1
|
Tabynov K, Kuanyshbek A, Yelchibayeva L, Zharmambet K, Zhumadilova Z, Fomin G, Petrovsky N, Shekoni OC, Renukaradhya GJ, Tabynov K. Evaluation of safety, immunogenicity, and efficacy of inactivated reverse-genetics-based H5N8 highly pathogenic avian influenza virus vaccine with various adjuvants via parenteral and mucosal routes in chickens. Front Immunol 2025; 16:1539492. [PMID: 40181968 PMCID: PMC11965622 DOI: 10.3389/fimmu.2025.1539492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2024] [Accepted: 02/19/2025] [Indexed: 04/05/2025] Open
Abstract
Background Highly pathogenic H5Nx avian influenza (HPAI) poses a significant threat to poultry health globally, necessitating the development of effective vaccination strategies. Methods This study assessed the immunogenicity and efficacy of a reverse-genetics-derived, Differentiating Infected from Vaccinated Animals (DIVA)-compatible inactivated H5N8 vaccine based on the IDCDC-RG71A strain. The vaccine was formulated with different adjuvants, including Montanide ISA 78 VG, ISA 71 R VG, GEL P PR, and mannose-conjugated chitosan nanoparticles, and administered via either the subcutaneous (SC) or intranasal (IN) route. To evaluate safety, the vaccine was tested in specific antibody negative (SAN) chickens, showing no adverse effects. Immunogenicity was assessed by measuring hemagglutination inhibition (HI) antibody titers, antigen-specific IgA and IgY levels, and CD4+ and CD8+ T cell proliferation. Vaccine efficacy was determined through a challenge study using a field isolate of H5N1. Results This showed that a single SC dose of vaccine containing ISA 78 VG or ISA 71 R VG provided the best efficacy against infection, with high survival rates, control of abnormally high temperature incidence, reduced virus shedding, and reduced lung and liver lesions. The ISA 78 VG-adjuvanted SC vaccine induced the highest HI titers and CD4+ T cell proliferation, while ISA 71 R VG and GEL P PR elicited the strongest IgY responses. In contrast, IN formulations induced IgA in the lungs and trachea however, even after two doses, failed to generate high HI titers and provided poor, if any, protection against infection. This highlights the superior efficacy of the SC over the IN route of vaccination for reducing H5N1 viral shedding. Conclusion These results underscore the importance of both the adjuvants and delivery route to maximize HPAI vaccine efficacy. This presented system could thereby be used to develop potent and DIVA-compatible vaccines to enhance biosecurity and disease management in regions affected by endemic HPAI.
Collapse
MESH Headings
- Animals
- Influenza Vaccines/immunology
- Influenza Vaccines/administration & dosage
- Influenza Vaccines/adverse effects
- Chickens/immunology
- Influenza in Birds/prevention & control
- Influenza in Birds/immunology
- Influenza in Birds/virology
- Antibodies, Viral/immunology
- Antibodies, Viral/blood
- Vaccines, Inactivated/immunology
- Vaccines, Inactivated/administration & dosage
- Adjuvants, Immunologic/administration & dosage
- Influenza A Virus, H5N8 Subtype/immunology
- Immunogenicity, Vaccine
- Administration, Intranasal
- Adjuvants, Vaccine/administration & dosage
- Influenza A Virus, H5N1 Subtype/immunology
- CD8-Positive T-Lymphocytes/immunology
- Vaccine Efficacy
- Vaccination
- Poultry Diseases/prevention & control
- Poultry Diseases/immunology
- Poultry Diseases/virology
Collapse
Affiliation(s)
- Kairat Tabynov
- International Center for Vaccinology, Kazakh National Agrarian Research University, Almaty, Kazakhstan
- Central Reference Laboratory, M. Aikimbayev National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
- T&TvaX LLC, Almaty, Kazakhstan
| | - Aidana Kuanyshbek
- International Center for Vaccinology, Kazakh National Agrarian Research University, Almaty, Kazakhstan
- National Collection of Deposited Strains, Almaty Branch of National Reference Veterinary Center, Almaty, Kazakhstan
| | - Leila Yelchibayeva
- International Center for Vaccinology, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Kuantay Zharmambet
- International Center for Vaccinology, Kazakh National Agrarian Research University, Almaty, Kazakhstan
| | - Zauresh Zhumadilova
- Central Reference Laboratory, M. Aikimbayev National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | - Gleb Fomin
- Central Reference Laboratory, M. Aikimbayev National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
| | | | - Olaitan C. Shekoni
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University (OSU), Wooster, OH, United States
| | - Gourapura J. Renukaradhya
- Center for Food Animal Health, Department of Animal Sciences, College of Food Agricultural and Environmental Sciences, The Ohio State University (OSU), Wooster, OH, United States
| | - Kaissar Tabynov
- International Center for Vaccinology, Kazakh National Agrarian Research University, Almaty, Kazakhstan
- Central Reference Laboratory, M. Aikimbayev National Scientific Center for Especially Dangerous Infections, Almaty, Kazakhstan
- T&TvaX LLC, Almaty, Kazakhstan
| |
Collapse
|
2
|
Nishiura H, Kumagai A, Mine J, Takadate Y, Sakuma S, Tsunekuni R, Uchida Y, Miyazawa K. Phylogenetic and Pathogenic Analysis of H5N1 and H5N6 High Pathogenicity Avian Influenza Virus Isolated from Poultry Farms (Layer and Broiler Chickens) in Japan in the 2023/2024 Season. Viruses 2024; 16:1956. [PMID: 39772262 PMCID: PMC11680161 DOI: 10.3390/v16121956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/06/2024] [Accepted: 12/18/2024] [Indexed: 01/11/2025] Open
Abstract
During the 2023-2024 winter, 11 high pathogenicity avian influenza (HPAI) outbreaks caused by clade 2.3.4.4b H5N1 and H5N6 HPAI viruses were confirmed in Japanese domestic poultry among 10 prefectures (n = 10 and 1, respectively). In this study, we aimed to genetically and pathologically characterize these viruses. Phylogenetic analysis revealed that H5N1 viruses were classified into the G2d-0 genotype, whereas the H5N6 virus was a novel genotype in Japan, designated as G2c-12. The G2c-12 virus shared PB2, PB1, PA, HA, and M genes with previous G2c viruses, but had NP and NS genes originating from avian influenza viruses in wild birds abroad. The N6 NA gene was derived from an H5N6 HPAI virus that was different from the viruses responsible for the outbreaks in Japan in 2016-2017 and 2017-2018. Experimental infections in chickens infected with H5N1(G2d-0) and H5N6(G2c-12) HPAI viruses showed no significant differences in the 50% chicken lethal dose, mean death time, or virus shedding from the trachea and cloaca, or in the histopathological findings. Different genotypes of the viruses worldwide, their introduction into the country, and their stable lethality in chickens may have triggered the four consecutive seasons of HPAI outbreaks in Japan.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Kohtaro Miyazawa
- Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba 3050856, Japan; (H.N.); (A.K.); (J.M.); (Y.T.); (S.S.); (R.T.); (Y.U.)
| |
Collapse
|
3
|
Bordes L, Germeraad EA, Roose M, van Eijk NMHA, Engelsma M, van der Poel WHM, Vreman S, Beerens N. Experimental infection of chickens, Pekin ducks, Eurasian wigeons and Barnacle geese with two recent highly pathogenic avian influenza H5N1 clade 2.3.4.4b viruses. Emerg Microbes Infect 2024; 13:2399970. [PMID: 39221587 PMCID: PMC11395873 DOI: 10.1080/22221751.2024.2399970] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/16/2024] [Accepted: 08/29/2024] [Indexed: 09/04/2024]
Abstract
Multiple genotypes of highly pathogenic avian influenza (HPAI) H5 clade 2.3.4.4b viruses have caused epizootics in wild birds and poultry. The HPAI H5N1 genotype C virus caused a modest epizootic, whereas the occurrence of the HPAI H5N1 genotype AB virus in 2021 resulted in the largest avian influenza epizootic in Europe to date. Here we studied the pathogenicity of two HPAI H5N1 viruses by experimentally infecting chickens, Pekin ducks, Eurasian wigeons and Barnacle geese. Our study demonstrates that pathogenicity of the H5N1-2021-AB virus is lower in Pekin ducks, Eurasian wigeons and Barnacle geese compared to the H5N1-2020-C virus, whereas virus shedding was high for both viruses. After inoculation with H5N1-2021-C viral antigen expression was higher in the brain of Pekin ducks, Eurasian wigeons and Barnacle geese, which caused higher mortality compared to inoculation with H5N1-2021-AB virus. Subclinical infections occurred in Pekin ducks and Eurasian wigeons and mortality was reduced in Barnacle geese after inoculation with H5N1-2021-AB virus while H5N1-2020-C virus caused high morbidity and mortality in these species. This H5N1-2021-AB virus trait may have contributed to efficient spread of the virus in wild bird populations. Therefore, high mortality, virus shedding and long-lasting viral antigen expression found in Barnacle geese may have increased the risk for introduction into poultry.
Collapse
Affiliation(s)
- Luca Bordes
- Wageningen Bioveterinary Research (Wageningen University and Research), Lelystad, The Netherlands
| | - Evelien A Germeraad
- Wageningen Bioveterinary Research (Wageningen University and Research), Lelystad, The Netherlands
| | - Marit Roose
- Wageningen Bioveterinary Research (Wageningen University and Research), Lelystad, The Netherlands
| | - Nadiah M H A van Eijk
- Department Biomolecular Health Sciences, Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marc Engelsma
- Wageningen Bioveterinary Research (Wageningen University and Research), Lelystad, The Netherlands
| | - Wim H M van der Poel
- Wageningen Bioveterinary Research (Wageningen University and Research), Lelystad, The Netherlands
| | - Sandra Vreman
- Wageningen Bioveterinary Research (Wageningen University and Research), Lelystad, The Netherlands
| | - Nancy Beerens
- Wageningen Bioveterinary Research (Wageningen University and Research), Lelystad, The Netherlands
| |
Collapse
|
4
|
Hsueh CS, Fasina O, Piñeyro P, Ruden R, El-Gazzar MM, Sato Y. Histopathologic Features and Viral Antigen Distribution of H5N1 Highly Pathogenic Avian Influenza Virus Clade 2.3.4.4b from the 2022-2023 Outbreak in Iowa Wild Birds. Avian Dis 2024; 68:272-281. [PMID: 39400223 DOI: 10.1637/aviandiseases-d-23-00085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/03/2024] [Indexed: 10/15/2024]
Abstract
In 2022, a new epornitic of H5N1 highly pathogenic avian influenza (HPAI) virus clade 2.3.4.4b emerged in U.S. domestic poultry with high prevalence in wild bird populations. We describe pathological findings of HPAI H5N1 in nine wild birds encompassing eight different species, including Accipitriformes (red-tailed hawk, bald eagle), Cathartiforme (turkey vulture), Falconiforme (peregrine falcon), Strigiforme (one adult great-horned owl, one juvenile great-horned owl), Pelecaniforme (American white pelican), and Anseriformes (American green-winged teal, trumpeter swan). All these birds died naturally (found dead, or died in transit to or within a rehabilitation center), except for the bald eagle and American green-winged teal, which were euthanized. Gross lesions were subtle, characterized by meningeal congestion observed in the turkey vulture, bald eagle, and adult great-horned owl. Histologically, encephalitis was observed in all cases (9/9, 100%). Leukocytoclastic and fibrinoid vasculitis with necrotizing encephalitis was observed in the red-tailed hawk, great-horned owls, and American white pelican (5/9, 55.6%), and perivascular lymphohistiocytic encephalitis was seen in the turkey vulture, peregrine falcon, green-winged teal, and bald eagle (4/9, 44.4%). Coagulative necrosis or lymphohistiocytic/lymphoplasmacytic inflammation was identified in the kidney (6/8, 75%), liver (6/9, 66.7%), heart (5/9, 55.6%), and lung (2/9, 22.2%). Immunopositive signals against Influenza virus A nucleoprotein were predominantly detected within the brain (9/9, 100%), air sac (7/9, 77.8%), lung (7/9, 77.8%), kidney (6/8, 75%), heart (6/9, 66.7%), and liver (5/9, 55.6%). Additionally, other organs, such as the pancreas, spleen, intestines, gonads, and adrenals occasionally exhibited positive viral protein signals. In these organs, in addition to parenchymal cells, viral protein signals were often identified in endothelial cells. Our results suggest that the 2022-2023 HPAIV H5N1 clade 2.3.4.4b replicated systemically in all examined birds, with brain lesions being the most prevalent and associated with a subset of birds displaying clinical signs observed perimortem.
Collapse
Affiliation(s)
- Cheng-Shun Hsueh
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Olufemi Fasina
- Department of Veterinary Pathology, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Pablo Piñeyro
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Rachel Ruden
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
- Wildlife Bureau Iowa De artment of Natural Resources Ames IA 50011
| | - Mohamed Medhat El-Gazzar
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011
| | - Yuko Sato
- Department of Veterinary Diagnostic & Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA 50011,
| |
Collapse
|
5
|
Bordes L, Gonzales JL, Vreman S, Venema S, Portier N, Germeraad EA, van der Poel WHM, Beerens N. In Ovo Models to Predict Virulence of Highly Pathogenic Avian Influenza H5-Viruses for Chickens and Ducks. Viruses 2024; 16:563. [PMID: 38675905 PMCID: PMC11053719 DOI: 10.3390/v16040563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 03/29/2024] [Accepted: 04/02/2024] [Indexed: 04/28/2024] Open
Abstract
Highly pathogenic avian influenza (HPAI) H5-viruses are circulating in wild birds and are repeatedly introduced to poultry causing outbreaks in the Netherlands since 2014. The largest epizootic ever recorded in Europe was caused by HPAI H5N1 clade 2.3.4.4b viruses in the period 2021-2022. The recent H5-clade 2.3.4.4 viruses were found to differ in their virulence for chickens and ducks. Viruses causing only mild disease may remain undetected, increasing the risk of virus spread to other farms, wild birds and mammals. We developed in ovo models to determine the virulence of HPAI viruses for chickens and ducks, which are fast and have low costs. The virulence of five contemporary H5-viruses was compared studying replication rate, average time to death and virus spread in the embryo. Remarkable differences in virulence were observed between H5-viruses and between poultry species. The H5N1-2021 virus was found to have a fast replication rate in both the chicken and duck in ovo models, but a slower systemic virus dissemination compared to three other H5-clade 2.3.4.4b viruses. The results show the potential of in ovo models to quickly determine the virulence of novel HPAI viruses, and study potential virulence factors which can help to better guide the surveillance in poultry.
Collapse
Affiliation(s)
- Luca Bordes
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (S.V.); (S.V.); (N.P.); (N.B.)
| | - José L. Gonzales
- Department of Epidemiology, Bioinformatics & Animal Models, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands;
| | - Sandra Vreman
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (S.V.); (S.V.); (N.P.); (N.B.)
| | - Sandra Venema
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (S.V.); (S.V.); (N.P.); (N.B.)
| | - Nadia Portier
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (S.V.); (S.V.); (N.P.); (N.B.)
| | - Evelien A. Germeraad
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (S.V.); (S.V.); (N.P.); (N.B.)
| | - Wim H. M. van der Poel
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (S.V.); (S.V.); (N.P.); (N.B.)
| | - Nancy Beerens
- Department of Virology, Wageningen Bioveterinary Research, 8221 RA Lelystad, The Netherlands; (S.V.); (S.V.); (N.P.); (N.B.)
| |
Collapse
|
6
|
Wolters WJ, Vernooij JCM, Spliethof TM, Wiegel J, Elbers ARW, Spierenburg MAH, Stegeman JA, Velkers FC. Comparison of the Clinical Manifestation of HPAI H5Nx in Different Poultry Types in the Netherlands, 2014-2022. Pathogens 2024; 13:280. [PMID: 38668235 PMCID: PMC11055007 DOI: 10.3390/pathogens13040280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 04/29/2024] Open
Abstract
This study describes clinical manifestations of highly pathogenic avian influenza (HPAI) H5N1, H5N8 and H5N6 outbreaks between 2014 and 2018 and 2020 and 2022 in the Netherlands for different poultry types and age groups. Adult duck (breeder) farms and juvenile chicken (broiler and laying pullet) farms were not diagnosed before 2020. Outbreaks in ducks decreased in 2020-2022 vs. 2014-2018, but increased for meat-type poultry. Neurological, locomotor and reproductive tract signs were often observed in ducks, whereas laying- and meat-type poultry more often showed mucosal membrane and skin signs, including cyanosis and hemorrhagic conjunctiva. Juveniles (chickens and ducks) showed neurological and locomotor signs more often than adults. Diarrhea occurred more often in adult chickens and juvenile ducks. Mortality increased exponentially within four days before notification in chickens and ducks, with a more fluctuating trend in ducks and meat-type poultry than in layers. For ducks, a mortality ratio (MR) > 3, compared to the average mortality of the previous week, was reached less often than in chickens. A lower percentage of laying flocks with MR > 3 was found for 2020-2022 vs. 2014-2018, but without significant differences in clinical signs. This study provides a basis for improvements in mortality- and clinical-sign-based early warning criteria, especially for juvenile chickens and ducks.
Collapse
Affiliation(s)
- Wendy J. Wolters
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (W.J.W.); (J.C.M.V.)
| | - J. C. M. Vernooij
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (W.J.W.); (J.C.M.V.)
| | - Thomas M. Spliethof
- Division of Pathology, Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CS Utrecht, The Netherlands;
| | | | - Armin R. W. Elbers
- Department of Epidemiology, Bioinformatics, Animal Studies and Vaccine Development, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands;
| | | | - J. Arjan Stegeman
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (W.J.W.); (J.C.M.V.)
| | - Francisca C. Velkers
- Department of Population Health Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands; (W.J.W.); (J.C.M.V.)
| |
Collapse
|
7
|
Montalban B, Hinou H. Glycoblotting-Based Ovo-Sulphoglycomics Reveals Phosphorylated N-Glycans as a Possible Host Factor of AIV Prevalence in Waterfowls. ACS Infect Dis 2024; 10:650-661. [PMID: 38173147 PMCID: PMC10863614 DOI: 10.1021/acsinfecdis.3c00520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/27/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024]
Abstract
Sulfated N-glycans play a crucial role in the interaction between influenza A virus (IAV) and its host. These glycans have been found to enhance viral replication, highlighting their significance in IAV propagation. This study investigated the expression of acidic N-glycans, specifically sulfated and phosphorylated glycans, in the egg whites of 72 avian species belonging to the Order Anseriformes (waterfowls). We used the glycoblotting-based sulphoglycomics approach to elucidate the diversity of acidic N-glycans and infer their potential role in protecting embryos from infections. Family-specific variations in sulfated and phosphorylated N-glycan profiles were identified in waterfowl egg whites. Different waterfowl species exhibited distinct expressions of sulfated trans-Gal(+) and trans-Gal(-) N-glycan structures. Additionally, species-specific expression of phosphorylated N-glycans was observed. Furthermore, it was found that waterfowl species with high avian influenza virus (AIV) prevalence displayed a higher abundance of phosphorylated hybrid and high-mannose N-glycans on their egg whites. These findings shed light on the importance of phosphorylated and sulfated N-glycans in understanding the role of acidic glycans in IAV propagation.
Collapse
Affiliation(s)
- Bryan
M. Montalban
- Laboratory
of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
| | - Hiroshi Hinou
- Laboratory
of Advanced Chemical Biology, Graduate School of Life Science, Hokkaido University, Sapporo 001-0021, Japan
- Frontier
Research Center for Advanced Material and Life Science, Faculty of
Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan
| |
Collapse
|
8
|
Wu S, Ootawa T, Sekio R, Smith H, Islam MZ, Nguyen HTT, Uno Y, Shiraishi M, Miyamoto A. Reduced Nitric Oxide Synthase Involvement in Aigamo Duck Basilar Arterial Relaxation. Animals (Basel) 2023; 13:2740. [PMID: 37685004 PMCID: PMC10486467 DOI: 10.3390/ani13172740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 08/20/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
The basilar arterial endothelium mediates blood vessel relaxation partly through the release of nitric oxide (NO). Apoptosis of cerebrovascular endothelial cells is linked to a high mortality rate in chickens infected with the highly pathogenic avian influenza virus, but interestingly, ducks exhibit a greater resistance to this virus. In this study, we examined the responsiveness of duck basilar arteries (BAs) to various vasoactive substances, including 5-hydroxytryptamine (5-HT), histamine (His), angiotensin (Ang) II, noradrenaline (NA), acetylcholine (ACh), and avian bradykinin ornithokinin (OK), aiming to characterize the receptor subtypes involved and the role of endothelial NO in vitro. Our findings suggest that arterial contraction is mediated with 5-HT1 and H1 receptors, while relaxation is induced with β3-adrenergic and M3 receptors. Additionally, OK elicited a biphasic response in duck BAs, and Ang II had no effect. Endothelial NO appears to be crucial in relaxation mediated with M3 and OK receptors but not β3-adrenergic receptors in the duck BA. The reduced endothelial NO involvement in the receptor-mediated relaxation response in duck BAs represents a clear difference from the corresponding response reported in chicken BAs. This physiological difference may explain the differences in lethality between ducks and chickens when vascular endothelial cells are infected with the virus.
Collapse
Affiliation(s)
- Siyuan Wu
- Department of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Tomoki Ootawa
- Department of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Japan Wildlife Research Center, 3-3-7 Kotobashi, Tokyo 130-8606, Japan
| | - Ryoya Sekio
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Henry Smith
- Department of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Md. Zahorul Islam
- Department of Pharmacology, Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Ha Thi Thanh Nguyen
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Vietnam National University of Agriculture, Gia Lam, Hanoi 131000, Vietnam
| | - Yasuhiro Uno
- Department of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Mitsuya Shiraishi
- Department of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| | - Atsushi Miyamoto
- Department of Basic Veterinary Science, Joint Graduate School of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
- Department of Veterinary Pharmacology, Joint Faculty of Veterinary Medicine, Kagoshima University, 1-21-24 Korimoto, Kagoshima 890-0065, Japan
| |
Collapse
|
9
|
Wu S, Ootawa T, Sekio R, Smith H, Islam MZ, Uno Y, Shiraishi M, Miyamoto A. Involvement of beta3-adrenergic receptors in relaxation mediated by nitric oxide in chicken basilar artery. Poult Sci 2023; 102:102633. [PMID: 37001317 PMCID: PMC10070147 DOI: 10.1016/j.psj.2023.102633] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/21/2023] [Accepted: 03/02/2023] [Indexed: 03/09/2023] Open
Abstract
The response of basilar arteries to noradrenaline varies among many animal species, but remains little studied in poultry. Accordingly, we aimed to characterize the adrenergic receptor (AR) subtypes that modulate vascular response in basilar arteries in the chicken, with isometric recording of arterial ring tension using an organ bath. We demonstrated the presence of both alpha and beta (α and β) receptor subtypes through evaluating the response to noradrenaline, with and without a range of β-AR and α-AR antagonists. The concentration-dependent relaxations then induced by a range of β-AR agonists indicated a potency ranking of isoproterenol > noradrenaline > adrenaline > procaterol. We then investigated the effects of β-AR antagonists that attenuate the effect of isoproterenol (propranolol for β1,2,3-ARs, atenolol for β1-ARs, butoxamine for β2-ARs, and SR 59230A for β3-ARs), with Schild regression analysis, ascertaining multiple β-AR subtypes, with neither the β1-AR nor the β2-AR as the dominant subtype. SR 59230A was the only antagonist to yield a pA2 value (7.52) close to the reported equivalent for the relevant receptor subtype. Furthermore, treatment with SR 58611 (a β3-AR agonist) induced relaxation, which was inhibited (P < 0.01) by L-NNA and SR 59230A. Additionally, treating basilar arterial strips (containing endothelium) with SR 58611 induced nitric oxide (NO) production, which was inhibited (P < 0.01) by L-NNA and SR 59230A. Based on this first characterization of AR subtypes in chicken basilar arteries (to our knowledge), we suggest that α- and β-ARs are involved in contraction and relaxation, and that β3-ARs, especially those on the endothelium, may play an important role in vasodilation via NO release.
Collapse
|
10
|
Bordes L, Vreman S, Heutink R, Roose M, Venema S, Pritz-Verschuren SBE, Rijks JM, Gonzales JL, Germeraad EA, Engelsma M, Beerens N. Highly Pathogenic Avian Influenza H5N1 Virus Infections in Wild Red Foxes (Vulpes vulpes) Show Neurotropism and Adaptive Virus Mutations. Microbiol Spectr 2023; 11:e0286722. [PMID: 36688676 PMCID: PMC9927208 DOI: 10.1128/spectrum.02867-22] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/23/2022] [Indexed: 01/24/2023] Open
Abstract
During the 2020 to 2022 epizootic of highly pathogenic avian influenza virus (HPAI), several infections of mammalian species were reported in Europe. In the Netherlands, HPAI H5N1 virus infections were detected in three wild red foxes (Vulpes vulpes) that were submitted with neurological symptoms between December of 2021 and February of 2022. A histopathological analysis demonstrated that the virus was mainly present in the brain, with limited or no detection in the respiratory tract or other organs. Limited or no virus shedding was observed in throat and rectal swabs. A phylogenetic analysis showed that the three fox viruses were not closely related, but they were related to HPAI H5N1 clade 2.3.4.4b viruses that are found in wild birds. This suggests that the virus was not transmitted between the foxes. A genetic analysis demonstrated the presence of the mammalian adaptation E627K in the polymerase basic two (PB2) protein of the two fox viruses. In both foxes, the avian (PB2-627E) and the mammalian (PB2-627K) variants were present as a mixture in the virus population, which suggests that the mutation emerged in these specific animals. The two variant viruses were isolated, and virus replication and passaging experiments were performed. These experiments showed that the mutation PB2-627K increases the replication of the virus in mammalian cell lines, compared to the chicken cell line, and at the lower temperatures of the mammalian upper respiratory tract. This study showed that the HPAI H5N1 virus is capable of adaptation to mammals; however, more adaptive mutations are required to allow for efficient transmission between mammals. Therefore, surveillance in mammals should be expanded to closely monitor the emergence of zoonotic mutations for pandemic preparedness. IMPORTANCE Highly pathogenic avian influenza (HPAI) viruses caused high mortality among wild birds from 2021 to 2022 in the Netherlands. Recently, three wild foxes were found to be infected with HPAI H5N1 viruses, likely due to the foxes feeding on infected birds. Although HPAI is a respiratory virus, in these foxes, the viruses were mostly detected in the brain. Two viruses isolated from the foxes contained a mutation that is associated with adaptation to mammals. We show that the mutant virus replicates better in mammalian cells than in avian cells and at the lower body temperature of mammals. More mutations are required before viruses can transmit between mammals or can be transmitted to humans. However, infections in mammalian species should be closely monitored to swiftly detect mutations that may increase the zoonotic potential of HPAI H5N1 viruses, as these may threaten public health.
Collapse
Affiliation(s)
- Luca Bordes
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Sandra Vreman
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Rene Heutink
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Marit Roose
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Sandra Venema
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | | | - Jolianne M. Rijks
- Dutch Wildlife Health Centre, Utrecht University, Utrecht, the Netherlands
| | | | | | - Marc Engelsma
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| | - Nancy Beerens
- Wageningen Bioveterinary Research, Lelystad, the Netherlands
| |
Collapse
|
11
|
Vreman S, Kik M, Germeraad E, Heutink R, Harders F, Spierenburg M, Engelsma M, Rijks J, van den Brand J, Beerens N. Zoonotic Mutation of Highly Pathogenic Avian Influenza H5N1 Virus Identified in the Brain of Multiple Wild Carnivore Species. Pathogens 2023; 12:168. [PMID: 36839440 PMCID: PMC9961074 DOI: 10.3390/pathogens12020168] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/25/2023] Open
Abstract
Wild carnivore species infected with highly pathogenic avian influenza (HPAI) virus subtype H5N1 during the 2021-2022 outbreak in the Netherlands included red fox (Vulpes vulpes), polecat (Mustela putorius), otter (Lutra lutra), and badger (Meles meles). Most of the animals were submitted for testing because they showed neurological signs. In this study, the HPAI H5N1 virus was detected by PCR and/or immunohistochemistry in 11 animals and was primarily present in brain tissue, often associated with a (meningo) encephalitis in the cerebrum. In contrast, the virus was rarely detected in the respiratory tract and intestinal tract and associated lesions were minimal. Full genome sequencing followed by phylogenetic analysis demonstrated that these carnivore viruses were related to viruses detected in wild birds in the Netherlands. The carnivore viruses themselves were not closely related, and the infected carnivores did not cluster geographically, suggesting that they were infected separately. The mutation PB2-E627K was identified in most carnivore virus genomes, providing evidence for mammalian adaptation. This study showed that brain samples should be included in wild life surveillance programs for the reliable detection of the HPAI H5N1 virus in mammals. Surveillance of the wild carnivore population and notification to the Veterinary Authority are important from a one-heath perspective, and instrumental to pandemic preparedness.
Collapse
Affiliation(s)
- Sandra Vreman
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad 8221 RA, The Netherlands; (E.G.); (R.H.); (F.H.); (M.E.)
| | - Marja Kik
- Dutch Wildlife Health Centre, Utrecht University, Faculty of Veterinary Medicine, 3584 CL Utrecht, The Netherlands; (M.K.); (J.R.); (J.v.d.B.)
- Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Evelien Germeraad
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad 8221 RA, The Netherlands; (E.G.); (R.H.); (F.H.); (M.E.)
| | - Rene Heutink
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad 8221 RA, The Netherlands; (E.G.); (R.H.); (F.H.); (M.E.)
| | - Frank Harders
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad 8221 RA, The Netherlands; (E.G.); (R.H.); (F.H.); (M.E.)
| | - Marcel Spierenburg
- NVWA Incident- and Crisiscentre (NVIC), Netherlands Food and Consumer Product Safety Authority, 3511 GG Utrecht, The Netherlands;
| | - Marc Engelsma
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad 8221 RA, The Netherlands; (E.G.); (R.H.); (F.H.); (M.E.)
| | - Jolianne Rijks
- Dutch Wildlife Health Centre, Utrecht University, Faculty of Veterinary Medicine, 3584 CL Utrecht, The Netherlands; (M.K.); (J.R.); (J.v.d.B.)
| | - Judith van den Brand
- Dutch Wildlife Health Centre, Utrecht University, Faculty of Veterinary Medicine, 3584 CL Utrecht, The Netherlands; (M.K.); (J.R.); (J.v.d.B.)
- Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | - Nancy Beerens
- Wageningen Bioveterinary Research, Wageningen University & Research, Lelystad 8221 RA, The Netherlands; (E.G.); (R.H.); (F.H.); (M.E.)
| |
Collapse
|