V. Kozlova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Tatiana E. Erova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Giovanni Suarez
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Johanna C. Sierra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Vsevolod L. Popov
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Amy J. Horneman
- Department of Medical and Research Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Ashok K. Chopra
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| |
Collapse
|
41
|
Teplitski M, Wright AC, Lorca G. Biological approaches for controlling shellfish-associated pathogens. Curr Opin Biotechnol 2009; 20:185-90. [DOI: 10.1016/j.copbio.2009.03.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2009] [Accepted: 03/03/2009] [Indexed: 11/17/2022]
|
42
|
Levin RE. Molecular Methods for Detecting and Discriminating VirulentAeromonadsAssociated with Foods and Human Clinical Infections: A Mini Review. FOOD BIOTECHNOL 2009. [DOI: 10.1080/08905430802671857] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Boyen F, Eeckhaut V, Van Immerseel F, Pasmans F, Ducatelle R, Haesebrouck F. Quorum sensing in veterinary pathogens: mechanisms, clinical importance and future perspectives. Vet Microbiol 2009; 135:187-95. [PMID: 19185433 DOI: 10.1016/j.vetmic.2008.12.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2008] [Revised: 12/23/2008] [Accepted: 12/24/2008] [Indexed: 11/27/2022]
Abstract
Under certain circumstances the individuals of a bacterial population may find advantages in acting together and making "collective decisions". This phenomenon is better known as quorum sensing. When the concentration of signal molecules produced by the surrounding bacteria exceeds a certain threshold, the bacterial population acts as a single organism, collectively expressing virulence genes, biofilm forming genes, etc. Several mechanisms of quorum sensing are discussed, each with its distinct signal molecules and respective receptors. Some of these mechanisms are restricted to sensing intraspecies signalling, but interspecies and even interkingdom signalling have also been described. Several veterinary pathogens such as Staphylococcus aureus, Staphylococcus pseudintermedius, Pseudomonas aeruginosa and Salmonella Typhimurium use quorum sensing as a means to optimize virulence gene expression and host colonization. Therefore, targeting of the QS mechanisms may provide a novel strategy for combating bacterial infections, also in veterinary medicine.
Collapse
Affiliation(s)
- F Boyen
- Department of Pathology, Bacteriology and Avian Diseases, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, 9820 Merelbeke, Belgium.
| | | | | | | | | | | |
Collapse
|
44
|
Kozlova EV, Popov VL, Sha J, Foltz SM, Erova TE, Agar SL, Horneman AJ, Chopra AK. Mutation in the S-ribosylhomocysteinase (luxS) gene involved in quorum sensing affects biofilm formation and virulence in a clinical isolate of Aeromonas hydrophila. Microb Pathog 2008; 45:343-54. [PMID: 18930130 DOI: 10.1016/j.micpath.2008.08.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 08/16/2008] [Accepted: 08/20/2008] [Indexed: 01/08/2023]
Abstract
A diarrheal isolate SSU of Aeromonas hydrophila produces a cytotoxic enterotoxin (Act) with cytotoxic, enterotoxic, and hemolytic activities. Our laboratory has characterized from the above Aeromonas strain, in addition to Act, the type 3- and T6-secretion systems and their effectors, as well as the genes shown to modulate the production of AI-1-like autoinducers, N-acylhomoserine lactones (AHLs) involved in quorum sensing (QS). In this study, we demonstrated the presence of an S-ribosylhomocysteinase (LuxS)-based autoinducer (AI)-2 QS system in A. hydrophila SSU and its contribution to bacterial virulence. The luxS isogenic mutant of A. hydrophila, which we prepared by marker exchange mutagenesis, showed an alteration in the dynamics and architecture of the biofilm formation, a decrease in the motility of the bacterium, and an enhanced virulence in the septicemic mouse model. Moreover, these effects of the mutation could be complemented. Enhanced production of the biofilm exopolysaccharide and filaments in the mutant strain were presumably the major causes of the observed phenotype. Our earlier studies indicated that the wild-type A. hydrophila with overproduction of DNA adenine methyltransferase (Dam) had significantly reduced motility, greater hemolytic activity associated with Act, and an enhanced ability to produce AI-1 lactones. Furthermore, such a Dam-overproducing strain was not lethal to mice. On the contrary, the luxS mutant with Dam overproduction showed an increased motility and had no effect on lactone production. In addition, the Dam-overproducing luxS mutant strain was not altered in its ability to induce lethality in a mouse model of infection when compared to the parental strain which overproduced Dam. We suggested that an altered gene expression in the luxS mutant of A. hydrophila SSU, as it related to biofilm formation and virulence, might be linked with the interruption of the bacterial metabolic pathway, specifically of methionine synthesis.
Collapse
Affiliation(s)
- Elena V Kozlova
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX, USA
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Styp von Rekowski K, Hempel M, Philipp B. Quorum sensing by N-acylhomoserine lactones is not required for Aeromonas hydrophila during growth with organic particles in lake water microcosms. Arch Microbiol 2007; 189:475-82. [DOI: 10.1007/s00203-007-0338-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2007] [Revised: 10/30/2007] [Accepted: 11/26/2007] [Indexed: 11/24/2022]
|