1
|
Liu J, Zhao W, Wang Y. Lights and shadows of clozapine on the immune system in schizophrenia: a narrative literature review. Metab Brain Dis 2025; 40:128. [PMID: 39954151 DOI: 10.1007/s11011-025-01558-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 02/12/2025] [Indexed: 02/17/2025]
Abstract
Schizophrenia is a chronic mental disorder and one of the main causes of disability in the world. Approximately 1% of the general population suffers from this disorder, and almost 30% of cases are unresponsive to antipsychotic therapies. Clozapine is a Food and Drug Administration (FDA)-approved antipsychotic drug for treatment-resistant schizophrenia (TRS). Clozapine is also approved for the prevention of suicide associated with schizophrenia. However, clozapine is not the preferred first-line medication because of its potential AEs, including agranulocytosis, metabolic syndromes, and myocarditis. Clozapine prescription requires weekly absolute neutrophil count (ANC) monitoring for the first six months, followed by biweekly monitoring until the patient has finished one year of treatment. Several psychiatric disorders have been reported to be associated with inflammatory biomarkers. Dysregulation of the immune system and the elevation of pro-inflammatory cytokines were also reported to be associated with schizophrenia, highlighting the necessity of further research into the etiology of the disease and the relationship between the immune system and clozapine-responsiveness to support better management of symptoms and potential AEs. In this framework, we searched PubMed using the medical subject headings (MeSH) terms "clozapine", "antipsychotics", "schizophrenia", "treatment-resistant schizophrenia", "immune system", "inflammation", "neuroinflammation", "biomarker", "cytokine", and "chemokine" with the aim of overview the impact of clozapine on the immune system in individuals with treatment-responsive and treatment-resistant schizophrenia.
Collapse
Affiliation(s)
- Jian Liu
- College of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Jilin, China
| | - Weimin Zhao
- Department of Preventive Medicine, The Affiliated Hospital of Changchun University of Chinese Medicine, Jilin, China.
| | - Yitong Wang
- Dermatology Department of Changchun Traditional Chinese Medicine Hospital, Jilin, China
| |
Collapse
|
2
|
Kalaga P, Ray SK. Mental Health Disorders Due to Gut Microbiome Alteration and NLRP3 Inflammasome Activation After Spinal Cord Injury: Molecular Mechanisms, Promising Treatments, and Aids from Artificial Intelligence. Brain Sci 2025; 15:197. [PMID: 40002529 PMCID: PMC11852823 DOI: 10.3390/brainsci15020197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/06/2025] [Accepted: 02/12/2025] [Indexed: 02/27/2025] Open
Abstract
Aside from its immediate traumatic effects, spinal cord injury (SCI) presents multiple secondary complications that can be harmful to those who have been affected by SCI. Among these secondary effects, gut dysbiosis (GD) and the activation of the NOD (nucleotide-binding oligomerization domain) like receptor-family pyrin-domain-containing three (NLRP3) inflammasome are of special interest for their roles in impacting mental health. Studies have found that the state of the gut microbiome is thrown into disarray after SCI, providing a chance for GD to occur. Metabolites such as short-chain fatty acids (SCFAs) and a variety of neurotransmitters produced by the gut microbiome are hampered by GD. This disrupts healthy cognitive processes and opens the door for SCI patients to be impacted by mental health disorders. Additionally, some studies have found an increased presence and activation of the NLRP3 inflammasome and its respective parts in SCI patients. Preclinical and clinical studies have shown that NLRP3 inflammasome plays a key role in the maturation of pro-inflammatory cytokines that can initiate and eventually aggravate mental health disorders after SCI. In addition to the mechanisms of GD and the NLRP3 inflammasome in intensifying mental health disorders after SCI, this review article further focuses on three promising treatments: fecal microbiome transplants, phytochemicals, and melatonin. Studies have found these treatments to be effective in combating the pathogenic mechanisms of GD and NLRP3 inflammasome, as well as alleviating the symptoms these complications may have on mental health. Another area of focus of this review article is exploring how artificial intelligence (AI) can be used to support treatments. AI models have already been developed to track changes in the gut microbiome, simulate drug-gut interactions, and design novel anti-NLRP3 inflammasome peptides. While these are promising, further research into the applications of AI for the treatment of mental health disorders in SCI is needed.
Collapse
Affiliation(s)
| | - Swapan K. Ray
- Department of Pathology, Microbiology, and Immunology, University of South Carolina School of Medicine, 6439 Garners Ferry Road, Columbia, SC 29209, USA;
| |
Collapse
|
3
|
Barbosa IG, Miranda AS, Berk M, Teixeira AL. The involvement of the microbiota-gut-brain axis in the pathophysiology of mood disorders and therapeutic implications. Expert Rev Neurother 2025; 25:85-99. [PMID: 39630000 DOI: 10.1080/14737175.2024.2438646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
INTRODUCTION There is a growing body of evidence implicating gut-brain axis dysfunction in the pathophysiology of mood disorders. Accordingly, gut microbiota has become a promising target for the development of biomarkers and novel therapeutics for bipolar and depressive disorders. AREAS COVERED We describe the observed changes in the gut microbiota of patients with mood disorders and discuss the available studies assessing microbiota-based strategies for their treatment. EXPERT OPINION Microbiota-targeted interventions, such as symbiotics, prebiotics, paraprobiotics, and fecal microbiota transplants seem to attenuate the severity of depressive symptoms. The available results must be seen as preliminary and need to be replicated and/or confirmed in larger and independent studies, also considering the pathophysiological and clinical heterogeneity of mood disorders.
Collapse
Affiliation(s)
- Izabela G Barbosa
- Departamento de Psiquiatria, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), Belo Horizonte, MG, Brasil
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), MG, Brasil
| | - Aline S Miranda
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brasil
- Laboratório Interdisciplinar de Investigação Médica, Faculdade de Medicina, Universidade Federal de Minas Gerais (UFMG), MG, Brasil
- Laboratório de Neurobiologia, Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brasil
| | - Michael Berk
- IMPACT- the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Deakin University, Geelong, Australia
| | - Antonio L Teixeira
- Neuropsychiatry Division, The Biggs Institute for Alzheimer's & Neurodegenerative Diseases, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
4
|
González-Blanco L, Dal Santo F, García-Portilla MP, Alfonso M, Hernández C, Sánchez-Autet M, Anmella G, Amoretti S, Safont G, Martín-Hernández D, Malan-Müller S, Bernardo M, Arranz B. Intestinal permeability biomarkers in patients with schizophrenia: Additional support for the impact of lifestyle habits. Eur Psychiatry 2024; 67:e84. [PMID: 39676547 PMCID: PMC11733614 DOI: 10.1192/j.eurpsy.2024.1765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/28/2024] [Accepted: 05/20/2024] [Indexed: 12/17/2024] Open
Abstract
BACKGROUND Emerging evidence suggests a potential association between "leaky gut syndrome" and low-grade systemic inflammation in individuals with psychiatric disorders, such as schizophrenia. Gut dysbiosis could increase intestinal permeability, allowing the passage of toxins and bacteria into the systemic circulation, subsequently triggering immune-reactive responses. This study delves into understanding the relationship between plasma markers of intestinal permeability and symptom severity in schizophrenia. Furthermore, the influence of lifestyle habits on these intestinal permeability markers was determined. METHODS Biomarkers of intestinal permeability, namely lipopolysaccharide-binding protein (LBP), lipopolysaccharides (LPS), and intestinal fatty acid binding protein (I-FABP), were analyzed in 242 adult schizophrenia patients enrolled in an observational, cross-sectional, multicenter study from four centers in Spain (PI17/00246). Sociodemographic and clinical data were collected, including psychoactive drug use, lifestyle habits, the Positive and Negative Syndrome Scale to evaluate schizophrenia symptom severity, and the Screen for Cognitive Impairment in Psychiatry to assess cognitive performance. RESULTS Results revealed elevated levels of LBP and LPS in a significant proportion of patients with schizophrenia (62% and 25.6%, respectively). However, no statistically significant correlation was observed between these biomarkers and the overall clinical severity of psychotic symptoms or cognitive performance, once confounding variables were controlled for. Interestingly, adherence to a Mediterranean diet was negatively correlated with I-FABP levels (beta = -0.186, t = -2.325, p = 0.021), suggesting a potential positive influence on intestinal barrier function. CONCLUSIONS These findings underscore the importance of addressing dietary habits and promoting a healthy lifestyle in individuals with schizophrenia, with potential implications for both physical and psychopathological aspects of the disorder.
Collapse
Affiliation(s)
- Leticia González-Blanco
- Área de Psiquiatría, Universidad de Oviedo, Oviedo, Spain
- Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | - Francesco Dal Santo
- Área de Psiquiatría, Universidad de Oviedo, Oviedo, Spain
- Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Maria Paz García-Portilla
- Área de Psiquiatría, Universidad de Oviedo, Oviedo, Spain
- Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain
- Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
| | | | | | | | - Gerard Anmella
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic de Barcelona, Barcelona, Spain
- Bipolar and Depressive Disorders Unit, Digital Innovation Group, Institut d’Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain
- Department of Medicine, School of Medicine and Health Sciences, Institute of Neurosciences (UBNeuro), University of Barcelona (UB), Barcelona, Spain
| | - Silvia Amoretti
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), ISCIII, Barcelona, Spain
- Department of Psychiatry, Hospital Universitari Vall d’Hebron, Barcelona, Spain
- Group of Psychiatry, Mental Health and Addictions, Psychiatric Genetics Unit, Vall d’Hebron Research Institute (VHIR), Barcelona, Spain
- Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Safont
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
- Department of Psychiatry, Hospital Universitari Mútua Terrassa, ISIC Medical Center, Barcelona, Spain
- University of Barcelona, Barcelona, Spain
| | - David Martín-Hernández
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain
- Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
- Neurochemistry Research Institute UCM, Madrid, Spain
| | - Stefanie Malan-Müller
- Department of Pharmacology and Toxicology, Faculty of Medicine, University Complutense Madrid (UCM), Madrid, Spain
- Hospital 12 de Octubre Research Institute (Imas12), Madrid, Spain
- Neurochemistry Research Institute UCM, Madrid, Spain
| | - Miquel Bernardo
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
- Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Barcelona, Spain
- Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), ISCIII, Barcelona, Spain
| | - Belén Arranz
- Biomedical Research Networking Center for Mental Health Network (CIBERSAM), Institute of Health Carlos III, Madrid, Spain
- Parc Sanitari Sant Joan de Deu, Barcelona, Spain
| |
Collapse
|
5
|
Borkent J, Ioannou M, Neijzen D, Haarman BCM, Sommer IEC. Probiotic Formulation for Patients With Bipolar or Schizophrenia Spectrum Disorder: A Double-Blind, Randomized Placebo-Controlled Trial. Schizophr Bull 2024:sbae188. [PMID: 39504580 DOI: 10.1093/schbul/sbae188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2024]
Abstract
BACKGROUND AND HYPOTHESIS Probiotic augmentation offers a promising treatment for bipolar disorder (BD) and schizophrenia spectrum disorder (SSD). By targeting microbiome deviations, they may improve both gut and brain health. STUDY DESIGN In this double-blind, randomized, placebo-controlled trial with the multi-strain probiotic formulation Ecologic BARRIER, we aimed to improve psychiatric and cognitive symptoms, intestinal permeability, and gastrointestinal symptoms in patients with BD or SSD. A total of 131 patients were randomized 1:1 to receive either the probiotic supplement (n = 67) or a placebo (n = 64) for 3 months, in addition to treatment-as-usual. The primary outcomes were symptom severity assessed by the Brief Psychiatric Rating Scale and cognitive functioning by the Brief Assessment of Cognition in Schizophrenia. STUDY RESULTS No significant effect of probiotics was observed on psychiatric symptoms, but borderline significant improvement was observed in the cognition category of verbal memory (Linear Mixed Model (LMM) 0.33; adjusted P = .059). Probiotics beneficially affected markers of intestinal permeability and inflammation, including zonulin (LMMserum = -18.40; adjusted P = .002; LMMfecal = -10.47; adjusted P = .014) and alpha-1 antitrypsin (LMM 9.26; adjusted P = .025). Indigestion complaints significantly decreased in male participants in the probiotics group (LMM = -0.70; adjusted P = .010). Adverse events were similar between groups. CONCLUSIONS Our study observed significant advantages of probiotics for gut health in BD and SSD, with excellent safety and tolerability. A borderline effect on verbal memory was also indicated. These results underscore the need for further research into microbiome-targeted interventions for patients with complex brain disorders.
Collapse
Affiliation(s)
- Jenny Borkent
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Magdalini Ioannou
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Dorien Neijzen
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Bartholomeus C M Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| | - Iris E C Sommer
- Department of Biomedical Sciences, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, 9713 GZ, Groningen, The Netherlands
| |
Collapse
|
6
|
Shao L, Li Y, Yuan Z, Guo X, Zeng G, Liu J. The effect of clozapine on immune-related biomarkers in schizophrenia patients. Brain Res Bull 2024; 218:111104. [PMID: 39424000 DOI: 10.1016/j.brainresbull.2024.111104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/13/2024] [Accepted: 10/16/2024] [Indexed: 10/21/2024]
Abstract
Globally, schizophrenia is one of the main causes of disability. Approximately 1 % of the general population suffers from schizophrenia, and 30 % of cases are unresponsive to therapy. Clozapine is the gold standard for therapy-resistant schizophrenia (TRS), yet it has limited effectiveness and serious adverse events in some patients. Because of the possibility of severe neutropenia, clozapine administration requires monthly hematological monitoring in the first four months. Previous investigations have demonstrated the immune system alteration after clozapine treatment in schizophrenia patients. Besides, it has been proposed that clozapine changes the cytokines profile in schizophrenia patients. These findings highlighted the need to learn more about the disease's etiology and investigate the relationship between peripheral immune system markers and clozapine response to support strategies for better treatment outcomes. The time decision-making to start clozapine could be significantly decreased if some biomarkers were developed to assist physicians in anticipating whether a particular patient will respond to the medication. Therefore, this study aimed to comprehensively review the effect of clozapine on immune-related biomarkers in schizophrenia patients.
Collapse
Affiliation(s)
- Lu Shao
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| | - Yu Li
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| | - ZhiYao Yuan
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| | - XiYu Guo
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| | - GuoJi Zeng
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| | - JunPeng Liu
- School of Rehabilitation Medicine, Sanquan College of Xinxiang Medical University, XinXiang, HeNan, China.
| |
Collapse
|
7
|
Wilson JD, Dworsky-Fried M, Ismail N. Neurodevelopmental implications of COVID-19-induced gut microbiome dysbiosis in pregnant women. J Reprod Immunol 2024; 165:104300. [PMID: 39004033 DOI: 10.1016/j.jri.2024.104300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/25/2024] [Accepted: 07/10/2024] [Indexed: 07/16/2024]
Abstract
The global public health emergency of COVID-19 in January 2020 prompted a surge in research focusing on the pathogenesis and clinical manifestations of the virus. While numerous reports have been published on the acute effects of COVID-19 infection, the review explores the multifaceted long-term implications of COVID-19, with a particular focus on severe maternal COVID-19 infection, gut microbiome dysbiosis, and neurodevelopmental disorders in offspring. Severe COVID-19 infection has been associated with heightened immune system activation and gastrointestinal symptoms. Severe COVID-19 may also result in gut microbiome dysbiosis and a compromised intestinal mucosal barrier, often referred to as 'leaky gut'. Increased gut permeability facilitates the passage of inflammatory cytokines, originating from the inflamed intestinal mucosa and gut, into the bloodstream, thereby influencing fetal development during pregnancy and potentially elevating the risk of neurodevelopmental disorders such as autism and schizophrenia. The current review discusses the role of cytokine signaling molecules, microglia, and synaptic pruning, highlighting their potential involvement in the pathogenesis of neurodevelopmental disorders following maternal COVID-19 infection. Additionally, this review addresses the potential of probiotic interventions to mitigate gut dysbiosis and inflammatory responses associated with COVID-19, offering avenues for future research in optimizing maternal and fetal health outcomes.
Collapse
Affiliation(s)
- Jacob D Wilson
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada
| | - Michaela Dworsky-Fried
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada
| | - Nafissa Ismail
- NISE Laboratory, School of Psychology, Faculty of Social Science, University of Ottawa, Ottawa, Ontario K1N 9A4, Canada; LIFE Research Institute, Ottawa, Ontario K1N 6N5, Canada; University of Ottawa Brain and Mind Research Institute, Ottawa, Ontario K1H 8M5, Canada.
| |
Collapse
|
8
|
Campanale A, Inserra A, Comai S. Therapeutic modulation of the kynurenine pathway in severe mental illness and comorbidities: A potential role for serotonergic psychedelics. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111058. [PMID: 38885875 DOI: 10.1016/j.pnpbp.2024.111058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/15/2024] [Accepted: 06/14/2024] [Indexed: 06/20/2024]
Abstract
Mounting evidence points towards a crucial role of the kynurenine pathway (KP) in the altered gut-brain axis (GBA) balance in severe mental illness (SMI, namely depression, bipolar disorder, and schizophrenia) and cardiometabolic comorbidities. Preliminary evidence shows that serotonergic psychedelics and their analogues may hold therapeutic potential in addressing the altered KP in the dysregulated GBA in SMI and comorbidities. In fact, aside from their effects on mood, psychedelics elicit therapeutic improvement in preclinical models of obesity, metabolic syndrome, and vascular inflammation, which are highly comorbid with SMI. Here, we review the literature on the therapeutic modulation of the KP in the dysregulated GBA in SMI and comorbidities, and the potential application of psychedelics to address the altered KP in the brain and systemic dysfunction underlying SMI and comorbidities. Psychedelics might therapeutically modulate the KP in the altered GBA in SMI and comorbidities either directly, via altering the metabolic pathway by influencing the rate-limiting enzymes of the KP and affecting the levels of available tryptophan, or indirectly, by affecting the gut microbiome, gut metabolome, metabolism, and the immune system. Despite promising preliminary evidence, the mechanisms and outcomes of the KP modulation with psychedelics in SMI and systemic comorbidities remain largely unknown and require further investigation. Several concerns are discussed surrounding the potential side effects of this approach in specific cohorts of individuals with SMI and systemic comorbidities.
Collapse
Affiliation(s)
| | - Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Stefano Comai
- Department of Psychiatry, McGill University, Montreal, QC, Canada; Department of Pharmaceutical and Pharmacological Sciences, University of Padova, PD, Italy.; IRCCS San Raffaele Scientific Institute, Milan, Italy; Department of Biomedical Sciences, University of Padua, Padua, Italy.
| |
Collapse
|
9
|
Theleritis C, Stefanou MI, Demetriou M, Alevyzakis E, Triantafyllou K, Smyrnis N, Spandidos DA, Rizos E. Association of gut dysbiosis with first‑episode psychosis (Review). Mol Med Rep 2024; 30:130. [PMID: 38785152 PMCID: PMC11148526 DOI: 10.3892/mmr.2024.13254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
The gut‑microbiota‑brain axis is a complex bidirectional communication system linking the gastrointestinal tract to the brain. Changes in the balance, composition and diversity of the gut‑microbiota (gut dysbiosis) have been found to be associated with the development of psychosis. Early‑life stress, along with various stressors encountered in different developmental phases, have been shown to be associated with the abnormal composition of the gut microbiota, leading to irregular immunological and neuroendocrine functions, which are potentially responsible for the occurrence of first‑episode psychosis (FEP). The aim of the present narrative review was to summarize the significant differences of the altered microbiome composition in patients suffering from FEP vs. healthy controls, and to discuss its effects on the occurrence and intensity of symptoms in FEP.
Collapse
Affiliation(s)
- Christos Theleritis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Maria-Ioanna Stefanou
- Second Department of Neurology, School of Medicine, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Marina Demetriou
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Evangelos Alevyzakis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, Second Department of Propaedeutic Internal Medicine, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Nikolaos Smyrnis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Emmanouil Rizos
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| |
Collapse
|
10
|
Crockett AM, Kebir H, Anderson SA, Jyonouchi S, Romberg N, Alvarez JI. 22q11.2 Deletion-Associated Blood-Brain Barrier Permeability Potentiates Systemic Capillary Leak Syndrome Neurologic Features. J Clin Immunol 2024; 44:87. [PMID: 38578402 PMCID: PMC11490314 DOI: 10.1007/s10875-024-01686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 03/06/2024] [Indexed: 04/06/2024]
Abstract
We present a case study of a young male with a history of 22q11.2 deletion syndrome (22qDS), diagnosed with systemic capillary leak syndrome (SCLS) who presented with acute onset of diffuse anasarca and sub-comatose obtundation. We hypothesized that his co-presentation of neurological sequelae might be due to blood-brain barrier (BBB) susceptibility conferred by the 22q11.2 deletion, a phenotype that we have previously identified in 22qDS. Using pre- and post-intravenous immunoglobulins (IVIG) patient serum, we studied circulating biomarkers of inflammation and assessed the potential susceptibility of the 22qDS BBB. We employed in vitro cultures of differentiated BBB-like endothelial cells derived from a 22qDS patient and a healthy control. We found evidence of peripheral inflammation and increased serum lipopolysaccharide (LPS) alongside endothelial cells in circulation. We report that the patient's serum significantly impairs barrier function of the 22qDS BBB compared to control. Only two other cases of pediatric SCLS with neurologic symptoms have been reported, and genetic risk factors have been suggested in both instances. As the third case to be reported, our findings are consistent with the hypothesis that genetic susceptibility of the BBB conferred by genes such as claudin-5 deleted in the 22q11.2 region promoted neurologic involvement during SCLS in this patient.
Collapse
Affiliation(s)
- Alexis M Crockett
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, 412 Hill, Philadelphia, PA, 19104-4539, USA
| | - Hania Kebir
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, 412 Hill, Philadelphia, PA, 19104-4539, USA
| | - Stewart A Anderson
- Department of Child and Adolescent Psychiatry, Children's Hospital of Philadelphia, Philadelphia, USA
- Department of Psychiatry, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Soma Jyonouchi
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Neil Romberg
- Division of Immunology and Allergy, Children's Hospital of Philadelphia, Philadelphia, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
| | - Jorge I Alvarez
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, 412 Hill, Philadelphia, PA, 19104-4539, USA.
- Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA.
| |
Collapse
|
11
|
Weickert TW, Ji E, Galletly C, Boerrigter D, Morishima Y, Bruggemann J, Balzan R, O’Donnell M, Liu D, Lenroot R, Weickert CS, Kindler J. Toll-Like Receptor mRNA Levels in Schizophrenia: Association With Complement Factors and Cingulate Gyrus Cortical Thinning. Schizophr Bull 2024; 50:403-417. [PMID: 38102721 PMCID: PMC10919782 DOI: 10.1093/schbul/sbad171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
BACKGROUND AND HYPOTHESES Previous studies revealed innate immune system activation in people with schizophrenia (SZ), potentially mediated by endogenous pathogen recognition receptors, notably Toll-like receptors (TLR). TLRs are activated by pathogenic molecules like bacterial lipopolysaccharides (TLR1 and TLR4), viral RNA (TLR3), or both (TLR8). Furthermore, the complement system, another key component of innate immunity, has previously been linked to SZ. STUDY DESIGN Peripheral mRNA levels of TLR1, TLR3, TLR4, and TLR8 were compared between SZ and healthy controls (HC). We investigated their relationship with immune activation through complement expression and cortical thickness of the cingulate gyrus, a region susceptible to immunological hits. TLR mRNA levels and peripheral complement receptor mRNA were extracted from 86 SZ and 77 HC white blood cells; structural MRI scans were conducted on a subset. STUDY RESULTS We found significantly higher TLR4 and TLR8 mRNA levels and lower TLR3 mRNA levels in SZ compared to HC. TLRs and complemental factors were significantly associated in SZ and HC, with the strongest deviations of TLR mRNA levels in the SZ subgroup having elevated complement expression. Cortical thickness of the cingulate gyrus was inversely associated with TLR8 mRNA levels in SZ, and with TLR4 and TLR8 levels in HC. CONCLUSIONS The study underscores the role of innate immune activation in schizophrenia, indicating a coordinated immune response of TLRs and the complement system. Our results suggest there could be more bacterial influence (based on TLR 4 levels) as opposed to viral influence (based on TLR3 levels) in schizophrenia. Specific TLRs were associated with brain cortical thickness reductions of limbic brain structures.
Collapse
Affiliation(s)
- Thomas W Weickert
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Ellen Ji
- Psychiatric University Hospital Zurich, Zurich, Switzerland
- Neuroscience Research Australia, Sydney, NSW, Australia
| | - Cherrie Galletly
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Ramsay Health Care (SA) Mental Health, Adelaide, Australia
- Northern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Danny Boerrigter
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
| | - Yosuke Morishima
- Translational Research Center, University Hospital of Psychiatry, University of Bern, Bern, Switzerland
| | - Jason Bruggemann
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Edith Collins Centre (Translational Research in Alcohol Drugs and Toxicology), Sydney Local Health District, Sydney, Australia
- Speciality of Addiction Medicine, Central Clinical School, Faculty of Medicine and Health, University of Sydney, Sydney, Australia
| | - Ryan Balzan
- School of Psychology, Flinders University, Adelaide, SA, Australia
| | - Maryanne O’Donnell
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- Kiloh Centre, Prince of Wales Hospital, Randwick, New South Wales, Australia
| | - Dennis Liu
- Discipline of Psychiatry, School of Medicine, University of Adelaide, Adelaide, SA, Australia
- Ramsay Health Care (SA) Mental Health, Adelaide, Australia
- Northern Adelaide Local Health Network, Adelaide, SA, Australia
| | - Rhoshel Lenroot
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Department of Psychiatry, University of New Mexico, Albuquerque, NM 87131-0001, USA
| | - Cynthia Shannon Weickert
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- School of Psychiatry, University of New South Wales, Randwick, NSW 2031Australia
- Department of Neuroscience and Physiology, Upstate Medical University, Syracuse, NY 13210, USA
| | - Jochen Kindler
- Neuroscience Research Australia, Schizophrenia Research Institute, Randwick, NSW 2031, Australia
- University Hospital of Child and Adolescent Psychiatry and Psychotherapy, University of Bern, 3000 Bern, Switzerland
| |
Collapse
|
12
|
Ribera C, Sánchez-Ortí JV, Clarke G, Marx W, Mörkl S, Balanzá-Martínez V. Probiotic, prebiotic, synbiotic and fermented food supplementation in psychiatric disorders: A systematic review of clinical trials. Neurosci Biobehav Rev 2024; 158:105561. [PMID: 38280441 DOI: 10.1016/j.neubiorev.2024.105561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 01/03/2024] [Accepted: 01/20/2024] [Indexed: 01/29/2024]
Abstract
The use of probiotics, prebiotics, synbiotics or fermented foods can modulate the gut-brain axis and constitute a potentially therapeutic intervention in psychiatric disorders. This systematic review aims to identify current evidence regarding these interventions in the treatment of patients with DSM/ICD psychiatric diagnoses. Forty-seven articles from 42 studies met the inclusion criteria. Risk of bias was assessed in all included studies. Major depression was the most studied disorder (n = 19 studies). Studies frequently focused on schizophrenia (n = 11) and bipolar disorder (n = 5) and there were limited studies in anorexia nervosa (n = 4), ADHD (n = 3), Tourette (n = 1), insomnia (n = 1), PTSD (n = 1) and generalized anxiety disorder (n = 1). Except in MDD, current evidence does not clarify the role of probiotics and prebiotics in the treatment of mental illness. Several studies point to an improvement in the immune and inflammatory profile (e.g. CRP, IL6), which may be a relevant mechanism of action of the therapeutic response identified in these studies. Future research should consider lifestyle and dietary habits of patients as possible confounders that may influence inter-individual treatment response.
Collapse
Affiliation(s)
- Carlos Ribera
- Department of Psychiatry, Hospital Clínico Universitario de Valencia, Department of Psychiatry, Blasco Ibañez 17, floor 7B, 46010 Valencia, Spain.
| | - Joan Vicent Sánchez-Ortí
- Faculty of Psychology, University of Valencia, Valencia, Spain; INCLIVA - Health Research Institute, Valencia, Spain; TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Fundación INCLIVA, Av. Menéndez y Pelayo 4, 46010 Valencia, Spain.
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioural Science, University College Cork, Cork, Ireland; APC Microbiome Ireland, University College Cork, Dept of Psychiatry and Neurobehavioural Science, College Rd, 1.15 Biosciences Building, Cork, Ireland.
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, Food & Mood Centre, School of Medicine, Barwon Health, 299 Ryrie street, Geelong, VIC 3220, Australia.
| | - Sabrina Mörkl
- Division of Medical Psychology, Psychosomatics and Psychotherapeutic Medicine, Medical University of Graz, Neue Stiftingtalstraße 6, 8010 Graz, Austria.
| | - Vicent Balanzá-Martínez
- INCLIVA - Health Research Institute, Valencia, Spain; TMAP - Evaluation Unit in Personal Autonomy, Dependency and Serious Mental Disorders, University of Valencia, Fundación INCLIVA, Av. Menéndez y Pelayo 4, 46010 Valencia, Spain; Teaching Unit of Psychiatry and Psychological Medicine, Department of Medicine, University of Valencia. Blasco Ibañez 15, 46010 Valencia, Spain.; Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), ISCIII, Madrid, Spain; VALSME (Valencia Salut Mental i Estigma) Research Group, University of Valencia, Valencia, Spain.
| |
Collapse
|
13
|
Thisayakorn P, Thipakorn Y, Tantavisut S, Sirivichayakul S, Vojdani A, Maes M. Increased IgA-mediated responses to the gut paracellular pathway and blood-brain barrier proteins predict delirium due to hip fracture in older adults. Front Neurol 2024; 15:1294689. [PMID: 38379706 PMCID: PMC10876854 DOI: 10.3389/fneur.2024.1294689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 01/25/2024] [Indexed: 02/22/2024] Open
Abstract
Introduction Delirium is accompanied by immune response system activation, which may, in theory, cause a breakdown of the gut barrier and blood-brain barrier (BBB). Some results suggest that the BBB is compromised in delirium, but there is no data regarding the gut barrier. This study investigates whether delirium is associated with impaired BBB and gut barriers in elderly adults undergoing hip fracture surgery. Methods We recruited 59 older adults and measured peak Delirium Rating Scale (DRS) scores 2-3 days after surgery, and assessed plasma IgG/IgA levels (using ELISA techniques) for zonulin, occludin, claudin-6, β-catenin, actin (indicating damage to the gut paracellular pathway), claudin-5 and S100B (reflecting BBB damage), bacterial cytolethal distending toxin (CDT), LPS-binding protein (LBP), lipopolysaccharides (LPS), Porphyromonas gingivalis, and Helicobacter pylori. Results Results from univariate analyses showed that delirium is linked to increased IgA responses to all the self-epitopes and antigens listed above, except for LPS. Part of the variance (between 45-48.3%) in the peak DRS score measured 2-3 days post-surgery was explained by independent effects of IgA directed to LPS and LBP (or bacterial CDT), baseline DRS scores, and previous mild stroke. Increased IgA reactivity to the paracellular pathway and BBB proteins and bacterial antigens is significantly associated with the activation of M1 macrophage, T helper-1, and 17 cytokine profiles. Conclusion Heightened bacterial translocation, disruption of the tight and adherens junctions of the gut and BBB barriers, elevated CDT and LPS load in the bloodstream, and aberrations in cell-cell interactions may be risk factors for delirium.
Collapse
Affiliation(s)
- Paul Thisayakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Yanin Thipakorn
- Department of Psychiatry, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Saran Tantavisut
- Department of Orthopedics, Hip Fracture Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Sunee Sirivichayakul
- Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Aristo Vojdani
- Immunosciences Lab Inc., Los Angeles, CA, United States
- Cyrex Labs LLC, Phoenix, AZ, United States
| | - Michael Maes
- Sichuan Provincial Center for Mental Health, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, China
- Key Laboratory of Psychosomatic Medicine, Chinese Academy of Medical Sciences, Chengdu, China
- Department of Psychiatry, Medical University of Plovdiv, Plovdiv, Bulgaria
- Research Institute, Medical University of Plovdiv, Plovdiv, Bulgaria
- Kyung Hee University, Seoul, Republic of Korea
- Cognitive Impairment and Dementia Research Unit, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| |
Collapse
|
14
|
Dal Santo F, González-Blanco L, García-Portilla MP, Alfonso M, Hernandez C, Sanchez-Autet M, Bernardo M, Anmella G, Amoretti S, Safont G, Marín Alcaraz L, Arranz B. From gut to brain: A network model of intestinal permeability, inflammation, and psychotic symptoms in schizophrenia. Eur Neuropsychopharmacol 2024; 79:32-37. [PMID: 38086222 DOI: 10.1016/j.euroneuro.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 10/19/2023] [Accepted: 10/21/2023] [Indexed: 02/06/2024]
Abstract
Impaired intestinal permeability has recently been suggested as a possible source of chronic inflammation in schizophrenia, but its association with specific psychopathological features remains uncertain. This study aimed to explore the interaction between intestinal permeability, inflammation, and positive and negative symptoms in schizophrenia using a network analysis approach. The study sample comprised 281 adults with schizophrenia (age 40.29 ± 13.65 years, 63.0 % males), enrolled in a cross-sectional observational study assessing intestinal permeability. We estimated the network with a Gaussian graphical model, incorporating scores from 14 individual items of the Positive and Negative Syndrome Scale (PANSS), along with body mass index (BMI), and plasma C-reactive protein (CRP) and lipopolysaccharide-binding protein (LBP) levels. We calculated strength centrality and expected influence and used bridge centrality statistics to identify the bridge nodes. Distinct but highly interconnected clusters emerged for positive and negative symptoms. The biological variables were closely associated with each other. LBP was positively linked with CRP and BMI, but only indirectly connected to psychopathology. CRP exhibited direct positive relationships with various PANSS items and bridged LBP and BMI with psychopathology. Bridge nodes included Conceptual Disorganisation (P2), Active Social Avoidance (G16), Suspiciousness/Persecution (P6), and CRP. These findings support the role of gut-derived inflammation as a mechanism underlying greater symptom severity in schizophrenia and emphasise the importance of addressing dietary habits not only to enhance physical health but also to contribute to improving psychotic symptoms.
Collapse
Affiliation(s)
- Francesco Dal Santo
- Área de Psiquiatría, Universidad de Oviedo, Oviedo, Spain; Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain
| | - Leticia González-Blanco
- Área de Psiquiatría, Universidad de Oviedo, Oviedo, Spain; Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; Biomedical Research Networking Centre for Mental Health Network (CIBERSAM), Oviedo, Spain
| | - María Paz García-Portilla
- Área de Psiquiatría, Universidad de Oviedo, Oviedo, Spain; Servicio de Salud del Principado de Asturias (SESPA), Oviedo, Spain; Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Oviedo, Spain; Instituto de Neurociencias del Principado de Asturias (INEUROPA), Oviedo, Spain; Biomedical Research Networking Centre for Mental Health Network (CIBERSAM), Oviedo, Spain.
| | - Miqueu Alfonso
- Department of Psychiatry, Hospital Parc Sanitari Sant Joan de Déu, Barcelona, Spain; Biomedical Research Networking Centre for Mental Health Network (CIBERSAM), Barcelona, Spain
| | - Carla Hernandez
- Department of Psychiatry, Hospital Parc Sanitari Sant Joan de Déu, Barcelona, Spain; Biomedical Research Networking Centre for Mental Health Network (CIBERSAM), Barcelona, Spain
| | - Monica Sanchez-Autet
- Department of Psychiatry, Hospital Parc Sanitari Sant Joan de Déu, Barcelona, Spain; Biomedical Research Networking Centre for Mental Health Network (CIBERSAM), Barcelona, Spain
| | - Miquel Bernardo
- Biomedical Research Networking Centre for Mental Health Network (CIBERSAM), Barcelona, Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Barcelona, Spain; Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain
| | - Gerard Anmella
- Department of Psychiatry and Psychology, Institute of Neuroscience, Hospital Clínic, Barcelona, Spain; Bipolar and Depressive Disorders Unit, Digital Innovation Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Barcelona, Spain; Biomedical Research Networking Centre Consortium on Mental Health (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain; Department of Medicine, School of Medicine and Health Sciences, University of Barcelona (UB), Barcelona, Spain; Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain
| | - Silvia Amoretti
- Biomedical Research Networking Centre for Mental Health Network (CIBERSAM), Barcelona, Spain; Barcelona Clinic Schizophrenia Unit, Hospital Clinic, Barcelona, Spain; Departament de Medicina, Institut de Neurociències (UBNeuro), Universitat de Barcelona (UB), Barcelona, Spain; Institut d'Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Barcelona, Spain; Department of Psychiatry, Hospital Universitari Vall d'Hebron, Group of Psychiatry, Mental Health and Addictions, Psychiatric Genetics Unit, Vall d'Hebron Research Institute (VHIR), Barcelona, Spain; Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Gemma Safont
- Biomedical Research Networking Centre for Mental Health Network (CIBERSAM), Barcelona, Spain; Department of Psychiatry, University Hospital Mutua Terrassa, University of Barcelona, Barcelona, Spain
| | - Lorena Marín Alcaraz
- Department of Psychiatry, University Hospital Mutua Terrassa, University of Barcelona, Barcelona, Spain
| | - Belén Arranz
- Department of Psychiatry, Hospital Parc Sanitari Sant Joan de Déu, Barcelona, Spain; Biomedical Research Networking Centre for Mental Health Network (CIBERSAM), Barcelona, Spain
| |
Collapse
|
15
|
Shi J, Zhang X, Chen J, Shen R, Cui H, Wu H. Acupuncture and moxibustion therapy for cognitive impairment: the microbiome-gut-brain axis and its role. Front Neurosci 2024; 17:1275860. [PMID: 38274501 PMCID: PMC10808604 DOI: 10.3389/fnins.2023.1275860] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Cognitive impairment poses a significant burden on individuals, families, and society worldwide. Despite the lack of effective treatment strategies, emerging evidence suggests that the microbiome-gut-brain (MGB) axis may play a critical role in the pathogenesis of cognitive impairment. While targeted treatment is not yet comprehensive, recently, acupuncture and moxibustion therapy has participated increasingly in the treatment of degenerative diseases and has achieved a certain therapeutic effect. In this review, the possible mechanisms by which acupuncture and moxibustion therapy may improve cognitive impairment through the MGB axis are reviewed, including regulating gut microbial homeostasis, improving intestinal inflammation mediated by the neuroendocrine-immune system, and enhancing intestinal barrier function. We also discuss common acupoints and corresponding mechanism analysis to provide insights into further exploration of mechanisms that target the MGB axis and thereby intervene in cognitive impairment.
Collapse
Affiliation(s)
- Jiatian Shi
- Department of Acupuncture and Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xinyue Zhang
- Department of Acupuncture and Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jianhua Chen
- Department of Mental Health, Shanghai Mental Health Center, Shanghai, China
| | - Ruishi Shen
- Department of Acupuncture and Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huashun Cui
- Department of Acupuncture and Moxibustion, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huangan Wu
- Department of Acupuncture and Moxibustion, Yueyang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
16
|
R R, Devtalla H, Rana K, Panda SP, Agrawal A, Kadyan S, Jindal D, Pancham P, Yadav D, Jha NK, Jha SK, Gupta V, Singh M. A comprehensive update on genetic inheritance, epigenetic factors, associated pathology, and recent therapeutic intervention by gene therapy in schizophrenia. Chem Biol Drug Des 2024; 103:e14374. [PMID: 37994213 DOI: 10.1111/cbdd.14374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 09/15/2023] [Accepted: 09/29/2023] [Indexed: 11/24/2023]
Abstract
Schizophrenia is a severe psychological disorder in which reality is interpreted abnormally by the patient. The symptoms of the disease include delusions and hallucinations, associated with extremely disordered behavior and thinking, which may affect the daily lives of the patients. Advancements in technology have led to understanding the dynamics of the disease and the identification of the underlying causes. Multiple investigations prove that it is regulated genetically, and epigenetically, and is affected by environmental factors. The molecular and neural pathways linked to the regulation of schizophrenia have been extensively studied. Over 180 Schizophrenic risk loci have now been recognized due to several genome-wide association studies (GWAS). It has been observed that multiple transcription factors (TF) binding-disrupting single nucleotide polymorphisms (SNPs) have been related to gene expression responsible for the disease in cerebral complexes. Copy number variation, SNP defects, and epigenetic changes in chromosomes may cause overexpression or underexpression of certain genes responsible for the disease. Nowadays, gene therapy is being implemented for its treatment as several of these genetic defects have been identified. Scientists are trying to use viral vectors, miRNA, siRNA, and CRISPR technology. In addition, nanotechnology is also being applied to target such genes. The primary aim of such targeting was to either delete or silence such hyperactive genes or induce certain genes that inhibit the expression of these genes. There are challenges in delivering the gene/DNA to the site of action in the brain, and scientists are working to resolve the same. The present article describes the basics regarding the disease, its causes and factors responsible, and the gene therapy solutions available to treat this disease.
Collapse
Affiliation(s)
- Rachana R
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Harshit Devtalla
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Karishma Rana
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Siva Prasad Panda
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Arushi Agrawal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Shreya Kadyan
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Divya Jindal
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- IIT Bombay Monash Research Academy, IIT - Bombay, Bombay, India
| | - Pranav Pancham
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
| | - Deepshikha Yadav
- Bhartiya Nirdeshak Dravya Division, CSIR-National Physical Laboratory, New Delhi, India
- Physico-Mechanical Metrology Division, CSIR-National Physical Laboratory, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Niraj Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- School of Bioengineering & Biosciences, Lovely Professional University, Phagwara, India
| | - Saurabh Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology (SSET), Sharda University, Greater Noida, India
- Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India
- Department of Biotechnology, School of Applied and Life Sciences (SALS), Uttaranchal University, Dehradun, India
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Vivek Gupta
- Macquarie Medical School, Macquarie University (MQU), Sydney, New South Wales, Australia
| | - Manisha Singh
- Department of Biotechnology, Jaypee Institute of Information Technology, Noida, India
- Faculty of Health, Graduate School of Public Health, University of Technology Sydney, Sydney, New South Wales, Australia
- Australian Research Consortium in Complementary and Integrative Medicine (ARCCIM), University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
17
|
Petruso F, Giff A, Milano B, De Rossi M, Saccaro L. Inflammation and emotion regulation: a narrative review of evidence and mechanisms in emotion dysregulation disorders. Neuronal Signal 2023; 7:NS20220077. [PMID: 38026703 PMCID: PMC10653990 DOI: 10.1042/ns20220077] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 10/25/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Emotion dysregulation (ED) describes a difficulty with the modulation of which emotions are felt, as well as when and how these emotions are experienced or expressed. It is a focal overarching symptom in many severe and prevalent neuropsychiatric diseases, including bipolar disorders (BD), attention deficit/hyperactivity disorder (ADHD), and borderline personality disorder (BPD). In all these disorders, ED can manifest through symptoms of depression, anxiety, or affective lability. Considering the many symptomatic similarities between BD, ADHD, and BPD, a transdiagnostic approach is a promising lens of investigation. Mounting evidence supports the role of peripheral inflammatory markers and stress in the multifactorial aetiology and physiopathology of BD, ADHD, and BPD. Of note, neural circuits that regulate emotions appear particularly vulnerable to inflammatory insults and peripheral inflammation, which can impact the neuroimmune milieu of the central nervous system. Thus far, few studies have examined the link between ED and inflammation in BD, ADHD, and BPD. To our knowledge, no specific work has provided a critical comparison of the results from these disorders. To fill this gap in the literature, we review the known associations and mechanisms linking ED and inflammation in general, and clinically, in BD, ADHD, and BD. Our narrative review begins with an examination of the routes linking ED and inflammation, followed by a discussion of disorder-specific results accounting for methodological limitations and relevant confounding factors. Finally, we critically discuss both correspondences and discrepancies in the results and comment on potential vulnerability markers and promising therapeutic interventions.
Collapse
Affiliation(s)
| | - Alexis E. Giff
- Department of Neuroscience, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Switzerland
| | - Beatrice A. Milano
- Sant’Anna School of Advanced Studies, Pisa, Italy
- University of Pisa, Pisa, Italy
| | | | - Luigi Francesco Saccaro
- Department of Psychiatry, Faculty of Medicine, University of Geneva, Switzerland
- Department of Psychiatry, Geneva University Hospital, Switzerland
| |
Collapse
|
18
|
Açıkel SB, Kara A, Bağcı Z, Can Ü. Serum trimethylamine N-oxide and lipopolysaccharide binding protein levels among children diagnosed with autism spectrum disorder. Int J Dev Neurosci 2023; 83:571-577. [PMID: 37525434 DOI: 10.1002/jdn.10287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/21/2023] [Accepted: 07/03/2023] [Indexed: 08/02/2023] Open
Abstract
In the literature, there have been several studies available investigating the relationship between autism spectrum disorder and intestinal permeability. In this study, it is aimed to examine the relationship between the levels of trimethylamine N-oxide (TMAO), which is a parameter associated with intestinal permeability, and lipopolysaccharide binding protein (LBP), which is a marker associated with bacterial translocation from the intestine, in patients with autism spectrum disorder (ASD) and healthy controls. Fifty-three children with ASD as the patient group and 30 healthy children as the control group have been included in the study. The diagnostic evaluation has been made according to DSM-5 criteria. According to the obtained results, there has been no significant difference between groups in terms of serum TMAO and LBP levels. Considering the existence of various studies that found different results on ASD and intestinal permeability, it is thought that the studies conducted in this field that did not find statistically different results will also make a contribution to the literature.
Collapse
Affiliation(s)
- Sadettin Burak Açıkel
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Ankara University, Ankara, Turkey
| | - Aziz Kara
- Faculty of Medicine, Department of Child and Adolescent Psychiatry, Afyon University of Health Sciences, Afyon, Turkey
| | - Zafer Bağcı
- Department of Pediatrics, Konya City Hospital, Konya, Turkey
| | - Ümmügülsüm Can
- Department of Biochemistry, Konya City Hospital, Konya, Turkey
| |
Collapse
|
19
|
Severance EG, Prandovszky E, Yang S, Leister F, Lea A, Wu CL, Tamouza R, Leboyer M, Dickerson F, Yolken RH. Prospects and Pitfalls of Plasma Complement C4 in Schizophrenia: Building a Better Biomarker. Dev Neurosci 2023; 45:349-360. [PMID: 37734326 DOI: 10.1159/000534185] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 09/15/2023] [Indexed: 09/23/2023] Open
Abstract
Complex brain disorders like schizophrenia may have multifactorial origins related to mis-timed heritable and environmental factors interacting during neurodevelopment. Infections, inflammation, and autoimmune diseases are over-represented in schizophrenia leading to immune system-centered hypotheses. Complement component C4 is genetically and neurobiologically associated with schizophrenia, and its dual activity peripherally and in the brain makes it an exceptional target for biomarker development. Studies to evaluate the biomarker potential of plasma or serum C4 in schizophrenia do so to understand how peripheral C4 might reflect central nervous system-derived neuroinflammation, synapse pruning, and other mechanisms. This effort, however, has produced mostly conflicting results, with peripheral C4 sometimes elevated, reduced, or unchanged between comparison groups. We undertook a pilot biomarker development study to systematically identify sociodemographic, genetic, and immune-related variables (autoimmune, infection-related, gastrointestinal, inflammatory), which may be associated with plasma C4 levels in schizophrenia (SCH; n = 335) and/or in nonpsychiatric comparison subjects (NCs; n = 233). As with previously inconclusive studies, we detected no differences in plasma C4 levels between SCH and NCs. In contrast, levels of general inflammation, C-reactive protein (CRP), were significantly elevated in SCH compared to NCs (ANOVA, F = 20.74, p < 0.0001), suggestive that plasma C4 and CRP may reflect different sources or causes of inflammation. In multivariate regressions of C4 gene copy number variants, plasma C4 levels were correlated only for C4A (not C4B, C4L, C4S) and only in NCs (R Coeff = 0.39, CI = 0.01-0.77, R2 = 0.18, p < 0.01; not SCH). Other variables associated with plasma C4 levels only in NCs included sex, double-stranded DNA IgG, tissue-transglutaminase (TTG) IgG, and cytomegalovirus IgG. Toxoplasma gondii IgG was the only variable significantly correlated with plasma C4 in SCH but not in NCs. Many variables were associated with plasma C4 in both groups (body mass index, race, CRP, N-methyl-D-aspartate receptor (NMDAR) NR2 subunit IgG, TTG IgA, lipopolysaccharide-binding protein (LBP), and soluble CD14 (sCD14). While the direction of most C4 associations was positive, autoimmune markers tended to be inverse, and associated with reduced plasma C4 levels. When NMDAR-NR2 autoantibody-positive individuals were removed, plasma C4 was elevated in SCH versus NCs (ANOVA, F = 5.16, p < 0.02). Our study was exploratory and confirmation of the many variables associated with peripheral C4 requires replication. Our preliminary results point toward autoimmune factors and exposure to the pathogen, T. gondii, as possibly significant contributors to variability of total C4 protein levels in plasma of individuals with schizophrenia.
Collapse
Affiliation(s)
- Emily G Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emese Prandovszky
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Shuojia Yang
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Flora Leister
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ashley Lea
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Ching-Lien Wu
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpital Universitaire Henri Mondor, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Fondation FondaMental, Créteil, France
| | - Ryad Tamouza
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpital Universitaire Henri Mondor, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Fondation FondaMental, Créteil, France
| | - Marion Leboyer
- Université Paris-Est Créteil (UPEC), INSERM, IMRB, Translational Neuropsychiatry, AP-HP, Hôpital Universitaire Henri Mondor, Fédération Hospitalo-Universitaire de Médecine de Précision en Psychiatrie, Fondation FondaMental, Créteil, France
| | - Faith Dickerson
- Stanley Research Program, Sheppard Pratt, Baltimore, Maryland, USA
| | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| |
Collapse
|
20
|
Martín-Hernández D, Muñoz-López M, Tendilla-Beltrán H, Caso JR, García-Bueno B, Menchén L, Leza JC. Immune System and Brain/Intestinal Barrier Functions in Psychiatric Diseases: Is Sphingosine-1-Phosphate at the Helm? Int J Mol Sci 2023; 24:12634. [PMID: 37628815 PMCID: PMC10454107 DOI: 10.3390/ijms241612634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/27/2023] Open
Abstract
Over the past few decades, extensive research has shed light on immune alterations and the significance of dysfunctional biological barriers in psychiatric disorders. The leaky gut phenomenon, intimately linked to the integrity of both brain and intestinal barriers, may play a crucial role in the origin of peripheral and central inflammation in these pathologies. Sphingosine-1-phosphate (S1P) is a bioactive lipid that regulates both the immune response and the permeability of biological barriers. Notably, S1P-based drugs, such as fingolimod and ozanimod, have received approval for treating multiple sclerosis, an autoimmune disease of the central nervous system (CNS), and ulcerative colitis, an inflammatory condition of the colon, respectively. Although the precise mechanisms of action are still under investigation, the effectiveness of S1P-based drugs in treating these pathologies sparks a debate on extending their use in psychiatry. This comprehensive review aims to delve into the molecular mechanisms through which S1P modulates the immune system and brain/intestinal barrier functions. Furthermore, it will specifically focus on psychiatric diseases, with the primary objective of uncovering the potential of innovative therapies based on S1P signaling.
Collapse
Affiliation(s)
- David Martín-Hernández
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Marina Muñoz-López
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Hiram Tendilla-Beltrán
- Laboratorio de Neuropsiquiatría, Instituto de Fisiología, Benemérita Universidad Autónoma de Puebla (BUAP), 72570 Puebla, Mexico;
| | - Javier R. Caso
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Borja García-Bueno
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| | - Luis Menchén
- Servicio de Aparato Digestivo, Hospital General Universitario Gregorio Marañón, Departamento de Medicina, Universidad Complutense, Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain;
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas, Instituto de Salud Carlos III (CIBEREHD, ISCIII), 28029 Madrid, Spain
| | - Juan C. Leza
- Departamento de Farmacología y Toxicología, Facultad de Medicina, Universidad Complutense de Madrid (UCM), Instituto de Investigación Hospital 12 de Octubre (i+12), Instituto Universitario de Investigación en Neuroquímica (IUIN), 28040 Madrid, Spain; (M.M.-L.); (J.R.C.); (B.G.-B.); (J.C.L.)
- Centro de Investigación Biomédica en Red de Salud Mental, Instituto de Salud Carlos III (CIBERSAM, ISCIII), 28029 Madrid, Spain
| |
Collapse
|
21
|
Ortega MA, Álvarez-Mon MA, García-Montero C, Fraile-Martínez Ó, Monserrat J, Martinez-Rozas L, Rodríguez-Jiménez R, Álvarez-Mon M, Lahera G. Microbiota-gut-brain axis mechanisms in the complex network of bipolar disorders: potential clinical implications and translational opportunities. Mol Psychiatry 2023; 28:2645-2673. [PMID: 36707651 PMCID: PMC10615769 DOI: 10.1038/s41380-023-01964-w] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 01/02/2023] [Accepted: 01/13/2023] [Indexed: 01/28/2023]
Abstract
Bipolar disorders (BD) represent a severe leading disabling mental condition worldwide characterized by episodic and often progressive mood fluctuations with manic and depressive stages. The biological mechanisms underlying the pathophysiology of BD remain incompletely understood, but it seems that there is a complex picture of genetic and environmental factors implicated. Nowadays, gut microbiota is in the spotlight of new research related to this kind of psychiatric disorder, as it can be consistently related to several pathophysiological events observed in BD. In the context of the so-called microbiota-gut-brain (MGB) axis, it is shown to have a strong influence on host neuromodulation and endocrine functions (i.e., controlling the synthesis of neurotransmitters like serotonin or mediating the activation of the hypothalamic-pituitary-adrenal axis), as well as in modulation of host immune responses, critically regulating intestinal, systemic and brain inflammation (neuroinflammation). The present review aims to elucidate pathophysiological mechanisms derived from the MGB axis disruption and possible therapeutic approaches mainly focusing on gut microbiota in the complex network of BD. Understanding the mechanisms of gut microbiota and its bidirectional communication with the immune and other systems can shed light on the discovery of new therapies for improving the clinical management of these patients. Besides, the effect of psychiatric drugs on gut microbiota currently used in BD patients, together with new therapeutical approaches targeting this ecosystem (dietary patterns, probiotics, prebiotics, and other novelties) will also be contemplated.
Collapse
Affiliation(s)
- Miguel A Ortega
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain.
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain.
| | - Miguel Angel Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Department of Psychiatry and Mental Health, Hospital Universitario Infanta Leonor, Madrid, Spain
| | - Cielo García-Montero
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Óscar Fraile-Martínez
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Jorge Monserrat
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Lucia Martinez-Rozas
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
| | - Roberto Rodríguez-Jiménez
- Department of Legal Medicine and Psychiatry, Complutense University, Madrid, Spain
- Institute for Health Research 12 de Octubre Hospital, (Imas 12)/CIBERSAM (Biomedical Research Networking Centre in Mental Health), Madrid, Spain
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Immune System Diseases-Rheumatology, Oncology Service an Internal Medicine, University Hospital Príncipe de Asturias (CIBEREHD), Alcalá de Henares, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| | - Guillermo Lahera
- Department of Medicine and Medical Specialities, University of Alcala, Alcalá de Henares, Spain
- Ramón y Cajal Institute of Sanitary Research (IRYCIS), Madrid, Spain
- Psychiatry Service, Center for Biomedical Research in the Mental Health Network, University Hospital Príncipe de Asturias, Alcalá de Henares, Spain
| |
Collapse
|
22
|
Scheurink TAW, Borkent J, Gangadin SS, El Aidy S, Mandl R, Sommer IEC. Association between gut permeability, brain volume, and cognition in healthy participants and patients with schizophrenia spectrum disorder. Brain Behav 2023; 13:e3011. [PMID: 37095714 PMCID: PMC10275537 DOI: 10.1002/brb3.3011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/26/2023] Open
Abstract
INTRODUCTION The barrier function of the gut is important for many organs and systems, including the brain. If gut permeability increases, bacterial fragments may enter the circulation, giving rise to increased systemic inflammation. Increases in bacterial translocation are reflected in higher values of blood markers, including lipopolysaccharide binding protein (LBP) and soluble cluster of differentiation 14 (sCD14). Some pioneer studies showed a negative association between bacterial translocation markers and brain volumes, but this association remains scarcely investigated. We investigate the effect of bacterial translocation on brain volumes and cognition in both healthy controls and patients with a schizophrenia spectrum disorder (SSD). MATERIALS AND METHODS Healthy controls (n = 39) and SSD patients (n = 72) underwent an MRI-scan, venipuncture and cognition assessments. We investigated associations between LBP and sCD14 and brain volumes (intracranial volume, total brain volume, and hippocampal volume) using linear regression. We then associated LBP and sCD14 to cognitive function using a mediation analysis, with intracranial volume as mediator. RESULTS Healthy controls showed a negative association between hippocampal volume and LBP (b = -0.11, p = .04), and intracranial volume and sCD14 (b = -0.25, p = .07). Both markers were indirectly associated with lower cognitive functioning in healthy controls (LBP: b = -0.071, p = .028; sCD14: b = -0.213, p = .052), mediated by low intracranial volume. In the SSD patients, these associations were markedly less present. CONCLUSION These findings extend earlier studies suggesting that increased bacterial translocation may negatively affect brain volume, which indirectly impacts cognition, even in this young healthy group. If replicated, this finding stresses the importance of a healthy gut for the development and optimal functioning of the brain. Absence of these associations in the SSD group may indicate that other factors such as allostatic load, chronic medication use and interrupted educational carrier had larger impact and attenuated the relative contribution of bacterial translocation.
Collapse
Affiliation(s)
- Toon Anton Willem Scheurink
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Jenny Borkent
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Shiral S. Gangadin
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Sahar El Aidy
- Host‐Microbe Metabolic InteractionsGroningen Biomolecular Sciences and Biotechnology Institute (GBB)University of GroningenGroningenThe Netherlands
| | - Rene Mandl
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
| | - Iris E. C. Sommer
- Department of Biomedical Sciences of Cells & SystemsUniversity of Groningen, University Medical Center GroningenGroningenThe Netherlands
- Department of PsychiatryUniversity of GroningenUniversity Medical Center GroningenGroningenThe Netherlands
| |
Collapse
|
23
|
Paton SEJ, Solano JL, Coulombe-Rozon F, Lebel M, Menard C. Barrier-environment interactions along the gut-brain axis and their influence on cognition and behaviour throughout the lifespan. J Psychiatry Neurosci 2023; 48:E190-E208. [PMID: 37253482 PMCID: PMC10234620 DOI: 10.1503/jpn.220218] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 03/01/2023] [Accepted: 03/19/2023] [Indexed: 06/01/2023] Open
Abstract
Environment is known to substantially alter mental state and behaviour across the lifespan. Biological barriers such as the blood-brain barrier (BBB) and gut barrier (GB) are major hubs for communication of environmental information. Alterations in the structural, social and motor environment at different stages of life can influence function of the BBB and GB and their integrity to exert behavioural consequences. Importantly, each of these environmental components is associated with a distinct immune profile, glucocorticoid response and gut microbiome composition, creating unique effects on the BBB and GB. These barrier-environment interactions are sensitive to change throughout life, and positive or negative alterations at critical stages of development can exert long-lasting cognitive and behavioural consequences. Furthermore, because loss of barrier integrity is implicated in pathogenesis of mental disorders, the pathways of environmental influence represent important areas for understanding these diseases. Positive environments can be protective against stress- and age-related damage, raising the possibility of novel pharmacological targets. This review summarizes known mechanisms of environmental influence - such as social interactions, structural complexity and physical exercise - on barrier composition, morphology and development, and considers the outcomes and implications of these interactions in the context of psychiatric disorders.
Collapse
Affiliation(s)
- Sam E J Paton
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - José L Solano
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - François Coulombe-Rozon
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Manon Lebel
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| | - Caroline Menard
- From the Department of Psychiatry and Neuroscience, Faculty of Medicine and CERVO Brain Research Centre, Université Laval, Québec, Que. (Paton, Solano, Coulombe-Rozon, Lebel, Menard)
| |
Collapse
|
24
|
Romero-Miguel D, Casquero-Veiga M, Fernández J, Lamanna-Rama N, Gómez-Rangel V, Gálvez-Robleño C, Santa-Marta C, Villar CJ, Lombó F, Abalo R, Desco M, Soto-Montenegro ML. Maternal Supplementation with N-Acetylcysteine Modulates the Microbiota-Gut-Brain Axis in Offspring of the Poly I:C Rat Model of Schizophrenia. Antioxidants (Basel) 2023; 12:970. [PMID: 37107344 PMCID: PMC10136134 DOI: 10.3390/antiox12040970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 04/03/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
The microbiota-gut-brain axis is a complex interconnected system altered in schizophrenia. The antioxidant N-acetylcysteine (NAC) has been proposed as an adjunctive therapy to antipsychotics in clinical trials, but its role in the microbiota-gut-brain axis has not been sufficiently explored. We aimed to describe the effect of NAC administration during pregnancy on the gut-brain axis in the offspring from the maternal immune stimulation (MIS) animal model of schizophrenia. Pregnant Wistar rats were treated with PolyI:C/Saline. Six groups of animals were studied according to the study factors: phenotype (Saline, MIS) and treatment (no NAC, NAC 7 days, NAC 21 days). Offspring were subjected to the novel object recognition test and were scanned using MRI. Caecum contents were used for metagenomics 16S rRNA sequencing. NAC treatment prevented hippocampal volume reduction and long-term memory deficits in MIS-offspring. In addition, MIS-animals showed lower bacterial richness, which was prevented by NAC. Moreover, NAC7/NAC21 treatments resulted in a reduction of proinflammatory taxons in MIS-animals and an increase in taxa known to produce anti-inflammatory metabolites. Early approaches, like this one, with anti-inflammatory/anti-oxidative compounds, especially in neurodevelopmental disorders with an inflammatory/oxidative basis, may be useful in modulating bacterial microbiota, hippocampal size, as well as hippocampal-based memory impairments.
Collapse
Grants
- project number PI17/01766, and grant number BA21/00030 Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III, co-financed by the European Regional Development Fund (ERDF), "A way to make Europe"
- project PID2021-128862OB-I00 MCIN /AEI /10.13039/501100011033 / FEDER, UE
- project number CB07/09/0031 CIBER de Salud Mental - Instituto de Salud Carlos III
- project numbers 2017/085, 2022/008917 Delegación del Gobierno para el Plan Nacional sobre Drogas
- 2016/01 Fundación Alicia Koplowitz
- grant, PEJD-2018-PRE/BMD-7899 Consejería de Educación e investigación, Comunidad de Madrid, co-funded by the European Social Fund "Investing in your future"
- "Programa Intramural de Impulso a la I+D+I 2019" Instituto de investigación Sanitaria Gregorio Marañón
- PT20/00044 Ministerio de Ciencia e Innovación, Instituto de Salud Carlos III
- x The CNIC is supported by the Instituto de Salud Carlos III (ISCIII), the Ministerio de Ciencia e Innovación (MCIN) and the Pro CNIC Foundation, and is a Severo Ochoa Center of Excellence (SEV-2015-0505)
- Contrato Intramural Postdoctoral FINBA
- SV-PA-21-AYUD/2021/51347 Ayudas para grupos de investigación de organismos del Principado de Asturias
Collapse
Affiliation(s)
| | | | - Javier Fernández
- Grupo de Investigación “Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC”, Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Nicolás Lamanna-Rama
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, 28911 Madrid, Spain
| | | | - Carlos Gálvez-Robleño
- Grupo de Investigación de Alto Rendimiento en Fisiopatología y Farmacología del Sistema Digestivo (NeuGut-URJC), Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
| | - Cristina Santa-Marta
- Departamento de Física Matemática y de Fluidos, Universidad Nacional de Educación a Distancia (UNED), 28040 Madrid, Spain
| | - Claudio J. Villar
- Grupo de Investigación “Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC”, Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Felipe Lombó
- Grupo de Investigación “Biotechnology in Nutraceuticals and Bioactive Compounds-BIONUC”, Departamento de Biología Funcional, Área de Microbiología, Universidad de Oviedo, 33006 Oviedo, Spain
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), 33011 Oviedo, Spain
| | - Raquel Abalo
- Grupo de Investigación de Alto Rendimiento en Fisiopatología y Farmacología del Sistema Digestivo (NeuGut-URJC), Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
- Departamento de Ciencias Básicas de la Salud, Universidad Rey Juan Carlos (URJC), 28922 Alcorcón, Spain
- Grupo de Trabajo de Ciencias Básicas en Dolor y Analgesia, Sociedad Española del Dolor (SED), 28046 Madrid, Spain
- Grupo de Trabajo de Cannabinoides, Sociedad Española del Dolor (SED), 28046 Madrid, Spain
- Unidad Asociada I+D+i del Instituto de Química Medica (IQM), Consejo Superior de Investigaciones Científicas (CSIC), 28006 Madrid, Spain
| | - Manuel Desco
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, 28911 Madrid, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
- Centro Nacional de Investigaciones Cardiovasculares (CNIC), 28029 Madrid, Spain
| | - María Luisa Soto-Montenegro
- Instituto de Investigación Sanitaria Gregorio Marañón, 28007 Madrid, Spain
- Grupo de Investigación de Alto Rendimiento en Fisiopatología y Farmacología del Sistema Digestivo (NeuGut-URJC), Universidad Rey Juan Carlos, 28922 Alcorcón, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), 28029 Madrid, Spain
| |
Collapse
|
25
|
Shin C, Kim YK. Microbiota-Gut-Brain Axis: Pathophysiological Mechanism in Neuropsychiatric Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1411:17-37. [PMID: 36949304 DOI: 10.1007/978-981-19-7376-5_2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/24/2023]
Abstract
Gut microbiota influence human behavior. The immunological, metabolic, and endocrine systems are involved in bidirectional communication between the gut and the brain, which is regulated by microbes through the microbiota-derived neurochemicals and metabolites. Gut microbiota have certain effects on neurodevelopment and maturation of immunity. However, gut dysbiosis can lead to neuropsychiatric disorders. Animal research and clinical case-control studies have demonstrated that gut dysbiosis has an adverse effect on human behavior through a variety of mechanisms. Recent meta-analysis on clinical studies confirmed gut dysbiosis in several major neuropsychiatric disorders. Microbiota-targeted intervention has recently been in the spotlight and meta-analyses have confirmed its effectiveness. In this chapter, we summarize the evidence for the interactions between microbiota and brain-gut network, as well as the potential pathophysiological mechanisms involved.
Collapse
Affiliation(s)
- Cheolmin Shin
- Department of Psychiatry, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea
| | - Yong-Ku Kim
- Department of Psychiatry, College of Medicine, Korea University Ansan Hospital, Ansan, Republic of Korea.
| |
Collapse
|
26
|
The Role of Gut Dysbiosis in the Pathophysiology of Neuropsychiatric Disorders. Cells 2022; 12:cells12010054. [PMID: 36611848 PMCID: PMC9818777 DOI: 10.3390/cells12010054] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/25/2022] Open
Abstract
Mounting evidence shows that the complex gut microbial ecosystem in the human gastrointestinal (GI) tract regulates the physiology of the central nervous system (CNS) via microbiota and the gut-brain (MGB) axis. The GI microbial ecosystem communicates with the brain through the neuroendocrine, immune, and autonomic nervous systems. Recent studies have bolstered the involvement of dysfunctional MGB axis signaling in the pathophysiology of several neurodegenerative, neurodevelopmental, and neuropsychiatric disorders (NPDs). Several investigations on the dynamic microbial system and genetic-environmental interactions with the gut microbiota (GM) have shown that changes in the composition, diversity and/or functions of gut microbes (termed "gut dysbiosis" (GD)) affect neuropsychiatric health by inducing alterations in the signaling pathways of the MGB axis. Interestingly, both preclinical and clinical evidence shows a positive correlation between GD and the pathogenesis and progression of NPDs. Long-term GD leads to overstimulation of hypothalamic-pituitary-adrenal (HPA) axis and the neuroimmune system, along with altered neurotransmitter levels, resulting in dysfunctional signal transduction, inflammation, increased oxidative stress (OS), mitochondrial dysfunction, and neuronal death. Further studies on the MGB axis have highlighted the significance of GM in the development of brain regions specific to stress-related behaviors, including depression and anxiety, and the immune system in the early life. GD-mediated deregulation of the MGB axis imbalances host homeostasis significantly by disrupting the integrity of the intestinal and blood-brain barrier (BBB), mucus secretion, and gut immune and brain immune functions. This review collates evidence on the potential interaction between GD and NPDs from preclinical and clinical data. Additionally, we summarize the use of non-therapeutic modulators such as pro-, pre-, syn- and post-biotics, and specific diets or fecal microbiota transplantation (FMT), which are promising targets for the management of NPDs.
Collapse
|
27
|
Jansma J, van Essen R, Haarman BCM, Chatziioannou AC, Borkent J, Ioannou M, van Hemert S, Sommer IEC, El Aidy S. Metabolic phenotyping reveals a potential link between elevated faecal amino acids, diet and symptom severity in individuals with severe mental illness. J Psychiatr Res 2022; 151:507-515. [PMID: 35636025 DOI: 10.1016/j.jpsychires.2022.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 10/18/2022]
Abstract
The brain-gut axis is increasingly recognized as an important contributing factor in the onset and progression of severe mental illnesses such as schizophrenia spectrum disorders and bipolar disorder. This study investigates associations between levels of faecal metabolites identified using 1H-NMR, clinical parameters, and dietary components of forty-two individuals diagnosed in a transdiagnostic approach to have severe mental illness. Faecal levels of the amino acids; alanine, leucine, and valine showed a significant positive correlation with psychiatric symptom severity as well as with dairy intake. Overall, this study proposes a diet-induced link between the brain-gut axis and the severity of psychiatric symptoms, which could be valuable in the design of novel dietary or therapeutic interventions to improve psychiatric symptoms.
Collapse
Affiliation(s)
- Jack Jansma
- Host-microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | - Rogier van Essen
- Host-microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands
| | | | | | - Jenny Borkent
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, the Netherlands
| | - Magdalini Ioannou
- Department of Psychiatry, University Medical Center Groningen, Groningen, the Netherlands; Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, the Netherlands
| | | | - Iris E C Sommer
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, Groningen, the Netherlands.
| | - Sahar El Aidy
- Host-microbe Interactions, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), University of Groningen, Groningen, the Netherlands.
| |
Collapse
|
28
|
Carnac T. Schizophrenia Hypothesis: Autonomic Nervous System Dysregulation of Fetal and Adult Immune Tolerance. Front Syst Neurosci 2022; 16:844383. [PMID: 35844244 PMCID: PMC9283579 DOI: 10.3389/fnsys.2022.844383] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 05/23/2022] [Indexed: 11/17/2022] Open
Abstract
The autonomic nervous system can control immune cell activation via both sympathetic adrenergic and parasympathetic cholinergic nerve release of norepinephrine and acetylcholine. The hypothesis put forward in this paper suggests that autonomic nervous system dysfunction leads to dysregulation of immune tolerance mechanisms in brain-resident and peripheral immune cells leading to excessive production of pro-inflammatory cytokines such as Tumor Necrosis Factor alpha (TNF-α). Inactivation of Glycogen Synthase Kinase-3β (GSK3β) is a process that takes place in macrophages and microglia when a toll-like receptor 4 (TLR4) ligand binds to the TLR4 receptor. When Damage-Associated Molecular Patterns (DAMPS) and Pathogen-Associated Molecular Patterns (PAMPS) bind to TLR4s, the phosphatidylinositol-3-kinase (PI3K)-protein kinase B (Akt) pathway should be activated, leading to inactivation of GSK3β. This switches the macrophage from producing pro-inflammatory cytokines to anti-inflammatory cytokines. Acetylcholine activation of the α7 subunit of the nicotinic acetylcholine receptor (α7 nAChR) on the cell surface of immune cells leads to PI3K/Akt pathway activation and can control immune cell polarization. Dysregulation of this pathway due to dysfunction of the prenatal autonomic nervous system could lead to impaired fetal immune tolerance mechanisms and a greater vulnerability to Maternal Immune Activation (MIA) resulting in neurodevelopmental abnormalities. It could also lead to the adult schizophrenia patient’s immune system being more vulnerable to chronic stress-induced DAMP release. If a schizophrenia patient experiences chronic stress, an increased production of pro-inflammatory cytokines such as TNF-α could cause significant damage. TNF-α could increase the permeability of the intestinal and blood brain barrier, resulting in lipopolysaccharide (LPS) and TNF-α translocation to the brain and consequent increases in glutamate release. MIA has been found to reduce Glutamic Acid Decarboxylase mRNA expression, resulting in reduced Gamma-aminobutyric acid (GABA) synthesis, which combined with an increase of glutamate release could result in an imbalance of glutamate and GABA neurotransmitters. Schizophrenia could be a “two-hit” illness comprised of a genetic “hit” of autonomic nervous system dysfunction and an environmental hit of MIA. This combination of factors could lead to neurotransmitter imbalance and the development of psychotic symptoms.
Collapse
|
29
|
Ling Z, Jin G, Yan X, Cheng Y, Shao L, Song Q, Liu X, Zhao L. Fecal Dysbiosis and Immune Dysfunction in Chinese Elderly Patients With Schizophrenia: An Observational Study. Front Cell Infect Microbiol 2022; 12:886872. [PMID: 35719348 PMCID: PMC9198589 DOI: 10.3389/fcimb.2022.886872] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022] Open
Abstract
Schizophrenia (SZ) is a severe neuropsychiatric disorder with largely unknown etiology and pathogenesis. Mounting preclinical and clinical evidence suggests that the gut microbiome is a vital player in SZ. However, the gut microbiota characteristics and its host response in elderly SZ patients are still not well understood. A total of 161 samples was collected, including 90 samples from elderly SZ patients and 71 samples from healthy controls. We explored the gut microbiota profiles targeting the V3-V4 region of the 16S rRNA gene by MiSeq sequencing, and to analyze their associations with host immune response. Our data found that bacterial β-diversity analyses could divide the SZ patients and healthy controls into two different clusters. The Linear discriminant analysis Effect Size (LEfSe) identified the compositional changes in SZ-associated bacteria, including Faecalibacterium, Roseburia, Actinomyces, Butyricicoccus, Prevotella and so on. In addition, the levels of pro-inflammatory cytokines such as IL-1β were greatly increased in SZ patients while the levels of anti-inflammatory cytokines such as IFN-γ were markedly decreased. Correlation analysis suggested that these bacteria contributed to immune disturbances in the host that could be used as non-invasive biomarkers to distinguish the SZ patients from healthy controls. Moreover, several predicted functional modules, including increased lipopolysaccharide biosynthesis, folate biosynthesis, lipoic acid metabolism, and decreased bile acid biosynthesis, fatty acid biosynthesis in SZ-associated microbiota, could be utilized by the bacteria to produce immunomodulatory metabolites. This study, for the first time, demonstrated the structural and functional dysbiosis of the fecal microbiota in Chinese elderly SZ patients, suggesting the potential for using gut key functional bacteria for the early, non-invasive diagnosis of SZ, personalized treatment, and the development of tailor-made probiotics designed for Chinese elderly SZ patients.
Collapse
Affiliation(s)
- Zongxin Ling
- Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Guolin Jin
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, China
| | - Xiumei Yan
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| | - Yiwen Cheng
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, China
| | - Li Shao
- Institute of Hepatology and Metabolic Diseases, Hangzhou Normal University, Hangzhou, China
- Institute of Translational Medicine, The Affiliated Hospital of Hangzhou Normal University, Hangzhou, China
| | - Qinghai Song
- Department of Psychiatry, Lishui Second People’s Hospital, Lishui, China
| | - Xia Liu
- Department of Intensive Care Unit, the First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Longyou Zhao
- Department of Laboratory Medicine, Lishui Second People’s Hospital, Lishui, China
| |
Collapse
|
30
|
Tsamakis K, Galinaki S, Alevyzakis E, Hortis I, Tsiptsios D, Kollintza E, Kympouropoulos S, Triantafyllou K, Smyrnis N, Rizos E. Gut Microbiome: A Brief Review on Its Role in Schizophrenia and First Episode of Psychosis. Microorganisms 2022; 10:1121. [PMID: 35744639 PMCID: PMC9227193 DOI: 10.3390/microorganisms10061121] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 05/24/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
There is a growing body of evidence highlighting the role of gut microbiota as a biological basis of psychiatric disorders. The existing literature suggest that cognitive and emotional activities can be influenced by microbes through the microbiota-gut-brain axis and implies an association between alterations in the gut microbiome and several psychiatric conditions, such as autism, depression, bipolar disorder and psychosis. The aim of this review is to summarise recent findings and provide concise updates on the latest progress of the role of gut microbiota in the development and maintenance of psychiatric symptoms in schizophrenia and the first episode of psychosis. Despite the lack of consistent findings in regard to specific microbiome changes related to psychosis, the emerging literature reports significant differences in the gut microbiome of schizophrenic subjects compared to healthy controls and increasingly outlines the significance of an altered microbiome composition in the pathogenesis, development, symptom severity and prognosis of psychosis. Further human studies are, however, required, which should focus on identifying the drivers of microbiota changes in psychosis and establish the direction of causality between psychosis and microbiome alterations.
Collapse
Affiliation(s)
- Konstantinos Tsamakis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
- Institute of Psychiatry, Psychology and Neuroscience (IoPPN), King’s College London, London SE5 8AB, UK
- Institute of Medical and Biomedical Education, St George’s, University of London, London SW17 0RE, UK
| | - Sofia Galinaki
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
| | - Evangelos Alevyzakis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
| | - Ioannis Hortis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
| | - Dimitrios Tsiptsios
- Neurology Department, Democritus University of Thrace, 68100 Alexandroupolis, Greece;
| | - Evangelia Kollintza
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
| | - Stylianos Kympouropoulos
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
| | - Konstantinos Triantafyllou
- Hepatogastroenterology Unit, 2nd Department of Propaedeutic Internal Medicine, Medical School, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Nikolaos Smyrnis
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
| | - Emmanouil Rizos
- Second Department of Psychiatry, Attikon University General Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece; (S.G.); (E.A.); (I.H.); (E.K.); (S.K.); (N.S.); (E.R.)
| |
Collapse
|
31
|
Singh R, Stogios N, Smith E, Lee J, Maksyutynsk K, Au E, Wright DC, De Palma G, Graff-Guerrero A, Gerretsen P, Müller DJ, Remington G, Hahn M, Agarwal SM. Gut microbiome in schizophrenia and antipsychotic-induced metabolic alterations: a scoping review. Ther Adv Psychopharmacol 2022; 12:20451253221096525. [PMID: 35600753 PMCID: PMC9118432 DOI: 10.1177/20451253221096525] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 04/07/2022] [Indexed: 12/11/2022] Open
Abstract
Schizophrenia (SCZ) is a severe mental disorder with high morbidity and lifetime disability rates. Patients with SCZ have a higher risk of developing metabolic comorbidities such as obesity and diabetes mellitus, leading to increased mortality. Antipsychotics (APs), which are the mainstay in the treatment of SCZ, increase the risk of these metabolic perturbations. Despite extensive research, the mechanism underlying SCZ pathophysiology and associated metabolic comorbidities remains unclear. In recent years, gut microbiota (GMB) has been regarded as a 'chamber of secrets', particularly in the context of severe mental illnesses such as SCZ, depression, and bipolar disorder. In this scoping review, we aimed to investigate the underlying role of GMB in the pathophysiology of SCZ and metabolic alterations associated with APs. Furthermore, we also explored the therapeutic benefits of prebiotic and probiotic formulations in managing SCZ and AP-induced metabolic alterations. A systematic literature search yielded 46 studies from both preclinical and clinical settings that met inclusion criteria for qualitative synthesis. Preliminary evidence from preclinical and clinical studies indicates that GMB composition changes are associated with SCZ pathogenesis and AP-induced metabolic perturbations. Fecal microbiota transplantation from SCZ patients to mice has been shown to induce SCZ-like behavioral phenotypes, further supporting the plausible role of GMB in SCZ pathogenesis. This scoping review recapitulates the preclinical and clinical evidence suggesting the role of GMB in SCZ symptomatology and metabolic adverse effects associated with APs. Moreover, this scoping review also discusses the therapeutic potentials of prebiotic/probiotic formulations in improving SCZ symptoms and attenuating metabolic alterations related to APs.
Collapse
Affiliation(s)
- Raghunath Singh
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Nicolette Stogios
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Emily Smith
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Jiwon Lee
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Kateryna Maksyutynsk
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Emily Au
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - David C. Wright
- Human Health and Nutritional Sciences, University of Guelph, Guelph, ON, Canada
| | - Giada De Palma
- Farncombe Family Digestive Health Research Institute, Department of Medicine, McMaster University, Hamilton, ON, Canada
| | - Ariel Graff-Guerrero
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Philip Gerretsen
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Daniel J. Müller
- Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Gary Remington
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Margaret Hahn
- Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Sri Mahavir Agarwal
- Staff Psychiatrist and Clinician-Scientist, Medical Head, Clinical Research, Schizophrenia Division, Centre for Addiction and Mental Health (CAMH), 1051 Queen Street W, Toronto, ON M6J 1H3, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
32
|
Doney E, Cadoret A, Dion‐Albert L, Lebel M, Menard C. Inflammation-driven brain and gut barrier dysfunction in stress and mood disorders. Eur J Neurosci 2022; 55:2851-2894. [PMID: 33876886 PMCID: PMC9290537 DOI: 10.1111/ejn.15239] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 03/18/2021] [Accepted: 04/12/2021] [Indexed: 02/06/2023]
Abstract
Regulation of emotions is generally associated exclusively with the brain. However, there is evidence that peripheral systems are also involved in mood, stress vulnerability vs. resilience, and emotion-related memory encoding. Prevalence of stress and mood disorders such as major depression, bipolar disorder, and post-traumatic stress disorder is increasing in our modern societies. Unfortunately, 30%-50% of individuals respond poorly to currently available treatments highlighting the need to further investigate emotion-related biology to gain mechanistic insights that could lead to innovative therapies. Here, we provide an overview of inflammation-related mechanisms involved in mood regulation and stress responses discovered using animal models. If clinical studies are available, we discuss translational value of these findings including limitations. Neuroimmune mechanisms of depression and maladaptive stress responses have been receiving increasing attention, and thus, the first part is centered on inflammation and dysregulation of brain and circulating cytokines in stress and mood disorders. Next, recent studies supporting a role for inflammation-driven leakiness of the blood-brain and gut barriers in emotion regulation and mood are highlighted. Stress-induced exacerbated inflammation fragilizes these barriers which become hyperpermeable through loss of integrity and altered biology. At the gut level, this could be associated with dysbiosis, an imbalance in microbial communities, and alteration of the gut-brain axis which is central to production of mood-related neurotransmitter serotonin. Novel therapeutic approaches such as anti-inflammatory drugs, the fast-acting antidepressant ketamine, and probiotics could directly act on the mechanisms described here improving mood disorder-associated symptomatology. Discovery of biomarkers has been a challenging quest in psychiatry, and we end by listing promising targets worth further investigation.
Collapse
Affiliation(s)
- Ellen Doney
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Alice Cadoret
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQCCanada
| |
Collapse
|
33
|
Borkent J, Ioannou M, Laman JD, Haarman BCM, Sommer IEC. Role of the gut microbiome in three major psychiatric disorders. Psychol Med 2022; 52:1222-1242. [PMID: 35506416 PMCID: PMC9157303 DOI: 10.1017/s0033291722000897] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 01/14/2022] [Accepted: 03/18/2022] [Indexed: 12/19/2022]
Abstract
Major depressive disorder (MDD), bipolar disorder (BD) and schizophrenia-spectrum disorders (SSD) are heterogeneous psychiatric disorders, which place significant burden on patient's well-being and global health. Disruptions in the gut-microbiome may play a role in these psychiatric disorders. This review presents current data on composition of the human gastrointestinal microbiota, and its interaction mechanisms in the gut-brain axis in MDD, BD and SSD. Diversity metrics and microbial relative abundance differed across studies. More studies reported inconsistent findings (n = 7) or no differences (n = 8) than studies who reported lower α-diversity in these psychiatric disorders (n = 5). The most consistent findings across studies were higher relative abundances of the genera Streptococcus, Lactobacillus, and Eggerthella and lower relative abundance of the butyrate producing Faecalibacterium in patients with psychiatric disorders. All three increased genera were associated with higher symptom severity. Confounders, such as medication use and life style have not been accounted for. So far, the results of probiotics trials have been inconsistent. Most traditional and widely used probiotics (consisting of Bifidobacterium spp. and Lactobacillus spp.) are safe, however, they do not correct potential microbiota disbalances in these disorders. Findings on prebiotics and faecal microbiota transplantation (FMT) are too limited to draw definitive conclusions. Disease-specific pro/prebiotic treatment or even FMT could be auspicious interventions for prevention and therapy for psychiatric disorders and should be investigated in future trials.
Collapse
Affiliation(s)
- Jenny Borkent
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Magdalini Ioannou
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jon D. Laman
- Department of Pathology & Medical Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Bartholomeus C. M. Haarman
- Department of Psychiatry, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Iris E. C. Sommer
- Department of Biomedical Sciences of Cells & Systems, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
34
|
Ermakov EA, Melamud MM, Buneva VN, Ivanova SA. Immune System Abnormalities in Schizophrenia: An Integrative View and Translational Perspectives. Front Psychiatry 2022; 13:880568. [PMID: 35546942 PMCID: PMC9082498 DOI: 10.3389/fpsyt.2022.880568] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 03/30/2022] [Indexed: 12/12/2022] Open
Abstract
The immune system is generally known to be the primary defense mechanism against pathogens. Any pathological conditions are reflected in anomalies in the immune system parameters. Increasing evidence suggests the involvement of immune dysregulation and neuroinflammation in the pathogenesis of schizophrenia. In this systematic review, we summarized the available evidence of abnormalities in the immune system in schizophrenia. We analyzed impairments in all immune system components and assessed the level of bias in the available evidence. It has been shown that schizophrenia is associated with abnormalities in all immune system components: from innate to adaptive immunity and from humoral to cellular immunity. Abnormalities in the immune organs have also been observed in schizophrenia. Evidence of increased C-reactive protein, dysregulation of cytokines and chemokines, elevated levels of neutrophils and autoantibodies, and microbiota dysregulation in schizophrenia have the lowest risk of bias. Peripheral immune abnormalities contribute to neuroinflammation, which is associated with cognitive and neuroanatomical alterations and contributes to the pathogenesis of schizophrenia. However, signs of severe inflammation are observed in only about 1/3 of patients with schizophrenia. Immunological parameters may help identify subgroups of individuals with signs of inflammation who well respond to anti-inflammatory therapy. Our integrative approach also identified gaps in knowledge about immune abnormalities in schizophrenia, and new horizons for the research are proposed.
Collapse
Affiliation(s)
- Evgeny A. Ermakov
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Mark M. Melamud
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - Valentina N. Buneva
- Laboratory of Repair Enzymes, Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk, Russia
| | - Svetlana A. Ivanova
- Laboratory of Molecular Genetics and Biochemistry, Mental Health Research Institute, Tomsk National Research Medical Center of the Russian Academy of Sciences, Tomsk, Russia
| |
Collapse
|
35
|
Yitik Tonkaz G, Esin IS, Turan B, Uslu H, Dursun OB. Determinants of Leaky Gut and Gut Microbiota Differences in Children With Autism Spectrum Disorder and Their Siblings. J Autism Dev Disord 2022:10.1007/s10803-022-05540-z. [PMID: 35441922 DOI: 10.1007/s10803-022-05540-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/16/2022] [Indexed: 11/28/2022]
Abstract
Leaky gut hypothesis is one of the well-known theory which tries to explain etiology of Autism Spectrum Disorder (ASD). Unfortunately there is still a gap of evidence to investigate the corner points of the hypothesis. The aim of this study was to investigate the determinants of leaky gut in children with ASD, their siblings and healthy controls. Intestinal microbiota was found to be similar between ASD and sibling groups. Biological markers of bacterial translocation showed a significant difference in the sibling group, whereas the marker indicating local inflammation was not different between the groups. The findings from this study did not support the role of Gut microbiota or leaky gut on the etiology of autism.
Collapse
Affiliation(s)
- Gülsüm Yitik Tonkaz
- Child and Adolescent Psychiatry Department, Erzurum Regional Training and Research Hospital, Erzurum, Turkey
| | - Ibrahim Selçuk Esin
- Child and Adolescent Psychiatry Department, Faculty of Medicine, University of Health Sciences, İstanbul, Turkey
| | - Bahadir Turan
- Department of Autism, Mental Special Needs and Rare Disease, Turkish Ministry of Health, Ankara, Turkey
| | - Hakan Uslu
- Department of Medical Microbiology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Onur Burak Dursun
- Department of Autism, Mental Special Needs and Rare Disease, Turkish Ministry of Health, Ankara, Turkey.
| |
Collapse
|
36
|
Mitrea L, Nemeş SA, Szabo K, Teleky BE, Vodnar DC. Guts Imbalance Imbalances the Brain: A Review of Gut Microbiota Association With Neurological and Psychiatric Disorders. Front Med (Lausanne) 2022; 9:813204. [PMID: 35433746 PMCID: PMC9009523 DOI: 10.3389/fmed.2022.813204] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 02/23/2022] [Indexed: 12/12/2022] Open
Abstract
Over the last 10 years, there has been a growing interest in the relationship between gut microbiota, the brain, and neurologic-associated affections. As multiple preclinical and clinical research studies highlight gut microbiota’s potential to modulate the general state of health state, it goes without saying that gut microbiota plays a significant role in neurogenesis, mental and cognitive development, emotions, and behaviors, and in the progression of neuropsychiatric illnesses. Gut microbiota produces important biologic products that, through the gut-brain axis, are directly connected with the appearance and evolution of neurological and psychiatric disorders such as depression, anxiety, bipolar disorder, autism, schizophrenia, Parkinson’s disease, Alzheimer’s disease, dementia, multiple sclerosis, and epilepsy. This study reviews recent research on the link between gut microbiota and the brain, and microbiome’s role in shaping the development of the most common neurological and psychiatric illnesses. Moreover, special attention is paid to the use of probiotic formulations as a potential non-invasive therapeutic opportunity for prevention and management of neuropsychiatric-associated affections.
Collapse
Affiliation(s)
- Laura Mitrea
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Silvia-Amalia Nemeş
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Katalin Szabo
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Bernadette-Emőke Teleky
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| | - Dan-Cristian Vodnar
- Institute of Life Sciences, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania.,Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine of Cluj-Napoca, Cluj-Napoca, Romania
| |
Collapse
|
37
|
Gokulakrishnan K, Nikhil J, VS S, Holla B, Thirumoorthy C, Sandhya N, Nichenametla S, Pathak H, Shivakumar V, Debnath M, Venkatasubramanian G, Varambally S. Altered Intestinal Permeability Biomarkers in Schizophrenia: A Possible Link with Subclinical Inflammation. Ann Neurosci 2022; 29:151-158. [PMID: 36419512 PMCID: PMC9676334 DOI: 10.1177/09727531221108849] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/18/2022] [Indexed: 09/12/2023] Open
Abstract
Background and Purpose Emerging studies have shown that gut-derived endotoxins might play a role in intestinal and systemic inflammation. Although the significance of intestinal permeability in modulating the pathogenesis of Schizophrenia (SCZ) is recognized, not much data on the specific role of intestinal permeability biomarkers, viz., zonulin, lipopolysaccharide-binding protein (LBP), and intestinal alkaline phosphatase (IAP) in SCZ is available. Therefore, we measured the plasma levels of zonulin, LBP, and IAP and its correlation with neutrophil-to-lymphocyte ratio (NLR); a marker of systemic inflammation in patients with SCZ. Methods We recruited 60 individuals, patients with SCZ (n = 40) and healthy controls (n = 20), from a large tertiary neuropsychiatry center. Plasma levels of zonulin, IAP, and LBP were quantified by enzyme-linked immunosorbent assay. Results Plasma levels of both LBP and zonulin were significantly increased (P <0.05), whereas the IAP levels (P <0.05) were significantly decreased in patients with SCZ compared to healthy controls. Pearson correlation analysis revealed that zonulin and LBP had a significant positive correlation with NLR, and IAP negatively correlated with NLR. Individuals with SCZ had higher independent odds of zonulin [odds ratio (OR): 10.32, 95% CI: 1.85-57.12], LBP [OR: 1.039, 95% CI: 1.02-1.07], and IAP [OR: 0.643, 95% CI: 0.471-0.879], even after adjusting for potential confounders. Conclusion Our study demonstrates an association of zonulin, LBP, and IAP in Asian Indian SCZ patients and correlates with NLR. Our results indicate that low-grade inflammation induced by metabolic endotoxemia might be implicated in the pathoetiology of SCZ.
Collapse
Affiliation(s)
- Kuppan Gokulakrishnan
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Joyappa Nikhil
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Sreeraj VS
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka India
| | - Bharath Holla
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Chinnasamy Thirumoorthy
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Narasimhan Sandhya
- Department of Neurochemistry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Sonika Nichenametla
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka India
| | - Harsh Pathak
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka India
| | - Venkataram Shivakumar
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Monojit Debnath
- Department of Human Genetics, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| | - Ganesan Venkatasubramanian
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka India
| | - Shivarama Varambally
- Department of Psychiatry, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka India
- Department of Integrative Medicine, National Institute of Mental Health and Neuro Sciences, Bengaluru, Karnataka, India
| |
Collapse
|
38
|
Gao Y, Fan Y, Yang Z, Ma Q, Zhao B, He X, Gao F, Qian L, Wang W, Chen C, Chen Y, Gao C, Ma X, Zhu F. Systems biological assessment of altered cytokine responses to bacteria and fungi reveals impaired immune functionality in schizophrenia. Mol Psychiatry 2022; 27:1205-1216. [PMID: 34728799 DOI: 10.1038/s41380-021-01362-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/24/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022]
Abstract
Evidence suggests that complex interactions between the immune system and brain have important etiological and therapeutic implications in schizophrenia. However, the detailed cellular and molecular basis of immune dysfunction in schizophrenia remains poorly characterized. To better understand the immune changes and molecular pathways, we systemically compared the cytokine responses of peripheral blood mononuclear cells (PBMCs) derived from patients with schizophrenia and controls against bacterial, fungal, and purified microbial ligands, and identified aberrant cytokine response patterns to various pathogens, as well as reduced cytokine production after stimulation with muramyl dipeptide (MDP) in schizophrenia. Subsequently, we performed single-cell RNA sequencing on unstimulated and stimulated PBMCs from patients and controls and revealed widespread suppression of antiviral and inflammatory programs as well as impaired chemokine/cytokine-receptor interaction networks in various immune cell subpopulations of schizophrenic patients after MDP stimulation. Moreover, serum MDP levels were elevated in these patients and correlated with the course of the disease, suggesting increased bacterial translocation along with disease progression. In vitro assays revealed that MDP pretreatment altered the functional response of normal PBMCs to its re-stimulation, which partially recapitulated the impaired immune function in schizophrenia. In conclusion, we delineated the molecular and cellular landscape of impaired immune function in schizophrenia, and proposed a mutual interplay between innate immune impairment, reduced pathogen clearance, increased MDP translocation along schizophrenia development, and blunted innate immune response. These findings provide new insights into the pathogenic mechanisms that drive systemic immune activation, neuroinflammation, and brain abnormalities in schizophrenia.
Collapse
Affiliation(s)
- Yuan Gao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yajuan Fan
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Zai Yang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Qingyan Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Binbin Zhao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xiaoyan He
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Fengjie Gao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Li Qian
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Wei Wang
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Ce Chen
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Yunchun Chen
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Chengge Gao
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China
| | - Xiancang Ma
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China. .,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China. .,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| | - Feng Zhu
- Department of Psychiatry, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China. .,Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China. .,Clinical Research Center for Psychiatric Medicine of Shaanxi Province, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China. .,Center for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an, 710061, China.
| |
Collapse
|
39
|
Ahmed S, Travis SD, Díaz-Bahamonde FV, Porter DDL, Henry SN, Mykins J, Ravipati A, Booker A, Ju J, Ding H, Ramesh AK, Pickrell AM, Wang M, LaConte S, Howell BR, Yuan L, Morton PD. Early Influences of Microbiota on White Matter Development in Germ-Free Piglets. Front Cell Neurosci 2022; 15:807170. [PMID: 35027884 PMCID: PMC8751630 DOI: 10.3389/fncel.2021.807170] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 11/29/2021] [Indexed: 11/13/2022] Open
Abstract
Abnormalities in the prefrontal cortex (PFC), as well as the underlying white matter (WM) tracts, lie at the intersection of many neurodevelopmental disorders. The influence of microorganisms on brain development has recently been brought into the clinical and research spotlight as alterations in commensal microbiota are implicated in such disorders, including autism spectrum disorders, schizophrenia, depression, and anxiety via the gut-brain axis. In addition, gut dysbiosis is common in preterm birth patients who often display diffuse WM injury and delayed WM maturation in critical tracts including those within the PFC and corpus callosum. Microbial colonization of the gut aligns with ongoing postnatal processes of oligodendrogenesis and the peak of brain myelination in humans; however, the influence of microbiota on gyral WM development remains elusive. Here, we develop and validate a neonatal germ-free swine model to address these issues, as piglets share key similarities in WM volume, developmental trajectories, and distribution to humans. We find significant region-specific reductions, and sexually dimorphic trends, in WM volume, oligodendrogenesis, and mature oligodendrocyte numbers in germ-free piglets during a key postnatal epoch of myelination. Our findings indicate that microbiota plays a critical role in promoting WM development during early life when the brain is vulnerable to environmental insults that can result in an array of disabilities manifesting later in life.
Collapse
Affiliation(s)
- Sadia Ahmed
- Graduate Studies in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Sierrah D Travis
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Francisca V Díaz-Bahamonde
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Demisha D L Porter
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Sara N Henry
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Julia Mykins
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Aditya Ravipati
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Aryn Booker
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Jing Ju
- Graduate Studies in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Hanzhang Ding
- Virginia Tech Graduate Program in Translational Biology, Medicine and Health, Virginia Tech, Roanoke, VA, United States
| | - Ashwin K Ramesh
- Graduate Studies in Biomedical and Veterinary Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Molecular Microbiology and Immunology, University of Missouri, Columbia, MO, United States
| | - Alicia M Pickrell
- School of Neuroscience, Virginia Tech, Blacksburg, VA, United States
| | - Maosen Wang
- Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Virginia Tech, Roanoke, VA, United States
| | - Stephen LaConte
- Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Virginia Tech, Roanoke, VA, United States.,Biomedical Engineering and Mechanics, Virginia Tech, Blacksburg, VA, United States
| | - Brittany R Howell
- Fralin Biomedical Research Institute at Virginia Tech Carilion (VTC), Virginia Tech, Roanoke, VA, United States.,Department of Human Development and Family Science, Virginia Tech, Roanoke, VA, United States
| | - Lijuan Yuan
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| | - Paul D Morton
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States
| |
Collapse
|
40
|
Safadi JM, Quinton AMG, Lennox BR, Burnet PWJ, Minichino A. Gut dysbiosis in severe mental illness and chronic fatigue: a novel trans-diagnostic construct? A systematic review and meta-analysis. Mol Psychiatry 2022; 27:141-153. [PMID: 33558650 PMCID: PMC8960409 DOI: 10.1038/s41380-021-01032-1] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/18/2020] [Accepted: 01/13/2021] [Indexed: 01/30/2023]
Abstract
Reduced gut-microbial diversity ("gut dysbiosis") has been associated with an anhedonic/amotivational syndrome ("sickness behavior") that manifests across severe mental disorders and represent the key clinical feature of chronic fatigue. In this systematic review and meta-analysis, we investigated differences in proxy biomarkers of gut dysbiosis in patients with severe mental illness and chronic fatigue vs. controls and the association of these biomarkers with sickness behavior across diagnostic categories. Following PRISMA guidelines, we searched from inception to April 2020 for all the studies investigating proxy biomarkers of gut dysbiosis in patients with severe mental illness and chronic fatigue. Data were independently extracted by multiple observers, and a random-mixed model was used for the analysis. Heterogeneity was assessed with the I2 index. Thirty-three studies were included in the systematic review; nineteen in the meta-analysis (N = 2758 patients and N = 1847 healthy controls). When compared to controls, patients showed increased levels of zonulin (four studies reporting data on bipolar disorder and depression, SMD = 0.97; 95% Cl = 0.10-1.85; P = 0.03, I2 = 86.61%), lipopolysaccharide (two studies reporting data on chronic fatigue and depression, SMD = 0.77; 95% Cl = 0.42-1.12; P < 0.01; I2 = 0%), antibodies against endotoxin (seven studies reporting data on bipolar disorder, depression, schizophrenia, and chronic fatigue, SMD = 0.99; 95% CI = 0.27-1.70; P < 0.01, I2 = 97.14%), sCD14 (six studies reporting data on bipolar disorder, depression, schizophrenia, and chronic fatigue, SMD = 0.54; 95% Cl 0.16-0.81; P < 0.01, I2 = 90.68%), LBP (LBP, two studies reporting data on chronic fatigue and depression, SMD = 0.87; 95% Cl = 0.25-1.48; P < 0.01; I2 = 56.80%), alpha-1-antitripsin (six studies reporting data on bipolar disorder, depression, and schizophrenia, SMD = 1.23; 95% Cl = 0.57-1.88; P < 0.01, I2: 89.25%). Elevated levels of gut dysbiosis markers positively correlated with severity of sickness behavior in patients with severe mental illness and chronic fatigue. Our findings suggest that gut dysbiosis may underlie symptoms of sickness behavior across traditional diagnostic boundaries. Future investigations should validate these findings comparing the performances of the trans-diagnostic vs. categorical approach. This will facilitate treatment breakthrough in an area of unmet clinical need.
Collapse
Affiliation(s)
- Jenelle Marcelle Safadi
- grid.5386.8000000041936877XCornell University, Ithaca, NY USA ,grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | - Alice M. G. Quinton
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | - Belinda R. Lennox
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | - Philip W. J. Burnet
- grid.4991.50000 0004 1936 8948Department of Psychiatry, University of Oxford, Oxford, UK
| | | |
Collapse
|
41
|
Yang C, Lin X, Wang X, Liu H, Huang J, Wang S. The schizophrenia and gut microbiota: A bibliometric and visual analysis. Front Psychiatry 2022; 13:1022472. [PMID: 36458121 PMCID: PMC9705344 DOI: 10.3389/fpsyt.2022.1022472] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Many studies have explored the link between the gut microbiota and schizophrenia. To date, there have been no bibliometric analyses to summarize the association between the gut microbiota and schizophrenia. We aimed to conduct a bibliometric study of this association to determine the current status and areas for advancement in this field. MATERIALS AND METHODS Publications related to the gut microbiota and schizophrenia were retrieved from the Web of Science Core Collection (WoSCC). The WoSCC literature analysis wire and VOSviewer 1.6.16 were used to conduct the analysis. RESULTS In total, 162 publications were included in our study. The publications generally showed an upward trend from 2014. A total of 873 authors from 355 organizations and 40 countries/regions contributed to this field. The leading authors were Timothy Dinan, John F Cryan, and Emily Severance. The leading institutions were Johns Hopkins University, the University College Cork, and the University of Toronto. The most productive countries were the United States (US), China, and Canada. In total, 95 journals contributed to this field. Among them, the top three productive journals were Schizophrenia Research, Progress in Neuro Psychopharmacology Biological Psychiatry, and Frontiers in Psychiatry. The important keywords in the clusters were gut microbiome, bipolar disorder, schizophrenia, antipsychotics, weight gain, metabolic syndrome, gut-brain axis, autism, depression, inflammation, and brain. CONCLUSION The main research hotspots involving the connection between schizophrenia and the gut microbiota were the characteristics of the microbiota composition in schizophrenia patients, the gut-brain axis, and microbial-based interventions for schizophrenia. The studies about the association between gut microbiota and schizophrenia are limited, and more studies are needed to provide new insights into the gut microbiota in the pathogenesis and treatment of schizophrenia.
Collapse
Affiliation(s)
- Chao Yang
- Department of Psychiatry, Beijing Luhe Hospital, Capital Medical University, Beijing, China
| | - Xiaoxiao Lin
- The Fourth School of Clinical Medicine, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xianteng Wang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen, China.,Shenzhen Institute of Translational Medicine, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, International Cancer Center of Shenzhen University, Shenzhen, China
| | - Huanzhong Liu
- Department of Psychiatry, Chaohu Hospital, Anhui Medical University, Chaohu, China
| | - Jinyu Huang
- Department of Cardiology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shuai Wang
- Department of Translation Medicine Center, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
42
|
Faruqui NA, Prium DH, Mowna SA, Ullah MA, Araf Y, Sarkar B, Zohora US, Rahman MS. Gut microorganisms and neurological disease perspectives. FUTURE NEUROLOGY 2021. [DOI: 10.2217/fnl-2020-0026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The gastrointestinal tract of every healthy human consists of a unique set of gut microbiota that collectively harbors a diverse and complex community of over 100 trillion microorganisms, including bacteria, viruses, archaea, protozoa and fungi. Gut microbes have a symbiotic relationship with our body. The composition of the microbiota is shaped early in life by gut maturation, which is influenced by several factors. Intestinal bacteria are crucial in maintaining immune and metabolic homeostasis and protecting against pathogens. Dysbiosis of gut microbiota is associated not only with intestinal disorders but also with extraintestinal diseases such as metabolic and neurological disorders. In this review, the authors examine different studies that have revealed the possible hypotheses and links in the development of neurological disorders associated with the gut microbiome.
Collapse
Affiliation(s)
- Nairita Ahsan Faruqui
- Department of Mathematics and Natural Sciences, Biotechnology Program, School of Data & Sciences, BRAC University, Dhaka, Bangladesh
| | - Durdana Hossain Prium
- Department of Mathematics and Natural Sciences, Biotechnology Program, School of Data & Sciences, BRAC University, Dhaka, Bangladesh
| | - Sadrina Afrin Mowna
- Department of Mathematics and Natural Sciences, Biotechnology Program, School of Data & Sciences, BRAC University, Dhaka, Bangladesh
| | - Md. Asad Ullah
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Yusha Araf
- Department of Genetic Engineering & Biotechnology, School of Life Sciences, Shahjalal University of Science & Technology, Sylhet, Bangladesh
| | - Bishajit Sarkar
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Umme Salma Zohora
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| | - Mohammad Shahedur Rahman
- Department of Biotechnology & Genetic Engineering, Faculty of Biological Sciences, Jahangirnagar University, Dhaka, Bangladesh
| |
Collapse
|
43
|
Miranda-Ribera A, Serena G, Liu J, Fasano A, Kingsbury MA, Fiorentino MR. The Zonulin-transgenic mouse displays behavioral alterations ameliorated via depletion of the gut microbiota. Tissue Barriers 2021; 10:2000299. [PMID: 34775911 DOI: 10.1080/21688370.2021.2000299] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The gut-brain axis hypothesis suggests that interactions in the intestinal milieu are critically involved in regulating brain function. Several studies point to a gut-microbiota-brain connection linking an impaired intestinal barrier and altered gut microbiota composition to neurological disorders involving neuroinflammation. Increased gut permeability allows luminal antigens to cross the gut epithelium, and via the blood stream and an impaired blood-brain barrier (BBB) enters the brain impacting its function. Pre-haptoglobin 2 (pHP2), the precursor protein to mature HP2, is the first characterized member of the zonulin family of structurally related proteins. pHP 2 has been identified in humans as the thus far only endogenous regulator of epithelial and endothelial tight junctions (TJs). We have leveraged the Zonulin-transgenic mouse (Ztm) that expresses a murine pHP2 (zonulin) to determine the role of increased gut permeability and its synergy with a dysbiotic intestinal microbiota on brain function and behavior. Here we show that Ztm mice display sex-dependent behavioral abnormalities accompanied by altered gene expression of BBB TJs and increased expression of brain inflammatory genes. Antibiotic depletion of the gut microbiota in Ztm mice downregulated brain inflammatory markers ameliorating some anxiety-like behavior. Overall, we show that zonulin-dependent alterations in gut permeability and dysbiosis of the gut microbiota are associated with an altered BBB integrity, neuroinflammation, and behavioral changes that are partially ameliorated by microbiota depletion. Our results suggest the Ztm model as a tool for the study of the cross-talk between the microbiome/gut and the brain in the context of neurobehavioral/neuroinflammatory disorders.
Collapse
Affiliation(s)
- Alba Miranda-Ribera
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Gloria Serena
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Jundi Liu
- Department of Poultry Science, University of Georgia, Athens, GA, USA
| | - Alessio Fasano
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| | - Marcy A Kingsbury
- Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA.,Lurie Center for Autism, Boston, MA, USA
| | - Maria R Fiorentino
- Department of Pediatric Gastroenterology and Nutrition, Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Pediatrics, Harvard Medical School, Harvard University, Boston, MA, USA
| |
Collapse
|
44
|
Liu Y, Wang H, Gui S, Zeng B, Pu J, Zheng P, Zeng L, Luo Y, Wu Y, Zhou C, Song J, Ji P, Wei H, Xie P. Proteomics analysis of the gut-brain axis in a gut microbiota-dysbiosis model of depression. Transl Psychiatry 2021; 11:568. [PMID: 34744165 PMCID: PMC8572885 DOI: 10.1038/s41398-021-01689-w] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/17/2021] [Accepted: 10/20/2021] [Indexed: 12/21/2022] Open
Abstract
Major depressive disorder (MDD) is a serious mental illness. Increasing evidence from both animal and human studies suggested that the gut microbiota might be involved in the onset of depression via the gut-brain axis. However, the mechanism in depression remains unclear. To explore the protein changes of the gut-brain axis modulated by gut microbiota, germ-free mice were transplanted with gut microbiota from MDD patients to induce depression-like behaviors. Behavioral tests were performed following fecal microbiota transplantation. A quantitative proteomics approach was used to examine changes in protein expression in the prefrontal cortex (PFC), liver, cecum, and serum. Then differential protein analysis and weighted gene coexpression network analysis were used to identify microbiota-related protein modules. Our results suggested that gut microbiota induced the alteration of protein expression levels in multiple tissues of the gut-brain axis in mice with depression-like phenotype, and these changes of the PFC and liver were model specific compared to chronic stress models. Gene ontology enrichment analysis revealed that the protein changes of the gut-brain axis were involved in a variety of biological functions, including metabolic process and inflammatory response, in which energy metabolism is the core change of the protein network. Our data provide clues for future studies in the gut-brain axis on protein level and deepen the understanding of how gut microbiota cause depression-like behaviors.
Collapse
Affiliation(s)
- Yiyun Liu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Haiyang Wang
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Siwen Gui
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Benhua Zeng
- grid.410570.70000 0004 1760 6682Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China
| | - Juncai Pu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Peng Zheng
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li Zeng
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yuanyuan Luo
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - You Wu
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Chanjuan Zhou
- grid.452206.70000 0004 1758 417XNHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jinlin Song
- grid.203458.80000 0000 8653 0555College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Ping Ji
- grid.203458.80000 0000 8653 0555College of Stomatology, Chongqing Medical University, Chongqing, China
| | - Hong Wei
- Department of Laboratory Animal Science, College of Basic Medical Sciences, Third Military Medical University, Chongqing, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
45
|
Caffeine consumption and schizophrenia: A highlight on adenosine receptor-independent mechanisms. Curr Opin Pharmacol 2021; 61:106-113. [PMID: 34688994 DOI: 10.1016/j.coph.2021.09.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 09/02/2021] [Accepted: 09/06/2021] [Indexed: 12/13/2022]
Abstract
Schizophrenia is a common psychiatric disorder which affects approximately 1% of the population worldwide. However, the complexity of etiology, treatment resistance and side effects induced by current antipsychotics, relapse prevention, and psychosocial rehabilitation are still to be uncovered. Caffeine, as the world's most widely consumed psychoactive drug, plays a crucial role in daily life. Plenty of preclinical and clinical evidence has illustrated that caffeine consumption could have a beneficial effect on schizophrenia. In this review, we firstly summarize the factors associated with the caffeine-induced beneficial effect. Then, a variety of mechanism of actions independent of adenosine receptor signaling will be discussed with an emphasis on the potential contribution of the microbiome-gut-brain axis to provide more possibilities for future therapeutic, prognosis, and social rehabilitation strategy.
Collapse
|
46
|
Wpływ mikrobioty jelitowej na występowanie zaburzeń psychicznych oraz chorób neurodegeneracyjnych. POSTEP HIG MED DOSW 2021. [DOI: 10.2478/ahem-2021-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Abstrakt
W artykule podsumowano aktualny stan wiedzy na temat zależności między składem mikrobioty jelitowej a występowaniem zaburzeń psychicznych i chorób neurodegeneracyjnych.
Patogeneza zaburzeń psychicznych oraz chorób neurodegeneracyjnych może mieć związek ze składem bioty bakteryjnej jelit. Komunikacja między jelitami a mózgiem jest możliwa za pośrednictwem osi jelitowo-mózgowej i odbywa się za pomocą mechanizmów endokrynnych, neuronalnych i immunologicznych.
Skład mikrobioty jelitowej człowieka w trakcie jego życia podlega fluktuacjom. Bakterie jelitowe pełnią wiele funkcji, które są korzystne dla zdrowia gospodarza. Pod wpływem czynników środowiskowych może wystąpić dysbioza jelitowa – stan zaburzenia jakościowego i ilościowego bioty bakteryjnej jelit.
Istnieją wyraźne różnice między składem mikrobioty jelitowej osób ze zdiagnozowanymi zaburzeniami psychicznymi a składem mikrobioty jelitowej osób zdrowych. W schorzeniach takich jak depresja, schizofrenia czy autyzm stwierdza się dysbiozę jelitową, której skutkiem jest zmniejszenie integralności bariery jelitowej, a następnie przemieszczenie do krążenia ogólnego drobnoustrojów oraz ich produktów.
U osób ze zdiagnozowanymi chorobami neurodegeneracyjnymi (choroba Alzheimera, Parkinsona) skład bioty bakteryjnej jelit jest odmienny w porównaniu do osób zdrowych. Wybrane typy bakterii, za pośrednictwem osi jelitowomózgowej, mogą wpływać na procesy zachodzące w mózgu.
Istnieją zależności między składem mikrobioty jelitowej a występowaniem zaburzeń psychicznych i chorób neurodegeneracyjnych u ludzi. Są związane przeważnie z występowaniem dysbiozy jelitowej oraz zespołu nieszczelnego jelita.
Collapse
|
47
|
Morris G, Gamage E, Travica N, Berk M, Jacka FN, O'Neil A, Puri BK, Carvalho AF, Bortolasci CC, Walder K, Marx W. Polyphenols as adjunctive treatments in psychiatric and neurodegenerative disorders: Efficacy, mechanisms of action, and factors influencing inter-individual response. Free Radic Biol Med 2021; 172:101-122. [PMID: 34062263 DOI: 10.1016/j.freeradbiomed.2021.05.036] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/14/2021] [Accepted: 05/26/2021] [Indexed: 02/07/2023]
Abstract
The pathophysiology of psychiatric and neurodegenerative disorders is complex and multifactorial. Polyphenols possess a range of potentially beneficial mechanisms of action that relate to the implicated pathways in psychiatric and neurodegenerative disorders. The aim of this review is to highlight the emerging clinical trial and preclinical efficacy data regarding the role of polyphenols in mental and brain health, elucidate novel mechanisms of action including the gut microbiome and gene expression, and discuss the factors that may be responsible for the mixed clinical results; namely, the role of interindividual differences in treatment response and the potentially pro-oxidant effects of some polyphenols. Further clarification as part of larger, well conducted randomized controlled trials that incorporate precision medicine methods are required to inform clinical efficacy and optimal dosing regimens.
Collapse
Affiliation(s)
- Gerwyn Morris
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Elizabeth Gamage
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Nikolaj Travica
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Michael Berk
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Felice N Jacka
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Adrienne O'Neil
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | | | - Andre F Carvalho
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Chiara C Bortolasci
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Ken Walder
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia
| | - Wolfgang Marx
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, Geelong, Australia.
| |
Collapse
|
48
|
Severance EG, Leister F, Lea A, Yang S, Dickerson F, Yolken RH. Complement C4 associations with altered microbial biomarkers exemplify gene-by-environment interactions in schizophrenia. Schizophr Res 2021; 234:87-93. [PMID: 33632634 PMCID: PMC8373622 DOI: 10.1016/j.schres.2021.02.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/18/2022]
Abstract
Schizophrenia is a complex brain disorder with genetic and environmental factors contributing to its etiology. Complement C4 genes are schizophrenia susceptibility loci and are activated in response to infections and gut microbiome imbalances. We hypothesize that C4 genetic susceptibility predisposes individuals to neuropathological effects from pathogen exposures or a microbiome in dysbiosis. In 214 individuals with schizophrenia and 123 non-psychiatric controls, we examined C4 gene copy number and haplotype groups for associations with schizophrenia and microbial plasma biomarkers. C4A copy number and haplotypes containing HERV-K insertions (C4A-long; C4AL-C4AL) conferred elevated odds ratios for schizophrenia diagnoses (OR 1.58-2.56, p < 0.0001), while C4B-short (C4BS) haplogroups conferred decreased odds (OR 0.43, p < 0.0001). Haplogroup-microbe combinations showed extensive associations with schizophrenia including C4AL with Candida albicans IgG (OR 2.16, p < 0.0005), C4AL-C4BL with cytomegalovirus (CMV) IgG (OR 1.79, p < 0.008), C4BS with lipopolysaccharide-binding protein (LBP) (OR 1.18, p < 0.0001), and C4AL-C4AL with Toxoplasma gondii IgG (OR = 17.67, p < 0.0001). In controls, only one haplogroup-microbe combination was significant: C4BS with CMV IgG (OR 0.52, p < 0.02). In schizophrenia only, LBP and CMV IgG levels were inversely correlated with C4A and C4S copy numbers, respectively (R2 = 0.13-0.16, p < 0.0001). C4 haplogroups were associated with altered scores of cognitive functioning in both cases and controls and with psychiatric symptom scores in schizophrenia. Our findings link complement C4 genes with a susceptibility to infections and a dysbiotic microbiome in schizophrenia. These results support immune system mechanisms by which gene-environmental interactions may be operative in schizophrenia.
Collapse
Affiliation(s)
- Emily G Severance
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Flora Leister
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ashley Lea
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Shuojia Yang
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | | | - Robert H Yolken
- Stanley Division of Developmental Neurovirology, Department of Pediatrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
49
|
Gut microbial changes of patients with psychotic and affective disorders: A systematic review. Schizophr Res 2021; 234:1-10. [PMID: 31952911 DOI: 10.1016/j.schres.2019.12.014] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/12/2022]
Abstract
BACKGROUND Many diverse inflammatory pathophysiologic mechanisms have been linked to mental disorders, and through the past decade an increasing interest in the gut microbiota and its relation to mental health has been arising. We aimed to systematically review studies of alterations in gut microbiota of patients suffering from psychotic disorders, bipolar disorder or depression compared to healthy controls. METHODS We systematically searched the databases CENTRAL, PubMed, EMBASE, PsycINFO and LILACS. Primary outcome was to compare the gut microbiota of patients suffering from psychotic disorders, bipolar disorder or depression with healthy controls. RESULTS We identified 17 studies, covering 744 patients and 620 healthy controls. The most consistent microbiota changes were a tendency towards higher abundance of Actinobacteria and lower abundance of Firmicutes at the phylum level, lower abundance of Lachnospiraceae at family level and lower abundance of Faecalibacterium at genus level for the mental disorders overall. However, we found that all studies had risk of bias and that the included studies displayed great variability in methods of storage, analysis of the fecal samples, reporting of results and statistics used. CONCLUSION Due to the many limitations of the included studies the findings should be interpreted with caution. Larger studies (especially of schizophrenia and major depressive disorder) are needed, but it is also of great importance to gather information of and control for factors that influence the result of a microbiota analysis including body mass index (BMI), smoking, alcohol consumption, diet habits, antibiotics, sample handling, wet laboratory methods and statistics.
Collapse
|
50
|
Kelly JR, Minuto C, Cryan JF, Clarke G, Dinan TG. The role of the gut microbiome in the development of schizophrenia. Schizophr Res 2021; 234:4-23. [PMID: 32336581 DOI: 10.1016/j.schres.2020.02.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 02/22/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
Schizophrenia is a heterogeneous neurodevelopmental disorder involving the convergence of a complex and dynamic bidirectional interaction of genetic expression and the accumulation of prenatal and postnatal environmental risk factors. The development of the neural circuitry underlying social, cognitive and emotional domains requires precise regulation from molecular signalling pathways, especially during critical periods or "windows", when the brain is particularly sensitive to the influence of environmental input signalling. Many of the brain regions involved, and the molecular substrates sub-serving these domains are responsive to life-long microbiota-gut-brain (MGB) axis signalling. This intricate microbial signalling system communicates with the brain via the vagus nerve, immune system, enteric nervous system, enteroendocrine signalling and production of microbial metabolites, such as short-chain fatty acids. Preclinical data has demonstrated that MGB axis signalling influences neurotransmission, neurogenesis, myelination, dendrite formation and blood brain barrier development, and modulates cognitive function and behaviour patterns, such as, social interaction, stress management and locomotor activity. Furthermore, preliminary clinical studies suggest altered gut microbiota profiles in schizophrenia. Unravelling MGB axis signalling in the context of an evolving dimensional framework in schizophrenia may provide a more complete understanding of the neurobiological architecture of this complex condition and offers the possibility of translational interventions.
Collapse
Affiliation(s)
- John R Kelly
- Department of Psychiatry, Trinity College Dublin, Ireland
| | - Chiara Minuto
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland
| | - John F Cryan
- APC Microbiome Ireland, University College Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Ireland
| | - Gerard Clarke
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland
| | - Timothy G Dinan
- Department of Psychiatry and Neurobehavioral Science, University College Cork, Ireland; APC Microbiome Ireland, University College Cork, Ireland.
| |
Collapse
|