1
|
Chatterjee A, Ravandi B, Haddadi P, Philip NH, Abdelmessih M, Mowrey WR, Ricchiuto P, Liang Y, Ding W, Mobarec JC, Eliassi-Rad T. Topology-driven negative sampling enhances generalizability in protein-protein interaction prediction. Bioinformatics 2025; 41:btaf148. [PMID: 40193392 PMCID: PMC12080959 DOI: 10.1093/bioinformatics/btaf148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 03/03/2025] [Accepted: 04/04/2025] [Indexed: 04/09/2025] Open
Abstract
MOTIVATION Unraveling the human interactome to uncover disease-specific patterns and discover drug targets hinges on accurate protein-protein interaction (PPI) predictions. However, challenges persist in machine learning (ML) models due to a scarcity of quality hard negative samples, shortcut learning, and limited generalizability to novel proteins. RESULTS In this study, we introduce a novel approach for strategic sampling of protein-protein noninteractions (PPNIs) by leveraging higher-order network characteristics that capture the inherent complementarity-driven mechanisms of PPIs. Next, we introduce Unsupervised Pre-training of Node Attributes tuned for PPI (UPNA-PPI), a high throughput sequence-to-function ML pipeline, integrating unsupervised pre-training in protein representation learning with Topological PPNI (TPPNI) samples, capable of efficiently screening billions of interactions. By using our TPPNI in training the UPNA-PPI model, we improve PPI prediction generalizability and interpretability, particularly in identifying potential binding sites locations on amino acid sequences, strengthening the prioritization of screening assays and facilitating the transferability of ML predictions across protein families and homodimers. UPNA-PPI establishes the foundation for a fundamental negative sampling methodology in graph machine learning by integrating insights from network topology. AVAILABILITY AND IMPLEMENTATION Code and UPNA-PPI predictions are freely available at https://github.com/alxndgb/UPNA-PPI.
Collapse
Affiliation(s)
- Ayan Chatterjee
- BioClarity AI, Boston, MA 02130, United States
- Bioinformatics and Data Science, Alexion AstraZeneca Rare Disease, Boston, MA 02210, United States
- Network Science Institute, Northeastern University, Boston, MA 02115, United States
| | - Babak Ravandi
- Bioinformatics and Data Science, Alexion AstraZeneca Rare Disease, Boston, MA 02210, United States
- Network Science Institute, Northeastern University, Boston, MA 02115, United States
- Department of Physics, Northeastern University, Boston, MA 02115, United States
| | - Parham Haddadi
- Bioinformatics and Data Science, Alexion AstraZeneca Rare Disease, Boston, MA 02210, United States
| | - Naomi H Philip
- Bioinformatics and Data Science, Alexion AstraZeneca Rare Disease, Boston, MA 02210, United States
| | - Mario Abdelmessih
- Bioinformatics and Data Science, Alexion AstraZeneca Rare Disease, Boston, MA 02210, United States
| | - William R Mowrey
- Bioinformatics and Data Science, Alexion AstraZeneca Rare Disease, Boston, MA 02210, United States
| | - Piero Ricchiuto
- Bioinformatics and Data Science, Alexion AstraZeneca Rare Disease, Boston, MA 02210, United States
| | - Yupu Liang
- Bioinformatics and Data Science, Alexion AstraZeneca Rare Disease, Boston, MA 02210, United States
| | - Wei Ding
- Bioinformatics and Data Science, Alexion AstraZeneca Rare Disease, Boston, MA 02210, United States
| | - Juan Carlos Mobarec
- Protein Structure and Biophysics, Discovery Sciences, R&D, AstraZeneca, Cambridge, UK
| | - Tina Eliassi-Rad
- Network Science Institute, Northeastern University, Boston, MA 02115, United States
- Khoury College of Computer Sciences, Northeastern University, Boston, MA CB2 0AA, United States
- Santa Fe Institute, Santa Fe, NM 87501, United States
| |
Collapse
|
2
|
Conflitti P, Lyman E, Sansom MSP, Hildebrand PW, Gutiérrez-de-Terán H, Carloni P, Ansell TB, Yuan S, Barth P, Robinson AS, Tate CG, Gloriam D, Grzesiek S, Eddy MT, Prosser S, Limongelli V. Functional dynamics of G protein-coupled receptors reveal new routes for drug discovery. Nat Rev Drug Discov 2025; 24:251-275. [PMID: 39747671 PMCID: PMC11968245 DOI: 10.1038/s41573-024-01083-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2024] [Indexed: 01/04/2025]
Abstract
G protein-coupled receptors (GPCRs) are the largest human membrane protein family that transduce extracellular signals into cellular responses. They are major pharmacological targets, with approximately 26% of marketed drugs targeting GPCRs, primarily at their orthosteric binding site. Despite their prominence, predicting the pharmacological effects of novel GPCR-targeting drugs remains challenging due to the complex functional dynamics of these receptors. Recent advances in X-ray crystallography, cryo-electron microscopy, spectroscopic techniques and molecular simulations have enhanced our understanding of receptor conformational dynamics and ligand interactions with GPCRs. These developments have revealed novel ligand-binding modes, mechanisms of action and druggable pockets. In this Review, we highlight such aspects for recently discovered small-molecule drugs and drug candidates targeting GPCRs, focusing on three categories: allosteric modulators, biased ligands, and bivalent and bitopic compounds. Although studies so far have largely been retrospective, integrating structural data on ligand-induced receptor functional dynamics into the drug discovery pipeline has the potential to guide the identification of drug candidates with specific abilities to modulate GPCR interactions with intracellular effector proteins such as G proteins and β-arrestins, enabling more tailored selectivity and efficacy profiles.
Collapse
Affiliation(s)
- Paolo Conflitti
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland
| | - Edward Lyman
- Department of Physics and Astronomy, University of Delaware, Newark, DE, USA
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Mark S P Sansom
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Peter W Hildebrand
- Institute of Medical Physics and Biophysics, Faculty of Medicine, Leipzig University, Leipzig, Germany
| | - Hugo Gutiérrez-de-Terán
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Centre, Uppsala, Sweden
| | - Paolo Carloni
- INM-9/IAS-5 Computational Biomedicine, Forschungszentrum Jülich, Jülich, Germany
- Department of Physics, RWTH Aachen University, Aachen, Germany
| | - T Bertie Ansell
- Department of Biochemistry, University of Oxford, Oxford, UK
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Shuguang Yuan
- Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Patrick Barth
- Interfaculty Institute of Bioengineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research Lausanne, Lausanne, Switzerland
| | - Anne S Robinson
- Department of Chemical Engineering, Carnegie Mellon University, Pittsburgh, PA, USA
| | | | - David Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, Universitetsparken 2, Copenhagen, Denmark
| | - Stephan Grzesiek
- Focal Area Structural Biology and Biophysics, Biozentrum, University of Basel, Basel, Switzerland
| | - Matthew T Eddy
- Department of Chemistry, College of Liberal Arts and Sciences, University of Florida, Gainesville, FL, USA
| | - Scott Prosser
- Department of Chemistry, University of Toronto, Mississauga, Ontario, Canada
| | - Vittorio Limongelli
- Euler Institute, Faculty of Biomedical Sciences, Università della Svizzera italiana (USI), Lugano, Switzerland.
| |
Collapse
|
3
|
Fan L, Wang S. Biased GPCR Signaling: Possible Mechanisms and Therapeutic Applications. Biochemistry 2025; 64:1180-1192. [PMID: 40016120 DOI: 10.1021/acs.biochem.4c00827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Biased signaling refers to the phenomenon where a ligand selectively activates specific downstream pathways of G protein-coupled receptors (GPCRs), such as the G protein-mediated pathway or the β-arrestin-mediated pathway. This mechanism can be influenced by receptor bias, ligand bias, system bias and spatial bias, all of which are shaped by the receptor's conformational distinctions and kinetics. Since GPCRs are the largest class of drug targets, signaling bias garnered significant attention for its potential to enhance therapeutic efficacy while minimizing side effects. Despite intensive investigation, a major challenge lies in translating in vitro ligand efficacy into in vivo biological responses due to the dynamic and multifaceted nature of the in vivo environment. This review delves into the current understanding of GPCR-biased signaling, examining the role of structural bias at the molecular level, the impact of kinetic context on system and observational bias, and the challenges of applying these insights in drug development. It further explores future directions for advancing biased signaling applications, offering valuable perspectives on how to bridge the gap between in vitro studies and in vivo therapeutic design, ultimately accelerating the development of viable, biased therapeutics.
Collapse
Affiliation(s)
- Luyu Fan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Sheng Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences; University of Chinese Academy of Sciences, Shanghai 200031, China
| |
Collapse
|
4
|
Saha S, Sano FK, Sharma S, Ganguly M, Mishra S, Dalal A, Akasaka H, Kobayashi TA, Zaidi N, Tiwari D, Roy N, Yadav MK, Banerjee N, Saha S, Mohapatra S, Itoh Y, Chevigné A, Banerjee R, Shihoya W, Nureki O, Shukla AK. Molecular basis of promiscuous chemokine binding and structural mimicry at the C-X-C chemokine receptor, CXCR2. Mol Cell 2025; 85:976-988.e9. [PMID: 39978339 PMCID: PMC7617694 DOI: 10.1016/j.molcel.2025.01.024] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 11/11/2024] [Accepted: 01/22/2025] [Indexed: 02/22/2025]
Abstract
Selectivity of natural agonists for their cognate receptors is a hallmark of G-protein-coupled receptors (GPCRs); however, this selectivity often breaks down at the chemokine receptors. Chemokines often display promiscuous binding to chemokine receptors, but the underlying molecular determinants remain mostly elusive. Here, we perform a comprehensive transducer-coupling analysis, testing all known C-X-C chemokines on every C-X-C type chemokine receptor to generate a global fingerprint of the selectivity and promiscuity encoded within this system. Taking lead from this, we determine cryoelectron microscopy (cryo-EM) structures of the most promiscuous receptor, C-X-C chemokine receptor 2 (CXCR2), in complex with several chemokines. These structural snapshots elucidate the details of ligand-receptor interactions, including structural motifs, which are validated using mutagenesis and functional experiments. We also observe that most chemokines position themselves on CXCR2 as a dimer while CXCL6 exhibits a monomeric binding pose. Taken together, our findings provide the molecular basis of chemokine promiscuity at CXCR2 with potential implications for developing therapeutic molecules.
Collapse
Affiliation(s)
- Shirsha Saha
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Fumiya K Sano
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Saloni Sharma
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manisankar Ganguly
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sudha Mishra
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Annu Dalal
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Hiroaki Akasaka
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Takaaki A Kobayashi
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Nashrah Zaidi
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Divyanshu Tiwari
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nabarun Roy
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Manish K Yadav
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Nilanjana Banerjee
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Sayantan Saha
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Samanwita Mohapatra
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India
| | - Yuzuru Itoh
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Andy Chevigné
- Immuno-Pharmacology and Interactomics, Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg
| | - Ramanuj Banerjee
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India.
| | - Wataru Shihoya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Osamu Nureki
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| | - Arun K Shukla
- Department of Biological Sciences, Indian Institute of Technology Kanpur, Kanpur, India.
| |
Collapse
|
5
|
Mannes M, Martin C, Damian M, Cantel S, Orcel H, Fehrentz JA, Mouillac B, Kniazeff J, Banères JL, Ballet S. G protein peptidomimetics reveal allosteric effects and stepwise interactions in ghrelin receptor-G protein coupling. Sci Signal 2025; 18:eado7692. [PMID: 39903809 DOI: 10.1126/scisignal.ado7692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 01/14/2025] [Indexed: 02/06/2025]
Abstract
G protein-coupled receptor (GPCR) signaling is a dynamic process involving various conformational intermediates in addition to those captured in static three-dimensional structures. Here, we used newly developed G protein peptidomimetics to characterize the interactions of the ghrelin receptor (GHSR) with G proteins. Coupling to the G protein peptidomimetic not only affected the conformational features of the cytoplasmic regions of the receptor where the G protein binds but also allosterically affected the extracellular ligand-binding pocket. These conformational and allosteric changes increased the affinity of G protein-coupled GHSR for the endogenous agonist ghrelin. In addition, our data identified different complexes along the G protein activation pathway that differed in the engagement of the Gαq C-terminal helix. Given that this helix is the main link between the activated receptor and the Gα nucleotide-binding pocket, these findings suggested a stepwise process involving distinct states in GPCR-catalyzed G protein activation. Collectively, our results provide evidence for the dynamic behavior of GPCR-G protein signaling complexes, with such dynamics most likely contributing to signaling selectivity and/or efficacy.
Collapse
Affiliation(s)
- Morgane Mannes
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Charlotte Martin
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| | - Marjorie Damian
- Institut des Biomolécules Max Mousseron IBMM, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Sonia Cantel
- Institut des Biomolécules Max Mousseron IBMM, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Hélène Orcel
- Institut de Génomique Fonctionnelle IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Jean-Alain Fehrentz
- Institut des Biomolécules Max Mousseron IBMM, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle IGF, Université de Montpellier, CNRS, INSERM, 34094 Montpellier, France
| | - Julie Kniazeff
- Institut des Biomolécules Max Mousseron IBMM, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Jean-Louis Banères
- Institut des Biomolécules Max Mousseron IBMM, Université de Montpellier, CNRS, ENSCM, 34293 Montpellier, France
| | - Steven Ballet
- Research Group of Organic Chemistry, Vrije Universiteit Brussel, Pleinlaan 2, 1050 Brussels, Belgium
| |
Collapse
|
6
|
Saotome K, McGoldrick LL, Ho JH, Ramlall TF, Shah S, Moore MJ, Kim JH, Leidich R, Olson WC, Franklin MC. Structural insights into CXCR4 modulation and oligomerization. Nat Struct Mol Biol 2025; 32:315-325. [PMID: 39313635 PMCID: PMC11832422 DOI: 10.1038/s41594-024-01397-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 08/28/2024] [Indexed: 09/25/2024]
Abstract
Activation of the chemokine receptor CXCR4 by its chemokine ligand CXCL12 regulates diverse cellular processes. Previously reported crystal structures of CXCR4 revealed the architecture of an inactive, homodimeric receptor. However, many structural aspects of CXCR4 remain poorly understood. Here, we use cryo-electron microscopy to investigate various modes of human CXCR4 regulation. CXCL12 activates CXCR4 by inserting its N terminus deep into the CXCR4 orthosteric pocket. The binding of US Food and Drug Administration-approved antagonist AMD3100 is stabilized by electrostatic interactions with acidic residues in the seven-transmembrane-helix bundle. A potent antibody blocker, REGN7663, binds across the extracellular face of CXCR4 and inserts its complementarity-determining region H3 loop into the orthosteric pocket. Trimeric and tetrameric structures of CXCR4 reveal modes of G-protein-coupled receptor oligomerization. We show that CXCR4 adopts distinct subunit conformations in trimeric and tetrameric assemblies, highlighting how oligomerization could allosterically regulate chemokine receptor function.
Collapse
Affiliation(s)
- Kei Saotome
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA.
| | | | - Jo-Hao Ho
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Sweta Shah
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | - Jee Hae Kim
- Regeneron Pharmaceuticals, Inc., Tarrytown, NY, USA
| | | | | | | |
Collapse
|
7
|
Hendrickson WA, Gong Z. Structural and evolutionary insights into the functioning of glycoprotein hormones and their receptors. Andrology 2025. [PMID: 39871527 DOI: 10.1111/andr.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 01/02/2025] [Accepted: 01/16/2025] [Indexed: 01/29/2025]
Abstract
The neuroendocrine system that comprises the glycoprotein hormones (GpHs) and their receptors is essential for reproduction and metabolism. Each GpH hormone is an αβ heterodimer of cystine-knot proteins and its cognate receptor is a G-protein coupled receptor (GPCR) distinguished by a large leucine-rich-repeat (LRR) extracellular domain that binds the hormone and a class A GPCR transmembrane domain that signals through an associating heterotrimeric G protein. Hence, the receptors are called LRR-containing GPCRs-LGRs. The vertebrate GpHs and LGRs have co-evolved from homologs in the earliest metazoan animals, including sponges and comb jellies, but these are absent from unicellular organisms and plants. The two GpH subunits and accompanying LGR receptor of the nematode Caenorhabditis elegans are representative of the invertebrate evolutionary predecessors of human GpH proteins and their receptors, for example follicle-stimulating hormone (FSH) and the FSH receptor (FSHR). Atomic structures of the human GpHs and their receptors, which have been determined by X-ray crystallography and cryogenic electron microscopy (cryo-EM), inform the evolutionary process and provide a mechanistic understanding of the transmission of biochemical signals of hormone binding at the cell surface to the elicitation of second messengers such as cyclic AMP in the cytoplasm. There is compelling biochemical and cellular evidence for the importance of receptor dimers in GpH signaling in cells; yet, all of the human receptors are monomeric as defined beautifully by cryo-EM. Fortunately, the LGR of C. elegans is a stable dimer and its structure, when analyzed in the context of structural information from the human counterparts, predicts a hypothetical model for functionally relevant dimeric associations of the human GpH receptors.
Collapse
Affiliation(s)
- Wayne A Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
- Department of Physiology and Cellular Biophysics, Columbia University, New York, New York, USA
| | - Zhen Gong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York, USA
| |
Collapse
|
8
|
Yue Y, Liu L, Wu L, Xu C, Na M, Liu S, Liu Y, Li F, Liu J, Shi S, Lei H, Zhao M, Yang T, Ji W, Wang A, Hanson MA, Stevens RC, Liu J, Xu F. Structural insights into the regulation of monomeric and dimeric apelin receptor. Nat Commun 2025; 16:310. [PMID: 39747115 PMCID: PMC11697037 DOI: 10.1038/s41467-024-55555-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
The apelin receptor (APJR) emerges as a promising drug target for cardiovascular health and muscle regeneration. While prior research unveiled the structural versatility of APJR in coupling to Gi proteins as a monomer or dimer, the dynamic regulation within the APJR dimer during activation remains poorly understood. In this study, we present the structures of the APJR dimer and monomer complexed with its endogenous ligand apelin-13. In the dimeric structure, apelin-13 binds exclusively to one protomer that is coupled with Gi proteins, revealing a distinct ligand-binding behavior within APJR homodimers. Furthermore, binding of an antagonistic antibody induces a more compact dimerization by engaging both protomers. Notably, structural analyses of the APJR dimer complexed with an agonistic antibody, with or without Gi proteins, suggest that G protein coupling may promote the dissociation of the APJR dimer during activation. These findings underscore the intricate interplay between ligands, dimerization, and G protein coupling in regulating APJR signaling pathways.
Collapse
Affiliation(s)
- Yang Yue
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Lier Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Lijie Wu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Chanjuan Xu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Man Na
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Shenhui Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Yuxuan Liu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
- International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China
| | - Fei Li
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Junlin Liu
- iHuman Institute, ShanghaiTech University, Shanghai, China
| | - Songting Shi
- Structure Therapeutics, South San Francisco, CA, USA
| | - Hui Lei
- Structure Therapeutics, South San Francisco, CA, USA
| | - Minxuan Zhao
- iHuman Institute, ShanghaiTech University, Shanghai, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Tianjie Yang
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Wei Ji
- Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | | | - Michael A Hanson
- Phillip and Patricia Frost Institute for Chemistry and Molecular Science, University of Miami, Coral Gables, FL, USA
| | | | - Jianfeng Liu
- Key Laboratory of Molecular Biophysics of MOE, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
- International Research Center for Sensory Biology and Technology of MOST, College of Life Science and Technology, Huazhong University of Science and Technology (HUST), Wuhan, China.
| | - Fei Xu
- iHuman Institute, ShanghaiTech University, Shanghai, China.
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
- JiKang Therapeutics, Shanghai, China.
- Shanghai Clinical Research and Trial Center, Shanghai, China.
| |
Collapse
|
9
|
Xie P, Li Y, Lamon G, Kuang H, Wang DN, Traaseth NJ. A fiducial-assisted strategy compatible with resolving small MFS transporter structures in multiple conformations using cryo-EM. Nat Commun 2025; 16:7. [PMID: 39746942 PMCID: PMC11695964 DOI: 10.1038/s41467-024-54986-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Accepted: 11/24/2024] [Indexed: 01/04/2025] Open
Abstract
Advancements in cryo-EM have stimulated a revolution in structural biology. Yet, for membrane proteins near the cryo-EM size threshold of approximately 40 kDa, including transporters and G-protein coupled receptors, the absence of distinguishable structural features makes image alignment and structure determination a significant challenge. Furthermore, resolving more than one protein conformation within a sample, a major advantage of cryo-EM, represents an even greater degree of difficulty. Here, we describe a strategy for introducing a rigid fiducial marker (BRIL domain) at the C-terminus of membrane transporters from the Major Facilitator Superfamily (MFS) with AlphaFold2. This approach involves fusion of the last transmembrane domain helix of the target protein with the first helix of BRIL through a short poly-alanine linker to promote helicity. Combining this strategy with a BRIL-specific Fab, we elucidated four cryo-EM structures of the 42 kDa Staphylococcus aureus transporter NorA, three of which were derived from a single sample corresponding to inward-open, inward-occluded, and occluded conformations. Hence, this fusion construct facilitated experiments to characterize the conformational landscape of NorA and validated our design to position the BRIL/antibody pair in an orientation that avoids steric clash with the transporter. The latter was enabled through AlphaFold2 predictions, which minimized guesswork and reduced the need for screening several constructs. We further validated the suitability of the method to three additional MFS transporters (GlpT, Bmr, and Blt), results that supported a rigid linker between the transporter and BRIL. The successful application to four MFS proteins, the largest family of secondary transporters in nature, and analysis of predicted structures for the family indicates this strategy will be a valuable tool for studying other MFS members using cryo-EM.
Collapse
Affiliation(s)
- Pujun Xie
- Department of Chemistry, New York University, New York, NY, USA
| | - Yan Li
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA
| | - Gaëlle Lamon
- Department of Chemistry, New York University, New York, NY, USA
| | - Huihui Kuang
- Cryo-EM Core Laboratory, New York University School of Medicine, New York, NY, USA
| | - Da-Neng Wang
- Department of Cell Biology, New York University School of Medicine, New York, NY, USA.
| | | |
Collapse
|
10
|
Gong Z, Chen S, Fu Z, Kloss B, Wang C, Clarke OB, Fan QR, Hendrickson WA. Structure of an LGR dimer - an evolutionary predecessor of glycoprotein hormone receptors. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.12.31.630923. [PMID: 39803540 PMCID: PMC11722252 DOI: 10.1101/2024.12.31.630923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
The glycoprotein hormones of humans, produced in the pituitary and acting through receptors in the gonads to support reproduction and in the thyroid gland for metabolism, have co-evolved from invertebrate counterparts1,2. These hormones are heterodimeric cystine-knot proteins; and their receptors bind the cognate hormone at an extracellular domain and transmit the signal of this binding through a transmembrane domain that interacts with a heterotrimeric G protein. Structures determined for the human receptors as isolated for cryogenic electron microscopy (cryo-EM) are all monomeric3-6 despite compelling evidence for their functioning as dimers7-10. Here we describe the cryo-EM structure of the homologous receptor from a neuroendocrine pathway that promotes growth in a nematode11. This structure is an asymmetric dimer that can be activated by the hormone from that worm12, and it shares features especially like those of the thyroid stimulating hormone receptor (TSHR). When studied in the context of the human homologs, this dimer provides a structural explanation for the transactivation evident from functional complementation of binding-deficient and signaling-deficient receptors7, for the negative cooperativity in hormone action that is manifest in the 1:2 asymmetry of primary TSH:TSHR complexes8,9, and for switches in G-protein usage that occur as 2:2 complexes form9,10.
Collapse
Affiliation(s)
- Zhen Gong
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Shuobing Chen
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Ziao Fu
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Brian Kloss
- New York Structural Biology Center, New York, NY 10027
| | - Chi Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
| | - Oliver B. Clarke
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
- Department of Anesthesiology, Columbia University Irving Medical Center, New York, NY 10032
- Irving Institute for Clinical and Translational Research, Columbia University, New York, NY 10032
| | - Qing R. Fan
- Department of Molecular Pharmacology and Therapeutics, Columbia University, New York, NY 10032
- Department of Pathology and Cell Biology, Columbia University, New York, NY 10032
| | - Wayne A. Hendrickson
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
- Department of Physiology and Cellular Biophysics, Columbia University, New York, NY 10032
| |
Collapse
|
11
|
Petrovic I, Grzesiek S, Isaikina P. Advances in the molecular understanding of GPCR-arrestin complexes. Biochem Soc Trans 2024; 52:2333-2342. [PMID: 39508463 DOI: 10.1042/bst20240170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/17/2024] [Accepted: 10/07/2024] [Indexed: 11/15/2024]
Abstract
Arrestins are essential proteins for the regulation of G protein-coupled receptors (GPCRs). They mediate GPCR desensitization after the activated receptor has been phosphorylated by G protein receptor kinases (GRKs). In addition, GPCR-arrestin interactions may trigger signaling pathways that are distinct and independent from G proteins. The non-visual GPCRs encompass hundreds of receptors with varying phosphorylation patterns and amino acid sequences, which are regulated by only two human non-visual arrestin isoforms. This review describes recent findings on GPCR-arrestin complexes, obtained by structural techniques, biophysical, biochemical, and cellular assays. The solved structures of complete GPCR-arrestin complexes are of limited resolution ranging from 3.2 to 4.7 Å and reveal a high variability in the relative receptor-arrestin orientation. In contrast, biophysical and functional data indicate that arrestin recruitment, activation and GPCR-arrestin complex stability depend on the receptor phosphosite sequence patterns and density. At present, there is still a manifest lack of high-resolution structural and dynamical information on the interactions of native GPCRs with both GRKs and arrestins, which could provide a detailed molecular understanding of the genesis of receptor phosphorylation patterns and the specificity GPCR-arrestin interactions. Such insights seem crucial for progress in the rational design of advanced, arrestin-specific therapeutics.
Collapse
Affiliation(s)
- Ivana Petrovic
- Biozentrum, University of Basel, CH-4056 Basel, Switzerland
| | | | - Polina Isaikina
- Center for Life Sciences, Paul Scherrer Institut, CH-5232 Villigen, Switzerland
| |
Collapse
|
12
|
Lou F, Zhou W, Tunc-Ozdemir M, Yang J, Velazhahan V, Tate CG, Jones AM. VPS26 Moonlights as a β-Arrestin-like Adapter for a 7-Transmembrane RGS Protein in Arabidopsis thaliana. Biochemistry 2024; 63:2990-2999. [PMID: 39467170 PMCID: PMC11580166 DOI: 10.1021/acs.biochem.4c00361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/07/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
Extracellular signals perceived by 7-transmembrane (7TM)-spanning receptors initiate desensitization that involves the removal of these receptors from the plasma membrane. Agonist binding often evokes phosphorylation in the flexible C-terminal region and/or intracellular loop 3 of many 7TM G-protein-coupled receptors in animal cells, which consequently recruits a cytoplasmic intermediate adaptor, β-arrestin, resulting in clathrin-mediated endocytosis (CME) and downstream signaling such as transcriptional changes. Some 7TM receptors undergo CME without recruiting β-arrestin, but it is not clear how. Arrestins are not encoded in the Arabidopsis thaliana genome, yet Arabidopsis cells have a well-characterized signal-induced CME of a 7TM protein, designated Regulator of G Signaling 1 (AtRGS1). Here we show that a component of the retromer complex, Vacuolar Protein Sorting-Associated 26 (VPS26), binds the phosphorylated C-terminal region of AtRGS1 as a VPS26A/B heterodimer to form a complex that is required for downstream signaling. We propose that VPS26 moonlights as an arrestin-like adaptor in the CME of AtRGS1.
Collapse
Affiliation(s)
- Fei Lou
- Department
of Biology, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Wenbin Zhou
- Department
of Biology, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Meral Tunc-Ozdemir
- Department
of Biology, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Jing Yang
- Department
of Biology, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| | - Vaithish Velazhahan
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
- Gonville
and Caius College, University of Cambridge, Cambridge CB2 1TA, U.K.
| | - Christopher G. Tate
- MRC
Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 0QH, U.K.
| | - Alan M. Jones
- Department
of Biology, The University of North Carolina
at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
- Department
of Pharmacology, The University of North
Carolina at Chapel Hill, Chapel
Hill, North Carolina 27599, United States
| |
Collapse
|
13
|
Ciancetta A, Malfacini D, Gozzi M, Marzola E, Camilotto R, Calò G, Guerrini R. A Multi-Angle Approach to Predict Peptide-GPCR Complexes: The N/OFQ-NOP System as a Successful AlphaFold Application Case Study. J Chem Inf Model 2024; 64:8034-8051. [PMID: 39137328 DOI: 10.1021/acs.jcim.4c00499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
With nearly 700 structures solved and a growing number of customized structure prediction algorithms being developed at a fast pace, G protein-coupled receptors (GPCRs) are an optimal test case for validating new approaches for the prediction of receptor active state and ligand bioactive conformation complexes. In this study, we leveraged the availability of hundreds of peptide GPCRs in the active state and both classical homology and artificial intelligence (AI) based protein modeling combined with docking and AI-based peptide structure prediction approaches to predict the nociceptin/orphanin FQ-NOP receptor active state complex (N/OFQ-NOPa). The In Silico generated hypotheses were validated via the design, synthesis, and pharmacological characterization of novel linear N/OFQ(1-13)-NH2 analogues, leading to the discovery of a novel antagonist (3B; pKB = 6.63) bearing a single ring-constrained residue in place of the Gly2-Gly3 motif of the N/OFQ message sequence (FGGF). While the experimental validation was ongoing, the availability of the Cryo-EM structure of the predicted complex enabled us to unambiguously validate the generated hypotheses. To the best of our knowledge, this is the first example of a peptide-GPCR complex predicted with atomistic accuracy (full complex Cα RMSD < 1.0 Å) and of the N/OFQ message moiety being successfully modified with a rigid scaffold.
Collapse
Affiliation(s)
- Antonella Ciancetta
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Davide Malfacini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Matteo Gozzi
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Erika Marzola
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| | - Riccardo Camilotto
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Girolamo Calò
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova 35131, Italy
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences, University of Ferrara, 44121 Ferrara, Italy
| |
Collapse
|
14
|
Fan L, Zhuang Y, Wu H, Li H, Xu Y, Wang Y, He L, Wang S, Chen Z, Cheng J, Xu HE, Wang S. Structural basis of psychedelic LSD recognition at dopamine D 1 receptor. Neuron 2024; 112:3295-3310.e8. [PMID: 39094559 DOI: 10.1016/j.neuron.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 06/11/2024] [Accepted: 07/05/2024] [Indexed: 08/04/2024]
Abstract
Understanding the kinetics of LSD in receptors and subsequent induced signaling is crucial for comprehending both the psychoactive and therapeutic effects of LSD. Despite extensive research on LSD's interactions with serotonin 2A and 2B receptors, its behavior on other targets, including dopamine receptors, has remained elusive. Here, we present cryo-EM structures of LSD/PF6142-bound dopamine D1 receptor (DRD1)-legobody complexes, accompanied by a β-arrestin-mimicking nanobody, NBA3, shedding light on the determinants of G protein coupling versus β-arrestin coupling. Structural analysis unveils a distinctive binding mode of LSD in DRD1, particularly with the ergoline moiety oriented toward TM4. Kinetic investigations uncover an exceptionally rapid dissociation rate of LSD in DRD1, attributed to the flexibility of extracellular loop 2 (ECL2). Moreover, G protein can stabilize ECL2 conformation, leading to a significant slowdown in ligand's dissociation rate. These findings establish a solid foundation for further exploration of G protein-coupled receptor (GPCR) dynamics and their relevance to signal transduction.
Collapse
Affiliation(s)
- Luyu Fan
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China.
| | - Youwen Zhuang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hongyu Wu
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Huiqiong Li
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Youwei Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yue Wang
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Licong He
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Shishan Wang
- Laboratory of Anesthesia and Critical Care Medicine in Colleges and Universities of Shandong Province, School of Anesthesiology, Shandong Second Medical University, Weifang 261021, China
| | - Zhangcheng Chen
- Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China
| | - Jianjun Cheng
- iHuman Institute, ShanghaiTech University, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - H Eric Xu
- State Key Laboratory of Drug Research, Center for Structure and Function of Drug Targets, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Lingang Laboratory, Shanghai 200031, China.
| | - Sheng Wang
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Key Laboratory of Multi-Cell Systems, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai 200031, China.
| |
Collapse
|
15
|
Lin X, Provasi D, Niswender CM, Asher WB, Javitch JA. Elucidating the molecular logic of a metabotropic glutamate receptor heterodimer. Nat Commun 2024; 15:8552. [PMID: 39362861 PMCID: PMC11450022 DOI: 10.1038/s41467-024-52822-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 09/20/2024] [Indexed: 10/05/2024] Open
Abstract
Metabotropic glutamate (mGlu) receptor protomers can heterodimerize, leading to different pharmacology compared to their homodimeric counterparts. Here, we use complemented donor-acceptor resonance energy transfer (CODA-RET) technology that distinguishes signaling from defined mGlu heterodimers or homodimers, together with targeted mutagenesis of receptor protomers and computational docking, to elucidate the mechanism of activation and differential pharmacology in mGlu2/4 heteromers. We demonstrate that positive allosteric modulators (PAMs) that bind an upper allosteric pocket in the mGlu4 transmembrane domain are active at both mGlu4/4 homomers and mGlu2/4 heteromers, while those that bind a lower allosteric pocket within the same domain are efficacious in homomers but not heteromers. We further demonstrate that both protomers of mGlu2/4 heteromers are cis-activated by their orthosteric agonists, signaling independently with no trans-activation detected. Intriguingly, however, upper pocket mGlu4 PAMs enable trans-activation in mGlu2/4 heteromers from mGlu4 to the mGlu2 protomer and also enhance cis-activation of the mGlu2 protomer. While mGlu2 PAMs enhanced mGlu2 cis-activation in the heterodimer, we were unable to detect trans-activation in the opposite direction from mGlu2 to the mGlu4 protomer, suggesting an asymmetry of signaling. These insights into the molecular logic of this receptor heteromer are critical to building toward precision targeted therapies for multiple neuropsychiatric disorders.
Collapse
Affiliation(s)
- Xin Lin
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA
| | - Davide Provasi
- Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Colleen M Niswender
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
- Warren Center for Neuroscience Drug Discovery, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Kennedy Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
- Vanderbilt Institute for Chemical Biology, Vanderbilt University, Nashville, TN, USA
| | - Wesley B Asher
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
| | - Jonathan A Javitch
- Department of Psychiatry, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
- Division of Molecular Therapeutics, New York State Psychiatric Institute, New York, NY, USA.
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
16
|
Kim K, Chung KY. Molecular mechanism of β-arrestin-2 pre-activation by phosphatidylinositol 4,5-bisphosphate. EMBO Rep 2024; 25:4190-4205. [PMID: 39242774 PMCID: PMC11467438 DOI: 10.1038/s44319-024-00239-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 07/09/2024] [Accepted: 08/09/2024] [Indexed: 09/09/2024] Open
Abstract
Phosphorylated residues of G protein-coupled receptors bind to the N-domain of arrestin, resulting in the release of its C-terminus. This induces further allosteric conformational changes, such as polar core disruption, alteration of interdomain loops, and domain rotation, which transform arrestins into the receptor-activated state. It is widely accepted that arrestin activation occurs by conformational changes propagated from the N- to the C-domain. However, recent studies have revealed that binding of phosphatidylinositol 4,5-bisphosphate (PIP2) to the C-domain transforms arrestins into a pre-active state. Here, we aimed to elucidate the mechanisms underlying PIP2-induced arrestin pre-activation. We compare the conformational changes of β-arrestin-2 upon binding of PIP2 or phosphorylated C-tail peptide of vasopressin receptor type 2 using hydrogen/deuterium exchange mass spectrometry (HDX-MS). Introducing point mutations on the potential routes of the allosteric conformational changes and analyzing these mutant constructs with HDX-MS reveals that PIP2-binding at the C-domain affects the back loop, which destabilizes the gate loop and βXX to transform β-arrestin-2 into the pre-active state.
Collapse
Affiliation(s)
- Kiae Kim
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea
| | - Ka Young Chung
- School of Pharmacy, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, 16419, Republic of Korea.
| |
Collapse
|
17
|
Rodriguez-Contreras D, García-Nafría J, Chan AE, Shinde U, Neve KA. Comparison of the function of two novel human dopamine D2 receptor variants identifies a likely mechanism for their pathogenicity. Biochem Pharmacol 2024; 228:116228. [PMID: 38643909 PMCID: PMC11410538 DOI: 10.1016/j.bcp.2024.116228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 04/23/2024]
Abstract
Two recently discovered DRD2 mutations, c.634A > T, p.Ile212Phe and c.1121T > G, p.Met374Arg, cause hyperkinetic movement disorders that have overlapping features but apparently differ in severity. The two known carriers of the Met374Arg variant had early childhood disease onset and more severe motor, cognitive, and neuropsychiatric deficits than any known carriers of the Ile212Phe variant, whose symptoms were first apparent in adolescence. Here, we evaluated if differences in the function of the two variants in cultured cells could explain differing pathogenicity. Both variants were expressed less abundantly than the wild type receptor and exhibited loss of agonist-induced arrestin binding, but differences in expression and arrestin binding between the variants were minor. Basal and agonist-induced activation of heterotrimeric Gi/o/z proteins, however, showed clear differences; agonists were generally more potent at Met374Arg than at the Ile212Phe or wild type variants. Furthermore, all Gα subtypes tested were constitutively activated more by Met374Arg than by Ile212Phe. Met374Arg produced greater constitutive inhibition of cyclic AMP accumulation than Ile212Phe or the wild type D2 receptor. Met374Arg and Ile212Phe were more sensitive to thermal inactivation than the wild type D2 receptor, as reported for other constitutively active receptors, but Ile212Phe was affected more than Met374Arg. Additional pharmacological characterization suggested that the mutations differentially affect the shape of the agonist binding pocket and the potency of dopamine, norepinephrine, and tyramine. Molecular dynamics simulations provided a structural rationale for enhanced constitutive activation and agonist potency. Enhanced constitutive and agonist-induced G protein-mediated signaling likely contributes to the pathogenicity of these novel variants.
Collapse
Affiliation(s)
- Dayana Rodriguez-Contreras
- Research Service, Veterans Affairs Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratory of Advanced Microscopy (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| | - Amy E Chan
- Research Service, Veterans Affairs Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA
| | - Ujwal Shinde
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, OR 97239, USA
| | - Kim A Neve
- Research Service, Veterans Affairs Portland Health Care System, and Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR 97239, USA.
| |
Collapse
|
18
|
Arroyo-Urea S, Nazarova AL, Carrión-Antolí Á, Bonifazi A, Battiti FO, Lam JH, Newman AH, Katritch V, García-Nafría J. A bitopic agonist bound to the dopamine 3 receptor reveals a selectivity site. Nat Commun 2024; 15:7759. [PMID: 39237617 PMCID: PMC11377762 DOI: 10.1038/s41467-024-51993-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 08/20/2024] [Indexed: 09/07/2024] Open
Abstract
Although aminergic GPCRs are the target for ~25% of approved drugs, developing subtype selective drugs is a major challenge due to the high sequence conservation at their orthosteric binding site. Bitopic ligands are covalently joined orthosteric and allosteric pharmacophores with the potential to boost receptor selectivity and improve current medications by reducing off-target side effects. However, the lack of structural information on their binding mode impedes rational design. Here we determine the cryo-EM structure of the hD3R:GαOβγ complex bound to the D3R selective bitopic agonist FOB02-04A. Structural, functional and computational analyses provide insights into its binding mode and point to a new TM2-ECL1-TM1 region, which requires the N-terminal ordering of TM1, as a major determinant of subtype selectivity in aminergic GPCRs. This region is underexploited in drug development, expands the established secondary binding pocket in aminergic GPCRs and could potentially be used to design novel and subtype selective drugs.
Collapse
Affiliation(s)
- Sandra Arroyo-Urea
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- Laboratory of Advanced Microscopy (LMA), University of Zaragoza, Zaragoza, Spain
| | - Antonina L Nazarova
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Ángela Carrión-Antolí
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain
- Laboratory of Advanced Microscopy (LMA), University of Zaragoza, Zaragoza, Spain
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland, USA
| | - Francisco O Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland, USA
| | - Jordy Homing Lam
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse - Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland, USA
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA, USA
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Zaragoza, Spain.
- Laboratory of Advanced Microscopy (LMA), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
19
|
Gusach A, Lee Y, Khoshgrudi AN, Mukhaleva E, Ma N, Koers EJ, Chen Q, Edwards PC, Huang F, Kim J, Mancia F, Veprintsev DB, Vaidehi N, Weyand SN, Tate CG. Molecular recognition of an odorant by the murine trace amine-associated receptor TAAR7f. Nat Commun 2024; 15:7555. [PMID: 39215004 PMCID: PMC11364543 DOI: 10.1038/s41467-024-51793-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
There are two main families of G protein-coupled receptors that detect odours in humans, the odorant receptors (ORs) and the trace amine-associated receptors (TAARs). Their amino acid sequences are distinct, with the TAARs being most similar to the aminergic receptors such as those activated by adrenaline, serotonin, dopamine and histamine. To elucidate the structural determinants of ligand recognition by TAARs, we have determined the cryo-EM structure of a murine receptor, mTAAR7f, coupled to the heterotrimeric G protein Gs and bound to the odorant N,N-dimethylcyclohexylamine (DMCHA) to an overall resolution of 2.9 Å. DMCHA is bound in a hydrophobic orthosteric binding site primarily through van der Waals interactions and a strong charge-charge interaction between the tertiary amine of the ligand and an aspartic acid residue. This site is distinct and non-overlapping with the binding site for the odorant propionate in the odorant receptor OR51E2. The structure, in combination with mutagenesis data and molecular dynamics simulations suggests that the activation of the receptor follows a similar pathway to that of the β-adrenoceptors, with the significant difference that DMCHA interacts directly with one of the main activation microswitch residues, Trp6.48.
Collapse
Affiliation(s)
- Anastasiia Gusach
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Yang Lee
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Armin Nikpour Khoshgrudi
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, NG7 2RD, UK
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, CA, 91016, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, CA, 91016, USA
| | - Eline J Koers
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, NG7 2RD, UK
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Qingchao Chen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Patricia C Edwards
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK
| | - Fanglu Huang
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Dmitry B Veprintsev
- Centre of Membrane Proteins and Receptors (COMPARE), University of Birmingham and University of Nottingham, Midlands, NG7 2RD, UK
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman Research Institute of the City of Hope, 1218 S 5th Ave, Monrovia, CA, 91016, USA
| | - Simone N Weyand
- Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge, UK.
- Department of Medicine, University of Cambridge, Victor Phillip Dahdaleh Building, Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical Campus, Cambridge, CB2 0BB, UK.
- Cambridge Institute for Medical Research, Keith Peters Building, Biomedical Campus, Hills Rd, Cambridge, CB2 0XY, UK.
- EMBL's European Bioinformatics Institute (EMBL-EBI), Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK.
| | - Christopher G Tate
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB2 0QH, UK.
| |
Collapse
|
20
|
Fernández-Moncada I, Lavanco G, Fundazuri UB, Bollmohr N, Mountadem S, Dalla Tor T, Hachaguer P, Julio-Kalajzic F, Gisquet D, Serrat R, Bellocchio L, Cannich A, Fortunato-Marsol B, Nasu Y, Campbell RE, Drago F, Cannizzaro C, Ferreira G, Bouzier-Sore AK, Pellerin L, Bolaños JP, Bonvento G, Barros LF, Oliet SHR, Panatier A, Marsicano G. A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice. Nat Commun 2024; 15:6842. [PMID: 39122700 PMCID: PMC11316019 DOI: 10.1038/s41467-024-51008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Astrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory. This phenotype is rescued by the gliotransmitter D-serine, by its precursor L-serine, and also by lactate and 3,5-DHBA, an agonist of the lactate receptor HCAR1. Such lactate-dependent effect is abolished when the astrocyte-specific phosphorylated-pathway (PP), which diverts glycolysis towards L-serine synthesis, is blocked. Consistently, lactate and 3,5-DHBA promoted the co-agonist binding site occupancy of CA1 post-synaptic NMDA receptors in hippocampal slices in a PP-dependent manner. Thus, a tight cross-talk between astrocytic energy metabolism and gliotransmission determines synaptic and cognitive processes.
Collapse
Affiliation(s)
| | - Gianluca Lavanco
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, ''G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Unai B Fundazuri
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Nasrin Bollmohr
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Sarah Mountadem
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Tommaso Dalla Tor
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Pauline Hachaguer
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Doriane Gisquet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Roman Serrat
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Luigi Bellocchio
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Astrid Cannich
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Yusuke Nasu
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Robert E Campbell
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- CERVO Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec City, QC, Canada
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Guillaume Ferreira
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Anne-Karine Bouzier-Sore
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, F-33000, Bordeaux, France
| | - Luc Pellerin
- Université de Poitiers et CHU de Poitiers, INSERM, IRMETIST, U1313, Poitiers, France
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Gilles Bonvento
- Universite Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodegeneratives, Fontenay-aux-Roses, France
| | - L Felipe Barros
- Centro de Estudios Cientificos, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Stephane H R Oliet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Aude Panatier
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
21
|
Hu S, Wang D, Liu W, Wang Y, Chen J, Cai X. Apelin receptor dimer: Classification, future prospects, and pathophysiological perspectives. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167257. [PMID: 38795836 DOI: 10.1016/j.bbadis.2024.167257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/25/2024] [Accepted: 05/17/2024] [Indexed: 05/28/2024]
Abstract
Apelin receptor (APJ), a member of the class A family of G protein-coupled receptor (GPCR), plays a crucial role in regulating cardiovascular and central nervous systems function. APJ influences the onset and progression of various diseases such as hypertension, atherosclerosis, and cerebral stroke, making it an important target for drug development. Our preliminary findings indicate that APJ can form homodimers, heterodimers, or even higher-order oligomers, which participate in different signaling pathways and have distinct functions compared with monomers. APJ homodimers can serve as neuroprotectors against, and provide new pharmaceutical targets for vascular dementia (VD). This review article aims to summarize the structural characteristics of APJ dimers and their roles in physiology and pathology, as well as explore their potential pharmacological applications.
Collapse
Affiliation(s)
- Shujuan Hu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Dexiu Wang
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Wenkai Liu
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Yixiang Wang
- School of Clinical Medicine, Shandong Second Medical University, Weifang, Shandong 261042, PR China
| | - Jing Chen
- Neurobiology Institute, Jining Medical University, Jining, Shandong 272067, PR China; Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK.
| | - Xin Cai
- School of Basic Medical Sciences, Shandong Second Medical University, Weifang, Shandong 261042, PR China.
| |
Collapse
|
22
|
Zhang M, Chen T, Lu X, Lan X, Chen Z, Lu S. G protein-coupled receptors (GPCRs): advances in structures, mechanisms, and drug discovery. Signal Transduct Target Ther 2024; 9:88. [PMID: 38594257 PMCID: PMC11004190 DOI: 10.1038/s41392-024-01803-6] [Citation(s) in RCA: 104] [Impact Index Per Article: 104.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/19/2024] [Accepted: 03/13/2024] [Indexed: 04/11/2024] Open
Abstract
G protein-coupled receptors (GPCRs), the largest family of human membrane proteins and an important class of drug targets, play a role in maintaining numerous physiological processes. Agonist or antagonist, orthosteric effects or allosteric effects, and biased signaling or balanced signaling, characterize the complexity of GPCR dynamic features. In this study, we first review the structural advancements, activation mechanisms, and functional diversity of GPCRs. We then focus on GPCR drug discovery by revealing the detailed drug-target interactions and the underlying mechanisms of orthosteric drugs approved by the US Food and Drug Administration in the past five years. Particularly, an up-to-date analysis is performed on available GPCR structures complexed with synthetic small-molecule allosteric modulators to elucidate key receptor-ligand interactions and allosteric mechanisms. Finally, we highlight how the widespread GPCR-druggable allosteric sites can guide structure- or mechanism-based drug design and propose prospects of designing bitopic ligands for the future therapeutic potential of targeting this receptor family.
Collapse
Affiliation(s)
- Mingyang Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ting Chen
- Department of Cardiology, Changzheng Hospital, Affiliated to Naval Medical University, Shanghai, 200003, China
| | - Xun Lu
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xiaobing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China
| | - Ziqiang Chen
- Department of Orthopedics, Changhai Hospital, Affiliated to Naval Medical University, Shanghai, 200433, China.
| | - Shaoyong Lu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan, 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
23
|
Khorn PA, Luginina AP, Pospelov VA, Dashevsky DE, Khnykin AN, Moiseeva OV, Safronova NA, Belousov AS, Mishin AV, Borshchevsky VI. Rational Design of Drugs Targeting G-Protein-Coupled Receptors: A Structural Biology Perspective. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:747-764. [PMID: 38831510 DOI: 10.1134/s0006297924040138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 02/22/2024] [Accepted: 02/29/2024] [Indexed: 06/05/2024]
Abstract
G protein-coupled receptors (GPCRs) play a key role in the transduction of extracellular signals to cells and regulation of many biological processes, which makes these membrane proteins one of the most important targets for pharmacological agents. A significant increase in the number of resolved atomic structures of GPCRs has opened the possibility of developing pharmaceuticals targeting these receptors via structure-based drug design (SBDD). SBDD employs information on the structure of receptor-ligand complexes to search for selective ligands without the need for an extensive high-throughput experimental ligand screening and can significantly expand the chemical space for ligand search. In this review, we describe the process of deciphering GPCR structures using X-ray diffraction analysis and cryoelectron microscopy as an important stage in the rational design of drugs targeting this receptor class. Our main goal was to present modern developments and key features of experimental methods used in SBDD of GPCR-targeting agents to a wide range of specialists.
Collapse
Affiliation(s)
- Polina A Khorn
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Aleksandra P Luginina
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Vladimir A Pospelov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Dmitrii E Dashevsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Andrey N Khnykin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Olga V Moiseeva
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
- Scryabin Institute of Biochemistry and Physiology of Microorganisms, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia
| | - Nadezhda A Safronova
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Anatolii S Belousov
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia
| | - Alexey V Mishin
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
| | - Valentin I Borshchevsky
- Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, Dolgoprudny, Moscow Region, 141701, Russia.
- Joint Institute for Nuclear Research, Frank Laboratory of Neutron Physics, Dubna, Moscow Region, 141980, Russia
| |
Collapse
|
24
|
Pándy-Szekeres G, Taracena Herrera LP, Caroli J, Kermani AA, Kulkarni Y, Keserű GM, Gloriam DE. GproteinDb in 2024: new G protein-GPCR couplings, AlphaFold2-multimer models and interface interactions. Nucleic Acids Res 2024; 52:D466-D475. [PMID: 38000391 PMCID: PMC10767870 DOI: 10.1093/nar/gkad1089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/26/2023] Open
Abstract
G proteins are the major signal proteins of ∼800 receptors for medicines, hormones, neurotransmitters, tastants and odorants. GproteinDb offers integrated genomic, structural, and pharmacological data and tools for analysis, visualization and experiment design. Here, we present the first major update of GproteinDb greatly expanding its coupling data and structural templates, adding AlphaFold2 structure models of GPCR-G protein complexes and advancing the interactive analysis tools for their interfaces underlying coupling selectivity. We present insights on coupling agreement across datasets and parameters, including constitutive activity, agonist-induced activity and kinetics. GproteinDb is accessible at https://gproteindb.org.
Collapse
Affiliation(s)
- Gáspár Pándy-Szekeres
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
- Medicinal Chemistry Research Group, HUN-REN Research Center for Natural Sciences, Budapest H-1117, Hungary
| | - Luis P Taracena Herrera
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Jimmy Caroli
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - Ali A Kermani
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yashraj Kulkarni
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| | - György M Keserű
- Medicinal Chemistry Research Group, HUN-REN Research Center for Natural Sciences, Budapest H-1117, Hungary
| | - David E Gloriam
- Department of Drug Design and Pharmacology, University of Copenhagen, 2100 Copenhagen, Denmark
| |
Collapse
|
25
|
Arroyo-Urea S, Nazarova AL, Carrión-Antolí Á, Bonifazi A, Battiti FO, Lam JH, Newman AH, Katritch V, García-Nafría J. Structure of the dopamine D3 receptor bound to a bitopic agonist reveals a new specificity site in an expanded allosteric pocket. RESEARCH SQUARE 2023:rs.3.rs-3433207. [PMID: 38196573 PMCID: PMC10775388 DOI: 10.21203/rs.3.rs-3433207/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Although aminergic GPCRs are the target for ~25% of approved drugs, developing subtype selective drugs is a major challenge due to the high sequence conservation at their orthosteric binding site. Bitopic ligands are covalently joined orthosteric and allosteric pharmacophores with the potential to boost receptor selectivity, driven by the binding of the secondary pharmacophore to non-conserved regions of the receptor. Although bitopic ligands have great potential to improve current medications by reducing off-target side effects, the lack of structural information on their binding mode impedes rational design. Here we determine the cryo-EM structure of the hD3R coupled to a GO heterotrimer and bound to the D3R selective bitopic agonist FOB02-04A. Structural, functional and computational analyses provide new insights into its binding mode and point to a new TM2-ECL1-TM1 region, which requires the N-terminal ordering of TM1, as a major determinant of subtype selectivity in aminergic GPCRs. This region is underexploited in drug development, expands the established secondary binding pocket in aminergic GPCRs and could potentially be used to design novel and subtype selective drugs.
Collapse
Affiliation(s)
- Sandra Arroyo-Urea
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| | - Antonina L. Nazarova
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Ángela Carrión-Antolí
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| | - Alessandro Bonifazi
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Francisco O. Battiti
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Jordy Homing Lam
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
| | - Amy Hauck Newman
- Medicinal Chemistry Section, Molecular Targets and Medications Discovery Branch, National Institute on Drug Abuse – Intramural Research Program, National Institutes of Health, 333 Cassell Drive, Baltimore, Maryland 21224, United States
| | - Vsevolod Katritch
- Department of Quantitative and Computational Biology, University of Southern California, Los Angeles, CA 90089
- Center for New Technologies in Drug Discovery and Development, Bridge Institute, Michelson Center for Convergent Biosciences, University of Southern California, Los Angeles, CA, USA
- Department of Chemistry, University of Southern California, Los Angeles, CA, USA
| | - Javier García-Nafría
- Institute for Biocomputation and Physics of Complex Systems (BIFI) and Laboratorio de Microscopías Avanzadas (LMA), University of Zaragoza, 50018, Zaragoza, Spain
| |
Collapse
|
26
|
Gusach A, Lee Y, Khoshgrudi AN, Mukhaleva E, Ma N, Koers EJ, Chen Q, Edwards PC, Huang F, Kim J, Mancia F, Verprintsev DB, Vaidehi N, Weyand SN, Tate CG. Molecular recognition of an aversive odorant by the murine trace amine-associated receptor TAAR7f. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.07.07.547762. [PMID: 37461561 PMCID: PMC10350033 DOI: 10.1101/2023.07.07.547762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
There are two main families of G protein-coupled receptors that detect odours in humans, the odorant receptors (ORs) and the trace amine-associated receptors (TAARs). Their amino acid sequences are distinct, with the TAARs being most similar to the aminergic receptors such as those activated by adrenaline, serotonin and histamine. To elucidate the structural determinants of ligand recognition by TAARs, we have determined the cryo-EM structure of a murine receptor, mTAAR7f, coupled to the heterotrimeric G protein Gs and bound to the odorant N,N-dimethylcyclohexylamine (DMCH) to an overall resolution of 2.9 Å. DMCH is bound in a hydrophobic orthosteric binding site primarily through van der Waals interactions and a strong charge-charge interaction between the tertiary amine of the ligand and an aspartic acid residue. This site is distinct and non-overlapping with the binding site for the odorant propionate in the odorant receptor OR51E2. The structure, in combination with mutagenesis data and molecular dynamics simulations suggests that the activation of the receptor follows a similar pathway to that of the β-adrenoceptors, with the significant difference that DMCH interacts directly with one of the main activation microswitch residues.
Collapse
Affiliation(s)
- Anastasiia Gusach
- MRC Laboratory of Molecular Biology, Francis Crick Avenue,
Cambridge CB2 0QH, UK
| | - Yang Lee
- MRC Laboratory of Molecular Biology, Francis Crick Avenue,
Cambridge CB2 0QH, UK
| | - Armin Nikpour Khoshgrudi
- Centre of Membrane Proteins and Receptors (COMPARE), University
of Birmingham and University of Nottingham, Midlands, NG7 2RD, UK
- Division of Physiology, Pharmacology & Neuroscience, School
of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Elizaveta Mukhaleva
- Department of Computational and Quantitative Medicine, Beckman
Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA-91006, USA
| | - Ning Ma
- Department of Computational and Quantitative Medicine, Beckman
Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA-91006, USA
| | - Eline J. Koers
- Centre of Membrane Proteins and Receptors (COMPARE), University
of Birmingham and University of Nottingham, Midlands, NG7 2RD, UK
- Division of Physiology, Pharmacology & Neuroscience, School
of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Qingchao Chen
- MRC Laboratory of Molecular Biology, Francis Crick Avenue,
Cambridge CB2 0QH, UK
| | - Patricia C. Edwards
- MRC Laboratory of Molecular Biology, Francis Crick Avenue,
Cambridge CB2 0QH, UK
| | - Fanglu Huang
- Department of Biochemistry, University of Cambridge, Tennis Court
Road, Cambridge, UK
| | - Jonathan Kim
- Department of Physiology and Cellular Biophysics, Columbia
University, Irving Medical Center, New York, NY 10032, USA
| | - Filippo Mancia
- Department of Physiology and Cellular Biophysics, Columbia
University, Irving Medical Center, New York, NY 10032, USA
| | - Dmitry B. Verprintsev
- Centre of Membrane Proteins and Receptors (COMPARE), University
of Birmingham and University of Nottingham, Midlands, NG7 2RD, UK
- Division of Physiology, Pharmacology & Neuroscience, School
of Life Sciences, University of Nottingham, Nottingham, NG7 2UH, UK
| | - Nagarajan Vaidehi
- Department of Computational and Quantitative Medicine, Beckman
Research Institute of the City of Hope, 1500 E Duarte Road, Duarte, CA-91006, USA
| | - Simone N. Weyand
- Department of Biochemistry, University of Cambridge, Tennis Court
Road, Cambridge, UK
- Department of Medicine, University of Cambridge, Victor Phillip
Dahdaleh Building, Heart & Lung Research Institute, Papworth Road, Cambridge Biomedical
Campus, Cambridge, CB2 0BB, UK
- Cambridge Institute for Medical Research, Keith Peters Building,
Biomedical Campus, Hills Rd, Cambridge CB2 0XY, UK
- EMBL’s European Bioinformatics Institute (EMBL-EBI),
Wellcome Genome Campus, Hinxton, Cambridgeshire, CB10 1SD, UK
| | - Christopher G. Tate
- MRC Laboratory of Molecular Biology, Francis Crick Avenue,
Cambridge CB2 0QH, UK
| |
Collapse
|
27
|
Fouillen A, Bous J, Granier S, Mouillac B, Sounier R. Bringing GPCR Structural Biology to Medical Applications: Insights from Both V2 Vasopressin and Mu-Opioid Receptors. MEMBRANES 2023; 13:606. [PMID: 37367810 PMCID: PMC10303988 DOI: 10.3390/membranes13060606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/28/2023]
Abstract
G-protein coupled receptors (GPCRs) are versatile signaling proteins that regulate key physiological processes in response to a wide variety of extracellular stimuli. The last decade has seen a revolution in the structural biology of clinically important GPCRs. Indeed, the improvement in molecular and biochemical methods to study GPCRs and their transducer complexes, together with advances in cryo-electron microscopy, NMR development, and progress in molecular dynamic simulations, have led to a better understanding of their regulation by ligands of different efficacy and bias. This has also renewed a great interest in GPCR drug discovery, such as finding biased ligands that can either promote or not promote specific regulations. In this review, we focus on two therapeutically relevant GPCR targets, the V2 vasopressin receptor (V2R) and the mu-opioid receptor (µOR), to shed light on the recent structural biology studies and show the impact of this integrative approach on the determination of new potential clinical effective compounds.
Collapse
Affiliation(s)
- Aurélien Fouillen
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
- Centre de Biochimie Structurale (CBS), Université de Montpellier, CNRS, INSERM, 34090 Montpellier, France
| | - Julien Bous
- Section of Receptor Biology & Signaling, Department of Physiology & Pharmacology, Karolinska Institutet, 17165 Stockholm, Sweden;
| | - Sébastien Granier
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
| | - Bernard Mouillac
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
| | - Remy Sounier
- Institut de Génomique Fonctionnelle (IGF), Université de Montpellier, CNRS, INSERM, 34000 Montpellier, France; (A.F.); (S.G.); (B.M.)
| |
Collapse
|
28
|
Kouakou YI, Lee RJ. Interkingdom Detection of Bacterial Quorum-Sensing Molecules by Mammalian Taste Receptors. Microorganisms 2023; 11:1295. [PMID: 37317269 PMCID: PMC10221136 DOI: 10.3390/microorganisms11051295] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 06/16/2023] Open
Abstract
Bitter and sweet taste G protein-coupled receptors (known as T2Rs and T1Rs, respectively) were originally identified in type II taste cells on the tongue, where they signal perception of bitter and sweet tastes, respectively. Over the past ~15 years, taste receptors have been identified in cells all over the body, demonstrating a more general chemosensory role beyond taste. Bitter and sweet taste receptors regulate gut epithelial function, pancreatic β cell secretion, thyroid hormone secretion, adipocyte function, and many other processes. Emerging data from a variety of tissues suggest that taste receptors are also used by mammalian cells to "eavesdrop" on bacterial communications. These receptors are activated by several quorum-sensing molecules, including acyl-homoserine lactones and quinolones from Gram-negative bacteria such as Pseudomonas aeruginosa, competence stimulating peptides from Streptococcus mutans, and D-amino acids from Staphylococcus aureus. Taste receptors are an arm of immune surveillance similar to Toll-like receptors and other pattern recognition receptors. Because they are activated by quorum-sensing molecules, taste receptors report information about microbial population density based on the chemical composition of the extracellular environment. This review summarizes current knowledge of bacterial activation of taste receptors and identifies important questions remaining in this field.
Collapse
Affiliation(s)
- Yobouet Ines Kouakou
- Department of Otorhinolaryngology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Robert J. Lee
- Department of Otorhinolaryngology and Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|