1
|
Yuan H, Xia J, Liu J, He P. "Love-hate relationships" between antibiotics and marine algae: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 286:107459. [PMID: 40561555 DOI: 10.1016/j.aquatox.2025.107459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 06/03/2025] [Accepted: 06/14/2025] [Indexed: 06/28/2025]
Abstract
Due to the long-term, large-scale, and even abusive use of antibiotics in livestock, and aquaculture, it has led to widespread and low-concentration existence in aquatic environments, resulting in potentially huge ecological risks. We reviewed the studies on the effects of antibiotics on marine primary producers including macroalgae and microalgae in the past three decades, providing an overview of the occurrence and fate of antibiotics, the potential toxicological mechanism on typical algae, and the removal by algae. Owing to the biodiversity and geographical distribution of marine algae, it is feasible to use algae for biodegradation in the future, aiming to reduce the concentration of antibiotics in seawater. Furthermore, it is important to note the necessity of supervision of commercial algae under potential antibiotic stress. This review summarizes the knowledge gap and future prospects of the complex interaction of antibiotics and algae at the theoretical research and application.
Collapse
Affiliation(s)
- Huanqing Yuan
- Institute of Marine Science and Technology, Shandong University, Qingdao, Shandong, 266237, China; College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China
| | - Jing Xia
- School of Oceanography, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Jinlin Liu
- State Key Laboratory of Marine Geology, Tongji University, Shanghai 200092, China; Project Management Office of China National Scientific Seafloor Observatory, Tongji University, Shanghai 200092, China.
| | - Peimin He
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China.
| |
Collapse
|
2
|
Aib H, Parvez MS, Czédli HM. Pharmaceuticals and Microplastics in Aquatic Environments: A Comprehensive Review of Pathways and Distribution, Toxicological and Ecological Effects. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2025; 22:799. [PMID: 40427912 PMCID: PMC12111788 DOI: 10.3390/ijerph22050799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/05/2025] [Accepted: 04/09/2025] [Indexed: 05/29/2025]
Abstract
Pharmaceuticals and microplastics are persistent emerging contaminants that pose significant risks to aquatic ecosystems and ecological health. Although extensively reviewed individually, a comprehensive, integrated assessment of their environmental pathways, bioaccumulation dynamics, and toxicological impacts remains limited. This review synthesizes current research on the environmental fate and impact of pharmaceuticals and microplastics, emphasizing their combined influence on aquatic organisms and ecosystems. This review provides a thorough and comprehensive examination of their predominant pathways, sources, and distribution, highlighting wastewater disposal, agricultural runoff, and atmospheric deposition. Studies indicate that pharmaceuticals, such as antibiotics and painkillers, are detected in concentrations ranging from ng/L to μg/L in surface waters, while MPs are found in densities up to 106 particles/m3 in some marine and freshwater systems. The toxicological effects of these pollutants on aquatic organisms, particularly fish, are discussed, with emphasis on bioaccumulation and biomagnification in the food chain, physiological effects including effects on growth, reproduction, immune system performance, and behavioral changes. The ecological consequences, including disruptions to trophic dynamics and ecosystem stability, are also addressed. Although valuable efforts, mitigation and remediation strategies remain inadequate, and further research is needed because they do not capture the scale and complexity of these hazards. This review highlights the urgent need to advance treatment technologies, establish comprehensive regulatory frameworks, and organize intensive research on long-term ecological impacts to address the environmental threats posed by pharmaceuticals and microplastics.
Collapse
Affiliation(s)
- Haithem Aib
- Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Hydrobiology, University of Debrecen, 4032 Debrecen, Hungary
| | - Md. Sohel Parvez
- Pál Juhász-Nagy Doctoral School of Biology and Environmental Sciences, University of Debrecen, 4032 Debrecen, Hungary;
- Department of Hydrobiology, University of Debrecen, 4032 Debrecen, Hungary
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Herta Mária Czédli
- Department of Civil Engineering, University of Debrecen, 4028 Debrecen, Hungary;
| |
Collapse
|
3
|
Sujetovienė G, Jasas M, Miškelytė D, Dikšaitytė A, Januškaitienė I, Kacienė G, Dagiliūtė R, Žaltauskaitė J. Toxic effects of tetracycline on non-target lichen Evernia prunastri. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2025; 88:395-408. [PMID: 39718831 DOI: 10.1080/15287394.2024.2445081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2024]
Abstract
Tetracycline (TC) antibiotics are one of the class of drugs widely used in clinical practice but also constitute a significant environmental concern. However, the adverse effects of TC on non-target organisms have not been well studied. The aim of this study was to examine the influence of exposure to high levels of TC on thalli of lichens to determine the impact on (1) physiological parameters including integrity of cell membranes, photosynthetic efficiency and viability, (2) oxidative stress response such as membrane lipid peroxidation, and (3) enzymatic antioxidant activities as catalase (CAT), superoxide dismutase (SOD), ascorbate peroxidase (APX), and glutathione reductase (GR). Data demonstrated that exposure to tetracycline did not markedly affect the lichen membrane damage as indicated by no change in conductivity. This antibiotic diminished the potential photosystem II efficiency (FV/FM) indicating enhanced susceptibility as evidenced by lower chlorophyll fluorescence and chlorophyll content. The viability of lichens exposed to high concentrations of tetracycline was significantly reduced. The concentrations of thiobarbituric acid reactive substances were markedly elevated with increasing concentrations of antibiotics. At higher TC concentrations, 500 mg/L SOD activity was significantly elevated. In the case of CAT, APX and GR, TC at higher concentrations significantly decreased these enzymic activities. The findings of this study contribute to the knowledge that TC antibiotics exert adverse ecotoxicological effects on lichens at high concentrations and provided a better understanding of the mechanisms underlying toxicity. Data also indicates that lichens may serve as an effective biomonitoring species for TC antibiotic exposure.
Collapse
Affiliation(s)
- Gintarė Sujetovienė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| | - Martynas Jasas
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| | - Diana Miškelytė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| | - Austra Dikšaitytė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| | - Irena Januškaitienė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| | - Giedrė Kacienė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| | - Renata Dagiliūtė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| | - Jūratė Žaltauskaitė
- Department of Environmental Sciences, Vytautas Magnus University, Kaunas, Akademija, Lithuania
| |
Collapse
|
4
|
Tong Y, Guo J, Li F, Lai KP, Mo J. Antibiotic erythromycin in fish: Pharmacokinetics, effects, and health risks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 373:126203. [PMID: 40187523 DOI: 10.1016/j.envpol.2025.126203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 03/29/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
Erythromycin is a macrolide antibiotic commonly utilized in veterinary medicine and aquaculture. It functions by binding to the 50S subunit of 70S ribosomes, inhibiting protein synthesis and effectively treating numerous bacterial diseases. Due to the extensive use of erythromycin, it has been detected in various aquatic systems in recent years. Multiple studies have reported the occurrence of erythromycin resistance and its adverse effects on diverse aquatic organisms. Consequently, potential environmental health risks associated with erythromycin have garnered increasing attention. As an integral component of aquatic ecosystems, fish have been the subject of numerous reports regarding the bioaccumulation and adverse effects of erythromycin; however, these data have not been collated and interpreted. This report provides a comprehensive overview of the environmental fate of erythromycin, detection methods, pharmacokinetics, and impacts on fish. In addition to the therapeutic benefits against pathogens, acute or chronic exposure of fish to erythromycin at concentrations ranging from μg/L to mg/L disrupts the primary defense, antioxidant, and xenobiotic metabolism systems, leading to oxidative stress, cellular structural damage, and metabolic disorders, manifesting as cytotoxicity, organ toxicity, neurotoxicity, developmental toxicity, and reproductive toxicity. However, further in-depth studies are warranted to evaluate the therapeutic efficacy at relatively high levels, particularly when considering pathogens with developed resistance to erythromycin, as well as the long-term effects of erythromycin exposure at environmentally relevant concentrations in fish, thereby better assessing the health risks posed by erythromycin to fish and their consumers humans.
Collapse
Affiliation(s)
- Yongqi Tong
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China
| | - Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an 710127, China
| | - Feilong Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou, 510006, China
| | - Keng Po Lai
- School of Science and Technology, Hong Kong Metropolitan University, Hong Kong Special Administrative Region of China
| | - Jiezhang Mo
- Guangdong Provincial Key Laboratory of Marine Disaster Prediction and Prevention, Shantou University, Shantou, 515063, China.
| |
Collapse
|
5
|
Yi C, Shang J, Shen Z, Sun Y, Yang Y, Zheng X, Peng Z, Chen J, Liu Y, Guo R, Liao Q. Distribution and risk characteristics of antibiotics in China surface water from 2013 to 2024. CHEMOSPHERE 2025; 375:144197. [PMID: 40010051 DOI: 10.1016/j.chemosphere.2025.144197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 01/22/2025] [Accepted: 02/03/2025] [Indexed: 02/28/2025]
Abstract
The continuous release of large quantities of antibiotics into the aquatic environment has led to widespread water pollution in China. Therefore, this study investigated the antibiotic pollution levels and ecological risks of surface water in seven major Chinese watersheds based on research papers from 2013 to 2024. Measured concentrations and ecotoxicity data of sulfonamides (SAs), tetracyclines (TCs), fluoroquinolones (FQs), and macrolides (MLs) in the aquatic environments of China were collected and compiled. The environmental concentration and distribution characteristics of antibiotics in seven major watersheds were statistically analyzed to carry out the evaluation of multiple ecological risks of antibiotics in watersheds across the country, and at the same time, the traceability analysis of antibiotic pollution in different regions was carried out, which will provide a certain theoretical basis for the precise management of antibiotic pollution in the future. The results showed that the distribution and environmental risks of the four antibiotics in different watersheds varied greatly, with the Yangtze River Basin, the Huanghuai Basin, and the Pearl River Basin being affected by anthropogenic activities, economic development, and other factors, with a wider range of antibiotic sampling sites and higher detection concentrations, and with the Northwestern Basin, the Southwestern Basin, and the Songhua and Liaohe River Basins having an overall lower risk of antibiotics. FQs were detected at high concentrations in all the basins, mostly posing high risk to aquatic environments. SAs were the most frequently detected but had the lowest ecological risk. The results of the more refined risk assessment (joint probability curves, JPCs) were ranked in order of risk, with FQs ≥ TCs > MLs > SAs. These results can be used as a reference for integrated management and sustainability studies on basins across the country.
Collapse
Affiliation(s)
- Ciming Yi
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Jingge Shang
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China; State Environmental Protection Key Laboratory of Aquatic Ecosystem Health in the Middle and Lower Reaches of Yangtze River, Nanjing, 210019, China
| | - Zihao Shen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yali Sun
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Ye Yang
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Xiaolan Zheng
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Zhenggang Peng
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| | - Qianjiahua Liao
- School of Engineering, China Pharmaceutical University, Nanjing, 211198, China.
| |
Collapse
|
6
|
Zhang Y, Li T, Lin Y, Xu D, Jiao H. Physiological effects of sulfadiazine and sulfamethoxazole on Skeletonema costatum and toxicological evaluation using IBR v2 index. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 292:117881. [PMID: 39999626 DOI: 10.1016/j.ecoenv.2025.117881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/20/2024] [Accepted: 02/10/2025] [Indexed: 02/27/2025]
Abstract
Sulfonamide antibiotics, widely used in human and veterinary medicine as well as agriculture, pose environmental concerns due to their stability and poor biodegradability. This study fills a critical gap in understanding the ecological impact of sulfonamide antibiotics on marine microalgae, particularly Skeletonema costatum, a key primary producer in marine ecosystems. This study investigated the biological responses of the marine microalga Skeletonema costatum to sulfadiazine (SD) and sulfamethoxazole (SMX). Both antibiotics significantly impacted S. costatum, with SD having a more pronounced effect. Growth studies showed a clear dose-response relationship: Low concentrations (0.5 mg/L) of SD and SMX stimulated growth, while higher concentrations (3 mg/L, 5 mg/L, and 10 mg/L) inhibited growth. The 96-hour half-maximal inhibitory concentrations (96h-IC50) were 1.654 mg/L and 1.838 mg/L, respectively, initially indicating that SD has a stronger inhibitory effect on S. costatum than SMX. Photosynthetic activity, measured by chlorophyll a content and the maximum quantum yield of photosystem II (Fv/Fm) values, showed that low concentrations (0.5 mg/L) of SD and SMX increased photosynthetic efficiency, while high concentrations (3 mg/L, 5 mg/L, and 10 mg/L) significantly inhibited it. Antioxidants activity analysis revealed that SD and SMX exposure altered superoxide dismutase (SOD), glutathione peroxidase (GSH-Px), glutathione reductase (GR), and malondialdehyde (MDA) levels. SOD, GR, and GSH-Px levels initially increased but later decreased, suggesting a synergistic effect, while MDA levels consistently increased, indicating oxidative stress and biochemical disruption in algal cells. The Integrated Biomarker Response Version 2 (IBRv2) index provided a comprehensive evaluation of the ecological risks posed by SD and SMX, demonstrating that these antibiotics can significantly disrupt the physiology of marine microalgae. The IBRv2 index provided a comprehensive evaluation of the ecological risks posed by SD and SMX, demonstrating that these antibiotics can significantly disrupt the physiology of marine microalgae. Higher IBRv2 values for SD exposure indicated more substantial impacts on S. costatum. This study underscores the significant ecological risks of sulfonamide antibiotics in marine environments, highlighting the need for further research and regulation to mitigate their impact.
Collapse
Affiliation(s)
- Yurong Zhang
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China
| | - Tiejun Li
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan 316100, China
| | - Yuxin Lin
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan 316100, China
| | - Dongdong Xu
- Zhejiang Marine Fisheries Research Institute, Key Lab of Mariculture and Enhancement of Zhejiang Province, Zhoushan 316100, China.
| | - Haifeng Jiao
- College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang 315100, China.
| |
Collapse
|
7
|
Zhang X, Yun X, Huang Y, Shen G, Lin N. Accounting for microorganisms yields stricter water quality criteria and elevated ecological risks of antibiotics: A case study of sulfonamides in the Yangtze River Delta. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117650. [PMID: 39752909 DOI: 10.1016/j.ecoenv.2024.117650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/30/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025]
Abstract
The derivation of water quality criteria (WQC) for antibiotics is influenced by the inclusion of various organisms' toxicity data, including microbial data, though no definitive conclusions have been reached. This study focuses on sulfonamide antibiotics, common in the Yangtze River Delta (YRD), to assess the influences of different organisms' toxicity data on determining WQCs and subsequent evaluation of ecological risks. A total of 263 toxicity data points from eight sulfonamides, including sulfamethoxazole (SMX) and sulfamethazine (SM2), were selected to derive WQCs using Species Sensitivity Distribution (SSD) methods. Three WQC types were calculated: based on native species (WQC-n), a combination of native and non-native species (WQC-nn), and a combination of species and microorganisms (WQC-nnm). While WQC-nn showed minimal differences from WQC-n, the inclusion of microbial data resulted in more conservative short-term WQCs (SWQC-nnm), calculated as 256.90 μg/L for SMX and 196.09 μg/L for SM2, approximately half of SWQC-nn values (435.20 μg/L for SMX and 491.11 μg/L for SM2). Monitoring data from the past 15 years in the YRD revealed a 133 % increase in ecological risks when using LWQC-nnm compared to LWQC-n and LWQC-nn, particularly under the worst-case pollution scenarios. However, there was a slight temporal decline in overall ecological risks. The study concludes that incorporating microbial toxicity data results in more protective WQCs and underscores the need for further research to develop WQCs that safeguard sensitive organisms and better reflect real-world exposure scenarios, e.g., the mixture exposure.
Collapse
Affiliation(s)
- Xinyang Zhang
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Xiao Yun
- China Energy Longyuan Environmental Protection Co., Ltd., Beijing 100039, China; National Engineering Research Center of New Energy Power Generation, North China Electric Power University, Beijing 102206, China
| | - Ye Huang
- Key Laboratory of Geographic Information Science of the Ministry of Education, School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| | - Guofeng Shen
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Nan Lin
- School of Public Health, Shanghai Jiao Tong University, Shanghai 200025, China.
| |
Collapse
|
8
|
Al Borhani W, Rhouati A, Cialla-May D, Popp J, Zourob M. Multiplex electrochemical aptasensor for the simultaneous detection of linomycin and neomycin antibiotics. Talanta 2025; 282:126922. [PMID: 39362040 DOI: 10.1016/j.talanta.2024.126922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 09/15/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
The escalating use of antibiotics across diverse sectors, including human healthcare, agriculture, and livestock, has led to their pervasive presence in the environment, raising concerns about their impact on ecosystems and human health. Traditional detection methods, reliant on high-performance liquid chromatography and immuno-assays, face challenges of complexity, cross-reactivity, and limited specificity. Aptamer-based biosensors offer a promising alternative, leveraging the specificity, stability, and cost-effectiveness of aptamers. Herein, we present a novel dual-screen-printed carbon electrode (SPCE) biosensor, modified with a nanocomposite of gold nanoparticles (AuNPs) and carbon nanofibers (CNFs), for the label-free electrochemical detection of lincomycin and neomycin antibiotics. Lincomycin and neomycin, two antibiotics of environmental concern due to their widespread usage and potential ecological impact, were simultaneously detected using square wave voltammetry. The aptasensors showed high sensitivity with detection limits of 0.02 pg/mL and 0.035 pg/mL for lincomycin and neomycin, respectively. The developed biosensor exhibited high selectivity and reproducibility in detecting both antibiotics. This multiplex biosensing platform offers a promising strategy for efficient and cost-effective monitoring of antibiotic residues in environmental samples, addressing the critical need for robust detection methods in environmental monitoring and public health surveillance.
Collapse
Affiliation(s)
- Wafaa Al Borhani
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia; Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany
| | - Amina Rhouati
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany; Bioengineering Laboratory, Higher National School of Biotechnology, Constantine, Algeria
| | - Dana Cialla-May
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Albert-Einstein-Straße 9, 07745, Jena, Germany; Institute of Physical Chemistry (IPC) and Abbe Center of Photonics (ACP), Friedrich Schiller University Jena, Helmholtzweg 4, 07743, Jena, Germany
| | - Mohammed Zourob
- Department of Chemistry, Alfaisal University, Al Zahrawi Street, Al Maather, Al Takhassusi Road, Riyadh, 11533, Saudi Arabia.
| |
Collapse
|
9
|
Tegegne AA, Mekasha YT, Ayu AA, Hasen G, Suleman S. A review on emerging pharmaceutical residues in Ethiopia: occurrence, ecotoxicological aspects, and regulatory concerns. Front Microbiol 2024; 15:1499487. [PMID: 39760084 PMCID: PMC11695420 DOI: 10.3389/fmicb.2024.1499487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 12/06/2024] [Indexed: 01/07/2025] Open
Abstract
Background Pharmaceuticals are expected to improve human and animal health, but improper management and regulation have led to adverse effects such as reproductive disorders, antibiotic resistance, and biodiversity loss in ecosystems. Their presence in the environment poses significant risks, including a reduction in biodiversity, reproductive issues, and the development of antimicrobial resistance. This review aims to examine the occurrence and sources of pharmaceuticals in the environment and their ecotoxicological and regulatory aspects, with a focus on Ethiopia. Methods A narrative review of relevant studies conducted in Ethiopia was undertaken. The review included findings on the occurrence, sources, contributing factors, ecotoxicological impacts, and regulatory concerns related to pharmaceutical residues in the environment. Literature was sourced from Google Scholar, Scopus, PubMed, and institutional repositories. Result The findings revealed the detection of pharmaceutical residues in wastewater treatment facilities, aquatic environments (e.g., lakes and rivers), and commercially available animal products. Aquatic samples also showed significant concentrations, with sulfamethoxazole and fluconazole detected at 0.15 μg/L and 0.012 μg/L, respectively. Antimicrobial resistance genes were identified in wastewater and treatment plant samples, which correlate with the presence of pharmaceutical residues. An ecological risk assessment based on the risk quotient (RQ) revealed ciprofloxacin as a major concern, with an RQ of 8.58, indicating high ecological risk. Sulfonamides exhibited moderate risk, with RQ values ranging from 0.1 to 1. Conclusion The study highlights the significant presence of pharmaceutical residues in the environment and underscores the inadequacy of regulatory enforcement in addressing this public health issue. Urgent measures are required to prevent environmental contamination and mitigate public health risks, including antimicrobial resistance. Strengthened regulatory measures and proactive interventions by relevant organizations are essential to control and prevent pharmaceutical residues in the environment, offering a critical solution for the country.
Collapse
Affiliation(s)
- Addisu Afrassa Tegegne
- Department of Pharmaceutical Chemistry, School of Pharmacy, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Yesuneh Tefera Mekasha
- Pharmaceutical Sciences, Pharmaceutical Quality Assurance and Regulatory Affairs, University of Gondar, Gondar, Ethiopia
| | - Adugna Abera Ayu
- Department of Industrial Chemistry, College of Natural Science, Arba Minch University, Arba Minch, Ethiopia
| | - Gemmechu Hasen
- Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Jimma University, Jimma, Oromia, Ethiopia
| | - Sultan Suleman
- Jimma University Laboratory of Drug Quality (JuLaDQ) and School of Pharmacy, Jimma University, Jimma, Oromia, Ethiopia
| |
Collapse
|
10
|
Albarano L, Padilla Suarez EG, Maggio C, La Marca A, Iovine R, Lofrano G, Guida M, Vaiano V, Carotenuto M, Libralato G. Assessment of ecological risks posed by veterinary antibiotics in European aquatic environments: A comprehensive review and analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176280. [PMID: 39278491 DOI: 10.1016/j.scitotenv.2024.176280] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
The extensive use of antibiotics in human and veterinary medicine has led to the emergence of antibiotic contaminants in the environment, posing significant risks to ecosystems and public health. This contamination arises from the persistence of antibiotics in aquatic environments, particularly in aquifer systems, where they contribute to the growing threat of antibiotic resistance. Despite increasing research, the understanding of the ecological and human health implications of these contaminants remains incomplete. Since these compounds are only partially removed by conventional wastewater treatment plants (WWTPs), they are continuously released into the environment. Antibiotics enter the environment mainly through human and animal excretions, improper drug disposal, wastewater treatment plants, and waste streams from antibiotic production. Recent research has focused on antibiotic metabolites and transformation products, which can affect aquatic ecosystems and the food chain, posing long-term risks to human health. This critical review provides a comprehensive analysis of the risk assessment of veterinary antibiotics (VAs) in European aquatic environments, where VAs concentrations ranging from micrograms to milligrams per liter. By examining toxicity data from freshwater and saltwater species, the study evaluates acute and chronic effects across different antibiotic classes. The review also assesses the sensitivity of various taxonomic groups and species to different antibiotics, providing insights into potential ecological risks. Species sensitivity distributions and hazard concentrations affecting a given percentage of species are calculated to assess the overall ecological risk. The findings reveal varying proportions of toxicity data across antibiotic classes, with Aminoglycosides, β-lactams, Fluoroquinolones, Macrolides, and Tetracyclines classes demonstrating higher toxicity levels than others towards certain cyanobacteria and chlorophyta species. Macrolides and Fluoroquinolones emerge as particularly concerning due to their high toxicological risks across various aquatic environments. The analysis underscores the urgent need for further research to fill knowledge gaps and develop effective strategies to mitigate the harmful effects of VAs on aquatic ecosystems and human health.
Collapse
Affiliation(s)
- Luisa Albarano
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy.
| | - Edith Guadalupe Padilla Suarez
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Chiara Maggio
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Annamaria La Marca
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Rosalba Iovine
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| | - Giusy Lofrano
- Department of Movement, Human and Health Sciences, University of Rome "Foro Italico", Italy
| | - Marco Guida
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; Centro Servizi Metrologici e Tecnologici Avanzati (CeSMA), Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy; NBFC, National Biodiversity Future Center, Palermo 90133, Italy
| | - Vincenzo Vaiano
- Department of Industrial Engineering, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Maurizio Carotenuto
- Department of Chemistry and Biology, University of Salerno, Via Giovanni Paolo II 132, 84084 Fisciano, SA, Italy
| | - Giovanni Libralato
- Department of Biology, University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia 21, 80126 Naples, Italy
| |
Collapse
|
11
|
Cojoc L, de Castro-Català N, de Guzmán I, González J, Arroita M, Besolí-Mestres N, Cadena I, Freixa A, Gutiérrez O, Larrañaga A, Muñoz I, Elosegi A, Petrovic M, Sabater S. Pollutants in urban runoff: Scientific evidence on toxicity and impacts on freshwater ecosystems. CHEMOSPHERE 2024; 369:143806. [PMID: 39603359 DOI: 10.1016/j.chemosphere.2024.143806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Urban runoff effluents transport multiple pollutants collected from urban surfaces. which ultimately reach freshwater ecosystems. We here collect the existing scientific evidence on the urban runoff impacts on aquatic organisms and ecosystem functions, assessed the potential toxicity of the most common pollutants present in urban runoff, and characterized the ecotoxicological risk for freshwaters. We used the Toxic Units models to estimate the toxicity of individual chemicals to freshwater biota and observed that the highest ecotoxicological risk of urban runoff was associated to metals, polycyclic aromatic hydrocarbons (PAHs) and pesticides and, in a few cases, to phthalates. The potential risk was highest for copper and zinc, as well as for anthracene, fluoranthene, Di(2-ethylhexyl) phthlate (DEHP), imidacloprid, cadmium, mercury, and chromium. These pollutants had contrasting effects on freshwater biological groups, though the risk overall decreased from basal to upper trophic levels. Our analysis evidenced a lack of data on ecotoxicological effects of several pollutants present in urban runoff effluents, caused by lack of toxicity data and by the inadequate representation of biological groups in the ecotoxicological databases. Nevertheless, evidence indicates that urban runoff presents ecotoxicological risk for freshwater biota, which might increase if hydrological patterns become extreme, such as long dry periods and floods. Our study highlights the importance of considering both the acute and chronic toxicity of urban effluent pollutants, as well as recognizing the interplay with other environmental stressors, to design adequate environmental management strategies on urban freshwater ecosystems receiving urban runoff.
Collapse
Affiliation(s)
- Lorena Cojoc
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Núria de Castro-Català
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Ioar de Guzmán
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Julene González
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Maite Arroita
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Neus Besolí-Mestres
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Isabel Cadena
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Anna Freixa
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Oriol Gutiérrez
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Isabel Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Arturo Elosegi
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain; Institut d'Ecologia Aquàtica (IEA), Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.
| |
Collapse
|
12
|
van der Fels-Klerx HJ, van Asselt ED, van Leeuwen SPJ, Dorgelo FO, Hoek-van den Hil EF. Prioritization of chemical food safety hazards in the European feed supply chain. Compr Rev Food Sci Food Saf 2024; 23:e70025. [PMID: 39379291 DOI: 10.1111/1541-4337.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024]
Abstract
Extensive monitoring programs of chemical hazards in the animal feed chain are in place, both organized by public and private organizations. The objective of this review was to prioritize chemical hazards for monitoring in the European animal feed supply chain. A step-wise approach was designed for the prioritization, based on: historical occurrence of the chemicals in animal feed ingredients and animal feeds (in relation to European guidance values or maximum limits in feed); information on transfer of the chemical to edible animal products, and; the extent of human dietary intake of the products and possible adverse human health effects of the chemical. Possible prioritization outcomes were: high (H), medium (M), or low (L) priority for monitoring, or classification not possible (NC) because of limited available data on the transfer of the chemical to edible animal tissues. The selection of chemicals included (with results in parentheses): dioxins and polychlorinated biphenyls (H); brominated flame retardants (H); per- and polyfluorinated alkyl substances (H); the heavy metals arsenic (H) and cadmium (H) as well as lead (M) and mercury (M); aflatoxins (H), ochratoxin A (NC), and other mycotoxins (L); pyrrolizidine alkaloids (H) and other plant toxins (NC); organochlorine pesticides (H) and other pesticides (L); pharmaceutically active substances (M); hormones (NC); polycyclic aromatic hydrocarbons (L), heat-induced processing contaminants (NC), and mineral oils (NC). Results of this study can be used to support risk-based monitoring by food safety authorities and feed-producing companies in Europe.
Collapse
Affiliation(s)
| | - E D van Asselt
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | | - F O Dorgelo
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | |
Collapse
|
13
|
Du J, Huang W, Pan Y, Xu S, Li H, Liu Q. Fluoroquinolone antibiotics in the aquatic environment: environmental distribution, the research status and eco-toxicity. Drug Chem Toxicol 2024; 47:1325-1340. [PMID: 38938015 DOI: 10.1080/01480545.2024.2362890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/22/2024] [Accepted: 05/28/2024] [Indexed: 06/29/2024]
Abstract
The increasing presence of fluoroquinolone (FQ) antibiotics in aquatic environments is a growing concern due to their widespread use, negatively impacting aquatic organisms. This paper provides an overview of the environmental distribution, sources, fate, and both single and mixed toxicity of FQ antibiotics in aquatic environments. It also examines the accumulation of FQ antibiotics in aquatic organisms and their transfer into the human body through the food chain. The study identifies critical factors such as metabolism characteristics, physiochemical characteristics, light, temperature, dissolved oxygen, and environmental compatibility that influence the presence of FQ antibiotics in aquatic environments. Mixed pollutants of FQ antibiotics pose significant risks to the ecological environment. Additionally, the paper critically discusses advanced treatment technologies designed to remove FQ antibiotics from wastewater, focusing on advanced oxidation processes (AOPs) and electrochemical advanced oxidation processes (EAOPs). The discussion also includes the benefits and limitations of these technologies in degrading FQ antibiotics in wastewater treatment plants. The paper concludes by proposing new approaches for regulating and controlling FQ antibiotics to aid in the development of ecological protection measures.
Collapse
Affiliation(s)
- Jia Du
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
- Suzhou Fishseeds Bio-Technology Ltd., Suzhou, China
- Suzhou Health-Originated Bio-technology Ltd., Suzhou, China
| | - Wenfei Huang
- Eco-Environmental Science & Research Institute of Zhejiang Province, Hangzhou, China
| | - Ying Pan
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Shaodan Xu
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Huanxuan Li
- College of Materials and Environmental Engineering, Hangzhou Dianzi University, Hangzhou, China
| | - Qinghua Liu
- Suzhou Fishseeds Bio-Technology Ltd., Suzhou, China
- Suzhou Health-Originated Bio-technology Ltd., Suzhou, China
- Wisdom Lake Academy of Pharmacy, Xi'an Jiaotong-Liverpool University, Suzhou, China
| |
Collapse
|
14
|
Estrada-Almeida AG, Castrejón-Godínez ML, Mussali-Galante P, Tovar-Sánchez E, Rodríguez A. Pharmaceutical Pollutants: Ecotoxicological Impacts and the Use of Agro-Industrial Waste for Their Removal from Aquatic Environments. J Xenobiot 2024; 14:1465-1518. [PMID: 39449423 PMCID: PMC11503348 DOI: 10.3390/jox14040082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/02/2024] [Accepted: 10/13/2024] [Indexed: 10/26/2024] Open
Abstract
Medicines are pharmaceutical substances used to treat, prevent, or relieve symptoms of different diseases in animals and humans. However, their large-scale production and use worldwide cause their release to the environment. Pharmaceutical molecules are currently considered emerging pollutants that enter water bodies due to inadequate management, affecting water quality and generating adverse effects on aquatic organisms. Hence, different alternatives for pharmaceuticals removal from water have been sought; among them, the use of agro-industrial wastes has been proposed, mainly because of its high availability and low cost. This review highlights the adverse ecotoxicological effects related to the presence of different pharmaceuticals on aquatic environments and analyzes 94 investigations, from 2012 to 2024, on the removal of 17 antibiotics, highlighting sulfamethoxazole as the most reported, as well as 6 non-steroidal anti-inflammatory drugs (NSAIDs) such as diclofenac and ibuprofen, and 27 pharmaceutical drugs with different pharmacological activities. The removal of these drugs was evaluated using agro-industrial wastes such as wheat straw, mung bean husk, bagasse, bamboo, olive stones, rice straw, pinewood, rice husk, among others. On average, 60% of the agro-industrial wastes were transformed into biochar to be used as a biosorbents for pharmaceuticals removal. The diversity in experimental conditions among the removal studies makes it difficult to stablish which agro-industrial waste has the greatest removal capacity; therefore, in this review, the drug mass removal rate (DMRR) was calculated, a parameter used with comparative purposes. Almond shell-activated biochar showed the highest removal rate for antibiotics (1940 mg/g·h), while cork powder (CP) (10,420 mg/g·h) showed the highest for NSAIDs. Therefore, scientific evidence demonstrates that agro-industrial waste is a promising alternative for the removal of emerging pollutants such as pharmaceuticals substances.
Collapse
Affiliation(s)
- Ana Gabriela Estrada-Almeida
- Especialidad en Gestión Integral de Residuos, Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - María Luisa Castrejón-Godínez
- Facultad de Ciencias Biológicas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico
| | - Patricia Mussali-Galante
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Efraín Tovar-Sánchez
- Centro de Investigación en Biodiversidad y Conservación, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| | - Alexis Rodríguez
- Centro de Investigación en Biotecnología, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Col. Chamilpa, Cuernavaca C.P. 62209, Mexico;
| |
Collapse
|
15
|
Kuppusamy S, Venkateswarlu K, Megharaj M. Tetracycline and fluoroquinolone antibiotics contamination in agricultural soils fertilized long-term with chicken litter: Trends and ravages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174286. [PMID: 38942301 DOI: 10.1016/j.scitotenv.2024.174286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/20/2024] [Accepted: 06/23/2024] [Indexed: 06/30/2024]
Abstract
We investigated the potential accumulation of tetracyclines (TCs) such as chlortetracycline (CTC), oxytetracycline (OTC) and doxycycline (DC), and fluoroquinolones (FQs) like enrofloxacin (ENR) and ciprofloxacin (CIP) in chicken litter and agricultural soils fertilized over short-term to long-term (<1-30 yrs) with chicken litter in a poultry hub for the first time from Tamil Nadu, India. CTC, OTC, DC, CIP, and ENR were detected in 46-92 % of the selected chicken litter samples, with mean levels ranging from 2.90 to 23.30 μg kg-1. Higher concentrations of TCs and FQs were observed in freshly collected chicken litter from poultry sheds than in those stockpiled in cultivated lands. CTC was the prevalent antibiotic in chicken litter. The overall occurrence, as well as the ecological risks of TCs and FQs, changed over a 30-yr period. The accumulation of veterinary antibiotics (VAs) (in μg kg-1) in short-term (>1 yr) to medium-term (1-3 yrs) chicken litter-fertilized soils reached a maximum of 11.60 for CTC, 6.50 for OTC, 0.80 for DC, 3.70 for CIP, and 3.60 for ENR, but decreased in long-term (10-30 yrs) fertilized soils. Ecological risk assessment revealed a Risk Quotient (RQ) of ≤0.10 for CTC, OTC, and DC in all soils, while an average risk (RQ >0.10-<1.0) was evident with CIP and ENR in short-term and medium-term fertilized soils. Antibiotic resistance genes (ARGs), including tetA, tetB, qnrA, qnrB and qnrS were detected in most of the chicken litter samples and litter-fertilized soils. Thus, it is critical to develop and adopt effective mitigation strategies before applying chicken litter in farmlands to decrease VAs and ARGs, reducing their associated risks to public health and ecosystems in India considering 'One Health' approach. Future investigations on the occurrence of other VAs and ARGs in soils fertilized with poultry litter at regional scale are required for effective risk mitigation of the widely used VAs.
Collapse
Affiliation(s)
- Saranya Kuppusamy
- Centre for Environmental Studies, Department of Civil Engineering, College of Engineering Guindy, Anna University, Chennai 600 025, India.
| | - Kadiyala Venkateswarlu
- Formerly Department of Microbiology, Sri Krishnadevaraya University, Anantapuramu 515 003, India
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, University of Newcastle, Callaghan, NSW 2308, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the Environment (crcCARE), ATC Building, Callaghan, NSW 2308, Australia
| |
Collapse
|
16
|
Saliu F, Becchi A, Montalbetti E, Isa V, Gatti T, Riseri D, Lasagni M, Galli P, Seveso D. Application of marine sponges for biomonitoring active pharmaceutical ingredients (APIs) in coral reefs. Optimization of an SPME and ESI-LC-MS/MS method. MARINE POLLUTION BULLETIN 2024; 207:116867. [PMID: 39182405 DOI: 10.1016/j.marpolbul.2024.116867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 08/14/2024] [Accepted: 08/15/2024] [Indexed: 08/27/2024]
Abstract
Chemical pollution is a threat to coral reefs. To preserve them, it is crucial to monitor novel contaminants and assess the related risks. The occurrence of active pharmaceutical ingredients (APIs) in coral reefs has been poorly investigated until now. Under this light, we tested the use of the marine sponge Cf. Hyrtios as bio-monitors and conducted a pilot study in the Faafu Atoll (Maldives). Analyses were carried out by in vivo solid-phase microextraction (SPME) and liquid chromatography (LC) electrospray ionization (ESI) tandem mass spectrometry (MS/MS). Twelve APIs were selected for method optimization. Limits of quantitation (LOQs) were in the 0.6 and 2.5 ng/g range, accuracy between 86.5 % and 104.7 %, and precision between 3.0 % and 14.9 %. All the sponges located in the inner reefs resulted contaminated with at least one API. Gabapentin and Carbamazepine displayed the highest detection rates, while Ketoprofen had the highest concentration (up to 15.7 ng/g).
Collapse
Affiliation(s)
- Francesco Saliu
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy.
| | - Alessandro Becchi
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Enrico Montalbetti
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| | - Valerio Isa
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives; Costa Edutainment SpA - Acquario di Genova, Area Porto Antico, Ponte Spinola, 16128 Genoa, Italy
| | - Tommaso Gatti
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Davide Riseri
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Marina Lasagni
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Paolo Galli
- University of Dubai, Dubai, P.O. Box 14143, United Arab Emirates
| | - Davide Seveso
- Department of Earth and Environmental Science, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy; MaRHE Center (Marine Research and High Education Center), Magoodhoo Island, Faafu Atoll, Maldives
| |
Collapse
|
17
|
Pawłowska B, Biczak R. Drugs in the environment - Impact on plants: A review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 111:104557. [PMID: 39245245 DOI: 10.1016/j.etap.2024.104557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 08/19/2024] [Accepted: 08/31/2024] [Indexed: 09/10/2024]
Abstract
Medicines, like food, are necessities. Many of the commonly used pharmaceuticals, especially antibiotics and NSAIDs end up in the environment and are detected in it (especially in water) at concentrations in the ng·L-1- μg·L-1 range. Although the concentrations of individual drugs in the environment are low, their high biological activity can cause them to be toxic to the environment. This review analyzes and summarizes the effects of drugs, primarily antibiotics and NSAIDs on photosynthesizing organisms, i.e., algae, aquatic and terrestrial plants. Acute drug toxicity to algae and plants occurs most often at high, often non-existent environmental concentrations, while sublethal effects occur at low drug concentrations. The review also points out the problems associated with ecotoxicological studies and the lack of systemic solutions to better assess the risks associated with the presence of drugs in the environment.
Collapse
Affiliation(s)
- Barbara Pawłowska
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., Częstochowa 42-200, Poland.
| | - Robert Biczak
- Jan Długosz University in Czestochowa, The Faculty of Science and Technology, 13/15 Armii Krajowej Av., Częstochowa 42-200, Poland
| |
Collapse
|
18
|
Hu H, Da X, Li Z, Li T, Zhang X, Bian T, Jin Y, Xu K, Guo Y. Determination and Ecological Risk Assessment of Quinolone Antibiotics in Drinking and Environmental Waters Using Fully Automated Disk-Based SPE Coupled with UPLC-MS/MS. Molecules 2024; 29:4611. [PMID: 39407541 PMCID: PMC11477713 DOI: 10.3390/molecules29194611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/25/2024] [Accepted: 09/26/2024] [Indexed: 10/20/2024] Open
Abstract
Quinolone antibiotics (QNs) contamination in the aquatic environment is a global public health issue considering their resistance and mobility. In this study, a simple, efficient, and sensitive method was developed for the accurate quantification of fifteen QNs in water using automated disk-based solid-phase extraction (SPE) coupled with ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). By utilizing a 3M SDB-XC disk to enrich QNs from a 1000 mL water sample, the detection limits were improved to 0.008-0.055 ng/L due to the satisfactory enrichment factors of 897-1136, but only requiring about 60 min per six samples. The linearity of the method ranged from 0.05 to 100 μg/L for the 15 QNs, with correlation coefficients of 0.9992-0.9999, and the recoveries were in the range of 81-114%, with relative standard deviations of 0.2-13.3% (n = 6). The developed method was applicable for the quantification of trace QNs at low ng/L levels in drinking and environmental waters. The results showed that no QNs were detected in tap water, while three and four QNs were detected in the river water of Zhoushan and the seawater of Daiquyang and Yueqing Bay, East China, respectively, with a total concentration of 1.600-8.511 ng/L and 1.651-16.421 ng/L, respectively. Among the detected QNs, ofloxacin (OFL) was the predominant compound in river water, while enrofloxacin (ENR) was predominant in seawater. The risk quotient (RQ) results revealed that QNs posed a low risk to crustaceans and fish, but a low-to-medium risk to algae, and OFL presented the main ecological risk factor in river water, while ENR and CIP in seawater. Overall, the proposed automated disk-based SPE-UPLC-MS/MS method is highly efficient and sensitive, making it suitable for routine analysis of QNs in drinking and environmental waters.
Collapse
Affiliation(s)
- Hongmei Hu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| | - Xingyu Da
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| | - Zhenhua Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| | - Tiejun Li
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| | - Xiaoning Zhang
- State Key Laboratory of Resource Insects, College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
| | - Tianbin Bian
- Hangzhou Center for Disease Control and Prevention, Hangzhou 310021, China
| | - Yanjian Jin
- Zhejiang Marine Ecology and Environment Monitoring Center, Zhoushan 316021, China
| | - Kaida Xu
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| | - Yuanming Guo
- Key Laboratory of Sustainable Utilization of Technology Research for Fisheries Resources of Zhejiang Province, Zhejiang Marine Fisheries Research Institute, Zhoushan 316021, China; (H.H.)
| |
Collapse
|
19
|
Liu Y, Zhang M, Wu Y, Li S, Hu J, Sun W, Ni J. Profiles, drivers, and prioritization of antibiotics in China's major rivers. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135399. [PMID: 39096643 DOI: 10.1016/j.jhazmat.2024.135399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 06/28/2024] [Accepted: 07/31/2024] [Indexed: 08/05/2024]
Abstract
Through a systematic review of literature references from 2007 to 2022, we compiled a comprehensive national dataset comprising over 67,000 records and covering information on 129 antibiotics detected in the surface water and sediments of China's major rivers. Our analysis revealed notably high antibiotic concentrations in the Liaohe and Yellow Rivers. Among the antibiotics examined, sulfonamides, quinolones, and tetracyclines exhibited relatively high median concentrations in river water. Regional distribution analysis highlighted increased antibiotic levels in Shandong and Tianjin compared to other areas. Partial least squares path modeling revealed that animal production and pollution discharge positively influenced antibiotic levels in river water, whereas natural and socioeconomic factors had negative impacts. Based on the ecological risk assessment, we formulated a prioritized national list of antibiotics, with sulfonamides having the largest number of entries, followed by quinolones. Importantly, our analysis revealed a declining trend in antibiotic concentrations and the associated risk levels across China during the study period. This study not only enhances our understanding of antibiotic distribution in China's water systems, but also contributes to the development of a scientifically sound approach for prioritizing antibiotics. Ultimately, these findings will inform targeted antibiotic management and control strategies. ENVIRONMENTAL IMPLICATION: Antibiotics, posing threats to ecosystems and human health, exhibit pseudo-persistence in the environment. we compiled a national dataset of over 67,000 records on antibiotics, our study scrutinized antibiotic distribution in China's major river water and sediment. Through this analysis, we identified key factors influencing distribution patterns and crafted a national priority ranking for antibiotics. These findings deepen our understanding of antibiotic presence and contribute to the development of targeted management strategies aimed at minimizing environmental impact.
Collapse
Affiliation(s)
- Yi Liu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Meng Zhang
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yang Wu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jingrun Hu
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Weiling Sun
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China.
| | - Jinren Ni
- Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| |
Collapse
|
20
|
Sun P, Tan Y, Zhu Z, Yang T, Thevarajan S, Zhang L. Occurrence, Source Apportionment, and Risk Assessment of Antibiotics in Mangrove Sediments from the Lianzhou Bay, China. Antibiotics (Basel) 2024; 13:820. [PMID: 39334994 PMCID: PMC11429403 DOI: 10.3390/antibiotics13090820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/20/2024] [Accepted: 08/26/2024] [Indexed: 09/30/2024] Open
Abstract
In recent years, the widespread application of antibiotics has raised global concerns, posing a severe threat to ecological health. In this study, the occurrence, source, and ecological risks of 39 antibiotics belonging to 5 classes in mangrove sediments from Lianzhou Bay, China, were assessed. The total concentrations of the antibiotics (∑39 antibiotics) ranged from 65.45 to 202.24 ng/g dry weight (dw), with an average of 142.73 ± 36.76 ng/g dw. The concentrations of these five classes of antibiotics were as follows: Sulfonamides (SAs) > Tetracyclines (TCs) > Fluoroquinolones (QUs) > Penicillin (PCs) > Macrolides (MLs). The spatial distribution of antibiotics varied as high tidal zone > middle tidal zone > low tidal zone. The total organic carbon (TOC), pH, nitrate (NO3--N), and nitrite (NO2--N) of the sediment significantly influenced the distribution of antibiotics (p < 0.05). A source analysis identified untreated sewage from aquaculture as the primary source of antibiotics in the local mangrove. A risk assessment revealed that ciprofloxacin, norfloxacin, ofloxacin of QUs, and tetracycline of TCs exhibited medium risks to algae in certain sampling sites, while other antibiotics exhibited low or no risks to all organisms. Nevertheless, the total risk of all the detected antibiotics to algae was medium in 95% of the sites. The overall ecological risk level of antibiotics in the middle tidal zone was slightly lower than in the high tidal zone and the lowest in the low tidal zone. In summary, the experimental results provided insights into the fate and transport behaviors of antibiotics in mangrove sediments from Lianzhou Bay.
Collapse
Affiliation(s)
- Pengfei Sun
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Yongyu Tan
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Zuhao Zhu
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Tinglong Yang
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| | - Shalini Thevarajan
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Li Zhang
- Guangxi Beibu Gulf Key Laboratory of Marine Resources, Environment and Sustainable Development, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
- Key Laboratory of Tropical Marine Ecosystem and Bioresource, Fourth Institute of Oceanography, Ministry of Natural Resources, Beihai 536000, China
| |
Collapse
|
21
|
Diogo BS, Rodrigues S, Golovko O, Antunes SC. From bacteria to fish: ecotoxicological insights into sulfamethoxazole and trimethoprim. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52233-52252. [PMID: 39138731 PMCID: PMC11374860 DOI: 10.1007/s11356-024-34659-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 08/04/2024] [Indexed: 08/15/2024]
Abstract
Sulfamethoxazole (SMX) and trimethoprim (TRIM) are two of the most used antibiotics in the last 50 years, to prevent and treat bacterial infections; however, the available literature about toxicity to non-target organisms is quite discrepant and incomplete. This study aims to assess the SMX and TRIM ecotoxicological effects in standard species: Aliivibrio fischeri (bioluminescence inhibition), Escherichia coli ATCC 25922 (growth inhibition), Lemna minor (growth inhibition and biochemical biomarkers), Daphnia magna (immobilization/mortality, life history traits, and biochemical biomarkers), and Danio rerio (survival, hatching, abnormalities, and biochemical biomarkers). The species tested showed different acute sensitivities to SMX (A. fischeri < D. magna < E. coli < L. minor) and TRIM (L. minor < A. fischeri < D. magna < E. coli). Overall, TRIM reveals less toxicity than SMX, except for E. coli (Ecotoxicological approach based on Antimicrobial Susceptibility Testing - EcoAST procedure). Both antibiotics affect individually (e.g., growth and survival) and sub-individually (e.g., antioxidant defenses) L. minor, D. magna, and D. rerio. This study allowed us to generate relevant data and fill gaps in the literature regarding the effects of SMX and TRIM in aquatic organisms. The here-obtained results can be used to (i) complete and re-evaluate the Safety Data Sheet to improve the assessment of environmental safety and management of national and international entities; (ii) clarify the environmental risks of these antibiotics in aquatic ecosystems reinforcing the inclusion in the 4th Watch List of priority substances to be monitored in whole inland waters by the Water Framework Directive; and (iii) combat the development of antimicrobial resistance, as well as supporting the definition of environmental measurements in the context of European One Health Action Plan. However, it is essential to continue studying these antibiotics to better understand their toxicity at ecologically relevant concentrations and their long-term effects under different climatic change scenarios.
Collapse
Affiliation(s)
- Bárbara S Diogo
- ICBAS, Instituto de Ciências Biomédicas de Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Sara Rodrigues
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal
| | - Oksana Golovko
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences (SLU), 75007, Uppsala, Sweden
| | - Sara C Antunes
- CIMAR/CIIMAR, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208, Matosinhos, Portugal.
- FCUP, Departamento de Biologia, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre S/N, 4169-007, Porto, Portugal.
| |
Collapse
|
22
|
Li Y, Zhao Z, Zhang D, Li B, Yin P. Contamination status, source analysis and exposure assessments of quinolone antibiotics in the south of Yancheng Coastal Wetland, China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:310. [PMID: 39001928 DOI: 10.1007/s10653-024-02095-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/24/2024] [Indexed: 07/15/2024]
Abstract
Yancheng coastal wetland, the largest coastal wetland in the west coast of the Pacific Ocean and the margin of the Asian continent, has significant environmental, economic and social effects on local human beings. The extensive contamination and potential risk of quinolone antibiotics (QNs) on local aquaculture and human health are still not clear until now. In this study, 52 surface sediment samples were collected to investigate the contamination status and polluted sources, and evaluate ecological risks of QNs in the south of Yancheng coastal wetland. The total contents of QNs ranged from 0.33 to 21.60 ng/g dw (mean value of 4.51 ng/g dw), following the detection frequencies of QNs ranging from 19.23 to 94.23%. The highest content of QNs occurred around an aquaculture pond dominated by flumequine. The total organic carbon contents of sediment were positively correlated with sarafloxacin and lomefloxacin (p < 0.05), indicating the enhanced absorption of these QNs onto sediments. Partial QNs, such as lomefloxacin, enrofloxacin, sarafloxacin and flumequine, presented the homology features originating from the emission of medical treatment and aquaculture. There was no potential risk of QNs to human beings but a potential risk to aquatic organisms (algae > plant > invertebrate). Totally, the management and protection of Yancheng coastal wetland should be of concern with aquaculture as the important industry.
Collapse
Affiliation(s)
- Yaru Li
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zongshan Zhao
- College of Environmental Science and Engineering, Qingdao University, Qingdao, 266071, China.
| | - Daolai Zhang
- Qingdao Institute of Marine Geology, Qingdao, 266071, China.
| | - Biying Li
- Qingdao Institute of Marine Geology, Qingdao, 266071, China
| | - Ping Yin
- Qingdao Institute of Marine Geology, Qingdao, 266071, China
| |
Collapse
|
23
|
Domínguez-García P, Fernández-Ruano L, Báguena J, Cuadros J, Gómez-Canela C. Assessing the pharmaceutical residues as hotspots of the main rivers of Catalonia, Spain. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:44080-44095. [PMID: 38926308 PMCID: PMC11502600 DOI: 10.1007/s11356-024-33967-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024]
Abstract
The global increase in pharmaceutical consumption, driven by factors such as aging populations and chronic diseases, has raised concerns regarding the environmental impact of pharmaceutical contaminants. Europe, and more specifically Catalonia (Spain), exhibits high pharmaceutical consumption rates, potentially exacerbating environmental contamination. Pharmaceuticals enter rivers through various pathways, persisting after wastewater treatment plants and posing risks to aquatic organisms and human health. Llobregat and Besòs Rivers in Catalonia, crucial water sources, demonstrate detectable pharmaceutical levels, necessitating comprehensive analysis. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) proves effective in detecting pharmaceutical residues, facilitating their risk assessment. This paper reviews the occurrence, fate, and risks associated with 78 pharmaceuticals and metabolite in Llobregat and Besòs Rivers, using LC-MS/MS for analysis. Understanding pharmaceutical impacts on Catalonian River ecosystems is essential for developing mitigation strategies.
Collapse
Affiliation(s)
- Pol Domínguez-García
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Laura Fernández-Ruano
- Department of Quantitative Methods, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Judith Báguena
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Jordi Cuadros
- Department of Quantitative Methods, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, Via Augusta 390, 08017, Barcelona, Spain.
| |
Collapse
|
24
|
Pauletto M, De Liguoro M. A Review on Fluoroquinolones' Toxicity to Freshwater Organisms and a Risk Assessment. J Xenobiot 2024; 14:717-752. [PMID: 38921651 PMCID: PMC11205205 DOI: 10.3390/jox14020042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 05/21/2024] [Accepted: 05/28/2024] [Indexed: 06/27/2024] Open
Abstract
Fluoroquinolones (FQs) have achieved significant success in both human and veterinary medicine. However, regulatory authorities have recommended limiting their use, firstly because they can have disabling side effects; secondly, because of the need to limit the spread of antibiotic resistance. This review addresses another concerning consequence of the excessive use of FQs: the freshwater environments contamination and the impact on non-target organisms. Here, an overview of the highest concentrations found in Europe, Asia, and the USA is provided, the sensitivity of various taxa is presented through a comparison of the lowest EC50s from about a hundred acute toxicity tests, and primary mechanisms of FQ toxicity are described. A risk assessment is conducted based on the estimation of the Predicted No Effect Concentration (PNEC). This is calculated traditionally and, in a more contemporary manner, by constructing a normalized Species Sensitivity Distribution curve. The lowest individual HC5 (6.52 µg L-1) was obtained for levofloxacin, followed by ciprofloxacin (7.51 µg L-1), sarafloxacin and clinafloxacin (12.23 µg L-1), and ofloxacin (17.12 µg L-1). By comparing the calculated PNEC with detected concentrations, it is evident that the risk cannot be denied: the potential impact of FQs on freshwater ecosystems is a further reason to minimize their use.
Collapse
Affiliation(s)
| | - Marco De Liguoro
- Department of Comparative Biomedicine & Food Science (BCA), University of Padova, Viale dell’Università 16, I-35020 Legnaro, Padova, Italy;
| |
Collapse
|
25
|
André C, Auclair J, Gagné F. Acute exposure and biomarkers assessment in rainbow trout exposed to selected pharmaceuticals. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2024; 108:104472. [PMID: 38763437 DOI: 10.1016/j.etap.2024.104472] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 05/15/2024] [Indexed: 05/21/2024]
Abstract
Pharmaceuticals released from municipal effluents discharges pose a risk to aquatic organisms. The toxicity of 5 pharmaceuticals with distinct therapeutic actions were assessed in rainbow trout: olanzapine (antipsychotic), erythromycin (antibiotic), mycophenoate (immunosuppression), pinaverium (anti-inflammatory) and trazodone (sedative). Juveniles were exposed to these drugs for 96 h at concentrations between 64 µg/L up to 40 mg/L to reach lethality. Survival was determined and a suite of biomarkers was analyzed for drug biotransformation, oxidative stress/damage and metabolic activity at sublethal concentrations. The data revealed the following toxicity: olanzapine >trazodone>mycophenolate>pinaverium∼erythromycin based on mortality. The data also revealed that toxicity was associated to mass, pKa and hydrophobicity and the following sublethal effects: GST, LPO and DNA strand breaks. Pharmaceuticals with lower molecular weight, physiological pKa, moderate hydrophobicity, low biotransformation and DNA strand breaks were generally more toxic to fish. However, this should be considered as a general guide in identifying toxic pharmaceuticals in non-target organisms.
Collapse
Affiliation(s)
- C André
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec H2Y 2E7, Canada
| | - J Auclair
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec H2Y 2E7, Canada
| | - F Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, Montréal, Québec H2Y 2E7, Canada.
| |
Collapse
|
26
|
Johnson MTJ, Arif I, Marchetti F, Munshi-South J, Ness RW, Szulkin M, Verrelli BC, Yauk CL, Anstett DN, Booth W, Caizergues AE, Carlen EJ, Dant A, González J, Lagos CG, Oman M, Phifer-Rixey M, Rennison DJ, Rosenberg MS, Winchell KM. Effects of urban-induced mutations on ecology, evolution and health. Nat Ecol Evol 2024; 8:1074-1086. [PMID: 38641700 DOI: 10.1038/s41559-024-02401-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 03/13/2024] [Indexed: 04/21/2024]
Abstract
Increasing evidence suggests that urbanization is associated with higher mutation rates, which can affect the health and evolution of organisms that inhabit cities. Elevated pollution levels in urban areas can induce DNA damage, leading to de novo mutations. Studies on mutations induced by urban pollution are most prevalent in humans and microorganisms, whereas studies of non-human eukaryotes are rare, even though increased mutation rates have the potential to affect organisms and their populations in contemporary time. Our Perspective explores how higher mutation rates in urban environments could impact the fitness, ecology and evolution of populations. Most mutations will be neutral or deleterious, and higher mutation rates associated with elevated pollution in urban populations can increase the risk of cancer in humans and potentially other species. We highlight the potential for urban-driven increased deleterious mutational loads in some organisms, which could lead to a decline in population growth of a wide diversity of organisms. Although beneficial mutations are expected to be rare, we argue that higher mutation rates in urban areas could influence adaptive evolution, especially in organisms with short generation times. Finally, we explore avenues for future research to better understand the effects of urban-induced mutations on the fitness, ecology and evolution of city-dwelling organisms.
Collapse
Affiliation(s)
- Marc T J Johnson
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada.
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada.
| | - Irtaqa Arif
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Francesco Marchetti
- Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Jason Munshi-South
- Department of Biology and Louis Calder Center, Fordham University, Armonk, NY, USA
| | - Rob W Ness
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Marta Szulkin
- Institute of Evolutionary Biology, Faculty of Biology, Biological and Chemical Research Centre, University of Warsaw, Warsaw, Poland
| | - Brian C Verrelli
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Carole L Yauk
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Daniel N Anstett
- Department of Plant Biology, Department of Entomology, Plant Resilience Institute, Michigan State University, East Lansing, MI, USA
| | - Warren Booth
- Department of Entomology, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| | - Aude E Caizergues
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | - Elizabeth J Carlen
- Living Earth Collaborative, Washington University in St. Louis, St. Louis, MO, USA
| | - Anthony Dant
- Department of Ecology and Evolutionary Biology, University of Arizona, Tucson, AZ, USA
| | - Josefa González
- Institute of Evolutionary Biology, CSIC, UPF, Barcelona, Spain
| | - César González Lagos
- Departamento de Ciencias, Facultad de Artes Liberales, Universidad Adolfo Ibáñez, Santiago, Chile
- Center of Applied Ecology and Sustainability (CAPES), Santiago, Chile
| | - Madeleine Oman
- Centre for Urban Environments, University of Toronto Mississauga, Mississauga, Ontario, Canada
- Department of Biology, University of Toronto Mississauga, Mississauga, Ontario, Canada
| | | | - Diana J Rennison
- School of Biological Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Michael S Rosenberg
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | | |
Collapse
|
27
|
Sandré F, Moilleron R, Morin C, Garrigue-Antar L. Comprehensive analysis of a widely pharmaceutical, furosemide, and its degradation products in aquatic systems: Occurrence, fate, and ecotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123799. [PMID: 38527585 DOI: 10.1016/j.envpol.2024.123799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 03/27/2024]
Abstract
Many pharmaceutical compounds end up in the environment due to incomplete removal by wastewater treatment plants (WWTPs). Some compounds are sometimes present in significant concentrations and therefore represent a risk to the aquatic environment. Furosemide is one of the most widely used drugs in the world. Considered as an essential drug by the World Health Organization, this powerful loop diuretic is used extensively to treat hypertension, heart and kidney failure and many other purposes. However, this important consumption also results in a significant release of furosemide in wastewater and in the receiving environment where concentrations of a few hundred ng/L to several thousand have been found in the literature, making furosemide a compound of great concern. Also, during its transport in wastewater systems and WWTPs, furosemide can be degraded by various processes resulting in the production of more than 74 by-products. Furosemide may therefore present a significant risk to ecosystem health due not only to its direct cytotoxic, genotoxic and hepatotoxic effects in animals, but also indirectly through its transformation products, which are poorly characterized. Many articles classify furosemide as a priority pollutant according to its occurrence in the environment, its persistence, its elimination by WWTPs, its toxicity and ecotoxicity. Here, we present a state-of-the-art review of this emerging pollutant of interest, tracking it, from its consumption to its fate in the aquatic environment. Discussion points include the occurrence of furosemide in various matrices, the efficiency of many processes for the degradation of furosemide, the subsequent production of degradation products following these treatments, as well as their toxicity.
Collapse
Affiliation(s)
- Fidji Sandré
- Leesu, Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France
| | - Régis Moilleron
- Leesu, Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France
| | - Christophe Morin
- Leesu, Univ Paris Est Creteil, Ecole des Ponts, Creteil, F-94010, France; IUT - Sénart Fontainebleau, 36 Rue Georges Charpak, 77567, Lieusaint, France
| | | |
Collapse
|
28
|
Pino-Otín MR, Valenzuela A, Gan C, Lorca G, Ferrando N, Langa E, Ballestero D. Ecotoxicity of five veterinary antibiotics on indicator organisms and water and soil communities. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 274:116185. [PMID: 38489906 DOI: 10.1016/j.ecoenv.2024.116185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/15/2024] [Accepted: 03/05/2024] [Indexed: 03/17/2024]
Abstract
This study explores the environmental effects of five common veterinary antibiotics widely detected in the environment, (chlortetracycline,CTC; oxytetracycline,OTC; florfenicol,FF; neomycin, NMC; and sulfadiazine, SDZ) on four bioindicators: Daphnia magna, Vibrio fischeri, Eisenia fetida, and Allium cepa, representing aquatic and soil environments. Additionally, microbial communities characterized through 16 S rRNA gene sequencing from a river and natural soil were exposed to the antibiotics to assess changes in population growth and metabolic profiles using Biolog EcoPlates™. Tetracyclines are harmful to Vibrio fisheri (LC50 ranges of 15-25 µg/mL), and the other three antibiotics seem to only affect D. magna, especially, SDZ. None of the antibiotics produced mortality in E. fetida at concentrations below 1000 mg/kg. NMC and CTC had the highest phytotoxicities in A. cepa (LC50 = 97-174 µg/mL, respectively). Antibiotics significantly reduced bacterial metabolism at 0.1-10 µg/mL. From the highest to the lowest toxicity on aquatic communities: OTC > FF > SDZ ≈ CTC > NMC and on edaphic communities: CTC ≈ OTC > FF > SDZ > NMC. In river communities, OTC and FF caused substantial decreases in bacterial metabolism at low concentrations (0.1 µg/mL), impacting carbohydrates, amino acids (OTC), and polymers (FF). At 10 µg/mL and above, OTC, CTC, and FF significantly decreased metabolizing all tested metabolites. In soil communities, a more pronounced decrease in metabolizing ability, detectable at 0.1 µg/mL, particularly affected amines/amides and carboxylic and ketonic acids (p < 0.05). These new ecotoxicity findings underscore that the concentrations of these antibiotics in the environment can significantly impact both aquatic and terrestrial ecosystems.
Collapse
Affiliation(s)
| | | | - Cristina Gan
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Guillermo Lorca
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Natalia Ferrando
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Elisa Langa
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| | - Diego Ballestero
- Universidad San Jorge, Villanueva de Gállego, Zaragoza 50830, Spain.
| |
Collapse
|
29
|
Han M, Xie P, Ren N, Ho SH. Cytoprotective alginate microcapsule serves as a shield for microalgal encapsulation defensing sulfamethoxazole threats and safeguarding nutrient recovery. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133454. [PMID: 38198867 DOI: 10.1016/j.jhazmat.2024.133454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/13/2023] [Accepted: 01/03/2024] [Indexed: 01/12/2024]
Abstract
Microalgal encapsulation technology is expected to broaden more possibilities for employing microalgae for upgrading conventional biological wastewater treatment. However, only limited and fragmented information is currently available on microalgal encapsulation and pollutant removal. It is ambiguous whether it hold potential for wastewater treatment. Particularly, it remains to be determined whether this technology can provide more possibilities in harsh sewage environments. Here, potential of encapsulated technology to recover nutrients from wastewater was examined, simultaneously compared with commonly adopted suspended system. Results indicate the encapsulated microalgal system showed outstanding advantages in nutrient recovery and defense against antibiotic threats. Moreover, by examining the cellular oxidative stress response and changes of the photosynthetic system, the encapsulated system exhibited potential cytoprotective advantages to microalgal cells for defensing antibiotic threats. Molecular dynamics simulation revealed that the differences among superficial aggregation between the nutrients' ions and molecular sulfamethoxazole on the cross-linked alginate microcapsule surface dominated the nutrient recovery and cytoprotective functions. Ultimately, the molecular nature of pollutants was found to be the most critical aspect for predicting application of this microalgal microcapsule. Cytoprotective systems created with alginate microcapsules can potentially handle more diverse threats with a single type of surface charge in their outermost layer.
Collapse
Affiliation(s)
- Meina Han
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Peng Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, PR China.
| |
Collapse
|
30
|
Madhogaria B, Banerjee S, Kundu A, Dhak P. Efficacy of new generation biosorbents for the sustainable treatment of antibiotic residues and antibiotic resistance genes from polluted waste effluent. INFECTIOUS MEDICINE 2024; 3:100092. [PMID: 38586544 PMCID: PMC10998275 DOI: 10.1016/j.imj.2024.100092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/01/2023] [Accepted: 12/12/2023] [Indexed: 04/09/2024]
Abstract
Antimicrobials are frequently used in both humans and animals for the treatment of bacterially-generated illnesses. Antibiotic usage has increased for more than 40% from last 15 years globally per day in both human populations and farm animals leading to the large-scale discharge of antibiotic residues into wastewater. Most antibiotics end up in sewer systems, either directly from industry or healthcare systems, or indirectly from humans and animals after being partially metabolized or broken down following consumption. To prevent additional antibiotic compound pollution, which eventually impacts on the spread of antibiotic resistance, it is crucial to remove antibiotic residues from wastewater. Antibiotic accumulation and antibiotic resistance genes cannot be effectively and efficiently eliminated by conventional sewage treatment plants. Because of their high energy requirements and operating costs, many of the available technologies are not feasible. However, the biosorption method, which uses low-cost biomass as the biosorbent, is an alternative technique to potentially address these problems. An extensive literature survey focusing on developments in the field was conducted using English language electronic databases, such as PubMed, Google Scholar, Pubag, Google books, and ResearchGate, to understand the relative value of the available antibiotic removal methods. The predominant techniques for eliminating antibiotic residues from wastewater were categorized and defined by example. The approaches were contrasted, and the benefits and drawbacks were highlighted. Additionally, we included a few antibiotics whose removal from aquatic environments has been the subject of extensive research. Lastly, a few representative publications were identified that provide specific information on the removal rates attained by each technique. This review provides evidence that biosorption of antibiotic residues from biological waste using natural biosorbent materials is an affordable and effective technique for eliminating antibiotic residues from wastewater.
Collapse
Affiliation(s)
- Barkha Madhogaria
- Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Sangeeta Banerjee
- Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
- Department of Chemistry, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Atreyee Kundu
- Department of Microbiology, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| | - Prasanta Dhak
- Department of Chemistry, Techno India University, West Bengal, EM-4 Sector-V, Salt Lake City, Kolkata 700091, West Bengal, India
| |
Collapse
|
31
|
Zhang T, Wang X, Zhang Q, Yang D, Zhang X, Liu H, Wang Q, Dong Z, Zhao J. Interactive effects of multiple antibiotic residues and ocean acidification on physiology and metabolome of the bay scallops Argopecten irradians irradians. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168941. [PMID: 38056652 DOI: 10.1016/j.scitotenv.2023.168941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/20/2023] [Accepted: 11/25/2023] [Indexed: 12/08/2023]
Abstract
Coastal areas are confronted with compounding threats arising from both climatic and non-climatic stressors. Antibiotic pollution and ocean acidification are two prevalently concurrent environmental stressors. Yet their interactive effects on marine biota have not been investigated adequately and the compound hazard remain obscure. In this study, bay scallops Argopecten irradians irradians were exposed to multiple antibiotics (sulfamethoxazole, tetracycline, oxytetracycline, norfloxacin, and erythromycin, each at a concentration of 1 μg/L) combined with/without acidic seawater (pH 7.6) for 35 days. The single and interactive effects of the two stressors on A. irradians irradians were determined from multidimensional bio-responses, including energetic physiological traits as well as the molecular underpinning (metabolome and expressions of key genes). Results showed that multiple antibiotics predominantly enhanced the process of DNA repair and replication via disturbing the purine metabolism pathway. This alternation is perhaps to cope with the DNA damage induced by oxidative stress. Ocean acidification mainly disrupted energy metabolism and ammonia metabolism of the scallops, as evidenced by the increased ammonia excretion rate, the decreased O:N ratio, and perturbations in amino acid metabolism pathways. Moreover, the antagonistic effects of multiple antibiotics and ocean acidification caused alternations in the relative abundance of neurotransmitter and gene expression of neurotransmitter receptors, which may lead to neurological disorders in scallops. Overall, the revealed alternations in physiological traits, metabolites and gene expressions provide insightful information for the health status of bivalves in a natural environmental condition under the climate change scenarios.
Collapse
Affiliation(s)
- Tianyu Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Xin Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Qianqian Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Dinglong Yang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Xiaoli Zhang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Hui Liu
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Qing Wang
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Zhijun Dong
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China
| | - Jianmin Zhao
- Key Laboratory of Coastal Biology and Biological Resources Utilization, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environmental Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China; Key Laboratory of Coastal Zone Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264117, PR China.
| |
Collapse
|
32
|
Schuijt LM, van Drimmelen CKE, Buijse LL, van Smeden J, Wu D, Boerwinkel MC, Belgers DJM, Matser AM, Roessink I, Beentjes KK, Trimbos KB, Smidt H, Van den Brink PJ. Assessing ecological responses to exposure to the antibiotic sulfamethoxazole in freshwater mesocosms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 343:123199. [PMID: 38128712 DOI: 10.1016/j.envpol.2023.123199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 12/23/2023]
Abstract
Antibiotics are a contaminant class of worldwide concern as they are frequently detected in aquatic ecosystems. To better understand the impacts of antibiotics on aquatic ecosystems, we conducted an outdoor mesocosm experiment in which aquatic communities were exposed to different concentrations of the antibiotic sulfamethoxazole (0, 0.15, 1.5, 15 and 150 μg/L). These concentrations include mean (0.15 μg/L) and maximum detected concentrations (15 and 150 μg/L) in aquatic ecosystems worldwide. Sulfamethoxazole was applied once a week for eight consecutive weeks to 1530 L outdoor mesocosms in the Netherlands, followed by an eight-week recovery period. We evaluated phytoplankton-, bacterial- and invertebrate responses during and after sulfamethoxazole exposure and assessed impacts on organic matter decomposition. Contrary to our expectations, consistent treatment-related effects on algal and bacterial communities could not be demonstrated. In addition, sulfamethoxazole did not significantly affect zooplankton and macroinvertebrate communities. However, some effects on specific taxa were observed, with an increase in Mesostoma flatworm abundance (NOEC of <0.15 μg/L). In addition, eDNA analyses indicated negative impacts on the insects Odonata at a sulfamethoxazole concentration of 15 μg/L. Overall, environmentally relevant sulfamethoxazole concentration did not result in direct or indirect impairment of entire aquatic communities and ecological processes in our mesocosms. However, several specific macroinvertebrate taxa demonstrated significant (in)direct effects from sulfamethoxazole. Comparison of the results with the literature showed inconsistent results between studies using comparable, environmentally relevant, concentrations. Therefore, our study highlights the importance of testing the ecological impacts of pharmaceuticals (such as sulfamethoxazole) across multiple trophic levels spanning multiple aquatic communities, to fully understand its potential ecological threats.
Collapse
Affiliation(s)
- Lara M Schuijt
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Chantal K E van Drimmelen
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands; Hamburg University of Applied Science, Ulmenliet 20, D-21033, Hamburg, Germany
| | - Laura L Buijse
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Jasper van Smeden
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Dailing Wu
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands
| | - Marie-Claire Boerwinkel
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Dick J M Belgers
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Arrienne M Matser
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | - Ivo Roessink
- Wageningen Environmental Research, Wageningen University & Research, Wageningen, the Netherlands
| | | | - Krijn B Trimbos
- Institute of Environmental Sciences, Leiden University, Leiden, the Netherlands
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University and & Research, Wageningen, the Netherlands
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University & Research, Wageningen, the Netherlands.
| |
Collapse
|
33
|
Feng P, Cui H, Wang C, Li X, Duan W. Oxidative stress responses in two marine diatoms during sulfamethoxazole exposure and the toxicological evaluation using the IBR v2 index. Comp Biochem Physiol C Toxicol Pharmacol 2024; 276:109788. [PMID: 37951287 DOI: 10.1016/j.cbpc.2023.109788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/30/2023] [Accepted: 11/08/2023] [Indexed: 11/13/2023]
Abstract
Sulfamethoxazole (SMX) is widely present in water systems, and its stable properties and poor biodegradability can result in high residues of SMX in the water environment. This, in turn, can have detrimental effects on the entire aquatic habitat and human life and health. This study aimed to investigate the toxic effects of SMX on the growth, photosynthetic pigment content, and oxidative stress of two marine microalgae species: Skeletonema costatum and Phaeodactylum tricornutum. SMX demonstrated a significant inhibitory effect on microalgae proliferation, with 96-h median effective concentration (EC50) values of 0.93 mg/L and 4.65 mg/L for S. costatum and P. tricornutum, respectively. At low concentrations, SMX significantly increased the production of Chl a in both microalgae species. However, in the higher concentration SMX treatment group, Chl a content in P. tricornutum experienced a significant decrease, whereas Chl c showed no sensitivity to SMX. The activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx), along with the glutathione (GSH) content, exhibited a significant increasing trend in response to higher SMX concentrations. However, these changes effectively inhibited the accumulation of malondialdehyde (MDA) content. In the treatment group with the highest SMX concentration, MDA content in both microalgae species was significantly higher compared to the control group. The Integrated Biomarker Response Version 2 (IBRv2) index showed a significant positive correlation with SMX concentration, suggesting its potential for assessing the ecotoxicological effects of lower SMX concentrations on marine microalgae.
Collapse
Affiliation(s)
- Pengfei Feng
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, PR China
| | - Hongwu Cui
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong Province, PR China
| | - Chenyu Wang
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, PR China
| | - Xingyu Li
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, PR China
| | - Weiyan Duan
- Ocean College of Hebei Agricultural University, Qinhuangdao, Hebei Province, PR China.
| |
Collapse
|
34
|
Lugo L, Venegas C, Guarin Trujillo E, Diaz Granados-Ramírez MA, Martin A, Vesga FJ, Pérez-Flórez A, Celis C. Ecotoxicology Evaluation of a Fenton-Type Process Catalyzed with Lamellar Structures Impregnated with Fe or Cu for the Removal of Amoxicillin and Glyphosate. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:7172. [PMID: 38131723 PMCID: PMC10743043 DOI: 10.3390/ijerph20247172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 11/10/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023]
Abstract
Antibiotics and pesticides, as well as various emerging contaminants that are present in surface waters, raise significant environmental concerns. Advanced oxidation processes, which are employed to eliminate these substances, have demonstrated remarkable effectiveness. However, during the degradation process, by-products that are not completely mineralized are generated, posing a substantial risk to aquatic ecosystem organisms; therefore, it is crucial to assess effluent ecotoxicity following treatment. This study aimed to assess the toxicity of effluents produced during the removal of amoxicillin and glyphosate with a Fenton-type process using a laminar structure catalyzed with iron (Fe) and copper (Cu). The evaluation included the use of Daphnia magna, Selenastrum capricornutum, and Lactuca sativa, and mutagenicity testing was performed using strains TA98 and TA100 of Salmonella typhimurium. Both treated and untreated effluents exhibited inhibitory effects on root growth in L. sativa, even at low concentrations ranging from 1% to 10% v/v. Similarly, negative impacts on the growth of algal cells of S. capricornutum were observed at concentrations as low as 0.025% v/v, particularly in cases involving amoxicillin-copper (Cu) and glyphosate with copper (Cu) and iron (Fe). Notably, in the case of D. magna, mortality was noticeable even at concentrations of 10% v/v. Additionally, the treatment of amoxicillin with double-layer hydroxides of Fe and Cu resulted in mutagenicity (IM ≥ 2.0), highlighting the necessity to treat the effluent further from the advanced oxidation process to reduce ecological risks.
Collapse
Affiliation(s)
- Lorena Lugo
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| | - Camilo Venegas
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Elizabeth Guarin Trujillo
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Maria Alejandra Diaz Granados-Ramírez
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Alison Martin
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| | - Fidson-Juarismy Vesga
- Department of Microbiology, School of Sciences, Microbiological Quality of Water and Sludge (CMAL), Pontificia Universidad Javeriana, Carrera 7 No. 43-82, Bogotá 110231, Colombia; (C.V.); (E.G.T.); (M.A.D.G.-R.); (F.-J.V.)
| | - Alejandro Pérez-Flórez
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| | - Crispín Celis
- Department of Chemistry, Research Line in Environmental and Materials Technology (ITAM), Pontificia Universidad Javeriana, Carrera 7 No. 43–82, Bogotá 110231, Colombia; (L.L.); (A.M.); (A.P.-F.)
| |
Collapse
|
35
|
Pino-Otín MR, Lorca G, Langa E, Roig F, Terrado EM, Ballestero D. Assessing the Ecotoxicity of Eight Widely Used Antibiotics on River Microbial Communities. Int J Mol Sci 2023; 24:16960. [PMID: 38069283 PMCID: PMC10707202 DOI: 10.3390/ijms242316960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 11/20/2023] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
Global prevalence of antibiotic residues (ABX) in rivers requires ecotoxicological impact assessment. River microbial communities serve as effective bioindicators for this purpose. We quantified the effects of eight commonly used ABXs on a freshwater river microbial community using Biolog EcoPlates™, enabling the assessment of growth and physiological profile changes. Microbial community characterization involved 16S rRNA gene sequencing. The river community structure was representative of aquatic ecosystems, with the prevalence of Cyanobacteria, Proteobacteria, Actinobacteria, and Bacteroidetes. Our findings reveal that all ABXs at 100 µg/mL reduced microbial community growth and metabolic capacity, particularly for polymers, carbohydrates, carboxylic, and ketonic acids. Chloramphenicol, erythromycin, and gentamicin exhibited the highest toxicity, with chloramphenicol notably impairing the metabolism of all studied metabolite groups. At lower concentrations (1 µg/mL), some ABXs slightly enhanced growth and the capacity to metabolize substrates, such as carbohydrates, carboxylic, and ketonic acids, and amines, except for amoxicillin, which decreased the metabolic capacity across all metabolites. We explored potential correlations between physicochemical parameters and drug mechanisms to understand drug bioavailability. Acute toxicity effects at the river-detected low concentrations (ng/L) are unlikely. However, they may disrupt microbial communities in aquatic ecosystems. The utilization of a wide array of genetically characterized microbial communities, as opposed to a single species, enables a better understanding of the impact of ABXs on complex river ecosystems.
Collapse
Affiliation(s)
- María Rosa Pino-Otín
- Faculty of Health Sciences, San Jorge University, 50830 Zaragoza, Spain; (G.L.); (E.L.); (F.R.); (E.M.T.); (D.B.)
| | | | | | | | | | | |
Collapse
|
36
|
Shafi M, Jan R, Gani KM. Selection of priority emerging contaminants in surface waters of India, Pakistan, Bangladesh, and Sri Lanka. CHEMOSPHERE 2023; 341:139976. [PMID: 37657704 DOI: 10.1016/j.chemosphere.2023.139976] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/03/2023]
Abstract
The challenge of emerging contaminants (ECs) in global surface water bodies and particularly in low- and middle-income countries such as India, Pakistan, Bangladesh, and Sri Lanka, is evident from the literature. The complexity arises from the high costs involved in EC analysis and the extensive list of ECs, which complicates the selection of essential compounds for scientific and regulatory investigations. Consequently, monitoring programs often include ECs that may have minimal significance within a region and do not pose known or suspected ecological or human health risks. This study aims to address this issue by employing a multi-risk assessment approach to identify priority ECs in the surface waters of the aforementioned countries. Through an analysis of occurrence levels and frequency data gathered from published literature, an optimized risk quotient (RQ) was derived. The findings reveal a priority list of 38 compounds that exhibit potential environmental risks and merit consideration in future water quality monitoring programs. Furthermore, the majority of antibiotics in India (12 out of 17) and Pakistan (7 out of 17) exhibit a risk quotient for antimicrobial resistance selection (RQAMR) greater than 1, highlighting the need for devising effective strategies to mitigate the escalation of antibiotic resistance in the environment.
Collapse
Affiliation(s)
- Mozim Shafi
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India; Environmental Engineering and Management, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, 721302, West Bengal, India
| | - Ruby Jan
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India
| | - Khalid Muzamil Gani
- Department of Civil Engineering, National Institute of Technology, Srinagar, Jammu, and Kashmir, 190006, India.
| |
Collapse
|
37
|
Llamas MI, Fernández-Valenzuela PJ, Vadillo I, Sanmiguel-Martí M, Rambla-Nebot J, Aranda-Mares JL, Jiménez-Gavilán P. Study of the presence and environmental risk of organic contaminants policed by the European Union and other organic compounds in the water resources of a region overlapping protected areas: The Guadiaro River basin (southern Spain). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118903. [PMID: 37688965 DOI: 10.1016/j.jenvman.2023.118903] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/10/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
The study presented here is a first qualitative assessment of the occurrence of organic contaminants contemplated and not yet contemplated in European Union environmental legislation in water resources in the little anthropized Guadiaro River basin (70% of its area is covered by natural vegetation), in southern Spain. Water samples were collected from four carbonate aquifers, two detrital aquifers and four surface water courses and were analyzed for (i) 171 organic contaminants, (ii) major ions and (iii) stable isotopes (δ18OH2O, δ2HH2O, δ13CDIC). An environmental risk assessment was conducted through calculation of risk quotients comparing measured concentrations with ecotoxicological data found in the literature. Twenty-five organic contaminants were detected, at least once, including pesticides, pharmaceuticals, drugs of abuse and polycyclic aromatic hydrocarbons (PAHs). Cocaine and its main metabolite were detected in 85% and 95% of water samples, respectively (0.001-0.18 μg/L and 0.004-0.6 μg/L, respectively). Pyrene (PAH) was found in all water samples (0.001-0.015 μg/L) and forest fires were pointed out as a potential diffuse source. Relationship between rivers and aquifers is reflected by the distribution of organic contaminants, essentially the drugs of abuse. Concentration of contaminants were generally higher in groundwater samples, especially from detrital aquifers, potentially due to an accumulation process promoted by irrigation-return flows and by its slow dynamic compared to that of karstic systems. Pyrene concentration was also higher in some springs from karstic aquifers. Hence, calculated risk quotients were in general higher in groundwater, meaning that the threat to surface aquatic systems can grow as aquifers increase their influence on the water courses as the dry season progresses. The relationship between δ13CDIC and most organic contaminants (especially pyrene) reveal the role of the soil as storage media.
Collapse
Affiliation(s)
- M I Llamas
- Group of Hydrogeology, Department of Ecology and Geology, Faculty of Science, University of Málaga, 29071 Málaga, Spain.
| | - P J Fernández-Valenzuela
- Group of Hydrogeology, Department of Ecology and Geology, Faculty of Science, University of Málaga, 29071 Málaga, Spain.
| | - I Vadillo
- Group of Hydrogeology, Department of Ecology and Geology, Faculty of Science, University of Málaga, 29071 Málaga, Spain.
| | | | | | | | - P Jiménez-Gavilán
- Group of Hydrogeology, Department of Ecology and Geology, Faculty of Science, University of Málaga, 29071 Málaga, Spain.
| |
Collapse
|
38
|
Zhang H, Quan H, Song S, Sun L, Lu H. Comprehensive assessment of toxicity and environmental risk associated with sulfamethoxazole biodegradation in sulfur-mediated biological wastewater treatment. WATER RESEARCH 2023; 246:120753. [PMID: 37871376 DOI: 10.1016/j.watres.2023.120753] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/01/2023] [Accepted: 10/17/2023] [Indexed: 10/25/2023]
Abstract
Incomplete mineralization of sulfamethoxazole (SMX) in wastewater treatment systems poses a threat to ecological health. The toxicity and environmental risk associated with SMX biodegradation in the sulfur-mediated biological process were examined for the first time through a long-term (180 days) bioreactor study and a series of bioassays. The results indicated that the sulfur-mediated biological system was highly resistant and tolerant to SMX toxicity, as evidenced by the enrichment of sulfate-reducing bacteria (SRB), the improved microbial metabolic activity, and the excellent performance on pollutants removal under long-term SMX exposure. SMX can be effectively biodegraded by the cleavage and rearrangement of the isoxazole ring, hydrogenation and hydroxylation reactions in sulfur-mediated biological wastewater system. These biodegradation pathways effectively reduced the acute toxicity, antibacterial activity, and ecotoxicities of SMX and its biotransformation products (TPs) in the effluent of the sulfur-mediated biological system. The TPs produced via hydrogenation (TP1), hydroxylation, and isoxazole ring cleavage (TP3, TP4, TP5, TP8, and TP9) exhibited lower toxicity than SMX. Under SMX stress, although the abundance of sulfonamide resistance genes increased, the total abundance of ARGs decreased due to the extrusion of some intracellular SMX by the efflux pump genes and the inactivation of some SMX through the biodegradation process. Efflux pump and inactivation, as the main resistance mechanisms of antibiotics in the sulfur-mediated biological system, play a crucial role in microbial self-defense. The findings of this study demonstrate the great potential of the sulfur-mediated biological system in SMX removal, detoxication, and ARGs environmental risk reduction.
Collapse
Affiliation(s)
- Huiqun Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, China; Guangdong Water Co., Ltd., Shenzhen 518021, China
| | - Haoting Quan
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, China
| | - Shiliu Song
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, China
| | - Lianpeng Sun
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, China
| | - Hui Lu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology (Sun Yat-Sen University), Guangzhou 510275, China.
| |
Collapse
|
39
|
Giannessi J, De Marchi L, Meucci V, Intorre L, Monni G, Baratti M, Pretti C. Subcellular tissues-specific responses of Mytilus galloprovincialis to fluoroquinolone antibiotics. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104306. [PMID: 39491228 DOI: 10.1016/j.etap.2023.104306] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Accepted: 10/25/2023] [Indexed: 11/05/2024]
Abstract
The study aimed to investigate the in vitro effects of the fluoroquinolone antibiotics (FQs) Ciprofloxacin (CIP), Enrofloxacin (ENR) and Danofloxacin (DAN) on the mussel Mytilus galloprovincialis exposed to environmentally relevant concentrations. In vitro exposure was performed on subcellular fractions of the digestive gland and gills through a multi-biomarker approach, which included the assessment of cellular damage, antioxidant and biotransformation enzyme activities, neurotoxicity, and DNA single-strand breaks (DNAssb). Results showed a decrease in protein carbonyl content in the gills when exposed to all concentrations of ENR. A significant overall decrease in the enzymatic activity of antioxidant defences was observed in the digestive gland exposed to the highest concentration of DAN and CIP, with a similar trend observed in the gills. Neurotoxicity was observed in the digestive gland at all tested concentrations of all FQs, but no effects were detected in the gills. DNAssb was evident in both tissues at all higher FQ concentrations.
Collapse
Affiliation(s)
- Joanna Giannessi
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Lucia De Marchi
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Luigi Intorre
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Gianfranca Monni
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy
| | - Mariella Baratti
- Interuniversity Consortium of Marine Biology and Applied Ecology "G. Bacci" (CIBM), Viale N. Sauro 4, Livorno, 57128, Italy
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, Via Livornese (lato monte), Pisa, San Piero a Grado, 56122, Italy; Institute of Biosciences and Bioresources, IBBR-CNR, Via Madonna del Piano 10, Firenze, Sesto Fiorentino, 50019, Italy.
| |
Collapse
|
40
|
Delgado N, Orozco J, Zambrano S, Casas-Zapata JC, Marino D. Veterinary pharmaceutical as emerging contaminants in wastewater and surface water: An overview. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132431. [PMID: 37688873 DOI: 10.1016/j.jhazmat.2023.132431] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/24/2023] [Accepted: 08/27/2023] [Indexed: 09/11/2023]
Abstract
Veterinary pharmaceuticals have become of interest due to their indiscriminate use. Thus, this paper compiles studies on detection in surface and wastewater, and the treatment applied for their removal. Additionally, a case study was performed to evaluate its commercialization, as the ecological risk assessment for the most relevant compounds. 241 compounds were detected. The highest concentrations were found for antibiotics such as oxytetracycline, amoxicillin, and monensin, with values up to 3732.4 µg/L. Biological treatments have been mainly reported, obtaining removal greater than 80% for sulfadiazine, sulfamethazine, sulfamethoxazole, enrofloxacin, and oxytetracycline. Considering the case study, enrofloxacin and oxytetracycline were widely commercialized. Finally, there was a low risk for the species exposed to enrofloxacin, in contrast, the species exposed to oxytetracycline presented a high risk of long-term mortality. Concluding that veterinary compounds have emerged as a significant concern regarding water source contamination, owing to their potential adverse effects on aquatic biota and even human. This is particularly relevant because many water bodies that receive wastewater are utilized for drinking water purposes. Consequently, the development of comprehensive, full-scale systems for efficient antibiotic removal before their introduction into water sources becomes imperative. Equally important is the need to reconsider their extensive use altogether.
Collapse
Affiliation(s)
- Nasly Delgado
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia.
| | - Jessica Orozco
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia
| | - Santiago Zambrano
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia
| | - Juan C Casas-Zapata
- Grupo de Ciencia e Ingeniería en Sistemas Ambientales, Facultad de Ingeniería Civil, Universidad del Cauca, Carrera 2# 15N, Popayán 190002, Colombia
| | - Damián Marino
- Centro de Investigaciones del Medio Ambiente, Facultad de Ciencias Exactas, Universidad Nacional de la Plata (UNLP), 47y 115, La Plata 1900, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas, La Plata, Argentina
| |
Collapse
|
41
|
Sani AA, Rafiq K, Hossain MT, Akter F, Haque A, Hasan MI, Sachi S, Mustari A, Islam MZ, Alam MM. Screening and quantification of antibiotic residues in poultry products and feed in selected areas of Bangladesh. Vet World 2023; 16:1747-1754. [PMID: 37766715 PMCID: PMC10521182 DOI: 10.14202/vetworld.2023.1747-1754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 08/04/2023] [Indexed: 09/29/2023] Open
Abstract
Background and Aim Antibiotic residues in livestock farming have been identified as a potential cause of antimicrobial resistance in humans and animals. This study aimed to determine whether antibiotic residues were present in the chicken meat, eggs, feces, and feed collected from all four districts in the Mymensingh division of Bangladesh. Materials and Methods To detect antibiotic residues in the collected samples, qualitative thin-layer chromatography (TLC) and quantitative high-performance liquid chromatography (HPLC) were used. A total of 230 samples were analyzed for antibiotic residues of commonly used 11 antibiotics. Out of these, 40 meat and 40 feces samples were collected from broilers and layers, 30 egg samples from ducks and layers, and 120 feed samples from broilers and layers from the study area. Thin-layer chromatography was used to screen the presence of antibiotic residues; TLC-positive samples were then subjected to further HPLC analysis to determine the residue concentrations. Results Thin-layer chromatography analysis revealed that 23.5% of the tested samples contained residues from six different antibiotic classes (tetracyclines, quinolones, beta-lactams, sulfonamides, aminoglycosides, and macrolides). Thin-layer chromatography analysis showed that 35% and 25% of the meat samples were positive for residues from the broiler and layer, respectively. About 15% and 30% of layer and duck egg samples had positive residues, respectively. Out of 120 feed samples analyzed, about 15.8% had various antibiotic residues. In addition, feces samples from broilers and layers had 50% and 35% antibiotic residues, respectively. A total of 2.5% meat and 3.3% egg samples had antibiotic residues above the maximum residue limit (MRL). Based on the findings of this study, the highest percentage of oxytetracycline, followed by doxycycline and ciprofloxacin, were detected in feed samples, and oxytetracycline was detected in meat and egg samples. Conclusion This study clearly showed the misuse of antibiotics in the poultry sector in Bangladesh. Although antibiotic residues below the MRL level are suitable for human consumption, they may result in antimicrobial drug resistance to pathogens.
Collapse
Affiliation(s)
- Aminatu Abubakar Sani
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Kazi Rafiq
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Tarek Hossain
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Fatema Akter
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Azizul Haque
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Mohammad Izmal Hasan
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Sabbya Sachi
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Afrina Mustari
- Department of Physiology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Zahorul Islam
- Department of Pharmacology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Md. Mahbub Alam
- Department of Medicine, Bangladesh Agricultural University, Mymensingh, Bangladesh
| |
Collapse
|
42
|
Cheron M, Brischoux F. Exposure to Low Concentrations of AMPA Influences Morphology and Decreases Survival During Larval Development in a Widespread Amphibian Species. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 85:92-103. [PMID: 37468648 DOI: 10.1007/s00244-023-01008-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 06/02/2023] [Indexed: 07/21/2023]
Abstract
Glyphosate's primary metabolite, AMPA (aminomethylphosphonic acid), is one of the most widely detected anthropogenic substance in surface waters worldwide. However, ecotoxicological studies on the potential effects of this metabolite at environmental concentrations on wildlife are scarce. Yet, due to its chemical properties, AMPA is likely to affect non-target species. In this study, we investigated sublethal effects of environmental concentrations of AMPA on the larval development of a widespread amphibian species, the spined toad Bufo spinosus. We performed a factorial experiment to study the effect of concentration and the timing of exposure (during embryonic development, larval development or both) to AMPA on the morphology, rate of development and survival of tadpoles. AMPA and timing of exposure interactively affected tadpole size (individuals exposed to AMPA after hatching were transitorily smaller, while individuals exposed to AMPA before hatching were longer), but not duration of development. Most of these effects were linked to exposure during embryonic development. Such effects in individuals exposed during embryonic development solely were long-lasting and persisted until the latest larval stages. Finally, we found that exposure to AMPA after hatching (during the larval stage) increased mortality. Exposure to low environmental concentrations of AMPA could have long-lasting consequences on fitness and population persistence. These findings are especially important to take into account at a time when multiple threats can interact to affect wildlife.
Collapse
Affiliation(s)
- Marion Cheron
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360, Villiers en Bois, France
| | - François Brischoux
- Centre d'Etudes Biologiques de Chizé, CEBC-CNRS UMR 7372, 79360, Villiers en Bois, France.
| |
Collapse
|
43
|
Li Z, Lu T, Li M, Mortimer M, Guo LH. Direct and gut microbiota-mediated toxicities of environmental antibiotics to fish and aquatic invertebrates. CHEMOSPHERE 2023; 329:138692. [PMID: 37059203 DOI: 10.1016/j.chemosphere.2023.138692] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/11/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
The accumulation of antibiotics in the environment has ecological impacts that have received less attention than the human health risks of antibiotics, although the effects could be far-reaching. This review discusses the effects of antibiotics on the health of fish and zooplankton, manifesting in direct or dysbiosis-mediated physiological impairment. Acute effects of antibiotics in these organism groups are usually induced at high concentrations (LC50 at ∼100-1000 mg/L) that are not commonly present in aquatic environments. However, when exposed to sub-lethal, environmentally relevant levels of antibiotics (ng/L-μg/L) disruption of physiological homeostasis, development, and fecundity can occur. Antibiotics at similar or lower concentrations can induce dysbiosis of gut microbiota which can affect the health of fish and invertebrates. We show that the data about molecular-level effects of antibiotics at low exposure concentrations are limited, hindering environmental risk assessment and species sensitivity analysis. Fish and crustaceans (Daphnia sp.) were the two groups of aquatic organisms used most often for antibiotic toxicity testing, including microbiota analysis. While low levels of antibiotics impact the composition and function of gut microbiota in aquatic organisms, the correlation and causality of these changes to host physiology are not straightforward. In some cases, negative or lack of correlation have occurred, and, unexpectedly, gut microbial diversity has been unaffected or increased upon exposure to environmental levels of antibiotics. Efforts to incorporate functional analyses of gut microbiota are beginning to provide valuable mechanistic information, but more data is needed for ecological risk assessment of antibiotics.
Collapse
Affiliation(s)
- Zhi Li
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Tingyu Lu
- College of Life Science, China Jiliang University, Hangzhou, Zhejiang, 310018, China; Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Minjie Li
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China
| | - Monika Mortimer
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| | - Liang-Hong Guo
- Institute of Environmental and Health Sciences, China Jiliang University, Hangzhou, Zhejiang, 310018, China; College of Quality and Safety Engineering, China Jiliang University, Hangzhou, Zhejiang, 310018, China.
| |
Collapse
|
44
|
Pietropoli E, Pauletto M, Tolosi R, Iori S, Lopparelli RM, Montanucci L, Giantin M, Dacasto M, De Liguoro M. An In Vivo Whole-Transcriptomic Approach to Assess Developmental and Reproductive Impairments Caused by Flumequine in Daphnia magna. Int J Mol Sci 2023; 24:9396. [PMID: 37298348 PMCID: PMC10253896 DOI: 10.3390/ijms24119396] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 05/17/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Among veterinary antibiotics, flumequine (FLU) is still widely used in aquaculture due to its efficacy and cost-effectiveness. Although it was synthesized more than 50 years ago, a complete toxicological framework of possible side effects on non-target species is still far from being achieved. The aim of this research was to investigate the FLU molecular mechanisms in Daphnia magna, a planktonic crustacean recognized as a model species for ecotoxicological studies. Two different FLU concentrations (2.0 mg L-1 and 0.2 mg L-1) were assayed in general accordance with OECD Guideline 211, with some proper adaptations. Exposure to FLU (2.0 mg L-1) caused alteration of phenotypic traits, with a significant reduction in survival rate, body growth, and reproduction. The lower concentration (0.2 mg L-1) did not affect phenotypic traits but modulated gene expression, an effect which was even more evident under the higher exposure level. Indeed, in daphnids exposed to 2.0 mg L-1 FLU, several genes related with growth, development, structural components, and antioxidant response were significantly modulated. To the best of our knowledge, this is the first work showing the impact of FLU on the transcriptome of D. magna.
Collapse
Affiliation(s)
- Edoardo Pietropoli
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Marianna Pauletto
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Roberta Tolosi
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Silvia Iori
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Rosa Maria Lopparelli
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Ludovica Montanucci
- Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA;
| | - Mery Giantin
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Mauro Dacasto
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| | - Marco De Liguoro
- Department Comparative Biomedicine and Food Science, University of Padova, 35020 Padova, Italy; (E.P.); (R.T.); (S.I.); (R.M.L.); (M.G.); (M.D.); (M.D.L.)
| |
Collapse
|
45
|
Aydin S, Celik Karakaya M, Karakaya N, Aydin ME. Effective removal of selected pharmaceuticals from sewerage treatment plant effluent using natural clay (Na-montmorillonite). APPLIED WATER SCIENCE 2023; 13:129. [PMID: 37192959 PMCID: PMC10170040 DOI: 10.1007/s13201-023-01930-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023]
Abstract
The consumption of pharmaceuticals has rapidly increased on a global scale due to the serious increase in Covid-19, influenza and respiratuar sinsityal virus, which is called "triple epidemic" in the world. The use of non-prescription analgesic and anti-inflammatory drugs (AAIDs), especially paracetamol, is higher compared to pre-pandemic. This increased the AAIDs load discharged to the aqueous media through sewerage treatment plant (STP). Therefore, simple and effective treatment options for removing AAIDs from STP effluents are needed. The aim of the study was to remove AAIDs (paracetamol, acetylsalicylic acid, codeine, diclofenac, ibuprofen, indomethacin, ketoprofen, mefenamic acid, naproxen, and phenylbutazone) from STP effluents by nearly pure natural clay Na-montmorillonite. The Na-montmorillonite taken from the Ordu region in the northern part of Turkey. Surface area of the Na-montmorillonite is 99.58 m2/g and CEC is 92.40 meq/100 g. The removal efficiencies of AAIDs using Na-montmorillonite were between 82 ± 5% (ibuprofen) and 94 ± 4% (naproxen). Paracetamol was used as a model compound in kinetic and isotherm model studies. Freundlich isotherm model and the pseudo second order kinetic model were the best-fit using the obtained experimental data. Film diffusion governed its rate mechanism. The paracetamol adsorption capacity was acquired as 244 mg/g at 120 min contact time at pH 6.5 at 25 °C. With this study, it could be shown that montmorillonite can be used effectively to eliminate paracetamol from STP effluent. Natural clay can be used as a simple, inexpensive and effective adsorbent for removing AAIDs from STP effluents. Supplementary Information The online version contains supplementary material available at 10.1007/s13201-023-01930-5.
Collapse
Affiliation(s)
- Senar Aydin
- Department of Environmental Engineering, Necmettin Erbakan University, Konya, Turkey
| | | | - Necati Karakaya
- Department of Geological Engineering, Konya Technical University, Konya, Turkey
| | - Mehmet Emin Aydin
- Department of Civil Engineering, Necmettin Erbakan University, Konya, Turkey
| |
Collapse
|
46
|
Matias VA, Weber AG, Gueretz JS, Walz GC, Tagliari-Corrêa CV, Toumi H, Férard JF, Radetski CM, Somensi CA, Cotelle S. An alternative approach to assess ecotoxicological effects of agrochemical combinations used in Brazilian aquaculture farms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27414-2. [PMID: 37155099 DOI: 10.1007/s11356-023-27414-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 04/30/2023] [Indexed: 05/10/2023]
Abstract
Agrochemicals used for treating and preventing aquaculture diseases are usually present in combination with other compounds, and the toxicity resulting from their chemical interactions presents an important reason to assess the ecotoxicity of compound mixtures in view to better understanding the joint action of chemicals and avoiding their environmental impacts. In this study, we evaluated the acute aquatic ecotoxicity of several compounds used in Brazilian fish farming (Oxytetracycline [OXT], Trichlorfon [TRC], and BioFish® [BIO]), both individually and in binary and ternary mixtures. Initial test concentrations were prepared according to the recommended concentrations for aquaculture application, and from these, a geometric dilution series was tested on two important fresh water quality indicator species, the microcrustacean Daphnia magna and the bacterium Aliivibrio fischeri. At the recommended pond application rate, TRC and BIO applied individually showed toxicity to the tested organisms in terms of the lowest-observed-effect concentration (LOEC), and D. magna was always more sensitive than A. fischeri. For the two test organisms, the results obtained with the binary mixtures showed that the TRC and BIO mixture was more toxic than TRC and OXT, which in turn was more toxic than OXT and BIO. The toxicity from all agrochemicals in the ternary mixture was more than that of the agrochemical combinations in the binary mixtures. Given the results presented in this study, it is evident that the mode of action and availability of the tested compounds undergo changes that increase toxicity when they are present in combination, and therefore, aquaculture wastewater treatment should be adopted to ensure decontamination of agrochemical residues.
Collapse
Affiliation(s)
- Vanessa A Matias
- Laboratório de Química Analítica e Ambiental, Instituto Federal Catarinense - Campus Araquari, Araquari, SC, 89245-000, Brazil
- Laboratório de Fisiologia, Universidade do Vale do Itajaí, Itajaí, SC, 88302-202, Brazil
| | - Ariana G Weber
- Laboratório de Fisiologia, Universidade do Vale do Itajaí, Itajaí, SC, 88302-202, Brazil
| | - Juliano S Gueretz
- Laboratório de Química Analítica e Ambiental, Instituto Federal Catarinense - Campus Araquari, Araquari, SC, 89245-000, Brazil
| | - Gabriel C Walz
- Curso de Mestrado em Tecnologia e Ambiente, Instituto Federal Catarinense - Campus Araquari, Araquari, SC, 89245-000, Brazil
| | - Cristiane V Tagliari-Corrêa
- Curso de Mestrado em Tecnologia e Ambiente, Instituto Federal Catarinense - Campus Araquari, Araquari, SC, 89245-000, Brazil
| | - Héla Toumi
- Faculté des Sciences de Bizerte, Laboratoire de Bio-surveillance de l'Environnement (LBE), Université de Carthage, 7021, Zarzouna, Bizerte, Tunisia
| | - Jean-François Férard
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Université de Lorraine, F-57070, Metz, France
| | - Claudemir M Radetski
- Programa de Pós-Graduação em Ciência e Tecnologia Ambiental, Universidade do Vale do Itajaí, Itajaí, SC, 88302-202, Brazil
| | - Cleder A Somensi
- Laboratório de Química Analítica e Ambiental, Instituto Federal Catarinense - Campus Araquari, Araquari, SC, 89245-000, Brazil
- Curso de Mestrado em Tecnologia e Ambiente, Instituto Federal Catarinense - Campus Araquari, Araquari, SC, 89245-000, Brazil
| | - Sylvie Cotelle
- Laboratoire Interdisciplinaire des Environnements Continentaux (LIEC), Université de Lorraine, F-57070, Metz, France.
| |
Collapse
|
47
|
Patyra E, Nebot C, Gavilán RE, Kwiatek K, Cepeda A. Prevalence of veterinary antibiotics in natural and organic fertilizers from animal food production and assessment of their potential ecological risk. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2023; 103:3638-3644. [PMID: 36620960 DOI: 10.1002/jsfa.12435] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/02/2023] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND Veterinary antibiotics are emerging contaminants and enter into soil principally by agricultural application of organic fertilizers. This article presents the results of the research obtained for the analyzed 70 samples of fertilizers (pig and poultry manure and slurry and digestate) for various classes of antibiotics. RESULTS Doxycycline, oxytetracycline, tetracycline, lincomycin, tiamulin and enrofloxacin were found in tested samples. Doxycycline was found as a dominant compound, and its highest concentration was 175 mg/kg in pig manure. This investigation indicated that fertilization with manure, especially animal feces, might be the primary source of antibiotics. Additionally, a risk assessment based on a risk quotient was carried out, which showed that the determined concentrations of antibiotics in fertilizers may pose a threat to soil microorganisms. CONCLUSIONS Results suggested that the ecological risk effects of antibiotic contamination on soil bases and their potential adverse risk on human health needs special attention. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Ewelina Patyra
- Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, Pulawy, Poland
| | - Carolina Nebot
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - Rosa Elvira Gavilán
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| | - Krzysztof Kwiatek
- Department of Hygiene of Animal Feedingstuffs, National Veterinary Research Institute, Pulawy, Poland
| | - Alberto Cepeda
- Department of Analytical Chemistry, Nutrition and Bromatology, Faculty of Veterinary Medicine, University of Santiago de Compostela, Lugo, Spain
| |
Collapse
|
48
|
Qin Y, Ren X, Ju H, Zhang Y, Liu J, Zhang J, Diao X. Occurrence and Distribution of Antibiotics in a Tropical Mariculture Area of Hainan, China: Implications for Risk Assessment and Management. TOXICS 2023; 11:toxics11050421. [PMID: 37235236 DOI: 10.3390/toxics11050421] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023]
Abstract
With the rapid global demand for mariculture products in recent years, the use of antibiotics has increased intensively in the mariculture area. Current research on antibiotic residues in mariculture environments is limited, and less information is available on the presence of antibiotics in tropical waters, limiting a comprehensive understanding of their environmental presence and risk. Therefore, this study investigated the environmental occurrence and distribution of 50 antibiotics in the near-shore aquaculture waters of Fengjia Bay. A total of 21 antibiotics were detected in 12 sampling sites, including 11 quinolones, 5 sulfonamides, 4 tetracyclines, and 1 chloramphenicol; the quinolones pyrimethamine (PIP), delafloxacin (DAN), flurofloxacin (FLE), ciprofloxacin (CIP), norfloxacin (NOR), pefloxacin (PEF), enrofloxacin (ENO), and minocycline (MNO) of the tetracycline class were detected in all sampling points. The total antibiotic residue concentrations in the study area ranged from 153.6 to 1550.8 ng/L, the tetracycline antibiotics were detected in the range of 10 to 1344.7 ng/L, and the chloramphenicol antibiotics were detected in the range of 0 to 106.9 ng/L. The detected concentrations of quinolones ranged from 81.3 to 136.1 ng/L, and the residual concentrations of sulfonamide antibiotics ranged from 0 to 313.7 ng/L. The correlation analysis with environmental factors revealed that pH, temperature, conductivity, salinity, NH3--N, and total phosphorus had a strong correlation with antibiotics. Based on PCA analysis, the main sources of antibiotic pollution in the area were determined to be the discharge of farming wastewater and domestic sewage. The ecological risk assessment indicated that the residual antibiotics in the water environment of the near-shore waters of Fengjiawan had certain risks to the ecosystem. Among them, CIP, NOR, sulfamethoxazole (TMP), ofloxacin (OFL), enrofloxacin (ENO), sulfamethoxazole (SMX), and FLE showed medium to high risk. Therefore, it is recommended to regulate the use of these antibiotics and the discharge and treatment of culturing wastewater, and measures should be taken to reduce the environmental pollution caused by antibiotics and to monitor the long-term ecological risk of antibiotics in the region. Overall, our results provide an important reference for understanding the distribution and ecological risk of antibiotics in Fengjiawan.
Collapse
Affiliation(s)
- Yongqiang Qin
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Xiaoyü Ren
- College of Ecology, Environment Hainan University, Haikou 570228, China
- Hainan Research Academy of Environmental Sciences, Haikou 571126, China
| | - Hanye Ju
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Yankun Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Jin Liu
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Jiliang Zhang
- Ministry of Education Key Laboratory for Ecology of Tropical Islands, Hainan Normal University, Haikou 571158, China
- College of Life Science, Hainan Normal University, Haikou 571158, China
| | - Xiaoping Diao
- College of Ecology, Environment Hainan University, Haikou 570228, China
| |
Collapse
|
49
|
Guo J, Ren J, Chang C, Duan Q, Li J, Kanerva M, Yang F, Mo J. Freshwater crustacean exposed to active pharmaceutical ingredients: ecotoxicological effects and mechanisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:48868-48902. [PMID: 36884171 DOI: 10.1007/s11356-023-26169-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 02/23/2023] [Indexed: 04/16/2023]
Abstract
Concerns over the ecotoxicological effects of active pharmaceutical ingredients (APIs) on aquatic invertebrates have been raised in the last decade. While numerous studies have reported the toxicity of APIs in invertebrates, no attempt has been made to synthesize and interpret this dataset in terms of different exposure scenarios (acute, chronic, multigenerational), multiple crustacean species, and the toxic mechanisms. In this study, a thorough literature review was performed to summarize the ecotoxicological data of APIs tested on a range of invertebrates. Therapeutic classes including antidepressants, anti-infectives, antineoplastic agents, hormonal contraceptives, immunosuppressants, and neuro-active drugs exhibited higher toxicity to crustaceans than other API groups. The species sensitivity towards APIs exposure is compared in D. magna and other crustacean species. In the case of acute and chronic bioassays, ecotoxicological studies mainly focus on the apical endpoints including growth and reproduction, whereas sex ratio and molting frequency are commonly used for evaluating the substances with endocrine-disrupting properties. The multigenerational and "Omics" studies, primarily transcriptomics and metabolomics, were confined to a few API groups including beta-blocking agents, blood lipid-lowing agents, neuroactive agents, anticancer drugs, and synthetic hormones. We emphasize that in-depth studies on the multigenerational effects and the toxic mechanisms of APIs on the endocrine systems of freshwater crustacean are warranted.
Collapse
Affiliation(s)
- Jiahua Guo
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jingya Ren
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Chao Chang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Qiannan Duan
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China
| | - Jun Li
- Department of Environment and Geography, University of York, Heslington, York, YO10 5NG, UK
| | - Mirella Kanerva
- Center for Marine Environmental Studies, Ehime University, Matsuyama, 7908577, Japan
| | - Fangshe Yang
- Shaanxi Key Laboratory of Earth Surface System and Environmental Carrying Capacity, College of Urban and Environmental Sciences, Northwest University, Xi'an, 710127, China.
| | - Jiezhang Mo
- State Key Laboratory of Marine Pollution and Department of Chemistry, City University of Hong Kong, Kowloon, Hong Kong SAR, China
| |
Collapse
|
50
|
Matviichuk O, Mondamert L, Geffroy C, Dagot C, Labanowski J. Life in an unsuspected antibiotics world: River biofilms. WATER RESEARCH 2023; 231:119611. [PMID: 36716569 DOI: 10.1016/j.watres.2023.119611] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 12/20/2022] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
Waterborne bacteria that naturally live in biofilms are continuously exposed to pharmaceutical residues, regularly released into the freshwater environment. At the source level, the discharge of antibiotics into rivers has already been repeatedly linked to the development of antimicrobial resistance. But what about biofilms away from the discharge point? Two rivers, with sites subject to dispersed contamination of medium intensity, were studied as typical representatives of high- and middle-income countries. The biofilms developed on rocks indigenous to rivers are perfectly representative of environmental exposure. Our results show that away from the hotspots, the amount of antibiotics in the biofilms studied favours the maintenance and enrichment of existing resistant strains as well as the selection of new resistant mutants, and these favourable conditions remain over a period of time. Thus, in this type of river, the environmental risk of selection pressure is not only present downstream of urbanized areas but is also possible upstream and far downstream of wastewater treatment plant discharges. Despite this, correlation analysis found no strong positive correlation between antibiotic concentrations and the abundance of measured integrons and their corresponding resistance genes. Nevertheless, this work highlights the need to consider the risks of antibiotics beyond hotspots as well.
Collapse
Affiliation(s)
- Olha Matviichuk
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France; University of Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
| | - Leslie Mondamert
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France
| | - Claude Geffroy
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France
| | - Christophe Dagot
- University of Limoges, Inserm, CHU Limoges, RESINFIT, U 1092, F-87000 Limoges, France
| | - Jérôme Labanowski
- Institut de Chimie des Milieux et Matériaux de Poitiers, UMR CNRS 7285, University of Poitiers, France.
| |
Collapse
|