1
|
Gentili PL. The Conformational Contribution to Molecular Complexity and Its Implications for Information Processing in Living Beings and Chemical Artificial Intelligence. Biomimetics (Basel) 2024; 9:121. [PMID: 38392167 PMCID: PMC10886813 DOI: 10.3390/biomimetics9020121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024] Open
Abstract
This work highlights the relevant contribution of conformational stereoisomers to the complexity and functions of any molecular compound. Conformers have the same molecular and structural formulas but different orientations of the atoms in the three-dimensional space. Moving from one conformer to another is possible without breaking covalent bonds. The interconversion is usually feasible through the thermal energy available in ordinary conditions. The behavior of most biopolymers, such as enzymes, antibodies, RNA, and DNA, is understandable if we consider that each exists as an ensemble of conformers. Each conformational collection confers multi-functionality and adaptability to the single biopolymers. The conformational distribution of any biopolymer has the features of a fuzzy set. Hence, every compound that exists as an ensemble of conformers allows the molecular implementation of a fuzzy set. Since proteins, DNA, and RNA work as fuzzy sets, it is fair to say that life's logic is fuzzy. The power of processing fuzzy logic makes living beings capable of swift decisions in environments dominated by uncertainty and vagueness. These performances can be implemented in chemical robots, which are confined molecular assemblies mimicking unicellular organisms: they are supposed to help humans "colonise" the molecular world to defeat diseases in living beings and fight pollution in the environment.
Collapse
Affiliation(s)
- Pier Luigi Gentili
- Department of Chemistry, Biology, and Biotechnology, Università degli Studi di Perugia, 06123 Perugia, Italy
| |
Collapse
|
2
|
Baldini F, Zeaiter L, Diab F, Zbeeb H, Cuneo L, Pagano A, Portincasa P, Diaspro A, Vergani L. Nuclear and chromatin rearrangement associate to epigenome and gene expression changes in a model of in vitro adipogenesis and hypertrophy. Biochim Biophys Acta Mol Cell Biol Lipids 2023; 1868:159368. [PMID: 37499858 DOI: 10.1016/j.bbalip.2023.159368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 07/07/2023] [Accepted: 07/19/2023] [Indexed: 07/29/2023]
Abstract
Hypertrophy of adipocytes represents the main cause of obesity. We investigated in vitro the changes associated with adipocyte differentiation and hypertrophy focusing on the nuclear morphometry and chromatin epigenetic remodelling. The 3 T3-L1 pre-adipocytes were firstly differentiated into mature adipocytes, then cultured with long-chain fatty acids to induce hypertrophy. Confocal and super-resolution stimulation emission depletion (STED) microscopy combined with ELISA assays allowed us to explore nuclear architecture, chromatin distribution and epigenetic modifications. In each condition, we quantified the triglyceride accumulation, the mRNA expression of adipogenesis and dysfunction markers, the release of five pro-inflammatory cytokines. Confocal microscopy revealed larger volume and less elongated shape of the nuclei in both mature and hypertrophic cells respect to pre-adipocytes, and a trend toward reduced chromatin compaction. Compared to mature adipocytes, the hypertrophic phenotype showed larger triglyceride content, increased PPARγ expression reduced IL-1a release, and up-regulation of a pool of genes markers for adipose tissue dysfunction. Moreover, a remodelling of both epigenome and chromatin organization was observed in hypertrophic adipocytes, with an increase in the average fluorescence of H3K9 acetylated domains in parallel with the increase in KAT2A expression, and a global hypomethylation of DNA. These findings making light on the nuclear changes during adipocyte differentiation and hypertrophy might help the strategies for treating obesity and metabolic complications.
Collapse
Affiliation(s)
- Francesca Baldini
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152, Genova, Italy
| | - Lama Zeaiter
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152, Genova, Italy; Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Farah Diab
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Hawraa Zbeeb
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy
| | - Lisa Cuneo
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152, Genova, Italy; Department of Physics (DIFILAB), University of Genoa, Via Dodecaneso 33, 16146, Genoa, Italy
| | - Aldo Pagano
- DIMES, Department of Experimental Medicine, University of Genoa, Genoa, Italy; IRCCS Ospedale Policlinico San Martino, Genoa, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari, Medical School, Piazza Giulio Cesare 11, 70124, Bari, Italy
| | - Alberto Diaspro
- Nanoscopy, Istituto Italiano Tecnologia, Via Enrico Melen 83, 16152, Genova, Italy; Department of Physics (DIFILAB), University of Genoa, Via Dodecaneso 33, 16146, Genoa, Italy
| | - Laura Vergani
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genova, Corso Europa 26, 16132, Genova, Italy.
| |
Collapse
|
3
|
Li Y, Zhang H, Li X, Wu W, Zhu P. Cryo-ET study from in vitro to in vivo revealed a general folding mode of chromatin with two-start helical architecture. Cell Rep 2023; 42:113134. [PMID: 37708029 DOI: 10.1016/j.celrep.2023.113134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 09/16/2023] Open
Abstract
The organization and dynamics of chromatin fiber play crucial roles in regulating DNA accessibility for gene expression. Here we combine cryoelectron tomography (cryo-ET), sub-volume averaging, and 3D segmentation to visualize the in vitro and in vivo chromatin fibers folding by linker histone. We discover that an increased nucleosome repeat length and prolonged fiber length do not change the two-start helical architecture in reconstituted chromatin of homogeneous composition. Additionally, an isolated chromatin fiber with heterogeneous composition was observed, which includes short-range regions compatible with two-start helix. In vivo, sub-volume averaging reveals similar subunits of two-start helical architecture in transcriptionally inactive chromatin in frog erythrocyte nuclei. Strikingly, unambiguous DNA trajectories that displayed a zigzag pattern universally between alternate N/N+2 nucleosomes were further determined by cryo-ET with voltage phase plate. Therefore, these structural similarities suggest a general folding mode of chromatin induced by linker histone, and heterogeneous compositions mainly affect local conformation rather than changing the overall architecture.
Collapse
Affiliation(s)
- Yan Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China
| | - Haonan Zhang
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaomin Li
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wanyu Wu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ping Zhu
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Epigenetic Regulation and Intervention, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
4
|
Liu S, Li Y, Hong Y, Wang M, Zhang H, Ma J, Qu K, Huang G, Lu TJ. Mechanotherapy in oncology: Targeting nuclear mechanics and mechanotransduction. Adv Drug Deliv Rev 2023; 194:114722. [PMID: 36738968 DOI: 10.1016/j.addr.2023.114722] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 12/23/2022] [Accepted: 01/28/2023] [Indexed: 02/05/2023]
Abstract
Mechanotherapy is proposed as a new option for cancer treatment. Increasing evidence suggests that characteristic differences are present in the nuclear mechanics and mechanotransduction of cancer cells compared with those of normal cells. Recent advances in understanding nuclear mechanics and mechanotransduction provide not only further insights into the process of malignant transformation but also useful references for developing new therapeutic approaches. Herein, we present an overview of the alterations of nuclear mechanics and mechanotransduction in cancer cells and highlight their implications in cancer mechanotherapy.
Collapse
Affiliation(s)
- Shaobao Liu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Yuan Li
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yuan Hong
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China; National Science Foundation Science and Technology Center for Engineering Mechanobiology, Washington University, St. Louis, MO 63130, USA
| | - Ming Wang
- MOE Key Laboratory of Biomedical Information Engineering, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, PR China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hao Zhang
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China
| | - Jinlu Ma
- Department of Radiation Oncology, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Kai Qu
- Department of Hepatobiliary Surgery, the First Affiliated Hospital, Xian Jiaotong University, Xi'an 710061, PR China
| | - Guoyou Huang
- Department of Engineering Mechanics, School of Civil Engineering, Wuhan University, Wuhan 430072, PR China.
| | - Tian Jian Lu
- State Key Laboratory of Mechanics and Control of Mechanical Structures, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, PR China; MIIT Key Laboratory of Multifunctional Lightweight Materials and Structures, Nanjing University of Aeronautics, Nanjing 210016, PR China.
| |
Collapse
|
5
|
PartSeg: a tool for quantitative feature extraction from 3D microscopy images for dummies. BMC Bioinformatics 2021; 22:72. [PMID: 33596823 PMCID: PMC7890960 DOI: 10.1186/s12859-021-03984-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/27/2021] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Bioimaging techniques offer a robust tool for studying molecular pathways and morphological phenotypes of cell populations subjected to various conditions. As modern high-resolution 3D microscopy provides access to an ever-increasing amount of high-quality images, there arises a need for their analysis in an automated, unbiased, and simple way. Segmentation of structures within the cell nucleus, which is the focus of this paper, presents a new layer of complexity in the form of dense packing and significant signal overlap. At the same time, the available segmentation tools provide a steep learning curve for new users with a limited technical background. This is especially apparent in the bulk processing of image sets, which requires the use of some form of programming notation. RESULTS In this paper, we present PartSeg, a tool for segmentation and reconstruction of 3D microscopy images, optimised for the study of the cell nucleus. PartSeg integrates refined versions of several state-of-the-art algorithms, including a new multi-scale approach for segmentation and quantitative analysis of 3D microscopy images. The features and user-friendly interface of PartSeg were carefully planned with biologists in mind, based on analysis of multiple use cases and difficulties encountered with other tools, to offer an ergonomic interface with a minimal entry barrier. Bulk processing in an ad-hoc manner is possible without the need for programmer support. As the size of datasets of interest grows, such bulk processing solutions become essential for proper statistical analysis of results. Advanced users can use PartSeg components as a library within Python data processing and visualisation pipelines, for example within Jupyter notebooks. The tool is extensible so that new functionality and algorithms can be added by the use of plugins. For biologists, the utility of PartSeg is presented in several scenarios, showing the quantitative analysis of nuclear structures. CONCLUSIONS In this paper, we have presented PartSeg which is a tool for precise and verifiable segmentation and reconstruction of 3D microscopy images. PartSeg is optimised for cell nucleus analysis and offers multi-scale segmentation algorithms best-suited for this task. PartSeg can also be used for the bulk processing of multiple images and its components can be reused in other systems or computational experiments.
Collapse
|
6
|
Vardaxis I, Drabløs F, Rye MB, Lindqvist BH. MACPET: model-based analysis for ChIA-PET. Biostatistics 2020; 21:625-639. [PMID: 30698663 PMCID: PMC7308020 DOI: 10.1093/biostatistics/kxy084] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 12/13/2018] [Accepted: 12/16/2018] [Indexed: 11/16/2022] Open
Abstract
We present model-based analysis for ChIA-PET (MACPET), which analyzes paired-end read sequences provided by ChIA-PET for finding binding sites of a protein of interest. MACPET uses information from both tags of each PET and searches for binding sites in a two-dimensional space, while taking into account different noise levels in different genomic regions. MACPET shows favorable results compared with MACS in terms of motif occurrence and spatial resolution. Furthermore, significant binding sites discovered by MACPET are involved in a higher number of significant three-dimensional interactions than those discovered by MACS. MACPET is freely available on Bioconductor. ChIA-PET; MACPET; Model-based clustering; Paired-end tags; Peak-calling algorithm.
Collapse
Affiliation(s)
- Ioannis Vardaxis
- Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Finn Drabløs
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| | - Morten B Rye
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, N-7491 Trondheim, Norway and Clinic of Surgery, St. Olavs Hospital, Trondheim University Hospital, N-7030 Trondheim, Norway
| | - Bo Henry Lindqvist
- Department of Mathematical Sciences, Norwegian University of Science and Technology, N-7491 Trondheim, Norway
| |
Collapse
|
7
|
Understanding the role of phenotypic switching in cancer drug resistance. J Theor Biol 2020; 490:110162. [PMID: 31953135 DOI: 10.1016/j.jtbi.2020.110162] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 12/19/2019] [Accepted: 01/13/2020] [Indexed: 12/17/2022]
Abstract
The emergence of acquired drug resistance in cancer represents a major barrier to treatment success. While research has traditionally focused on genetic sources of resistance, recent findings suggest that cancer cells can acquire transient resistant phenotypes via epigenetic modifications and other non-genetic mechanisms. Although these resistant phenotypes are eventually relinquished by individual cells, they can temporarily 'save' the tumor from extinction and enable the emergence of more permanent resistance mechanisms. These observations have generated interest in the potential of epigenetic therapies for long-term tumor control or eradication. In this work, we develop a mathematical model to study how phenotypic switching at the single-cell level affects resistance evolution in cancer. We highlight unique features of non-genetic resistance, probe the evolutionary consequences of epigenetic drugs and explore potential therapeutic strategies. We find that even short-term epigenetic modifications and stochastic fluctuations in gene expression can drive long-term drug resistance in the absence of any bona fide resistance mechanisms. We also find that an epigenetic drug that slightly perturbs the average retention of the resistant phenotype can turn guaranteed treatment failure into guaranteed success. Lastly, we find that combining an epigenetic drug with an anti-cancer agent can significantly outperform monotherapy, and that treatment outcome is heavily affected by drug sequencing.
Collapse
|
8
|
Teles K, Fernandes V, Silva I, Leite M, Grisolia C, Lobbia VR, van Ingen H, Honorato R, Lopes-de-Oliveira P, Treptow W, Santos G. Nucleosome binding peptide presents laudable biophysical and in vivo effects. Biomed Pharmacother 2019; 121:109678. [PMID: 31810135 DOI: 10.1016/j.biopha.2019.109678] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 10/30/2019] [Accepted: 11/13/2019] [Indexed: 10/25/2022] Open
Abstract
Chromatin state is highly dependent on the nucleosome binding proteins. Herein, we used a multipronged approach employing biophysical and in vivo experiments to characterize the effects of Nucleosome Binding Peptides (NBPeps) on nucleosome and cell activity. We performed a series of structure-based calculations on the nucleosome surface interaction with GMIP1 (a novel NBPep generated in silico), and HMGN2 (nucleosome binding motif of HMGN2), which contains sites that bind DNA and the acid patch, and also LANA and H4pep (nucleosome binding motif of H4 histone tail) that only bind to the acidic patch. Biochemical assays shows that H4pep, but not HMGN2, GMIP1 and LANA, is highly specific for targeting the nucleosome, with important effects on the final nucleosome structure and robust in vivo effects. These findings suggest that NBPeps might have important therapeutic implications and relevance as tools for chromatin investigation.
Collapse
Affiliation(s)
- Kaian Teles
- Laboratório de Farmacologia Molecular, Departamento de Farmácia, Universidade de Brasília, Brasília, 70919-970, Brazil
| | - Vinicius Fernandes
- Laboratório de Farmacologia Molecular, Departamento de Farmácia, Universidade de Brasília, Brasília, 70919-970, Brazil; Laboratório de Biologia Teórica e Computacional, Departamento de Biologia Celular, Universidade de Brasília, DF, 70910-900, Brasília, Brazil
| | - Isabel Silva
- Laboratório de Farmacologia Molecular, Departamento de Farmácia, Universidade de Brasília, Brasília, 70919-970, Brazil
| | - Manuela Leite
- Laboratório de Farmacologia Molecular, Departamento de Farmácia, Universidade de Brasília, Brasília, 70919-970, Brazil
| | - Cesar Grisolia
- Laboratório de Genética Toxicológica, Departamento de Genética e Morfologia, Instituto de Ciências Biológicas, Universidade de Brasília, Brasília, Brazil
| | - Vincenzo R Lobbia
- NMR Spectroscopy Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Hugo van Ingen
- NMR Spectroscopy Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, the Netherlands
| | - Rodrigo Honorato
- Laboratório Nacional de Biociências (LNBio), Campinas, SP, Brazil
| | | | - Werner Treptow
- Laboratório de Biologia Teórica e Computacional, Departamento de Biologia Celular, Universidade de Brasília, DF, 70910-900, Brasília, Brazil
| | - Guilherme Santos
- Laboratório de Farmacologia Molecular, Departamento de Farmácia, Universidade de Brasília, Brasília, 70919-970, Brazil.
| |
Collapse
|
9
|
Zhang H, Zheng R, Wang Y, Zhang Y, Hong P, Fang Y, Li G, Fang Y. The effects of Arabidopsis genome duplication on the chromatin organization and transcriptional regulation. Nucleic Acids Res 2019; 47:7857-7869. [PMID: 31184697 PMCID: PMC6736098 DOI: 10.1093/nar/gkz511] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/26/2019] [Accepted: 05/30/2019] [Indexed: 12/20/2022] Open
Abstract
Autopolyploidy is widespread in higher plants and important for agricultural yield and quality. However, the effects of genome duplication on the chromatin organization and transcriptional regulation are largely unknown in plants. Using High-throughput Chromosome Conformation Capture (Hi-C), we showed that autotetraploid Arabidopsis presented more inter-chromosomal interactions and fewer short-range chromatin interactions compared with its diploid progenitor. In addition, genome duplication contributed to the switching of some loose and compact structure domains with altered H3K4me3 and H3K27me3 histone modification status. 539 genes were identified with altered transcriptions and chromatin interactions in autotetraploid Arabidopsis. Especially, we found that genome duplication changed chromatin looping and H3K27me3 histone modification in Flowering Locus C. We propose that genome doubling modulates the transcription genome-wide by changed chromatin interactions and at the specific locus by altered chromatin loops and histone modifications.
Collapse
Affiliation(s)
- Hui Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ruiqin Zheng
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yunlong Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yu Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| | - Ping Hong
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yaping Fang
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Guoliang Li
- National Key Laboratory of Crop Genetic Improvement, Hubei Key Laboratory of Agricultural Bioinformatics, Hubei Engineering Technology Research Center of Agricultural Big Data, College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Yuda Fang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
10
|
Effect of melatonin on neuronal differentiation requires CBP/p300-mediated acetylation of histone H3 lysine 14. Neuroscience 2017; 364:45-59. [DOI: 10.1016/j.neuroscience.2017.07.064] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/22/2022]
|
11
|
Razin SV, Ulianov SV. Gene functioning and storage within a folded genome. Cell Mol Biol Lett 2017; 22:18. [PMID: 28861108 PMCID: PMC5575855 DOI: 10.1186/s11658-017-0050-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2017] [Accepted: 08/24/2017] [Indexed: 01/28/2023] Open
Abstract
In mammals, genomic DNA that is roughly 2 m long is folded to fit the size of the cell nucleus that has a diameter of about 10 μm. The folding of genomic DNA is mediated via assembly of DNA-protein complex, chromatin. In addition to the reduction of genomic DNA linear dimensions, the assembly of chromatin allows to discriminate and to mark active (transcribed) and repressed (non-transcribed) genes. Consequently, epigenetic regulation of gene expression occurs at the level of DNA packaging in chromatin. Taking into account the increasing attention of scientific community toward epigenetic systems of gene regulation, it is very important to understand how DNA folding in chromatin is related to gene activity. For many years the hierarchical model of DNA folding was the most popular. It was assumed that nucleosome fiber (10-nm fiber) is folded into 30-nm fiber and further on into chromatin loops attached to a nuclear/chromosome scaffold. Recent studies have demonstrated that there is much less regularity in chromatin folding within the cell nucleus. The very existence of 30-nm chromatin fibers in living cells was questioned. On the other hand, it was found that chromosomes are partitioned into self-interacting spatial domains that restrict the area of enhancers action. Thus, TADs can be considered as structural-functional domains of the chromosomes. Here we discuss the modern view of DNA packaging within the cell nucleus in relation to the regulation of gene expression. Special attention is paid to the possible mechanisms of the chromatin fiber self-assembly into TADs. We discuss the model postulating that partitioning of the chromosome into TADs is determined by the distribution of active and inactive chromatin segments along the chromosome. This article was specially invited by the editors and represents work by leading researchers.
Collapse
Affiliation(s)
- Sergey V Razin
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, 119334 Moscow, Russia.,Lomonosov Moscow State University, Biological Faculty, Leninskie Gory 1, building 12, 119192 Moscow, Russia
| | - Sergey V Ulianov
- Institute of Gene Biology, Russian Academy of Sciences, Vavilov Street 34/5, 119334 Moscow, Russia.,Lomonosov Moscow State University, Biological Faculty, Leninskie Gory 1, building 12, 119192 Moscow, Russia
| |
Collapse
|
12
|
Han Y, He X. Integrating Epigenomics into the Understanding of Biomedical Insight. Bioinform Biol Insights 2016; 10:267-289. [PMID: 27980397 PMCID: PMC5138066 DOI: 10.4137/bbi.s38427] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 11/01/2016] [Accepted: 11/06/2016] [Indexed: 12/13/2022] Open
Abstract
Epigenetics is one of the most rapidly expanding fields in biomedical research, and the popularity of the high-throughput next-generation sequencing (NGS) highlights the accelerating speed of epigenomics discovery over the past decade. Epigenetics studies the heritable phenotypes resulting from chromatin changes but without alteration on DNA sequence. Epigenetic factors and their interactive network regulate almost all of the fundamental biological procedures, and incorrect epigenetic information may lead to complex diseases. A comprehensive understanding of epigenetic mechanisms, their interactions, and alterations in health and diseases genome widely has become a priority in biological research. Bioinformatics is expected to make a remarkable contribution for this purpose, especially in processing and interpreting the large-scale NGS datasets. In this review, we introduce the epigenetics pioneering achievements in health status and complex diseases; next, we give a systematic review of the epigenomics data generation, summarize public resources and integrative analysis approaches, and finally outline the challenges and future directions in computational epigenomics.
Collapse
Affiliation(s)
- Yixing Han
- Mouse Cancer Genetics Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA.; Present address: Genetics and Biochemistry Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Ximiao He
- Laboratory of Metabolism, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA.; Present address: Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
13
|
Ludwig AK, Zhang P, Cardoso MC. Modifiers and Readers of DNA Modifications and Their Impact on Genome Structure, Expression, and Stability in Disease. Front Genet 2016; 7:115. [PMID: 27446199 PMCID: PMC4914596 DOI: 10.3389/fgene.2016.00115] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Accepted: 06/06/2016] [Indexed: 12/16/2022] Open
Abstract
Cytosine base modifications in mammals underwent a recent expansion with the addition of several naturally occurring further modifications of methylcytosine in the last years. This expansion was accompanied by the identification of the respective enzymes and proteins reading and translating the different modifications into chromatin higher order organization as well as genome activity and stability, leading to the hypothesis of a cytosine code. Here, we summarize the current state-of-the-art on DNA modifications, the enzyme families setting the cytosine modifications and the protein families reading and translating the different modifications with emphasis on the mouse protein homologs. Throughout this review, we focus on functional and mechanistic studies performed on mammalian cells, corresponding mouse models and associated human diseases.
Collapse
Affiliation(s)
- Anne K Ludwig
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| | - Peng Zhang
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| | - M C Cardoso
- Cell Biology and Epigenetics, Department of Biology, Technische Universität Darmstadt, Darmstadt Germany
| |
Collapse
|
14
|
Flanagan TW, Files JK, Casano KR, George EM, Brown DT. Photobleaching studies reveal that a single amino acid polymorphism is responsible for the differential binding affinities of linker histone subtypes H1.1 and H1.5. Biol Open 2016; 5:372-80. [PMID: 26912777 PMCID: PMC4810752 DOI: 10.1242/bio.016733] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mammals express six major somatic linker histone subtypes, all of which display dynamic binding to chromatin, characterized by transient binding at a given location followed by rapid translocation to a new site. Using photobleaching techniques, we systematically measured the exchange rate of all six mouse H1 subtypes to determine their relative chromatin-binding affinity. Two subtypes, H1.1 and H1.2, display binding affinities that are significantly lower than all other subtypes. Using in vitro mutagenesis, the differences in chromatin-binding affinities between H1.1 (lower binding affinity) and H1.5 (higher binding affinity) were mapped to a single amino acid polymorphism near the junction of the globular and C-terminal domains. Overexpression of H1.5 in density arrested fibroblasts did not affect cell cycle progression after release. By contrast, overexpression of H1.1 resulted in a more rapid progression through G1/S relative to control cells. These results provide structural insights into the proposed functional significance of linker histone heterogeneity. Summary: Mouse linker histone subtypes H1.1 and H1.5 bind to chromatin with different affinities due to a single amino acid polymorphism. Overexpression of H1.1 in fibroblasts accelerates cell cycle progression.
Collapse
Affiliation(s)
- Thomas W Flanagan
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - Jacob K Files
- Clinton High School, Clinton, MS 39056, USA Spring Hill College, Mobile, AL 36608, USA
| | | | - Eric M George
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA Department of Physiology, University of Mississippi Medical Center, Jackson, MS 39216, USA
| | - David T Brown
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, MS 39216, USA
| |
Collapse
|
15
|
Hollar D. Epigenetic Significance of Chromatin Organization During Cellular Aging and Organismal Lifespan. EPIGENETICS, THE ENVIRONMENT, AND CHILDREN’S HEALTH ACROSS LIFESPANS 2016. [PMCID: PMC7153164 DOI: 10.1007/978-3-319-25325-1_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- David Hollar
- Pfeiffer University, Morrisville, North Carolina USA
| |
Collapse
|
16
|
Abstract
Low voltage transmission electron microscopy (LVTEM) was employed to examine biological tissues with accelerating voltages as low as 5kV. Tissue preparation was modified to take advantage of the low-voltage techniques. Treatments with heavy metals, such as post-fixation with osmium tetroxide, on block and counterstaining were omitted. Sections (40nm) were thinner than usual and generated highly contrasted images. General appearance of the cells remains similar to that of conventional TEM. New features were however revealed. The matrix of the pancreatic granules displays heterogeneity with partitions that may correspond to the inner-segregation of their secretory proteins. Mitochondria revealed the presence of the ATP synthase granules along their cristea. The nuclear dense chromatin displayed a honeycomb organization while distinct beads, nucleosomes, aligned along thin threads were seen in the dispersed chromatin. Nuclear pore protein complexes revealed their globular nature. The intercalated disks in cardiac muscle displayed their fine structural organization. These features correlate well with data described or predicted by cell and molecular biology. These new aspects are not revealed when thicker and conventionally osmicated tissue sections were examined by LVTEM, indicating that major masking effects are associated with standard TEM techniques. Immunogold was adapted to LVTEM further enhancing its potential in cell biology.
Collapse
|
17
|
Risca VI, Greenleaf WJ. Unraveling the 3D genome: genomics tools for multiscale exploration. Trends Genet 2015; 31:357-72. [PMID: 25887733 DOI: 10.1016/j.tig.2015.03.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 12/15/2022]
Abstract
A decade of rapid method development has begun to yield exciting insights into the 3D architecture of the metazoan genome and the roles it may play in regulating transcription. Here we review core methods and new tools in the modern genomicist's toolbox at three length scales, ranging from single base pairs to megabase-scale chromosomal domains, and discuss the emerging picture of the 3D genome that these tools have revealed. Blind spots remain, especially at intermediate length scales spanning a few nucleosomes, but thanks in part to new technologies that permit targeted alteration of chromatin states and time-resolved studies, the next decade holds great promise for hypothesis-driven research into the mechanisms that drive genome architecture and transcriptional regulation.
Collapse
Affiliation(s)
- Viviana I Risca
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - William J Greenleaf
- Department of Genetics, Stanford University School of Medicine, Stanford, CA 94305, USA.
| |
Collapse
|
18
|
Teif VB, Kepper N, Yserentant K, Wedemann G, Rippe K. Affinity, stoichiometry and cooperativity of heterochromatin protein 1 (HP1) binding to nucleosomal arrays. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2015; 27:064110. [PMID: 25563825 DOI: 10.1088/0953-8984/27/6/064110] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Heterochromatin protein 1 (HP1) participates in establishing and maintaining heterochromatin via its histone-modification-dependent chromatin interactions. In recent papers HP1 binding to nucleosomal arrays was measured in vitro and interpreted in terms of nearest-neighbour cooperative binding. This mode of chromatin interaction could lead to the spreading of HP1 along the nucleosome chain. Here, we reanalysed previous data by representing the nucleosome chain as a 1D binding lattice and showed how the experimental HP1 binding isotherms can be explained by a simpler model without cooperative interactions between neighboring HP1 dimers. Based on these calculations and spatial models of dinucleosomes and nucleosome chains, we propose that binding stoichiometry depends on the nucleosome repeat length (NRL) rather than protein interactions between HP1 dimers. According to our calculations, more open nucleosome arrays with long DNA linkers are characterized by a larger number of binding sites in comparison to chains with a short NRL. Furthermore, we demonstrate by Monte Carlo simulations that the NRL dependent folding of the nucleosome chain can induce allosteric changes of HP1 binding sites. Thus, HP1 chromatin interactions can be modulated by the change of binding stoichiometry and the type of binding to condensed (methylated) and non-condensed (unmethylated) nucleosome arrays in the absence of direct interactions between HP1 dimers.
Collapse
Affiliation(s)
- Vladimir B Teif
- Deutsches Krebsforschungszentrum & BioQuant, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | | | | | | | | |
Collapse
|
19
|
Cao J, Luo Z, Cheng Q, Xu Q, Zhang Y, Wang F, Wu Y, Song X. Three-dimensional regulation of transcription. Protein Cell 2015; 6:241-53. [PMID: 25670626 PMCID: PMC4383755 DOI: 10.1007/s13238-015-0135-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 01/09/2015] [Indexed: 12/20/2022] Open
Abstract
Cells can adapt to environment and development by reconstructing their transcriptional networks to regulate diverse cellular processes without altering the underlying DNA sequences. These alterations, namely epigenetic changes, occur during cell division, differentiation and cell death. Numerous evidences demonstrate that epigenetic changes are governed by various types of determinants, including DNA methylation patterns, histone posttranslational modification signatures, histone variants, chromatin remodeling, and recently discovered chromosome conformation characteristics and non-coding RNAs (ncRNAs). Here, we highlight recent efforts on how the two latter epigenetic factors participate in the sophisticated transcriptional process and describe emerging techniques which permit us to uncover and gain insights into the fascinating genomic regulation.
Collapse
Affiliation(s)
- Jun Cao
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Zhengyu Luo
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Qingyu Cheng
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Qianlan Xu
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Yan Zhang
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Fei Wang
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Yan Wu
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| | - Xiaoyuan Song
- CAS Key Laboratory of Brain Function and Disease and School of Life Sciences, University of Science and Technology of China, Hefei, 230027 China
| |
Collapse
|
20
|
Ramdas NM, Shivashankar GV. Cytoskeletal control of nuclear morphology and chromatin organization. J Mol Biol 2014; 427:695-706. [PMID: 25281900 DOI: 10.1016/j.jmb.2014.09.008] [Citation(s) in RCA: 128] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2014] [Revised: 09/03/2014] [Accepted: 09/06/2014] [Indexed: 02/06/2023]
Abstract
The nucleus is sculpted toward various morphologies during cellular differentiation and development. Alterations in nuclear shape often result in changes to chromatin organization and genome function. This is thought to be reflective of its role as a cellular mechanotransducer. Recent evidence has highlighted the importance of cytoskeletal organization in defining how nuclear morphology regulates chromatin dynamics. However, the mechanisms underlying cytoskeletal control of chromatin remodeling are not well understood. We demonstrate here the differential influence of perinuclear actin- and microtubule-driven assemblies on nuclear architecture using pharmacological inhibitors and targeted RNA interference knockdown of cytoskeleton components in Drosophila cells. We find evidence that the loss of perinuclear actin assembly results in basolateral enhancement of microtubule organization and this is reflected functionally by enhanced nuclear dynamics. Cytoskeleton reorganization leads to nuclear lamina deformation that influences heterochromatin localization and core histone protein mobility. We also show that modulations in actin-microtubule assembly result in differential gene expression patterns. Taken together, we suggest that perinuclear actin and basolateral microtubule organization exerts mechanical control on nuclear morphology and chromatin dynamics.
Collapse
Affiliation(s)
- Nisha M Ramdas
- National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore 560 065, India
| | - G V Shivashankar
- Mechanobiology Institute and Department of Biological Sciences, National University of Singapore, 21 Lower Kent Ridge Road 119077, Singapore.
| |
Collapse
|
21
|
Bendayan M, Paransky E. Perspectives on low voltage transmission electron microscopy as applied to cell biology. Microsc Res Tech 2014; 77:999-1004. [PMID: 25164611 DOI: 10.1002/jemt.22428] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 08/06/2014] [Accepted: 08/06/2014] [Indexed: 11/06/2022]
Abstract
Low voltage transmission electron microscopy (LVTEM) with accelerating voltages as low as 5 kV was applied to cell biology. To take advantage of the increased contrast given by LVTEM, tissue preparation was modified omitting all heavy metals such as osmium, uranium, and lead from the fixation, on block staining and counterstaining. Nonstained ultra-thin tissue sections (40 nm thick) generated highly contrasted images. While the aspect of the cells remains similar to that obtained by conventional TEM, some new substructures were revealed. The pancreatic acinar cells granules present a heterogeneous matrix with partitions corresponding to segregation of their different secretory proteins. Microvilli display their core of microfilaments anchored to the dense top membrane. Mitochondria revealed the presence of distinct particles along their cristea membranes that may correspond to the ATP synthase complexes or oxysomes. The dense nuclear chromatin displays a honey-comb appearance while distinct beads aligned along thin threads were seen in the dispersed chromatin. These new features revealed by LVTEM correlate with structures described or predicted through other approaches. Masking effects due to thickness of the tissue sections and to the presence of heavy metals must have prevented their observation by conventional TEM. Furthermore, the immunogold was adapted to LVTEM revealing nuclear lamin-A at the edge of the dense chromatin ribbons. Combining cytochemistry with LVTEM brings additional advantages to this new approach in cell biology.
Collapse
Affiliation(s)
- Moise Bendayan
- Department of Pathology and Cell Biology, University of Montreal (MB), Montreal, Quebec, Canada; Delong America Inc. (EP), Montreal, Quebec, Canada
| | | |
Collapse
|
22
|
Rousseau M, Ferraiuolo MA, Crutchley JL, Wang XQ, Miura H, Blanchette M, Dostie J. Classifying leukemia types with chromatin conformation data. Genome Biol 2014; 15:R60. [PMID: 24995990 PMCID: PMC4038739 DOI: 10.1186/gb-2014-15-4-r60] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2014] [Accepted: 04/30/2014] [Indexed: 11/10/2022] Open
Abstract
Background Although genetic or epigenetic alterations have been shown to affect the three-dimensional organization of genomes, the utility of chromatin conformation in the classification of human disease has never been addressed. Results Here, we explore whether chromatin conformation can be used to classify human leukemia. We map the conformation of the HOXA gene cluster in a panel of cell lines with 5C chromosome conformation capture technology, and use the data to train and test a support vector machine classifier named 3D-SP. We show that 3D-SP is able to accurately distinguish leukemias expressing MLL-fusion proteins from those expressing only wild-type MLL, and that it can also classify leukemia subtypes according to MLL fusion partner, based solely on 5C data. Conclusions Our study provides the first proof-of-principle demonstration that chromatin conformation contains the information value necessary for classification of leukemia subtypes.
Collapse
|
23
|
|
24
|
Rousseau M, Crutchley JL, Miura H, Suderman M, Blanchette M, Dostie J. Hox in motion: tracking HoxA cluster conformation during differentiation. Nucleic Acids Res 2014; 42:1524-40. [PMID: 24174538 PMCID: PMC3919592 DOI: 10.1093/nar/gkt998] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 08/28/2013] [Accepted: 10/02/2013] [Indexed: 12/26/2022] Open
Abstract
Three-dimensional genome organization is an important higher order transcription regulation mechanism that can be studied with the chromosome conformation capture techniques. Here, we combined chromatin organization analysis by chromosome conformation capture-carbon copy, computational modeling and epigenomics to achieve the first integrated view, through time, of a connection between chromatin state and its architecture. We used this approach to examine the chromatin dynamics of the HoxA cluster in a human myeloid leukemia cell line at various stages of differentiation. We found that cellular differentiation involves a transient activation of the 5'-end HoxA genes coinciding with a loss of contacts throughout the cluster, and by specific silencing at the 3'-end with H3K27 methylation. The 3D modeling of the data revealed an extensive reorganization of the cluster between the two previously reported topologically associated domains in differentiated cells. Our results support a model whereby silencing by polycomb group proteins and reconfiguration of CTCF interactions at a topologically associated domain boundary participate in changing the HoxA cluster topology, which compartmentalizes the genes following differentiation.
Collapse
Affiliation(s)
- Mathieu Rousseau
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, H3G 1Y6, Canada and School of Computer Science and McGill Centre for Bioinformatics, McGill University, Montréal, Québec, H3A 0E9, Canada
| | - Jennifer L. Crutchley
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, H3G 1Y6, Canada and School of Computer Science and McGill Centre for Bioinformatics, McGill University, Montréal, Québec, H3A 0E9, Canada
| | - Hisashi Miura
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, H3G 1Y6, Canada and School of Computer Science and McGill Centre for Bioinformatics, McGill University, Montréal, Québec, H3A 0E9, Canada
| | - Matthew Suderman
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, H3G 1Y6, Canada and School of Computer Science and McGill Centre for Bioinformatics, McGill University, Montréal, Québec, H3A 0E9, Canada
| | - Mathieu Blanchette
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, H3G 1Y6, Canada and School of Computer Science and McGill Centre for Bioinformatics, McGill University, Montréal, Québec, H3A 0E9, Canada
| | - Josée Dostie
- Department of Biochemistry and Goodman Cancer Research Center, McGill University, Montréal, Québec, H3G 1Y6, Canada and School of Computer Science and McGill Centre for Bioinformatics, McGill University, Montréal, Québec, H3A 0E9, Canada
| |
Collapse
|
25
|
DNA methylation pattern as important epigenetic criterion in cancer. GENETICS RESEARCH INTERNATIONAL 2013; 2013:317569. [PMID: 24455281 PMCID: PMC3884803 DOI: 10.1155/2013/317569] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/13/2013] [Accepted: 11/02/2013] [Indexed: 11/17/2022]
Abstract
Epigenetic modifications can affect the long-term gene expression without any change in nucleotide sequence of the DNA. Epigenetic processes intervene in the cell differentiation, chromatin structure, and activity of genes since the embryonic period. However, disorders in genes' epigenetic pattern can affect the mechanisms such as cell division, apoptosis, and response to the environmental stimuli which may lead to the incidence of different diseases and cancers. Since epigenetic changes may return to their natural state, they could be used as important targets in the treatment of cancer and similar malignancies. The aim of this review is to assess the epigenetic changes in normal and cancerous cells, the causative factors, and epigenetic therapies and treatments.
Collapse
|
26
|
The ATM-mediated DNA-damage response. Mol Oncol 2013. [DOI: 10.1017/cbo9781139046947.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
|
27
|
Machha VR, Jones SB, Waddle JR, Le VH, Wellman S, Lewis EA. Exploring the energetics of histone H1.1 and H1.4 duplex DNA interactions. Biophys Chem 2013; 185:32-8. [PMID: 24317196 DOI: 10.1016/j.bpc.2013.11.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Revised: 10/28/2013] [Accepted: 11/18/2013] [Indexed: 01/11/2023]
Abstract
H1.1 and H1.4 bind tightly to both short DNA oligomers and to CT-DNA (Ka≈1×10(7)). Binding is accompanied by an unfavorable enthalpy change (∆H≈+22 kcal/mol) and a favorable entropy change (-T∆S≈-30 kcal/mol). The Tm for the H1.4/CT-DNA complex is increased by 9 °C over the Tm for the free DNA. H1.4 titrations of the DNA oligomers yield stoichiometries (H1/DNA) of 0.64, 0.96, 1.29, and 2.04 for 24, 36, 48, and 72-bp DNA oligomers. The stoichiometries are consistent with a binding site size of 37±1 bp. CT-DNA titration data are consistent with binding site sizes of 32 bp for H1.1 and 36 bp for H1.4. The heat capacity changes, ΔCp, for formation of the H1.1 and H1.4/CT-DNA complexes are -160 cal mol(-1) K(-1) and -192 cal mol(-1)K(-1) respectively. The large negative ΔCp values indicate the loss of water from the protein DNA interface in the complex.
Collapse
Affiliation(s)
- V R Machha
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, MS 39762, USA
| | - S B Jones
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, MS 39762, USA
| | - J R Waddle
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, MS 39762, USA
| | - V H Le
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, MS 39762, USA
| | - S Wellman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216-4505, USA
| | - E A Lewis
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, MS 39762, USA.
| |
Collapse
|
28
|
Machha VR, Waddle JR, Turner AL, Wellman S, Le VH, Lewis EA. Calorimetric studies of the interactions of linker histone H1(0) and its carboxyl (H1(0)-C) and globular (H1(0)-G) domains with calf-thymus DNA. Biophys Chem 2013; 184:22-8. [PMID: 24036047 DOI: 10.1016/j.bpc.2013.08.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/08/2013] [Accepted: 08/12/2013] [Indexed: 01/04/2023]
Abstract
Histone H1 is a chromatin protein found in most eukaryotes. ITC and CD have been used to study the binding of H1(0) and its C-terminal, H1(0)-C, and globular, H1(0)-G, domains to a highly polymerized DNA. ITC results indicate that H1(0) and H1(0)-C bind tightly to DNA (Ka≈1×10(7)), with an unfavorable ΔH (ΔH≈+22kcal/mol) and a favorable ΔS (-TΔS≈-30kcal/mol). Binding H1(0)-G to DNA at 25°C is calorimetrically silent. A multiple independent site model fits the ITC data, with the anomaly in the data near saturation attributed to rearrangement of bound H1, maximizing the number of binding sites. CD experiments indicate that H1(0)/DNA and H1(0)-C/DNA complexes form with little change in protein structure but with some DNA restructuring. Salt dependent ITC experiments indicate that the electrostatic contribution to binding H1(0) or H1(0)-C is small ranging from 6% to 17% of the total ΔG.
Collapse
Affiliation(s)
- V R Machha
- Department of Chemistry, Mississippi State University, Box 9573, Mississippi State, MS 39762, United States
| | | | | | | | | | | |
Collapse
|
29
|
Identification and characterization of proteins involved in nuclear organization using Drosophila GFP protein trap lines. PLoS One 2013; 8:e53091. [PMID: 23341925 PMCID: PMC3547006 DOI: 10.1371/journal.pone.0053091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 11/23/2012] [Indexed: 12/22/2022] Open
Abstract
Background Strains from a collection of Drosophila GFP protein trap lines express GFP in the normal tissues where the endogenous protein is present. This collection can be used to screen for proteins distributed in the nucleus in a non-uniform pattern. Methodology/Principal Findings We analyzed four lines that show peripheral or punctate nuclear staining. One of these lines affects an uncharacterized gene named CG11138. The CG11138 protein shows a punctate distribution in the nuclear periphery similar to that of Drosophila insulator proteins but does not co-localize with known insulators. Interestingly, mutations in Lamin proteins result in alterations in CG11138 localization, suggesting that this protein may be a novel component of the nuclear lamina. A second line affects the Decondensation factor 31 (Df31) gene, which encodes a protein with a unique nuclear distribution that appears to segment the nucleus into four different compartments. The X-chromosome of males is confined to one of these compartments. We also find that Drosophila Nucleoplasmin (dNlp) is present in regions of active transcription. Heat shock leads to loss of dNlp from previously transcribed regions of polytene chromosome without redistribution to the heat shock genes. Analysis of Stonewall (Stwl), a protein previously found to be necessary for the maintenance of germline stem cells, shows that Stwl is present in a punctate pattern in the nucleus that partially overlaps with that of known insulator proteins. Finally we show that Stwl, dNlp, and Df31 form part of a highly interactive network. The properties of other components of this network may help understand the role of these proteins in nuclear biology. Conclusions/Significance These results establish screening of GFP protein trap alleles as a strategy to identify factors with novel cellular functions. Information gained from the analysis of CG11138 Stwl, dNlp, and Df31 sets the stage for future studies of these proteins.
Collapse
|
30
|
Abstract
Many cellular constituents in the human brain permanently exit from the cell cycle during pre- or early postnatal development, but little is known about epigenetic regulation of neuronal and glial epigenomes during maturation and aging, including changes in mood and psychosis spectrum disorders and other cognitive or emotional disease. Here, we summarize the current knowledge base as it pertains to genome organization in the human brain, including the regulation of DNA cytosine methylation and hydroxymethylation, and a subset of (altogether >100) residue-specific histone modifications associated with gene expression, and silencing and various other functional chromatin states. We propose that high-resolution mapping of epigenetic markings in postmortem brain tissue or neural cultures derived from induced pluripotent cells (iPS), in conjunction with transcriptome profiling and whole-genome sequencing, will increasingly be used to define the molecular pathology of specific cases diagnosed with depression, schizophrenia, autism, or other major psychiatric disease. We predict that these highly integrative explorations of genome organization and function will provide an important alternative to conventional approaches in human brain studies, which mainly are aimed at uncovering group effects by diagnosis but generally face limitations because of cohort size.
Collapse
|
31
|
Soon WW, Hariharan M, Snyder MP. High-throughput sequencing for biology and medicine. Mol Syst Biol 2013; 9:640. [PMID: 23340846 PMCID: PMC3564260 DOI: 10.1038/msb.2012.61] [Citation(s) in RCA: 176] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Accepted: 10/29/2012] [Indexed: 02/06/2023] Open
Abstract
Advances in genome sequencing have progressed at a rapid pace, with increased throughput accompanied by plunging costs. But these advances go far beyond faster and cheaper. High-throughput sequencing technologies are now routinely being applied to a wide range of important topics in biology and medicine, often allowing researchers to address important biological questions that were not possible before. In this review, we discuss these innovative new approaches-including ever finer analyses of transcriptome dynamics, genome structure and genomic variation-and provide an overview of the new insights into complex biological systems catalyzed by these technologies. We also assess the impact of genotyping, genome sequencing and personal omics profiling on medical applications, including diagnosis and disease monitoring. Finally, we review recent developments in single-cell sequencing, and conclude with a discussion of possible future advances and obstacles for sequencing in biology and health.
Collapse
Affiliation(s)
- Wendy Weijia Soon
- Department of Genetics, Stanford University School of Medicine, Alway Building, 300 Pasteur Drive, Stanford, CA, USA
| | - Manoj Hariharan
- Department of Genetics, Stanford University School of Medicine, Alway Building, 300 Pasteur Drive, Stanford, CA, USA
| | - Michael P Snyder
- Department of Genetics, Stanford University School of Medicine, Alway Building, 300 Pasteur Drive, Stanford, CA, USA
| |
Collapse
|
32
|
Reddy KL, Feinberg AP. Higher order chromatin organization in cancer. Semin Cancer Biol 2012; 23:109-15. [PMID: 23266653 DOI: 10.1016/j.semcancer.2012.12.001] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Accepted: 12/12/2012] [Indexed: 01/30/2023]
Abstract
In spite of our increased understanding of how genomes are dysregulated in cancer and a plethora of molecular diagnostic tools, the front line and 'gold standard' detection of cancer remains the pathologist's detection of gross changes in cellular and tissue structure, most strikingly nuclear dis-organization. In fact, for over 140 years it has been noted that nuclear morphology is often disrupted in cancer. Even today, nuclear morphology measures include nuclear size, shape, DNA content (ploidy) and 'chromatin organization'. Given the importance of nuclear shape to diagnoses of cancer phenotypes, it is surprising and frustrating that we currently lack a detailed understanding to explain these changes and how they might arise and relate to molecular events in the cell. It is an implicit hypothesis that perturbation of chromatin and epigenetic signatures may lead to alterations in nuclear structure (or vice versa) and that these perturbations lie at the heart of cancer genesis. In this review, we attempt to synthesize research leading to our current understanding on how chromatin interactions at the nuclear lamina, epigenetic modulation and gene regulation may intersect in cancer and offer a perspective on critical experiments that would help clarify how nuclear architecture may contribute to the cancerous phenotype. We also discuss the historical understanding of nuclear structure in normal cells and as a diagnostic in cancer.
Collapse
Affiliation(s)
- Karen L Reddy
- Center for Epigenetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, United States.
| | | |
Collapse
|
33
|
Thangapandian S, John S, Lee Y, Arulalapperumal V, Lee KW. Molecular modeling study on tunnel behavior in different histone deacetylase isoforms. PLoS One 2012; 7:e49327. [PMID: 23209570 PMCID: PMC3510210 DOI: 10.1371/journal.pone.0049327] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 10/07/2012] [Indexed: 12/11/2022] Open
Abstract
Histone deacetylases (HDACs) have emerged as effective therapeutic targets in the treatment of various diseases including cancers as these enzymes directly involved in the epigenetic regulation of genes. However the development of isoform-selective HDAC inhibitors has been a challenge till date since all HDAC enzymes possess conserved tunnel-like active site. In this study, using molecular dynamics simulation we have analyzed the behavior of tunnels present in HDAC8, 10, and 11 enzymes of class I, II, and IV, respectively. We have identified the equivalent tunnel forming amino acids in these three isoforms and found that they are very much conserved with subtle differences to be utilized in selective inhibitor development. One amino acid, methionine of HDAC8, among six tunnel forming residues is different in isoforms of other classes (glutamic acid (E) in HDAC10 and leucine (L) in HDAC 11) based on which mutations were introduced in HDAC11, the less studied HDAC isoform, to observe the effects of this change. The HDAC8-like (L268M) mutation in the tunnel forming residues has almost maintained the deep and narrow tunnel as present in HDAC8 whereas HDAC10-like (L268E) mutation has changed the tunnel wider and shallow as observed in HDAC10. These results explained the importance of the single change in the tunnel formation in different isoforms. The observations from this study can be utilized in the development of isoform-selective HDAC inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Keun Woo Lee
- Division of Applied Life Science (BK21 Program), Systems and Synthetic Agrobiotech Center (SSAC), Plant Molecular Biology and Biotechnology Research Center (PMBBRC), Research Institute of Natural Science (RINS), Gyeongsang National University (GNU), Gazwa-dong, Jinju, Republic of Korea.
- * E-mail:
| |
Collapse
|
34
|
Heterochromatin and gene positioning: inside, outside, any side? Chromosoma 2012; 121:555-63. [PMID: 23090282 PMCID: PMC3501169 DOI: 10.1007/s00412-012-0389-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2012] [Revised: 10/07/2012] [Accepted: 10/08/2012] [Indexed: 01/16/2023]
Abstract
All cellular processes depend on the expression and repression of the right sets of genes at the right time. As each cell contains the same DNA, transcriptional and epigenetic factors have to maintain tight control over gene expression. Even a small divergence from the correct transcriptional program can lead to severe defects and even death. Having deciphered the complete linear genetic information, we need to clarify how this information is organized into the dynamic and highly heterogeneous three-dimensional space of the eukaryotic cell nucleus. Observations on the higher order organization of DNA into differentiated condensation levels date back to the early twentieth century, and potential implications of these structural features to gene expression were postulated shortly after. In particular, proximity of genes to condensed regions of heterochromatin was proposed to negatively influence their expression and, henceforward, the concept of heterochromatin as subnuclear silencing compartment emerged. Methodological advances fueled a flurry of recent studies, which only, in part, led support to this concept. In this review, we address how (hetero)chromatin structure and proximity might influence gene expression and discuss the challenges and means to unravel this fundamental biological question.
Collapse
|
35
|
Abstract
The exploration of brain epigenomes, which consist of various types of DNA methylation and covalent histone modifications, is providing new and unprecedented insights into the mechanisms of neural development, neurological disease and aging. Traditionally, chromatin defects in the brain were considered static lesions of early development that occurred in the context of rare genetic syndromes, but it is now clear that mutations and maladaptations of the epigenetic machinery cover a much wider continuum that includes adult-onset neurodegenerative disease. Here, we describe how recent advances in neuroepigenetics have contributed to an improved mechanistic understanding of developmental and degenerative brain disorders, and we discuss how they could influence the development of future therapies for these conditions.
Collapse
|
36
|
Dean DS, Hammant TC, Horgan RR, Naji A, Podgornik R. Wrapping transition and wrapping-mediated interactions for discrete binding along an elastic filament: An exact solution. J Chem Phys 2012; 137:144904. [DOI: 10.1063/1.4757392] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
37
|
Sinha M, Peterson CL. Chromatin dynamics during repair of chromosomal DNA double-strand breaks. Epigenomics 2012; 1:371-85. [PMID: 20495614 DOI: 10.2217/epi.09.22] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The integrity of a eukaryotic genome is often challenged by DNA double-strand breaks (DSBs). Even a single, unrepaired DSB can be a lethal event, or such unrepaired damage can result in chromosomal instability and loss of genetic information. Furthermore, defects in the pathways that respond to and repair DSBs can lead to the onset of several human pathologic disorders with pleiotropic clinical features, including age-related diseases and cancer. For decades, studies have focused on elucidating the enzymatic mechanisms involved in recognizing, signaling and repairing DSBs within eukaryotic cells. The majority of biochemical and genetic studies have used simple, DNA substrates, whereas only recently efforts have been geared towards understanding how the repair machinery deals with DSBs within chromatin fibers, the nucleoprotein complex that packages DNA within the eukaryotic nucleus. The aim of this review is to discuss our recent understanding of the relationship between chromatin structure and the repair of DSBs by homologous recombination. In particular, we discuss recent studies implicating specialized roles for several, distinct ATP-dependent chromatin remodeling enzymes in facilitating multiple steps within the homologous recombination process.
Collapse
Affiliation(s)
- Manisha Sinha
- Program in Molecular Medicine, University of Massachusetts Medical School, 373 Plantation Street, Worcester, MA 01605, USA.
| | | |
Collapse
|
38
|
Hamid A. Folate malabsorption and its influence on DNA methylation during cancer development. DNA Cell Biol 2012. [PMID: 22468673 DOI: 10.1089/dna.2011.1576] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The folate transport across the epithelial of the intestine, colon, kidney, and liver is essential for folate homeostasis. The relative localization of transporters in membranes is an important determinant for the vectorial flow of substrates across the epithelia. Folate deficiency is a highly prevalent vitamin deficiency in the world, and alcohol ingestion has been the major contributor. It can develop because of folate malabsorption in tissues, increased renal excretion dietary inadequacy, and altered hepatobiliary metabolism. Additionally, folate-mediated one-carbon metabolism is important for various cellular processes, including DNA synthesis and methylation. In this regard, the contribution of alcohol-associated and dietary folate deficiency to methylation patterns is under intense investigation, especially in cancer. The epigenetic events have increasing relevance in the development of strategies for early diagnosis, prevention, and treatment of cancer.
Collapse
Affiliation(s)
- Abid Hamid
- Cancer Pharmacology Division, Indian Institute of Integrative Medicine, CSIR, Jammu, India
| |
Collapse
|
39
|
Vyas P, Brown DT. N- and C-terminal domains determine differential nucleosomal binding geometry and affinity of linker histone isotypes H1(0) and H1c. J Biol Chem 2012; 287:11778-87. [PMID: 22334665 DOI: 10.1074/jbc.m111.312819] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Eukaryotic linker or H1 histones modulate DNA compaction and gene expression in vivo. In mammals, these proteins exist as multiple isotypes with distinct properties, suggesting a functional significance to the heterogeneity. Linker histones typically have a tripartite structure composed of a conserved central globular domain flanked by a highly variable short N-terminal domain and a longer highly basic C-terminal domain. We hypothesized that the variable terminal domains of individual subtypes contribute to their functional heterogeneity by influencing chromatin binding interactions. We developed a novel dual color fluorescence recovery after photobleaching assay system in which two H1 proteins fused to spectrally separable fluorescent proteins can be co-expressed and their independent binding kinetics simultaneously monitored in a single cell. This approach was combined with domain swap and point mutagenesis to determine the roles of the terminal domains in the differential binding characteristics of the linker histone isotypes, mouse H1(0) and H1c. Exchanging the N-terminal domains between H1(0) and H1c changed their overall binding affinity to that of the other variant. In contrast, switching the C-terminal domains altered the chromatin interaction surface of the globular domain. These results indicate that linker histone subtypes bind to chromatin in an intrinsically specific manner and that the highly variable terminal domains contribute to differences between subtypes. The methods developed in this study will have broad applications in studying dynamic properties of additional histone subtypes and other mobile proteins.
Collapse
Affiliation(s)
- Payal Vyas
- Department of Biochemistry, University of Mississippi Medical Center, Jackson, Mississippi 39216, USA
| | | |
Collapse
|
40
|
Collepardo-Guevara R, Schlick T. The effect of linker histone's nucleosome binding affinity on chromatin unfolding mechanisms. Biophys J 2012; 101:1670-80. [PMID: 21961593 DOI: 10.1016/j.bpj.2011.07.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2011] [Revised: 07/14/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022] Open
Abstract
Eukaryotic gene activation requires selective unfolding of the chromatin fiber to access the DNA for processes such as DNA transcription, replication, and repair. Mutation/modification experiments of linker histone (LH) H1 suggest the importance of dynamic mechanisms for LH binding/dissociation, but the effects on chromatin's unfolding pathway remain unclear. Here we investigate the stretching response of chromatin fibers by mesoscale modeling to complement single-molecule experiments, and present various unfolding mechanisms for fibers with different nucleosome repeat lengths (NRLs) with/without LH that are fixed to their cores or bind/unbind dynamically with different affinities. Fiber softening occurs for long compared to short NRL (due to facile stacking rearrangements), dynamic compared to static LH/core binding as well as slow rather than fast dynamic LH rebinding (due to DNA stem destabilization), and low compared to high LH concentration (due to DNA stem inhibition). Heterogeneous superbead constructs--nucleosome clusters interspersed with extended fiber regions--emerge during unfolding of medium-NRL fibers and may be related to those observed experimentally. Our work suggests that fast and slow LH binding pools, present simultaneously in vivo, might act cooperatively to yield controlled fiber unfolding at low forces. Medium-NRL fibers with multiple dynamic LH pools offer both flexibility and selective DNA exposure, and may be evolutionarily suitable to regulate chromatin architecture and gene expression.
Collapse
|
41
|
Dynamic Fuzziness During Linker Histone Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2012; 725:15-26. [DOI: 10.1007/978-1-4614-0659-4_2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
42
|
Aravind L, Iyer LM. The HARE-HTH and associated domains: novel modules in the coordination of epigenetic DNA and protein modifications. Cell Cycle 2012; 11:119-31. [PMID: 22186017 DOI: 10.4161/cc.11.1.18475] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Human ASXL proteins, orthologs of Drosophila Additional Sex combs, have been implicated in conjunction with TET2 as a major target for mutations and translocations leading to a wide range of myeloid leukemias, related myelodysplastic conditions (ASXL1 and ASXL2) and the Bohring-Opitz syndrome, a developmental disorder (ASXL1). Using sensitive sequence and structure comparison methods, we show that most animal ASXL proteins contain a novel N-terminal domain that is also found in several other eukaryotic chromatin proteins, diverse restriction endonucleases and DNA glycosylases, the RNA polymerase delta subunit of Gram-positive bacteria and certain bacterial proteins that combine features of the RNA polymerase α-subunit and sigma factors. This domain adopts the winged helix-turn-helix fold and is predicted to bind DNA. Based on its domain architectural contexts, we present evidence that this domain might play an important role, both in eukaryotes and bacteria, in the recruitment of diverse effector activities, including the Polycomb repressive complexes, to DNA, depending on the state of epigenetic modifications such as 5-methylcytosine and its oxidized derivatives. In other eukaryotic chromatin proteins, this predicted DNA-binding domain is fused to a region with three conserved motifs that are also found in diverse eukaryotic chromatin proteins, such as the animal BAZ/WAL proteins, plant HB1 and MBD9, yeast Itc1p and Ioc3, RSF1, CECR2 and NURF1. Based on the crystal structure of Ioc3, we establish that these motifs in conjunction with the DDT motif constitute a structural determinant that is central to nucleosomal repositioning by the ISWI clade of SWI2/SNF2 ATPases. We also show that the central domain of the ASXL proteins (ASXH domain) is conserved outside of animals in fungi and plants, where it is combined with other domains, suggesting that it might be an ancient module mediating interactions between chromatin-linked protein complexes and transcription factors via its conserved LXLLL motif. We present evidence that the C-terminal PHD finger of ASXL protein has certain peculiar structural modifications that might allow it to recognize internal modified lysines other than those from the N terminus of histone H3, making it the mediator of previously unexpected interactions in chromatin.
Collapse
Affiliation(s)
- L Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD, USA.
| | | |
Collapse
|
43
|
Rousseau M, Fraser J, Ferraiuolo MA, Dostie J, Blanchette M. Three-dimensional modeling of chromatin structure from interaction frequency data using Markov chain Monte Carlo sampling. BMC Bioinformatics 2011; 12:414. [PMID: 22026390 PMCID: PMC3245522 DOI: 10.1186/1471-2105-12-414] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2011] [Accepted: 10/25/2011] [Indexed: 12/22/2022] Open
Abstract
Background Long-range interactions between regulatory DNA elements such as enhancers, insulators and promoters play an important role in regulating transcription. As chromatin contacts have been found throughout the human genome and in different cell types, spatial transcriptional control is now viewed as a general mechanism of gene expression regulation. Chromosome Conformation Capture Carbon Copy (5C) and its variant Hi-C are techniques used to measure the interaction frequency (IF) between specific regions of the genome. Our goal is to use the IF data generated by these experiments to computationally model and analyze three-dimensional chromatin organization. Results We formulate a probabilistic model linking 5C/Hi-C data to physical distances and describe a Markov chain Monte Carlo (MCMC) approach called MCMC5C to generate a representative sample from the posterior distribution over structures from IF data. Structures produced from parallel MCMC runs on the same dataset demonstrate that our MCMC method mixes quickly and is able to sample from the posterior distribution of structures and find subclasses of structures. Structural properties (base looping, condensation, and local density) were defined and their distribution measured across the ensembles of structures generated. We applied these methods to a biological model of human myelomonocyte cellular differentiation and identified distinct chromatin conformation signatures (CCSs) corresponding to each of the cellular states. We also demonstrate the ability of our method to run on Hi-C data and produce a model of human chromosome 14 at 1Mb resolution that is consistent with previously observed structural properties as measured by 3D-FISH. Conclusions We believe that tools like MCMC5C are essential for the reliable analysis of data from the 3C-derived techniques such as 5C and Hi-C. By integrating complex, high-dimensional and noisy datasets into an easy to interpret ensemble of three-dimensional conformations, MCMC5C allows researchers to reliably interpret the result of their assay and contrast conformations under different conditions. Availability http://Dostielab.biochem.mcgill.ca
Collapse
Affiliation(s)
- Mathieu Rousseau
- McGill Centre for Bioinformatics, Bellini Building, Life Sciences Complex, 3649 Promenade Sir William Osler, Montréal, Québec, H3G 0B1, Canada
| | | | | | | | | |
Collapse
|
44
|
Ehrentraut S, Hassler M, Oppikofer M, Kueng S, Weber JM, Mueller JW, Gasser SM, Ladurner AG, Ehrenhofer-Murray AE. Structural basis for the role of the Sir3 AAA+ domain in silencing: interaction with Sir4 and unmethylated histone H3K79. Genes Dev 2011; 25:1835-46. [PMID: 21896656 DOI: 10.1101/gad.17175111] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The silent information regulator 2/3/4 (Sir2/3/4) complex is required for gene silencing at the silent mating-type loci and at telomeres in Saccharomyces cerevisiae. Sir3 is closely related to the origin recognition complex 1 subunit and consists of an N-terminal bromo-adjacent homology (BAH) domain and a C-terminal AAA(+) ATPase-like domain. Here, through a combination of structure biology and exhaustive mutagenesis, we identified unusual, silencing-specific features of the AAA(+) domain of Sir3. Structural analysis of the putative nucleotide-binding pocket in this domain reveals a shallow groove that would preclude nucleotide binding. Mutation of this site has little effect on Sir3 function in vivo. In contrast, several surface regions are shown to be necessary for the Sir3 silencing function. Interestingly, the Sir3 AAA(+) domain is shown here to bind chromatin in vitro in a manner sensitive to histone H3K79 methylation. Moreover, an exposed loop on the surface of this Sir3 domain is found to interact with Sir4. In summary, the unique folding of this conserved Sir3 AAA(+) domain generates novel surface regions that mediate Sir3-Sir4 and Sir3-nucleosome interactions, both being required for the proper assembly of heterochromatin in living cells.
Collapse
Affiliation(s)
- Stefan Ehrentraut
- Abteilung für Genetik, Zentrum für Medizinische Biotechnologie (ZMB), Universität Duisburg-Essen, D-45141 Essen, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Abstract
Cells integrate physicochemical signals on the nanoscale from the local microenvironment, resulting in altered functional nuclear landscape and gene expression. These alterations regulate diverse biological processes including stem cell differentiation, establishing robust developmental genetic programs and cellular homeostatic control systems. The mechanisms by which these signals are integrated into the 3D spatiotemporal organization of the cell nucleus to elicit differential gene expression programs are poorly understood. In this review I analyze our current understanding of mechanosignal transduction mechanisms to the cell nucleus to induce differential gene regulation. A description of both physical and chemical coupling, resulting in a prestressed nuclear organization, is emphasized. I also highlight the importance of spatial dimension in chromosome assembly, as well as the temporal filtering and stochastic processes at gene promoters that may be important in understanding the biophysical design principles underlying mechanoregulation of gene transcription.
Collapse
Affiliation(s)
- G V Shivashankar
- Mechanobiology Institute & Department of Biological Sciences, National University of Singapore, Singapore.
| |
Collapse
|
46
|
Pavlopoulou A, Kossida S. Cytosine methyltransferases as tumor markers. Curr Genomics 2011; 11:568-77. [PMID: 21629434 PMCID: PMC3078681 DOI: 10.2174/138920210793360916] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2010] [Revised: 09/27/2010] [Accepted: 09/27/2010] [Indexed: 02/05/2023] Open
Abstract
Changes in DNA methylation patterns is a prominent characteristic of human tumors. Tumor cells display reduced levels of genomic DNA methylation and site-specific CpG island hypermethylation. Methylation of CpG dinucleotides is catalyzed by the enzyme family of DNA methyltransferases (DNMTs). In this review, the role of DNA methylation and DNMTs as key determinants of carcinogenesis is further elucidated. The chromatin modifying proteins that are known to interact with DNMTs are also described. Finally, the role of DNMTs as potential therapeutic targets is addressed.
Collapse
Affiliation(s)
- Athanasia Pavlopoulou
- Biomedical Research Foundation of the Academy of Athens, Department of Biotechnology, Bioinformatics & Medical Informatics Team, Soranou Efesiou 4, 11527 Athens, Greece
| | | |
Collapse
|
47
|
Boroudjerdi H, Naji A, Netz RR. Salt-modulated structure of polyelectrolyte-macroion complex fibers. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2011; 34:72. [PMID: 21792745 DOI: 10.1140/epje/i2011-11072-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2011] [Accepted: 06/21/2011] [Indexed: 05/31/2023]
Abstract
The structure and stability of strongly charged complex fibers, formed by complexation of a single long semi-flexible polyelectrolyte chain and many oppositely charged spherical macroions, are investigated numerically at the ground-state level using a chain-sphere cell model. The model takes into account chain elasticity as well as electrostatic interactions between charged spheres and chain segments. Using a numerical optimization method based on a periodically repeated unit cell, we obtain fiber configurations that minimize the total energy. The optimal fiber configurations exhibit a variety of helical structures for the arrangement of macroions including zig-zag, solenoidal and beads-on-a-string patterns. These structures result from the competition between attraction between spheres and the polyelectrolyte chain (which favors chain wrapping around the spheres), chain bending rigidity and electrostatic repulsion between chain segments (which favor unwrapping of the chain), and the interactions between neighboring sphere-chain complexes which can be attractive or repulsive depending on the system parameters such as salt concentration, macroion charge and chain length per macroion (linker size). At about physiological salt concentration, dense zig-zag patterns are found to be energetically most stable when parameters appropriate for the DNA-histone system in the chromatin fiber are adopted. In fact, the predicted fiber diameter in this regime is found to be around 30 nanometers, which roughly agrees with the thickness observed in in vitro experiments on chromatin. We also find a macroion (histone) density of 5-6 per 11nm which agrees with results from the zig-zag or cross-linker models of chromatin. Since our study deals primarily with a generic chain-sphere model, these findings suggest that structures similar to those found for chromatin should also be observable for polyelectrolyte-macroion complexes formed in solutions of DNA and synthetic nano-colloids of opposite charge. In the ensemble where the mean linear density of spheres on the chain is fixed, the present model predicts a phase separation at intermediate salt concentrations into a densely packed complex phase and a dilute phase.
Collapse
Affiliation(s)
- Hoda Boroudjerdi
- Department of Physics, Technical University of Munich, 85748 Garching, Germany
| | | | | |
Collapse
|
48
|
Palini S, De Stefani S, Scala V, Dusi L, Bulletti C. Epigenetic regulatory mechanisms during preimplantation embryo development. Ann N Y Acad Sci 2011; 1221:54-60. [PMID: 21401630 DOI: 10.1111/j.1749-6632.2010.05937.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Within the past few years, developmental scientists have switched their attention from the study of DNA sequencing to the epigenetic state of the genome. Studying epigenetics could present the key to understanding gene expression changes without altering the basic structure of DNA. For example, the blastocyst, trophectoderm, and inner cell mass grow within the same environment, having the same genome, but differentiate differently. Each stage of embryo development is characterized by a specific epigenetic pattern. These modifications give the embryos the ability to interact with the uterus. Gene expression profiles change dramatically, and chromatin remodeling allows for core histone elements to undergo significant modifications. In the past, epigenetic mechanisms were studied using less accurate technologies such as PCR techniques and gel electrophoresis. Today microarray, DNA analyzers, and other in silico approaches give us the capability to understand the epigenetic impact on differentiation and cell fate.
Collapse
|
49
|
Milosavljevic A. Emerging patterns of epigenomic variation. Trends Genet 2011; 27:242-50. [PMID: 21507501 DOI: 10.1016/j.tig.2011.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2010] [Revised: 03/09/2011] [Accepted: 03/14/2011] [Indexed: 12/15/2022]
Abstract
Fuelled by new sequencing technologies, epigenome mapping projects are revealing epigenomic variation at all levels of biological complexity, from species to cells. Comparisons of methylation profiles among species reveal evolutionary conservation of gene body methylation patterns, pointing to the fundamental role of epigenomes in gene regulation. At the human population level, epigenomic changes provide footprints of the effects of genomic variants within the vast nonprotein-coding fraction of the genome, and comparisons of the epigenomes of parents and their offspring point to quantitative epigenomic parent-of-origin effects confounding classical Mendelian genetics. At the organismal level, comparisons of epigenomes from diverse cell types provide insights into cellular differentiation. Finally, comparisons of epigenomes from monozygotic twins help dissect genetic and environmental influences on human phenotypes and longitudinal comparisons reveal aging-associated epigenomic drift. The development of new bioinformatic frameworks for comparative epigenome analysis is putting epigenome maps within the reach of researchers across a wide spectrum of biological disciplines.
Collapse
|
50
|
Iyer BV, Kenward M, Arya G. Hierarchies in eukaryotic genome organization: Insights from polymer theory and simulations. BMC BIOPHYSICS 2011; 4:8. [PMID: 21595865 PMCID: PMC3102647 DOI: 10.1186/2046-1682-4-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/07/2011] [Accepted: 04/15/2011] [Indexed: 12/11/2022]
Abstract
Eukaryotic genomes possess an elaborate and dynamic higher-order structure within the limiting confines of the cell nucleus. Knowledge of the physical principles and the molecular machinery that govern the 3D organization of this structure and its regulation are key to understanding the relationship between genome structure and function. Elegant microscopy and chromosome conformation capture techniques supported by analysis based on polymer models are important steps in this direction. Here, we review results from these efforts and provide some additional insights that elucidate the relationship between structure and function at different hierarchical levels of genome organization.
Collapse
Affiliation(s)
- Balaji Vs Iyer
- Department of NanoEngineering, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093-0448, USA.
| | | | | |
Collapse
|