1
|
Lee E, Tran N, Redzic JS, Singh H, Alamillo L, Holyoak T, Hamelberg D, Eisenmesser EZ. Identifying and controlling inactive and active conformations of a serine protease. SCIENCE ADVANCES 2025; 11:eadu7447. [PMID: 40203097 PMCID: PMC11980832 DOI: 10.1126/sciadv.adu7447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 03/05/2025] [Indexed: 04/11/2025]
Abstract
Serine proteases have been proposed to dynamically sample inactive and active conformations, but direct evidence at atomic resolution has remained elusive. Using nuclear magnetic resonance (NMR), we identified a single residue, D164, in exfoliative toxin A (ETA) that acts as a molecular "switch" to regulate global dynamic sampling. Mutations at this site shift the balance between inactive and active states, correlating directly with catalytic activity. Beyond identifying this dynamic switch, we demonstrate how it works in concert with other allosterically coupled sites to rationally control enzyme movements and catalytic function. This study provides a framework for linking conformational dynamics to function and paves the way for engineering enzymes, in particular, proteases, with tailored activities for applications in medicine and biotechnology.
Collapse
Affiliation(s)
- Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Norman Tran
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Jasmina S. Redzic
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Harmanpreet Singh
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | - Lorena Alamillo
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada
| | - Donald Hamelberg
- Department of Chemistry, Georgia State University, Atlanta, GA 30302-3965, USA
| | - Elan Zohar Eisenmesser
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| |
Collapse
|
2
|
Nada H, Choi Y, Kim S, Jeong KS, Meanwell NA, Lee K. New insights into protein-protein interaction modulators in drug discovery and therapeutic advance. Signal Transduct Target Ther 2024; 9:341. [PMID: 39638817 PMCID: PMC11621763 DOI: 10.1038/s41392-024-02036-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 09/09/2024] [Accepted: 10/23/2024] [Indexed: 12/07/2024] Open
Abstract
Protein-protein interactions (PPIs) are fundamental to cellular signaling and transduction which marks them as attractive therapeutic drug development targets. What were once considered to be undruggable targets have become increasingly feasible due to the progress that has been made over the last two decades and the rapid technological advances. This work explores the influence of technological innovations on PPI research and development. Additionally, the diverse strategies for discovering, modulating, and characterizing PPIs and their corresponding modulators are examined with the aim of presenting a streamlined pipeline for advancing PPI-targeted therapeutics. By showcasing carefully selected case studies in PPI modulator discovery and development, we aim to illustrate the efficacy of various strategies for identifying, optimizing, and overcoming challenges associated with PPI modulator design. The valuable lessons and insights gained from the identification, optimization, and approval of PPI modulators are discussed with the aim of demonstrating that PPI modulators have transitioned beyond early-stage drug discovery and now represent a prime opportunity with significant potential. The selected examples of PPI modulators encompass those developed for cancer, inflammation and immunomodulation, as well as antiviral applications. This perspective aims to establish a foundation for the effective targeting and modulation of PPIs using PPI modulators and pave the way for future drug development.
Collapse
Affiliation(s)
- Hossam Nada
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
- Department of Radiology, Molecular Imaging Innovations Institute (MI3), Weill Cornell Medicine, New York, USA
| | - Yongseok Choi
- College of Life Sciences and Biotechnology, Korea University, Seoul, Republic of Korea
| | - Sungdo Kim
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Kwon Su Jeong
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea
| | - Nicholas A Meanwell
- Baruch S. Blumberg Institute, Doylestown, PA, USA
- School of Pharmacy, University of Michigan, Ann Arbor, MI, USA
- Ernest Mario School of Pharmacy, Rutgers University New Brunswick, New Brunswick, NJ, USA
| | - Kyeong Lee
- BK21 FOUR Team and Integrated Research Institute for Drug Development, College of Pharmacy, Dongguk University-Seoul, Goyang, Republic of Korea.
| |
Collapse
|
3
|
Zhou S, Li F, Lai Z, Wu X, Yuan J, Wu W, Ding Q, Wang X, Dai J, Xu Q, Lu Y. Met343Val mutation disrupts the shuttling of Trp380 leading to a low-activity conformer of activated protein C and causes thrombosis. J Thromb Haemost 2024; 22:2270-2280. [PMID: 38788977 DOI: 10.1016/j.jtha.2024.05.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 05/11/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024]
Abstract
BACKGROUND Protein C (PC) pathway serves as a major defense mechanism against thrombosis by the activation of PC through the thrombin-thrombomodulin complex and subsequent inactivation of the activated factor (F)V (FVa) and FVIII (FVIIIa) with the assistance of protein S, thereby contributing to hemostatic balance. We identified 2 unrelated patients who suffered from recurrent thrombosis and carried the same heterozygous mutation c.1153A>G, p.Met343Val (M343V), in PROC gene. This mutation had not been previously reported. OBJECTIVES To explore the molecular basis underlying the anticoagulant defect in patients carrying the M343V mutation in PROC. METHODS We expressed PC-M343V variant in mammalian cells and characterized its properties through coagulation assays. RESULTS Our findings demonstrated that while activation of mutant zymogen by thrombin-thrombomodulin complex was slightly affected, cleavage of chromogenic substrate by APC-M343V was significantly impaired. However, Ca2+ increased the cleavage efficiency by approximately 50%. Additionally, there was a severe reduction in affinity between APC-M343V and Na+. Furthermore, the inhibitory ability of APC-M343V toward FVa was markedly impaired. Structural and simulation analyses suggested that Val343 might disrupt the potential hydrogen bonds with Trp380 and cause Trp380 to orient closer to His211, potentially interfering with substrate binding and destabilizing the catalytic triad of APC. CONCLUSION The M343V mutation in patients adversely affects the reactivity and/or folding of the active site as well as the binding of the physiological substrate to the protease, resulting in impaired protein C anticoagulant activity and ultimately leading to thrombosis.
Collapse
Affiliation(s)
- Shijie Zhou
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fang Li
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Zhe Lai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junwei Yuan
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenman Wu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qiulan Ding
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xuefeng Wang
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Dai
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Qin Xu
- State Key Laboratory of Microbial Metabolism & Joint International Research Laboratory of Metabolic and Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| | - Yeling Lu
- Department of Laboratory Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
4
|
Campagnola G, Peersen O. Co-folding and RNA activation of poliovirus 3C pro polyprotein precursors. J Biol Chem 2023; 299:105258. [PMID: 37717698 PMCID: PMC10590986 DOI: 10.1016/j.jbc.2023.105258] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 09/05/2023] [Accepted: 09/08/2023] [Indexed: 09/19/2023] Open
Abstract
Positive-strand RNA viruses use long open reading frames to express large polyproteins that are processed into individual proteins by viral proteases. Polyprotein processing is highly regulated and yields intermediate species with different functions than the fully processed proteins, increasing the biochemical diversity of the compact viral genome while also presenting challenges in that proteins must remain stably folded in multiple contexts. We have used circular dichroism spectroscopy and single molecule microscopy to examine the solution structure and self-association of the poliovirus P3 region protein composed of membrane binding 3A, RNA priming 3B (VPg), 3Cpro protease, and 3Dpol RNA-dependent RNA polymerase proteins. Our data indicate that co-folding interactions within the 3ABC segment stabilize the conformational state of the 3C protease region, and this stabilization requires the full-length 3A and 3B proteins. Enzymatic activity assays show that 3ABC is also an active protease, and it cleaves peptide substrates at rates comparable to 3Cpro. The cleavage of a larger polyprotein substrate is stimulated by the addition of RNA, and 3ABCpro becomes 20-fold more active than 3Cpro in the presence of stoichiometric amounts of viral cre RNA. The data suggest that co-folding within the 3ABC region results in a protease that can be highly activated toward certain cleavage sites by localization to specific RNA elements within the viral replication center, providing a mechanism for regulating viral polyprotein processing.
Collapse
Affiliation(s)
- Grace Campagnola
- Department of Biochemistry & Molecular Birology, Colorado State University, Fort Collins, Colorado, USA
| | - Olve Peersen
- Department of Biochemistry & Molecular Birology, Colorado State University, Fort Collins, Colorado, USA.
| |
Collapse
|
5
|
Redzic JS, Rahkola J, Tran N, Holyoak T, Lee E, Martín-Galiano AJ, Meyer N, Zheng H, Eisenmesser E. A substrate-induced gating mechanism is conserved among Gram-positive IgA1 metalloproteases. Commun Biol 2022; 5:1190. [PMID: 36336763 PMCID: PMC9637739 DOI: 10.1038/s42003-022-04173-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022] Open
Abstract
The mucosal adaptive immune response is dependent on the production of IgA antibodies and particularly IgA1, yet opportunistic bacteria have evolved mechanisms to specifically block this response by producing IgA1 proteases (IgA1Ps). Our lab was the first to describe the structures of a metal-dependent IgA1P (metallo-IgA1P) produced from Gram-positive Streptococcus pneumoniae both in the absence and presence of its IgA1 substrate through cryo-EM single particle reconstructions. This prior study revealed an active-site gating mechanism reliant on substrate-induced conformational changes to the enzyme that begged the question of whether such a mechanism is conserved among the wider Gram-positive metallo-IgA1P subfamily of virulence factors. Here, we used cryo-EM to characterize the metallo-IgA1P of a more distantly related family member from Gemella haemolysans, an emerging opportunistic pathogen implicated in meningitis, endocarditis, and more recently bacteremia in the elderly. While the substrate-free structures of these two metallo-IgA1Ps exhibit differences in the relative starting positions of the domain responsible for gating substrate, the enzymes have similar domain orientations when bound to IgA1. Together with biochemical studies that indicate these metallo-IgA1Ps have similar binding affinities and activities, these data indicate that metallo-IgA1P binding requires the specific IgA1 substrate to open the enzymes for access to their active site and thus, largely conform to an "induced fit" model.
Collapse
Affiliation(s)
- Jasmina S Redzic
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA
| | - Jeremy Rahkola
- Mucosal and Vaccine Research Program Colorado, Division of Infectious Disease, University of Colorado Denver School of Medicine and Denver Veterans Affairs Medical Center, Aurora, CO, 80045, USA
| | - Norman Tran
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Todd Holyoak
- Department of Biology, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Eunjeong Lee
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA
| | | | - Nancy Meyer
- Pacific Northwest Cryo-EM Center, Oregon Health and Science University, Portland, OR, 97201, USA
| | - Hongjin Zheng
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA
| | - Elan Eisenmesser
- Department of Biochemistry and Molecular Genetics, School of Medicine, University of Colorado Denver, School of Medicine, Aurora, CO, 80045, USA.
| |
Collapse
|
6
|
Insights into Membrane Curvature Sensing and Membrane Remodeling by Intrinsically Disordered Proteins and Protein Regions. J Membr Biol 2022; 255:237-259. [PMID: 35451616 PMCID: PMC9028910 DOI: 10.1007/s00232-022-00237-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 03/29/2022] [Indexed: 12/15/2022]
Abstract
Cellular membranes are highly dynamic in shape. They can rapidly and precisely regulate their shape to perform various cellular functions. The protein’s ability to sense membrane curvature is essential in various biological events such as cell signaling and membrane trafficking. As they are bound, these curvature-sensing proteins may also change the local membrane shape by one or more curvature driving mechanisms. Established curvature-sensing/driving mechanisms rely on proteins with specific structural features such as amphipathic helices and intrinsically curved shapes. However, the recent discovery and characterization of many proteins have shattered the protein structure–function paradigm, believing that the protein functions require a unique structural feature. Typically, such structure-independent functions are carried either entirely by intrinsically disordered proteins or hybrid proteins containing disordered regions and structured domains. It is becoming more apparent that disordered proteins and regions can be potent sensors/inducers of membrane curvatures. In this article, we outline the basic features of disordered proteins and regions, the motifs in such proteins that encode the function, membrane remodeling by disordered proteins and regions, and assays that may be employed to investigate curvature sensing and generation by ordered/disordered proteins.
Collapse
|
7
|
Pelc LA, Koester SK, Kukla CR, Chen Z, Di Cera E. The active site region plays a critical role in Na + binding to thrombin. J Biol Chem 2022; 298:101458. [PMID: 34861239 PMCID: PMC8695361 DOI: 10.1016/j.jbc.2021.101458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/24/2021] [Accepted: 11/26/2021] [Indexed: 11/23/2022] Open
Abstract
The catalytic activity of thrombin and other enzymes of the blood coagulation and complement cascades is enhanced significantly by binding of Na+ to a site >15 Å away from the catalytic residue S195, buried within the 180 and 220 loops that also contribute to the primary specificity of the enzyme. Rapid kinetics support a binding mechanism of conformational selection where the Na+-binding site is in equilibrium between open (N) and closed (N∗) forms and the cation binds selectively to the N form. Allosteric transduction of this binding step produces enhanced catalytic activity. Molecular details on how Na+ gains access to this site and communicates allosterically with the active site remain poorly defined. In this study, we show that the rate of the N∗→N transition is strongly correlated with the analogous E∗→E transition that governs the interaction of synthetic and physiologic substrates with the active site. This correlation supports the active site as the likely point of entry for Na+ to its binding site. Mutagenesis and structural data rule out an alternative path through the pore defined by the 180 and 220 loops. We suggest that the active site communicates allosterically with the Na+ site through a network of H-bonded water molecules that embeds the primary specificity pocket. Perturbation of the mobility of S195 and its H-bonding capabilities alters interaction with this network and influences the kinetics of Na+ binding and allosteric transduction. These findings have general mechanistic relevance for Na+-activated proteases and allosteric enzymes.
Collapse
Affiliation(s)
- Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sarah K Koester
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Cassandra R Kukla
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Zhiwei Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA.
| |
Collapse
|
8
|
Vauquelin G, Maes D. Induced fit versus conformational selection: From rate constants to fluxes… and back to rate constants. Pharmacol Res Perspect 2021; 9:e00847. [PMID: 34459109 PMCID: PMC8404059 DOI: 10.1002/prp2.847] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022] Open
Abstract
Induced fit- (IF) and conformational selection (CS) binding mechanisms have long been regarded to be mutually exclusive. Yet, they are now increasingly considered to produce the final ligand-target complex alongside within a thermodynamic cycle. This viewpoint benefited from the introduction of binding fluxes as a tool for analyzing the overall behavior of such cycle. This study aims to provide more vivid and applicable insights into this emerging field. In this respect, combining differential equation- based simulations and hitherto little explored alternative modes of calculation provide concordant information about the intricate workings of such cycle. In line with previous reports, we observe that the relative contribution of IF increases with the ligand concentration at equilibrium. Yet the baseline contribution may vary from one case to another and simulations as well as calculations show that this parameter is essentially regulated by the dissociation rate of both pathways. Closer attention should be paid to how the contributions of IF and CS compare at physiologically relevant drug/ligand concentrations. To this end, a simple equation discloses how changing a limited set of "microscopic" rate constants can extend the concentration range at which CS contributes most effectively. Finally, it could also be beneficial to extend the utilization of flux- based approaches to more physiologically relevant time scales and alternative binding models.
Collapse
Affiliation(s)
- Georges Vauquelin
- Department Molecular and Biochemical PharmacologyVrije Universiteit BrusselBrusselsBelgium
| | - Dominique Maes
- Structural Biology BrusselsVrije Universiteit BrusselBrusselsBelgium
| |
Collapse
|
9
|
Weiss SAI, Rehm SRT, Perera NC, Biniossek ML, Schilling O, Jenne DE. Origin and Expansion of the Serine Protease Repertoire in the Myelomonocyte Lineage. Int J Mol Sci 2021; 22:ijms22041658. [PMID: 33562184 PMCID: PMC7914634 DOI: 10.3390/ijms22041658] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/26/2021] [Accepted: 02/04/2021] [Indexed: 02/07/2023] Open
Abstract
The deepest evolutionary branches of the trypsin/chymotrypsin family of serine proteases are represented by the digestive enzymes of the gastrointestinal tract and the multi-domain proteases of the blood coagulation and complement system. Similar to the very old digestive system, highly diverse cleavage specificities emerged in various cell lineages of the immune defense system during vertebrate evolution. The four neutrophil serine proteases (NSPs) expressed in the myelomonocyte lineage, neutrophil elastase, proteinase 3, cathepsin G, and neutrophil serine protease 4, collectively display a broad repertoire of (S1) specificities. The origin of NSPs can be traced back to a circulating liver-derived trypsin-like protease, the complement factor D ancestor, whose activity is tightly controlled by substrate-induced activation and TNFα-induced locally upregulated protein secretion. However, the present-day descendants are produced and converted to mature enzymes in precursor cells of the bone marrow and are safely sequestered in granules of circulating neutrophils. The potential site and duration of action of these cell-associated serine proteases are tightly controlled by the recruitment and activation of neutrophils, by stimulus-dependent regulated secretion of the granules, and by various soluble inhibitors in plasma, interstitial fluids, and in the inflammatory exudate. An extraordinary dynamic range and acceleration of immediate defense responses have been achieved by exploiting the high structural plasticity of the trypsin fold.
Collapse
Affiliation(s)
- Stefanie A. I. Weiss
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | - Salome R. T. Rehm
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
| | | | - Martin L. Biniossek
- Institute of Molecular Medicine and Cell Research, Faculty of Medicine, University of Freiburg, 79104 Freiburg, Germany;
| | - Oliver Schilling
- Institute of Surgical Pathology, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, 79106 Freiburg, Germany;
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Dieter E. Jenne
- Comprehensive Pneumology Center (CPC-M), Institute of Lung Biology and Disease (iLBD) Helmholtz Zentrum München and University Hospital of the Ludwig-Maximilians University (LMU), 81377 Munich, Germany; (S.A.I.W.); (S.R.T.R.)
- Max Planck Institute of Neurobiology, 82152 Planegg-Martinsried, Germany
- Correspondence:
| |
Collapse
|
10
|
Shamanaev A, Emsley J, Gailani D. Proteolytic activity of contact factor zymogens. J Thromb Haemost 2021; 19:330-341. [PMID: 33107140 PMCID: PMC8552315 DOI: 10.1111/jth.15149] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/16/2020] [Accepted: 10/22/2020] [Indexed: 02/06/2023]
Abstract
Contact activation is triggered when blood is exposed to compounds or "surfaces" that promote conversion of the plasma zymogens factor XII (FXII) and prekallikrein to the active proteases FXIIa and kallikrein. FXIIa promotes blood coagulation by converting zymogen factor XI (FXI) to the protease FXIa. Contact activation appears to represent an enhancement of the propensity for FXII and prekallikrein to reciprocally activate each other by surface-independent limited proteolysis. The nature of the activities that perpetuate this process, and that trigger contact activation, are debated. FXII and prekallikrein, like most members of the chymotrypsin/trypsin protease family, are synthesized as single polypeptides that are presumed to be in an inactive state. Internal cleavage leads to conformational changes in the protease domain that convert the enzyme active site from a closed conformation to an open conformation accessible to substrates. We observed that FXII expresses a low level of activity as a single-chain zymogen that catalyzes prekallikrein activation in solution, as well as surface-dependent activation of prekallikrein, FXI, and FXII (autoactivation). Prekallikrein also expresses activity that promotes cleavage of kininogen to release bradykinin, and surface-dependent FXII activation. Modeling suggests that a glutamine residue at position 156 in the FXII and prekallikrein protease domains stabilizes an open active site conformation by forming hydrogen bonds with Asp194. The activity inherent in FXII and prekallikrein suggests a mechanism for sustaining reciprocal activation of the proteins and for initiating contact activation, and supports the premise that zymogens of some trypsin-like enzymes are active proteases.
Collapse
Affiliation(s)
- Aleksandr Shamanaev
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| | - Jonas Emsley
- Biodiscovery Institute, Centre for Biomedical Science, University of Nottingham, Nottingham, UK
| | - David Gailani
- Department of Pathology, Microbiology and Immunology, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
11
|
Fluxes for Unraveling Complex Binding Mechanisms. Trends Pharmacol Sci 2020; 41:923-932. [DOI: 10.1016/j.tips.2020.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 01/05/2023]
|
12
|
Di Cera E. Mechanisms of ligand binding. BIOPHYSICS REVIEWS 2020; 1:011303. [PMID: 33313600 PMCID: PMC7714259 DOI: 10.1063/5.0020997] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Accepted: 09/09/2020] [Indexed: 12/25/2022]
Abstract
Many processes in chemistry and biology involve interactions of a ligand with its molecular target. Interest in the mechanism governing such interactions has dominated theoretical and experimental analysis for over a century. The interpretation of molecular recognition has evolved from a simple rigid body association of the ligand with its target to appreciation of the key role played by conformational transitions. Two conceptually distinct descriptions have had a profound impact on our understanding of mechanisms of ligand binding. The first description, referred to as induced fit, assumes that conformational changes follow the initial binding step to optimize the complex between the ligand and its target. The second description, referred to as conformational selection, assumes that the free target exists in multiple conformations in equilibrium and that the ligand selects the optimal one for binding. Both descriptions can be merged into more complex reaction schemes that better describe the functional repertoire of macromolecular systems. This review deals with basic mechanisms of ligand binding, with special emphasis on induced fit, conformational selection, and their mathematical foundations to provide rigorous context for the analysis and interpretation of experimental data. We show that conformational selection is a surprisingly versatile mechanism that includes induced fit as a mathematical special case and even captures kinetic properties of more complex reaction schemes. These features make conformational selection a dominant mechanism of molecular recognition in biology, consistent with the rich conformational landscape accessible to biological macromolecules being unraveled by structural biology.
Collapse
Affiliation(s)
- Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104, USA
| |
Collapse
|
13
|
Mucolytic self-emulsifying drug delivery systems (SEDDS) containing a hydrophobic ion-pair of proteinase. Eur J Pharm Sci 2020; 162:105658. [PMID: 33271277 DOI: 10.1016/j.ejps.2020.105658] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 10/22/2020] [Accepted: 11/25/2020] [Indexed: 01/25/2023]
Abstract
AIM The aim of this study was to form hydrophobic ion-pairs of proteinase with cationic surfactants and to incorporate them into self-emulsifying drug delivery systems (SEDDS) to improve their mucus permeating properties. METHODS Proteinase was ion-paired with benzalkonium chloride (BAK), hexadecylpyridinium chloride (HDP), alkyltrimethylammonium bromide (ATA) and hexadecyltrimethylammonium bromide (HDT) at pH 8.5-9.0, and subsequently incorporated into SEDDS consisting of Cremophor EL, propylene glycol, and Capmul 808-G (40/20/40). Mucus permeation of SEDDS containing proteinase complexes was evaluated via rotating tube technique and cell-free Transwell® insert system. Additionally, enzymatic activity of proteinase complexes as well as their potential cytotoxicity was evaluated. RESULTS Among all tested hydrophobic ion-pairs, proteinase/BAK showed highest potential. Mucus diffusion of SEDDS containing proteinase/BAK complex yielded in 2.3-fold and 2.5-fold higher mucus permeability with respect to blank SEDDS at Transwell® insert system and rotating tube technique, respectively. Furthermore, proteinase/BAK complex maintained the highest enzymatic activity of 50.5 ± 5.6% compared to free proteinase. At a SEDDS concentration as low as 0.006% cell viability was just 80%. The addition of proteinase complexes to SEDDS increased cytotoxicity on Caco-2 cells in a concentration-dependent manner. CONCLUSION SEDDS loaded with proteinase/BAK complexes are promising nanocarriers because of enhanced mucus permeating properties.
Collapse
|
14
|
Kaushik A, Rahisuddin R, Saini N, Singh RP, Kaur R, Koul S, Kumaran S. Molecular mechanism of selective substrate engagement and inhibitor disengagement of cysteine synthase. J Biol Chem 2020; 296:100041. [PMID: 33162395 PMCID: PMC7948407 DOI: 10.1074/jbc.ra120.014490] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 10/31/2020] [Accepted: 11/08/2020] [Indexed: 12/20/2022] Open
Abstract
O-acetyl serine sulfhydrylase (OASS), referred to as cysteine synthase (CS), synthesizes cysteine from O-acetyl serine (OAS) and sulfur in bacteria and plants. The inherent challenge for CS is to overcome 4 to 6 log-folds stronger affinity for its natural inhibitor, serine acetyltransferase (SAT), as compared with its affinity for substrate, OAS. Our recent study showed that CS employs a novel competitive-allosteric mechanism to selectively recruit its substrate in the presence of natural inhibitor. In this study, we trace the molecular features that control selective substrate recruitment. To generalize our findings, we used CS from three different bacteria (Haemophilus, Salmonella, and Mycobacterium) as our model systems and analyzed structural and substrate-binding features of wild-type CS and its ∼13 mutants. Results show that CS uses a noncatalytic residue, M120, located 20 Å away from the reaction center, to discriminate in favor of substrate. M120A and background mutants display significantly reduced substrate binding, catalytic efficiency, and inhibitor binding. Results shows that M120 favors the substrate binding by selectively enhancing the affinity for the substrate and disengaging the inhibitor by 20 to 286 and 5- to 3-folds, respectively. Together, M120 confers a net discriminative force in favor of substrate by 100- to 858-folds.
Collapse
Affiliation(s)
- Abhishek Kaushik
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
| | - R Rahisuddin
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
| | - Neha Saini
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
| | - Ravi P Singh
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
| | - Rajveer Kaur
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
| | - Sukirte Koul
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India
| | - S Kumaran
- G. N. Ramachandran Protein Center, Institute of Microbial Technology (IMTECH), Council of Scientific and Industrial Research (CSIR), Sector 39-A, Chandigarh, India.
| |
Collapse
|
15
|
Al-Horani RA, Kar S. Factor XIIIa inhibitors as potential novel drugs for venous thromboembolism. Eur J Med Chem 2020; 200:112442. [PMID: 32502864 PMCID: PMC7513741 DOI: 10.1016/j.ejmech.2020.112442] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 05/06/2020] [Accepted: 05/07/2020] [Indexed: 12/11/2022]
Abstract
Human factor XIIIa (FXIIIa) is a multifunctional transglutaminase with a significant role in hemostasis. FXIIIa catalyzes the last step in the coagulation process. It stabilizes the blood clot by cross-linking the α- and γ-chains of fibrin. It also protects the newly formed clot from plasmin-mediated fibrinolysis, primarily by cross-linking α2-antiplasmin to fibrin. Furthermore, FXIIIa is a major determinant of clot size and clot's red blood cells content. Therefore, inhibitors targeting FXIIIa have been considered to develop a new generation of anticoagulants to prevent and/or treat venous thromboembolism. Several inhibitors of FXIIIa have been discovered or designed including active site and allosteric site small molecule inhibitors as well as natural and modified polypeptides. This work reviews the structural, biochemical, and pharmacological aspects of FXIIIa inhibitors so as to advance their molecular design to become more clinically relevant.
Collapse
Affiliation(s)
- Rami A Al-Horani
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA.
| | - Srabani Kar
- Division of Basic Pharmaceutical Sciences, College of Pharmacy, Xavier University of Louisiana, New Orleans, LA, 70125, USA
| |
Collapse
|
16
|
Stojanovski BM, Pelc LA, Di Cera E. Role of the activation peptide in the mechanism of protein C activation. Sci Rep 2020; 10:11079. [PMID: 32632109 PMCID: PMC7338465 DOI: 10.1038/s41598-020-68078-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 06/17/2020] [Indexed: 12/19/2022] Open
Abstract
Protein C is a natural anticoagulant activated by thrombin in a reaction accelerated by the cofactor thrombomodulin. The zymogen to protease conversion of protein C involves removal of a short activation peptide that, relative to the analogous sequence present in other vitamin K-dependent proteins, contains a disproportionately high number of acidic residues. Through a combination of bioinformatic, mutagenesis and kinetic approaches we demonstrate that the peculiar clustering of acidic residues increases the intrinsic disorder propensity of the activation peptide and adversely affects the rate of activation. Charge neutralization of the acidic residues in the activation peptide through Ala mutagenesis results in a mutant activated by thrombin significantly faster than wild type. Importantly, the mutant is also activated effectively by other coagulation factors, suggesting that the acidic cluster serves a protective role against unwanted proteolysis by endogenous proteases. We have also identified an important H-bond between residues T176 and Y226 that is critical to transduce the inhibitory effect of Ca2+ and the stimulatory effect of thrombomodulin on the rate of zymogen activation. These findings offer new insights on the role of the activation peptide in the function of protein C.
Collapse
Affiliation(s)
- Bosko M Stojanovski
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
17
|
Behnam MA, Klein CD. Conformational selection in the flaviviral NS2B-NS3 protease. Biochimie 2020; 174:117-125. [DOI: 10.1016/j.biochi.2020.04.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 04/08/2020] [Accepted: 04/08/2020] [Indexed: 12/25/2022]
|
18
|
Inhibition of an active zymogen protease: the zymogen form of matriptase is regulated by HAI-1 and HAI-2. Biochem J 2020; 477:1779-1794. [PMID: 32338287 DOI: 10.1042/bcj20200182] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/22/2020] [Accepted: 04/24/2020] [Indexed: 11/17/2022]
Abstract
The membrane-bound serine protease matriptase belongs to a rare subset of serine proteases that display significant activity in the zymogen form. Matriptase is critically involved in epithelial differentiation and homeostasis, and insufficient regulation of its proteolytic activity directly causes onset and development of malignant cancer. There is strong evidence that the zymogen activity of matriptase is sufficient for its biological function(s). Activated matriptase is inhibited by the two Kunitz-type inhibitor domain-containing hepatocyte growth factor activator inhibitors 1 (HAI-1) and HAI-2, however, it remains unknown whether the activity of the matriptase zymogen is regulated. Using both purified proteins and a cell-based assay, we show that the catalytic activity of the matriptase zymogen towards a peptide-based substrate as well as the natural protein substrates, pro-HGF and pro-prostasin, can be inhibited by HAI-1 and HAI-2. Inhibition of zymogen matriptase by HAI-1 and HAI-2 appears similar to inhibition of activated matriptase and occurs at comparable inhibitor concentrations. This indicates that HAI-1 and HAI-2 interact with the active sites of zymogen and activated matriptase in a similar manner. Our results suggest that HAI-1 and HAI-2 regulate matriptase zymogen activity and thus may act as regulators of matriptase trans(auto)-activation. Due to the main localisation of HAI-2 in the ER and HAI-1 in the secretory pathway and on the cell surface, this regulation likely occurs both in the secretory pathway and on the plasma membrane. Regulation of an active zymogen form of a protease is a novel finding.
Collapse
|
19
|
Ruben EA, Gandhi PS, Chen Z, Koester SK, DeKoster GT, Frieden C, Di Cera E. 19F NMR reveals the conformational properties of free thrombin and its zymogen precursor prethrombin-2. J Biol Chem 2020; 295:8227-8235. [PMID: 32358061 PMCID: PMC7294081 DOI: 10.1074/jbc.ra120.013419] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 04/28/2020] [Indexed: 11/06/2022] Open
Abstract
The conformational properties of trypsin-like proteases and their zymogen forms remain controversial because of a lack of sufficient information on their free forms. Specifically, it is unclear whether the free protease is zymogen-like and shifts to its mature form upon a ligand-induced fit or exists in multiple conformations in equilibrium from which the ligand selects the optimal fit via conformational selection. Here we report the results of 19F NMR measurements that reveal the conformational properties of a protease and its zymogen precursor in the free form. Using the trypsin-like, clotting protease thrombin as a relevant model system, we show that its conformation is quite different from that of its direct zymogen precursor prethrombin-2 and more similar to that of its fully active Na+-bound form. The results cast doubts on recent hypotheses that free thrombin is zymogen-like and transitions to protease-like forms upon ligand binding. Rather, they validate the scenario emerged from previous findings of X-ray crystallography and rapid kinetics supporting a pre-existing equilibrium between open (E) and closed (E*) forms of the active site. In this scenario, prethrombin-2 is more dynamic and exists predominantly in the E* form, whereas thrombin is more rigid and exists predominantly in the E form. Ligand binding to thrombin takes place exclusively in the E form without significant changes in the overall conformation. In summary, these results disclose the structural architecture of the free forms of thrombin and prethrombin-2, consistent with an E*-E equilibrium and providing no evidence that free thrombin is zymogen-like.
Collapse
Affiliation(s)
- Eliza A Ruben
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | | | - Zhiwei Chen
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Sarah K Koester
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| | - Gregory T DeKoster
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Carl Frieden
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
20
|
Inhibitors of blood coagulation factor XIII. Anal Biochem 2020; 605:113708. [PMID: 32335064 DOI: 10.1016/j.ab.2020.113708] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 03/11/2020] [Accepted: 03/30/2020] [Indexed: 02/07/2023]
Abstract
The blood coagulation factor XIII (FXIII) plays an essential role in the stabilization of fibrin clots. This factor, belonging to the class of transglutaminases, catalyzes the final step of secondary hemostasis, i.e. the crosslinking of fibrin polymers. These crosslinks protect the clots against premature fibrinolysis. Consequently, FXIII is an interesting target for the therapeutic treatment of cardiovascular diseases. In this context, inhibitors can influence FXIII in the activation process of the enzyme itself or in its catalytic activity. To date, there is no FXIII inhibitor in medical application, but several studies have been conducted in the past. These studies provided a better understanding of FXIII and identified new lead structures for FXIII inhibitors. Next to small molecule inhibitors, the most promising candidates for the development of clinically applicable FXIII inhibitors are the peptide inhibitors tridegin and transglutaminase-inhibiting Michael acceptors (TIMAs) due to their selectivity towards activated FXIII (FXIIIa). In this review, select FXIII inhibitors and their pharmacological potential are discussed.
Collapse
|
21
|
Kahler U, Kamenik AS, Kraml J, Liedl KR. Sodium-induced population shift drives activation of thrombin. Sci Rep 2020; 10:1086. [PMID: 31974511 PMCID: PMC6978324 DOI: 10.1038/s41598-020-57822-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2019] [Accepted: 01/06/2020] [Indexed: 02/04/2023] Open
Abstract
The equilibrium between active E and inactive E* forms of thrombin is assumed to be governed by the allosteric binding of a Na+ ion. Here we use molecular dynamics simulations and Markov state models to sample transitions between active and inactive states. With these calculations we are able to compare thermodynamic and kinetic properties depending on the presence of Na+. For the first time, we directly observe sodium-induced conformational changes in long-timescale computer simulations. Thereby, we are able to explain the resulting change in activity. We observe a stabilization of the active form in presence of Na+ and a shift towards the inactive form in Na+-free simulations. We identify key structural features to quantify and monitor this conformational shift. These include the accessibility of the S1 pocket and the reorientation of W215, of R221a and of the Na+ loop. The structural characteristics exhibit dynamics at various timescales: Conformational changes in the Na+ binding loop constitute the slowest observed movement. Depending on its orientation, it induces conformational shifts in the nearby substrate binding site. Only after this shift, residue W215 is able to move freely, allowing thrombin to adopt a binding-competent conformation.
Collapse
Affiliation(s)
- Ursula Kahler
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 82, 6020, Innsbruck, Austria
| | - Anna S Kamenik
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 82, 6020, Innsbruck, Austria
| | - Johannes Kraml
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 82, 6020, Innsbruck, Austria
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 82, 6020, Innsbruck, Austria.
| |
Collapse
|
22
|
Role of the I16-D194 ionic interaction in the trypsin fold. Sci Rep 2019; 9:18035. [PMID: 31792294 PMCID: PMC6889508 DOI: 10.1038/s41598-019-54564-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2019] [Accepted: 11/15/2019] [Indexed: 12/20/2022] Open
Abstract
Activity in trypsin-like proteases is the result of proteolytic cleavage at R15 followed by an ionic interaction that ensues between the new N terminus of I16 and the side chain of the highly conserved D194. This mechanism of activation, first proposed by Huber and Bode, organizes the oxyanion hole and primary specificity pocket for substrate binding and catalysis. Using the clotting protease thrombin as a relevant model, we unravel contributions of the I16-D194 ionic interaction to Na+ binding, stability of the transition state and the allosteric E*-E equilibrium of the trypsin fold. The I16T mutation abolishes the I16-D194 interaction and compromises the architecture of the oxyanion hole. The D194A mutation also abrogates the I16-D194 interaction but, surprisingly, has no effect on the architecture of the oxyanion hole that remains intact through a new H-bond established between G43 and G193. In both mutants, loss of the I16-D194 ionic interaction compromises Na+ binding, reduces stability of the transition state, collapses the 215–217 segment into the primary specific pocket and abrogates the allosteric E*-E equilibrium in favor of a rigid conformation that binds ligand at the active site according to a simple lock-and-key mechanism. These findings refine the structural role of the I16-D194 ionic interaction in the Huber-Bode mechanism of activation and reveal a functional linkage with the allosteric properties of the trypsin fold like Na+ binding and the E*-E equilibrium.
Collapse
|
23
|
Das T, Eliezer D. Membrane interactions of intrinsically disordered proteins: The example of alpha-synuclein. BIOCHIMICA ET BIOPHYSICA ACTA. PROTEINS AND PROTEOMICS 2019; 1867:879-889. [PMID: 31096049 PMCID: PMC6661188 DOI: 10.1016/j.bbapap.2019.05.001] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 05/03/2019] [Accepted: 05/08/2019] [Indexed: 12/11/2022]
Abstract
Peripheral membrane proteins associate reversibly with biological membranes that, compared to protein binding partners, are structurally labile and devoid of specific binding pockets. Membranes in different subcellular compartments vary primarily in their chemical composition and physical properties, and recognition of these features is therefore critical for allowing such proteins to engage their proper membrane targets. Intrinsically disordered proteins (IDPs) are well-suited to accomplish this task using highly specific and low- to moderate-affinity interactions governed by recognition principles that are both similar to and different from those that mediate the membrane interactions of rigid proteins. IDPs have also evolved multiple mechanisms to regulate membrane (and other) interactions and achieve their impressive functional diversity. Moreover, IDP-membrane interactions may have a kinetic advantage in fast processes requiring rapid control of such interactions, such as synaptic transmission or signaling. Herein we review the biophysics, regulation and functional implications of IDP-membrane interactions and include a brief overview of some of the methods that can be used to study such interactions. At each step, we use the example of alpha-synuclein, a protein involved in the pathogenesis of Parkinson's disease and one of the best characterized membrane-binding IDP, to illustrate some of the principles discussed.
Collapse
Affiliation(s)
- Tapojyoti Das
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States of America
| | - David Eliezer
- Department of Biochemistry, Weill Cornell Medicine, New York, NY, United States of America.
| |
Collapse
|
24
|
Residues W215, E217 and E192 control the allosteric E*-E equilibrium of thrombin. Sci Rep 2019; 9:12304. [PMID: 31444378 PMCID: PMC6707225 DOI: 10.1038/s41598-019-48839-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 08/13/2019] [Indexed: 01/07/2023] Open
Abstract
A pre-existing, allosteric equilibrium between closed (E*) and open (E) conformations of the active site influences the level of activity in the trypsin fold and defines ligand binding according to the mechanism of conformational selection. Using the clotting protease thrombin as a model system, we investigate the molecular determinants of the E*-E equilibrium through rapid kinetics and X-ray structural biology. The equilibrium is controlled by three residues positioned around the active site. W215 on the 215-217 segment defining the west wall of the active site controls the rate of transition from E to E* through hydrophobic interaction with F227. E192 on the opposite 190-193 segment defining the east wall of the active site controls the rate of transition from E* to E through electrostatic repulsion of E217. The side chain of E217 acts as a lever that moves the entire 215-217 segment in the E*-E equilibrium. Removal of this side chain converts binding to the active site to a simple lock-and-key mechanism and freezes the conformation in a state intermediate between E* and E. These findings reveal a simple framework to understand the molecular basis of a key allosteric property of the trypsin fold.
Collapse
|
25
|
Egawa T, Callender R. General mathematical formula for near equilibrium relaxation kinetics of basic enzyme reactions and its applications to find conformational selection steps. Math Biosci 2019; 313:61-70. [PMID: 30935841 DOI: 10.1016/j.mbs.2019.03.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 03/27/2019] [Accepted: 03/27/2019] [Indexed: 10/27/2022]
Abstract
A general mathematical formula of basic enzyme reactions was derived with nearly no dependence on conditions nor assumptions on relaxation kinetic processes near equilibrium in a simple single-substrate-single-product enzyme reaction. The new formula gives precise relationships between the rate constants of the elementary reaction steps and the apparent relaxation rate constant, rather than the initial velocity that is generally used to determine enzymatic parameters according to the Michaelis-Menten theory. The present formula is shown to be complementary to the Michaelis-Menten formulae in a sense that the initial velocity and the relaxation rate constant data together could determine the enzyme-substrate dissociation constant KES, which has been usually conditionally approximated by the Michaelis constant KM within the framework of the Michaelis-Menten formulae. We also describe relaxation kinetics of enzyme reactions that include the conformational selection processes, in which only one enzymatic conformer among a conformational ensemble can bind with either the substrate or product. The present mathematical approaches, together with numerical computation analyses, suggested that the presence of conformational selection steps in enzymatic reactions can be experimentally detected simply by enzymatic assays with catalytic amounts of enzyme.
Collapse
Affiliation(s)
- Tsuyoshi Egawa
- Department of Biochemistry, Albert Einstein College of Medicine, United States.
| | - Robert Callender
- Department of Biochemistry, Albert Einstein College of Medicine, United States.
| |
Collapse
|
26
|
Soualmia F, Bosc E, Amiri SA, Stratmann D, Magdolen V, Darmoul D, Reboud-Ravaux M, El Amri C. Insights into the activity control of the kallikrein-related peptidase 6: small-molecule modulators and allosterism. Biol Chem 2018; 399:1073-1078. [DOI: 10.1515/hsz-2017-0336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Accepted: 03/26/2018] [Indexed: 02/06/2023]
Abstract
AbstractThe activity of kallikrein-related peptidase 6 (KLK6) is deregulated in various diseases such as cancer and neurodegenerative diseases. KLK6 is thus considered as an attractive therapeutical target. In this short report, we depict some novel findings on the regulation of the KLK6 activity. Namely, we identified mechanism-based inhibitors (suicide substrates) from an in-house library of 6-substituted coumarin-3-carboxylate derivatives. In addition, a molecular dynamics study evidenced the allosteric behavior of KLK6 similar to that previously observed for some trypsin-like serine proteases. This allosteric behavior together with the coumarinic scaffold bring new opportunities for the design of KLK6 potent activity modulators, useful as therapeutics or activity-based probes.
Collapse
|
27
|
Xu M, Chen Y, Xu P, Andreasen PA, Jiang L, Li J, Huang M. Crystal structure of plasma kallikrein reveals the unusual flexibility of the S1 pocket triggered by Glu217. FEBS Lett 2018; 592:2658-2667. [DOI: 10.1002/1873-3468.13191] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/26/2018] [Accepted: 07/06/2018] [Indexed: 12/24/2022]
Affiliation(s)
- Mingming Xu
- College of Chemistry Fuzhou University China
- Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry Chinese Academy of Sciences Fuzhou China
| | - Yayu Chen
- College of Chemistry Fuzhou University China
| | - Peng Xu
- Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry Chinese Academy of Sciences Fuzhou China
| | - Peter A. Andreasen
- Department of Molecular Biology and Genetics Aarhus University Aarhus C Denmark
| | | | - Jinyu Li
- College of Chemistry Fuzhou University China
| | - Mingdong Huang
- College of Chemistry Fuzhou University China
- Fujian Institute of Research on the Structure of Matter State Key Laboratory of Structural Chemistry Chinese Academy of Sciences Fuzhou China
| |
Collapse
|
28
|
Waldner BJ, Kraml J, Kahler U, Spinn A, Schauperl M, Podewitz M, Fuchs JE, Cruciani G, Liedl KR. Electrostatic recognition in substrate binding to serine proteases. J Mol Recognit 2018; 31:e2727. [PMID: 29785722 PMCID: PMC6175425 DOI: 10.1002/jmr.2727] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/11/2018] [Accepted: 04/11/2018] [Indexed: 12/16/2022]
Abstract
Serine proteases of the Chymotrypsin family are structurally very similar but have very different substrate preferences. This study investigates a set of 9 different proteases of this family comprising proteases that prefer substrates containing positively charged amino acids, negatively charged amino acids, and uncharged amino acids with varying degree of specificity. Here, we show that differences in electrostatic substrate preferences can be predicted reliably by electrostatic molecular interaction fields employing customized GRID probes. Thus, we are able to directly link protease structures to their electrostatic substrate preferences. Additionally, we present a new metric that measures similarities in substrate preferences focusing only on electrostatics. It efficiently compares these electrostatic substrate preferences between different proteases. This new metric can be interpreted as the electrostatic part of our previously developed substrate similarity metric. Consequently, we suggest, that substrate recognition in terms of electrostatics and shape complementarity are rather orthogonal aspects of substrate recognition. This is in line with a 2‐step mechanism of protein‐protein recognition suggested in the literature.
Collapse
Affiliation(s)
- Birgit J Waldner
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Johannes Kraml
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Ursula Kahler
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Alexander Spinn
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Michael Schauperl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Maren Podewitz
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Julian E Fuchs
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| | - Gabriele Cruciani
- Laboratory of Chemometrics, Department of Chemistry, University of Perugia, Perugia, Italy
| | - Klaus R Liedl
- Institute of General, Inorganic and Theoretical Chemistry, and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
29
|
Chakraborty P, Acquasaliente L, Pelc LA, Di Cera E. Interplay between conformational selection and zymogen activation. Sci Rep 2018; 8:4080. [PMID: 29511224 PMCID: PMC5840343 DOI: 10.1038/s41598-018-21728-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2017] [Accepted: 02/09/2018] [Indexed: 11/09/2022] Open
Abstract
Trypsin-like proteases are synthesized as zymogens and activated through a mechanism that folds the active site for efficient binding and catalysis. Ligand binding to the active site is therefore a valuable source of information on the changes that accompany zymogen activation. Using the physiologically relevant transition of the clotting zymogen prothrombin to the mature protease thrombin, we show that the mechanism of ligand recognition follows selection within a pre-existing ensemble of conformations with the active site accessible (E) or inaccessible (E*) to binding. Prothrombin exists mainly in the E* conformational ensemble and conversion to thrombin produces two dominant changes: a progressive shift toward the E conformational ensemble triggered by removal of the auxiliary domains upon cleavage at R271 and a drastic drop of the rate of ligand dissociation from the active site triggered by cleavage at R320. Together, these effects produce a significant (700-fold) increase in binding affinity. Limited proteolysis reveals how the E*-E equilibrium shifts during prothrombin activation and influences exposure of the sites of cleavage at R271 and R320. These new findings on the molecular underpinnings of prothrombin activation are relevant to other zymogens with modular assembly involved in blood coagulation, complement and fibrinolysis.
Collapse
Affiliation(s)
- Pradipta Chakraborty
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Laura Acquasaliente
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Leslie A Pelc
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, MO, 63104, USA.
| |
Collapse
|
30
|
Structure of prothrombin in the closed form reveals new details on the mechanism of activation. Sci Rep 2018; 8:2945. [PMID: 29440720 PMCID: PMC5811608 DOI: 10.1038/s41598-018-21304-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 02/01/2018] [Indexed: 12/19/2022] Open
Abstract
The clotting factor prothrombin exists in equilibrium between closed and open conformations, but the physiological role of these forms remains unclear. As for other allosteric proteins, elucidation of the linkage between molecular transitions and function is facilitated by reagents stabilized in each of the alternative conformations. The open form of prothrombin has been characterized structurally, but little is known about the architecture of the closed form that predominates in solution under physiological conditions. Using X-ray crystallography and single-molecule FRET, we characterize a prothrombin construct locked in the closed conformation through an engineered disulfide bond. The construct: (i) provides structural validation of the intramolecular collapse of kringle-1 onto the protease domain reported recently; (ii) documents the critical role of the linker connecting kringle-1 to kringle-2 in stabilizing the closed form; and (iii) reveals novel mechanisms to shift the equilibrium toward the open conformation. Together with functional studies, our findings define the role of closed and open conformations in the conversion of prothrombin to thrombin and establish a molecular framework for prothrombin activation that rationalizes existing phenotypes associated with prothrombin mutations and points to new strategies for therapeutic intervention.
Collapse
|
31
|
Tseng WH, Chang CK, Wu PC, Hu NJ, Lee GH, Tzeng CC, Neidle S, Hou MH. Induced-Fit Recognition of CCG Trinucleotide Repeats by a Nickel-Chromomycin Complex Resulting in Large-Scale DNA Deformation. Angew Chem Int Ed Engl 2017. [DOI: 10.1002/ange.201703989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wen-Hsuan Tseng
- Institute of Genomics and Bioinformatics; National Chung Hsing University; 250 Kuo-kuang Rd. Taichung Taiwan
| | - Chung-ke Chang
- Institute of Biomedical Sciences; Academia Sinica; 128 Sec. 2, Academia Rd. Nankang Taipei Taiwan
| | - Pei-Ching Wu
- Institute of Genomics and Bioinformatics; National Chung Hsing University; 250 Kuo-kuang Rd. Taichung Taiwan
| | - Nien-Jen Hu
- Institute of Biochemistry; National Chung Hsing University; 250 Kuo-kuang Rd. Taichung Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center; College of Science; National Taiwan University; No.1, Sec. 4, Roosevelt Rd. Taipei Taiwan
| | - Ching-Cherng Tzeng
- Department of Pathology; Chi Mei Medical Center; No.901, Zhonghua Rd. Tainan Taiwan
| | - Stephen Neidle
- The School of Pharmacy; University College London; London WC1N 1AX UK
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics; National Chung Hsing University; 250 Kuo-kuang Rd. Taichung Taiwan
- Institute of Biotechnology; National Chung Hsing University; 250 Kuo-kuang Rd. Taichung Taiwan
| |
Collapse
|
32
|
Pontarollo G, Acquasaliente L, Peterle D, Frasson R, Artusi I, De Filippis V. Non-canonical proteolytic activation of human prothrombin by subtilisin from Bacillus subtilis may shift the procoagulant-anticoagulant equilibrium toward thrombosis. J Biol Chem 2017; 292:15161-15179. [PMID: 28684417 DOI: 10.1074/jbc.m117.795245] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 06/28/2017] [Indexed: 12/26/2022] Open
Abstract
Blood coagulation is a finely regulated physiological process culminating with the factor Xa (FXa)-mediated conversion of the prothrombin (ProT) zymogen to active α-thrombin (αT). In the prothrombinase complex on the platelet surface, FXa cleaves ProT at Arg-271, generating the inactive precursor prethrombin-2 (Pre2), which is further attacked at Arg-320-Ile-321 to yield mature αT. Whereas the mechanism of physiological ProT activation has been elucidated in great detail, little is known about the role of bacterial proteases, possibly released in the bloodstream during infection, in inducing blood coagulation by direct proteolytic ProT activation. This knowledge gap is particularly concerning, as bacterial infections are frequently complicated by severe coagulopathies. Here, we show that addition of subtilisin (50 nm to 2 μm), a serine protease secreted by the non-pathogenic bacterium Bacillus subtilis, induces plasma clotting by proteolytically converting ProT into active σPre2, a nicked Pre2 derivative with a single cleaved Ala-470-Asn-471 bond. Notably, we found that this non-canonical cleavage at Ala-470-Asn-471 is instrumental for the onset of catalysis in σPre2, which was, however, reduced about 100-200-fold compared with αT. Of note, σPre2 could generate fibrin clots from fibrinogen, either in solution or in blood plasma, and could aggregate human platelets, either isolated or in whole blood. Our findings demonstrate that alternative cleavage of ProT by proteases, even by those secreted by non-virulent bacteria such as B. subtilis, can shift the delicate procoagulant-anticoagulant equilibrium toward thrombosis.
Collapse
Affiliation(s)
- Giulia Pontarollo
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| | - Laura Acquasaliente
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| | - Daniele Peterle
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| | - Roberta Frasson
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| | - Ilaria Artusi
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| | - Vincenzo De Filippis
- From the Department of Pharmaceutical and Pharmacological Sciences, University of Padua, via Marzolo 5, Padua 35131, Italy
| |
Collapse
|
33
|
Tseng WH, Chang CK, Wu PC, Hu NJ, Lee GH, Tzeng CC, Neidle S, Hou MH. Induced-Fit Recognition of CCG Trinucleotide Repeats by a Nickel-Chromomycin Complex Resulting in Large-Scale DNA Deformation. Angew Chem Int Ed Engl 2017; 56:8761-8765. [PMID: 28544401 DOI: 10.1002/anie.201703989] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Indexed: 01/23/2023]
Abstract
Small-molecule compounds targeting trinucleotide repeats in DNA have considerable potential as therapeutic or diagnostic agents against many neurological diseases. NiII (Chro)2 (Chro=chromomycin A3) binds specifically to the minor groove of (CCG)n repeats in duplex DNA, with unique fluorescence features that may serve as a probe for disease detection. Crystallographic studies revealed that the specificity originates from the large-scale spatial rearrangement of the DNA structure, including extrusion of consecutive bases and backbone distortions, with a sharp bending of the duplex accompanied by conformational changes in the NiII chelate itself. The DNA deformation of CCG repeats upon binding forms a GGCC tetranucleotide tract, which is recognized by NiII (Chro)2 . The extruded cytosine and last guanine nucleotides form water-mediated hydrogen bonds, which aid in ligand recognition. The recognition can be accounted for by the classic induced-fit paradigm.
Collapse
Affiliation(s)
- Wen-Hsuan Tseng
- Institute of Genomics and Bioinformatics, National Chung Hsing University, 250 Kuo-kuang Rd., Taichung, Taiwan
| | - Chung-Ke Chang
- Institute of Biomedical Sciences, Academia Sinica, 128 Sec. 2, Academia Rd. Nankang, Taipei, Taiwan
| | - Pei-Ching Wu
- Institute of Genomics and Bioinformatics, National Chung Hsing University, 250 Kuo-kuang Rd., Taichung, Taiwan
| | - Nien-Jen Hu
- Institute of Biochemistry, National Chung Hsing University, 250 Kuo-kuang Rd., Taichung, Taiwan
| | - Gene-Hsiang Lee
- Instrumentation Center, College of Science, National Taiwan University, No.1, Sec. 4, Roosevelt Rd., Taipei, Taiwan
| | - Ching-Cherng Tzeng
- Department of Pathology, Chi Mei Medical Center, No.901, Zhonghua Rd., Tainan, Taiwan
| | - Stephen Neidle
- The School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Ming-Hon Hou
- Institute of Genomics and Bioinformatics, National Chung Hsing University, 250 Kuo-kuang Rd., Taichung, Taiwan
- Institute of Biotechnology, National Chung Hsing University, 250 Kuo-kuang Rd., Taichung, Taiwan
| |
Collapse
|
34
|
Hong CM, Kaphan DM, Bergman RG, Raymond KN, Toste FD. Conformational Selection as the Mechanism of Guest Binding in a Flexible Supramolecular Host. J Am Chem Soc 2017; 139:8013-8021. [DOI: 10.1021/jacs.7b03812] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Cynthia M. Hong
- Chemical Sciences Division,
Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - David M. Kaphan
- Chemical Sciences Division,
Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Robert G. Bergman
- Chemical Sciences Division,
Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Kenneth N. Raymond
- Chemical Sciences Division,
Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - F. Dean Toste
- Chemical Sciences Division,
Lawrence Berkeley National Laboratory and Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
35
|
Abstract
Conformational selection (CS) and induced fit (IF) are two widely used interpretations of binding of a ligand to biological macromolecules. Both mechanisms envision a two-step reaction in which a conformational transition either precedes (CS) or follows (IF) the binding step. Under pseudo-first-order conditions where the ligand is in excess compared to the macromolecule, both mechanisms produce two relaxations. A fast one eventually increases linearly with ligand concentration and reflects the binding interaction. A slow one saturates to a constant value after decreasing or increasing hyperbolically with ligand concentration. This relaxation is the one most often accessible to experimental measurements and is potentially diagnostic of the mechanism involved. A relaxation that decreases unequivocally identifies CS, but a hyperbolic increase is compatible with both CS and IF. The potential ambiguity between the two mechanisms is more than qualitative. Here we show that the entire kinetic repertoire of IF is nothing but a mathematical special case of CS as revealed by a simple transformation of the rate constants, which emphasizes the need for independent support of either mechanism from additional experimental evidence. We discuss a simple strategy for distinguishing between IF and CS under the most common conditions encountered in practice, i.e., when the ligand is in excess compared to the macromolecule and a single relaxation is accessible to experimental measurements.
Collapse
Affiliation(s)
- Pradipta Chakraborty
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine , St. Louis, Missouri 63104, United States
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine , St. Louis, Missouri 63104, United States
| |
Collapse
|
36
|
Galburt EA, Tomko EJ. Conformational selection and induced fit as a useful framework for molecular motor mechanisms. Biophys Chem 2017; 223:11-16. [PMID: 28187350 PMCID: PMC5357456 DOI: 10.1016/j.bpc.2017.01.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 01/27/2017] [Accepted: 01/27/2017] [Indexed: 11/15/2022]
Abstract
The linkage between macromolecular binding and conformational change that is ubiquitous in biological molecules can be understood in the context of the mechanisms of conformational selection and induced fit. Here, we explore mappings between these mechanisms of ligand binding and those underlying the translocation of molecular motors and the nucleic acid unwinding of helicases. The mechanism of biased motion exhibited by molecular motors is typically described as either a thermal ratchet or a power-stroke and nucleic acid helicases are characterized by either active or passive unwinding mechanisms. We posit that both Brownian ratchet translocation and passive unwinding are examples of conformational selection and that both power-stroke translocation and active unwinding are examples of induced fit. Furthermore, in ligand-binding reactions, both conformational selection and induced fit may exist in parallel leading to a ligand-dependent flux through the different mechanistic pathways. Given the mappings we describe, we propose that motors may be able to function via parallel ratchet and stroke mechanisms and that helicases may be able to function via parallel active and passive mechanisms.
Collapse
Affiliation(s)
- Eric A Galburt
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Eric J Tomko
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA
| |
Collapse
|
37
|
Gopal SM, Klumpers F, Herrmann C, Schäfer LV. Solvent effects on ligand binding to a serine protease. Phys Chem Chem Phys 2017; 19:10753-10766. [DOI: 10.1039/c6cp07899k] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
ITC experiments and MD simulations reveal the mechanism behind enthalpy/entropy compensation upon trypsin-benzamidine binding at different solvation conditions.
Collapse
Affiliation(s)
- Srinivasa M. Gopal
- Center for Theoretical Chemistry
- Faculty of Chemistry and Biochemistry
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | - Fabian Klumpers
- Physical Chemistry I
- Faculty of Chemistry and Biochemistry
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | - Christian Herrmann
- Physical Chemistry I
- Faculty of Chemistry and Biochemistry
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| | - Lars V. Schäfer
- Center for Theoretical Chemistry
- Faculty of Chemistry and Biochemistry
- Ruhr-University Bochum
- D-44780 Bochum
- Germany
| |
Collapse
|
38
|
Riley BT, Ilyichova O, Costa MGS, Porebski BT, de Veer SJ, Swedberg JE, Kass I, Harris JM, Hoke DE, Buckle AM. Direct and indirect mechanisms of KLK4 inhibition revealed by structure and dynamics. Sci Rep 2016; 6:35385. [PMID: 27767076 PMCID: PMC5073354 DOI: 10.1038/srep35385] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Accepted: 09/28/2016] [Indexed: 11/09/2022] Open
Abstract
The kallikrein-related peptidase (KLK) family of proteases is involved in many aspects of human health and disease. One member of this family, KLK4, has been implicated in cancer development and metastasis. Understanding mechanisms of inactivation are critical to developing selective KLK4 inhibitors. We have determined the X-ray crystal structures of KLK4 in complex with both sunflower trypsin inhibitor-1 (SFTI-1) and a rationally designed SFTI-1 derivative to atomic (~1 Å) resolution, as well as with bound nickel. These structures offer a structural rationalization for the potency and selectivity of these inhibitors, and together with MD simulation and computational analysis, reveal a dynamic pathway between the metal binding exosite and the active site, providing key details of a previously proposed allosteric mode of inhibition. Collectively, this work provides insight into both direct and indirect mechanisms of inhibition for KLK4 that have broad implications for the enzymology of the serine protease superfamily, and may potentially be exploited for the design of therapeutic inhibitors.
Collapse
Affiliation(s)
- Blake T Riley
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Olga Ilyichova
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Mauricio G S Costa
- Programa de Computação Científica, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Benjamin T Porebski
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Simon J de Veer
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - Joakim E Swedberg
- Institute for Molecular Bioscience, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Itamar Kass
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Jonathan M Harris
- Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Queensland 4059, Australia
| | - David E Hoke
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Ashley M Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
39
|
Paul F, Weikl TR. How to Distinguish Conformational Selection and Induced Fit Based on Chemical Relaxation Rates. PLoS Comput Biol 2016; 12:e1005067. [PMID: 27636092 PMCID: PMC5026370 DOI: 10.1371/journal.pcbi.1005067] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Accepted: 07/14/2016] [Indexed: 12/04/2022] Open
Abstract
Protein binding often involves conformational changes. Important questions are whether a conformational change occurs prior to a binding event (‘conformational selection’) or after a binding event (‘induced fit’), and how conformational transition rates can be obtained from experiments. In this article, we present general results for the chemical relaxation rates of conformational-selection and induced-fit binding processes that hold for all concentrations of proteins and ligands and, thus, go beyond the standard pseudo-first-order approximation of large ligand concentration. These results allow to distinguish conformational-selection from induced-fit processes—also in cases in which such a distinction is not possible under pseudo-first-order conditions—and to extract conformational transition rates of proteins from chemical relaxation data. The function of proteins is affected by their conformational dynamics, i.e. by transitions between lower-energy ground-state conformations and higher-energy excited-state conformations of the proteins. Advanced NMR and single-molecule experiments indicate that higher-energy conformations in the unbound state of proteins can be similar to ground-state conformations in the bound state, and vice versa. These experiments illustrate that the conformational change of a protein during binding may occur before a binding event, rather than being induced by this binding event. However, determining the temporal order of conformational transitions and binding events typically requires additional information from chemical relaxation experiments that probe the relaxation kinetics of a mixture of proteins and ligands into binding equilibrium. These chemical relaxation experiments are usually performed and analysed at ligand concentrations that are much larger than the protein concentrations. At such high ligand concentrations, the temporal order of conformational transitions and binding events can only be inferred in special cases. In this article, we present general equations that describe the dominant chemical relaxation kinetics for all protein and ligand concentrations. Our general equations allow to clearly infer from relaxation data whether a conformational transition occurs prior to a binding event, or after the binding event.
Collapse
Affiliation(s)
- Fabian Paul
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
- Free University Berlin, Department of Mathematics and Computer Science, Berlin, Germany
- * E-mail: (FP); (TRW)
| | - Thomas R. Weikl
- Max Planck Institute of Colloids and Interfaces, Department of Theory and Bio-Systems, Potsdam, Germany
- * E-mail: (FP); (TRW)
| |
Collapse
|
40
|
Wu S. Loop-driven conformational transition between the alternative and collapsed form of prethrombin-2: targeted molecular dynamics study. J Biomol Struct Dyn 2016; 35:119-127. [PMID: 27471844 DOI: 10.1080/07391102.2015.1134347] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Two distinct crystal structures of prethrombin-2, the alternative and collapsed forms, are elucidated by X-ray crystallogrphy. We analyzed the conformational transition from the alternative to the collapsed form employing targeted molecular dynamics (TMD) simulation. Despite small RMSD difference in the two X-ray crystal structures, some hydrophobic residues (W60d, W148, W215, and F227) show a significant difference between the two conformations. TMD simulation shows that the four hydrophobic residues undergo concerted movement from dimer to trimer transition via tetramer state in the conformational change from the alternative to the collapsed form. We reveal that the concerted movement of the four hydrophobic residues is controlled by movement of specific loop regions behind. In this paper, we propose a sequential scenario for the conformational transition from the alternative form to the collapsed form, which is partially supported by the mutant W148A simulation.
Collapse
Affiliation(s)
- Sangwook Wu
- a Department of Physics , Pukyong National University , Busan 608-737 , Republic of Korea
| |
Collapse
|
41
|
Al-Horani RA, Karuturi R, Lee M, Afosah DK, Desai UR. Allosteric Inhibition of Factor XIIIa. Non-Saccharide Glycosaminoglycan Mimetics, but Not Glycosaminoglycans, Exhibit Promising Inhibition Profile. PLoS One 2016; 11:e0160189. [PMID: 27467511 PMCID: PMC4965010 DOI: 10.1371/journal.pone.0160189] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/14/2016] [Indexed: 12/13/2022] Open
Abstract
Factor XIIIa (FXIIIa) is a transglutaminase that catalyzes the last step in the coagulation process. Orthostery is the only approach that has been exploited to design FXIIIa inhibitors. Yet, allosteric inhibition of FXIIIa is a paradigm that may offer a key advantage of controlled inhibition over orthosteric inhibition. Such an approach is likely to lead to novel FXIIIa inhibitors that do not carry bleeding risks. We reasoned that targeting a collection of basic amino acid residues distant from FXIIIa’s active site by using sulfated glycosaminoglycans (GAGs) or non-saccharide GAG mimetics (NSGMs) would lead to the discovery of the first allosteric FXIIIa inhibitors. We tested a library of 22 variably sulfated GAGs and NSGMs against human FXIIIa to discover promising hits. Interestingly, although some GAGs bound to FXIIIa better than NSGMs, no GAG displayed any inhibition. An undecasulfated quercetin analog was found to inhibit FXIIIa with reasonable potency (efficacy of 98%). Michaelis-Menten kinetic studies revealed an allosteric mechanism of inhibition. Fluorescence studies confirmed close correspondence between binding affinity and inhibition potency, as expected for an allosteric process. The inhibitor was reversible and at least 9-fold- and 26-fold selective over two GAG-binding proteins factor Xa (efficacy of 71%) and thrombin, respectively, and at least 27-fold selective over a cysteine protease papain. The inhibitor also inhibited the FXIIIa-mediated polymerization of fibrin in vitro. Overall, our work presents the proof-of-principle that FXIIIa can be allosterically modulated by sulfated non-saccharide agents much smaller than GAGs, which should enable the design of selective and safe anticoagulants.
Collapse
Affiliation(s)
- Rami A. Al-Horani
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Rajesh Karuturi
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Michael Lee
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Daniel K. Afosah
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States of America
| | - Umesh R. Desai
- Department of Medicinal Chemistry & Institute for Structural Biology, Drug Discovery and Development, Virginia Commonwealth University, Richmond, Virginia, United States of America
- * E-mail:
| |
Collapse
|
42
|
Pozzi N, Bystranowska D, Zuo X, Di Cera E. Structural Architecture of Prothrombin in Solution Revealed by Single Molecule Spectroscopy. J Biol Chem 2016; 291:18107-16. [PMID: 27435675 DOI: 10.1074/jbc.m116.738310] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Indexed: 01/29/2023] Open
Abstract
The coagulation factor prothrombin has a complex spatial organization of its modular assembly that comprises the N-terminal Gla domain, kringle-1, kringle-2, and the C-terminal protease domain connected by three intervening linkers. Here we use single molecule Förster resonance energy transfer to access the conformational landscape of prothrombin in solution and uncover structural features of functional significance that extend recent x-ray crystallographic analysis. Prothrombin exists in equilibrium between two alternative conformations, open and closed. The closed conformation predominates (70%) and features an unanticipated intramolecular collapse of Tyr(93) in kringle-1 onto Trp(547) in the protease domain that obliterates access to the active site and protects the zymogen from autoproteolytic conversion to thrombin. The open conformation (30%) is more susceptible to chymotrypsin digestion and autoactivation, and features a shape consistent with recent x-ray crystal structures. Small angle x-ray scattering measurements of prothrombin wild type stabilized 70% in the closed conformation and of the mutant Y93A stabilized 80% in the open conformation directly document two envelopes that differ 50 Å in length. These findings reveal important new details on the conformational plasticity of prothrombin in solution and the drastic structural difference between its alternative conformations. Prothrombin uses the intramolecular collapse of kringle-1 onto the active site in the closed form to prevent autoactivation. The open-closed equilibrium also defines a new structural framework for the mechanism of activation of prothrombin by prothrombinase.
Collapse
Affiliation(s)
- Nicola Pozzi
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Dominika Bystranowska
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| | - Xiaobing Zuo
- the X-Ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439
| | - Enrico Di Cera
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104 and
| |
Collapse
|
43
|
Pozzi N, Zerbetto M, Acquasaliente L, Tescari S, Frezzato D, Polimeno A, Gohara DW, Di Cera E, De Filippis V. Loop Electrostatics Asymmetry Modulates the Preexisting Conformational Equilibrium in Thrombin. Biochemistry 2016; 55:3984-94. [PMID: 27347732 DOI: 10.1021/acs.biochem.6b00385] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Thrombin exists as an ensemble of active (E) and inactive (E*) conformations that differ in their accessibility to the active site. Here we show that redistribution of the E*-E equilibrium can be achieved by perturbing the electrostatic properties of the enzyme. Removal of the negative charge of the catalytic Asp102 or Asp189 in the primary specificity site destabilizes the E form and causes a shift in the 215-217 segment that compromises substrate entrance. Solution studies and existing structures of D102N document stabilization of the E* form. A new high-resolution structure of D189A also reveals the mutant in the collapsed E* form. These findings establish a new paradigm for the control of the E*-E equilibrium in the trypsin fold.
Collapse
Affiliation(s)
- Nicola Pozzi
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine , St. Louis, Missouri 63104, United States
| | | | | | | | | | | | - David W Gohara
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine , St. Louis, Missouri 63104, United States
| | - Enrico Di Cera
- Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine , St. Louis, Missouri 63104, United States
| | | |
Collapse
|
44
|
Korkmaz B, Lesner A, Guarino C, Wysocka M, Kellenberger C, Watier H, Specks U, Gauthier F, Jenne DE. Inhibitors and Antibody Fragments as Potential Anti-Inflammatory Therapeutics Targeting Neutrophil Proteinase 3 in Human Disease. Pharmacol Rev 2016; 68:603-30. [PMID: 27329045 DOI: 10.1124/pr.115.012104] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Proteinase 3 (PR3) has received great scientific attention after its identification as the essential antigenic target of antineutrophil cytoplasm antibodies in Wegener's granulomatosis (now called granulomatosis with polyangiitis). Despite many structural and functional similarities between neutrophil elastase (NE) and PR3 during biosynthesis, storage, and extracellular release, unique properties and pathobiological functions have emerged from detailed studies in recent years. The development of highly sensitive substrates and inhibitors of human PR3 and the creation of PR3-selective single knockout mice led to the identification of nonredundant roles of PR3 in cell death induction via procaspase-3 activation in cell cultures and in mouse models. According to a study in knockout mice, PR3 shortens the lifespan of infiltrating neutrophils in tissues and accelerates the clearance of aged neutrophils in mice. Membrane exposure of active human PR3 on apoptotic neutrophils reprograms the response of macrophages to phagocytosed neutrophils, triggers secretion of proinflammatory cytokines, and undermines immune silencing and tissue regeneration. PR3-induced disruption of the anti-inflammatory effect of efferocytosis may be relevant for not only granulomatosis with polyangiitis but also for other autoimmune diseases with high neutrophil turnover. Inhibition of membrane-bound PR3 by endogenous inhibitors such as the α-1-protease inhibitor is comparatively weaker than that of NE, suggesting that the adverse effects of unopposed PR3 activity resurface earlier than those of NE in individuals with α-1-protease inhibitor deficiency. Effective coverage of PR3 by anti-inflammatory tools and simultaneous inhibition of both PR3 and NE should be most promising in the future.
Collapse
Affiliation(s)
- Brice Korkmaz
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Adam Lesner
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Carla Guarino
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Magdalena Wysocka
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Christine Kellenberger
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Hervé Watier
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Ulrich Specks
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Francis Gauthier
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| | - Dieter E Jenne
- INSERM U-1100, Centre d'Etude des Pathologies Respiratoires and Université François Rabelais, Tours, France (B.K., C.G., F.G.); Faculty of Chemistry, University of Gdansk, Gdansk, Poland (A.L., M.W.); Architecture et Fonction des Macromolécules Biologiques, Unité Mixte de Recherche 7257, Marseille, France (C.K.); Génétique, Immunothérapie, Chimie et Cancer, Unité Mixte de Recherche 7292, Université François Rabelais, Tours, France (H.W.); Thoracic Diseases Research Unit, Division of Pulmonary and Critical Care Medicine, Mayo Clinic and Foundation, Rochester, Minnesota (U.S.); Comprehensive Pneumology Center, Institute of Lung Biology and Disease, German Center for Lung Research, Munich, Germany (D.E.J.); and Max Planck Institute of Neurobiology, Planegg-Martinsried, Germany (D.E.J.)
| |
Collapse
|
45
|
Pozzi N, Chen Z, Di Cera E. How the Linker Connecting the Two Kringles Influences Activation and Conformational Plasticity of Prothrombin. J Biol Chem 2016; 291:6071-82. [PMID: 26763231 DOI: 10.1074/jbc.m115.700401] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Indexed: 01/11/2023] Open
Abstract
A flexible linker (Lnk2) composed of 26 amino acids connects kringle-1 to kringle-2 in the coagulation factor prothrombin. Recent studies point to Lnk2 as a key determinant of the structure and function of this zymogen. Using a combination of mutagenesis, structural biology, and single molecule spectroscopy, we show how Lnk2 influences activation and conformational plasticity of prothrombin. Scrambling the sequence of Lnk2 is inconsequential on activation, and so is extension by as many as 22 residues. On the other hand, below a critical length of 15 residues, the rate of prothrombin activation increases (10-fold) in the absence of cofactor Va and decreases (3-fold) in the presence of cofactor. Furthermore, activation by prothrombinase takes place without preference along the prethrombin-2 (cleavage at Arg(271) first) or meizothrombin (cleavage at Arg(320) first) pathways. Notably, these transitions in the rate and pathway of activation require the presence of phospholipids, pointing to an important physiological role for Lnk2 when prothrombin is anchored to the membrane. Two new crystal structures of prothrombin lacking 22 (ProTΔ146-167) or 14 (ProTΔ154-167) residues of Lnk2 document striking conformational rearrangements of domains located across this linker. FRET measurements of freely diffusing single molecules prove that these structural transitions are genuine properties of the zymogen in solution. These findings support a molecular model of prothrombin activation where Lnk2 presents the sites of cleavage at Arg(271) and Arg(320) to factor Xa in different orientations by pivoting the C-terminal kringle-2/protease domain pair on the N-terminal Gla domain/kringle-1 pair anchored to the membrane.
Collapse
Affiliation(s)
- Nicola Pozzi
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Zhiwei Chen
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Enrico Di Cera
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
46
|
Sorensen AB, Madsen JJ, Svensson LA, Pedersen AA, Østergaard H, Overgaard MT, Olsen OH, Gandhi PS. Molecular Basis of Enhanced Activity in Factor VIIa-Trypsin Variants Conveys Insights into Tissue Factor-mediated Allosteric Regulation of Factor VIIa Activity. J Biol Chem 2015; 291:4671-83. [PMID: 26694616 DOI: 10.1074/jbc.m115.698613] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Indexed: 11/06/2022] Open
Abstract
The complex of coagulation factor VIIa (FVIIa), a trypsin-like serine protease, and membrane-bound tissue factor (TF) initiates blood coagulation upon vascular injury. Binding of TF to FVIIa promotes allosteric conformational changes in the FVIIa protease domain and improves its catalytic properties. Extensive studies have revealed two putative pathways for this allosteric communication. Here we provide further details of this allosteric communication by investigating FVIIa loop swap variants containing the 170 loop of trypsin that display TF-independent enhanced activity. Using x-ray crystallography, we show that the introduced 170 loop from trypsin directly interacts with the FVIIa active site, stabilizing segment 215-217 and activation loop 3, leading to enhanced activity. Molecular dynamics simulations and novel fluorescence quenching studies support that segment 215-217 conformation is pivotal to the enhanced activity of the FVIIa variants. We speculate that the allosteric regulation of FVIIa activity by TF binding follows a similar path in conjunction with protease domain N terminus insertion, suggesting a more complete molecular basis of TF-mediated allosteric enhancement of FVIIa activity.
Collapse
Affiliation(s)
- Anders B Sorensen
- From Global Research, Novo Nordisk A/S, 2760 Måløv, Denmark, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark, and
| | - Jesper J Madsen
- From Global Research, Novo Nordisk A/S, 2760 Måløv, Denmark, Department of Chemistry, Technical University of Denmark, 2800 Kongens Lyngby, Denmark
| | | | | | | | - Michael T Overgaard
- Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark, and
| | - Ole H Olsen
- From Global Research, Novo Nordisk A/S, 2760 Måløv, Denmark
| | | |
Collapse
|
47
|
Discrimination between conformational selection and induced fit protein-ligand binding using Integrated Global Fit analysis. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2015; 45:245-57. [PMID: 26538331 DOI: 10.1007/s00249-015-1090-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 10/07/2015] [Accepted: 10/13/2015] [Indexed: 02/07/2023]
Abstract
Molecular recognition between proteins and small molecule ligands is at the heart of biological function in cellular systems and the basis of modern rational drug development. Therefore, the mechanisms governing protein-ligand interaction have been objects of research for many decades. The last 15 years has seen a revival of a discussion whether conformational selection (CS) or induced fit (IF) is the most relevant binding mechanism. A decreasing observed rate constant, k obs, with increasing ligand concentration was considered to be a hallmark of CS, but according to contemporary knowledge, a positive saturating behavior of k obs can be explained by both CS and IF mechanisms. The only currently recognized kinetic method to differentiate between both binding mechanisms includes the measurement of two separate series of binding kinetics with variation of either protein or ligand under pseudo-first-order conditions. This study avoids the disadvantage of high protein concentrations and provides evidence that a comprehensive Integrated Global Fit analysis of sets of binding kinetics with just varied ligand concentration in combination with equilibrium data and optional displacement kinetics can effectively differentiate between CS and IF binding mechanisms. The limiting situation, when physical binding dominates over the previous (CS) or subsequent (IF) conformational changes, is carefully analyzed. Finally, the relevance of kinetic methods and the elucidation of more complex binding mechanisms are discussed for advanced rational selection and optimization of drug candidates.
Collapse
|
48
|
Vogt AD, Chakraborty P, Di Cera E. Kinetic dissection of the pre-existing conformational equilibrium in the trypsin fold. J Biol Chem 2015. [PMID: 26216877 DOI: 10.1074/jbc.m115.675538] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Structural biology has recently documented the conformational plasticity of the trypsin fold for both the protease and zymogen in terms of a pre-existing equilibrium between closed (E*) and open (E) forms of the active site region. How such plasticity is manifested in solution and affects ligand recognition by the protease and zymogen is poorly understood in quantitative terms. Here we dissect the E*-E equilibrium with stopped-flow kinetics in the presence of excess ligand or macromolecule. Using the clotting protease thrombin and its zymogen precursor prethrombin-2 as relevant models we resolve the relative distribution of the E* and E forms and the underlying kinetic rates for their interconversion. In the case of thrombin, the E* and E forms are distributed in a 1:4 ratio and interconvert on a time scale of 45 ms. In the case of prethrombin-2, the equilibrium is shifted strongly (10:1 ratio) in favor of the closed E* form and unfolds over a faster time scale of 4.5 ms. The distribution of E* and E forms observed for thrombin and prethrombin-2 indicates that zymogen activation is linked to a significant shift in the pre-existing equilibrium between closed and open conformations that facilitates ligand binding to the active site. These findings broaden our mechanistic understanding of how conformational transitions control ligand recognition by thrombin and its zymogen precursor prethrombin-2 and have direct relevance to other members of the trypsin fold.
Collapse
Affiliation(s)
- Austin D Vogt
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Pradipta Chakraborty
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| | - Enrico Di Cera
- From the Edward A. Doisy Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, St. Louis, Missouri 63104
| |
Collapse
|
49
|
Protein conformational plasticity and complex ligand-binding kinetics explored by atomistic simulations and Markov models. Nat Commun 2015; 6:7653. [PMID: 26134632 PMCID: PMC4506540 DOI: 10.1038/ncomms8653] [Citation(s) in RCA: 306] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2015] [Accepted: 05/28/2015] [Indexed: 12/20/2022] Open
Abstract
Understanding the structural mechanisms of protein–ligand binding and their dependence on protein sequence and conformation is of fundamental importance for biomedical research. Here we investigate the interplay of conformational change and ligand-binding kinetics for the serine protease Trypsin and its competitive inhibitor Benzamidine with an extensive set of 150 μs molecular dynamics simulation data, analysed using a Markov state model. Seven metastable conformations with different binding pocket structures are found that interconvert at timescales of tens of microseconds. These conformations differ in their substrate-binding affinities and binding/dissociation rates. For each metastable state, corresponding solved structures of Trypsin mutants or similar serine proteases are contained in the protein data bank. Thus, our wild-type simulations explore a space of conformations that can be individually stabilized by adding ligands or making suitable changes in protein sequence. These findings provide direct evidence of conformational plasticity in receptors. Conformational plasticity influences several aspects of protein function. Here the authors combine extensive MD simulations with Markov state models—using trypsin as model—to reveal new mechanistic details of how conformational plasticity influence ligand-receptors interactions.
Collapse
|
50
|
Two-step mechanism involving active-site conformational changes regulates human telomerase DNA binding. Biochem J 2015; 465:347-57. [PMID: 25365545 DOI: 10.1042/bj20140922] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The ribonucleoprotein enzyme telomerase maintains telomeres and is essential for cellular immortality in most cancers. Insight into the telomerase mechanism can be gained from syndromes such as dyskeratosis congenita, in which mutation of telomerase components manifests in telomere dysfunction. We carried out detailed kinetic and thermodynamic analyses of wild-type telomerase and two disease-associated mutations in the reverse transcriptase domain. Differences in dissociation rates between primers with different 3' ends were independent of DNA affinities, revealing that initial binding of telomerase to telomeric DNA occurs through a previously undescribed two-step mechanism involving enzyme conformational changes. Both mutations affected DNA binding, but through different mechanisms: P704S specifically affected protein conformational changes during DNA binding, whereas R865H showed defects in binding to the 3' region of the DNA. To gain further insight at the structural level, we generated the first homology model of the human telomerase reverse transcriptase domain; the positions of P704S and R865H corroborate their observed mechanistic defects, providing validation for the structural model. Our data reveal the importance of protein interactions with the 3' end of telomeric DNA and the role of protein conformational change in telomerase DNA binding, and highlight naturally occurring disease mutations as a rich source of mechanistic insight.
Collapse
|