1
|
Shiratori M, Tsuyuki R, Asanuma M, Kawabata S, Yoshioka H, Ohgane K. In-gel refolding allows fluorescence detection of fully denatured GFPs after SDS-PAGE. Anal Biochem 2025; 702:115861. [PMID: 40194674 DOI: 10.1016/j.ab.2025.115861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 04/03/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025]
Abstract
Green fluorescent proteins (GFPs) have been widely used as fusion tags, especially to visualize subcellular localization and dynamics of the fused partner proteins. Also, GFPs serve as fluorescent tags in size-exclusion chromatography and native-PAGE, facilitating the evaluation of expression levels and quality of the expressed fusion proteins. However, the fluorescent detection of GFPs is generally incompatible with denaturing SDS-polyacrylamide gel electrophoresis (PAGE), where the samples are heat-denatured before loading. Accordingly, detecting GFP-fused proteins after SDS-PAGE usually relies on western blotting with anti-GFP antibodies. To enable in-gel fluorescence detection of SDS-PAGE-separated GFPs, some protocols employ mild denaturing conditions to keep the GFPs intact. However, such mild denaturation sometimes results in partial denaturation of the proteins and irregular electrophoretic mobility that is not proportional to their molecular weights. Here, we demonstrate that the fully denatured GFPs can be refolded within the gel by cyclodextrin-mediated removal of SDS in the presence of 20 % methanol, enabling the in-gel fluorescence detection of the GFP-fused proteins. The protocol is compatible with subsequent total protein staining and western blotting. Although future studies are needed to clarify the scope and generality, the technique developed here would provide a simple, time- and cost-effective alternative to the immunodetection of GFPs.
Collapse
Affiliation(s)
- Misa Shiratori
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Rio Tsuyuki
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Miwako Asanuma
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Saki Kawabata
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Hiromasa Yoshioka
- Chemical Biology Research Group, RIKEN Center for Sustainable Resource Science, Wako, Saitama, 351-0198, Japan
| | - Kenji Ohgane
- Department of Chemistry, Faculty of Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan; Institute for Human Life Science, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan.
| |
Collapse
|
2
|
Isomura A, Kageyama R. Progress in understanding the vertebrate segmentation clock. Nat Rev Genet 2025:10.1038/s41576-025-00813-6. [PMID: 40038453 DOI: 10.1038/s41576-025-00813-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/02/2025] [Indexed: 03/06/2025]
Abstract
The segmentation clock is a molecular oscillator that regulates the periodic formation of somites from the presomitic mesoderm during vertebrate embryogenesis. Synchronous oscillatory expression of a Hairy homologue or Hairy-related basic helix-loop-helix (bHLH) transcriptional repressor in presomitic mesoderm cells regulates periodic expression of downstream factors that control somite segmentation with a periodicity that varies across species. Although many of the key components of the clock have been identified and characterized, less is known about how the clock is synchronized across cells and how species-specific periodicity is achieved. Advances in live imaging, stem cell and organoid technologies, and synthetic approaches have started to uncover the detailed mechanisms underlying these aspects of somitogenesis, providing insight into how morphogenesis is coordinated in space and time during embryonic development.
Collapse
Affiliation(s)
- Akihiro Isomura
- Institute for Frontier Life and Medical Sciences, Kyoto University, Kyoto, Japan.
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto, Japan.
- Japan Science and Technology Agency, PRESTO, Saitama, Japan.
- RIKEN Center for Brain Science, Wako, Japan.
| | - Ryoichiro Kageyama
- Institute for Integrated Cell-Material Sciences (KUIAS-iCeMS), Kyoto University, Kyoto, Japan.
- RIKEN Center for Brain Science, Wako, Japan.
| |
Collapse
|
3
|
Coïs J, Niepon ML, Wittwer M, Sepasi Tehrani H, Bun P, Mallet JM, Vialou V, Dumat B. A Fluorogenic Chemogenetic pH Sensor for Imaging Protein Exocytosis. ACS Sens 2024; 9:4690-4700. [PMID: 39145986 DOI: 10.1021/acssensors.4c01057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/16/2024]
Abstract
Fluorescent protein-based pH biosensors enable the tracking of pH changes during protein trafficking and, in particular, exocytosis. The recent development of chemogenetic reporters combining synthetic fluorophores with self-labeling protein tags offers a versatile alternative to fluorescent proteins that combines the diversity of chemical probes and indicators with the selectivity of the genetic encoding. However, this hybrid protein labeling strategy does not avoid common drawbacks of organic fluorophores such as the risk of off-target signal due to unbound molecules. Here, we describe a novel fluorogenic and chemogenetic pH sensor based on a cell-permeable molecular pH indicator called pHluo-Halo-1, whose fluorescence can be locally activated in cells by reaction with HaloTag, ensuring excellent signal selectivity in wash-free imaging experiments. pHluo-Halo-1 was selected out of a series of four fluorogenic molecular rotor structures based on protein chromophore analogues. It displays good pH sensitivity with a pKa of 6.3 well-suited to monitor pH variations during exocytosis and an excellent labeling selectivity in cells. It was applied to follow the secretion of CD63-HaloTag fusion proteins using TIRF microscopy. We anticipate that this strategy based on the combination of a tunable and chemically accessible fluorogenic probe with a well-established protein tag will open new possibilities for the development of versatile alternatives to fluorescent proteins for elucidating the dynamics and regulatory mechanisms of proteins in living cells.
Collapse
Affiliation(s)
- Justine Coïs
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
- Laboratoire Neurosciences Paris Seine, Sorbonne Université, CNRS, INSERM, Paris 75005, France
| | - Marie-Laure Niepon
- Laboratoire Neurosciences Paris Seine, Sorbonne Université, CNRS, INSERM, Paris 75005, France
| | - Manon Wittwer
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Hessam Sepasi Tehrani
- PASTEUR, Département de chimie, École normale supérieure, CNRS, PSL University, Sorbonne Université, Paris 75005, France
| | - Philippe Bun
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, NeurImag Imaging Core Facility, Université Paris Cité, Paris 75014, France
| | - Jean-Maurice Mallet
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Vincent Vialou
- Laboratoire Neurosciences Paris Seine, Sorbonne Université, CNRS, INSERM, Paris 75005, France
| | - Blaise Dumat
- Laboratoire des biomolécules, LBM, Département de chimie, École normale supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|
4
|
Andreyanov M, Heinrich R, Berlin S. Design of Ultrapotent Genetically Encoded Inhibitors of Kv4.2 for Gating Neural Plasticity. J Neurosci 2024; 44:e2295222023. [PMID: 38154956 PMCID: PMC10869153 DOI: 10.1523/jneurosci.2295-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 11/05/2023] [Accepted: 11/22/2023] [Indexed: 12/30/2023] Open
Abstract
The Kv4.2 potassium channel plays established roles in neuronal excitability, while also being implicated in plasticity. Current means to study the roles of Kv4.2 are limited, motivating us to design a genetically encoded membrane tethered Heteropodatoxin-2 (MetaPoda). We find that MetaPoda is an ultrapotent and selective gating-modifier of Kv4.2. We narrow its site of contact with the channel to two adjacent residues within the voltage sensitive domain (VSD) and, with docking simulations, suggest that the toxin binds the VSD from within the membrane. We also show that MetaPoda does not require an external linker of the channel for its activity. In neurons (obtained from female and male rat neonates), MetaPoda specifically, and potently, inhibits all Kv4 currents, leaving all other A-type currents unaffected. Inhibition of Kv4 in hippocampal neurons does not promote excessive excitability, as is expected from a simple potassium channel blocker. We do find that MetaPoda's prolonged expression (1 week) increases expression levels of the immediate early gene cFos and prevents potentiation. These findings argue for a major role of Kv4.2 in facilitating plasticity of hippocampal neurons. Lastly, we show that our engineering strategy is suitable for the swift engineering of another potent Kv4.2-selective membrane-tethered toxin, Phrixotoxin-1, denoted MetaPhix. Together, we provide two uniquely potent genetic tools to study Kv4.2 in neuronal excitability and plasticity.
Collapse
Affiliation(s)
- Michael Andreyanov
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 3525433, Israel
| | - Ronit Heinrich
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 3525433, Israel
| | - Shai Berlin
- Department of Neuroscience, Ruth and Bruce Rappaport Faculty of Medicine, Technion- Israel Institute of Technology, Haifa 3525433, Israel
| |
Collapse
|
5
|
Imamura H, Otsubo S, Nishida M, Takekawa N, Imada K. Red fluorescent proteins engineered from green fluorescent proteins. Proc Natl Acad Sci U S A 2023; 120:e2307687120. [PMID: 37871160 PMCID: PMC10636333 DOI: 10.1073/pnas.2307687120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Accepted: 08/31/2023] [Indexed: 10/25/2023] Open
Abstract
Fluorescent proteins (FPs) form a fluorophore through autocatalysis from three consecutive amino acid residues within a polypeptide chain. The two major groups, green FPs (GFPs) and red FPs (RFPs), have distinct fluorophore structures; RFPs have an extended π-conjugation system with an additional double bond. However, due to the low sequence homology between the two groups, amino acid residues essential for determining the different fluorophore structures were unclear. Therefore, engineering a GFP into an RFP has been challenging, and the exact mechanism of how GFPs and RFPs achieve different autocatalytic reactions remained elucidated. Here, we show the conversion of two coral GFPs, AzamiGreen (AG) and mcavGFP, into RFPs by defined mutations. Structural comparison of AG and AzamiRed1.0, an AG-derived RFP, revealed that the mutations triggered drastic rearrangements in the interaction networks between amino acid residues around the fluorophore, suggesting that coordinated multisite mutations are required for the green-to-red conversion. As a result of the structural rearrangements, a cavity suitable for the entry of an oxygen molecule, which is necessary for the double bond formation of the red fluorophores, is created in the proximity of the fluorophore. We also show that a monomeric variant of AzamiRed1.0 can be used for labeling organelles and proteins in mammalian cells. Our results provide a structural basis for understanding the red fluorophore formation mechanism and demonstrate that protein engineering of GFPs is a promising way to create RFPs suitable for fluorescent tags.
Collapse
Affiliation(s)
- Hiromi Imamura
- Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8501, Japan
| | - Shiho Otsubo
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka560-0043, Japan
| | - Mizuho Nishida
- Division of Systemic Life Science, Graduate School of Biostudies, Kyoto University, Kyoto606-8501, Japan
| | - Norihiro Takekawa
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka560-0043, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, Toyonaka, Osaka560-0043, Japan
| |
Collapse
|
6
|
Ando R, Sakaue-Sawano A, Shoda K, Miyawaki A. Two coral fluorescent proteins of distinct colors for sharp visualization of cell-cycle progression. Cell Struct Funct 2023; 48:135-144. [PMID: 37394513 PMCID: PMC10958192 DOI: 10.1247/csf.23028] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 06/26/2023] [Indexed: 07/04/2023] Open
Abstract
We cloned and characterized two new coral fluorescent proteins: h2-3 and 1-41. h2-3 formed an obligate dimeric complex and exhibited bright green fluorescence. On the other hand, 1-41 formed a highly multimeric complex and exhibited dim red fluorescence. We engineered 1-41 into AzaleaB5, a practically useful red-emitting fluorescent protein for cellular labeling applications. We fused h2-3 and AzaleaB5 to the ubiquitination domains of human Geminin and Cdt1, respectively, to generate a new color variant of Fucci (Fluorescent Ubiquitination-based Cell-Cycle Indicator): Fucci5. We found Fucci5 provided more reliable nuclear labeling for monitoring cell-cycle progression than the 1st and 2nd generations that used mAG/mKO2 and mVenus/mCherry, respectively.Key words: fluorescent protein, cell cycle, time-lapse imaging, flow cytometry.
Collapse
Affiliation(s)
- Ryoko Ando
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Asako Sakaue-Sawano
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
- Department of Optical Biomedical Science, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| | - Keiko Shoda
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
| | - Atsushi Miyawaki
- Laboratory for Cell Function Dynamics, RIKEN Center for Brain Science, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
- Biotechnological Optics Research Team, RIKEN Center for Advanced Photonics, 2-1 Hirosawa, Wako-city, Saitama 351-0198, Japan
- Laboratory of Bioresponse Analysis, Institute for Life and Medical Sciences, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
7
|
Pang Y, Huang M, Fan Y, Yeh HW, Xiong Y, Ng HL, Ai HW. Development, Characterization, and Structural Analysis of a Genetically Encoded Red Fluorescent Peroxynitrite Biosensor. ACS Chem Biol 2023; 18:1388-1397. [PMID: 37185019 PMCID: PMC10330634 DOI: 10.1021/acschembio.3c00139] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Boronic acid-containing fluorescent molecules have been widely used to sense hydrogen peroxide and peroxynitrite, which are important reactive oxygen and nitrogen species in biological systems. However, it has been challenging to gain specificity. Our previous studies developed genetically encoded, green fluorescent peroxynitrite biosensors by genetically incorporating a boronic acid-containing noncanonical amino acid (ncAA), p-boronophenylalanine (pBoF), into the chromophore of circularly permuted green fluorescent proteins (cpGFPs). In this work, we introduced pBoF to amino acid residues spatially close to the chromophore of an enhanced circularly permuted red fluorescent protein (ecpApple). Our effort has resulted in two responsive ecpApple mutants: one bestows reactivity toward both peroxynitrite and hydrogen peroxide, while the other, namely, pnRFP, is a selective red fluorescent peroxynitrite biosensor. We characterized pnRFP in vitro and in live mammalian cells. We further studied the structure and sensing mechanism of pnRFP using X-ray crystallography, 11B-NMR, and computational methods. The boron atom in pnRFP adopts an sp2-hybridization geometry in a hydrophobic pocket, and the reaction of pnRFP with peroxynitrite generates a product with a twisted chromophore, corroborating the observed "turn-off" fluorescence response. Thus, this study extends the color palette of genetically encoded peroxynitrite biosensors, provides insight into the response mechanism of the new biosensor, and demonstrates the versatility of using protein scaffolds to modulate chemoreactivity.
Collapse
Affiliation(s)
- Yu Pang
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Mian Huang
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Yichong Fan
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Hsien-Wei Yeh
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
| | - Ying Xiong
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
| | - Ho Leung Ng
- Department of Biochemistry and Molecular Biophysics, Kansas State University, Manhattan, KS 66506, USA
| | - Hui-wang Ai
- Center for Membrane and Cell Physiology, University of Virginia, Charlottesville, VA 22908, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA 22904, USA
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine, Charlottesville, VA 22908, USA
- The UVA Comprehensive Cancer Center, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
8
|
Boyko KM, Khrenova MG, Nikolaeva AY, Dorovatovskii PV, Vlaskina AV, Subach OM, Popov VO, Subach FV. Combined Structural and Computational Study of the mRubyFT Fluorescent Timer Locked in Its Blue Form. Int J Mol Sci 2023; 24:ijms24097906. [PMID: 37175610 PMCID: PMC10178504 DOI: 10.3390/ijms24097906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/21/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
The mRubyFT is a monomeric genetically encoded fluorescent timer based on the mRuby2 fluorescent protein, which is characterized by the complete maturation of the blue form with the subsequent conversion to the red one. It has higher brightness in mammalian cells and higher photostability compared with other fluorescent timers. A high-resolution structure is a known characteristic of the mRubyFT with the red form chromophore, but structural details of its blue form remain obscure. In order to obtain insight into this, we obtained an S148I variant of the mRubyFT (mRubyFTS148I) with the blocked over time blue form of the chromophore. X-ray data at a 1.8 Å resolution allowed us to propose a chromophore conformation and its interactions with the neighboring residues. The imidazolidinone moiety of the chromophore is completely matured, being a conjugated π-system. The methine bridge is not oxidized in the blue form bringing flexibility to the phenolic moiety that manifests itself in poor electron density. Integration of these data with the results of molecular dynamic simulation disclosed that the OH group of the phenolic moiety forms a hydrogen bond with the side chain of the T163 residue. A detailed comparison of mRubyFTS148I with other available structures of the blue form of fluorescent proteins, Blue102 and mTagBFP, revealed a number of characteristic differences. Molecular dynamic simulations with the combined quantum mechanic/molecular mechanic potentials demonstrated that the blue form exists in two protonation states, anion and zwitterion, both sharing enolate tautomeric forms of the C=C-O- fragment. These two forms have similar excitation energies, as evaluated by calculations. Finally, excited state molecular dynamic simulations showed that excitation of the chromophore in both protonation states leads to the same anionic fluorescent state. The data obtained shed light on the structural features and spectral properties of the blue form of the mRubyFT timer.
Collapse
Affiliation(s)
- Konstantin M Boyko
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt. 33, bld. 2, 119071 Moscow, Russia
| | - Maria G Khrenova
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt. 33, bld. 2, 119071 Moscow, Russia
- Department of Chemistry, Lomonosov Moscow State University, Leninskie Gory 1/3, 119992 Moscow, Russia
| | - Alena Y Nikolaeva
- National Research Centre "Kurchatov Institute", Kurchatov Complex NBICS-Technologies, Akad. Kurchatova sqr., 1, 123182 Moscow, Russia
| | - Pavel V Dorovatovskii
- National Research Centre "Kurchatov Institute", Kurchatov Complex NBICS-Technologies, Akad. Kurchatova sqr., 1, 123182 Moscow, Russia
| | - Anna V Vlaskina
- National Research Centre "Kurchatov Institute", Kurchatov Complex NBICS-Technologies, Akad. Kurchatova sqr., 1, 123182 Moscow, Russia
| | - Oksana M Subach
- National Research Centre "Kurchatov Institute", Kurchatov Complex NBICS-Technologies, Akad. Kurchatova sqr., 1, 123182 Moscow, Russia
| | - Vladimir O Popov
- Bach Institute of Biochemistry, Research Center of Biotechnology of the Russian Academy of Sciences, Leninsky Prospekt. 33, bld. 2, 119071 Moscow, Russia
- National Research Centre "Kurchatov Institute", Kurchatov Complex NBICS-Technologies, Akad. Kurchatova sqr., 1, 123182 Moscow, Russia
| | - Fedor V Subach
- National Research Centre "Kurchatov Institute", Kurchatov Complex NBICS-Technologies, Akad. Kurchatova sqr., 1, 123182 Moscow, Russia
| |
Collapse
|
9
|
Horiuchi Y, Makabe K, Laskaratou D, Hatori K, Sliwa M, Mizuno H, Hotta JI. Cloning and structural basis of fluorescent protein color variants from identical species of sea anemone, Diadumene lineata. Photochem Photobiol Sci 2023:10.1007/s43630-023-00399-0. [PMID: 36943649 DOI: 10.1007/s43630-023-00399-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 02/28/2023] [Indexed: 03/23/2023]
Abstract
Diadumene lineata is a colorful sea anemone with orange stripe tissue of the body column and plain tentacles with red lines. We subjected Diadumene lineata to expression cloning and obtained genes encoding orange (OFP: DiLiFP561) and red fluorescent proteins (RFPs: DiLiFP570 and DiLiFP571). These proteins formed obligatory tetramers. All three proteins showed bright fluorescence with the brightness of 58.3 mM-1·cm-1 (DiLiFP561), 43.9 mM-1·cm-1 (DiLiFP570), and 31.2 mM-1·cm-1 (DiLiFP571), which were equivalent to that of commonly used red fluorescent proteins. Amplitude-weighted average fluorescence lifetimes of DiLiFP561, DiLiFP570 and DiLiFP571 were determined as 3.7, 3.6 and 3.0 ns. We determined a crystal structure of DiLiFP570 at 1.63 Å resolution. The crystal structure of DiLiFP570 revealed that the chromophore has an extended π-conjugated structure similar to that of DsRed. Most of the amino acid residues surrounding the chromophore were common between DiLiFP570 and DiLiFP561, except M159 of DiLiFP570 (Lysine in DiLiFP561), which is located close to the chromophore hydroxyl group. Interestingly, a similar K-to-M substitution has been reported in a red-shifted variant of DsRed (mRFP1). It is a striking observation that the naturally evolved color-change variants are consistent with the mutation induced via protein engineering processes. The newly cloned proteins are promising as orange and red fluorescent markers for imaging with long fluorescence lifetime.
Collapse
Affiliation(s)
- Yuki Horiuchi
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Koki Makabe
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Danai Laskaratou
- Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Celestijnenlaan 200g, Post Box 2403, 3001, Leuven, Belgium
| | - Kuniyuki Hatori
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan
| | - Michel Sliwa
- Univ. Lille, CNRS, UMR 8516, LASIRE, LAboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, 59000, Lille, France
| | - Hideaki Mizuno
- Biomolecular Network Dynamics, Biochemistry, Molecular and Structural Biology Section, KU Leuven, Celestijnenlaan 200g, Post Box 2403, 3001, Leuven, Belgium
| | - Jun-Ichi Hotta
- Graduate School of Science and Engineering, Yamagata University, 4-3-16 Jonan, Yonezawa, Yamagata, 992-8510, Japan.
| |
Collapse
|
10
|
Bui TYH, Dedecker P, Van Meervelt L. An unusual disulfide-linked dimerization in the fluorescent protein rsCherryRev1.4. Acta Crystallogr F Struct Biol Commun 2023; 79:38-44. [PMID: 36748340 PMCID: PMC9903139 DOI: 10.1107/s2053230x23000572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
rsCherryRev1.4 has been reported as one of the reversibly photoswitchable variants of mCherry, and is an improved version with a faster off-switching speed and lower switching fatigue at high light intensities than its precursor rsCherryRev. However, rsCherryRev1.4 still has some limitations such as a tendency to dimerize as well as complex photophysical properties. Here, the crystal structure of rsCherryRev1.4 was determined at a resolution of 2 Å and it was discovered that it forms a dimer that shows disulfide bonding between the protomers. Mutagenesis, gel electrophoresis and size-exclusion chromatography strongly implicate Cys24 in this process. Replacing Cys24 in rsCherryRev1.4 resulted in a much lower tendency towards dimerization, while introducing Cys24 into mCherry correspondingly increased its dimerization. In principle, this finding opens the possibility of developing redox sensors based on controlled dimerization via disulfide cross-linking in fluorescent proteins, even though the actual application of engineering such sensors still requires additional research.
Collapse
Affiliation(s)
- Thi Yen Hang Bui
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Peter Dedecker
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| | - Luc Van Meervelt
- Biochemistry, Molecular and Structural Biology, Department of Chemistry, KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
11
|
Kato Y, Yoshida K, Ohba Y, Fujimoto I, Imahara Y, Nakachi S, Nakashima K, Shioji K, Yamaguchi T. Different properties of two types of red fluorescent proteins in octocoral, Scleronephthya spp. as Akane families. LUMINESCENCE 2022; 37:2074-2082. [PMID: 36227762 DOI: 10.1002/bio.4394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 07/14/2022] [Accepted: 07/18/2022] [Indexed: 12/14/2022]
Abstract
We report the different properties of two types of red fluorescent proteins (RFP), undescribed species, extracted from two octocorals, Scleronephthya sp. 1 (S. sp. 1) and S. sp, 2 (Alcyonacea, Nephtheidae). S. sp. 1, named Alc-Orange, emits strong green emission at 492 nm and weak red emission at 590 and 630 nm when excited at 449 and 574 nm, respectively. S. sp. 2, LS-Red, emits strong deep red at 642 nm and weak green at 480 and 510 nm when excited at 574 nm and 434 nm, respectively. LS-Red has a very large Stokes shift of about 208 nm emitting at 642 nm when excited at 434 nm. Interestingly, LS-Red shows some emissions at 480 (blue emission), 514 (green emission), 563 (orange emission), and 642 nm (deep red emission) continuously at pH 7.5, which means multicolored fluorescence protein by one excitation at 434 nm. In pH dependence of fluorescence of Alc-Orange (pH 13 to 3.5), no relation between 'green and red FPs' was observed, whereas LS-Red showed the interconversion between 'green and red forms' depending on pH (11.5 to 4.5).
Collapse
Affiliation(s)
- Yuko Kato
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan, Fukuoka, Japan.,Research Center for Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan.,Biological Institute on Kuroshio, Kochi, Japan
| | - Koji Yoshida
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan, Fukuoka, Japan
| | - Yoshihito Ohba
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - Ikki Fujimoto
- Department of Life, Environmental, and Materials Science, Faculty of Engineering, Fukuoka Institute of Technology, Fukuoka, Japan
| | - Yukimitsu Imahara
- Wakayama Laboratory, Biological Institute on Kuroshio, Wakayama, Japan.,Octocoral Research Laboratory, Wakayama, Japan
| | - Shu Nakachi
- Biological Institute on Kuroshio, Kochi, Japan.,Natural History Laboratory, Kochi, Japan
| | - Kenichiro Nakashima
- Department of Pharmaceutical Sciences, Faculty of Pharmaceutical Sciences, Nagasaki International University, Nagasaki, Japan
| | - Kosei Shioji
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan, Fukuoka, Japan
| | - Toshio Yamaguchi
- Department of Chemistry, Faculty of Science, Fukuoka University, Nanakuma, Jonan, Fukuoka, Japan
| |
Collapse
|
12
|
Pavlou A, Cinquemani E, Geiselmann J, de Jong H. Maturation models of fluorescent proteins are necessary for unbiased estimates of promoter activity. Biophys J 2022; 121:4179-4188. [PMID: 36146937 PMCID: PMC9675035 DOI: 10.1016/j.bpj.2022.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 06/13/2022] [Accepted: 09/19/2022] [Indexed: 11/27/2022] Open
Abstract
Fluorescent proteins (FPs) are a powerful tool to quantitatively monitor gene expression. The dynamics of a promoter and its regulation can be inferred from fluorescence data. The interpretation of fluorescent data, however, is strongly dependent on the maturation of FPs since different proteins mature in distinct ways. We propose a novel approach for analyzing fluorescent reporter data by incorporating maturation dynamics in the reconstruction of promoter activities. Our approach consists of developing and calibrating mechanistic maturation models for distinct FPs. These models are then used alongside a Bayesian approach to estimate promoter activities from fluorescence data. We demonstrate by means of targeted experiments in Escherichia coli that our approach provides robust estimates and that accounting for maturation is, in many cases, essential for the interpretation of gene expression data.
Collapse
Affiliation(s)
- Antrea Pavlou
- University Grenoble Alpes, Inria, Grenoble, France; University Grenoble Alpes, CNRS, LIPhy, Grenoble, France
| | | | - Johannes Geiselmann
- University Grenoble Alpes, Inria, Grenoble, France; University Grenoble Alpes, CNRS, LIPhy, Grenoble, France.
| | | |
Collapse
|
13
|
Vecchia MD, Conte-Daban A, Cappe B, Vandenberg W, Vandenabeele P, Riquet FB, Dedecker P. Spectrally Tunable Förster Resonance Energy Transfer-Based Biosensors Using Organic Dye Grafting. ACS Sens 2022; 7:2920-2927. [PMID: 36162130 DOI: 10.1021/acssensors.2c00066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Biosensors based on Förster resonance energy transfer (FRET) have revolutionized cellular biology by allowing the direct measurement of biochemical processes in situ. Many genetically encoded sensors make use of fluorescent proteins that are limited in spectral versatility and that allow few ways to change the spectral properties once the construct has been created. In this work, we developed genetically encoded FRET biosensors based on the chemigenetic SNAP and HaloTag domains combined with matching organic fluorophores. We found that the resulting constructs can display comparable responses, kinetics, and reversibility compared to their fluorescent protein-based ancestors, but with the added advantage of spectral versatility, including the availability of red-shifted dye pairs. However, we also find that the introduction of these tags can alter the sensor readout, showing that careful validation is required before applying such constructs in practice. Overall, our approach delivers an innovative methodology that can readily expand the spectral variety and versatility of FRET-based biosensors.
Collapse
Affiliation(s)
- Marco Dalla Vecchia
- Lab for NanoBiology, Department of Chemistry, 3001 Leuven, Belgium.,Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | | | - Benjamin Cappe
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Wim Vandenberg
- Lab for NanoBiology, Department of Chemistry, 3001 Leuven, Belgium
| | - Peter Vandenabeele
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium
| | - Franck B Riquet
- Molecular Signaling and Cell Death Unit, Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium.,Cell Death and Inflammation Unit, VIB-UGent Center for Inflammation Research (IRC), Technologiepark 71, Zwijnaarde, 9052 Ghent, Belgium.,Université de Lille, CNRS, UMR 8523-PhLAM-Physique des Lasers Atomes et Molécules, 59000 Lille, France
| | - Peter Dedecker
- Lab for NanoBiology, Department of Chemistry, 3001 Leuven, Belgium
| |
Collapse
|
14
|
Mukherjee S, Manna P, Hung ST, Vietmeyer F, Friis P, Palmer AE, Jimenez R. Directed Evolution of a Bright Variant of mCherry: Suppression of Nonradiative Decay by Fluorescence Lifetime Selections. J Phys Chem B 2022; 126:4659-4668. [PMID: 35709514 DOI: 10.1021/acs.jpcb.2c01956] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The approximately linear scaling of fluorescence quantum yield (ϕ) with fluorescence lifetime (τ) in fluorescent proteins (FPs) has inspired engineering of brighter fluorophores based on screening for increased lifetimes. Several recently developed FPs such as mTurquoise2, mScarlet, and FusionRed-MQV which have become useful for live cell imaging are products of lifetime selection strategies. However, the underlying photophysical basis of the improved brightness has not been scrutinized. In this study, we focused on understanding the outcome of lifetime-based directed evolution of mCherry, which is a popular red-FP (RFP). We identified four positions (W143, I161, Q163, and I197) near the FP chromophore that can be mutated to create mCherry-XL (eXtended Lifetime: ϕ = 0.70; τ = 3.9 ns). The 3-fold higher quantum yield of mCherry-XL is on par with that of the brightest RFP to date, mScarlet. We examined selected variants within the evolution trajectory and found a near-linear scaling of lifetime with quantum yield and consistent blue-shifts of the absorption and emission spectra. We find that the improvement in brightness is primarily due to a decrease in the nonradiative decay of the excited state. In addition, our analysis revealed the decrease in nonradiative rate is not limited to the blue-shift of the energy gap and changes in the excited state reorganization energy. Our findings suggest that nonradiative mechanisms beyond the scope of energy-gap models such the Englman-Jortner model are suppressed in this lifetime evolution trajectory.
Collapse
Affiliation(s)
- Srijit Mukherjee
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Premashis Manna
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Sheng-Ting Hung
- Department of Physics, National Sun Yat-sen University, Kaohsiung 80424, Taiwan
| | - Felix Vietmeyer
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
| | - Pia Friis
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
| | - Amy E Palmer
- Department of Biochemistry, University of Colorado at Boulder, 596 UCB, Boulder, Colorado 80309, United States
- BioFrontiers Institute, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80309, United States
| | - Ralph Jimenez
- JILA, University of Colorado, Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado, Boulder, 215 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
15
|
Pócsi I, Szigeti ZM, Emri T, Boczonádi I, Vereb G, Szöllősi J. Use of red, far-red, and near-infrared light in imaging of yeasts and filamentous fungi. Appl Microbiol Biotechnol 2022; 106:3895-3912. [PMID: 35599256 PMCID: PMC9200671 DOI: 10.1007/s00253-022-11967-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 11/30/2022]
Abstract
Abstract While phototoxicity can be a useful therapeutic modality not only for eliminating malignant cells but also in treating fungal infections, mycologists aiming to observe morphological changes or molecular events in fungi, especially when long observation periods or high light fluxes are warranted, encounter problems owed to altered regulatory pathways or even cell death caused by various photosensing mechanisms. Consequently, the ever expanding repertoire of visible fluorescent protein toolboxes and high-resolution microscopy methods designed to investigate fungi in vitro and in vivo need to comply with an additional requirement: to decrease the unwanted side effects of illumination. In addition to optimizing exposure, an obvious solution is red-shifted illumination, which, however, does not come without compromises. This review summarizes the interactions of fungi with light and the various molecular biology and technology approaches developed for exploring their functions on the molecular, cellular, and in vivo microscopic levels, and outlines the progress towards reducing phototoxicity through applying far-red and near-infrared light. Key points • Fungal biological processes alter upon illumination, also under the microscope • Red shifted fluorescent protein toolboxes decrease interference by illumination • Innovations like two-photon, lightsheet, and near IR microscopy reduce phototoxicity
Collapse
Affiliation(s)
- István Pócsi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.
| | - Zsuzsa M Szigeti
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Tamás Emri
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - Imre Boczonádi
- Department of Molecular Biotechnology and Microbiology, Institute of Biotechnology, Faculty of Science and Technology, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - György Vereb
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.,Faculty of Pharmacy, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| | - János Szöllősi
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary.,MTA-DE Cell Biology and Signaling Research Group, Faculty of Medicine, University of Debrecen, Egyetem tér 1, 4032, Debrecen, Hungary
| |
Collapse
|
16
|
Ahmed FH, Caputo AT, French NG, Peat TS, Whitfield J, Warden AC, Newman J, Scott C. Over the rainbow: structural characterization of the chromoproteins gfasPurple, amilCP, spisPink and eforRed. Acta Crystallogr D Struct Biol 2022; 78:599-612. [PMID: 35503208 PMCID: PMC9063845 DOI: 10.1107/s2059798322002625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 03/08/2022] [Indexed: 11/10/2022] Open
Abstract
Anthozoan chromoproteins are highly pigmented, diversely coloured and readily produced in recombinant expression systems. While they are a versatile and powerful building block in synthetic biology for applications such as biosensor development, they are not widely used in comparison to the related fluorescent proteins, partly due to a lack of structural characterization to aid protein engineering. Here, high-resolution X-ray crystal structures of four open-source chromoproteins, gfasPurple, amilCP, spisPink and eforRed, are presented. These proteins are dimers in solution, and mutation at the conserved dimer interface leads to loss of visible colour development in gfasPurple. The chromophores are trans and noncoplanar in gfasPurple, amilCP and spisPink, while that in eforRed is cis and noncoplanar, and also emits fluorescence. Like other characterized chromoproteins, gfasPurple, amilCP and eforRed contain an sp2-hybridized N-acylimine in the peptide bond preceding the chromophore, while spisPink is unusual and demonstrates a true sp3-hybridized trans-peptide bond at this position. It was found that point mutations at the chromophore-binding site in gfasPurple that substitute similar amino acids to those in amilCP and spisPink generate similar colours. These features and observations have implications for the utility of these chromoproteins in protein engineering and synthetic biology applications.
Collapse
Affiliation(s)
- F. Hafna Ahmed
- Land and Water, CSIRO, Clunies Ross Street, Canberra, ACT 2601, Australia
- Synthetic Biology Future Science Platform, CSIRO, Canberra, ACT 2601, Australia
| | | | - Nigel G. French
- Land and Water, CSIRO, Clunies Ross Street, Canberra, ACT 2601, Australia
| | - Thomas S. Peat
- Manufacturing, CSIRO, Research Way, Clayton, VIC 3168, Australia
| | - Jason Whitfield
- Synthetic Biology Future Science Platform, CSIRO, Canberra, ACT 2601, Australia
- The University of Queensland, St Lucia, Brisbane, QLD 4072, Australia
| | - Andrew C. Warden
- Land and Water, CSIRO, Clunies Ross Street, Canberra, ACT 2601, Australia
- Synthetic Biology Future Science Platform, CSIRO, Canberra, ACT 2601, Australia
| | - Janet Newman
- Manufacturing, CSIRO, Research Way, Clayton, VIC 3168, Australia
| | - Colin Scott
- Land and Water, CSIRO, Clunies Ross Street, Canberra, ACT 2601, Australia
- Synthetic Biology Future Science Platform, CSIRO, Canberra, ACT 2601, Australia
| |
Collapse
|
17
|
Wang Z, Li L, Hu R, Zhong P, Zhang Y, Cheng S, Jiang H, Liu R, Ding Y. Structural insights into the binding of nanobodies LaM2 and LaM4 to the red fluorescent protein mCherry. Protein Sci 2021; 30:2298-2309. [PMID: 34562299 PMCID: PMC8521304 DOI: 10.1002/pro.4194] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Revised: 08/30/2021] [Accepted: 08/31/2021] [Indexed: 01/20/2023]
Abstract
Red fluorescent proteins (RFPs) are powerful tools used in molecular biology research. Although RFP can be easily monitored in vivo, manipulation of RFP by suitable nanobodies binding to different epitopes of RFP is still desired. Thus, it is crucial to obtain structural information on how the different nanobodies interact with RFP. Here, we determined the crystal structures of the LaM2-mCherry and LaM4-mCherry complexes at 1.4 and 1.9 Å resolution. Our results showed that LaM2 binds to the side of the mCherry β-barrel, while LaM4 binds to the bottom of the β-barrel. The distinct binding sites of LaM2 and LaM4 were further verified by isothermal titration calorimetry, fluorescence-based size exclusion chromatography, and dynamic light scattering assays. Mutation of the residues at the LaM2 or LaM4 binding interface to mCherry significantly decreased the binding affinity of the nanobody to mCherry. Our results also showed that LaM2 and LaM4 can bind to mCherry simultaneously, which is crucial for recruiting multiple operation elements to the RFP. The binding of LaM2 or LaM4 did not significantly change the chromophore environment of mCherry, which is important for fluorescence quantification assays, while several GFP nanobodies significantly altered the fluorescence. Our results provide atomic resolution interaction information on the binding of nanobodies LaM2 and LaM4 with mCherry, which is important for developing detection and manipulation methods for RFP-based biotechnology.
Collapse
Affiliation(s)
- Ziying Wang
- School of Life SciencesFudan UniversityShanghaiChina
| | - Long Li
- Department of MacromoleculesFudan UniversityShanghaiChina
| | - Rongting Hu
- Department of MacromoleculesFudan UniversityShanghaiChina
| | - Peiyu Zhong
- School of Life SciencesFudan UniversityShanghaiChina
| | - Yiran Zhang
- School of Life SciencesFudan UniversityShanghaiChina
| | - Shihao Cheng
- School of Life SciencesFudan UniversityShanghaiChina
| | - He Jiang
- School of Life SciencesFudan UniversityShanghaiChina
| | - Rui Liu
- School of Life SciencesFudan UniversityShanghaiChina
| | - Yu Ding
- School of Life SciencesFudan UniversityShanghaiChina
| |
Collapse
|
18
|
Large Stokes shift fluorescence activation in an RNA aptamer by intermolecular proton transfer to guanine. Nat Commun 2021; 12:3549. [PMID: 34112799 PMCID: PMC8192780 DOI: 10.1038/s41467-021-23932-0] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 05/25/2021] [Indexed: 12/15/2022] Open
Abstract
Fluorogenic RNA aptamers are synthetic functional RNAs that specifically bind and activate conditional fluorophores. The Chili RNA aptamer mimics large Stokes shift fluorescent proteins and exhibits high affinity for 3,5-dimethoxy-4-hydroxybenzylidene imidazolone (DMHBI) derivatives to elicit green or red fluorescence emission. Here, we elucidate the structural and mechanistic basis of fluorescence activation by crystallography and time-resolved optical spectroscopy. Two co-crystal structures of the Chili RNA with positively charged DMHBO+ and DMHBI+ ligands revealed a G-quadruplex and a trans-sugar-sugar edge G:G base pair that immobilize the ligand by π-π stacking. A Watson-Crick G:C base pair in the fluorophore binding site establishes a short hydrogen bond between the N7 of guanine and the phenolic OH of the ligand. Ultrafast excited state proton transfer (ESPT) from the neutral chromophore to the RNA was found with a time constant of 130 fs and revealed the mode of action of the large Stokes shift fluorogenic RNA aptamer.
Collapse
|
19
|
Sun T, Li T, Yi K, Yan G, Gao X. Fluorescent Protein Variants Generated by Reassembly between Skeleton and Chromophore. ACS OMEGA 2021; 6:2925-2933. [PMID: 33553911 PMCID: PMC7860096 DOI: 10.1021/acsomega.0c05299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/06/2021] [Indexed: 06/12/2023]
Abstract
Fluorescent proteins (FPs) can be used as intrinsic molecular tags to track the dynamic activity in live cells. To obtain variants in an available and massive manner is always a challenge. Here, we adopted a computer-based microarray synthesis method to realize the reassembly between the chromophore and the skeleton. DNAWorks was used to segment the input FP templates into a set of overlapping oligonucleotides (20-43 mer) with a balanced annealing temperature, G + C content, and codon frequency. The constitution of the chromophore was kept in the same section by switching the divided sites during segmentation and the codon was optimized to further keep the balanced parameters. The designed oligonucleotides were synthesized on photo-programmable microfluidic arrays. Sequence analysis and the subsequent conditional induced expression of FPs revealed that oligonucleotides were highly reassembled. Spectra, photostability, and molecular size detection of randomly selected variants showed that they were distinct monomeric proteins that preserved photoactivity. Our study provides an effective means of obtaining FP variants based on a computer-designed parallel synthesis.
Collapse
Affiliation(s)
- Tingting Sun
- College
of Food Science and Pharmaceutical Engineering, Zaozhuang University, Zaozhuang, Shandong 277160, China
| | - Tianpeng Li
- College
of Civil and Architecture Engineering, Zaozhuang
University, Zaozhuang, Shandong 277160, China
- School
of the Environment, Henan Normal University, Xinxiang, Henan 453007, China
- Shandong
Key Laboratory of Water Pollution Control and Resource Reuse, Shandong University, Qingdao, Shandong 266237, China
| | - Ke Yi
- Laboratory
of Medical Genetics, Central South University, Changsha 410008, Hunan, China
| | - Guoquan Yan
- Bioengineering
Institute, Zhejiang University of Science
and Technology, Hangzhou, Zhejiang 310018, China
| | - Xiaolian Gao
- Department
of Biology and Biochemistry, University
of Houston, Houston, Texas 77004-5001, United States
| |
Collapse
|
20
|
Pakhomov AA, Pastukhova AA, Tishkin GV, Martynov VI. Transformations of the Chromophore in the Course of Maturation of a Chromoprotein from Actinia equina. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1068162021010167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
21
|
Mukherjee S, Hung ST, Douglas N, Manna P, Thomas C, Ekrem A, Palmer AE, Jimenez R. Engineering of a Brighter Variant of the FusionRed Fluorescent Protein Using Lifetime Flow Cytometry and Structure-Guided Mutations. Biochemistry 2020; 59:3669-3682. [PMID: 32914619 DOI: 10.1021/acs.biochem.0c00484] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The development of fluorescent proteins (FPs) has revolutionized biological imaging. FusionRed, a monomeric red FP (RFP), is known for its low cytotoxicity and correct localization of target fusion proteins in mammalian cells but is limited in application by low fluorescence brightness. We report a brighter variant of FusionRed, "FR-MQV," which exhibits an extended fluorescence lifetime (2.8 ns), enhanced quantum yield (0.53), higher extinction coefficient (∼140 000 M-1 cm-1), increased radiative rate constant, and reduced nonradiative rate constant with respect to its precursor. The properties of FR-MQV derive from three mutations-M42Q, C159V, and the previously identified L175M. A structure-guided approach was used to identify and mutate candidate residues around the para-hydroxyphenyl and the acylimine sites of the chromophore. The C159V mutation was identified via lifetime-based flow cytometry screening of a library in which multiple residues adjacent to the para-hydroxyphenyl site of the chromophore were mutated. The M42Q mutation is located near the acylimine moiety of the chromophore and was discovered using site-directed mutagenesis guided by X-ray crystal structures. FR-MQV exhibits a 3.4-fold higher molecular brightness and a 5-fold increase in the cellular brightness in HeLa cells [based on fluorescence-activated cell sorting (FACS)] compared to FusionRed. It also retains the low cytotoxicity and high-fidelity localization of FusionRed, as demonstrated through assays in mammalian cells. These properties make FR-MQV a promising template for further engineering into a new family of RFPs.
Collapse
Affiliation(s)
- Srijit Mukherjee
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado at Boulder, 215 UCB, Boulder, Colorado 80309, United States
| | - Sheng-Ting Hung
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
| | - Nancy Douglas
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
| | - Premashis Manna
- Department of Chemistry, MIT, 77 Massachusetts Avenue, 18-084, Cambridge, Massachusetts 02139, United States
| | - Connor Thomas
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
| | - Annika Ekrem
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
| | - Amy E Palmer
- Department of Biochemistry, University of Colorado at Boulder, 596 UCB, Boulder, Colorado 80309, United States
- BioFrontiers Institute, University of Colorado, Boulder, 596 UCB, Boulder, Colorado 80309, United States
| | - Ralph Jimenez
- JILA, University of Colorado at Boulder and National Institute of Standards and Technology, 440 UCB, Boulder, Colorado 80309, United States
- Department of Chemistry, University of Colorado at Boulder, 215 UCB, Boulder, Colorado 80309, United States
| |
Collapse
|
22
|
Hussein W, Berlin S. Red Photoactivatable Genetic Optical-Indicators. Front Cell Neurosci 2020; 14:113. [PMID: 32547366 PMCID: PMC7270359 DOI: 10.3389/fncel.2020.00113] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2020] [Accepted: 04/08/2020] [Indexed: 11/13/2022] Open
Abstract
Emerging genetically-encoded Ca2+-indicators (GECIs) are intensiometric reporters that increase in fluorescence when bound to Ca2+; highly suited for studying calcium-signaling in many cell types, notably neurons. Today, major efforts are devoted toward optimizing red-emitting [red fluorescent protein (RFP)-based] GECIs (R-GECI), as these provide several advantages over GFP-based reporters, for instance, increased imaging depth, reduced photodamage by longer imaging wavelengths and, in principle, are better suited for use with prevalent blue-absorbing optogenetic tools (e.g., channelrhodopsin). However, excessive fluorescence from intersecting neighboring cells in very dense tissues, notably the brain, hinders the ability to collect signals from single cells and their processes. This challenge can be addressed by photoactivatable (PA) fluorescent proteins that can be rendered fluorescent on demand by user-defined targeted light. This allows activation and, thereby, collection of fluorescent signals exclusively from desired cells and their processes, while leaving all neighboring cells in the dark (i.e., non-fluorescent). Nevertheless, there are no PA R-GECIs. Here, we sought to develop PA-R-GECIs. To do so, we initially explored a recently discovered phenomenon of Ca2+-independent increases in fluorescence (i.e., artifacts) in an emerging R-GECI, which has led us to rationally engineer several functional PA-R-GECIs. We also take advantage of our findings to quickly engineer a novel PA-RFP, namely, PA-mRuby3.
Collapse
Affiliation(s)
- Wessal Hussein
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| | - Shai Berlin
- Department of Neuroscience, The Ruth and Bruce Rappaport Faculty of Medicine, Technion - Israel Institute of Technology, Haifa, Israel
| |
Collapse
|
23
|
Voronin DV, Kozlova AA, Verkhovskii RA, Ermakov AV, Makarkin MA, Inozemtseva OA, Bratashov DN. Detection of Rare Objects by Flow Cytometry: Imaging, Cell Sorting, and Deep Learning Approaches. Int J Mol Sci 2020; 21:E2323. [PMID: 32230871 PMCID: PMC7177904 DOI: 10.3390/ijms21072323] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/25/2020] [Accepted: 03/25/2020] [Indexed: 12/14/2022] Open
Abstract
Flow cytometry nowadays is among the main working instruments in modern biology paving the way for clinics to provide early, quick, and reliable diagnostics of many blood-related diseases. The major problem for clinical applications is the detection of rare pathogenic objects in patient blood. These objects can be circulating tumor cells, very rare during the early stages of cancer development, various microorganisms and parasites in the blood during acute blood infections. All of these rare diagnostic objects can be detected and identified very rapidly to save a patient's life. This review outlines the main techniques of visualization of rare objects in the blood flow, methods for extraction of such objects from the blood flow for further investigations and new approaches to identify the objects automatically with the modern deep learning methods.
Collapse
Affiliation(s)
- Denis V. Voronin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Physical and Colloid Chemistry, National University of Oil and Gas (Gubkin University), 119991 Moscow, Russia
| | - Anastasiia A. Kozlova
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Roman A. Verkhovskii
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- School of Urbanistics, Civil Engineering and Architecture, Yuri Gagarin State Technical University of Saratov, 410054 Saratov, Russia
| | - Alexey V. Ermakov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
- Department of Biomedical Engineering, I. M. Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Mikhail A. Makarkin
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Olga A. Inozemtseva
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| | - Daniil N. Bratashov
- Laboratory of Biomedical Photoacoustics, Saratov State University, 410012 Saratov, Russia
| |
Collapse
|
24
|
Steffens H, Wegner W, Willig KI. In vivo STED microscopy: A roadmap to nanoscale imaging in the living mouse. Methods 2020; 174:42-48. [DOI: 10.1016/j.ymeth.2019.05.020] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/15/2019] [Accepted: 05/21/2019] [Indexed: 11/28/2022] Open
|
25
|
Bindels DS, Postma M, Haarbosch L, van Weeren L, Gadella TWJ. Multiparameter screening method for developing optimized red-fluorescent proteins. Nat Protoc 2020; 15:450-478. [PMID: 31942080 DOI: 10.1038/s41596-019-0250-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 09/19/2019] [Indexed: 11/09/2022]
Abstract
Genetically encoded fluorescent proteins (FPs) are highly utilized in cell biology research to study proteins of interest or signal processes using biosensors. To perform well in specific applications, these FPs require a multitude of tailored properties. It is for this reason that they need to be optimized by using mutagenesis. The optimization process through screening is often based solely on bacterial colony brightness, but multiple parameters ultimately determine the performance of an optimal FP. Instead of characterizing other properties after selection, we developed a multiparameter screening method based on four critical parametersscreened simultaneously: fluorescence lifetime, cellular brightness, maturation efficiency, and photostability. First, a high-throughput primary screen (based on fluorescence lifetime and cellular brightness using a mutated FP library) is performed in bacterial colonies. A secondary multiparameter screen based on all four parameters, using a novel bacterial-mammalian dual-expression vector enables expression of the best FP variants in mammalian cell lines. A newly developed automated multiparameter acquisition and cell-based analysis approach for 96-well plates further increased workflow efficiency. We used this protocol to yield the record-bright mScarlet, a fast-maturating mScarlet-I, and a photostable mScarlet-H. This protocol can also be applied to other FP classes or Förster resonance energy transfer (FRET)-based biosensors with minor adaptations. With an available mutant library of a template FP and a complete and tested laboratory setup, a single round of multiparameter screening (including the primary bacterial screen, secondary mammalian cell screen, sequencing, and data processing) can be performed within 2 weeks.
Collapse
Affiliation(s)
- Daphne S Bindels
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Marten Postma
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | - Lindsay Haarbosch
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands
| | | | - Theodorus W J Gadella
- Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, the Netherlands.
| |
Collapse
|
26
|
Pope JR, Johnson RL, Jamieson WD, Worthy HL, Kailasam S, Ahmed RD, Taban I, Auhim HS, Watkins DW, Rizkallah PJ, Castell OK, Jones DD. Association of Fluorescent Protein Pairs and Its Significant Impact on Fluorescence and Energy Transfer. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 8:2003167. [PMID: 33437587 PMCID: PMC7788595 DOI: 10.1002/advs.202003167] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Indexed: 06/01/2023]
Abstract
Fluorescent proteins (FPs) are commonly used in pairs to monitor dynamic biomolecular events through changes in proximity via distance dependent processes such as Förster resonance energy transfer (FRET). The impact of FP association is assessed by predicting dimerization sites in silico and stabilizing the dimers by bio-orthogonal covalent linkages. In each tested case dimerization changes inherent fluorescence, including FRET. GFP homodimers demonstrate synergistic behavior with the dimer being brighter than the sum of the monomers. The homodimer structure reveals the chromophores are close with favorable transition dipole alignments and a highly solvated interface. Heterodimerization (GFP with Venus) results in a complex with ≈87% FRET efficiency, significantly below the 99.7% efficiency predicted. A similar efficiency is observed when the wild-type FPs are fused to a naturally occurring protein-protein interface system. GFP complexation with mCherry results in loss of mCherry fluorescence. Thus, simple assumptions used when monitoring interactions between proteins via FP FRET may not always hold true, especially under conditions whereby the protein-protein interactions promote FP interaction.
Collapse
Affiliation(s)
- Jacob R. Pope
- Molecular BiosciencesSchool of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Rachel L. Johnson
- Molecular BiosciencesSchool of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | | | - Harley L. Worthy
- Molecular BiosciencesSchool of BiosciencesCardiff UniversityCardiffCF10 3AXUK
- Present address:
Henry Wellcome Building for BiocatalysisBiosciencesUniversity of ExeterExeterEX4 4QDUK
| | - Senthilkumar Kailasam
- McGill University and Genome Quebec Innovation CentreMontrealQuebecH3A 0G1Canada
- Department of Human GeneticsMcGill UniversityMontrealQuebecCanada
| | - Rochelle D. Ahmed
- Molecular BiosciencesSchool of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Ismail Taban
- Molecular BiosciencesSchool of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| | - Husam Sabah Auhim
- Molecular BiosciencesSchool of BiosciencesCardiff UniversityCardiffCF10 3AXUK
- Department of BiologyCollege of ScienceUniversity of BaghdadBaghdadIraq
| | - Daniel W. Watkins
- Molecular BiosciencesSchool of BiosciencesCardiff UniversityCardiffCF10 3AXUK
- Present address:
School of BiochemistryUniversity of BristolBristolBS8 1QUUK
| | | | | | - D. Dafydd Jones
- Molecular BiosciencesSchool of BiosciencesCardiff UniversityCardiffCF10 3AXUK
| |
Collapse
|
27
|
Das S, Patel B. Marine resources and animals in modern biotechnology. Anim Biotechnol 2020. [DOI: 10.1016/b978-0-12-811710-1.00027-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
28
|
Paulikat M, Mata RA, Gelabert R. A high-throughput computational approach to UV-Vis spectra in protein mutants. Phys Chem Chem Phys 2019; 21:20678-20692. [PMID: 31508628 DOI: 10.1039/c9cp03908b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In this work we present a high-throughput approach to the computation of absorption UV-Vis spectra tailored to mutagenesis studies. The scheme makes use of a single molecular dynamics trajectory of a reference (non-mutated) species. The shifts in absorption energy caused by a residue mutation are evaluated by building an effective potential of the environment and computing a correction term based on perturbation theory. The sampling is only performed in the phase space of the initial protein. We analyze the robustness of the method by comparing different approximations for the effective potential, the sampling of mutant residue geometries and observing the impact in the prediction of both bathocromic and hypsochromic shifts. As a test subject, we consider a red fluorescent protein variant with potential biotechnological applications.
Collapse
Affiliation(s)
- Mirko Paulikat
- Institute of Physical Chemistry, University of Goettingen, Tammannstraße 6, D-37077 Göttingen, Germany.
| | - Ricardo A Mata
- Institute of Physical Chemistry, University of Goettingen, Tammannstraße 6, D-37077 Göttingen, Germany.
| | - Ricard Gelabert
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain.
| |
Collapse
|
29
|
Garay-Novillo JN, García-Morena D, Ruiz-Masó JÁ, Barra JL, Del Solar G. Combining Modules for Versatile and Optimal Labeling of Lactic Acid Bacteria: Two pMV158-Family Promiscuous Replicons, a Pneumococcal System for Constitutive or Inducible Gene Expression, and Two Fluorescent Proteins. Front Microbiol 2019; 10:1431. [PMID: 31297101 PMCID: PMC6607859 DOI: 10.3389/fmicb.2019.01431] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Accepted: 06/06/2019] [Indexed: 11/24/2022] Open
Abstract
Labeling of bacterial cells with fluorescent proteins allows tracking the bacteria in competition and interactomic in vivo and in vitro studies. During the last years, a few plasmid vectors have been developed aimed at the fluorescent labeling of specific members of the lactic acid bacteria (LAB), a heterogeneous group that includes microorganisms used in the food industry, as probiotics, or as live vectors for mucosal vaccines. Successful and versatile labeling of a broad range of LAB not only requires a vector containing a promiscuous replicon and a widely recognized expression system for the constitutive or regulated expression of the fluorescence determinant, but also the knowledge of the main features of the entire plasmid/host/fluorescent protein ensemble. By using the LAB model species Lactococcus lactis, we have compared the utility properties of a set of labeling vectors constructed by combining a promiscuous replicon (pMV158 or pSH71) of the pMV158 plasmid family with the gene encoding either the EGFP or the mCherry fluorescent protein placed under control of promoter PX or PM from the pneumococcal mal gene cluster for maltosaccharide uptake and utilization, respectively. Some vectors carrying PM also harbor the malR gene, whose product represses transcription from this promoter, thus enabling maltose-inducible synthesis of the fluorescent proteins. We have determined the plasmid copy number (PCN) and segregational stability of the different constructs, as well as the effect of these features on the fitness and fluorescence intensity of the lactococcal host. Constructs based on the pSH71 replicon had a high copy number (∼115) and were segregationally stable. The copy number of vectors based on the pMV158 replicon was lower (∼8–45) and varied substantially depending on the genetic context of the plasmid and on the bacterial growth conditions; as a consequence, inheritance of these vectors was less stable. Synthesis of the fluorescent proteins encoded by these plasmids did not significantly decrease the host fitness. By employing inducible expression vectors, the fluorescent proteins were shown to be very stable in this bacterium. Importantly, conditions for accurate quantification of the emitted fluorescence were established based on the maturation times of the fluorescent proteins.
Collapse
Affiliation(s)
- Javier Nicolás Garay-Novillo
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain.,Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Córdoba, Argentina
| | - Diego García-Morena
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José Ángel Ruiz-Masó
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| | - José Luis Barra
- Centro de Investigaciones en Química Biológica de Córdoba (CIQUIBIC-CONICET), Córdoba, Argentina
| | - Gloria Del Solar
- Departamento de Biotecnología Microbiana y de Plantas, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
30
|
Laser Scanning Microscopy of Yersinia pestis Infected Tissues. Methods Mol Biol 2019. [PMID: 31177432 DOI: 10.1007/978-1-4939-9541-7_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
Laser scanning microscopy (LSM) is a technology that allows for direct observations of host-pathogen interactions during infection. Two of the most available forms of LSM are confocal and two-photon LSM. In addition to high resolution and contrast, these two technologies also provide high excitation penetrance in unsectioned samples. High penetrance allows for imaging of layers of tissue that are difficult to image with other more conventional microscopy approaches. Thus, confocal and two-photon LSM open the possibility of observing infection in a three-dimensional context, where the natural architecture of a tissue is preserved. Few studies have used LSM technology to gain insights into Yersinia pestis pathogenesis in the mammalian host. The use of LSM in the plague field has an enormous potential for the discovery of the mechanisms that lie behind key aspects of pathogenesis such as colonization, dissemination, and tissue damage. This chapter provides guidance for the implementation of confocal or two-photon LSM to study Y. pestis interactions with the host in unsectioned tissues. This document provides specific instructions applied to imaging of Y. pestis, and also discusses relevant aspects of imaging, such as the operation of laser scanning microscopes and the use of fluorescent probes.
Collapse
|
31
|
Augustine G, Raghavan S, NumbiRamudu K, Easwaramoorthi S, Shanmugam G, Seetharani Murugaiyan J, Gunasekaran K, Govind C, Karunakaran V, Ayyadurai N. Excited State Electronic Interconversion and Structural Transformation of Engineered Red-Emitting Green Fluorescent Protein Mutant. J Phys Chem B 2019; 123:2316-2324. [PMID: 30789731 DOI: 10.1021/acs.jpcb.8b10516] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Red fluorescent proteins with a large Stokes shift offer a limited autofluorescence background and are used in deep tissue imaging. Here, by introducing the free amino group in Aequorea victoria, the electrostatic charges of the p-hydroxybenzylidene imidazolinone chromophore of green fluorescent protein (GFP) have been altered resulting in an unusual, 85 nm red-shifted fluorescence. The structural and biophysical analysis suggested that the red shift is due to positional shift occupancy of Glu222 and Arg96, resulting in extended conjugation and a relaxed chromophore. Femtosecond transient absorption spectra exhibited that the excited state relaxation dynamics of red-shifted GFP (rGFP) (τ4 = 234 ps) are faster compared to the A. victoria green fluorescent protein (τ4 = 3.0 ns). The nanosecond time-resolved emission spectra of rGFP reveal the continuous spectral shift during emission by a solvent reorientation in the chromophore. Finally, the molecular dynamics simulations revealed the rearrangement of the hydrogen bond interactions in the chromophore vicinity, reshaping the symmetric distribution of van der Waals space to fine tune the GFP structure resulting from highly red-shifted rGFP.
Collapse
Affiliation(s)
- George Augustine
- Department of Biochemistry and Biotechnology , Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI) , Chennai 600 020 , India
| | - Sriram Raghavan
- Department of Crystallography and Biophysics , University of Madras , Chennai 600 025 , India
| | - Kamini NumbiRamudu
- Department of Biochemistry and Biotechnology , Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI) , Chennai 600 020 , India
| | | | | | | | - Krishnasamy Gunasekaran
- Department of Crystallography and Biophysics , University of Madras , Chennai 600 025 , India
| | - Chinju Govind
- Photosciences and Photonics Section, Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology , Thiruvananthapuram , 695 019 Kerala , India
| | - Venugopal Karunakaran
- Photosciences and Photonics Section, Chemical Sciences and Technology Division , CSIR-National Institute for Interdisciplinary Science and Technology , Thiruvananthapuram , 695 019 Kerala , India
| | - Niraikulam Ayyadurai
- Department of Biochemistry and Biotechnology , Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI) , Chennai 600 020 , India
| |
Collapse
|
32
|
Raghavan SS, Niraikulam A, Gunasekaran K. Side chain torsion dictates planarity and ionizability of green fluorescent protein's chromophore leading to spectral perturbations. J Biomol Struct Dyn 2019; 37:4450-4459. [PMID: 30488782 DOI: 10.1080/07391102.2018.1552196] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Spectral characteristics of fluorescent proteins (FPs) are well studied, and through protein engineering, several FP variants constituting entire visible spectrum have been created. One of the most common mechanisms attributed to spectral shifts in FP is excited state proton transfer (ESPT), hydroxyl moiety protonation and deprotonation, along with chromophore cis-trans isomerism. The most widely studied FPs are those derived from avGFP (Aequorea victoria GFP) and Dsred (Discosoma coral). Apart from the above mechanism, certain interacting residues are said to play a vital role in altering the proton transfer pathway leading to numerous spectral variants. Similarly, the hydrogen-bonded networks solely cannot dictate the energy landscape of FPs. Non-bonded interactions also can create secondary harmonic shifts by dipole-dipole inductions. Side chain contacts tend to alter the topological and torsional geometry, thereby disturbing the chromophore's planarity. Side chain torsional variations have almost been unaccounted for their distortions in FPs. We hypothesize the torsional landscape and altered residual interactions as prominent factors for the spectral shifts. Through our 200 ns molecular dynamics investigation, we prospect that van der Waals packing in Dsred is more compact than that of avGFP, thus creating a low solvent occupiable environment and reduced solvent interactions having higher red spectral shift. The torsional changes of wild avGFP, S65T avGFP and Dsred have been studied to comprehend the inter-residual contact distance and the geometrical descriptors. Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- S Sriram Raghavan
- Department of Crystallography and Biophysics, University of Madras , Chennai , Tamil Nadu , India
| | - Ayyadurai Niraikulam
- Division of Biotechnology, Council of Scientific and Industrial Research-Central Leather Research Institute (CSIR-CLRI) , Chennai , Tamil Nadu , India
| | - Krishnasamy Gunasekaran
- Department of Crystallography and Biophysics, University of Madras , Chennai , Tamil Nadu , India
| |
Collapse
|
33
|
Canty L, Hariharan S, Liu Q, Haney SA, Andrews DW. Peak emission wavelength and fluorescence lifetime are coupled in far-red, GFP-like fluorescent proteins. PLoS One 2018; 13:e0208075. [PMID: 30485364 PMCID: PMC6261627 DOI: 10.1371/journal.pone.0208075] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/12/2018] [Indexed: 11/25/2022] Open
Abstract
The discovery and use of fluorescent proteins revolutionized cell biology by allowing the visualization of proteins in living cells. Advances in fluorescent proteins, primarily through genetic engineering, have enabled more advanced analyses, including Förster resonance energy transfer (FRET) and fluorescence lifetime imaging microscopy (FLIM) and the development of genetically encoded fluorescent biosensors. These fluorescence protein-based sensors are highly effective in cells grown in monolayer cultures. However, it is often desirable to use more complex models including tissue explants, organoids, xenografts, and whole animals. These types of samples have poor light penetration owing to high scattering and absorption of light by tissue. Far-red light with a wavelength between 650-900nm is less prone to scatter, and absorption by tissues and can thus penetrate more deeply. Unfortunately, there are few fluorescent proteins in this region of the spectrum, and they have sub-optimal fluorescent properties including low brightness and short fluorescence lifetimes. Understanding the relationships between the amino-acid sequences of far-red fluorescence proteins and their photophysical properties including peak emission wavelengths and fluorescence lifetimes would be useful in the design of new fluorescence proteins for this region of the spectrum. We used both site-directed mutagenesis and gene-shuffling between mScarlet and mCardinal fluorescence proteins to create new variants and assess their properties systematically. We discovered that for far-red, GFP-like proteins the emission maxima and fluorescence lifetime have a strong inverse correlation.
Collapse
Affiliation(s)
- Laura Canty
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Santosh Hariharan
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Qian Liu
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
| | - Steven A. Haney
- Department of Oncology and Translational Research, Eli Lilly and Company, Indianapolis, Indiana, United States of America
| | - David W. Andrews
- Department of Biological Sciences, Sunnybrook Research Institute, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
34
|
moxMaple3: a Photoswitchable Fluorescent Protein for PALM and Protein Highlighting in Oxidizing Cellular Environments. Sci Rep 2018; 8:14738. [PMID: 30283009 PMCID: PMC6170497 DOI: 10.1038/s41598-018-32955-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2018] [Accepted: 09/19/2018] [Indexed: 11/09/2022] Open
Abstract
The ability of fluorescent proteins (FPs) to fold robustly is fundamental to the autocatalytic formation of the chromophore. While the importance of the tertiary protein structure is well appreciated, the impact of individual amino acid mutations for FPs is often not intuitive and requires direct testing. In this study, we describe the engineering of a monomeric photoswitchable FP, moxMaple3, for use in oxidizing cellular environments, especially the eukaryotic secretory pathway. Surprisingly, a point mutation to replace a cysteine substantially improved the yield of correctly folded FP capable of chromophore formation, regardless of cellular environment. The improved folding of moxMaple3 increases the fraction of visibly tagged fusion proteins, as well as FP performance in PALM super-resolution microscopy, and thus makes moxMaple3 a robust monomeric FP choice for PALM and optical highlighting applications.
Collapse
|
35
|
Matsuda KI, Hashimoto T, Kawata M. Intranuclear Mobility of Estrogen Receptor: Implication for Transcriptional Regulation. Acta Histochem Cytochem 2018; 51:129-136. [PMID: 30279614 PMCID: PMC6160615 DOI: 10.1267/ahc.18023] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 07/31/2018] [Indexed: 11/22/2022] Open
Abstract
The estrogen receptor (ER) is a ligand-dependent transcription factor that has two subtypes: ERα and ERβ. ERs regulate transcription of estrogen-responsive genes through interactions with multiple intranuclear components, such as cofactors and the nuclear matrix. Live cell imaging using fluorescent protein-labeled ERs has revealed that ligand-activated ERs are highly mobile in the nucleus, with transient association with the DNA and nuclear matrix. Scaffold attachment factor B (SAFB) 1 and its paralogue, SAFB2, are nuclear matrix-binding proteins that negatively modulate ERα-mediated transcription. Expression of SAFB1 and SAFB2 reduces the mobility of ERα in the presence of ligand. This regulatory machinery is emerging as an epigenetic-like mechanism that alters transcriptional activity through control of intranuclear molecular mobility.
Collapse
Affiliation(s)
- Ken Ichi Matsuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Science, Kyoto Prefectural University of Medicine
| | - Takashi Hashimoto
- Division of Anatomy and Neuroscience, Department of Morphological and Physiological Sciences, University of Fukui Faculty of Medical Sciences
| | | |
Collapse
|
36
|
Shcheslavskiy VI, Shirmanova MV, Dudenkova VV, Lukyanov KA, Gavrina AI, Shumilova AV, Zagaynova E, Becker W. Fluorescence time-resolved macroimaging. OPTICS LETTERS 2018; 43:3152-3155. [PMID: 29957804 DOI: 10.1364/ol.43.003152] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/08/2018] [Indexed: 06/08/2023]
Abstract
While laser scanning fluorescence lifetime imaging (FLIM) is a powerful approach for cell biology, its small field of view (typically less than 1 mm) makes it impractical for the imaging of large biological samples that is often required for biomedical applications. Here we present a system that allows performing FLIM on macroscopic samples as large as 18 mm with a lateral resolution of 15 μm. The performance of the system is verified with FLIM of endogenous metabolic cofactor reduced nicotinamide adenine dinucleotide (phosphate), NAD(P)H, and genetically encoded fluorescent protein mKate2 in a mouse tumor in vivo.
Collapse
|
37
|
Dissection of Protein Kinase Pathways in Live Cells Using Photoluminescent Probes: Surveillance or Interrogation? CHEMOSENSORS 2018. [DOI: 10.3390/chemosensors6020019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Martin KJ, McGhee EJ, Schwarz JP, Drysdale M, Brachmann SM, Stucke V, Sansom OJ, Anderson KI. Accepting from the best donor; analysis of long-lifetime donor fluorescent protein pairings to optimise dynamic FLIM-based FRET experiments. PLoS One 2018; 13:e0183585. [PMID: 29293509 PMCID: PMC5749721 DOI: 10.1371/journal.pone.0183585] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 08/07/2017] [Indexed: 11/19/2022] Open
Abstract
FRET biosensors have proven very useful tools for studying the activation of specific signalling pathways in living cells. Most biosensors designed to date have been predicated on fluorescent protein pairs that were identified by, and for use in, intensity based measurements, however fluorescence lifetime provides a more reliable measurement of FRET. Both the technology and fluorescent proteins available for FRET have moved on dramatically in the last decade. Lifetime imaging systems have become increasingly accessible and user-friendly, and there is an entire field of biology dedicated to refining and adapting different characteristics of existing and novel fluorescent proteins. This growing pool of fluorescent proteins includes the long-lifetime green and cyan fluorescent proteins Clover and mTurquoise2, the red variant mRuby2, and the dark acceptor sREACh. Here, we have tested these donors and acceptors in appropriate combinations against the standard or recommended norms (EGFP and mTFP as donors, mCherry and either Ypet or Venus as acceptors) to determine if they could provide more reliable, reproducible and quantifiable FLIM-FRET data to improve on the dynamic range compared to other donors and breadth of application of biosensor technologies. These tests were performed for comparison on both a wide-field, frequency domain system and a multiphoton, TCSPC time domain FLIM system. Clover proved to be an excellent donor with extended dynamic range in combination with mCherry on both platforms, while mRuby2 showed a high degree of variability and poor FRET efficiencies in all cases. mTFP-Venus was the most consistent cyan-yellow pair between the two FLIM methodologies, but mTurquoise2 has better dynamic range and transfers energy consistently over time to the dark acceptor sRCh. Combination of mTFP-sRCh with Clover-mCherry would allow the simultaneous use of two FLIM-FRET biosensors within one sample by eliminating the crosstalk between the yellow acceptor and green donor emissions.
Collapse
Affiliation(s)
| | - Ewan J. McGhee
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | | | - Martin Drysdale
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | | | - Volker Stucke
- Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Owen J. Sansom
- Beatson Institute for Cancer Research, Glasgow, United Kingdom
| | | |
Collapse
|
39
|
Mastop M, Bindels DS, Shaner NC, Postma M, Gadella TWJ, Goedhart J. Characterization of a spectrally diverse set of fluorescent proteins as FRET acceptors for mTurquoise2. Sci Rep 2017; 7:11999. [PMID: 28931898 PMCID: PMC5607329 DOI: 10.1038/s41598-017-12212-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 09/05/2017] [Indexed: 01/13/2023] Open
Abstract
The performance of Förster Resonance Energy Transfer (FRET) biosensors depends on brightness and photostability, which are dependent on the characteristics of the fluorescent proteins that are employed. Yellow fluorescent protein (YFP) is often used as an acceptor but YFP is prone to photobleaching and pH changes. In this study, we evaluated the properties of a diverse set of acceptor fluorescent proteins in combination with the optimized CFP variant mTurquoise2 as the donor. To determine the theoretical performance of acceptors, the Förster radius was determined. The practical performance was determined by measuring FRET efficiency and photostability of tandem fusion proteins in mammalian cells. Our results show that mNeonGreen is the most efficient acceptor for mTurquoise2 and that the photostability is better than SYFP2. The non-fluorescent YFP variant sREACh is an efficient acceptor, which is useful in lifetime-based FRET experiments. Among the orange and red fluorescent proteins, mCherry and mScarlet-I are the best performing acceptors. Several new pairs were applied in a multimolecular FRET based sensor for detecting activation of a heterotrimeric G-protein by G-protein coupled receptors. Overall, the sensor with mNeonGreen as acceptor and mTurquoise2 as donor showed the highest dynamic range in ratiometric FRET imaging experiments with the G-protein sensor.
Collapse
Affiliation(s)
- Marieke Mastop
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Daphne S Bindels
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Nathan C Shaner
- Department of Photobiology and Bioimaging, The Scintillon Institute, San Diego, California, United States of America
| | - Marten Postma
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Theodorus W J Gadella
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands
| | - Joachim Goedhart
- Swammerdam Institute for Life Sciences, Section of Molecular Cytology, van Leeuwenhoek Centre for Advanced Microscopy, University of Amsterdam, P.O. Box 94215, NL-1090 GE, Amsterdam, The Netherlands.
| |
Collapse
|
40
|
Cárcamo E, Roldán-Salgado A, Osuna J, Bello-Sanmartin I, Yáñez JA, Saab-Rincón G, Viadiu H, Gaytán P. Spiked Genes: A Method to Introduce Random Point Nucleotide Mutations Evenly throughout an Entire Gene Using a Complete Set of Spiked Oligonucleotides for the Assembly. ACS OMEGA 2017; 2:3183-3191. [PMID: 30023688 PMCID: PMC6044943 DOI: 10.1021/acsomega.7b00508] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Accepted: 06/21/2017] [Indexed: 06/08/2023]
Abstract
In vitro mutagenesis methods have revolutionized biological research and the biotechnology industry. In this study, we describe a mutagenesis method based on synthesizing a gene using a complete set of forward and reverse spiked oligonucleotides that have been modified to introduce a low ratio of mutant nucleotides at each position. This novel mutagenesis scheme named "Spiked Genes" yields a library of clones with an enhanced mutation distribution due to its unbiased nucleotide incorporation. Using the far-red fluorescent protein emKate as a model, we demonstrated that Spiked Genes yields richer libraries than those obtained via enzymatic methods. We obtained a library without bias toward any nucleotide or base pair and with even mutations, transitions, and transversion frequencies. Compared with enzymatic methods, the proposed synthetic approach for the creation of gene libraries represents an improved strategy for screening protein variants and does not require a starting template.
Collapse
Affiliation(s)
- Edson Cárcamo
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Abigail Roldán-Salgado
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Joel Osuna
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Iván Bello-Sanmartin
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Jorge A. Yáñez
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Gloria Saab-Rincón
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| | - Héctor Viadiu
- Instituto
de Química, Universidad Nacional
Autónoma de México, Circuito Exterior, Ciudad Universitaria, Ciudad
de Mexico 04510, México
| | - Paul Gaytán
- Instituto
de Biotecnología, Universidad Nacional
Autónoma de México, Av. Universidad 2001, Cuernavaca, Morelos 62210, México
| |
Collapse
|
41
|
Bozhanova NG, Baranov MS, Sarkisyan KS, Gritcenko R, Mineev KS, Golodukhina SV, Baleeva NS, Lukyanov KA, Mishin AS. Yellow and Orange Fluorescent Proteins with Tryptophan-based Chromophores. ACS Chem Biol 2017; 12:1867-1873. [PMID: 28525263 DOI: 10.1021/acschembio.7b00337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Rapid development of new microscopy techniques exposed the need for genetically encoded fluorescent tags with special properties. Recent works demonstrated the potential of fluorescent proteins with tryptophan-based chromophores. We applied rational design and random mutagenesis to the monomeric red fluorescent protein FusionRed and found two groups of mutants carrying a tryptophan-based chromophore: with yellow (535 nm) or orange (565 nm) emission. On the basis of the properties of proteins, a model synthetic chromophore, and a computational modeling, we concluded that the presence of a ketone-containing chromophore in different isomeric forms can explain the observed yellow and orange phenotypes.
Collapse
Affiliation(s)
- Nina G Bozhanova
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Mikhail S Baranov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Pirogov Russian National Research Medical University , Ostrovitianov 1, 117997 Moscow, Russia
| | - Karen S Sarkisyan
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Roman Gritcenko
- Centre for Analysis and Synthesis, Department of Chemistry, Lund University , 22100 Lund, Sweden
| | - Konstantin S Mineev
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Moscow Institute of Physics and Technology , Institutsky per., 9, 141701 Dolgoprudny, Russia
| | - Svetlana V Golodukhina
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Nadezhda S Baleeva
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
- Pirogov Russian National Research Medical University , Ostrovitianov 1, 117997 Moscow, Russia
| | - Konstantin A Lukyanov
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| | - Alexander S Mishin
- Institute of Bioorganic Chemistry, Russian Academy of Sciences , Miklukho-Maklaya 16/10, 117997 Moscow, Russia
| |
Collapse
|
42
|
Abstract
Fluorescent proteins of different colors are useful probes to study protein structure and function, and to investigate cellular events and conditions. Large efforts have focused on engineering new properties into fluorescent proteins via rational design and directed evolution. In addition to applications in imaging of protein expression level and subcellular localization, fluorescent proteins have been increasingly engineered to act as biosensors to track concentrations of small-molecule metabolites, enzyme activities, and protein conformational changes in living cells. Unlike small-molecule fluorescence biosensors, fluorescent proteins are genetically encodable, and thus can be expressed inside living cells. Attachment of organelle-specific signals to the proteins allows their localization to be specified. Recently, a new class of fluorescent protein biosensors has been developed to include unnatural amino acids as the sensing element. The unique chemical and physical properties of the unnatural amino acids enable sensor designs that cannot be realized by using the standard genetic code with the 20 canonical amino acids. In this chapter, we detail the general procedure for the genetic incorporation of unnatural amino acids. We further present two protocols for the in vitro and in vivo detection of hydrogen peroxide (H2O2) using a fluorescent protein biosensor that contains an unnatural amino acid, p-boronophenylalanine.
Collapse
Affiliation(s)
- Wei Niu
- University of Nebraska-Lincoln, Lincoln, NE, United States.
| | - Jiantao Guo
- University of Nebraska-Lincoln, Lincoln, NE, United States.
| |
Collapse
|
43
|
Jiang Y, Di Gregorio SE, Duennwald ML, Lajoie P. Polyglutamine toxicity in yeast uncovers phenotypic variations between different fluorescent protein fusions. Traffic 2016; 18:58-70. [PMID: 27734565 DOI: 10.1111/tra.12453] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 10/06/2016] [Accepted: 10/06/2016] [Indexed: 12/28/2022]
Abstract
The palette of fluorescent proteins (FPs) available for live-cell imaging contains proteins that strongly differ in their biophysical properties. FPs cannot be assumed to be equivalent and in certain cases could significantly perturb the behavior of fluorescent reporters. We employed Saccharomyces cerevisiae to comprehensively study the impact of FPs on the toxicity of polyglutamine (polyQ) expansion proteins associated with Huntington's disease. The toxicity of polyQ fusion constructs is highly dependent on the sequences flanking the polyQ repeats. Thus, they represent a powerful tool to study the impact of fluorescent fusion partners. We observed significant differences on polyQ aggregation and toxicity between commonly used FPs. We generated a novel series of vectors with latest yeast-optimized FPs for investigation of Htt toxicity, including a newly optimized blue FP for expression in yeast. Our study highlights the importance of carefully choosing the optimal FPs when designing tagging strategies.
Collapse
Affiliation(s)
- Yuwei Jiang
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| | - Sonja E Di Gregorio
- Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Canada
| | - Martin L Duennwald
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada.,Department of Pathology and Laboratory Medicine, The University of Western Ontario, London, Canada
| | - Patrick Lajoie
- Department of Anatomy and Cell Biology, The University of Western Ontario, London, Canada
| |
Collapse
|
44
|
Chen F, Zeng Q, Zhuang W, Liang W. Characterizing the Structures, Spectra, and Energy Landscapes Involved in the Excited-State Proton Transfer Process of Red Fluorescent Protein LSSmKate1. J Phys Chem B 2016; 120:9833-42. [PMID: 27581731 DOI: 10.1021/acs.jpcb.6b04708] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
By applying molecular dynamics (MD) simulations and quantum chemical calculations, we have characterized the states and processes involved in the excited-state proton transfer (ESPT) of LSSmKate1. MD simulations identify two stable structures in the electronic ground state of LSSmKate1, one with a protonated chromophore and the other with a deprotonated chromophore, thus leading to two separate low-energy absorption maxima with a large energy spacing, as observed in the calculated and experimentally measured absorption spectra. Proton transfer is induced by electronic excitation. When LSSmKate1 is excited, the electrons in the chromophore are transferred from the phenol ring to the N-acylimine moiety; the acidity of a phenolic hydroxyl group is thus enhanced. The calculated potential energy curves (PECs) exhibit energetic feasibility in the generation of the fluorescent species in LSSmKate1, and the exact agreement between the calculated and experimentally measured values of the large Stokes shift further provides solid theoretical evidence for the ESPT process taking place in photoexcited LSSmKate1. The molecular environments play a significant role in the geometries and absorption/emission energies of the chromophores. Overall, TD-ωB97X-D/molecular mechanics (MM) provides a better description of the optical properties of LSSmKate1 than TD-B3LYP/MM, although it always overestimates the excitation energies.
Collapse
Affiliation(s)
- Fasheng Chen
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Qiao Zeng
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| | - Wei Zhuang
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences , Fuzhou, Fujian 350002, China
| | - WanZhen Liang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, and Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University , Xiamen 361005, China
| |
Collapse
|
45
|
Chu J, Oh Y, Sens A, Ataie N, Dana H, Macklin JJ, Laviv T, Welf ES, Dean KM, Zhang F, Kim BB, Tang CT, Hu M, Baird MA, Davidson MW, Kay MA, Fiolka R, Yasuda R, Kim DS, Ng HL, Lin MZ. A bright cyan-excitable orange fluorescent protein facilitates dual-emission microscopy and enhances bioluminescence imaging in vivo. Nat Biotechnol 2016; 34:760-7. [PMID: 27240196 PMCID: PMC4942401 DOI: 10.1038/nbt.3550] [Citation(s) in RCA: 204] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2015] [Accepted: 03/22/2016] [Indexed: 02/02/2023]
Abstract
Orange-red fluorescent proteins (FPs) are widely used in biomedical research for multiplexed epifluorescence microscopy with GFP-based probes, but their different excitation requirements make multiplexing with new advanced microscopy methods difficult. Separately, orange-red FPs are useful for deep-tissue imaging in mammals owing to the relative tissue transmissibility of orange-red light, but their dependence on illumination limits their sensitivity as reporters in deep tissues. Here we describe CyOFP1, a bright, engineered, orange-red FP that is excitable by cyan light. We show that CyOFP1 enables single-excitation multiplexed imaging with GFP-based probes in single-photon and two-photon microscopy, including time-lapse imaging in light-sheet systems. CyOFP1 also serves as an efficient acceptor for resonance energy transfer from the highly catalytic blue-emitting luciferase NanoLuc. An optimized fusion of CyOFP1 and NanoLuc, called Antares, functions as a highly sensitive bioluminescent reporter in vivo, producing substantially brighter signals from deep tissues than firefly luciferase and other bioluminescent proteins.
Collapse
Affiliation(s)
- Jun Chu
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Pediatrics, Stanford University, Stanford, California, USA
| | - Younghee Oh
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Pediatrics, Stanford University, Stanford, California, USA
- Department of Neurobiology, Stanford University, Stanford, California, USA
| | - Alex Sens
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Niloufar Ataie
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Hod Dana
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - John J Macklin
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Tal Laviv
- Max Planck Florida Institute, Jupiter, Florida, USA
| | - Erik S Welf
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Kevin M Dean
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Feijie Zhang
- Department of Pediatrics, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Benjamin B Kim
- Department of Bioengineering, Stanford University, Stanford, California, USA
| | - Clement Tran Tang
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Michelle Hu
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | - Michelle A Baird
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Michael W Davidson
- Department of Biological Science, Florida State University, Tallahassee, Florida, USA
- National High Magnetic Field Laboratory, Florida State University, Tallahassee, Florida, USA
| | - Mark A Kay
- Department of Pediatrics, Stanford University, Stanford, California, USA
- Department of Genetics, Stanford University, Stanford, California, USA
| | - Reto Fiolka
- Department of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | | | - Douglas S Kim
- Howard Hughes Medical Institute, Janelia Research Campus, Ashburn, Virginia, USA
| | - Ho-Leung Ng
- Department of Chemistry, University of Hawaii at Manoa, Honolulu, Hawaii, USA
- University of Hawaii Cancer Center, Honolulu, Hawaii, USA
| | - Michael Z Lin
- Department of Bioengineering, Stanford University, Stanford, California, USA
- Department of Pediatrics, Stanford University, Stanford, California, USA
- Department of Neurobiology, Stanford University, Stanford, California, USA
| |
Collapse
|
46
|
Abstract
Recently we have explored and developed approaches imaging using confocal/two-photon microscopy, which enables simultaneous high-resolution assessment of specifically fluorescently marked cells in conjunction with structural components of the tissues visualized via harmonic generated signals. This approach uses commercially available confocal and two-photon laser microscope and automated user-interactive image analysis methods based on commercially available software packages allowing easy implementation in usual microscopy facilities.
Collapse
Affiliation(s)
- Daniela Malide
- Light Microscopy Core Facility, National Heart, Lung, and Blood Institute, National Institute of Health, Building 10, Room 6 N-309, 10 Center Drive, Bethesda, MD, 20892, USA.
| |
Collapse
|
47
|
Costantini LM, Baloban M, Markwardt ML, Rizzo MA, Guo F, Verkhusha VV, Snapp EL. A palette of fluorescent proteins optimized for diverse cellular environments. Nat Commun 2015; 6:7670. [PMID: 26158227 PMCID: PMC4499870 DOI: 10.1038/ncomms8670] [Citation(s) in RCA: 183] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Accepted: 05/28/2015] [Indexed: 12/18/2022] Open
Abstract
To perform quantitative live cell imaging, investigators require fluorescent reporters that accurately report protein localization and levels, while minimally perturbing the cell. Yet, within the biochemically distinct environments of cellular organelles, popular fluorescent proteins (FPs), including EGFP, can be unreliable for quantitative imaging, resulting in the underestimation of protein levels and incorrect localization. Specifically, within the secretory pathway, significant populations of FPs misfold and fail to fluoresce due to non-native disulphide bond formation. Furthermore, transmembrane FP-fusion constructs can disrupt organelle architecture due to oligomerizing tendencies of numerous common FPs. Here, we describe a powerful set of bright and inert FPs optimized for use in multiple cellular compartments, especially oxidizing environments and biological membranes. Also, we provide new insights into the use of red FPs in the secretory pathway. Our monomeric 'oxFPs' finally resolve long-standing, underappreciated and important problems of cell biology and should be useful for a number of applications.
Collapse
Affiliation(s)
- Lindsey M. Costantini
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| | - Michele L. Markwardt
- Department of Physiology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, 21201 Maryland USA
| | - Megan A. Rizzo
- Department of Physiology, University of Maryland School of Medicine, 660 West Redwood Street, Baltimore, 21201 Maryland USA
| | - Feng Guo
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| | - Vladislav V. Verkhusha
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| | - Erik L. Snapp
- Department of Anatomy and Structural Biology, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, 10461 New York USA
| |
Collapse
|
48
|
Kitamura A, Nagata K, Kinjo M. Conformational analysis of misfolded protein aggregation by FRET and live-cell imaging techniques. Int J Mol Sci 2015; 16:6076-92. [PMID: 25785563 PMCID: PMC4394520 DOI: 10.3390/ijms16036076] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 03/05/2015] [Accepted: 03/11/2015] [Indexed: 12/18/2022] Open
Abstract
Cellular homeostasis is maintained by several types of protein machinery, including molecular chaperones and proteolysis systems. Dysregulation of the proteome disrupts homeostasis in cells, tissues, and the organism as a whole, and has been hypothesized to cause neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and Huntington's disease (HD). A hallmark of neurodegenerative disorders is formation of ubiquitin-positive inclusion bodies in neurons, suggesting that the aggregation process of misfolded proteins changes during disease progression. Hence, high-throughput determination of soluble oligomers during the aggregation process, as well as the conformation of sequestered proteins in inclusion bodies, is essential for elucidation of physiological regulation mechanism and drug discovery in this field. To elucidate the interaction, accumulation, and conformation of aggregation-prone proteins, in situ spectroscopic imaging techniques, such as Förster/fluorescence resonance energy transfer (FRET), fluorescence correlation spectroscopy (FCS), and bimolecular fluorescence complementation (BiFC) have been employed. Here, we summarize recent reports in which these techniques were applied to the analysis of aggregation-prone proteins (in particular their dimerization, interactions, and conformational changes), and describe several fluorescent indicators used for real-time observation of physiological states related to proteostasis.
Collapse
Affiliation(s)
- Akira Kitamura
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan.
| | - Kazuhiro Nagata
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan.
| | - Masataka Kinjo
- Laboratory of Molecular Cell Dynamics, Faculty of Advanced Life Science, Hokkaido University, Sapporo 001-0021, Japan.
| |
Collapse
|
49
|
Hense A, Nienhaus K, Nienhaus GU. Exploring color tuning strategies in red fluorescent proteins. Photochem Photobiol Sci 2015; 14:200-12. [PMID: 25597270 DOI: 10.1039/c4pp00212a] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 07/31/2014] [Indexed: 01/01/2023]
Abstract
Red-emitting fluorescent proteins (RFPs) with fluorescence emission above 600 nm are advantageous for cell and tissue imaging applications for various reasons. Fluorescence from an RFP is well separated from cellular autofluorescence, which is in the green region of the spectrum, and red light is scattered less, which allows thicker specimens to be imaged. Moreover, the phototoxic response of cells is lower for red than blue or green light exposure. Further red-shifted FP variants can be obtained by genetic modifications causing an extension of the conjugated π-electron system of the chromophore, or by placing amino acids near the chromophore that stabilize its excited state or destabilize its ground state. We have selected the tetrameric RFP eqFP611 from Entacmaea quadricolor as a lead structure and discuss several rational design trials to generate RFP variants with improved photochemical properties.
Collapse
Affiliation(s)
- Anika Hense
- Institute of Applied Physics and Center for Functional Nanostructures (CFN), Karlsruhe Institute of Technology (KIT), Wolfgang-Gaede-Strasse 1, 76131 Karlsruhe, Germany.
| | | | | |
Collapse
|
50
|
Reddington SC, Driezis S, Hartley AM, Watson PD, Rizkallah PJ, Jones DD. Genetically encoded phenyl azide photochemistry drives positive and negative functional modulation of a red fluorescent protein. RSC Adv 2015. [DOI: 10.1039/c5ra13552d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Genetically encoded incorporation of phenyl azide chemistry into the autofluorescent protein mCherry can be used to switch on or off fluorescence.
Collapse
|