1
|
Saffarian Delkhosh A, Hadadianpour E, Islam MM, Georgieva ER. Highly versatile small virus-encoded proteins in cellular membranes: A structural perspective on how proteins' inherent conformational plasticity couples with host membranes' properties to control cellular processes. J Struct Biol X 2025; 11:100117. [PMID: 39802090 PMCID: PMC11714672 DOI: 10.1016/j.yjsbx.2024.100117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
We investigated several small viral proteins that reside and function in cellular membranes. These proteins belong to the viroporin family because they assemble into ion-conducting oligomers. However, despite forming similar oligomeric structures with analogous functions, these proteins have diverse amino acid sequences. In particular, the amino acid compositions of the proposed channel-forming transmembrane (TM) helices are vastly different-some contain residues (e.g., His, Trp, Asp, Ser) that could facilitate cation transport. Still, other viroporins' TM helices encompass exclusively hydrophobic residues; therefore, it is difficult to explain their channels' activity, unless other mechanisms (e.g., involving a negative lipid headgroups and/or membrane destabilization) take place. For this study, we selected the M2, Vpu, E, p13II, p7, and 2B proteins from the influenza A, HIV-1, human T-cell leukemia, hepatitis C, and picorna viruses, respectively. We provide a brief overview of the current knowledge about these proteins' structures as well as remaining questions about more comprehensive understanding of their structures, conformational dynamics, and function. Finally, we outline strategies to utilize a multi-prong structural and computational approach to overcome current deficiencies in the knowledge about these proteins.
Collapse
Affiliation(s)
| | | | - Md Majharul Islam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Elka R. Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| |
Collapse
|
2
|
Liu Y, Brown CM, Borges N, Nobre RN, Erramilli S, Belcher Dufrisne M, Kloss B, Giacometti S, Esteves AM, Timóteo CG, Tokarz P, Cater RJ, Lowary TL, Morita YS, Kossiakoff AA, Santos H, Stansfeld PJ, Nygaard R, Mancia F. Mechanistic studies of mycobacterial glycolipid biosynthesis by the mannosyltransferase PimE. Nat Commun 2025; 16:3974. [PMID: 40301322 PMCID: PMC12041525 DOI: 10.1038/s41467-025-57843-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 03/05/2025] [Indexed: 05/01/2025] Open
Abstract
Tuberculosis (TB), a leading cause of death among infectious diseases globally, is caused by Mycobacterium tuberculosis (Mtb). The pathogenicity of Mtb is largely attributed to its complex cell envelope, which includes a class of glycolipids called phosphatidyl-myo-inositol mannosides (PIMs). These glycolipids maintain the integrity of the cell envelope, regulate permeability, and mediate host-pathogen interactions. PIMs comprise a phosphatidyl-myo-inositol core decorated with one to six mannose residues and up to four acyl chains. The mannosyltransferase PimE catalyzes the transfer of the fifth PIM mannose residue from a polyprenyl phosphate-mannose (PPM) donor. This step contributes to the proper assembly and function of the mycobacterial cell envelope; however, the structural basis for substrate recognition and the catalytic mechanism of PimE remain poorly understood. Here, we present the cryo-electron microscopy (cryo-EM) structures of PimE from Mycobacterium abscessus in its apo and product-bound form. The structures reveal a distinctive binding cavity that accommodates both donor and acceptor substrates/products. Key residues involved in substrate coordination and catalysis were identified and validated via in vitro assays and in vivo complementation, while molecular dynamics simulations delineated access pathways and binding dynamics. Our integrated approach provides comprehensive insights into PimE function and informs potential strategies for anti-TB therapeutics.
Collapse
Affiliation(s)
- Yaqi Liu
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Chelsea M Brown
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK
- Groningen Biomolecular Sciences and Biotechnology Institute and Zernike Institute for Advanced Materials, University of Groningen, Nijenborgh, The Netherlands
| | - Nuno Borges
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
- Marine and Environmental Sciences Centre, Escola Superior de Tecnologia, Instituto Politécnico de Setúbal, Setúbal, Portugal
| | - Rodrigo N Nobre
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Satchal Erramilli
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - Brian Kloss
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Sabrina Giacometti
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- School of Medicine, New York University, New York, NY, USA
| | - Ana M Esteves
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cristina G Timóteo
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Piotr Tokarz
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Rosemary J Cater
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, QLD, Australia
| | - Todd L Lowary
- Institute of Biological Chemistry, Academia Sinica, Nangang, Taipei, Taiwan
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
- Institute of Biochemical Sciences, National Taiwan University, Taipei, Taiwan
| | - Yasu S Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biophysics, University of Chicago, Chicago, IL, USA
| | - Helena Santos
- Instituto de Tecnologia Química e Biológica António Xavier, ITQB NOVA, Universidade Nova de Lisboa, Oeiras, Portugal.
| | - Phillip J Stansfeld
- School of Life Sciences and Department of Chemistry, University of Warwick, Coventry, UK.
| | - Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
3
|
Ruma YN, Nannenga BL, Gonen T. Unraveling atomic complexity from frozen samples. STRUCTURAL DYNAMICS (MELVILLE, N.Y.) 2025; 12:020901. [PMID: 40255534 PMCID: PMC12009148 DOI: 10.1063/4.0000303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Accepted: 03/26/2025] [Indexed: 04/22/2025]
Abstract
Cryo-electron microscopy (cryo-EM) is a significant driver of recent advances in structural biology. Cryo-EM is comprised of several distinct and complementary methods, which include single particle analysis, cryo-electron tomography, and microcrystal electron diffraction. In this Perspective, we will briefly discuss the different branches of cryo-EM in structural biology and the current challenges in these areas.
Collapse
Affiliation(s)
| | | | - Tamir Gonen
- Author to whom correspondence should be addressed:
| |
Collapse
|
4
|
Xie P, Li Y, Lamon G, Kuang H, Wang DN, Traaseth NJ. A fiducial-assisted strategy compatible with resolving small MFS transporter structures in multiple conformations using cryo-EM. Nat Commun 2025; 16:7. [PMID: 39746942 PMCID: PMC11695964 DOI: 10.1038/s41467-024-54986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/24/2024] [Indexed: 01/04/2025] Open
Abstract
Advancements in cryo-EM have stimulated a revolution in structural biology. Yet, for membrane proteins near the cryo-EM size threshold of approximately 40 kDa, including transporters and G-protein coupled receptors, the absence of distinguishable structural features makes image alignment and structure determination a significant challenge. Furthermore, resolving more than one protein conformation within a sample, a major advantage of cryo-EM, represents an even greater degree of difficulty. Here, we describe a strategy for introducing a rigid fiducial marker (BRIL domain) at the C-terminus of membrane transporters from the Major Facilitator Superfamily (MFS) with AlphaFold2. This approach involves fusion of the last transmembrane domain helix of the target protein with the first helix of BRIL through a short poly-alanine linker to promote helicity. Combining this strategy with a BRIL-specific Fab, we elucidated four cryo-EM structures of the 42 kDa Staphylococcus aureus transporter NorA, three of which were derived from a single sample corresponding to inward-open, inward-occluded, and occluded conformations. Hence, this fusion construct facilitated experiments to characterize the conformational landscape of NorA and validated our design to position the BRIL/antibody pair in an orientation that avoids steric clash with the transporter. The latter was enabled through AlphaFold2 predictions, which minimized guesswork and reduced the need for screening several constructs. We further validated the suitability of the method to three additional MFS transporters (GlpT, Bmr, and Blt), results that supported a rigid linker between the transporter and BRIL. The successful application to four MFS proteins, the largest family of secondary transporters in nature, and analysis of predicted structures for the family indicates this strategy will be a valuable tool for studying other MFS members using cryo-EM.
Collapse
Affiliation(s)
- Pujun Xie
- Department of Chemistry, New York University, New York, NY, USA
| | - Yan Li
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Gaëlle Lamon
- Department of Chemistry, New York University, New York, NY, USA
| | - Huihui Kuang
- Cryo-EM Core Laboratory, New York University School of Medicine, New York, NY, USA
| | - Da-Neng Wang
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| | | |
Collapse
|
5
|
Nuske MR, Zhong J, Huang R, Sarojini V, Chen JLY, Squire CJ, Blaskovich MAT, Leung IKH. Adjuvant strategies to tackle mcr-mediated polymyxin resistance. RSC Med Chem 2024:d4md00654b. [PMID: 39539347 PMCID: PMC11556429 DOI: 10.1039/d4md00654b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Accepted: 11/01/2024] [Indexed: 11/16/2024] Open
Abstract
The emergence of the mobile colistin resistance (mcr) gene is a demonstrable threat contributing to the worldwide antibiotic resistance crisis. The gene is encoded on plasmids and can easily spread between different bacterial strains. mcr encodes a phosphoethanolamine (pEtN) transferase, which catalyses the transfer of the pEtN moiety from phosphatidylethanolamine to lipid A, the head group of lipopolysaccharides (LPS). This neutralises the overall negative charge of the LPS and prevents the binding of polymyxins to bacterial membranes. We believe that the development of polymyxin adjuvants could be a promising approach to prolong the use of this important class of last-resort antibiotics. This review discusses recent progress in the identification, design and development of adjuvants to restore polymyxin sensitivity in these resistant bacteria, and focuses on both MCR inhibitors as well as alternative approaches that modulate polymyxin resistance.
Collapse
Affiliation(s)
- Madison R Nuske
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria 3010 Australia
| | - Junlang Zhong
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria 3010 Australia
| | - Renjie Huang
- School of Chemical Sciences, The University of Auckland Auckland 1010 New Zealand
| | | | - Jack L Y Chen
- Centre for Biomedical and Chemical Sciences, School of Science, Auckland University of Technology Auckland 1010 New Zealand
- Department of Biotechnology, Chemistry and Pharmaceutical Sciences, Università degli Studi di Siena 53100 Siena Italy
| | - Christopher J Squire
- School of Biological Sciences, The University of Auckland Auckland 1010 New Zealand
| | - Mark A T Blaskovich
- Centre for Superbug Solutions, Institute for Molecular Bioscience, The University of Queensland St. Lucia Queensland 4072 Australia
| | - Ivanhoe K H Leung
- School of Chemistry, The University of Melbourne Parkville Victoria 3010 Australia
- Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne Parkville Victoria 3010 Australia
- School of Chemical Sciences, The University of Auckland Auckland 1010 New Zealand
| |
Collapse
|
6
|
Catalano C, Lucier KW, To D, Senko S, Tran NL, Farwell AC, Silva SM, Dip PV, Poweleit N, Scapin G. The CryoEM structure of human serum albumin in complex with ligands. J Struct Biol 2024; 216:108105. [PMID: 38852682 DOI: 10.1016/j.jsb.2024.108105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/11/2024]
Abstract
Human serum albumin (HSA) is the most prevalent plasma protein in the human body, accounting for 60 % of the total plasma protein. HSA plays a major pharmacokinetic function, serving as a facilitator in the distribution of endobiotics and xenobiotics within the organism. In this paper we report the cryoEM structures of HSA in the apo form and in complex with two ligands (salicylic acid and teniposide) at a resolution of 3.5, 3.7 and 3.4 Å, respectively. We expand upon previously published work and further demonstrate that sub-4 Å maps of ∼60 kDa proteins can be routinely obtained using a 200 kV microscope, employing standard workflows. Most importantly, these maps allowed for the identification of small molecule ligands, emphasizing the practical applicability of this methodology and providing a starting point for subsequent computational modeling and in silico optimization.
Collapse
Affiliation(s)
- Claudio Catalano
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA.
| | - Kyle W Lucier
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Dennis To
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Skerdi Senko
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Nhi L Tran
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Ashlyn C Farwell
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Sabrina M Silva
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Phat V Dip
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Nicole Poweleit
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| | - Giovanna Scapin
- NanoImaging Services, 4940 Carroll Canyon Road, Suite 115, San Diego, CA 92121, USA
| |
Collapse
|
7
|
Seki S, Miyata T, Norioka N, Tanaka H, Kurisu G, Namba K, Fujii R. Structure-based validation of recombinant light-harvesting complex II. PNAS NEXUS 2024; 3:pgae405. [PMID: 39346626 PMCID: PMC11428208 DOI: 10.1093/pnasnexus/pgae405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/05/2024] [Indexed: 10/01/2024]
Abstract
Light-harvesting complex II (LHCII) captures sunlight and dissipates excess energy to drive photosynthesis. To elucidate this mechanism, the individual optical properties of pigments in the LHCII protein must be identified. In vitro reconstitution with apoproteins synthesized by Escherichia coli and pigment-lipid mixtures from natural sources is an effective approach; however, the local environment surrounding each pigment within reconstituted LHCII (rLHCII) has only been indirectly estimated using spectroscopic and biochemical methods. Here, we used cryo-electron microscopy to determine the 3D structure of the rLHCII trimer and found that rLHCII exhibited a structure that was virtually identical to that of native LHCII, with a few exceptions: some C-terminal amino acids were not visible, likely due to aggregation of the His-tags; a carotenoid at the V1 site was not visible; and at site 614 showed mixed occupancy by both chlorophyll a and b molecules. Our observations confirmed the applicability of the in vitro reconstitution technique.
Collapse
Affiliation(s)
- Soichiro Seki
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Tomoko Miyata
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Naoko Norioka
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Hideaki Tanaka
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
| | - Genji Kurisu
- Institute for Protein Research, Osaka University, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
- Institute for Open and Transdisciplinary Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Keiichi Namba
- Graduate School of Frontier Biosciences, Osaka University, Suita, Osaka 565-0871, Japan
- JEOL YOKOGUSHI Research Alliance Laboratories, Osaka University, 1-3 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ritsuko Fujii
- Graduate School of Science, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Graduate School of Science, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
- Research Center for Artificial Photosynthesis, Osaka Metropolitan University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
| |
Collapse
|
8
|
Doerner B, Della Sala F, Wang S, Webb SJ. Reaction, Recognition, Relay: Anhydride Hydrolysis Reported by Conformationally Responsive Fluorinated Foldamers in Micelles. Angew Chem Int Ed Engl 2024; 63:e202405924. [PMID: 38703400 DOI: 10.1002/anie.202405924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/23/2024] [Accepted: 04/29/2024] [Indexed: 05/06/2024]
Abstract
Natural membrane receptors are proteins that can report on changes in the concentration of external chemical messengers. Messenger binding to a receptor produces conformational changes that are relayed through the membrane into the cell; this information allows cells to adapt to changes in their environment. Artificial membrane receptors (R)-1 and (S)-1 are helical α-aminoisobutyric acid (Aib) foldamers that replicate key parts of this information relay. Solution-phase 19F NMR spectroscopy of zinc(II)-capped receptor 1, either in organic solvent or in membrane-mimetic micelles, showed messenger binding produced an enrichment of either left- or right-handed screw-sense; the chirality of the bound messenger was relayed to the other receptor terminus. Furthermore, in situ production of a chemical messenger in the external aqueous environment could be detected in real-time by a racemic mixture of receptor 1 in micelles. The hydrolysis of insoluble anhydrides produced carboxylate in the aqueous phase, which bound to the receptors and gave a distinct 19F NMR output from inside the hydrophobic region of the micelles.
Collapse
Affiliation(s)
- Benedicte Doerner
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Flavio Della Sala
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Siyuan Wang
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
- Manchester Institute of Biotechnology, University of Manchester, 131 Princess Street, Manchester, M1 7DN, United Kingdom
| | - Simon J Webb
- Department of Chemistry, University of Manchester, Oxford Road, Manchester, M13 9PL, United Kingdom
| |
Collapse
|
9
|
Erramilli SK, Dominik PK, Ogbu CP, Kossiakoff AA, Vecchio AJ. Structural and biophysical insights into targeting of claudin-4 by a synthetic antibody fragment. Commun Biol 2024; 7:733. [PMID: 38886509 PMCID: PMC11183071 DOI: 10.1038/s42003-024-06437-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 06/11/2024] [Indexed: 06/20/2024] Open
Abstract
Claudins are a 27-member family of ~25 kDa membrane proteins that integrate into tight junctions to form molecular barriers at the paracellular spaces between endothelial and epithelial cells. As the backbone of tight junction structure and function, claudins are attractive targets for modulating tissue permeability to deliver drugs or treat disease. However, structures of claudins are limited due to their small sizes and physicochemical properties-these traits also make therapy development a challenge. Here we report the development of a synthetic antibody fragment (sFab) that binds human claudin-4 and the determination of a high-resolution structure of it bound to claudin-4/enterotoxin complexes using cryogenic electron microscopy. Structural and biophysical results reveal this sFabs mechanism of select binding to human claudin-4 over other homologous claudins and establish the ability of sFabs to bind hard-to-target claudins to probe tight junction structure and function. The findings provide a framework for tight junction modulation by sFabs for tissue-selective therapies.
Collapse
Affiliation(s)
- Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
- Pfizer, San Diego, CA, 92121, USA
| | - Chinemerem P Ogbu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588, USA.
- Department of Structural Biology, University at Buffalo, Buffalo, NY, 14203, USA.
| |
Collapse
|
10
|
Carlström A, Ott M. Insights into conformational changes in cytochrome b during the early steps of its maturation. FEBS Lett 2024; 598:1438-1448. [PMID: 38664235 DOI: 10.1002/1873-3468.14888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/18/2024] [Accepted: 04/03/2024] [Indexed: 06/12/2024]
Abstract
Membrane proteins carrying redox cofactors are key subunits of respiratory chain complexes, yet the exact path of their folding and maturation remains poorly understood. Here, using cryo-EM and structure prediction via Alphafold2, we generated models of early assembly intermediates of cytochrome b (Cytb), a central subunit of complex III. The predicted structure of the first assembly intermediate suggests how the binding of Cytb to the assembly factor Cbp3-Cbp6 imposes an open configuration to facilitate the acquisition of its heme cofactors. Moreover, structure predictions of the second intermediate indicate how hemes get stabilized by binding of the assembly factor Cbp4, with a concomitant weakening of the contact between Cbp3-Cbp6 and Cytb, preparing for the release of the fully hemylated protein from the assembly factors.
Collapse
Affiliation(s)
- Andreas Carlström
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden
| | - Martin Ott
- Department of Biochemistry and Biophysics, Stockholm University, Sweden
- Department of Medical Biochemistry and Cell Biology, Institute of Biomedicine, University of Gothenburg, Sweden
| |
Collapse
|
11
|
Cater RJ, Mukherjee D, Gil-Iturbe E, Erramilli SK, Chen T, Koo K, Santander N, Reckers A, Kloss B, Gawda T, Choy BC, Zhang Z, Katewa A, Larpthaveesarp A, Huang EJ, Mooney SWJ, Clarke OB, Yee SW, Giacomini KM, Kossiakoff AA, Quick M, Arnold T, Mancia F. Structural and molecular basis of choline uptake into the brain by FLVCR2. Nature 2024; 629:704-709. [PMID: 38693257 PMCID: PMC11168207 DOI: 10.1038/s41586-024-07326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/15/2024] [Indexed: 05/03/2024]
Abstract
Choline is an essential nutrient that the human body needs in vast quantities for cell membrane synthesis, epigenetic modification and neurotransmission. The brain has a particularly high demand for choline, but how it enters the brain remains unknown1-3. The major facilitator superfamily transporter FLVCR1 (also known as MFSD7B or SLC49A1) was recently determined to be a choline transporter but is not highly expressed at the blood-brain barrier, whereas the related protein FLVCR2 (also known as MFSD7C or SLC49A2) is expressed in endothelial cells at the blood-brain barrier4-7. Previous studies have shown that mutations in human Flvcr2 cause cerebral vascular abnormalities, hydrocephalus and embryonic lethality, but the physiological role of FLVCR2 is unknown4,5. Here we demonstrate both in vivo and in vitro that FLVCR2 is a BBB choline transporter and is responsible for the majority of choline uptake into the brain. We also determine the structures of choline-bound FLVCR2 in both inward-facing and outward-facing states using cryo-electron microscopy. These results reveal how the brain obtains choline and provide molecular-level insights into how FLVCR2 binds choline in an aromatic cage and mediates its uptake. Our work could provide a novel framework for the targeted delivery of therapeutic agents into the brain.
Collapse
Affiliation(s)
- Rosemary J Cater
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
- Institute for Molecular Bioscience, The University of Queensland, St Lucia, Queensland, Australia.
| | - Dibyanti Mukherjee
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Eva Gil-Iturbe
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Ting Chen
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Katie Koo
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Nicolás Santander
- Instituto de Ciencias de la Salud, Universidad de O'Higgins, Rancagua, Chile
| | - Andrew Reckers
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Brian Kloss
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Tomasz Gawda
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Brendon C Choy
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Zhening Zhang
- Cryo-Electron Microscopy Center, Columbia University, New York, NY, USA
| | - Aditya Katewa
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Amara Larpthaveesarp
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA
| | - Eric J Huang
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
- Pathology Service, San Francisco VA Medical Center, San Francisco, CA, USA
| | | | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Sook Wah Yee
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Kathleen M Giacomini
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Matthias Quick
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Psychiatry, Columbia University Irving Medical Center, New York, NY, USA
- New York State Psychiatric Institute, Area Neuroscience-Molecular Therapeutics, New York, NY, USA
| | - Thomas Arnold
- Department of Pediatrics, Neonatal Brain Research Institute, University of California San Francisco, San Francisco, CA, USA.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
12
|
Sandberg JW, Santiago-McRae E, Ennis J, Brannigan G. The density-threshold affinity: Calculating lipid binding affinities from unbiased coarse-grained molecular dynamics simulations. Methods Enzymol 2024; 701:47-82. [PMID: 39025580 DOI: 10.1016/bs.mie.2024.03.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Many membrane proteins are sensitive to their local lipid environment. As structural methods for membrane proteins have improved, there is growing evidence of direct, specific binding of lipids to protein surfaces. Unfortunately the workhorse of understanding protein-small molecule interactions, the binding affinity for a given site, is experimentally inaccessible for these systems. Coarse-grained molecular dynamics simulations can be used to bridge this gap, and are relatively straightforward to learn. Such simulations allow users to observe spontaneous binding of lipids to membrane proteins and quantify localized densities of individual lipids or lipid fragments. In this chapter we outline a protocol for extracting binding affinities from these localized distributions, known as the "density threshold affinity." The density threshold affinity uses an adaptive and flexible definition of site occupancy that alleviates the need to distinguish between "bound'' lipids and bulk lipids that are simply diffusing through the site. Furthermore, the method allows "bead-level" resolution that is suitable for the case where lipids share binding sites, and circumvents ambiguities about a relevant reference state. This approach provides a convenient and straightforward method for comparing affinities of a single lipid species for multiple sites, multiple lipids for a single site, and/or a single lipid species modeled using multiple forcefields.
Collapse
Affiliation(s)
- Jesse W Sandberg
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Ezry Santiago-McRae
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Jahmal Ennis
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States
| | - Grace Brannigan
- Center for Computational and Integrative Biology, Rutgers University, Camden, NJ, United States; Department of Physics, Rutgers University, Camden, NJ, United States.
| |
Collapse
|
13
|
Yamamoto M, Funada R, Taki R, Shiroishi M. Production and characterization of an Fv-clasp of rheumatoid factor, a low-affinity human autoantibody. J Biochem 2024; 175:387-394. [PMID: 38102734 DOI: 10.1093/jb/mvad112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 11/23/2023] [Indexed: 12/17/2023] Open
Abstract
Rheumatoid factor (RF) is an autoantibody against IgG that affects autoimmune diseases and inhibits the effectiveness of pharmaceuticals and diagnostic agents. Although RFs derived from various germline genes have been identified, little is known about their molecular recognition mechanisms. In this study, the Fv-clasp format was used to prepare YES8c, an RF. We developed an Escherichia coli secretion expression system capable of producing milligram-scale of YES8c Fv-clasp per 1 L of culture. Although YES8c is an autoantibody with very low affinity, the produced Fv-clasp maintained specific binding to IgG. Interestingly, the molecules prepared by E. coli secretion had a higher affinity than those prepared by refolding. In the structure of the YES8c-Fc complex, the N-terminus of the light chain is close to Fc; therefore, it is suggested that the addition of the N-terminal methionine may cause collisions with Fc, resulting in reduced affinity. Our findings suggest that the Fv-clasp, which provides sufficient stability and a high bacterial yield, is a useful format for studying RFs with very low affinity. Furthermore, the Fv-clasp produced from a secretion expression system, which can properly process the N-terminus, would be suitable for analysis of RFs in which the N-terminus may be involved in interactions.
Collapse
Affiliation(s)
- Maruto Yamamoto
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Ryoma Funada
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Ryota Taki
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Mitsunori Shiroishi
- Department of Biological Science and Technology, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| |
Collapse
|
14
|
Özkan M, Yılmaz H, Ergenekon P, Erdoğan EM, Erbakan M. Microbial membrane transport proteins and their biotechnological applications. World J Microbiol Biotechnol 2024; 40:71. [PMID: 38225445 PMCID: PMC10789880 DOI: 10.1007/s11274-024-03891-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 01/09/2024] [Indexed: 01/17/2024]
Abstract
Because of the hydrophobic nature of the membrane lipid bilayer, the majority of the hydrophilic solutes require special transportation mechanisms for passing through the cell membrane. Integral membrane transport proteins (MTPs), which belong to the Major Intrinsic Protein Family, facilitate the transport of these solutes across cell membranes. MTPs including aquaporins and carrier proteins are transmembrane proteins spanning across the cell membrane. The easy handling of microorganisms enabled the discovery of a remarkable number of transport proteins specific to different substances. It has been realized that these transporters have very important roles in the survival of microorganisms, their pathogenesis, and antimicrobial resistance. Astonishing features related to the solute specificity of these proteins have led to the acceleration of the research on the discovery of their properties and the development of innovative products in which these unique properties are used or imitated. Studies on microbial MTPs range from the discovery and characterization of a novel transporter protein to the mining and screening of them in a large transporter library for particular functions, from simulations and modeling of specific transporters to the preparation of biomimetic synthetic materials for different purposes such as biosensors or filtration membranes. This review presents recent discoveries on microbial membrane transport proteins and focuses especially on formate nitrite transport proteins and aquaporins, and advances in their biotechnological applications.
Collapse
Affiliation(s)
- Melek Özkan
- Environmental Engineering Department, Gebze Technical University, Kocaeli, 41400, Türkiye.
| | - Hilal Yılmaz
- Environmental Engineering Department, Gebze Technical University, Kocaeli, 41400, Türkiye
| | - Pınar Ergenekon
- Environmental Engineering Department, Gebze Technical University, Kocaeli, 41400, Türkiye
| | - Esra Meşe Erdoğan
- Environmental Engineering Department, Gebze Technical University, Kocaeli, 41400, Türkiye
| | - Mustafa Erbakan
- Biosystem Engineering Department, Bozok University, Yozgat , 66900, Türkiye
| |
Collapse
|
15
|
Mazal H, Wieser FF, Sandoghdar V. Insights into protein structure using cryogenic light microscopy. Biochem Soc Trans 2023; 51:2041-2059. [PMID: 38015555 PMCID: PMC10754291 DOI: 10.1042/bst20221246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 11/13/2023] [Accepted: 11/14/2023] [Indexed: 11/29/2023]
Abstract
Fluorescence microscopy has witnessed many clever innovations in the last two decades, leading to new methods such as structured illumination and super-resolution microscopies. The attainable resolution in biological samples is, however, ultimately limited by residual motion within the sample or in the microscope setup. Thus, such experiments are typically performed on chemically fixed samples. Cryogenic light microscopy (Cryo-LM) has been investigated as an alternative, drawing on various preservation techniques developed for cryogenic electron microscopy (Cryo-EM). Moreover, this approach offers a powerful platform for correlative microscopy. Another key advantage of Cryo-LM is the strong reduction in photobleaching at low temperatures, facilitating the collection of orders of magnitude more photons from a single fluorophore. This results in much higher localization precision, leading to Angstrom resolution. In this review, we discuss the general development and progress of Cryo-LM with an emphasis on its application in harnessing structural information on proteins and protein complexes.
Collapse
Affiliation(s)
- Hisham Mazal
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Franz-Ferdinand Wieser
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for the Science of Light, 91058 Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
- Friedrich-Alexander University of Erlangen-Nürnberg, 91058 Erlangen, Germany
| |
Collapse
|
16
|
Langeberg CJ, Kieft JS. A generalizable scaffold-based approach for structure determination of RNAs by cryo-EM. Nucleic Acids Res 2023; 51:e100. [PMID: 37791881 PMCID: PMC10639074 DOI: 10.1093/nar/gkad784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 08/31/2023] [Accepted: 09/24/2023] [Indexed: 10/05/2023] Open
Abstract
Single-particle cryo-electron microscopy (cryo-EM) can reveal the structures of large and often dynamic molecules, but smaller biomolecules (≤50 kDa) remain challenging targets due to their intrinsic low signal to noise ratio. Methods to help resolve small proteins have been applied but development of similar approaches to aid in structural determination of small, structured RNA elements have lagged. Here, we present a scaffold-based approach that we used to recover maps of sub-25 kDa RNA domains to 4.5-5.0 Å. While lacking the detail of true high-resolution maps, these maps are suitable for model building and preliminary structure determination. We demonstrate this method helped faithfully recover the structure of several RNA elements of known structure, and that it promises to be generalized to other RNAs without disturbing their native fold. This approach may streamline the sample preparation process and reduce the optimization required for data collection. This first-generation scaffold approach provides a robust system to aid in RNA structure determination by cryo-EM and lays the groundwork for further scaffold optimization to achieve higher resolution.
Collapse
Affiliation(s)
- Conner J Langeberg
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
| | - Jeffrey S Kieft
- Department of Biochemistry and Molecular Genetics, Aurora, CO 80045, USA
- RNA BioScience Initiative, University of Colorado Denver School of Medicine, Aurora, CO 80045, USA
- New York Structural Biology Center, New York, NY 10027, USA
| |
Collapse
|
17
|
Cater RJ, Mukherjee D, Iturbe EG, Erramilli SK, Chen T, Koo K, Grez NS, Reckers A, Kloss B, Gawda T, Choy BC, Zheng Z, Clarke OB, Yee SW, Kossiakoff AA, Quick M, Arnold T, Mancia F. Structural and molecular basis of choline uptake into the brain by FLVCR2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.05.561059. [PMID: 37873173 PMCID: PMC10592973 DOI: 10.1101/2023.10.05.561059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Choline is an essential nutrient that the human body needs in vast quantities for cell membrane synthesis, epigenetic modification, and neurotransmission. The brain has a particularly high demand for choline, but how it enters the brain has eluded the field for over fifty years. The MFS transporter FLVCR1 was recently determined to be a choline transporter, and while this protein is not highly expressed at the blood-brain barrier (BBB), its relative FLVCR2 is. Previous studies have shown that mutations in human Flvcr2 cause cerebral vascular abnormalities, hydrocephalus, and embryonic lethality, but the physiological role of FLVCR2 is unknown. Here, we demonstrate both in vivo and in vitro that FLVCR2 is a BBB choline transporter and is responsible for the majority of choline uptake into the brain. We also determine the structures of choline-bound FLVCR2 in the inward- and outward-facing states using cryo-electron microscopy to 2.49 and 2.77 Å resolution, respectively. These results reveal how the brain obtains choline and provide molecular-level insights into how FLVCR2 binds choline in an aromatic cage and mediates its uptake. Our work could provide a novel framework for the targeted delivery of neurotherapeutics into the brain.
Collapse
|
18
|
Trejo F, Elizalde S, Mercado A, Gamba G, de losHeros P. SLC12A cryo-EM: analysis of relevant ion binding sites, structural domains, and amino acids. Am J Physiol Cell Physiol 2023; 325:C921-C939. [PMID: 37545407 DOI: 10.1152/ajpcell.00089.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/24/2023] [Accepted: 07/24/2023] [Indexed: 08/08/2023]
Abstract
The solute carrier family 12A (SLC12A) superfamily of membrane transporters modulates the movement of cations coupled with chloride across the membrane. In doing so, these cotransporters are involved in numerous aspects of human physiology: cell volume regulation, ion homeostasis, blood pressure regulation, and neurological action potential via intracellular chloride concentration modulation. Their physiological characterization has been largely studied; however, understanding the mechanics of their function and the relevance of structural domains or specific amino acids has been a pending task. In recent years, single-particle cryogenic electron microscopy (cryo-EM) has been successfully applied to members of the SLC12A family including all K+:Cl- cotransporters (KCCs), Na+:K+:2Cl- cotransporter NKCC1, and recently Na+:Cl- cotransporter (NCC); revealing structural elements that play key roles in their function. The present review analyzes the data provided by these cryo-EM reports focusing on structural domains and specific amino acids involved in ion binding, domain interactions, and other important SCL12A structural elements. A comparison of cryo-EM data from NKCC1 and KCCs is presented in the light of the two recent NCC cryo-EM studies, to propose insight into structural elements that might also be found in NCC and are necessary for its proper function. In the final sections, the importance of key coordination residues for substrate specificity and their implication on various pathophysiological conditions and genetic disorders is reviewed, as this could provide the basis to correlate structural elements with the development of novel and selective treatments, as well as mechanistic insight into the function and regulation of cation-coupled chloride cotransporters (CCCs).
Collapse
Affiliation(s)
- Fátima Trejo
- Unidad de Investigación UNAM-INC, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Stephanie Elizalde
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Adriana Mercado
- Departamento de Bioquímica, Instituto Nacional de Cardiología Ignacio Chávez, Mexico City, Mexico
| | - Gerardo Gamba
- Departamento de Nefrología y Metabolismo Mineral, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
- Molecular Physiology Unit, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Paola de losHeros
- Unidad de Investigación UNAM-INC, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
19
|
Majeed S, Dang L, Islam MM, Ishola O, Borbat PP, Ludtke SJ, Georgieva ER. HIV-1 Vpu protein forms stable oligomers in aqueous solution via its transmembrane domain self-association. Sci Rep 2023; 13:14691. [PMID: 37673923 PMCID: PMC10483038 DOI: 10.1038/s41598-023-41873-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 09/01/2023] [Indexed: 09/08/2023] Open
Abstract
We report our findings on the assembly of the HIV-1 protein Vpu into soluble oligomers. Vpu is a key HIV-1 protein. It has been considered exclusively a single-pass membrane protein. Previous observations show that this protein forms stable oligomers in aqueous solution, but details about these oligomers still remain obscure. This is an interesting and rather unique observation, as the number of proteins transitioning between soluble and membrane embedded states is limited. In this study we made use of protein engineering, size exclusion chromatography, cryoEM and electron paramagnetic resonance (EPR) spectroscopy to better elucidate the nature of the soluble oligomers. We found that Vpu oligomerizes via its N-terminal transmembrane domain (TM). CryoEM suggests that the oligomeric state most likely is a hexamer/heptamer equilibrium. Both cryoEM and EPR suggest that, within the oligomer, the distal C-terminal region of Vpu is highly flexible. Our observations are consistent with both the concept of specific interactions among TM helices or the core of the oligomers being stabilized by hydrophobic forces. While this study does not resolve all of the questions about Vpu oligomers or their functional role in HIV-1 it provides new fundamental information about the size and nature of the oligomeric interactions.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Lan Dang
- Graduate Program in Quantitative and Computational Biosciences, Graduate School of Biomedical Sciences at Baylor College of Medicine, Houston, TX, USA
| | - Md Majharul Islam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Olamide Ishola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca, NY, 14853, USA
| | - Steven J Ludtke
- Department of Biochemistry and Molecular Pharmacology, Baylor College of Medicine, Houston, TX, 77030, USA.
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX, 79409, USA.
- Center for Membrane Protein Research, TTU Health Science Center, Lubbock, TX, 79430, USA.
| |
Collapse
|
20
|
Shiriaeva A, Martynowycz MW, Nicolas WJ, Cherezov V, Gonen T. MicroED structure of the human vasopressin 1B receptor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.05.547888. [PMID: 37461729 PMCID: PMC10350018 DOI: 10.1101/2023.07.05.547888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/24/2023]
Abstract
The small size and flexibility of G protein-coupled receptors (GPCRs) have long posed a significant challenge to determining their structures for research and therapeutic applications. Single particle cryogenic electron microscopy (cryoEM) is often out of reach due to the small size of the receptor without a signaling partner. Crystallization of GPCRs in lipidic cubic phase (LCP) often results in crystals that may be too small and difficult to analyze using X-ray microcrystallography at synchrotron sources or even serial femtosecond crystallography at X-ray free electron lasers. Here, we determine the previously unknown structure of the human vasopressin 1B receptor (V1BR) using microcrystal electron diffraction (MicroED). To achieve this, we grew V1BR microcrystals in LCP and transferred the material directly onto electron microscopy grids. The protein was labeled with a fluorescent dye prior to crystallization to locate the microcrystals using cryogenic fluorescence microscopy, and then the surrounding material was removed using a plasma-focused ion beam to thin the sample to a thickness amenable to MicroED. MicroED data from 14 crystalline lamellae were used to determine the 3.2 Å structure of the receptor in the crystallographic space group P 1. These results demonstrate the use of MicroED to determine previously unknown GPCR structures that, despite significant effort, were not tractable by other methods.
Collapse
Affiliation(s)
- Anna Shiriaeva
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| | - Michael W. Martynowycz
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095
| | - William J. Nicolas
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095
| | - Vadim Cherezov
- Bridge Institute, University of Southern California Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA 90007
- Department of Chemistry, University of Southern California, Los Angeles, CA 90007
| | - Tamir Gonen
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
- Howard Hughes Medical Institute, University of California, Los Angeles, CA 90095
- Department of Physiology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095
| |
Collapse
|
21
|
Langeberg CJ, Kieft JS. A Generalizable Scaffold-Based Approach for Structure Determination of RNAs by Cryo-EM. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.06.547879. [PMID: 37461535 PMCID: PMC10350027 DOI: 10.1101/2023.07.06.547879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
Single-particle cryo-electron microscopy (cryo-EM) can reveal the structures of large and often dynamic molecules, but smaller biomolecules remain challenging targets due to their intrinsic low signal to noise ratio. Methods to resolve small proteins have been applied but development of similar approaches for small structured RNA elements have lagged. Here, we present a scaffold-based approach that we used to recover maps of sub-25 kDa RNA domains to 4.5 - 5.0 Å. While lacking the detail of true high-resolution maps, these are suitable for model building and preliminary structure determination. We demonstrate this method faithfully recovers the structure of several RNA elements of known structure, and it promises to be generalized to other RNAs without disturbing their native fold. This approach may streamline the sample preparation process and reduce the optimization required for data collection. This first-generation scaffold approach provides a system for RNA structure determination by cryo-EM and lays the groundwork for further scaffold optimization to achieve higher resolution.
Collapse
|
22
|
Seneviratne R, Coates G, Xu Z, Cornell CE, Thompson RF, Sadeghpour A, Maskell DP, Jeuken LJC, Rappolt M, Beales PA. High Resolution Membrane Structures within Hybrid Lipid-Polymer Vesicles Revealed by Combining X-Ray Scattering and Electron Microscopy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206267. [PMID: 36866488 DOI: 10.1002/smll.202206267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 01/26/2023] [Indexed: 06/02/2023]
Abstract
Hybrid vesicles consisting of phospholipids and block-copolymers are increasingly finding applications in science and technology. Herein, small angle X-ray scattering (SAXS) and cryo-electron tomography (cryo-ET) are used to obtain detailed structural information about hybrid vesicles with different ratios of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and poly(1,2-butadiene-block-ethylene oxide) (PBd22 -PEO14 , Ms = 1800 g mol-1 ). Using single particle analysis (SPA) the authors are able to further interpret the information gained from SAXS and cryo-ET experiments, showing that increasing PBd22 -PEO14 mole fraction increases the membrane thickness from 52 Å for a pure lipid system to 97 Å for pure PBd22 -PEO14 vesicles. Two vesicle populations with different membrane thicknesses in hybrid vesicle samples are found. As these lipids and polymers are reported to homogeneously mix, bistability is inferred between weak and strong interdigitation regimes of PBd22 -PEO14 within the hybrid membranes. It is hypothesized that membranes of intermediate structure are not energetically favorable. Therefore, each vesicle exists in one of these two membrane structures, which are assumed to have comparable free energies. The authors conclude that, by combining biophysical methods, accurate determination of the influence of composition on the structural properties of hybrid membranes is achieved, revealing that two distinct membranes structures can coexist in homogeneously mixed lipid-polymer hybrid vesicles.
Collapse
Affiliation(s)
- Rashmi Seneviratne
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Georgina Coates
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Zexi Xu
- School of Food Science and Nutrition, School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Caitlin E Cornell
- Department of Bioengineering, University of California, Berkeley, CA, 94720, USA
| | - Rebecca F Thompson
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Amin Sadeghpour
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Daniel P Maskell
- School of Molecular and Cellular Biology and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| | - Lars J C Jeuken
- Leiden Institute of Chemistry, Leiden University, PC Box 9502, Leiden, 2300 RA, Netherlands
| | - Michael Rappolt
- School of Food Science and Nutrition, University of Leeds, Leeds, LS2 9JT, UK
| | - Paul A Beales
- School of Chemistry and Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds, LS2 9JT, UK
| |
Collapse
|
23
|
Nguyen C, Lei HT, Lai LTF, Gallenito MJ, Mu X, Matthies D, Gonen T. Lipid flipping in the omega-3 fatty-acid transporter. Nat Commun 2023; 14:2571. [PMID: 37156797 PMCID: PMC10167227 DOI: 10.1038/s41467-023-37702-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/28/2023] [Indexed: 05/10/2023] Open
Abstract
Mfsd2a is the transporter for docosahexaenoic acid (DHA), an omega-3 fatty acid, across the blood brain barrier (BBB). Defects in Mfsd2a are linked to ailments from behavioral and motor dysfunctions to microcephaly. Mfsd2a transports long-chain unsaturated fatty-acids, including DHA and α-linolenic acid (ALA), that are attached to the zwitterionic lysophosphatidylcholine (LPC) headgroup. Even with the recently determined structures of Mfsd2a, the molecular details of how this transporter performs the energetically unfavorable task of translocating and flipping lysolipids across the lipid bilayer remains unclear. Here, we report five single-particle cryo-EM structures of Danio rerio Mfsd2a (drMfsd2a): in the inward-open conformation in the ligand-free state and displaying lipid-like densities modeled as ALA-LPC at four distinct positions. These Mfsd2a snapshots detail the flipping mechanism for lipid-LPC from outer to inner membrane leaflet and release for membrane integration on the cytoplasmic side. These results also map Mfsd2a mutants that disrupt lipid-LPC transport and are associated with disease.
Collapse
Affiliation(s)
- Chi Nguyen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Hsiang-Ting Lei
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, 20147, USA
| | - Louis Tung Faat Lai
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Marc J Gallenito
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
| | - Xuelang Mu
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Doreen Matthies
- Janelia Research Campus, Howard Hughes Medical Institute, 19700 Helix Drive, Ashburn, VA, 20147, USA.
- Unit on Structural Biology, Division of Basic and Translational Biophysics, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, 20892, USA.
| | - Tamir Gonen
- Howard Hughes Medical Institute, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Department of Biological Chemistry, University of California Los Angeles, Los Angeles, CA, 90095, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
- Departments of Physiology, University of California Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
24
|
Adachi Y, Kaneko MK, Kato Y, Nogi T. Recombinant production of antibody antigen-binding fragments with an N-terminal human growth hormone tag in mammalian cells. Protein Expr Purif 2023; 208-209:106289. [PMID: 37160213 DOI: 10.1016/j.pep.2023.106289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 04/24/2023] [Accepted: 04/27/2023] [Indexed: 05/11/2023]
Abstract
Antigen-binding fragments (Fabs) of antibodies are both key biopharmaceuticals and valuable tools for basic life science. To streamline the production of diverse Fabs by capitalizing on standard and highly optimized protein production protocols, we here explore a method to prepare recombinant Fabs as secreted fusion proteins with an N-terminal human growth hormone domain and an octa-histidine tag. These tagged Fabs can be purified with standard immobilized metal chelate affinity chromatography. We first demonstrated Fab overproduction using the rat monoclonal antibody NZ-1. Optimization of linker residues enabled the complete removal of the tags by TEV protease, leaving only two additional residues at the N-terminus of the heavy chain. We purified NZ-1 Fab at ∼4 μg/mL of culture supernatant and further confirmed that the NZ-1 Fab from the fusion protein maintained its native fold and binding affinity for target cell-surface antigens. We also showed that several other Fabs of mouse IgG1s, the major subclass in mice, could be produced with the same procedure. Our preparation method can provide greater flexibility in functional and structural modifications of target Fabs because specialized purification techniques are not necessary.
Collapse
Affiliation(s)
- Yuriko Adachi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Mika K Kaneko
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi, 980-8575, Japan
| | - Yukinari Kato
- Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi, 980-8575, Japan; Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, 2-1 Seiryo-machi, Sendai, Miyagi, 980-8575, Japan
| | - Terukazu Nogi
- Graduate School of Medical Life Science, Yokohama City University, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan.
| |
Collapse
|
25
|
Dodge GJ, Bernstein HM, Imperiali B. A generalizable protocol for expression and purification of membrane-bound bacterial phosphoglycosyl transferases in liponanoparticles. Protein Expr Purif 2023; 207:106273. [PMID: 37068720 DOI: 10.1016/j.pep.2023.106273] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 04/19/2023]
Abstract
Phosphoglycosyl transferases (PGTs) are among the first membrane-bound enzymes involved in the biosynthesis of bacterial glycoconjugates. Robust expression and purification protocols for an abundant subfamily of PGTs remains lacking. Recent advancements in detergent-free methods for membrane protein solubilization open the door for purification of difficult membrane proteins directly from cell membranes into native-like liponanoparticles. By leveraging autoinduction, in vivo SUMO tag cleavage, styrene maleic acid co-polymer liponanoparticles (SMALPs), and Strep-Tag purification, we have established a robust workflow for expression and purification of previously unobtainable PGTs. The material generated from this workflow is extremely pure and can be directly visualized by Cryogenic Electron Microscopy (CryoEM). The methods presented here promise to be generalizable to additional membrane proteins recombinantly expressed in E. coli and should be of interest to the greater membrane proteomics community.
Collapse
Affiliation(s)
- Greg J Dodge
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Hannah M Bernstein
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Barbara Imperiali
- Department of Biology and Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA.
| |
Collapse
|
26
|
Alexander JAN, Locher KP. Emerging structural insights into C-type glycosyltransferases. Curr Opin Struct Biol 2023; 79:102547. [PMID: 36827761 DOI: 10.1016/j.sbi.2023.102547] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/19/2022] [Accepted: 01/11/2023] [Indexed: 02/24/2023]
Abstract
Glycosyltransferases of the C superfamily (GT-Cs) are enzymes found in all domains of life. They catalyse the stepwise synthesis of oligosaccharides or the transfer of assembled glycans from lipid-linked donor substrates to acceptor proteins. The processes mediated by GT-Cs are required for C-, N- and O-linked glycosylation, all of which are essential post-translational modifications in higher-order eukaryotes. Until recently, GT-Cs were thought to share a conserved structural module of 7 transmembrane helices; however, recently determined GT-C structures revealed novel folds. Here we analyse the growing diversity of GT-C folds and discuss the emergence of two subclasses, termed GT-CA and GT-CB. Further substrate-bound structures are needed to facilitate a molecular understanding of glycan recognition and catalysis in these two subclasses.
Collapse
Affiliation(s)
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, Zürich, Switzerland.
| |
Collapse
|
27
|
Majeed S, Adetuyi O, Borbat PP, Majharul Islam M, Ishola O, Zhao B, Georgieva ER. Insights into the oligomeric structure of the HIV-1 Vpu protein. J Struct Biol 2023; 215:107943. [PMID: 36796461 PMCID: PMC10257199 DOI: 10.1016/j.jsb.2023.107943] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 02/16/2023]
Abstract
The HIV-1-encoded protein Vpu forms an oligomeric ion channel/pore in membranes and interacts with host proteins to support the virus lifecycle. However, Vpu molecular mechanisms are currently not well understood. Here, we report on the Vpu oligomeric organization under membrane and aqueous conditions and provide insights into how the Vpu environment affects the oligomer formation. For these studies, we designed a maltose-binding protein (MBP)-Vpu chimera protein and produced it in E. coli in soluble form. We analyzed this protein using analytical size-exclusion chromatography (SEC), negative staining electron microscopy (nsEM), and electron paramagnetic resonance (EPR) spectroscopy. Surprisingly, we found that MBP-Vpu formed stable oligomers in solution, seemingly driven by Vpu transmembrane domain self-association. A coarse modeling of nsEM data as well as SEC and EPR data suggests that these oligomers most likely are pentamers, similar to what was reported regarding membrane-bound Vpu. We also noticed reduced MBP-Vpu oligomer stability upon reconstitution of the protein in β-DDM detergent and mixtures of lyso-PC/PG or DHPC/DHPG. In these cases, we observed greater oligomer heterogeneity, with MBP-Vpu oligomeric order generally lower than in solution; however, larger oligomers were also present. Notably, we found that in lyso-PC/PG, above a certain protein concentration, MBP-Vpu assembles into extended structures, which had not been reported for Vpu. Therefore, we captured various Vpu oligomeric forms, which can shed light on Vpu quaternary organization. Our findings could be useful in understanding Vpu organization and function in cellular membranes and could provide information regarding the biophysical properties of single-pass transmembrane proteins.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Oluwatosin Adetuyi
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology and ACERT, Cornell University, Ithaca, NY 14853, United States
| | - Md Majharul Islam
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Olamide Ishola
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States
| | - Bo Zhao
- College of Arts & Sciences Microscopy (CASM), Texas Tech University, Lubbock, TX 79409, United States
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, United States.
| |
Collapse
|
28
|
Wang X, Xu K, Tan Y, Liu S, Zhou J. Possibilities of Using De Novo Design for Generating Diverse Functional Food Enzymes. Int J Mol Sci 2023; 24:3827. [PMID: 36835238 PMCID: PMC9964944 DOI: 10.3390/ijms24043827] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/03/2023] [Accepted: 02/03/2023] [Indexed: 02/17/2023] Open
Abstract
Food enzymes have an important role in the improvement of certain food characteristics, such as texture improvement, elimination of toxins and allergens, production of carbohydrates, enhancing flavor/appearance characteristics. Recently, along with the development of artificial meats, food enzymes have been employed to achieve more diverse functions, especially in converting non-edible biomass to delicious foods. Reported food enzyme modifications for specific applications have highlighted the significance of enzyme engineering. However, using direct evolution or rational design showed inherent limitations due to the mutation rates, which made it difficult to satisfy the stability or specific activity needs for certain applications. Generating functional enzymes using de novo design, which highly assembles naturally existing enzymes, provides potential solutions for screening desired enzymes. Here, we describe the functions and applications of food enzymes to introduce the need for food enzymes engineering. To illustrate the possibilities of using de novo design for generating diverse functional proteins, we reviewed protein modelling and de novo design methods and their implementations. The future directions for adding structural data for de novo design model training, acquiring diversified training data, and investigating the relationship between enzyme-substrate binding and activity were highlighted as challenges to overcome for the de novo design of food enzymes.
Collapse
Affiliation(s)
- Xinglong Wang
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Kangjie Xu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Yameng Tan
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Song Liu
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
| | - Jingwen Zhou
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, School of Biotechnology, Jiangnan University, Wuxi 214122, China
- Science Center for Future Foods, Jiangnan University, Wuxi 214122, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
29
|
Miller AN, Houlihan PR, Matamala E, Cabezas-Bratesco D, Lee GY, Cristofori-Armstrong B, Dilan TL, Sanchez-Martinez S, Matthies D, Yan R, Yu Z, Ren D, Brauchi SE, Clapham DE. The SARS-CoV-2 accessory protein Orf3a is not an ion channel, but does interact with trafficking proteins. eLife 2023; 12:e84477. [PMID: 36695574 PMCID: PMC9910834 DOI: 10.7554/elife.84477] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 01/25/2023] [Indexed: 01/26/2023] Open
Abstract
The severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and SARS-CoV-1 accessory protein Orf3a colocalizes with markers of the plasma membrane, endocytic pathway, and Golgi apparatus. Some reports have led to annotation of both Orf3a proteins as viroporins. Here, we show that neither SARS-CoV-2 nor SARS-CoV-1 Orf3a form functional ion conducting pores and that the conductances measured are common contaminants in overexpression and with high levels of protein in reconstitution studies. Cryo-EM structures of both SARS-CoV-2 and SARS-CoV-1 Orf3a display a narrow constriction and the presence of a positively charged aqueous vestibule, which would not favor cation permeation. We observe enrichment of the late endosomal marker Rab7 upon SARS-CoV-2 Orf3a overexpression, and co-immunoprecipitation with VPS39. Interestingly, SARS-CoV-1 Orf3a does not cause the same cellular phenotype as SARS-CoV-2 Orf3a and does not interact with VPS39. To explain this difference, we find that a divergent, unstructured loop of SARS-CoV-2 Orf3a facilitates its binding with VPS39, a HOPS complex tethering protein involved in late endosome and autophagosome fusion with lysosomes. We suggest that the added loop enhances SARS-CoV-2 Orf3a's ability to co-opt host cellular trafficking mechanisms for viral exit or host immune evasion.
Collapse
Affiliation(s)
| | | | - Ella Matamala
- Physiology Institute and Millennium Nucleus of Ion Channel-Associated Diseases, Universidad Austral de ChileValdiviaChile
| | - Deny Cabezas-Bratesco
- Physiology Institute and Millennium Nucleus of Ion Channel-Associated Diseases, Universidad Austral de ChileValdiviaChile
| | - Gi Young Lee
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | | | | | | | | | - Rui Yan
- Janelia Research CampusAshburnUnited States
| | - Zhiheng Yu
- Janelia Research CampusAshburnUnited States
| | - Dejian Ren
- Department of Biology, University of PennsylvaniaPhiladelphiaUnited States
| | - Sebastian E Brauchi
- Janelia Research CampusAshburnUnited States
- Physiology Institute and Millennium Nucleus of Ion Channel-Associated Diseases, Universidad Austral de ChileValdiviaChile
| | | |
Collapse
|
30
|
Scietti L, Forneris F. Modeling of Protein Complexes. Methods Mol Biol 2023; 2627:349-371. [PMID: 36959458 DOI: 10.1007/978-1-0716-2974-1_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
The recent advances in structural biology, combined with continuously increasing computational capabilities and development of advanced softwares, have drastically simplified the workflow for protein homology modeling. Modeling of individual proteins is nowadays quick and straightforward for a large variety of protein targets, thanks to guided pipelines relying on advanced computational tools and user-friendly interfaces, which have extended and promoted the use of modeling also to scientists not focusing on molecular structures of proteins. Nevertheless, construction of models of multi-protein complexes remains quite challenging for the non-experts, often due to the usage of specific procedures depending on the system under investigation and the need for experimental validation approaches to strengthen the generated output.In this chapter, we provide a brief overview of the approaches enabling generation of multi-protein complex models starting from homology models of individual protein components. Using real-life examples, we include two examples to guide the reader in the generation of homomeric and heteromeric protein models.
Collapse
Affiliation(s)
- Luigi Scietti
- Department of Biology and Biotechnology, The Armenise-Harvard Laboratory of Structural Biology, University of Pavia, Pavia, Italy.
| | - Federico Forneris
- Department of Biology and Biotechnology, The Armenise-Harvard Laboratory of Structural Biology, University of Pavia, Pavia, Italy.
| |
Collapse
|
31
|
Wentinck K, Gogou C, Meijer DH. Putting on molecular weight: Enabling cryo-EM structure determination of sub-100-kDa proteins. Curr Res Struct Biol 2022; 4:332-337. [PMID: 36248264 PMCID: PMC9562432 DOI: 10.1016/j.crstbi.2022.09.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/22/2022] [Accepted: 09/25/2022] [Indexed: 11/17/2022] Open
Abstract
Significant advances in the past decade have enabled high-resolution structure determination of a vast variety of proteins by cryogenic electron microscopy single particle analysis. Despite improved sample preparation, next-generation imaging hardware, and advanced single particle analysis algorithms, small proteins remain elusive for reconstruction due to low signal-to-noise and lack of distinctive structural features. Multiple efforts have therefore been directed at the development of size-increase techniques for small proteins. Here we review the latest methods for increasing effective molecular weight of proteins <100 kDa through target protein binding or target protein fusion - specifically by using nanobody-based assemblies, fusion tags, and symmetric scaffolds. Finally, we summarize these state-of-the-art techniques into a decision-tree to facilitate the design of tailored future approaches, and thus for further exploration of ever-smaller proteins that make up the largest part of the human genome.
Collapse
Key Words
- BRIL, cytochromeb562 RIL
- DARPin, Design Ankyrin Repeat Protein
- Fab, antigen binding fragment
- GFP, Green Fluorecent Protein
- GPCR, G protein-coupled receptor
- MW, molecular weight
- Mb, megabody
- Nb, nanobody
- SNR, signal-to-noise ratio
- SPA, single particle analysis
- TM, transmembrane
- cryo-EM, cryogenic electron microscopy
- kDa, kiloDalton
- κOR ICL3, κ-opiod receptor intracellular loop 3
Collapse
Affiliation(s)
| | | | - Dimphna H. Meijer
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology, van der Maasweg 9, 2629HZ, Delft, the Netherlands
| |
Collapse
|
32
|
Abstract
Single-pass transmembrane receptors (SPTMRs) represent a diverse group of integral membrane proteins that are involved in many essential cellular processes, including signal transduction, cell adhesion, and transmembrane transport of materials. Dysregulation of the SPTMRs is linked with many human diseases. Despite extensive efforts in past decades, the mechanisms of action of the SPTMRs remain incompletely understood. One major hurdle is the lack of structures of the full-length SPTMRs in different functional states. Such structural information is difficult to obtain by traditional structural biology methods such as X-ray crystallography and nuclear magnetic resonance (NMR). The recent rapid development of single-particle cryo-electron microscopy (cryo-EM) has led to an exponential surge in the number of high-resolution structures of integral membrane proteins, including SPTMRs. Cryo-EM structures of SPTMRs solved in the past few years have tremendously improved our understanding of how SPTMRs function. In this review, we will highlight these progresses in the structural studies of SPTMRs by single-particle cryo-EM, analyze important structural details of each protein involved, and discuss their implications on the underlying mechanisms. Finally, we also briefly discuss remaining challenges and exciting opportunities in the field.
Collapse
Affiliation(s)
- Kai Cai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
| | - Xuewu Zhang
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xuewu Zhang, Department of pharmacology, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| | - Xiao-chen Bai
- Departments of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Departments of Cell Biology, University of Texas Southwestern Medical Center, Dallas, Texas 75231, USA
- Corresponding Author: Xiao-chen Bai, Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390, USA;
| |
Collapse
|
33
|
Miller AN, Houlihan PR, Matamala E, Cabezas-Bratesco D, Lee GY, Cristofori-Armstrong B, Dilan TL, Sanchez-Martinez S, Matthies D, Yan R, Yu Z, Ren D, Brauchi SE, Clapham DE. The SARS-CoV-2 accessory protein Orf3a is not an ion channel, but does interact with trafficking proteins. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2022:2022.09.02.506428. [PMID: 36263072 PMCID: PMC9580380 DOI: 10.1101/2022.09.02.506428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The severe acute respiratory syndrome associated coronavirus 2 (SARS-CoV-2) and SARS-CoV-1 accessory protein Orf3a colocalizes with markers of the plasma membrane, endocytic pathway, and Golgi apparatus. Some reports have led to annotation of both Orf3a proteins as a viroporin. Here we show that neither SARS-CoV-2 nor SARS-CoV-1 form functional ion conducting pores and that the conductances measured are common contaminants in overexpression and with high levels of protein in reconstitution studies. Cryo-EM structures of both SARS-CoV-2 and SARS-CoV-1 Orf3a display a narrow constriction and the presence of a basic aqueous vestibule, which would not favor cation permeation. We observe enrichment of the late endosomal marker Rab7 upon SARS-CoV-2 Orf3a overexpression, and co-immunoprecipitation with VPS39. Interestingly, SARS-CoV-1 Orf3a does not cause the same cellular phenotype as SARS-CoV-2 Orf3a and does not interact with VPS39. To explain this difference, we find that a divergent, unstructured loop of SARS-CoV-2 Orf3a facilitates its binding with VPS39, a HOPS complex tethering protein involved in late endosome and autophagosome fusion with lysosomes. We suggest that the added loop enhances SARS-CoV-2 Orf3a ability to co-opt host cellular trafficking mechanisms for viral exit or host immune evasion.
Collapse
|
34
|
Lu J, Piper SJ, Zhao P, Miller LJ, Wootten D, Sexton PM. Targeting VIP and PACAP Receptor Signaling: New Insights into Designing Drugs for the PACAP Subfamily of Receptors. Int J Mol Sci 2022; 23:8069. [PMID: 35897648 PMCID: PMC9331257 DOI: 10.3390/ijms23158069] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/18/2022] [Accepted: 07/20/2022] [Indexed: 12/16/2022] Open
Abstract
Pituitary Adenylate Cyclase-Activating Peptide (PACAP) and Vasoactive Intestinal Peptide (VIP) are neuropeptides involved in a diverse array of physiological and pathological processes through activating the PACAP subfamily of class B1 G protein-coupled receptors (GPCRs): VIP receptor 1 (VPAC1R), VIP receptor 2 (VPAC2R), and PACAP type I receptor (PAC1R). VIP and PACAP share nearly 70% amino acid sequence identity, while their receptors PAC1R, VPAC1R, and VPAC2R share 60% homology in the transmembrane regions of the receptor. PACAP binds with high affinity to all three receptors, while VIP binds with high affinity to VPAC1R and VPAC2R, and has a thousand-fold lower affinity for PAC1R compared to PACAP. Due to the wide distribution of VIP and PACAP receptors in the body, potential therapeutic applications of drugs targeting these receptors, as well as expected undesired side effects, are numerous. Designing selective therapeutics targeting these receptors remains challenging due to their structural similarities. This review discusses recent discoveries on the molecular mechanisms involved in the selectivity and signaling of the PACAP subfamily of receptors, and future considerations for therapeutic targeting.
Collapse
Affiliation(s)
- Jessica Lu
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Sarah J. Piper
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Peishen Zhao
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Laurence J. Miller
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Scottsdale, AZ 85259, USA;
| | - Denise Wootten
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| | - Patrick M. Sexton
- Drug Discovery Biology, Australian Research Council Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia; (J.L.); (S.J.P.); (P.Z.)
| |
Collapse
|
35
|
Fan H, Sun F. Developing Graphene Grids for Cryoelectron Microscopy. Front Mol Biosci 2022; 9:937253. [PMID: 35911962 PMCID: PMC9326159 DOI: 10.3389/fmolb.2022.937253] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 05/31/2022] [Indexed: 11/13/2022] Open
Abstract
Cryogenic electron microscopy (cryo-EM) single particle analysis has become one of the major techniques used to study high-resolution 3D structures of biological macromolecules. Specimens are generally prepared in a thin layer of vitrified ice using a holey carbon grid. However, the sample quality using this type of grid is not always ideal for high-resolution imaging even when the specimens in the test tube behave ideally. Various problems occur during a vitrification procedure, including poor/nonuniform distribution of particles, preferred orientation of particles, specimen denaturation/degradation, high background from thick ice, and beam-induced motion, which have become important bottlenecks in high-resolution structural studies using cryo-EM in many projects. In recent years, grids with support films made of graphene and its derivatives have been developed to efficiently solve these problems. Here, the various advantages of graphene grids over conventional holey carbon film grids, functionalization of graphene support films, production methods of graphene grids, and origins of pristine graphene contamination are reviewed and discussed.
Collapse
Affiliation(s)
- Hongcheng Fan
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
- Bioland Laboratory, Guangzhou, China
| |
Collapse
|
36
|
Review on the applications of atomic force microscopy imaging in proteins. Micron 2022; 159:103293. [DOI: 10.1016/j.micron.2022.103293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/22/2022] [Accepted: 05/06/2022] [Indexed: 11/19/2022]
|
37
|
Ashraf KU, Nygaard R, Vickery ON, Erramilli SK, Herrera CM, McConville TH, Petrou VI, Giacometti SI, Dufrisne MB, Nosol K, Zinkle AP, Graham CLB, Loukeris M, Kloss B, Skorupinska-Tudek K, Swiezewska E, Roper DI, Clarke OB, Uhlemann AC, Kossiakoff AA, Trent MS, Stansfeld PJ, Mancia F. Structural basis of lipopolysaccharide maturation by the O-antigen ligase. Nature 2022; 604:371-376. [PMID: 35388216 PMCID: PMC9884178 DOI: 10.1038/s41586-022-04555-x] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 02/16/2022] [Indexed: 01/31/2023]
Abstract
The outer membrane of Gram-negative bacteria has an external leaflet that is largely composed of lipopolysaccharide, which provides a selective permeation barrier, particularly against antimicrobials1. The final and crucial step in the biosynthesis of lipopolysaccharide is the addition of a species-dependent O-antigen to the lipid A core oligosaccharide, which is catalysed by the O-antigen ligase WaaL2. Here we present structures of WaaL from Cupriavidus metallidurans, both in the apo state and in complex with its lipid carrier undecaprenyl pyrophosphate, determined by single-particle cryo-electron microscopy. The structures reveal that WaaL comprises 12 transmembrane helices and a predominantly α-helical periplasmic region, which we show contains many of the conserved residues that are required for catalysis. We observe a conserved fold within the GT-C family of glycosyltransferases and hypothesize that they have a common mechanism for shuttling the undecaprenyl-based carrier to and from the active site. The structures, combined with genetic, biochemical, bioinformatics and molecular dynamics simulation experiments, offer molecular details on how the ligands come in apposition, and allows us to propose a mechanistic model for catalysis. Together, our work provides a structural basis for lipopolysaccharide maturation in a member of the GT-C superfamily of glycosyltransferases.
Collapse
Affiliation(s)
- Khuram U Ashraf
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Rie Nygaard
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Owen N Vickery
- School of Life Sciences, University of Warwick, Coventry, UK
- Department of Chemistry, University of Warwick, Coventry, UK
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Carmen M Herrera
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA
| | - Thomas H McConville
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, NY, USA
| | - Vasileios I Petrou
- Department of Microbiology, Biochemistry, and Molecular Genetics, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ, USA
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical Health Sciences, Newark, NJ, USA
| | - Sabrina I Giacometti
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Meagan Belcher Dufrisne
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | - Kamil Nosol
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Allen P Zinkle
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
| | | | - Michael Loukeris
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY, USA
| | - Brian Kloss
- New York Consortium on Membrane Protein Structure, New York Structural Biology Center, New York, NY, USA
| | | | - Ewa Swiezewska
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - David I Roper
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Anne-Catrin Uhlemann
- Department of Medicine, Division of Infectious Diseases, Columbia University Medical Center, New York, NY, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - M Stephen Trent
- Department of Infectious Diseases, College of Veterinary Medicine, University of Georgia, Athens, GA, USA.
| | - Phillip J Stansfeld
- School of Life Sciences, University of Warwick, Coventry, UK.
- Department of Chemistry, University of Warwick, Coventry, UK.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, USA.
| |
Collapse
|
38
|
Structural basis for inhibition of the drug efflux pump NorA from Staphylococcus aureus. Nat Chem Biol 2022; 18:706-712. [PMID: 35361990 PMCID: PMC9246859 DOI: 10.1038/s41589-022-00994-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 02/08/2022] [Indexed: 11/08/2022]
Abstract
Membrane protein efflux pumps confer antibiotic resistance by extruding structurally distinct compounds and lowering their intracellular concentration. Yet, there are no clinically approved drugs to inhibit efflux pumps, which would potentiate the efficacy of existing antibiotics rendered ineffective by drug efflux. Here we identified synthetic antigen-binding fragments (Fabs) that inhibit the quinolone transporter NorA from methicillin-resistant Staphylococcus aureus (MRSA). Structures of two NorA-Fab complexes determined using cryo-electron microscopy reveal a Fab loop deeply inserted in the substrate-binding pocket of NorA. An arginine residue on this loop interacts with two neighboring aspartate and glutamate residues essential for NorA-mediated antibiotic resistance in MRSA. Peptide mimics of the Fab loop inhibit NorA with submicromolar potency and ablate MRSA growth in combination with the antibiotic norfloxacin. These findings establish a class of peptide inhibitors that block antibiotic efflux in MRSA by targeting indispensable residues in NorA without the need for membrane permeability.
Collapse
|
39
|
Penmatsa A. A (Fab)ulous tool to block efflux. Nat Chem Biol 2022; 18:681-682. [PMID: 35361991 DOI: 10.1038/s41589-022-00999-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Aravind Penmatsa
- Molecular Biophysics Unit, Indian Institute of Science, Bangalore, India.
| |
Collapse
|
40
|
Multitasking Na+/Taurocholate Cotransporting Polypeptide (NTCP) as a Drug Target for HBV Infection: From Protein Engineering to Drug Discovery. Biomedicines 2022; 10:biomedicines10010196. [PMID: 35052874 PMCID: PMC8773476 DOI: 10.3390/biomedicines10010196] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/10/2022] [Accepted: 01/13/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatitis B virus (HBV) infections are among the major public health concerns worldwide with more than 250 million of chronically ill individuals. Many of them are additionally infected with the Hepatitis D virus, a satellite virus to HBV. Chronic infection frequently leads to serious liver diseases including cirrhosis and hepatocellular carcinoma, the most common type of liver cancer. Although current antiviral therapies can control HBV replication and slow down disease progress, there is an unmet medical need to identify therapies to cure this chronic infectious disease. Lately, a noteworthy progress in fighting against HBV has been made by identification of the high-affinity hepatic host receptor for HBV and HDV, namely Na+/taurocholate cotransporting polypeptide (NTCP, gene symbol SLC10A1). Next to its primary function as hepatic uptake transporter for bile acids, NTCP is essential for the cellular entry of HBV and HDV into hepatocytes. Due to this high-ranking discovery, NTCP has become a valuable target for drug development strategies for HBV/HDV-infected patients. In this review, we will focus on a newly predicted three-dimensional NTCP model that was generated using computational approaches and discuss its value in understanding the NTCP’s membrane topology, substrate and virus binding taking place in plasma membranes. We will review existing data on structural, functional, and biological consequences of amino acid residue changes and mutations that lead to loss of NTCP’s transport and virus receptor functions. Finally, we will discuss new directions for future investigations aiming at development of new NTCP-based HBV entry blockers that inhibit HBV tropism in human hepatocytes.
Collapse
|
41
|
Bloch JS, Mukherjee S, Kowal J, Filippova EV, Niederer M, Pardon E, Steyaert J, Kossiakoff AA, Locher KP. Development of a universal nanobody-binding Fab module for fiducial-assisted cryo-EM studies of membrane proteins. Proc Natl Acad Sci U S A 2021; 118:e2115435118. [PMID: 34782475 PMCID: PMC8617411 DOI: 10.1073/pnas.2115435118] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022] Open
Abstract
With conformation-specific nanobodies being used for a wide range of structural, biochemical, and cell biological applications, there is a demand for antigen-binding fragments (Fabs) that specifically and tightly bind these nanobodies without disturbing the nanobody-target protein interaction. Here, we describe the development of a synthetic Fab (termed NabFab) that binds the scaffold of an alpaca-derived nanobody with picomolar affinity. We demonstrate that upon complementary-determining region grafting onto this parent nanobody scaffold, nanobodies recognizing diverse target proteins and derived from llama or camel can cross-react with NabFab without loss of affinity. Using NabFab as a fiducial and size enhancer (50 kDa), we determined the high-resolution cryogenic electron microscopy (cryo-EM) structures of nanobody-bound VcNorM and ScaDMT, both small membrane proteins of ∼50 kDa. Using an additional anti-Fab nanobody further facilitated reliable initial three-dimensional structure determination from small cryo-EM test datasets. Given that NabFab is of synthetic origin, is humanized, and can be conveniently expressed in Escherichia coli in large amounts, it may be useful not only for structural biology but also for biomedical applications.
Collapse
Affiliation(s)
- Joël S Bloch
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Somnath Mukherjee
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Julia Kowal
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Ekaterina V Filippova
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637
| | - Martina Niederer
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, B-1050 Brussels, Belgium
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637;
- Institute for Biophysical Dynamics, University of Chicago, Chicago, IL 60637
| | - Kaspar P Locher
- Institute of Molecular Biology and Biophysics, ETH Zürich, 8093 Zürich, Switzerland;
| |
Collapse
|
42
|
A Fast Image Alignment Approach for 2D Classification of Cryo-EM Images Using Spectral Clustering. Curr Issues Mol Biol 2021; 43:1652-1668. [PMID: 34698131 PMCID: PMC8928942 DOI: 10.3390/cimb43030117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/14/2021] [Accepted: 10/14/2021] [Indexed: 01/22/2023] Open
Abstract
Three-dimensional (3D) reconstruction in single-particle cryo-electron microscopy (cryo-EM) is a significant technique for recovering the 3D structure of proteins or other biological macromolecules from their two-dimensional (2D) noisy projection images taken from unknown random directions. Class averaging in single-particle cryo-EM is an important procedure for producing high-quality initial 3D structures, where image alignment is a fundamental step. In this paper, an efficient image alignment algorithm using 2D interpolation in the frequency domain of images is proposed to improve the estimation accuracy of alignment parameters of rotation angles and translational shifts between the two projection images, which can obtain subpixel and subangle accuracy. The proposed algorithm firstly uses the Fourier transform of two projection images to calculate a discrete cross-correlation matrix and then performs the 2D interpolation around the maximum value in the cross-correlation matrix. The alignment parameters are directly determined according to the position of the maximum value in the cross-correlation matrix after interpolation. Furthermore, the proposed image alignment algorithm and a spectral clustering algorithm are used to compute class averages for single-particle 3D reconstruction. The proposed image alignment algorithm is firstly tested on a Lena image and two cryo-EM datasets. Results show that the proposed image alignment algorithm can estimate the alignment parameters accurately and efficiently. The proposed method is also used to reconstruct preliminary 3D structures from a simulated cryo-EM dataset and a real cryo-EM dataset and to compare them with RELION. Experimental results show that the proposed method can obtain more high-quality class averages than RELION and can obtain higher reconstruction resolution than RELION even without iteration.
Collapse
|
43
|
Majeed S, Ahmad AB, Sehar U, Georgieva ER. Lipid Membrane Mimetics in Functional and Structural Studies of Integral Membrane Proteins. MEMBRANES 2021; 11:685. [PMID: 34564502 PMCID: PMC8470526 DOI: 10.3390/membranes11090685] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 08/18/2021] [Accepted: 08/30/2021] [Indexed: 12/12/2022]
Abstract
Integral membrane proteins (IMPs) fulfill important physiological functions by providing cell-environment, cell-cell and virus-host communication; nutrients intake; export of toxic compounds out of cells; and more. However, some IMPs have obliterated functions due to polypeptide mutations, modifications in membrane properties and/or other environmental factors-resulting in damaged binding to ligands and the adoption of non-physiological conformations that prevent the protein from returning to its physiological state. Thus, elucidating IMPs' mechanisms of function and malfunction at the molecular level is important for enhancing our understanding of cell and organism physiology. This understanding also helps pharmaceutical developments for restoring or inhibiting protein activity. To this end, in vitro studies provide invaluable information about IMPs' structure and the relation between structural dynamics and function. Typically, these studies are conducted on transferred from native membranes to membrane-mimicking nano-platforms (membrane mimetics) purified IMPs. Here, we review the most widely used membrane mimetics in structural and functional studies of IMPs. These membrane mimetics are detergents, liposomes, bicelles, nanodiscs/Lipodisqs, amphipols, and lipidic cubic phases. We also discuss the protocols for IMPs reconstitution in membrane mimetics as well as the applicability of these membrane mimetic-IMP complexes in studies via a variety of biochemical, biophysical, and structural biology techniques.
Collapse
Affiliation(s)
- Saman Majeed
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Akram Bani Ahmad
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Ujala Sehar
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
| | - Elka R Georgieva
- Department of Chemistry and Biochemistry, Texas Tech University, Lubbock, TX 79409, USA
- Department of Cell Physiology and Molecular Biophysics, Texas Tech University Health Science Center, Lubbock, TX 79409, USA
| |
Collapse
|
44
|
McIlwain BC, Erwin AL, Davis AR, Ben Koff B, Chang L, Bylund T, Chuang GY, Kwong PD, Ohi MD, Lai YT, Stockbridge RB. N-terminal Transmembrane-Helix Epitope Tag for X-ray Crystallography and Electron Microscopy of Small Membrane Proteins. J Mol Biol 2021; 433:166909. [PMID: 33676924 PMCID: PMC8292168 DOI: 10.1016/j.jmb.2021.166909] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/21/2022]
Abstract
Structural studies of membrane proteins, especially small membrane proteins, are associated with well-known experimental challenges. Complexation with monoclonal antibody fragments is a common strategy to augment such proteins; however, generating antibody fragments that specifically bind a target protein is not trivial. Here we identify a helical epitope, from the membrane-proximal external region (MPER) of the gp41-transmembrane subunit of the HIV envelope protein, that is recognized by several well-characterized antibodies and that can be fused as a contiguous extension of the N-terminal transmembrane helix of a broad range of membrane proteins. To analyze whether this MPER-epitope tag might aid structural studies of small membrane proteins, we determined an X-ray crystal structure of a membrane protein target that does not crystallize without the aid of crystallization chaperones, the Fluc fluoride channel, fused to the MPER epitope and in complex with antibody. We also demonstrate the utility of this approach for single particle electron microscopy with Fluc and two additional small membrane proteins that represent different membrane protein folds, AdiC and GlpF. These studies show that the MPER epitope provides a structurally defined, rigid docking site for antibody fragments that is transferable among diverse membrane proteins and can be engineered without prior structural information. Antibodies that bind to the MPER epitope serve as effective crystallization chaperones and electron microscopy fiducial markers, enabling structural studies of challenging small membrane proteins.
Collapse
Affiliation(s)
- Benjamin C McIlwain
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Amanda L Erwin
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, United States
| | - Alexander R Davis
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - B Ben Koff
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States
| | - Louise Chang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States
| | - Tatsiana Bylund
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Gwo-Yu Chuang
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Peter D Kwong
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States
| | - Melanie D Ohi
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, United States; Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48019, United States.
| | - Yen-Ting Lai
- Vaccine Research Center, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD 20892, United States; Moderna Therapeutics, 200 Technology Square, Cambridge, MA 02139, United States.
| | - Randy B Stockbridge
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, United States; Program in Biophysics, University of Michigan, Ann Arbor, MI 48109, United States.
| |
Collapse
|
45
|
Masrati G, Landau M, Ben-Tal N, Lupas A, Kosloff M, Kosinski J. Integrative Structural Biology in the Era of Accurate Structure Prediction. J Mol Biol 2021; 433:167127. [PMID: 34224746 DOI: 10.1016/j.jmb.2021.167127] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 11/16/2022]
Abstract
Characterizing the three-dimensional structure of macromolecules is central to understanding their function. Traditionally, structures of proteins and their complexes have been determined using experimental techniques such as X-ray crystallography, NMR, or cryo-electron microscopy-applied individually or in an integrative manner. Meanwhile, however, computational methods for protein structure prediction have been improving their accuracy, gradually, then suddenly, with the breakthrough advance by AlphaFold2, whose models of monomeric proteins are often as accurate as experimental structures. This breakthrough foreshadows a new era of computational methods that can build accurate models for most monomeric proteins. Here, we envision how such accurate modeling methods can combine with experimental structural biology techniques, enhancing integrative structural biology. We highlight the challenges that arise when considering multiple structural conformations, protein complexes, and polymorphic assemblies. These challenges will motivate further developments, both in modeling programs and in methods to solve experimental structures, towards better and quicker investigation of structure-function relationships.
Collapse
Affiliation(s)
- Gal Masrati
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Meytal Landau
- Department of Biology, Technion-Israel Institute of Technology, Haifa 3200003, Israel; European Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany
| | - Nir Ben-Tal
- Department of Biochemistry and Molecular Biology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Andrei Lupas
- Department of Protein Evolution, Max Planck Institute for Developmental Biology, 72076 Tübingen, Germany.
| | - Mickey Kosloff
- Department of Human Biology, Faculty of Natural Sciences, University of Haifa, 199 Aba Khoushy Ave., Mt. Carmel, 3498838 Haifa, Israel.
| | - Jan Kosinski
- European Molecular Biology Laboratory (EMBL), Hamburg 22607, Germany; Centre for Structural Systems Biology (CSSB), Hamburg 22607, Germany; Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
46
|
Elephants in the Dark: Insights and Incongruities in Pentameric Ligand-gated Ion Channel Models. J Mol Biol 2021; 433:167128. [PMID: 34224751 DOI: 10.1016/j.jmb.2021.167128] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 06/25/2021] [Indexed: 02/06/2023]
Abstract
The superfamily of pentameric ligand-gated ion channels (pLGICs) comprises key players in electrochemical signal transduction across evolution, including historic model systems for receptor allostery and targets for drug development. Accordingly, structural studies of these channels have steadily increased, and now approach 250 depositions in the protein data bank. This review contextualizes currently available structures in the pLGIC family, focusing on morphology, ligand binding, and gating in three model subfamilies: the prokaryotic channel GLIC, the cation-selective nicotinic acetylcholine receptor, and the anion-selective glycine receptor. Common themes include the challenging process of capturing and annotating channels in distinct functional states; partially conserved gating mechanisms, including remodeling at the extracellular/transmembrane-domain interface; and diversity beyond the protein level, arising from posttranslational modifications, ligands, lipids, and signaling partners. Interpreting pLGIC structures can be compared to describing an elephant in the dark, relying on touch alone to comprehend the many parts of a monumental beast: each structure represents a snapshot in time under specific experimental conditions, which must be integrated with further structure, function, and simulations data to build a comprehensive model, and understand how one channel may fundamentally differ from another.
Collapse
|
47
|
2.85 and 2.99 Å resolution structures of 110 kDa nitrite reductase determined by 200 kV cryogenic electron microscopy. J Struct Biol 2021; 213:107768. [PMID: 34217801 DOI: 10.1016/j.jsb.2021.107768] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/22/2021] [Accepted: 06/28/2021] [Indexed: 11/22/2022]
Abstract
Cu-containing nitrite reductases (NiRs) are 110 kDa enzymes that play central roles in denitrification. Although the NiRs have been well studied, with over 100 Protein Data Bank entries, such issues as crystal packing, photoreduction, and lack of high pH cases have impeded structural analysis of their catalytic mechanisms. Here we show the cryogenic electron microscopy (cryo-EM) structures of Achromobacter cycloclastes NiR (AcNiR) at pH 6.2 and 8.1. The optimization of 3D-reconstruction parameters achieved 2.99 and 2.85 Å resolution. Comprehensive comparisons with cryo-EM and 56 AcNiR crystal structures suggested crystallographic artifacts in residues 185-215 and His255' due to packing and photoreduction, respectively. We used a newly developed map comparison method to detect structural change around the type 2 Cu site. While the theoretical estimation of coordinate errors of cryo-EM structures remains difficult, combined analysis using X-ray and cryo-EM structures will allow deeper insight into the local structural changes of proteins.
Collapse
|
48
|
Cater RJ, Chua GL, Erramilli SK, Keener JE, Choy BC, Tokarz P, Chin CF, Quek DQY, Kloss B, Pepe JG, Parisi G, Wong BH, Clarke OB, Marty MT, Kossiakoff AA, Khelashvili G, Silver DL, Mancia F. Structural basis of omega-3 fatty acid transport across the blood-brain barrier. Nature 2021; 595:315-319. [PMID: 34135507 PMCID: PMC8266758 DOI: 10.1038/s41586-021-03650-9] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2021] [Accepted: 05/17/2021] [Indexed: 02/05/2023]
Abstract
Docosahexaenoic acid is an omega-3 fatty acid that is essential for neurological development and function, and it is supplied to the brain and eyes predominantly from dietary sources1-6. This nutrient is transported across the blood-brain and blood-retina barriers in the form of lysophosphatidylcholine by major facilitator superfamily domain containing 2A (MFSD2A) in a Na+-dependent manner7,8. Here we present the structure of MFSD2A determined using single-particle cryo-electron microscopy, which reveals twelve transmembrane helices that are separated into two pseudosymmetric domains. The transporter is in an inward-facing conformation and features a large amphipathic cavity that contains the Na+-binding site and a bound lysolipid substrate, which we confirmed using native mass spectrometry. Together with our functional analyses and molecular dynamics simulations, this structure reveals details of how MFSD2A interacts with substrates and how Na+-dependent conformational changes allow for the release of these substrates into the membrane through a lateral gate. Our work provides insights into the molecular mechanism by which this atypical major facility superfamily transporter mediates the uptake of lysolipids into the brain, and has the potential to aid in the delivery of neurotherapeutic agents.
Collapse
Affiliation(s)
- Rosemary J Cater
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Geok Lin Chua
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - James E Keener
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Brendon C Choy
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Piotr Tokarz
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - Cheen Fei Chin
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Debra Q Y Quek
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Brian Kloss
- Center on Membrane Protein Production and Analysis, New York Structural Biology Center, New York, NY, USA
| | - Joseph G Pepe
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Giacomo Parisi
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
| | - Bernice H Wong
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Oliver B Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY, USA
| | - Michael T Marty
- Department of Chemistry and Biochemistry, University of Arizona, Tucson, AZ, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, USA
| | - George Khelashvili
- Department of Physiology and Biophysics, Weill Cornell Medical College, Cornell University, New York, NY, USA.
- Institute for Computational Biomedicine, Weill Cornell Medical College, Cornell University, New York, NY, USA.
| | - David L Silver
- Signature Research Program in Cardiovascular and Metabolic Disorders, Duke-NUS Medical School, Singapore, Singapore.
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY, USA.
| |
Collapse
|
49
|
Zhang X, Johnson RM, Drulyte I, Yu L, Kotecha A, Danev R, Wootten D, Sexton PM, Belousoff MJ. Evolving cryo-EM structural approaches for GPCR drug discovery. Structure 2021; 29:963-974.e6. [PMID: 33957078 DOI: 10.1016/j.str.2021.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 03/10/2021] [Accepted: 04/16/2021] [Indexed: 02/07/2023]
Abstract
G protein-coupled receptors (GPCRs) are the largest class of cell surface drug targets. Advances in stabilization of GPCR:transducer complexes, together with improvements in cryoelectron microscopy (cryo-EM) have recently been applied to structure-assisted drug design for GPCR agonists. Nonetheless, limitations in the commercial application of these approaches, including the use of nanobody 35 (Nb35) to aid complex stabilization and the high cost of 300 kV imaging, have restricted broad application of cryo-EM in drug discovery. Here, using the PF 06882961-bound GLP-1R as exemplar, we validated the formation of stable complexes with a modified Gs protein in the absence of Nb35. In parallel, we compare 200 versus 300 kV image acquisition using a Falcon 4 or K3 direct electron detector. Moreover, the 200 kV Glacios-Falcon 4 yielded a 3.2 Å map with clear density for bound drug and multiple structurally ordered waters. Our work paves the way for broader commercial application of cryo-EM for GPCR drug discovery.
Collapse
Affiliation(s)
- Xin Zhang
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Rachel M Johnson
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia
| | - Ieva Drulyte
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord, 5651 GG Eindhoven, the Netherlands
| | - Lingbo Yu
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord, 5651 GG Eindhoven, the Netherlands
| | - Abhay Kotecha
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord, 5651 GG Eindhoven, the Netherlands
| | - Radostin Danev
- Graduate School of Medicine, University of Tokyo, N415, 7-3-1 Hongo, Bunkyo-ku, 113-0033 Tokyo, Japan
| | - Denise Wootten
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| | - Patrick M Sexton
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| | - Matthew J Belousoff
- Drug Discovery Biology Theme, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia; ARC Centre for Cryo-Electron Microscopy of Membrane Proteins, Monash Institute of Pharmaceutical Sciences, Monash University, Parkville 3052, VIC, Australia.
| |
Collapse
|
50
|
Amphipathic environments for determining the structure of membrane proteins by single-particle electron cryo-microscopy. Q Rev Biophys 2021; 54:e6. [PMID: 33785082 DOI: 10.1017/s0033583521000044] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Over the past decade, the structural biology of membrane proteins (MPs) has taken a new turn thanks to epoch-making technical progress in single-particle electron cryo-microscopy (cryo-EM) as well as to improvements in sample preparation. The present analysis provides an overview of the extent and modes of usage of the various types of surfactants for cryo-EM studies. Digitonin, dodecylmaltoside, protein-based nanodiscs, lauryl maltoside-neopentyl glycol, glyco-diosgenin, and amphipols (APols) are the most popular surfactants at the vitrification step. Surfactant exchange is frequently used between MP purification and grid preparation, requiring extensive optimization each time the study of a new MP is undertaken. The variety of both the surfactants and experimental approaches used over the past few years bears witness to the need to continue developing innovative surfactants and optimizing conditions for sample preparation. The possibilities offered by novel APols for EM applications are discussed.
Collapse
|