1
|
Lafta MS, Sokolov AV, Rukh G, Schiöth HB. Identification and validation of depression-associated genetic variants in the UK Biobank cohort with transcriptome and DNA methylation analyses in independent cohorts. Heliyon 2025; 11:e41865. [PMID: 39897774 PMCID: PMC11787470 DOI: 10.1016/j.heliyon.2025.e41865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 12/21/2024] [Accepted: 01/09/2025] [Indexed: 02/04/2025] Open
Abstract
Depression is one of the most common psychiatric conditions resulting from a complex interaction of genetic, epigenetic and environmental factors. The present study aimed to identify independent genetic variants in the protein-coding genes that associate with depression and to analyze their transcriptomic and methylation profile. Data from the GWAS Catalogue was used to identify independent genetic variants for depression. The identified genetic variants were validated in the UK Biobank cohort and used to calculate a genetic risk score for depression. Data was also used from publicly available cohorts to conduct transcriptome and methylation analyses. Eight SNPs corresponding to six protein-coding genes (TNXB, NCAM1, LTBP3, BTN3A2, DAG1, FHIT) were identified that were highly associated with depression. These validated genetic variants for depression were used to calculate a genetic risk score that showed a significant association with depression (p < 0.05) but not with co-morbid traits. The transcriptome and methylation analyses suggested nominal significance for some gene probes (TNXB- and NCAM1) with depressed phenotype. The present study identified six protein-coding genes associated with depression and primarily involved in inflammation (TNXB), neuroplasticity (NCAM1 and LTBP3), immune response (BTN3A2), cell survival (DAG1) and circadian clock modification (FHIT). Our findings confirmed previous evidence for TNXB- and NCAM1 in the pathophysiology of depression and suggested new potential candidate genes (LTBP3, BTN3A2, DAG1 and FHIT) that warrant further investigation.
Collapse
Affiliation(s)
- Muataz S. Lafta
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Aleksandr V. Sokolov
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Gull Rukh
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| | - Helgi B. Schiöth
- Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden
| |
Collapse
|
2
|
Scotton E, Ziani PR, Wilges RLB, da Rosa Correa PH, Giordano LA, Goularte JF, Schons T, Almeida FB, Stein DJ, de Castro JM, de Bastiani MA, de Oliveira Soares EG, Paixão DB, da Silva CDG, Schneider PH, Colombo R, Rosa AR. Molecular signature underlying (R)-ketamine rapid antidepressant response on anhedonic-like behavior induced by sustained exposure to stress. Pharmacol Biochem Behav 2024; 245:173882. [PMID: 39488299 DOI: 10.1016/j.pbb.2024.173882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/13/2024] [Accepted: 09/19/2024] [Indexed: 11/04/2024]
Abstract
Anhedonia induced by sustained stress exposure is a hallmark symptom of major depressive disorder (MDD) and in rodents, it can be accessed through the sucrose preference test (SPT). (R)-ketamine is a fast-acting antidepressant with less detrimental side effects and abuse liability compared to racemic ketamine. The present study combined high-throughput proteomics and network analysis to identify molecular mechanisms involved in chronic variable stress (CVS)-induced anhedonia and promising targets underlying (R)-ketamine rapid antidepressant response. Male Wistar rats were subjected to CVS for five weeks. Based on the SPT, animals were clustered into resilient or anhedonic-like (ANH) groups. ANH rats received a single dose of saline or (R)-ketamine (20 mg/kg, i.p.), which was proceeded by treatment response evaluation. After prefrontal cortex collection, proteomic analysis was performed to uncover the differentially expressed proteins (DEPs) related to both anhedonic-like behavior and pharmacological response. The behavioral assessment showed that the ANH animals had a significant decrease in SPT, and that (R)-ketamine responders showed a reversal of anhedonic-like behavior. On a molecular level, anhedonia-like behavior was associated with the downregulation of Neuronal Pentraxin Receptor (Nptxr) and Galectin-1 (Gal-1). These data reinforce a disruption in the inflammatory response, neurotransmitter receptor activity, and glutamatergic synapses in chronic stress-induced anhedonia. (R)-ketamine response-associated DEPs included novel potential targets involved in the modulation of oxidative stress, energetic metabolism, synaptogenesis, dendritic arborization, neuroinflammation, gene expression, and telomere length, converging to biological themes extensively documented in MDD physiopathology. Our data provide valuable insights into the molecular mechanisms underlying the response to (R)-ketamine and highlight these pathways as potential therapeutic targets for anhedonia. By addressing proteins involved in oxidative stress, energy metabolism, synaptogenesis, dendritic arborization, neuroinflammation, gene expression, and telomere length, we can target multiple key factors involved in the pathophysiology of MDD. Modulating these proteins could open avenues for novel therapeutic strategies and deepen our understanding of anhedonia, offering hope for improved outcomes in individuals facing this challenging condition. However, additional studies will be essential to validate these findings and further explore their therapeutic implications.
Collapse
Affiliation(s)
- Ellen Scotton
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Paola Rampelotto Ziani
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Renata Luiza Boff Wilges
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Pedro Henrique da Rosa Correa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Lucas Azambuja Giordano
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil
| | - Jéferson Ferraz Goularte
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Tainá Schons
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Felipe Borges Almeida
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Dirson João Stein
- Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil.
| | - Josimar Macedo de Castro
- Laboratory of Pain Pharmacology and Neuromodulation: Preclinical Investigations - Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; School of Medicine and Post-Graduate Program in Medical Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Marco Antônio de Bastiani
- Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | | | - Douglas Bernardo Paixão
- Institute of Chemistry, Laboratory of Molecular Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Caren Daniele Galeano da Silva
- Institute of Chemistry, Laboratory of Molecular Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil
| | - Paulo Henrique Schneider
- Institute of Chemistry, Laboratory of Molecular Catalysis, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| | - Rafael Colombo
- Institute of Biotechnology, University of Caxias do Sul (UCS), Caxias do Sul, RS, Brazil..
| | - Adriane R Rosa
- Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Porto Alegre, RS, Brazil; Department of Pharmacology and Graduate Program in Biological Sciences: Pharmacology and Therapeutics, Institute of Basic Health Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil; Department of Psychiatry and Graduate Program in Psychiatry and Behavioral Sciences, Federal University of Rio Grande do Sul (UFRGS), Porto Alegre, RS, Brazil.
| |
Collapse
|
3
|
Khlidj Y, Haireche MA. Schizophrenia as autoimmune disease: Involvement of Anti-NCAM antibodies. J Psychiatr Res 2023; 161:333-341. [PMID: 37001338 DOI: 10.1016/j.jpsychires.2023.03.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 03/14/2023] [Accepted: 03/22/2023] [Indexed: 05/01/2023]
Abstract
Understanding the etiopathogenesis of schizophrenia has always been an unsolved puzzle for modern medicine. This seems to be due to both disease complexity and lack of sufficient knowledge regarding the biological and non-biological anomalies that exhibit schizophrenia subjects. However, dysregulated immunity is a commonly identified feature in affected individuals. Thus, recently, a hallmark study showed causality relationship between anti-NCAM antibodies and schizophrenia-related behaviors in mice. NCAM plays crucial role in neurodevelopment during early life and neuroplasticity against different stressors during adulthood, and its dysfunction in schizophrenia is increasingly proven. The present review provides the main evidence that support the contribution of autoimmunity and NCAM abnormalities in the development of schizophrenia. Furthermore, it introduces five hypotheses that may explain the mechanism by which anti-NCAM antibodies are produced in the context of schizophrenia: (i) molecular mimicry, (ii) gut dysbiosis, (iii) viral infection, (iv) exposure to environmental pollutants, (v) and NCAM production anomalies.
Collapse
Affiliation(s)
- Yehya Khlidj
- Faculty of Medicine, University of Algiers 1, Algeria.
| | | |
Collapse
|
4
|
Keshri N, Nandeesha H, Rajappa M, Menon V. Relationship Between Neural Cell Adhesion Molecule-1 and Cognitive Functioning in Schizophrenia Spectrum Disorder. Indian J Clin Biochem 2022; 37:494-498. [PMID: 36262784 PMCID: PMC9573831 DOI: 10.1007/s12291-020-00937-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Accepted: 11/18/2020] [Indexed: 12/16/2022]
Abstract
Abnormal synaptic plasticity leads to cognitive impairment in schizophrenia. Markers of synaptic plasticity are known to be altered in schizophrenia, but there are limited data available about neural cell adhesion molecule-1 (NCAM-1) levels and its association with cognitive functions in schizophrenia. The objective of the study was to analyze NCAM-1 levels and its association with various cognitive domains in schizophrenia. One hundred and seventy-six schizophrenia cases and 176 controls were recruited for the study. Serum NCAM-1 levels were analysed in both the groups. Cognitive examination was performed using Addenbrooke cognitive examination-III (ACE-III) and disease severity was assessed using Positive and negative symptoms scale (PANSS). Serum NCAM-1 levels were elevated in schizophrenia cases (p = 0.006) compared to controls. NCAM-1 was positively associated with attention (r = 0.196, p = 0.009), language (r = 0.192, p = 0.011), visuospatial abilities (r = 0.207, p = 0.006) and total ACE-III score (r = 0.189, p = 0.012). We conclude that elevated levels of NCAM-1 are associated with better cognitive functioning in schizophrenia.
Collapse
Affiliation(s)
- Neha Keshri
- Department of Biochemistry and Psychiatry, JIPMER, Puducherry, 605006 India
| | | | - Medha Rajappa
- Department of Biochemistry and Psychiatry, JIPMER, Puducherry, 605006 India
| | - Vikas Menon
- Department of Biochemistry and Psychiatry, JIPMER, Puducherry, 605006 India
| |
Collapse
|
5
|
Shiwaku H, Katayama S, Kondo K, Nakano Y, Tanaka H, Yoshioka Y, Fujita K, Tamaki H, Takebayashi H, Terasaki O, Nagase Y, Nagase T, Kubota T, Ishikawa K, Okazawa H, Takahashi H. Autoantibodies against NCAM1 from patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. Cell Rep Med 2022; 3:100597. [PMID: 35492247 PMCID: PMC9043990 DOI: 10.1016/j.xcrm.2022.100597] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 01/31/2022] [Accepted: 03/14/2022] [Indexed: 12/12/2022]
Abstract
From genetic and etiological studies, autoimmune mechanisms underlying schizophrenia are suspected; however, the details remain unclear. In this study, we describe autoantibodies against neural cell adhesion molecule (NCAM1) in patients with schizophrenia (5.4%, cell-based assay; 6.7%, ELISA) in a Japanese cohort (n = 223). Anti-NCAM1 autoantibody disrupts both NCAM1-NCAM1 and NCAM1-glial cell line-derived neurotrophic factor (GDNF) interactions. Furthermore, the anti-NCAM1 antibody purified from patients with schizophrenia interrupts NCAM1-Fyn interaction and inhibits phosphorylation of FAK, MEK1, and ERK1 when introduced into the cerebrospinal fluid of mice and also reduces the number of spines and synapses in frontal cortex. In addition, it induces schizophrenia-related behavior in mice, including deficient pre-pulse inhibition and cognitive impairment. In conclusion, anti-NCAM1 autoantibodies in patients with schizophrenia cause schizophrenia-related behavior and changes in synapses in mice. These antibodies may be a potential therapeutic target and serve as a biomarker to distinguish a small but treatable subgroup in heterogeneous patients with schizophrenia. Some patients with schizophrenia are positive for anti-NCAM1 autoantibodies Anti-NCAM1 antibody from schizophrenia patients inhibits NCAM1-NCAM1 interactions Anti-NCAM1 antibody from schizophrenia patients reduces spines and synapses in mice Anti-NCAM1 antibody from patients induces schizophrenia-related behavior in mice
Collapse
Affiliation(s)
- Hiroki Shiwaku
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan.
| | - Shingo Katayama
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | - Kanoh Kondo
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yuri Nakano
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | - Hikari Tanaka
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Yuki Yoshioka
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Kyota Fujita
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Haruna Tamaki
- Department of Neurology and Neurological Science, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan
| | | | | | | | | | - Tetsuo Kubota
- Department of Medical Technology, Tsukuba International University, Ibaraki 300-0051, Japan
| | - Kinya Ishikawa
- The Center for Personalized Medicine for Healthy Aging, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hitoshi Okazawa
- Department of Neuropathology, Medical Research Institute and Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo 113-8510, Japan
| | - Hidehiko Takahashi
- Department of Psychiatry and Behavioral Sciences, Tokyo Medical and Dental University Graduate School, Tokyo 113-8510, Japan.
| |
Collapse
|
6
|
Parcerisas A, Ortega-Gascó A, Pujadas L, Soriano E. The Hidden Side of NCAM Family: NCAM2, a Key Cytoskeleton Organization Molecule Regulating Multiple Neural Functions. Int J Mol Sci 2021; 22:10021. [PMID: 34576185 PMCID: PMC8471948 DOI: 10.3390/ijms221810021] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/12/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
Although it has been over 20 years since Neural Cell Adhesion Molecule 2 (NCAM2) was identified as the second member of the NCAM family with a high expression in the nervous system, the knowledge of NCAM2 is still eclipsed by NCAM1. The first studies with NCAM2 focused on the olfactory bulb, where this protein has a key role in axonal projection and axonal/dendritic compartmentalization. In contrast to NCAM1, NCAM2's functions and partners in the brain during development and adulthood have remained largely unknown until not long ago. Recent studies have revealed the importance of NCAM2 in nervous system development. NCAM2 governs neuronal morphogenesis and axodendritic architecture, and controls important neuron-specific processes such as neuronal differentiation, synaptogenesis and memory formation. In the adult brain, NCAM2 is highly expressed in dendritic spines, and it regulates synaptic plasticity and learning processes. NCAM2's functions are related to its ability to adapt to the external inputs of the cell and to modify the cytoskeleton accordingly. Different studies show that NCAM2 interacts with proteins involved in cytoskeleton stability and proteins that regulate calcium influx, which could also modify the cytoskeleton. In this review, we examine the evidence that points to NCAM2 as a crucial cytoskeleton regulation protein during brain development and adulthood. This key function of NCAM2 may offer promising new therapeutic approaches for the treatment of neurodevelopmental diseases and neurodegenerative disorders.
Collapse
Affiliation(s)
- Antoni Parcerisas
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
- Department of Basic Sciences, Universitat Internacional de Catalunya, 08195 Sant Cugat del Vallès, Spain
| | - Alba Ortega-Gascó
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Lluís Pujadas
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| | - Eduardo Soriano
- Department of Cell Biology, Physiology and Immunology, Institute of Neurosciences, University of Barcelona, 08028 Barcelona, Spain; (A.O.-G.); (L.P.)
- Centro de Investigación Biomédica en Red Sobre Enfermedades Neurodegenerativas (CIBERNED), 28031 Madrid, Spain
| |
Collapse
|
7
|
Thorpe HHA, Talhat MA, Khokhar JY. High genes: Genetic underpinnings of cannabis use phenotypes. Prog Neuropsychopharmacol Biol Psychiatry 2021; 106:110164. [PMID: 33152387 DOI: 10.1016/j.pnpbp.2020.110164] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/25/2020] [Accepted: 10/29/2020] [Indexed: 12/19/2022]
Abstract
Cannabis is one of the most widely used substances across the globe and its use has a substantial heritable component. However, the heritability of cannabis use varies according to substance use phenotype, suggesting that a unique profile of gene variants may contribute to the different stages of use, such as age of use onset, lifetime use, cannabis use disorder, and withdrawal and craving during abstinence. Herein, we review a subset of genes identified by candidate gene, family-based linkage, and genome-wide association studies related to these cannabis use phenotypes. We also describe their relationships with other substances, and their functions at the neurobiological, cognitive, and behavioral levels to hypothesize the role of these genes in cannabis use risk. Delineating genetic risk factors in the various stages of cannabis use will provide insight into the biological mechanisms related to cannabis use and highlight points of intervention prior to and following the development of dependence, as well as identify targets to aid drug development for treating problematic cannabis use.
Collapse
Affiliation(s)
- Hayley H A Thorpe
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada
| | | | - Jibran Y Khokhar
- Department of Biomedical Sciences, University of Guelph, Guelph, ON, Canada.
| |
Collapse
|
8
|
Identification of a functional SNP rs7304782 at schizophrenia risk locus 12q24.31 and validation of its association with schiz ophrenia in Chinese populations. Psychiatry Res 2020; 294:113491. [PMID: 33070109 DOI: 10.1016/j.psychres.2020.113491] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Recent genome-wide association studies (GWAS) have identified multiple schizophrenia-associated risk loci. However, the potential functional (or causal) variant remains largely unknown for each of the identified risk locus. In this study, we utilized different functional annotation approaches (i.e., CADD, Eigen, GWAVA, RegulomeDB and LINSIGHT) to prioritize the most possible functional variant at schizophrenia risk locus 12q24.31, a risk locus that showed genome-wide significant association with schizophrenia. We found that four functional annotation methods prioritized rs7304782 as a potential functional variant at 12q24.31, suggesting the potential functional consequence of rs7304782. Consistent with the functional annotation, reporter gene assays showed that different allele of rs7304782 affected the luciferase activity significantly, further supporting that rs7304782 is a functional variant. We further performed genetic association study and validated that rs7304782 is also associated with schizophrenia in Chinese population (N=4,291 cases and 7,847 controls), with the same risk allele as in European population. Expression quantitative trait loci (eQTL) analysis indicated that rs7304782 was significantly associated with the expression of OGFOD2 in human brain tissues. Of note, differential expression analysis indicated that OGFOD2 was significantly down-regulated in schizophrenia cases compared with controls. Our study identified a potential functional variant (i.e., rs7304782) at schizophrenia risk locus 12q24.31 and suggested that this functional variant may confer schizophrenia risk through regulating OGFOD2 expression.
Collapse
|
9
|
An H, Qin J, Fan H, Fan F, Tan S, Wang Z, Shi J, Yang F, Tan Y, Huang XF. Decreased serum NCAM is positively correlated with hippocampal volumes and negatively correlated with positive symptoms in first-episode schizophrenia patients. J Psychiatr Res 2020; 131:108-113. [PMID: 32950707 DOI: 10.1016/j.jpsychires.2020.09.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 09/09/2020] [Accepted: 09/11/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neural cell adhesion molecule (NCAM) plays an important role in neurodevelopmental processes and regulates hippocampal plasticity. This study investigated the relationship between the serum NCAM concentrations and hippocampal volume and psychotic symptoms in first-episode drug naïve schizophrenia (FES) patients. METHODS Forty-four FES patients and forty-four healthy controls (HC) were recruited in this study. Serum concentrations of NCAM were measured by ELISA. Psychiatric symptoms were assessed by the positive and negative syndrome scale (PANSS). Brain structural images were obtained using a 3T MRI Scanner and obtained T1 images were processed in order to determine hippocampal grey matter volumes. RESULTS Schizophrenia patients revealed significantly decreased serum NCAM concentrations (p = 0.017), which were positively correlated with the left (r = 0.523, p < 0.001) and right (r = 0.449, p = 0.041) hippocampal volumes, but negatively correlated with the PANSS positive symptom scores (r = -0.522 p = 0.001). However, no such correlations existed in the HC group. CONCLUSIONS This is the first time to report that decreased serum NCAM concentrations were associated with hippocampal volumes and symptom severity in FES patients. Our data indicate that the low NCAM is possible neuropathology that is associated with the decreased hippocampus in FES patients.
Collapse
Affiliation(s)
- Huimei An
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Jun Qin
- Radiology Department, Civil Aviation General Hospital, Peking University, Beijing, China
| | - Hongzhen Fan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fengmei Fan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Shuping Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Zhiren Wang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Jing Shi
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Fude Yang
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China
| | - Yunlong Tan
- Beijing HuiLongGuan Hospital, Peking University, Beijing, China.
| | - Xu-Feng Huang
- Illawarra Health and Medical Research Institute and School of Medicine, University of Wollongong, NSW, 2522, Australia.
| |
Collapse
|
10
|
Li K, Li Y, Wang J, Huo Y, Huang D, Li S, Liu J, Li X, Liu R, Chen X, Yao YG, Chen C, Xiao X, Li M, Luo XJ. A functional missense variant in ITIH3 affects protein expression and neurodevelopment and confers schizophrenia risk in the Han Chinese population. J Genet Genomics 2020; 47:233-248. [PMID: 32712163 DOI: 10.1016/j.jgg.2020.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 03/30/2020] [Accepted: 04/02/2020] [Indexed: 12/12/2022]
Abstract
The Psychiatric Genomics Consortium (PGC) has recently identified 10 potential functional coding variants for schizophrenia. However, how these coding variants confer schizophrenia risk remains largely unknown. Here, we investigate the associations between eight potential functional coding variants identified by PGC and schizophrenia in a large Han Chinese sample (n = 4022 cases and 9270 controls). Among the eight tested single nucelotide polymorphisms (SNPs), rs3617 (a missense variant, p.K315Q in the ITIH3 gene) showed genome-wide significant association with schizophrenia in the Han Chinese population (P = 8.36 × 10-16), with the same risk allele as in PGC. Interestingly, rs3617 is located in a genomic region that is highly evolutionarily conserved, and its schizophrenia risk allele (C allele) was associated with lower ITIH3 mRNA and protein expression. Intriguingly, mouse neural stem cells stably overexpressing ITIH3 with different alleles of rs3617 exhibited significant differences in proliferation, migration, and differentiation, suggesting the impact of rs3617 on neurodevelopment. Subsequent transcriptome analysis found that the differentially expressed genes in neural stem cells stably overexpressing different alleles of rs3617 were significantly enriched in schizophrenia-related pathways, including cell adhesion, synapse assembly, MAPK and PI3K-AKT pathways. Our study provides convergent lines of evidence suggesting that rs3617 in ITIH3 likely affects protein function and neurodevelopment and thereby confers risk of schizophrenia.
Collapse
Affiliation(s)
- Kaiqin Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yifan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Junyang Wang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Yongxia Huo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Di Huang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Shiwu Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Jiewei Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiaoyan Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Rong Liu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiaogang Chen
- Institute of Mental Health, National Clinical Research Center for Mental Health Disorders and National Technology Institute of Psychiatry, The Second Xiangya Hospital, Central South University, Changsha, 410011, China
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Ceshi Chen
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Xiao Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Ming Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Xiong-Jian Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China; Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China; KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
11
|
Abstract
BACKGROUND Neural cell adhesion molecule (NCAM) is a glycoprotein and plays an important role in cell-cell adhesion, neural migration, neurite outgrowth, synaptic plasticity and brain development. We investigated the relationship between the serum NCAM concentration and cognitive deficit in first episode drug naïve schizophrenia (FES) patients. METHODS Thirty FES patients and thirty healthy controls were recruited for this study. Psychiatric symptoms were assessed by the positive and negative syndrome scale (PANSS). Cognitive functions were assessed by measurement and treatment research to improve cognition in schizophrenia (MATRICS) and consensus cognitive battery (MCCB). Serum levels of NCAM were determined by ELISA. RESULTS Schizophrenia patients had decreased serum NCAM concentrations than controls (-30%, p<0.001). Cognitive scores were significantly lower in FES patients than healthy controls (-34%, p<0.001). The NCAM concentrations were positively correlated with the total scores of MCCB (r=0.438, p=0.003). Multiple regression analysis confirmed that serum NCAM concentration was an independent contributor to MCCB total Scores. CONCLUSIONS There were a close relationship between the serum NCAM concentrations and cognitive deficits in FES patients. Since NCAM has an important role in neurodevelopmental processes, these results support the neurodevelopmental dysfunction hypothesis of schizophrenia and suggest that an altered NCAM may be one of the risk factors for schizophrenia including cognitive deficits.
Collapse
|
12
|
The NCAM1 gene set is linked to depressive symptoms and their brain structural correlates in healthy individuals. J Psychiatr Res 2017; 91:116-123. [PMID: 28334615 DOI: 10.1016/j.jpsychires.2017.03.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 11/21/2022]
Abstract
Depressive symptoms exist on a continuum, the far end of which is found in depressive disorders. Utilizing the continuous spectrum of depressive symptoms may therefore contribute to the understanding of the biological underpinnings of depression. Gene set enrichment analysis (GSEA) is an important tool for the identification of gene groups linked to complex traits, and was applied in the present study on genome-wide association study (GWAS) data of depression scores and their brain-level structural correlates in healthy young individuals. On symptom level (i.e. depression scores), robust enrichment was identified for two gene sets: NCAM1 Interactions and Collagen Formation. Depression scores were also associated with decreased fractional anisotropy (FA) - a brain white matter property - within the forceps minor and the left superior temporal longitudinal fasciculus. Within each of these tracts, mean FA value of depression score-associated voxels was used as a phenotype in a subsequent GSEA. The NCAM1 Interactions gene set was significantly enriched in these tracts. By linking the NCAM1 Interactions gene set to depression scores and their structural brain correlates in healthy participants, the current study contributes to the understanding of the molecular underpinnings of depressive symptomatology.
Collapse
|
13
|
Chang H, Xiao X, Li M. The schizophrenia risk gene ZNF804A: clinical associations, biological mechanisms and neuronal functions. Mol Psychiatry 2017; 22:944-953. [PMID: 28289284 DOI: 10.1038/mp.2017.19] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Revised: 01/02/2017] [Accepted: 01/09/2017] [Indexed: 02/07/2023]
Abstract
ZNF804A (zinc-finger protein 804A) has been recognized as a schizophrenia risk gene across multiple world populations. Its intronic single-nucleotide polymorphism (SNP) rs1344706 is among one of the strongest susceptibility variants that have achieved genome-wide significance in genome-wide association studies (GWAS) for schizophrenia and has been widely and intensively studied. To elucidate the biological mechanisms underlying the genetic risk conferred by rs1344706, we retrospectively analyzed the progresses in brain gene expression quantitative trait loci (eQTL) analyses, ZNF804A-induced pathway alterations in neural cells and changes in synaptic phenotypes associated with ZNF804A expression. Based on these data, we hypothesize a potential biological mechanism for a genetic risk allele of ZNF804A in schizophrenia pathogenesis. We also review the efforts being made to characterize the affected intermediate phenotypes using neuroimaging and neuropsychological approaches. We then discuss additional common and rare ZNF804A variants in schizophrenia susceptibility and the potential genetic heterogeneity of these genomic loci between Europeans and Asians. This review for we believe the first time systematically presents the evidence for ZNF804A, describing its discovery and likely roles in brain development and schizophrenia pathogenesis. We believe that this work has summarized this information with a systemic and broad assessment of recent findings.
Collapse
Affiliation(s)
- H Chang
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - X Xiao
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| | - M Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of The Chinese Academy of Sciences and Yunnan Province, Kunming Institute of Zoology, Kunming, China
| |
Collapse
|
14
|
Neural Cell Adhesion Molecules of the Immunoglobulin Superfamily Regulate Synapse Formation, Maintenance, and Function. Trends Neurosci 2017; 40:295-308. [PMID: 28359630 DOI: 10.1016/j.tins.2017.03.003] [Citation(s) in RCA: 187] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 02/05/2023]
Abstract
Immunoglobulin superfamily adhesion molecules are among the most abundant proteins in vertebrate and invertebrate nervous systems. Prominent family members are the neural cell adhesion molecules NCAM and L1, which were the first to be shown to be essential not only in development but also in synaptic function and as key regulators of synapse formation, synaptic activity, plasticity, and synaptic vesicle recycling at distinct developmental and activity stages. In addition to interacting with each other, adhesion molecules interact with ion channels and cytokine and neurotransmitter receptors. Mutations in their genes are linked to neurological disorders associated with abnormal development and synaptic functioning. This review presents an overview of recent studies on these molecules and their crucial impact on neurological disorders.
Collapse
|
15
|
Reuss B, Asif AR, Almamy A, Schwerk C, Schroten H, Ishikawa H, Drummer C, Behr R. Antisera against Neisseria gonorrhoeae cross-react with specific brain proteins of the common marmoset monkey and other nonhuman primate species. Brain Res 2016; 1653:23-38. [PMID: 27765579 DOI: 10.1016/j.brainres.2016.10.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 10/13/2016] [Accepted: 10/14/2016] [Indexed: 01/01/2023]
Abstract
Prenatal maternal infections with Neisseria gonorrhoeae (NG) correlate with an increased lifetime probability for the offspring to develop psychosis. We could previously demonstrate that in human choroid plexus papilloma cells, anti-NG antibodies (α-NG) bind to mitochondrial proteins HSP60 and ATPB, and interfere with cellular energy metabolism. To assess the in vivo relevance for this, especially during prenatal neural development, we investigated here interactions of NG-specific antisera (α-NG1, α-NG2) with brain, choroid plexus and other non-neural tissues in pre- and perinatal samples of the nonhuman primate (NHP) Callithrix jacchus (CJ), a NHP model for preclinical research. In histological sections at embryonic day E75, immunohistochemistry revealed α-NG1 and -2-staining in choroid plexus, ganglionic hill, optic cup, heart, and liver. Within the cells, organelle-like structures were labeled, which could be identified by immunohistochemical double-labeling as mitochondria. Both one- and two-dimensional Western blot analysis revealed tissue specific patterns of α-NG1 immunoreactive bands and spots, respectively, which were subsequently characterized by mass spectrometry. Thereby we could confirm the interactions of α-NG1 with human HSP60 and ATPB also in CJ choroid plexus and liver. Even more important, in the CJ brain, several new targets, including NCAM1, CRMP2, and SYT1, were identified, which by unrelated studies have been previously suggested to correlate with an increased schizophrenia risk. These findings support the idea that the marmoset monkey is a useful NHP model to investigate the role of maternal bacterial infections during prenatal brain development, and thereby might improve the understanding of this important aspect of schizophrenia pathology.
Collapse
Affiliation(s)
- Bernhard Reuss
- Neuroanatomy, University Medical Center Göttingen, Germany.
| | - Abdul R Asif
- Clinical Chemistry/UMG-Labs, University Medical Center Göttingen, Germany
| | | | - Christian Schwerk
- Pediatric Infectious Diseases Unit, University of Heidelberg at Mannheim, Germany
| | - Horst Schroten
- Pediatric Infectious Diseases Unit, University of Heidelberg at Mannheim, Germany
| | | | - Charis Drummer
- Platform Degenerative Diseases, German Primate Center, Partner Site Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| | - Rüdiger Behr
- Platform Degenerative Diseases, German Primate Center, Partner Site Göttingen, Göttingen, Germany; DZHK (German Center for Cardiovascular Research), Partner Site Göttingen, Göttingen, Germany
| |
Collapse
|
16
|
Rivers C, Idris J, Scott H, Rogers M, Lee YB, Gaunt J, Phylactou L, Curk T, Campbell C, Ule J, Norman M, Uney JB. iCLIP identifies novel roles for SAFB1 in regulating RNA processing and neuronal function. BMC Biol 2015; 13:111. [PMID: 26694817 PMCID: PMC4689037 DOI: 10.1186/s12915-015-0220-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/10/2015] [Indexed: 01/07/2023] Open
Abstract
Background SAFB1 is a RNA binding protein implicated in the regulation of multiple cellular processes such as the regulation of transcription, stress response, DNA repair and RNA processing. To gain further insight into SAFB1 function we used iCLIP and mapped its interaction with RNA on a genome wide level. Results iCLIP analysis found SAFB1 binding was enriched, specifically in exons, ncRNAs, 3’ and 5’ untranslated regions. SAFB1 was found to recognise a purine-rich GAAGA motif with the highest frequency and it is therefore likely to bind core AGA, GAA, or AAG motifs. Confirmatory RT-PCR experiments showed that the expression of coding and non-coding genes with SAFB1 cross-link sites was altered by SAFB1 knockdown. For example, we found that the isoform-specific expression of neural cell adhesion molecule (NCAM1) and ASTN2 was influenced by SAFB1 and that the processing of miR-19a from the miR-17-92 cluster was regulated by SAFB1. These data suggest SAFB1 may influence alternative splicing and, using an NCAM1 minigene, we showed that SAFB1 knockdown altered the expression of two of the three NCAM1 alternative spliced isoforms. However, when the AGA, GAA, and AAG motifs were mutated, SAFB1 knockdown no longer mediated a decrease in the NCAM1 9–10 alternative spliced form. To further investigate the association of SAFB1 with splicing we used exon array analysis and found SAFB1 knockdown mediated the statistically significant up- and downregulation of alternative exons. Further analysis using RNAmotifs to investigate the frequency of association between the motif pairs (AGA followed by AGA, GAA or AAG) and alternative spliced exons found there was a highly significant correlation with downregulated exons. Together, our data suggest SAFB1 will play an important physiological role in the central nervous system regulating synaptic function. We found that SAFB1 regulates dendritic spine density in hippocampal neurons and hence provide empirical evidence supporting this conclusion. Conclusions iCLIP showed that SAFB1 has previously uncharacterised specific RNA binding properties that help coordinate the isoform-specific expression of coding and non-coding genes. These genes regulate splicing, axonal and synaptic function, and are associated with neuropsychiatric disease, suggesting that SAFB1 is an important regulator of key neuronal processes. Electronic supplementary material The online version of this article (doi:10.1186/s12915-015-0220-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Caroline Rivers
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| | - Jalilah Idris
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK. .,Institute of Medical Sciences & Technology, University of Kuala Lumpur, Kuala Lumpur, 43000, Malaysia.
| | - Helen Scott
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| | - Mark Rogers
- Intelligent Systems Laboratory, Department of Engineering & Mathematics, Merchant Venturers Building, University of Bristol, Bristol, BS8 1UB, UK.
| | - Youn-Bok Lee
- MRC Centre for Neurodegeneration Research, King's College London, Institute of Psychiatry, London, UK.
| | - Jessica Gaunt
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| | - Leonidas Phylactou
- Faculty of Computer and Information Science, University of Ljubljana, Trzaska cesta 25, SI-1001, Ljubljana, Slovenia.
| | - Tomaz Curk
- The Cyprus Institute of Neurology & Genetics, PO Box 23462, 1683, Nicosia, Cyprus.
| | - Colin Campbell
- Institute of Medical Sciences & Technology, University of Kuala Lumpur, Kuala Lumpur, 43000, Malaysia.
| | - Jernej Ule
- Department of Molecular Neuroscience, UCL Institute of Neurology, Queen Square, London, WC1N 3BG, UK.
| | - Michael Norman
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| | - James B Uney
- Regenerative Medicine Laboratories, School of Clinical Sciences, Cellular & Molecular Medicine, Medical Sciences Building, University Walk, University of Bristol, Bristol, BS8 1TD, UK.
| |
Collapse
|
17
|
Piras F, Schiff M, Chiapponi C, Bossù P, Mühlenhoff M, Caltagirone C, Gerardy-Schahn R, Hildebrandt H, Spalletta G. Brain structure, cognition and negative symptoms in schizophrenia are associated with serum levels of polysialic acid-modified NCAM. Transl Psychiatry 2015; 5:e658. [PMID: 26460482 PMCID: PMC4930132 DOI: 10.1038/tp.2015.156] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 07/24/2015] [Accepted: 08/19/2015] [Indexed: 12/18/2022] Open
Abstract
The neural cell adhesion molecule (NCAM) is a glycoprotein implicated in cell-cell adhesion, neurite outgrowth and synaptic plasticity. Polysialic acid (polySia) is mainly attached to NCAM (polySia-NCAM) and has an essential role in regulating NCAM-dependent developmental processes that require plasticity, that is, cell migration, axon guidance and synapse formation. Post-mortem and genetic evidence suggests that dysregulation of polySia-NCAM is involved in schizophrenia (SZ). We enrolled 45 patients diagnosed with SZ and 45 healthy individuals who were submitted to polySia-NCAM peripheral quantification, cognitive and psychopathological assessment and structural neuroimaging (brain volumes and diffusion tensor imaging). PolySia-NCAM serum levels were increased in SZ patients, independently of antipsychotic treatment, and were associated with negative symptoms, blunted affect and declarative memory impairment. The increased polySia-NCAM levels were associated with decreased volume in the left prefrontal cortex, namely Brodmann area 46, in patients and increased volume in the same brain area of healthy individuals. As this brain region is involved in the pathophysiology of SZ and its associated phenomenology, the data indicate that polySia-NCAM deserves further scrutiny because of its possible role in early neurodevelopmental mechanisms of the disorder.
Collapse
Affiliation(s)
- F Piras
- Department of Clinical and Behavioral Neurology, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Schiff
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - C Chiapponi
- Department of Clinical and Behavioral Neurology, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - P Bossù
- Department of Clinical and Behavioral Neurology, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy
| | - M Mühlenhoff
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - C Caltagirone
- Department of Clinical and Behavioral Neurology, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy,Department of System Medicine, Tor Vergata University, Rome, Italy
| | - R Gerardy-Schahn
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - H Hildebrandt
- Institute for Cellular Chemistry, Hannover Medical School, Hannover, Germany
| | - G Spalletta
- Department of Clinical and Behavioral Neurology, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Rome, Italy,Division of Neuropsychiatry, Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, TX, USA,Department of Clinical and Behavioral Neurology, Neuropsychiatry Laboratory, IRCCS Santa Lucia Foundation, Via Ardeatina, 306, 00179 Rome, Italy. E-mail:
| |
Collapse
|
18
|
Neprilysin Confers Genetic Susceptibility to Alzheimer's Disease in Han Chinese. Mol Neurobiol 2015; 53:4883-92. [PMID: 26362309 DOI: 10.1007/s12035-015-9411-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2015] [Accepted: 08/26/2015] [Indexed: 02/05/2023]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, with increasing incidence all over the world. Amyloid-β (Aβ) was considered to be the original cause to AD, and many reported pathogenic or risk genes for AD were located in the Aβ generation and degradation pathways. Neprilysin (NEP), insulin-degrading enzyme (IDE), and matrix metalloprotease-9 (MMP-9) are the most important Aβ-degrading proteases. Accumulating genetic evidence suggested that single nucleotide polymorphisms (SNPs) of these genes confer susceptibility to AD in Caucasian populations. In this study, we screened eight SNPs within these three Aβ-degrading protease genes in 1475 individuals of two independent Han Chinese case-control cohorts. SNP rs1816558 of NEP was found to be significantly associated with AD after adjustment for ε4 allele of the apolipoprotein E gene (APOEε4) and the Bonferroni correction. The remaining variants were not associated with risk of AD in Han Chinese sample set. Further data mining revealed that messenger RNA (mRNA) level of NEP substantially increased during the development of AD and was positively correlated with APP expression. The combined results indicated that NEP confers genetic susceptibility to AD in Han Chinese populations.
Collapse
|
19
|
Li X, Zhang W, Lencz T, Darvasi A, Alkelai A, Lerer B, Jiang HY, Zhang DF, Yu L, Xu XF, Li M, Yao YG. Common variants of IRF3 conferring risk of schizophrenia. J Psychiatr Res 2015; 64:67-73. [PMID: 25843157 DOI: 10.1016/j.jpsychires.2015.03.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Revised: 03/12/2015] [Accepted: 03/13/2015] [Indexed: 01/17/2023]
Abstract
Schizophrenia is a brain disorder with high heritability. Recent studies have implicated genes involved in the immune response pathway in the pathogenesis of schizophrenia. Interferon regulatory factor 3 (IRF3), a virus-immune-related gene, activates the transcription of several interferon-induced genes, and functionally interacts with several schizophrenia susceptibility genes. To test whether IRF3 is a schizophrenia susceptibility gene, we analyzed the associations of its SNPs with schizophrenia in independent population samples as well as reported data from expression quantitative trait loci (eQTL) in healthy individuals. We observed multiple independent SNPs in IRF3 showing nominally significant associations with schizophrenia (P < 0.05); more intriguingly, a SNP (rs11880923), which is significantly correlated with IRF3 expression in independent samples (P < 0.05), is also consistently associated with schizophrenia across different cohorts and in combined samples (odds ratio = 1.075, Pmeta = 2.08 × 10(-5)), especially in Caucasians (odds ratio = 1.078, Pmeta = 2.46 × 10(-5)). These results suggested that IRF3 is likely a risk gene for schizophrenia, at least in Caucasians. Although the clinical associations of IRF3 with diagnosis did not achieve genome-wide level of statistical significance, the observed odds ratio is comparable with other susceptibility loci identified through large-scale genetic association studies on schizophrenia, which could be regarded simply as small but detectable effects.
Collapse
Affiliation(s)
- Xiao Li
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Wen Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Todd Lencz
- The Zucker Hillside Hospital, Psychiatry Research, 75-59 263rd Street, Glen Oaks, NY, USA; Feinstein Institute for Medical Research, 350 Community Drive Manhasset, NY, USA
| | - Ariel Darvasi
- Department of Genetics, Institute of Life Sciences, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, Israel
| | - Anna Alkelai
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Bernard Lerer
- Biological Psychiatry Laboratory, Department of Psychiatry, Hadassah - Hebrew University Medical Center, Jerusalem, Israel
| | - Hong-Yan Jiang
- Laboratory for Conservation and Utilization of Bio-resource & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China; Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Deng-feng Zhang
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Li Yu
- Laboratory for Conservation and Utilization of Bio-resource & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, Yunnan, China
| | - Xiu-Feng Xu
- Department of Psychiatry, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Ming Li
- Lieber Institute for Brain Development, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Yong-Gang Yao
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, Yunnan, China; Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, Yunnan, China; CAS Center for Excellence in Brain Science, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|