1
|
Wang D, Lin X, Wu G, Xu Z, Liu J, Xu X, Jia D, Liang L, Habibullah-Al-Mamun M, Qiu G. Synchronous changes in mercury stable isotopes and compound-specific amino acid nitrogen isotopes in organisms through food chains. ENVIRONMENT INTERNATIONAL 2025; 196:109327. [PMID: 39952203 DOI: 10.1016/j.envint.2025.109327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2024] [Revised: 01/17/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
The relationship between stable isotope of mercury (Hg, Δ199Hg and δ202Hg) and compound-specific nitrogen isotope of amino acids (CSIA-AA, δ15NGlu and δ15NPhe) remains poorly understood. In this study, we investigated bird species and their prey in an abandoned Hg mining area, southern China to elucidate these correlations for a better understanding of Hg sources, biological transfer, accumulation and amplification through food chains. Our findings revealed distinct isotopic patterns: Δ199Hg showed a positive correlation with δ15NGlu, indicating trophic transfer processes, while a negative correlation with δ15NPhe suggested differences in Hg sources among birds. The wide ranges of δ15NPhe and Δ199Hg observed in birds appear to reflect mixtures of multiple nitrogen and Hg sources, likely due to their diverse food sources and the large variation in the proportion of MeHg in total Hg (MeHg%). The consistent slope between Δ199Hg/δ15Nphe and MeHg%/δ15Nphe, reflecting both energy and Hg sources, provides new insights into the biotransfer and accumulation of Hg in organisms. Notably, the trophic magnification factor (TMF) of MeHg observed in water birds, such as egrets, reached an exceptionally high value of 97.7 estimated from CSIA of multiple amino acids (i.e., TMFM), underscoring the significance of investigating Hg sources in birds. Our results demonstrate that the synchronous changes between CSIA-AA and odd Hg isotopes effectively identify Hg sources and transfer across multiple ecological systems.
Collapse
Affiliation(s)
- Dawei Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 China; University of Chinese Academy of Sciences, Beijing 100049 China
| | - Xiaoyuan Lin
- The First Hospital of Hunan University of Chinese Medicine, Changsha 410007 China
| | - Gaoen Wu
- State Key Laboratory of Marine Resource Utilization in South China Sea, Hainan University, Haikou 570228 China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 China
| | - Jiemin Liu
- Guizhou Provincial People's Hospital, Guiyang 550002 China
| | - Xiaohang Xu
- Key Laboratory of Karst Georesources and Environment, Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang 550025 China
| | - Dongya Jia
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025 China
| | - Longchao Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang 550025 China
| | - Md Habibullah-Al-Mamun
- Department of Fisheries, Faculty of Biological Sciences, University of Dhaka, Dhaka 1000 Bangladesh
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081 China.
| |
Collapse
|
2
|
Fang F, Ding L, Zhang Y, Qiao X, Qian L, Wei R, Chen H, Ji H, Pi B, Wong MH, Tao H, Xu N, Zhang L. Bacterial mercury methylation modulated by vitamin B9: An overlooked pathway leads to increased environmental risks. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135625. [PMID: 39191012 DOI: 10.1016/j.jhazmat.2024.135625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 08/06/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024]
Abstract
There has been a serious health and environmental concern in conversion of inorganic mercury (Hg) to the neurotoxin, methylmercury (MeHg) by anaerobic microbes, while very little is known about the potential role of vitamin B9 (VB9) regulator in the biochemical generation of MeHg. This study innovatively investigated bacterial Hg methylation by Geobacter sulfurreducens PCA in the presence of VB9 under two existing scenarios. In the low-complexing scenario, the bacterial MeHg yield reached 68 % higher than that without VB9 within 72 h, which was attributed to free VB9-protected PCA cells relieving oxidative stress, as manifested by the increased expression of Hg methylation gene (hgcAB cluster by 19-48 %). The high-complexing scenario emphasized the intracellular Hg accumulation (38-45 %) after 12 h, as indicated by the increased expression of outer membrane protein-related and mercuric reductase-encoding genes, indicating the inefficient bioavailability of Hg due to a gradual shift from Hg reduction toward Hg0 re-oxidation controlled by competitive ligand exchange. These results suggested that VB9 application significantly raised the potential for bacterial Hg methylation and cellular accumulation, thus proposing insights into the biochemical behaviors of hazardous Hg in farming environments where vulnerable organisms are more possibly co-exposed to higher levels of Hg and VB9.
Collapse
Affiliation(s)
- Fang Fang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lingyun Ding
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen 518118, China
| | - Yaoyu Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Xuejiao Qiao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lu Qian
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Ruqian Wei
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Hanchun Chen
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Haodong Ji
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Bin Pi
- Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes, Guangzhou Medical University, Guangzhou 510700, China
| | - Ming Hung Wong
- Soil Health Laboratory, Southern Federal University, Rostov-on-Don, Russia; Consortium on Health, Environment, Education and Research (CHEER), Department of Science and Environmental Studies, The Education University of Hong Kong, Tai Po, Hong Kong, China
| | - Huchun Tao
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Nan Xu
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Lijuan Zhang
- Key Laboratory for Heavy Metal Pollution Control and Reutilization, School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| |
Collapse
|
3
|
Evers DC, Ackerman JT, Åkerblom S, Bally D, Basu N, Bishop K, Bodin N, Braaten HFV, Burton MEH, Bustamante P, Chen C, Chételat J, Christian L, Dietz R, Drevnick P, Eagles-Smith C, Fernandez LE, Hammerschlag N, Harmelin-Vivien M, Harte A, Krümmel EM, Brito JL, Medina G, Barrios Rodriguez CA, Stenhouse I, Sunderland E, Takeuchi A, Tear T, Vega C, Wilson S, Wu P. Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:325-396. [PMID: 38683471 PMCID: PMC11213816 DOI: 10.1007/s10646-024-02747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/01/2024]
Abstract
An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.
Collapse
Affiliation(s)
- David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | | | - Dominique Bally
- African Center for Environmental Health, BP 826 Cidex 03, Abidjan, Côte d'Ivoire
| | - Nil Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Upsalla, Sweden
| | - Nathalie Bodin
- Research Institute for Sustainable Development Seychelles Fishing Authority, Victoria, Seychelles
| | | | - Mark E H Burton
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Celia Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - John Chételat
- Environment and Cliamte Change Canada, National Wildlife Research Centre, Ottawa, ON, K1S 5B6, Canada
| | - Linroy Christian
- Department of Analytical Services, Dunbars, Friars Hill, St John, Antigua and Barbuda
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Paul Drevnick
- Teck American Incorporated, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Collin Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Luis E Fernandez
- Sabin Center for Environment and Sustainability and Department of Biology, Wake Forest University, Winston-Salem, NC, 29106, USA
- Centro de Innovación Científica Amazonica (CINCIA), Puerto Maldonado, Madre de Dios, Peru
| | - Neil Hammerschlag
- Shark Research Foundation Inc, 29 Wideview Lane, Boutiliers Point, NS, B3Z 0M9, Canada
| | - Mireille Harmelin-Vivien
- Aix-Marseille Université, Université de Toulon, CNRS/INSU/IRD, Institut Méditerranéen d'Océanologie (MIO), UM 110, Campus de Luminy, case 901, 13288, Marseille, cedex 09, France
| | - Agustin Harte
- Basel, Rotterdam and Stockholm Conventions Secretariat, United Nations Environment Programme (UNEP), Chem. des Anémones 15, 1219, Vernier, Geneva, Switzerland
| | - Eva M Krümmel
- Inuit Circumpolar Council-Canada, Ottawa, Canada and ScienTissiME Inc, Barry's Bay, ON, Canada
| | - José Lailson Brito
- Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracana, Rio de Janeiro, RJ, Brazil
| | - Gabriela Medina
- Director of Basel Convention Coordinating Centre, Stockholm Convention Regional Centre for Latin America and the Caribbean, Hosted by the Ministry of Environment, Montevideo, Uruguay
| | | | - Iain Stenhouse
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Elsie Sunderland
- Harvard University, Pierce Hall 127, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Akinori Takeuchi
- National Institute for Environmental Studies, Health and Environmental Risk Division, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| | - Tim Tear
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Claudia Vega
- Centro de Innovaccion Cientifica Amazonica (CINCIA), Jiron Ucayali 750, Puerto Maldonado, Madre de Dios, 17001, Peru
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, N-9296, Tromsø, Norway
| | - Pianpian Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
4
|
Hao W, Xu X, Qiu G, Dong X, Zhu F, Han J, Liang L, Chen Z. Predictive modeling of methylmercury in rice (Oryza sativa L.) and species-sensitivity-distribution-based derivation of the threshold of soil mercury in karst mountain areas. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:157. [PMID: 38592345 DOI: 10.1007/s10653-024-01944-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 02/26/2024] [Indexed: 04/10/2024]
Abstract
The bioavailable mercury (Hg) in the soil is highly active and can affect the formulation of methyl-Hg (MeHg) in soil and its accumulation in rice. Herein, we predicted the concentration of MeHg in rice using bioavailable Hg extracted from soils; additionally, we determined the threshold value of soil Hg in karst mountain areas based on species sensitivity distribution. The bioavailable Hg was extracted using calcium chloride, hydrochloric acid (HCl), diethylenetriaminepentaacetic acid mixture, ammonium acetate, and thioglycolic acid. Results showed that HCl is the best extractant, and the prediction model demonstrated good predictability of the MeHg concentration in rice based on the HCl-extractable Hg, pH, and soil organic matter (SOM) data. Compared with the actual MeHg concentration in rice, approximately 99% of the predicted values (n = 103) were within the 95% prediction range, indicating the good performance of the rice MeHg prediction model based on soil pH, SOM, and bioavailable Hg in karst mountain areas. Based on this MeHg prediction model, the safety threshold of soil Hg was calculated to be 0.0936 mg/kg, which is much lower than the soil pollution risk screening value of agricultural land (0.5 mg/kg), suggesting that a stricter standard should be applied regarding soil Hg in karst mountain areas. This study presents the threshold of soil Hg pollution for rice safety in karst mountain areas, and future studies should target this threshold range.
Collapse
Affiliation(s)
- Wanbin Hao
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550025, China
| | - Xiaohang Xu
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xian Dong
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550025, China
| | - Fang Zhu
- Guiyang Healthcare Vocational University, Guiyang, 550081, China
| | - Jialiang Han
- College of Eco-Environmental Engineering, Guizhou Minzu University, Guiyang, 550025, Guizhou, China
| | - Longchao Liang
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550025, China.
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550025, China.
| |
Collapse
|
5
|
Zhang C, Xia T, Zhang L, Chen Z, Zhang H, Jia X, Jia L, Zhu X, Li G. Mercury pollution risks of agricultural soils and crops in mercury mining areas in Guizhou Province, China: effects of large mercury slag piles. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:53. [PMID: 38245580 DOI: 10.1007/s10653-023-01841-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 12/19/2023] [Indexed: 01/22/2024]
Abstract
The historical large mercury slag piles still contain high concentrations of mercury and their impact on the surrounding environment has rarely been reported. In this study, three different agricultural areas [the area with untreated piles (PUT), the area with treated piles (PT), and the background area with no piles (NP)] were selected to investigate mercury slag piles pollution in the Tongren mercury mining area. The mercury concentrations of agricultural soils ranged from 0.42 to 155.00 mg/kg, determined by atomic fluorescence spectrometry of 146 soil samples; and mercury concentrations in local crops (rice, maize, pepper, eggplant, tomato and bean) all exceeded the Chinese food safety limits. Soil and crop pollution trends in the three areas were consistent as PUT > PT > NP, indicating that mercury slag piles have exacerbated pollution. Mercury in the slag piles was adsorbed by multiple pathways of transport into soils with high organic matter, which made the ecological risk of agricultural soils appear extremely high. The total hazard quotients for residents from ingesting mercury in these crops were unacceptable in all areas, and children were more likely to be harmed than adults. Compared to the PT area, treatment of slag piles in the PUT area may decrease mercury concentrations in paddy fields and dry fields by 46.02% and 70.36%; further decreasing health risks for adults and children by 47.06% and 79.90%. This study provided a scientific basis for the necessity of treating large slag piles in mercury mining areas.
Collapse
Affiliation(s)
- Chengcheng Zhang
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Tianxiang Xia
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China.
| | - Lina Zhang
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China.
- School of Environment, Beijing Normal University, Beijing, 100875, China.
| | - Zhuo Chen
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Haonan Zhang
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Xiaoyang Jia
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Lin Jia
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Xiaoying Zhu
- National Engineering Research Center of Urban Environmental Pollution Control, Beijing Key Laboratory for Risk Modeling and Remediation of Contaminated Sites, Beijing Municipal Research Institute of Eco-Environmental Protection, Beijing, 100037, China
| | - Guangbing Li
- Tongren Environmental Science and Technology Consulting Center, Tongren, 554399, China
| |
Collapse
|
6
|
Xu Z, Yang Y, Li J, Yang N, Zhang Q, Qiu G, Lu Q. Home-produced eggs: An important pathway of methylmercury exposure for residents in mercury mining areas, southwest China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 268:115678. [PMID: 37979350 DOI: 10.1016/j.ecoenv.2023.115678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/06/2023] [Accepted: 11/10/2023] [Indexed: 11/20/2023]
Abstract
In light of the documented elevated concentrations of total mercury (Hg) and methylmercury (MeHg) in poultry originating from Hg-contaminated sites, a knowledge gap persists regarding the levels of Hg found in home-produced eggs (HPEs) and the associated dietary exposure risks in regions affected by Hg mining. To address this knowledge gap, a comprehensive investigation was undertaken with the primary objectives of ascertaining the concentrations of THg and MeHg in HPEs and evaluating the potential hazards associated with the consumption of eggs from the Wanshan Hg mining area in Southwest China. The results showed that THg concentrations in HPEs varied within a range of 10.5-809 ng/g (with a geometric mean (GM) of 64.1 ± 2.7 ng/g), whereas MeHg levels spanned from 1.3 to 291 ng/g (GM, 23.1 ± 3.4 ng/g). Remarkably, in half of all eggs, as well as those collected from regions significantly impacted by mining activities, THg concentrations exceeded the permissible maximum allowable value for fresh eggs (50 ng/g). Consumption of these eggs resulted in increased exposure risks associated with THg and MeHg, with GM values ranging from 0.024 to 0.17 µg/kg BW/day and 0.0089-0.066 µg/kg BW/day, respectively. Notably, the most substantial daily dosage was observed among children aged 2-3 years. The study found that consuming HPEs could result in a significant IQ reduction of 34.0 points for the whole mining area in a year. These findings highlight the potential exposure risk, particularly concerning MeHg, stemming from the consumption of local HPEs by residents in mining areas, thereby warranting serious consideration within the framework of Hg exposure risk assessment in mining locales.
Collapse
Affiliation(s)
- Zhidong Xu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yuhua Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Jun Li
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Na Yang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Qinghai Zhang
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qinhui Lu
- The Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Provincial Engineering Research Center of Ecological Food Innovation, School of Public Health, Guizhou Medical University, Guiyang 550025, China.
| |
Collapse
|
7
|
Jin X, Yan J, Ali MU, Li Q, Li P. Mercury Biogeochemical Cycle in Yanwuping Hg Mine and Source Apportionment by Hg Isotopes. TOXICS 2023; 11:toxics11050456. [PMID: 37235270 DOI: 10.3390/toxics11050456] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/04/2023] [Accepted: 05/11/2023] [Indexed: 05/28/2023]
Abstract
Although mercury (Hg) mining activities in the Wanshan area have ceased, mine wastes remain the primary source of Hg pollution in the local environment. To prevent and control Hg pollution, it is crucial to estimate the contribution of Hg contamination from mine wastes. This study aimed to investigate Hg pollution in the mine wastes, river water, air, and paddy fields around the Yanwuping Mine and to quantify the pollution sources using the Hg isotopes approach. The Hg contamination at the study site was still severe, and the total Hg concentrations in the mine wastes ranged from 1.60 to 358 mg/kg. The binary mixing model showed that, concerning the relative contributions of the mine wastes to the river water, dissolved Hg and particulate Hg were 48.6% and 90.5%, respectively. The mine wastes directly contributed 89.3% to the river water Hg contamination, which was the main Hg pollution source in the surface water. The ternary mixing model showed that the contribution was highest from the river water to paddy soil and that the mean contribution was 46.3%. In addition to mine wastes, paddy soil is also impacted by domestic sources, with a boundary of 5.5 km to the river source. This study demonstrated that Hg isotopes can be used as an effective tool for tracing environmental Hg contamination in typical Hg-polluted areas.
Collapse
Affiliation(s)
- Xingang Jin
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Junyao Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qiuhua Li
- Key Laboratory for Information System of Mountainous Area and Protection of Ecological Environment of Guizhou Province, Guizhou Normal University, Guiyang 550001, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
8
|
Wang B, Yang S, Li P, Qin C, Wang C, Ali MU, Yin R, Maurice L, Point D, Sonke JE, Zhang L, Feng X. Trace mercury migration and human exposure in typical mercury-emission areas by compound-specific stable isotope analysis. ENVIRONMENT INTERNATIONAL 2023; 174:107891. [PMID: 36963155 DOI: 10.1016/j.envint.2023.107891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/17/2023] [Accepted: 03/16/2023] [Indexed: 06/18/2023]
Abstract
Anthropogenic mercury (Hg) emissions have increased significantly since the Industrial Revolution, resulting in severe health impacts to humans. The consumptions of fish and rice were primary human methylmercury (MeHg) exposure pathways in Asia. However, the lifecycle from anthropogenic Hg emissions to human MeHg exposure is not fully understood. In this study, a recently developed approach, termed MeHg Compound-Specific Isotope Analysis (CSIA), was employed to track lifecycle of Hg in four typical Hg-emission areas. Distinct Δ199Hg of MeHg and inorganic Hg (IHg) were observed among rice, fish and hair. The Δ199Hg of MeHg averaged at 0.07 ± 0.15 ‰, 0.80 ± 0.55 ‰ and 0.43 ± 0.29 ‰ in rice, fish and hair, respectively, while those of IHg averaged at - 0.08 ± 0.24 ‰, 0.85 ± 0.43 ‰ and - 0.28 ± 0.68 ‰. In paddy ecosystem, Δ199Hg of MeHg in rice showed slightly positive shifts (∼0.2 ‰) from those of IHg, and comparable Δ199Hg of IHg between rice grain and raw/processed materials (coal, Hg ore, gold ore and sphalerite) were observed. Simultaneously, it was proved that IHg in fish muscle was partially derived from in vivo demethylation of MeHg. By a binary model, we estimated the relative contributions of rice consumption to human MeHg exposure to be 84 ± 14 %, 58 ± 26 %, 52 ± 20 % and 34 ± 15 % on average in Hg mining area, gold mining area, zinc smelting area and coal-fired power plant area, respectively, and positive shifts of δ202HgMeHg from fish/rice to human hair occurred during human metabolic processes. Therefore, the CSIA approach can be an effective tool for tracking Hg biogeochemical cycle and human exposure, from which new scientific knowledge can be generated to support Hg pollution control policies and to protect human health.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Health Management Center, the Affiliated Hospital of Guizhou Medical University, Guiyang 550009, China
| | - Shaochen Yang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Chongyang Qin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Chuan Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Laurence Maurice
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, 31400, Toulouse, France
| | - David Point
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, 31400, Toulouse, France
| | - Jeroen E Sonke
- Observatory Midi-Pyrénées, Geosciences Environment Toulouse Laboratory, Research Institute for the Development (IRD), University of Toulouse and CNRS, 31400, Toulouse, France
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| |
Collapse
|
9
|
Yan J, Li R, Ali MU, Wang C, Wang B, Jin X, Shao M, Li P, Zhang L, Feng X. Mercury migration to surface water from remediated mine waste and impacts of rainfall in a karst area - Evidence from Hg isotopes. WATER RESEARCH 2023; 230:119592. [PMID: 36638731 DOI: 10.1016/j.watres.2023.119592] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/04/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Mine waste (MW) in historical mercury (Hg) mining areas continuously emits Hg into local environment, including aquatic ecosystems. Tracing Hg migration process from MW and determining its relative contribution to Hg pollution is critical for understanding the environmental impact of MW remediation. In this study, we combined data of Hg concentration, speciation, and isotope to address this issue in the Wanshan Hg mining area in southwest China. We found that rainfall can elevate Hg concentrations in river water and control the partitioning and transport of Hg in karst fissure zones through changing the hydrological conditions. A consistently large offset of δ202Hg (1.24‰) was observed between dissolved Hg (DHg) and particulate Hg (PHg) in surface water during the low-flow period (LFP), which may have been related to the relatively stable hydrologic conditions and unique geological background (karst fissure zones) of the karst region (KR). Results from the ternary Hg isotopic mixing model showed that, despite an order of magnitude reduction in Hg concentration and flux in river water after remediation, the remediated MW is still a significant source of Hg pollution to local aquatic ecosystems, accounting for 49.3 ± 11.9% and 37.8 ± 11.8% of river DHg in high flow period (HFP) and LFP, respectively. This study provides new insights into Hg migration and transportation in aquatic ecosystem and pollution source apportionment in Hg polluted area, which can be used for making polices for future remediation actions.
Collapse
Affiliation(s)
- Junyao Yan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ruolan Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Muhammad Ubaid Ali
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Chuan Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Xingang Jin
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| | - Mingyu Shao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China; University of Chinese Academy of Sciences, Beijing, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China.
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, China
| |
Collapse
|
10
|
Xia J, Wang J, Zhang L, Wang X, Yuan W, Peng T, Zheng L, Tian W, Feng X. Migration and transformation of soil mercury in a karst region of southwest China: Implications for groundwater contamination. WATER RESEARCH 2022; 226:119271. [PMID: 36283232 DOI: 10.1016/j.watres.2022.119271] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 10/14/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
Guizhou Province is located in the heart of a karst zone in southwest China, which is one of the largest karst areas in the world. Given the fragile surface ecosystem and highly developed underground karst structure, the migration and transformation of soil Hg may impact groundwater quality in karst environments with high Hg background concentrations. This study examines the vertical migration and transformation of soil mercury (Hg) in two karst catchments, Huilong and Chenqi, with the former containing high Hg contents associated with mineralization and the latter representing regional background Hg. The results show that the soil Hg pool in the Huilong catchment was as high as 44.4 ± 4.2 g m-2, whereas in the Chenqi catchment was only 0.17±0.02 g m-2. Compared with farmland soil, forest soil showed a significant loss of Hg. The results of L3 X-ray absorption near edge structure of Hg indicated that α-HgS, the primary mineral of Hg ore, gradually changed to other mineral types during soil formation. In Huilong catchment, the proportion of organic bound Hg(SR)2 out of total Hg decreased from 44.0% to 20.3% when soil depth increased from 10 cm to 160 cm in farmland soil profile and from 39.3% to 34.5% in forest soil profile, while the proportion of ionic Hg increased with soil depth, from 4.2% to 10.7% in the farmland soil profile and from 6.7% to 11.6% in the forestland soil profile. Results from the triple-mixing isotope model show that soil Hg accounts for more than 80% Hg in groundwater in the two catchments. Results from this study indicate potential risks of soil Hg entering into groundwater in this karst area.
Collapse
Affiliation(s)
- Jicheng Xia
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianxu Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto, ON M3H 5T4, Canada
| | - Xun Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei Yuan
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Tao Peng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; Puding Karst Ecosystem Research Station, Chinese Academy of Sciences, Puding 562100, China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Weijun Tian
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
11
|
Liu B, Tian K, He Y, Hu W, Huang B, Zhang X, Zhao L, Teng Y. Dominant roles of torrential floods and atmospheric deposition revealed by quantitative source apportionment of potentially toxic elements in agricultural soils around a historical mercury mine, Southwest China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113854. [PMID: 35816843 DOI: 10.1016/j.ecoenv.2022.113854] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 06/27/2022] [Accepted: 07/02/2022] [Indexed: 06/15/2023]
Abstract
Hg pollution in soils surrounding the Wanshan mercury mine (WMM), once the largest Hg-producing center in China, has been confirmed, neglecting other potential toxic elements (PTEs). Better understanding of the sources and transport pathways of soil PTEs remains insufficient. To response these limitations, eight soil PTEs (As, Cd, Cr, Cu, Hg, Ni, Pb and Zn) at two typical agricultural sites, namely AZ and WW that are located near and far from the WMM, respectively, were systemically investigated. The results showed that AZ exhibited significantly higher concentrations of all the PTEs in the surface soil than WW (p < 0.01). Hg and Cd were recognized as the priority control PTEs, with their average concentrations of 21.54 and 1.21 mg kg-1 at AZ, and 15.79 and 0.48 mg kg-1 at WW. Those affected PTEs tended to enrich in near-river areas. Atmospheric deposition contributed more to soil Hg than did regular irrigation, but these two sources could not explain the considerable soil Hg accumulation. Three sources, including natural sources, hydraulic transport (torrential floods and regular irrigation) and atmospheric deposition, were identified and quantified based on the positive matrix factorization model, statistical methods and various auxiliary information. Hydraulic transport (mainly torrential floods) dominated the soil Hg input, which could explain 83.8% and 69.8% of the soil Hg input at AZ and WW, respectively. Atmospheric deposition dominated the soil Cd input, explaining 44.3% and 59.9% of the soil Cd input at AZ and WW, respectively. More attention should be given to the safe utilization of agricultural land and long-term monitoring of atmospheric deposition of Hg and Cd. This study could provide insights to prevent PTE diffusion along the above dominant transportation pathways while developing similar mine regions.
Collapse
Affiliation(s)
- Benle Liu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kang Tian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Yue He
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment of the People's Republic of China, Nanjing 210042, China.
| | - Wenyou Hu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Biao Huang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Xiaohui Zhang
- Key Laboratory of Integrated Regulation and Resources Development of Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Ling Zhao
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| | - Ying Teng
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China
| |
Collapse
|
12
|
Morante-Carballo F, Montalván-Burbano N, Aguilar-Aguilar M, Carrión-Mero P. A Bibliometric Analysis of the Scientific Research on Artisanal and Small-Scale Mining. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138156. [PMID: 35805816 PMCID: PMC9266635 DOI: 10.3390/ijerph19138156] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 06/28/2022] [Accepted: 06/30/2022] [Indexed: 01/03/2023]
Abstract
Mineral resource exploitation is one of the activities that contribute to economic growth and the development of society. Artisanal and small-scale mining (ASM) is one of these activities. Unfortunately, there is no clear consensus to define ASM. However, its importance is relevant in that it represents, in some cases, the only employment alternative for millions of people, although it also significantly impacts the environment. This work aims to investigate the scientific information related to ASM through a bibliometric analysis and, in addition, to define the new lines that are tending to this field. The study comprises three phases of work: (i) data collection, (ii) data processing and software selection, and (iii) data interpretation. The results reflect that the study on ASM developed intensively from 2010 to the present. In general terms, the research addressed focuses on four interrelated lines: (i) social conditioning factors of ASM, (ii) environmental impacts generated by ASM, (iii) mercury contamination and its implication on health and the environment, and (iv) ASM as a livelihood. The work also defines that geotourism in artisanal mining areas is a significant trend of the last decade, explicitly focusing on the conservation and use of the geological and mining heritage and, in addition, the promotion of sustainable development of ASM.
Collapse
Affiliation(s)
- Fernando Morante-Carballo
- Facultad de Ciencias Naturales y Matemáticas (FCNM), ESPOL Polytechnic University, Guayaquil 09015863, Ecuador
- Geo-Recursos y Aplicaciones (GIGA), ESPOL Polytechnic University, Guayaquil 09015863, Ecuador
- Correspondence: (F.M.-C.); (M.A.-A.)
| | - Néstor Montalván-Burbano
- Department of Economy and Business, University of Almería, Carr. Sacramento s/n, La Cañada de San Urbano, 04120 Almeria, Spain;
- Centro de Investigaciones y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University, Guayaquil 09015863, Ecuador;
| | - Maribel Aguilar-Aguilar
- Centro de Investigaciones y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University, Guayaquil 09015863, Ecuador;
- Correspondence: (F.M.-C.); (M.A.-A.)
| | - Paúl Carrión-Mero
- Centro de Investigaciones y Proyectos Aplicados a las Ciencias de la Tierra (CIPAT), ESPOL Polytechnic University, Guayaquil 09015863, Ecuador;
- Facultad de Ingeniería en Ciencias de la Tierra, Campus Gustavo Galindo, ESPOL Polytechnic University, Guayaquil 09015863, Ecuador
| |
Collapse
|
13
|
Xu S, Gong P, Ding W, Wu S, Yu X, Liang P. Mercury uptake by Paspalum distichum L. in relation to the mercury distribution pattern in rhizosphere soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:66990-66997. [PMID: 34244935 DOI: 10.1007/s11356-021-15093-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 06/20/2021] [Indexed: 06/13/2023]
Abstract
Paspalum distichum L. was tested to evaluate their phytoremediation capacity for Hg contaminated soil through analyzing the dissipation of Hg in soil through a greenhouse study by using self-made rhizos box. Original soil samples were collected at Hg mining site with serious Hg contamination and a control site, respectively. Planting of P. distichum. L last for 60 days. Soil and plant samples were collected from four periods (0 d, 20 d, 40 d, and 60 d) and soil samples were collected from five different rhizosphere distance in horizontal direction (0-2 cm, 2-4cm, 4-6cm, 6-8cm, 8-10cm). The results showed that the presence of P. distichum. L significantly accelerated the Hg dissipation in soil compared with control. Hg concentration in the rhizospheric soil was affected by the plant growth period and the distance to the plant roots. The closer of soil to the root of P. distichum. L, the lower mercury concentration in soil. During the 60-day growing period, the concentrations of total Hg (THg) and methylmercury (MeHg) reduced by 45% and 64%, respectively, in the rhizosphere (0-2cm) of Hg contaminated soil. However, MeHg concentration was increased near the roots (0-4 cm) during the initial growing period (0-20 d), which may be attributed to the influence of root exudates. Root is the major part for Hg accumulation in P. distichum. L. The low ratio between Hg concentrations in underground and aboveground tissues indicated that it seemed difficult for Hg translocation from root to shoot. The highest THg (9.71 ± 3.09 μg·g-1) and MeHg (26.97 ± 0.98 ng·g-1) value in root of P. distichum. L were observed at the 20th day when P. distichum. L grown in Hg contaminated soil. The results of chemical fractions analyses showed that elemental Hg and residual Hg were the two major speciations followed by organic bound Hg in the Hg contaminated soil, which indicated the high bioavailability and ecological potential risk of Hg in Hg contaminated soil.
Collapse
Affiliation(s)
- Su Xu
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, 311300, Zhejiang Province, China
| | - Ping Gong
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, 311300, Zhejiang Province, China
| | - Wen Ding
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, 311300, Zhejiang Province, China
| | - Shengchun Wu
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, 311300, Zhejiang Province, China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an, 311300, Zhejiang Province, China
| | - Xinwei Yu
- Key Laboratory of Health Risk Factors for Seafood of Zhejiang Province, Zhoushan Municipal Center for Disease Control and Prevention, Zhoushan, 316021, China.
| | - Peng Liang
- School of Environmental and Resource Sciences, Zhejiang A&F University, Lin'an, 311300, Zhejiang Province, China.
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Zhejiang A&F University, Lin'an, 311300, Zhejiang Province, China.
| |
Collapse
|
14
|
Du J, Liu F, Zhao L, Liu C, Fu Z, Teng Y. Mercury horizontal spatial distribution in paddy field and accumulation of mercury in rice as well as their influencing factors in a typical mining area of Tongren City, Guizhou, China. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2021; 19:1555-1567. [PMID: 34900288 PMCID: PMC8617142 DOI: 10.1007/s40201-021-00711-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 07/12/2021] [Indexed: 06/01/2023]
Abstract
PURPOSE To make up for the deficiency of the distribution characteristics of mercury (Hg) pollution in soil and rice in a specific area, the relationship between more than ten soil indices and Hg in soil-rice system was analysed, and the main factors affecting mercury accumulation in rice were screened out. So as to provide reliable theoretical and scientific basis for the regulation and safe utilization of Hg-contaminated soil. METHODS The Hg-polluted area of Siqian Dam, with a paddy field area of 1.34 million square meters, was selected as the research unit. Soil and corresponding rice samples were collected and analysed. Then, common Kriging interpolation was used to explore the spatial distribution differences of mercury content between soil and rice, Pearson correlation analysis and stepwise linear regression were used to analyse the relationship between mercury content and 14 soil indices. RESULTS In the study area, the total mercury(THg) content in soil and rice was as high as 30.60 mg/kg and 160.19 µg/kg, respectively, and the methyl mercury(MeHg) content was as high as 14.56 µg/kg and 40.32 µg/kg, respectively, indicating that mercury pollution in soil and rice was serious. The horizontal spatial distribution of soil THg and MeHg was different. Flood with its sediment and topography were the main reasons for the uneven distribution of Hg content in the region. The spatial distribution of Hg was different between rice and soil. There was no significant correlation between rice and soil THg, but there was a significant correlation between rice and soil MeHg content. Among the 14 soil indices, available potassium was a vital index affecting the accumulation of Hg in rice, followed by pH, Zn, Mn and Fe. CONCLUSIONS The results showed that in weakly acidic and fertile soil, the appropriate reduction of soil pH, OM and available Se and Cr contents could inhibit soil Hg methylation, the reduction of potassium fertilizer application could further reduce rice Hg accumulation. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s40201-021-00711-z.
Collapse
Affiliation(s)
- Jingjing Du
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025 China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Fang Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025 China
| | - Ling Zhao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Chong Liu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025 China
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Zhaocong Fu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| | - Ying Teng
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, 210008 Nanjing, China
- University of Chinese Academy of Sciences, Beijing, 100049 China
| |
Collapse
|
15
|
Wang B, Chen M, Ding L, Zhao Y, Man Y, Feng L, Li P, Zhang L, Feng X. Fish, rice, and human hair mercury concentrations and health risks in typical Hg-contaminated areas and fish-rich areas, China. ENVIRONMENT INTERNATIONAL 2021; 154:106561. [PMID: 33895437 DOI: 10.1016/j.envint.2021.106561] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 03/13/2021] [Accepted: 04/04/2021] [Indexed: 05/24/2023]
Abstract
Human exposure to methylmercury (MeHg) from consuming contaminated fish has been a major concern for decades. Besides, human MeHg exposure through rice consumption has been recently found to be important in some Asian countries. China is the largest country on mercury (Hg) production, consumption, and anthropogenic emission. However, the health risks of human Hg exposure are not fully understood. A total of 624 fish, 299 rice, and 994 human hair samples were collected from typical Hg-contaminated areas and major fish-rich areas to assess the health risks from human Hg exposure in China. Fish and rice samples showed relatively low Hg levels, except the rice in the Wanshan Hg mining area (WMMA). Human hair total Hg (THg) and MeHg concentrations were significantly elevated in WMMA, Zhoushan (ZS), Xiamen (XM), Qingdao (QD), and zinc smelting area (ZSA), and 85% of hair samples in WMMA, 62% in ZS, 40% in XM, 26% in QD, and 17% in ZSA had THg concentrations exceeding the limit set by the USEPA (1 μg/g). Rice consumption was the main pathway (>85%) for human MeHg exposure in the studied Hg-contaminated areas. Meanwhile, fish was the primary human MeHg exposure source (>85%) in coastal cities. Therefore, soil remediation in typical Hg-contaminated areas and scientific guidance for fish consumption in coastal provinces are urgently needed to reduce the health risks from human Hg exposure in China.
Collapse
Affiliation(s)
- Bo Wang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Chen
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Li Ding
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Yuhang Zhao
- School of Resource and Environment, Guizhou University, Guiyang 550025, China
| | - Yi Man
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lin Feng
- School of Public Health, Guizhou Medical University, Guiyang 550025, China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China.
| | - Leiming Zhang
- Air Quality Research Division, Science and Technology Branch, Environment and Climate Change Canada, Toronto M3H 5T4, Canada
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; CAS Center for Excellence in Quaternary Science and Global Change, Xi'an 710061, China
| |
Collapse
|
16
|
Wu G, Tang S, Han J, Li C, Liu L, Xu X, Xu Z, Chen Z, Wang Y, Qiu G. Distributions of Total Mercury and Methylmercury in Dragonflies from a Large, Abandoned Mercury Mining Region in China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 81:25-35. [PMID: 34027570 DOI: 10.1007/s00244-021-00854-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 05/02/2021] [Indexed: 06/12/2023]
Abstract
Dragonflies (Order Odonata) often are considered to be biosentinels of environmental contamination, e.g., heavy metals and/or persistent organic pollutants (POPs). Dragonflies (n = 439) belonging to 15 species of 8 genera were collected from an abandoned mercury (Hg) mining region in China to investigate the bioaccumulation of total Hg (THg) and methylmercury (MeHg). THg and MeHg concentrations in dragonflies varied widely within ranges of 0.06-19 mg/kg (average: 1.5 ± 2.2 mg/kg) and 0.02-5.7 mg/kg (average: 0.75 ± 0.65 mg/kg), respectively. THg and MeHg were positively correlated with bodyweight (THg: r2 = 0.10, P = 0.000; MeHg: r2 = 0.09, P = 0.000). Significant variations were observed among species, with the highest MeHg value (in Orthetrum triangulare) was fivefold higher than the lowest (in Pantala flavescens). These variations were consistent with those of nitrogen isotope (δ15N) values, indicating that increased δ15N, i.e., trophic levels, may reflect increased exposure and uptake of biomagnifying MeHg in dragonflies. A toxicological risk assessment found hazard quotients for specialist dragonfly-consuming birds of up to 7.2, which is 2.4 times greater than the permissible limit of 3, suggesting a potential toxicological risk of exposure.
Collapse
Affiliation(s)
- Gaoen Wu
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454003 , China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Shunlin Tang
- Institute of Resources and Environment, Henan Polytechnic University, Jiaozuo, 454003 , China.
| | - Jialiang Han
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chan Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Lin Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Zhuo Chen
- School of Chemistry and Materials Science, Guizhou Normal University, Guiyang, 550001, China
| | - Yajie Wang
- College of Food Science, Guizhou Medical University, Guiyang, 550025, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
17
|
Xu Z, Lu Q, Xu X, Feng X, Liang L, Liu L, Li C, Chen Z, Qiu G. Multi-pathway mercury health risk assessment, categorization and prioritization in an abandoned mercury mining area: A pilot study for implementation of the Minamata Convention. CHEMOSPHERE 2020; 260:127582. [PMID: 32758782 DOI: 10.1016/j.chemosphere.2020.127582] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 06/23/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
This is a systematic study of human health risk assessment (HHRA) and risk categorization for inorganic mercury (IHg) and methylmercury (MeHg) in Hg mining areas. A multi-pathway exposure model coupled with Monte Carlo simulation was constructed for the Wanshan Hg mining area (WSMM), Southwestern China, with consideration of oral ingestion (foodstuffs, water and soil), dermal contact (water and soil), and inhalation (gaseous Hg and particulate Hg). The results show that dietary intake (food and water), gaseous Hg inhalation, oral ingestion of soil particles, dermal contact, and particulate Hg inhalation comprised 88.3-96.3%, 3.49-6.14%, 0.14-5.3%, 0.02%, and <0.01% of total IHg ingestion, respectively. As expected, rice consumption contributed the highest proportion (86.3-92.7%) of MeHg. The study shows that the elevated MeHg exposure risk is the most significant issue in Hg mining areas. In addition, Hg risk categorization and prioritization in the WSMM are established for the first time based on rice-based exposure doses of IHg and MeHg. Target areas for future treatment and/or remediation are characterized according to thresholds of reference dose and provisional tolerable weekly intake for exposure doses, as well as risk screening values and risk control values for contaminated soil. The proposed multi-pathway exposure model is strongly recommended for the HHRA of Hg-contaminated sites worldwide and helps facilitate the implementation of the Minamata Convention on Mercury.
Collapse
Affiliation(s)
- Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Qinhui Lu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Longchao Liang
- College of Resource and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Lin Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chan Li
- School of Chemical and Materials Science, Guizhou Normal University, Guiyang, China
| | - Zhuo Chen
- School of Chemical and Materials Science, Guizhou Normal University, Guiyang, China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
18
|
Liu W, Feng Y, Zhong H, Ptacek C, Blowes D, Liu Y, Finfrock YZ, Liu P, Wang S. Aqua regia digestion cannot completely extract Hg from biochar: A synchrotron-based study. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 265:115002. [PMID: 32563950 DOI: 10.1016/j.envpol.2020.115002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 05/25/2020] [Accepted: 06/07/2020] [Indexed: 06/11/2023]
Abstract
Mercury (Hg) is commonly extracted from solid phase samples using aqua regia for total Hg (tHg) analysis. However, uncertainties exist regarding the complete extraction of Hg by aqua regia, especially from carbonaceous materials. To investigate whether aqua regia can completely extract Hg from biochars, batch-style experiments were carried out to evaluate extraction efficiency of aqua regia with respect to Hg-loaded biochar and to characterize the residual Hg speciation and spatial distribution. Different types of biochars (raw, FeCl3-modified, and FeSO4-modified, prepared at different temperatures) were reacted with Hg-spiked solution before the digestion experiments. Adsorption analyses indicate the biochars were successfully loaded with Hg and that the Hg content was higher in biochars pyrolyzed at higher temperature (900 versus 300 or 600 °C). The results of digestion experiments indicate Hg could not be completely extracted from the biochars tested, with a greater percentage of residual Hg in biochars pyrolyzed at 600 (60 ± 15%) and 900 (75 ± 22%) than 300 °C (7 ± 2%). Furthermore, the fraction of residual Hg in FeSO4-modified biochars after aqua regia digestion was significantly lower than in FeCl3-modified and unmodified biochars. Confocal micro-X-ray fluorescence imaging (CMXRFI) showed residual Hg in biochars is concentrated on surfaces prior to digestion, but more homogeneously distributed after digestion, which indicates Hg on biochar surface is more easily digested. Hg extended X-ray absorption fine structure (EXAFS) spectra modelling showed residual Hg in biochars mainly exists as Hg(II)-Cl. These results indicate extra caution should be paid for tHg determinations using aqua regia digestion method in soil (especially in forest), sediment, and peat samples containing black carbon, activated carbon, or biochar.
Collapse
Affiliation(s)
- Wenfu Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Yu Feng
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Huan Zhong
- School of the Environment, State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210023, China
| | - Carol Ptacek
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - David Blowes
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - YingYing Liu
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Y Zou Finfrock
- Science Division, Canadian Light Source Inc., 44 Innovation Boulevard, Saskatoon, SK S7N 2V3, Canada; CLS@APS Sector 20, Advanced Photon Source, Argonne National Laboratory, Argonne, IL, 60439, USA
| | - Peng Liu
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Sheng Wang
- School of Environmental Studies & State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
19
|
Zhang C, Gan C, Ding L, Xiong M, Zhang A, Li P. Maternal inorganic mercury exposure and renal effects in the Wanshan mercury mining area, southwest China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 189:109987. [PMID: 31784104 DOI: 10.1016/j.ecoenv.2019.109987] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/12/2019] [Accepted: 11/17/2019] [Indexed: 06/10/2023]
Abstract
This study evaluated the relationship between urine mercury (UHg) concentrations and renal function (serum creatinine (SCr) and blood urea nitrogen (BUN)) in delivery women in the Wanshan mercury (Hg) mining area. Leishan County was selected as the control area. 165 and 65 maternal samples were collected from the Wanshan and Leishan area, respectively. The geometric means of UHg concentrations were 1.09 and 0.29 μg/L in Wanshan and Leishan subjects, respectively. Significant differences (p < 0.01) of UHg were observed between the two populations, indicating the potential risks of inorganic Hg exposure in the Wanshan population. The median (interquartile range) values of SCr were 69.1 (12.5) μmol/L and 46.0 (11.0) μmol/L for the Wanshan and Leishan populations, respectively, indicating significant differences (p < 0.01) between the two groups. However, no significant differences among BUN values for the two groups were observed. A significant positive correlation (r = 0.385, p < 0.001) was observed between UHg concentration and SCr in the study population. The odds ratio (OR) value of UHg in Wanshan area was 9.29 times higher than that in Leishan area (95% confidence interval (CI): 3.58-24.1). The OR value of SCr decrease in patients with low UHg was 0.32 times higher than that in patients with high UHg (95% CI: 0.19-0.55). The OR value of SCr decrease in the population with fish consumption was 0.71 times higher than that of the population without fish consumption (95% CI: 0.58-0.88). In conclusion, maternal IHg exposure caused impaired renal function and fish consumption may play a role in preventing Hg-induced nephrotoxicity.
Collapse
Affiliation(s)
- Chanchan Zhang
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Chunfang Gan
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Li Ding
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China
| | - Min Xiong
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Aihua Zhang
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China
| | - Ping Li
- School of Public Health, Guizhou Medical University, Guiyang, 550025, China; Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang, 550025, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| |
Collapse
|
20
|
Kong HK, Gan CF, Xiong M, Kwok KWH, Lui GCS, Li P, Chan HM, Lo SCL. Chronic Methylmercury Exposure Induces Production of Prostaglandins: Evidence From A Population Study and A Rat Dosing Experiment. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2019; 53:7782-7791. [PMID: 31244059 DOI: 10.1021/acs.est.9b00660] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Methylmercury (MeHg) is a well-known environmental neurotoxicant affecting millions worldwide who consume contaminated fishes and other food commodities. Exposure to MeHg has been shown to associate positively with some chronic diseases including cardiovascular diseases, but the mechanism is poorly characterized. MeHg had been shown to affect prostaglandin (PG) regulations in in vitro studies, but neither in vivo nor human studies investigating the effects of MeHg on PG regulations has been reported. Thus, the current study aimed to investigate the association between MeHg exposure and serum PG concentrations in a cross-sectional study among human adults followed by a validation investigation on the cause-effect relationship using a rat model. First, a total of 121 women were recruited from two cities: Wanshan and Leishan in Guizhou, China. Statistical analysis of the human data showed a positive association between blood total mercury (THg) levels and serum concentrations of PGF2α, 15-deoxy-PGJ2, and PGE2 after adjusting for site effects. In the animal study, adult female Sprague-Dawley rats were dosed with 40 μg MeHg/kg body weight/day for 12 weeks. Serum 15-deoxy-PGJ2 and 2,3 d-6-keto-PGF1α concentrations were found to increase significantly after 6 and 10 weeks of MeHg dosing, respectively, while serum PGF2α concentration increased significantly after 12 weeks of MeHg dosing. Combined results of our human and rat studies have shown that chronic MeHg exposure induced dysregulation of PG metabolism. As PGs are a set of mediators with very diverse functions, its abnormal production may serve as the missing mechanistic link between chronic MeHg exposure and various kinds of associated clinical conditions including neurodegeneration and cardiovascular diseases.
Collapse
Affiliation(s)
- Hang-Kin Kong
- Food Safety and Technology Research Center, Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Chun-Fang Gan
- School of Public Health & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education , Guizhou Medical University , Guiyang 550025 , China
| | - Min Xiong
- School of Public Health & Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education , Guizhou Medical University , Guiyang 550025 , China
| | - Kevin Wing-Hin Kwok
- Food Safety and Technology Research Center, Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom , Hong Kong
| | - Gilbert Chiu-Sing Lui
- Department of Statistics and Actuarial Science , The University of Hong Kong , Pokfulam , Hong Kong
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
- CAS Center for Excellence in Quaternary Science and Global Change , Xi'an , 710061 , China
| | - Hing Man Chan
- Food Safety and Technology Research Center, Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom , Hong Kong
- Department of Biology , University of Ottawa , Ottawa , Ontario K1N 6N5 , Canada
| | - Samuel Chun-Lap Lo
- Food Safety and Technology Research Center, Department of Applied Biology and Chemical Technology , The Hong Kong Polytechnic University , Hung Hom , Hong Kong
| |
Collapse
|
21
|
Wang X, Wang WX. The three 'B' of fish mercury in China: Bioaccumulation, biodynamics and biotransformation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:216-232. [PMID: 30999199 DOI: 10.1016/j.envpol.2019.04.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Revised: 03/30/2019] [Accepted: 04/06/2019] [Indexed: 06/09/2023]
Abstract
Mercury (Hg) is a global toxic pollutant and has raised the world's attention for decades. In this study, we reviewed the fish mercury levels in China (both marine and freshwater, as well as wild and farmed) documented over the past decade and their controlling environmental and biological factors. China is the largest contributor of global Hg cycling and the largest nation for the consumption and export of fish and fish product, thus Hg level in fish becomes a critical issue for food safety and public health. In China, Hg in fish is generally accumulated at a low level, but significant geographical differences were evident and formed the "hot spots" from the north to the south. For marine fish, the east (median: 70 ng g-1 ww, range: 5.0-330 ng g-1 ww) and southeast (median: 72 ng g-1 ww, range: 0.3-329 ng g-1 ww) of China have higher total Hg concentrations than the other coastal areas. For freshwater fish, Tibetan Plateau exhibited the highest total Hg levels (median: 104 ng g-1 ww, range: 5.0-868 ng g-1 ww). Risk assessment of the exposure of low-Hg-level fish to China's population deserves more attention and detailed fish consumption advisories to specific populations are urgently needed. The biokinetic model is a useful tool to characterize the underlying processes involved in Hg accumulation by fish. The diet (Hg concentration, speciation, food quality and quantity) and growth appear to be the important factors affecting the Hg levels of fish in China. The Hg biotransformation can also make contributions to Hg speciation and overall accumulation in fish. The intestinal microbes play an important role in Hg biotransformation and the potential for minimizing Hg contamination in fish deserves further investigation.
Collapse
Affiliation(s)
- Xun Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China
| | - Wen-Xiong Wang
- Department of Ocean Science, The Hong Kong University of Science and Technology (HKUST), Clear Water Bay, Kowloon, Hong Kong, HKUST Shenzhen Research Institute, Shenzhen, 518057, China.
| |
Collapse
|
22
|
Ji X, Liu C, Shi J, Pan G. Optimization of pretreatment procedure for MeHg determination in sediments and its applications. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:17707-17718. [PMID: 31028624 DOI: 10.1007/s11356-019-05179-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Accepted: 04/12/2019] [Indexed: 06/09/2023]
Abstract
Methylmercury (MeHg) in sediment is difficult to be determined due to its low concentration and binding compounds like sulfide and organic matter. Moreover, wet sediment samples have been suggested to behave differently from certified reference materials in MeHg analysis. Optimal pretreatment procedure for MeHg determination in sediments has not been ascertained and whether the procedure could apply to sediment samples with complex matrix merits further research. This work firstly compared recovery results of five pretreatment procedures for MeHg determination using ERM-CC580. Using the optimal pretreatment procedure, recovery results were analyzed in different sediment samples after manipulation of moisture content, organic matter, and acid volatile sulfide. The procedure using CuSO4/HNO3 as leaching solutions and mechanical shaking as extraction method was proved to produce the most satisfactory recovery results (100.67 ± 6.75%, mean ± standard deviation). And when moisture content varied from 20 to 80%, average recovery results in sediment samples ranged from 100 to 125%. Furthermore, before and after the manipulation of organic matter or acid volatile sulfide, spiking recovery results varied little and were all within acceptable limit (85~105%). Therefore, the procedure of CuSO4/HNO3-mechanical is proposed as a universal pretreatment method for MeHg determination in sediment samples with various characteristics.
Collapse
Affiliation(s)
- Xiaonan Ji
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Chengbin Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Jianbo Shi
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China
| | - Gang Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
- Beijing Advanced Science and Innovation Center, Chinese Academy of Sciences, Beijing, 101407, People's Republic of China.
- Center of Integrated Water-Energy-Food studies (iWEF), School of Animal, Rural, and Environmental Sciences, Nottingham Trent University, Brackenhurst Campus, Nottingham, NG25 0QF, UK.
| |
Collapse
|
23
|
Qiu G, Abeysinghe KS, Yang XD, Xu Z, Xu X, Luo K, Goodale E. Effects of Selenium on Mercury Bioaccumulation in a Terrestrial food Chain from an Abandoned Mercury Mining Region. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2019; 102:329-334. [PMID: 30637433 DOI: 10.1007/s00128-019-02542-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Accepted: 01/09/2019] [Indexed: 06/09/2023]
Abstract
Few reports of the relationship exist between mercury (Hg) and selenium (Se) from locations of severe Hg contamination in terrestrial environments. Here, we report the concentrations of Hg and Se as well as Se:Hg molar ratios in biotic samples collected from a region with a long history of Hg mining. Nitrogen isotopes (δ15N) were analyzed to confirm the trophic levels. Results showed that bird feathers at the top trophic level exhibited the highest Hg concentrations, while the lowest concentrations were found in herbivorous insects, demonstrating a significant biomagnification across the food chain. In contrast, herbivorous insects of different types (generalists vs. specialized rice pests) exhibited both the highest and the lowest concentrations of Se, indicating a lack of biomagnification. Indeed, Se was correlated positively with Hg when Se:Hg ratios were greater than one, suggesting Se:Hg molar ratios can be a controlling influence on Hg in terrestrial organisms.
Collapse
Affiliation(s)
- Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China.
| | - Kasun S Abeysinghe
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
| | - Xiao-Dong Yang
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kang Luo
- Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, 666303, China
| | - Eben Goodale
- Guangxi Key Laboratory of Forest Ecology and Conservation, College of Forestry, Guangxi University, Nanning, 530004, Guangxi, China
| |
Collapse
|
24
|
Qian X, Wu Y, Zhou H, Xu X, Xu Z, Shang L, Qiu G. Total mercury and methylmercury accumulation in wild plants grown at wastelands composed of mine tailings: Insights into potential candidates for phytoremediation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 239:757-767. [PMID: 29729617 DOI: 10.1016/j.envpol.2018.04.105] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2018] [Revised: 04/20/2018] [Accepted: 04/23/2018] [Indexed: 05/04/2023]
Abstract
Total mercury (THg) and methylmercury (MMHg) were investigated in 259 wild plants belonging to 49 species in 29 families that grew in heavily Hg-contaminated wastelands composed of cinnabar ore mine tailings (calcines) in the Wanshan region, southwestern China, the world's third largest Hg mining district. The bioconcentration factors (BCFs) of THg and MMHg from soil to roots ([THg]root/[THg]soil, [MMHg]root/[MMHg]soil) were evaluated. The results showed that THg and MMHg in both plants and soils varied widely, with ranges of 0.076-140 μg/g THg and 0.19-87 ng/g MMHg in roots, 0.19-106 μg/g THg and 0.06-31 ng/g MMHg in shoots, and 0.74-1440 μg/g THg and 0.41-820 ng/g MMHg in soil. Among all investigated species, Arthraxon hispidus, Eremochloa ciliaris, Clerodendrum bunge, and Ixeris sonchifolia had significantly elevated concentrations of THg in shoots and/or roots that reached 100 μg/g, whereas Chenopodium glaucum, Corydalisedulis maxim, and Rumex acetosa contained low values below 0.5 μg/g. In addition to the high THg concentrations, the fern E. ciliaris also showed high BCF values for both THg and MMHg exceeding 1.0, suggesting its capability to extract Hg from soils. Considering its dominance and the tolerance identified in the present study, E. ciliaris is suggested to be a practical candidate for phytoextraction, whereas A. hispidus is identified as a potential candidate for phytostabilization of Hg mining-contaminated soils.
Collapse
Affiliation(s)
- Xiaoli Qian
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550003, PR China
| | - Yonggui Wu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550003, PR China
| | - Hongyun Zhou
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550003, PR China
| | - Xiaohang Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Zhidong Xu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Lihai Shang
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China
| | - Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, PR China.
| |
Collapse
|
25
|
Yin D, He T, Yin R, Zeng L. Effects of soil properties on production and bioaccumulation of methylmercury in rice paddies at a mercury mining area, China. J Environ Sci (China) 2018; 68:194-205. [PMID: 29908739 DOI: 10.1016/j.jes.2018.04.028] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2017] [Revised: 04/30/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Rice paddy soil is recognized as the hotspot of mercury (Hg) methylation, which is mainly a biotic process mediated by many abiotic factors. In this study, effects of key soil properties on the production and bioaccumulation of Hg and methylmercury (MeHg) in Hg-contaminated rice paddies were investigated. Rice and soil samples were collected from the active Hg smelting site and abandoned Hg mining sites (a total of 124 paddy fields) in the Wanshan Mercury Mine, China. Total Hg (THg) and MeHg in soils and rice grains, together with sulfur (S), selenium (Se), organic matter (OM), nitrogen (N), phosphorus (P), mineral compositions (e.g., SiO2, Al2O3 and Fe2O3) and pH in soils were quantified. The results showed that long-term Hg mining activities had resulted in THg and MeHg contaminations in soil-rice system. The newly-deposited atmospheric Hg was more readily methylated relative to the native Hg already in soils, which could be responsible for the elevated MeHg levels in soils and rice grains around the active artificial Hg smelting site. The MeHg concentrations in soils and rice grains showed a significantly negative relationship with soil N/Hg, S/Hg and OM/Hg ratio possibly due to the formation of low-bioavailability Hg-S(N)-OM complexes in rhizosphere. The Hg-Se antagonism undoubtedly occurred in soil-rice system, while its role in bioaccumulation of MeHg in the MeHg-contaminated rice paddies was minor. However, other soil properties showed less influence on the production and bioaccumulation of MeHg in rice paddies located at the Wanshan Mercury Mine zone.
Collapse
Affiliation(s)
- Deliang Yin
- The Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou University, Guiyang 550003, China; College of Resources and Environments, Southwest University, Chongqing 400715, China
| | - Tianrong He
- The Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou University, Guiyang 550003, China.
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; Department of Civil and Environmental Engineering, Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Lingxia Zeng
- The Key Laboratory of Karst Environment and Geohazard Prevention, Guizhou University, Guiyang 550003, China
| |
Collapse
|
26
|
Du B, Feng X, Li P, Yin R, Yu B, Sonke JE, Guinot B, Anderson CWN, Maurice L. Use of Mercury Isotopes to Quantify Mercury Exposure Sources in Inland Populations, China. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:5407-5416. [PMID: 29649864 DOI: 10.1021/acs.est.7b05638] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Mercury (Hg) isotopic compositions in hair and dietary sources from Wanshan (WS) Hg mining area, Guiyang (GY) urban area, and Changshun (CS) rural area were determined to identify the major Hg exposure sources of local residents. Rice and vegetables displayed low δ202Hg and small negative to zero Δ199Hg, and are isotopically distinguishable from fish which showed relatively higher δ202Hg and positive Δ199Hg. Distinct isotopic signatures were also observed for human hair from the three areas. Shifts of 2 to 3‰ in δ202Hg between hair and dietary sources confirmed mass dependent fractionation of Hg isotopes occurs during metabolic processes. Near zero Δ199Hg of hair from WS and CS suggested rice is the major exposure source. Positive Δ199Hg of hair from GY was likely caused by consumption of fish. A binary mixing model based on Δ199Hg showed that rice and fish consumption accounted for 59% and 41% of dietary Hg source for GY residents, respectively, whereas rice is the major source for WS and CS residents. The model output was validated by calculation of probable daily intake of Hg. Our study suggests that Hg isotopes can be a useful tracer for quantifying exposure sources and understanding metabolic processes of Hg in humans.
Collapse
Affiliation(s)
- Buyun Du
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
- University of Chinese Academy of Sciences , Beijing 100049 , China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
| | - Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
| | - Runsheng Yin
- State Key Laboratory of Ore Deposit Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
| | - Ben Yu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry , Chinese Academy of Sciences , Guiyang 550081 , China
| | - Jeroen E Sonke
- Observatoire Midi-Pyrénées, Géosciences Environment Toulouse (GET), CNRS, IRD , Université Paul Sabatier , 14 Avenue Edouard-Belin , 31400 Toulouse , France
| | - Benjamin Guinot
- Observatoire Midi-Pyrénées, Laboratoire d'Aérologie (LA) , Université de Toulouse, CNRS, UPS , 14 Avenue Edouard-Belin , 31400 Toulouse , France
| | - Christopher W N Anderson
- Soil and Earth Sciences, Institute of Natural Resources , Massey University , Palmerston North , 4442 , New Zealand
| | - Laurence Maurice
- Observatoire Midi-Pyrénées, Géosciences Environment Toulouse (GET), CNRS, IRD , Université Paul Sabatier , 14 Avenue Edouard-Belin , 31400 Toulouse , France
| |
Collapse
|
27
|
Liu X, Ma A, Zhuang G, Zhuang X. Diversity of microbial communities potentially involved in mercury methylation in rice paddies surrounding typical mercury mining areas in China. Microbiologyopen 2018. [PMID: 29527815 PMCID: PMC6079176 DOI: 10.1002/mbo3.577] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
Mercury can be a serious hazard to human health, especially in paddy soils surrounding mining areas. In this study, mercury (Hg)‐methylating microbes with the potential biomarker gene hgcA were obtained from 45 paddy soil samples in mercury mining areas in Fenghuang, Wanshan, and Xunyang. In different areas, the abundance of the hgcA gene was affected by different environmental factors, including organic matter, pH, total carbon content, total nitrogen content, and total mercury content. Phylogenetic analysis showed that hgcA microbes in paddy soils were potentially members of the phyla Proteobacteria, Euryarchaeota, Chloroflexi, and two unnamed groups. Canonical correspondence analysis showed that pH and organic matter impacted the hgcA gene diversity and the microbial community structures in paddy soils. The identification of Hg‐methylating microbes may be crucial for understanding mercury methylation/demethylation processes, which would be helpful in assessing the risk of methylmercury contamination in the food chain.
Collapse
Affiliation(s)
- Xin Liu
- University of Sciences and Technology of China, Hefei, China.,CAS, Research Center for Eco-Environmental Sciences, Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, China
| | - Anzhou Ma
- CAS, Research Center for Eco-Environmental Sciences, Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guoqiang Zhuang
- CAS, Research Center for Eco-Environmental Sciences, Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Xuliang Zhuang
- CAS, Research Center for Eco-Environmental Sciences, Key Laboratory of Environmental Biotechnology, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
28
|
Jeevanaraj P, Hashim Z, Elias SM, Aris AZ. Mercury accumulation in marine fish most favoured by Malaysian women, the predictors and the potential health risk. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:23714-23729. [PMID: 27619374 DOI: 10.1007/s11356-016-7402-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2016] [Accepted: 08/04/2016] [Indexed: 06/06/2023]
Abstract
We identified marine fish species most preferred by women at reproductive age in Selangor, Malaysia, mercury concentrations in the fish muscles, factors predicting mercury accumulation and the potential health risk. Nineteen most preferred marine fish species were purchased (n = 175) from selected fisherman's and wholesale market. Length, weight, habitat, feeding habit and trophic level were recognised. Edible muscles were filleted, dried at 80 °C, ground on an agate mortar and digested in Multiwave 3000 using HNO3 and H2O2. Total mercury was quantified using VP90 cold vapour system with N2 carrier gas. Certified reference material DORM-4 was used to validate the results. Fish species were classified as demersal (7) and pelagic (12) or predators (11), zoo benthos (6) and planktivorous (2). Length, weight and trophic level ranged from 10.5 to 75.0 cm, 0.01 to 2.50 kg and 2.5 to 4.5, respectively. Geometric mean of total mercury ranged from 0.21 to 0.50 mg/kg; maximum in golden snapper (0.90 mg/kg). Only 9 % of the samples exceeded the JECFA recommendation. Multiple linear regression found demersal, high trophic (≥4.0) and heavier fishes to accumulate more mercury in muscles (R 2 = 27.3 %), controlling for all other factors. About 47 % of the fish samples contributed to mercury intake above the provisional tolerable level (45 μg/day). While only a small portion exceeded the JECFA fish Hg guideline, the concentration reported may be alarming for heavy consumers. Attention should be given in risk management to avoid demersal and high trophic fish, predominantly heavier ones.
Collapse
Affiliation(s)
- Pravina Jeevanaraj
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, University Putra Malaysia, Serdang, Malaysia.
| | - Zailina Hashim
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, University Putra Malaysia, Serdang, Malaysia.
| | - Saliza Mohd Elias
- Department of Environmental and Occupational Health, Faculty of Medicine and Health Science, University Putra Malaysia, Serdang, Malaysia
| | - Ahmad Zaharin Aris
- Department of Environmental Science, Faculty of Environmental Studies, University Putra Malaysia, Serdang, Malaysia
| |
Collapse
|
29
|
Liang P, Feng X, You Q, Zhang J, Cao Y, Leung AOW, Wu S. Mercury speciation, distribution, and bioaccumulation in a river catchment impacted by compact fluorescent lamp manufactures. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:10903-10910. [PMID: 26898928 DOI: 10.1007/s11356-016-6229-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
The influence from the manufacturing of compact fluorescent lamps (CFL) on mercury (Hg) speciation and distribution in river catchments nearby a typical CFL manufacturing area in China was investigated. Water, sediment, river snail (Procambarus clarkii), and macrophyte (Paspalum distichum L.) samples were collected. Total Hg (THg) and methylmercury (MeHg) concentrations in water ranged from 1.06 to 268 ng · L(-1) and N.D. -2.14 ng · L(-1), respectively. MeHg was significantly positively correlated with THg in water. THg and MeHg in sediment ranged from 15.0 to 2480 and 0.06 to 1.85 ng · g(-1), respectively. River snail samples exhibited high concentrations of THg (206-1437 ng · g(-1)) and MeHg (31.4-404 ng · g(-1)). THg and MeHg concentrations in root of P. distichum L. were significantly higher than those in shoot, indicating that THg and MeHg in the plant were mainly attributed to root assimilation. A very high bioaccumulation factor (20.9 ± 22.1) for MeHg in P. distichum L was noted, suggesting that P. distichum L. might have a potential role in phytoremediating MeHg contaminated soil due to its abnormal uptake capacity to MeHg.
Collapse
Affiliation(s)
- Peng Liang
- School of Environmental and Resource Sciences, Zhejiang Agricultural and Forest University, Lin'an, Zhejiang Province, 311300, People's Republic of China
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, People's Republic of China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Hangzhou, 311300, China
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, People's Republic of China.
| | - Qiongzhi You
- School of Environmental and Resource Sciences, Zhejiang Agricultural and Forest University, Lin'an, Zhejiang Province, 311300, People's Republic of China
| | - Jin Zhang
- School of Environmental and Resource Sciences, Zhejiang Agricultural and Forest University, Lin'an, Zhejiang Province, 311300, People's Republic of China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Hangzhou, 311300, China
| | - Yucheng Cao
- School of Environmental and Resource Sciences, Zhejiang Agricultural and Forest University, Lin'an, Zhejiang Province, 311300, People's Republic of China
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Hangzhou, 311300, China
| | - Anna Oi Wah Leung
- Department of Biology and Croucher Institute for Environmental Sciences, Hong Kong Baptist University, Hong Kong, People's Republic of China
| | - Shengchun Wu
- School of Environmental and Resource Sciences, Zhejiang Agricultural and Forest University, Lin'an, Zhejiang Province, 311300, People's Republic of China.
- Key Laboratory of Soil Contamination Bioremediation of Zhejiang Province, Hangzhou, 311300, China.
| |
Collapse
|
30
|
Li P, Feng X, Chan HM, Zhang X, Du B. Human Body Burden and Dietary Methylmercury Intake: The Relationship in a Rice-Consuming Population. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:9682-9689. [PMID: 26189659 DOI: 10.1021/acs.est.5b00195] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Rice can be the main route of methylmercury (MeHg) exposure for rice-consuming populations living in area where mercury (Hg) is mined. However, the current risk assessment paradigm for MeHg exposure is based on epidemiological data collected from fish-consuming populations. This study was designed to evaluate the relationship between dietary MeHg intake and human body burden in a rice -consuming population from the Wanshan Hg mining area in China. Hair MeHg concentrations averaged 2.07 ± 1.79 μg/g, and the average blood MeHg concentration across the study area ranged from 2.20 to 9.36 μg/L. MeHg constituted 52.8 ± 17.5% and 71.7 ± 18.2% of total Hg (THg) on average in blood and hair samples, respectively. Blood and hair MeHg concentrations, rather than THg, can be used as a proxy of human MeHg exposure. Hair MeHg levels showed no significant monthly variation; however, hair THg can be impacted by inorganic Hg exposure. The toxicokinetic model of MeHg exposure based on fish consumption underestimated the human hair MeHg levels, and this may be a consequence of the high hair-to-blood MeHg ratio (361 ± 105) in the studied rice-consuming population. The use of risk assessment models based on fish consumption may not be appropriate for inland mining areas where rice is the staple food.
Collapse
Affiliation(s)
- Ping Li
- †State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Xinbin Feng
- †State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
| | - Hing-Man Chan
- ‡Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, K1N 6N5, Canada
| | - Xiaofeng Zhang
- §Department of Toxicology, Public Health College, Harbin Medical University, Harbin, 150081, China
| | - Buyun Du
- †State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550081, China
- !!University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
31
|
Li P, Du B, Chan HM, Feng X. Human inorganic mercury exposure, renal effects and possible pathways in Wanshan mercury mining area, China. ENVIRONMENTAL RESEARCH 2015; 140:198-204. [PMID: 25863593 DOI: 10.1016/j.envres.2015.03.033] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/26/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
Rice can accumulate methylmercury (MeHg) and rice consumption is the main route of MeHg exposure for the local population in Guizhou, China. However, inorganic Hg (IHg) load in human body is not comprehensively studied in highly Hg polluted areas such as Hg mining areas. This study is designed to evaluate human IHg exposure, related renal effects and possible pathways in Wanshan Hg mining area, Guizhou, Southwest China. Residents lived within 3 km to the mine waste heaps showed high Urine Hg (UHg) concentrations and the geometrical means (Geomean) of UHg were 8.29, 5.13, and 10.3 μg/g Creatinine (Cr) at site A, D, and E, respectively. It demonstrated a gradient of UHg concentrations with the distance from the pollution sources. A significantly positive correlation between paired results for UHg concentrations and serum creatinine (SCr) was observed in this study, but not for UHg and blood urea nitrogen (BUN). There are significant increases of SCr in two quartiles with high UHg concentrations. The results indicated that human IHg exposure may cause impairment of renal function. By calculation of Probable Daily Intake from different routes, we found that dietary intake is the main pathway of IHg exposure for the local population, rather than inhalation of Hg vapor.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Buyun Du
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hing Man Chan
- Centre for Advanced Research in Environmental Genomics, University of Ottawa, Ottawa, Canada K1N 6N5
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
| |
Collapse
|
32
|
Olivero-Verbel J, Caballero-Gallardo K, Turizo-Tapia A. Mercury in the gold mining district of San Martin de Loba, South of Bolivar (Colombia). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:5895-907. [PMID: 25354433 DOI: 10.1007/s11356-014-3724-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 10/14/2014] [Indexed: 05/12/2023]
Abstract
Gold mining is responsible for most Hg pollution in developing countries. The aims of this study were to assess the levels of total Hg (T-Hg) in human hair, fish, water, macrophyte, and sediment samples in the gold mining district of San Martin de Loba, Colombia, as well as to determine fish consumption-based risks for T-Hg ingestion. T-Hg levels were measured by electrothermal atomization and atomic absorption spectroscopy. The overall mean T-Hg level in hair for humans in the mining district of San Martin de Loba was 2.12 μg/g, whereas for the reference site, Chimichagua, Cesar, it was 0.58 μg/g. Mean T-Hg levels were not different when considered within localities belonging to the mining district but differed when the comparison included Chimichagua. T-Hg levels in examined locations were weakly but significantly associated with age and height, as well as with fish consumption, except in San Martin de Loba. High T-Hg concentrations in fish were detected in Pseudoplatystoma magdaleniatum, Caquetaia kraussii, Ageneiosus pardalis, Cyrtocharax magdalenae, and Triportheus magdalenae, whereas the lowest appeared in Prochilodus magdalenae and Hemiancistrus wilsoni. In terms of Hg exposure due to fish consumption, only these last two species offer some guarantee of low risk for Hg-related health problems. Water, floating macrophytes, and sediments from effluents near mining sites also had high Hg values. In mines of San Martin de Loba and Hatillo de Loba, for instance, the geoaccumulation index (I(geo)) for sediments reached values greater than 6, indicating extreme pollution. In short, these data support the presence of a high Hg-polluted environment in this mining district, with direct risk for deleterious effects on the health of the mining communities.
Collapse
Affiliation(s)
- Jesus Olivero-Verbel
- Environmental and Computational Chemistry Group. School of Pharmaceutical Sciences. Campus of Zaragocilla, University of Cartagena, Cartagena, Colombia,
| | | | | |
Collapse
|
33
|
Chen T, Jin Y, Qiu X, Chen X. A study of the impact of moist-heat and dry-heat treatment processes on hazardous trace elements migration in food waste. JOURNAL OF THE AIR & WASTE MANAGEMENT ASSOCIATION (1995) 2015; 65:278-286. [PMID: 25947124 DOI: 10.1080/10962247.2014.990117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
UNLABELLED Using laboratory experiments, the authors investigated the impact of dry-heat and moist-heat treatment processes on hazardous trace elements (As, Hg, Cd, Cr, and Pb) in food waste and explored their distribution patterns for three waste components: oil, aqueous, and solid components. The results indicated that an insignificant reduction of hazardous trace elements in heat-treated waste-0.61-14.29% after moist-heat treatment and 4.53-12.25% after dry-heat treatment-and a significant reduction in hazardous trace elements (except for Hg without external addition) after centrifugal dehydration (P < 0.5). Moreover, after heat treatment, over 90% of the hazardous trace elements in the waste were detected in the aqueous and solid components, whereas only a trace amount of hazardous trace elements was detected in the oil component (<0.01%). In addition, results indicated that heat treatment process did not significantly reduce the concentration of hazardous trace elements in food waste, but the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk considerably. Finally, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment on the removal of external water-soluble ionic hazardous trace elements. IMPLICATIONS An insignificant reduction of hazardous trace elements in heat-treated waste showed that heat treatment does not reduce trace elements contamination in food waste considerably, whereas the separation process for solid and aqueous components, such as centrifugal dehydration, could reduce the risk significantly. Moreover, combined with the separation technology for solid and liquid components, dry-heat treatment is superior to moist-heat treatment for the removal of external water-soluble ionic hazardous trace elements, by exploring distribution patterns of trace elements in three waste components: oil, aqueous, and solid components.
Collapse
Affiliation(s)
- Ting Chen
- a School of Environment , Tsinghua University , Beijing , P.R. China
| | | | | | | |
Collapse
|
34
|
Du M, Wei D, Tan Z, Lin A, Du Y. Predicted no-effect concentrations for mercury species and ecological risk assessment for mercury pollution in aquatic environment. J Environ Sci (China) 2015; 28:74-80. [PMID: 25662241 DOI: 10.1016/j.jes.2014.06.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2014] [Revised: 06/03/2014] [Accepted: 06/04/2014] [Indexed: 06/04/2023]
Abstract
Mercury (Hg) exists in different chemical forms presenting varied toxic potentials. It is necessary to explore an ecological risk assessment method for different mercury species in aquatic environment. The predicted no-effect concentrations (PNECs) for Hg(II) and methyl mercury (MeHg) in the aqueous phase, calculated using the species sensitivity distribution method and the assessment factor method, were 0.39 and 6.5×10(-3)μg/L, respectively. The partition theory of Hg between sediment and aqueous phases was considered, along with PNECs for the aqueous phase to conduct an ecological risk assessment for Hg in the sediment phase. Two case studies, one in China and one in the Western Black Sea, were conducted using these PNECs. The toxicity of mercury is heavily dependent on their forms, and their potential ecological risk should be respectively evaluated on the basis of mercury species.
Collapse
Affiliation(s)
- Meng Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; Water Quality Monitoring Center of Beijing Waterworks Group Company Limited, Beijing 100192, China.
| | - Dongbin Wei
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Zhuowei Tan
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Aiwu Lin
- Water Quality Monitoring Center of Beijing Waterworks Group Company Limited, Beijing 100192, China
| | - Yuguo Du
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
35
|
Method development for the simultaneous determination of methylmercury and inorganic mercury in seafood. Food Control 2014. [DOI: 10.1016/j.foodcont.2014.05.054] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Mela M, Neto FF, Yamamoto FY, Almeida R, Grötzner SR, Ventura DF, de Oliveira Ribeiro CA. Mercury distribution in target organs and biochemical responses after subchronic and trophic exposure to neotropical fish Hoplias malabaricus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2014; 40:245-256. [PMID: 23925892 DOI: 10.1007/s10695-013-9840-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2013] [Accepted: 07/31/2013] [Indexed: 06/02/2023]
Abstract
In the present study, we investigated the mercury distribution, mercury bioaccumulation, and oxidative parameters in the Neotropical fish Hoplias malabaricus after trophic exposure. Forty-three individuals were distributed into three groups (two exposed and one control) and trophically exposed to fourteen doses of methylmercury each 5 days, totalizing the doses of 1.05 μg g⁻¹ (M1.05) and 10.5 μg g⁻¹ (M10.5 group). Autometallography technique revealed the presence of mercury in the intestinal epithelia, hepatocytes, and renal tubule cells. Mercury distribution was dose-dependent in the three organs: intestine, liver, and kidney. Reduced glutathione concentration, glutathione peroxidase, catalase, and glutathione S-transferase significantly decreased in the liver of M1.05, but glutathione reductase increased and lipid peroxidation levels were not altered. In the M10.5, most biomarkers were not altered; only catalase activity decreased. Hepatic and muscle mercury bioaccumulation was dose-dependent, but was not influenced by fish sex. The mercury localization and bioaccumulation corroborates some histopathological findings in this fish species (previously verified by Mela et al. in Ecotoxicol Environ Saf 68:426-435, 2007). However, the results of redox biomarkers did not explain histopathological findings previously reported in M10.5. Thus, fish accommodation to the stressor may reestablish antioxidant status at the highest dose, but not avoid cell injury.
Collapse
Affiliation(s)
- Maritana Mela
- Departamento de Psicologia Experimental, Instituto de Psicologia, Universidade de São Paulo, São Paulo, SP, Brazil,
| | | | | | | | | | | | | |
Collapse
|
37
|
Bravo AG, Cosio C, Amouroux D, Zopfi J, Chevalley PA, Spangenberg JE, Ungureanu VG, Dominik J. Extremely elevated methyl mercury levels in water, sediment and organisms in a Romanian reservoir affected by release of mercury from a chlor-alkali plant. WATER RESEARCH 2014; 49:391-405. [PMID: 24216231 DOI: 10.1016/j.watres.2013.10.024] [Citation(s) in RCA: 70] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Revised: 09/17/2013] [Accepted: 10/09/2013] [Indexed: 05/25/2023]
Abstract
We examined mercury (Hg) biogeochemistry and biomagnification in the Babeni Reservoir, a system strongly affected by the release of Hg from a chlor-alkali plant. Total mercury (THg) concentrations in river water reached 88 ng L(-1) but decreased rapidly in the reservoir (to 9 ng L(-1)). In contrast, monomethylmercury (MMHg) concentrations increased from the upstream part of the reservoir to the central part (0.7 ng L(-1)), suggesting high methylation within the reservoir. Moreover, vertical water column profiles of THg and MMHg indicated that Hg methylation mainly occurred deep in the water column and at the sediment-water interface. The discharge of Hg from a chlor-alkali plant in Valcea region caused the highest MMHg concentrations ever found in non-piscivorous fish worldwide. MMHg concentrations and bioconcentration factors (BCF) of plankton and macrophytes revealed that the highest biomagnification of MMHg takes place in primary producers.
Collapse
Affiliation(s)
- Andrea Garcia Bravo
- Institute F.-A. Forel, University of Geneva, 10, Route de Suisse, 1290 Versoix, Switzerland.
| | - Claudia Cosio
- Institute F.-A. Forel, University of Geneva, 10, Route de Suisse, 1290 Versoix, Switzerland
| | - David Amouroux
- Laboratoire de Chimie Analytique Bio-Inorganique et Environnement, IPREM UMR 5254 CNRS - Université de Pau et des Pays de l'Adour, Hélioparc, 64053 Pau, France
| | - Jakob Zopfi
- Environmental Geosciences, University of Basel, Bernoullistrasse 30, 4056 Basel, Switzerland
| | | | - Jorge E Spangenberg
- Institute of Earth Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | | | - Janusz Dominik
- Institute F.-A. Forel, University of Geneva, 10, Route de Suisse, 1290 Versoix, Switzerland
| |
Collapse
|
38
|
Wang X, Ye Z, Li B, Huang L, Meng M, Shi J, Jiang G. Growing rice aerobically markedly decreases mercury accumulation by reducing both Hg bioavailability and the production of MeHg. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2014; 48:1878-1885. [PMID: 24383449 DOI: 10.1021/es4038929] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Rice consumption represents a major route of mercury (Hg) and methylmercury (MeHg) exposure for those living in certain areas of inland China. In this study we investigated the effects of water management on bioavailable Hg, MeHg, and sulfate-reducing bacteria (SRB, abundance and community composition) in rhizosphere soil, and total Hg (THg) and MeHg in rice plants grown under glasshouse and paddy field conditions. Aerobic conditions greatly decreased the amount of THg and MeHg taken up by rice plants and affected their distribution in different plant tissues. There were positive correlations between bioavailable Hg and THg in brown rice and roots and between numbers of SRB and MeHg in brown rice, roots, and rhizosphere soil. Furthermore, the community composition of SRB was dramatically influenced by the water management regimes. Our results demonstrate that the greatly reduced bioavailability of Hg and production of MeHg are due to decreased SRB numbers and proportion of Hg methylators in the rhizosphere under aerobic conditions. These are the main reasons for the reduced Hg and MeHg accumulation in aerobically grown rice. Water management is indicated as an effective measure that can be used to reduce Hg and MeHg uptake by rice plants from Hg-contaminated paddy fields.
Collapse
Affiliation(s)
- Xun Wang
- State Key Laboratory of Biocontrol and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University , Guangzhou 510006, P. R. China
| | | | | | | | | | | | | |
Collapse
|
39
|
Xing X, Du R, Li Y, Li B, Cai Q, Mo G, Gong Y, Chen Z, Wu Z. Structural change of human hair induced by mercury exposure. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:11214-11220. [PMID: 23981029 DOI: 10.1021/es402335k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Mercury is one of the most hazardous pollutants in the environment. In this paper, the structural change of human hair induced by mercury exposure was studied. Human hair samples were, respectively, collected from the normal Beijing area and the Hg-contaminated Wanshan area of the Guizhou Province, China. Inductively coupled plasma mass spectroscopy was used to detect the element contents. A small angle X-ray scattering technique was used to probe the structural change. Three reflections with 8.8, 6.7, and 4.5 nm spacing were compared between the normal and the Hg-contaminated hair samples. The results confirm that the 4.5 nm reflection is from the ordered fibrillar structure of glycosaminoglycan (GAG) in proteoglycan (PG) that composes the matrix around the intermediate filaments. The increase of Ca content makes the regular oriented fibrillar structure of GAG transform to a random oriented one, broadening the angular extent of the reflection with 4.5 nm spacing. However, overdose Hg makes the core proteins where the ordered fibrils of GAG are attached become coiled, which destroys the ordered arrangements of fibrillar GAG in PG, resulting in the disappearance of the reflections with 4.5 nm spacing. The disappearance of the 4.5 nm reflection can be used as a bioindicator of overdose Hg contamination to the human body. A supercoiled-coil model of hair nanoscale structure and a possible mechanism of mercury effect in human hair are proposed in this paper.
Collapse
Affiliation(s)
- Xueqing Xing
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences , Beijing, Beijing Municipality 100049, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Li B, Shi JB, Wang X, Meng M, Huang L, Qi XL, He B, Ye ZH. Variations and constancy of mercury and methylmercury accumulation in rice grown at contaminated paddy field sites in three Provinces of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 181:91-97. [PMID: 23838485 DOI: 10.1016/j.envpol.2013.06.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 06/13/2013] [Accepted: 06/15/2013] [Indexed: 06/02/2023]
Abstract
Many paddy fields have been contaminated by mercury (Hg) in mining areas of China. In this study, twenty-six rice cultivars and three Hg contaminated paddy fields in different geographic regions were selected for field trials and aimed to investigate the variations and similarities in total Hg (THg) and methylmercury (MeHg) accumulations in brown rice (seeds) across sites. Our results revealed widescale cultivar variation in THg (13-52 ng g(-1) at Wanshan) and MeHg (3.5-23 ng g(-1)) accumulation and %MeHg (17.7-89%) in seeds. The ability to translocate is an important factor in the levels of THg and MeHg in seed. Cultivar tended to stability in THg accumulation across sites. Some cultivars accumulated lower concentrations of both THg and MeHg in seeds at fields seriously contaminated by Hg. Present results suggest that appropriate cultivar selection is a possible way to reduce THg and MeHg accumulation in seeds of rice grown in Hg-contaminated regions.
Collapse
Affiliation(s)
- B Li
- State Key Laboratory for Bio-control and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou 510006, China
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Qiu G, Feng X, Meng B, Zhang C, Gu C, Du B, Lin Y. Environmental geochemistry of an abandoned mercury mine in Yanwuping, Guizhou Province, China. ENVIRONMENTAL RESEARCH 2013; 125:124-130. [PMID: 23472607 DOI: 10.1016/j.envres.2013.01.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 01/06/2013] [Accepted: 01/15/2013] [Indexed: 06/01/2023]
Abstract
The distribution of mercury (Hg) and methylmercury (MeHg) in paddy soil and rice grain (polished), and Hg in surface waters and gaseous elemental Hg (GEM) in atmosphere at the Yanwuping Hg mining district (YMM), Guizhou Province, China was investigated. Results exhibited high total Hg (Hg(T)) and MeHg concentrations in soil at sites adjacent to calcine pile and tailings, and ranged from 5.6 to 240mgkg(-1) and 0.66 to 7.3μgkg(-1), respectively. Concentrations of Hg(T) in rice ranged from 10 to 45μgkg(-1), and high MeHg concentrations were also observed ranging from 3.2 to 39μgkg(-1). The elevated Hg(T) and MeHg concentrations in soil in the vicinity of calcine pile and tailings reflected in high MeHg concentrations in rice. Those data were significantly correlated with MeHg concentration in soil confirming that soil is the major source of MeHg in rice. The highest Hg concentrations in water, otherwise rather low, ranging from 3.8 to 51ngl(-1) for Hg(T) and of 0.14 to 2.7ngl(-1) for MeHg(T), were found at the proximity of calcine pile suggesting that untreated mine wastes are the principal source of Hg in the nearby area. Huge emissions of GEM were also detected from calcines affecting the whole area, ranging from 12 to 180ngm(-3) with an average of 46±35ngm(-3). The distribution patterns of Hg and MeHg observed in the environmental compartments suggest an elevated contamination of Hg in the region. Elevated high MeHg concentrations in rice might pose a potential health risk to local populations.
Collapse
Affiliation(s)
- Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 55002, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Vaselli O, Higueras P, Nisi B, María Esbrí J, Cabassi J, Martínez-Coronado A, Tassi F, Rappuoli D. Distribution of gaseous Hg in the Mercury mining district of Mt. Amiata (Central Italy): a geochemical survey prior the reclamation project. ENVIRONMENTAL RESEARCH 2013; 125:179-187. [PMID: 23477568 DOI: 10.1016/j.envres.2012.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2012] [Revised: 11/15/2012] [Accepted: 12/04/2012] [Indexed: 06/01/2023]
Abstract
The Mt. Amiata volcano is the youngest and largest volcanic edifice in Tuscany (central-northern Italy) and is characterized by a geothermal field, exploited for the production of electrical energy. In the past Mt. Amiata was also known as a world-class Hg district whose mining activity was mainly distributed in the central-eastern part of this silicic volcanic complex, and particularly in the municipality of Abbadia San Salvatore. In the present work we report a geochemical survey on Hg(0) measurements related to the former mercury mine facilities prior the reclamation project. The Hg(0) measurements were carried out by car for long distance regional surveys, and on foot for local scale surveys by using two LUMEX (915+ and M) devices. This study presents the very first Hg(0) data obtained with this analytical technique in the Mt. Amiata area. The facilities related to the mining areas and structures where cinnabar was converted to metallic Hg are characterized by high Hg values (>50,000ngm(-3)), although the urban center of Abbadia San Salvatore, few hundred meters away, does not appear to be receiving significant pollution from the calcine area and former industrial edifices, all the recorded values being below the values recommended by the issuing Tuscany Region authorities (300ngm(-3)) and in some cases approaching the Hg background levels (3-5ngm(-3)) for the Mt. Amiata area.
Collapse
Affiliation(s)
- Orlando Vaselli
- Dipartimento di Scienze della Terra, Via G. Pira, 4, 50121 Firenze, Italy; CNR-IGG Istituto di Geoscienze e Georisorse, Via G. Pira, 4, 50121 Firenze, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Huang J, Kang S, Wang S, Wang L, Zhang Q, Guo J, Wang K, Zhang G, Tripathee L. Wet deposition of mercury at Lhasa, the capital city of Tibet. THE SCIENCE OF THE TOTAL ENVIRONMENT 2013; 447:123-132. [PMID: 23376524 DOI: 10.1016/j.scitotenv.2013.01.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2012] [Revised: 12/31/2012] [Accepted: 01/01/2013] [Indexed: 06/01/2023]
Abstract
Quantifying the contribution of mercury (Hg) in wet deposition is important for understanding Hg biogeochemical cycling and anthropogenic sources, and verifying atmospheric models. Mercury in wet deposition was measured over the year 2010, in Lhasa the capital and largest city in Tibet. Precipitation samples were analyzed for total Hg (HgT), particulate-bound Hg (HgP), and reactive Hg (HgR). The volume-weighted mean (VWM) concentrations and wet deposition fluxes of HgT, HgP and HgR in precipitation were 24.8 ng L-1 and 8.2 μg m-2 yr-1, 19.9 ng L-1 and 7.1 μg m-2 yr-1, and 0.5 ng L-1 and 0.19 μg m-2 yr-1, respectively. Concentrations of HgT and HgP were statistically higher during the non-monsoon season than during the monsoon season, while HgR concentrations were statistically higher during the monsoon season than during the non-monsoon season. Most HgT, HgP and HgR wet deposition occurred during the monsoon season. Concentrations of HgP and HgR were 77% and 5% of the HgT on average (VWM), respectively. Concentrations of HgT and HgP were weakly negatively correlated with precipitation amount (r2 = 0.09 and 0.10; p < 0.05), indicating that below-cloud scavenging of Hg from the local atmosphere was an important mechanism contributing Hg to precipitation. High HgP%, as well as a significant positive correlation between HgT and HgP, confirms that Hg wet deposition at Lhasa was primarily occurring in the form of atmospheric HgP below-cloud scavenging. Moreover, the HgT concentration, rather than the precipitation amount, was found to be the governing factor affecting HgT wet deposition flux. A comparison among modeled wet and dry deposition fluxes, and measurements suggested that estimates of both wet and dry Hg deposition fluxes by the GEOS-Chem model were 2 to 3 times higher than the measured annual wet flux.
Collapse
Affiliation(s)
- Jie Huang
- Key Laboratory of Tibetan Environment Changes and Land Surface Processes, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Scientific Opinion on the risk for public health related to the presence of mercury and methylmercury in food. EFSA J 2012. [DOI: 10.2903/j.efsa.2012.2985] [Citation(s) in RCA: 311] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
45
|
Lin Y, Vogt R, Larssen T. Environmental mercury in China: a review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2012; 31:2431-2444. [PMID: 22887129 DOI: 10.1002/etc.1980] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2012] [Revised: 06/03/2012] [Accepted: 07/06/2012] [Indexed: 06/01/2023]
Abstract
Mercury is a global pollutant that can be transported over long distances and can bioaccumulate. Currently, China is the country that contributes most to atmospheric Hg emissions and has the greatest intentional (industrial) use of Hg. Mercury in the Chinese environment is generally elevated, particularly in air and water bodies. Remote areas in China also show elevated Hg levels in air and water bodies compared to other rural regions in the world. Large river estuaries are often heavily affected by upstream industrial sources. Mercury is also elevated in sediments, a direct result of contamination in river systems. Regardless of the few heavily polluted sites, the urban environment in Chinese cities is comparable to that of other megacities in terms of Hg pollution, considering the size and rapid development of Chinese cities. Studies on Hg in fish showed generally low levels of contamination resulting from low bioaccumulation of Hg in the mostly short food chains. Mercury in rice has recently received increased research interest; elevated concentrations have been reported from rice grown in contaminated areas and may pose a threat to people dependent on such locally grown food. For the general population, Hg exposure from rice is, however, small. In addition, Hg hair concentration in the Chinese population showed generally low levels of exposure to Hg, except for people with special occupational exposure.
Collapse
Affiliation(s)
- Yan Lin
- Norwegian Institute for Water Research, Oslo, Norway.
| | | | | |
Collapse
|
46
|
Li P, Feng X, Qiu G, Shang L, Wang S. Mercury pollution in Wuchuan mercury mining area, Guizhou, Southwestern China: the impacts from large scale and artisanal mercury mining. ENVIRONMENT INTERNATIONAL 2012; 42:59-66. [PMID: 21600653 DOI: 10.1016/j.envint.2011.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 03/30/2011] [Accepted: 04/08/2011] [Indexed: 05/30/2023]
Abstract
To evaluate the environmental impacts from large scale mercury mining (LSMM) and artisanal mercury mining (AMM), total mercury (THg) and methyl mercury (MeHg) were determined in mine waste, ambient air, stream water and soil samples collected from Wuchuan mercury (Hg) mining area, Guizhou, Southwestern China. Mine wastes from both LSMM and AMM contained high THg concentrations, which are important Hg contamination sources to the local environment. Total gaseous mercury (TGM) concentrations in the ambient air near AMM furnaces were highly elevated, which indicated that AMM retorting is a major source of Hg emission. THg concentrations in the stream water varied from 43 to 2100 ng/L, where the elevated values were mainly found in the vicinity of AMM and mine waste heaps of LSMM. Surface soils were seriously contaminated with Hg, and land using types and organic matter played an important role in accumulation and transportation of Hg in soil. The results indicated heavy Hg contaminations in the study area, which were resulted from both LSMM and AMM. The areas impacted by LSMM were concentrated in the historical mining and smelting facilities, while Hg pollution resulted from AMM can be distributed anywhere in the Hg mining area.
Collapse
Affiliation(s)
- Ping Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang, 550002, China
| | | | | | | | | |
Collapse
|
47
|
Shao DD, Wu SC, Liang P, Kang Y, Fu WJ, Zhao KL, Cao ZH, Wong MH. A human health risk assessment of mercury species in soil and food around compact fluorescent lamp factories in Zhejiang Province, PR China. JOURNAL OF HAZARDOUS MATERIALS 2012; 221-222:28-34. [PMID: 22575176 DOI: 10.1016/j.jhazmat.2012.03.061] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 02/16/2012] [Accepted: 03/22/2012] [Indexed: 05/31/2023]
Abstract
This study investigated total mercury (THg) and methylmercury (MeHg) contamination in a major production center of compact fluorescent lamps (CFLs) located in Gaohong, Zhejiang Province, China. This was a result of the growing concern associated with the release of mercury into the environment from such components. The results of the study included the following mean concentrations for THg and MeHg of 157±11 (61-518)ng/gdw and 0.28±0.07 (0.07-0.67)ng/gdw in agricultural soil, respectively, and 18.6±6.5 (3.2-47.8)ng/gww and 0.11±0.03 (0.02-0.37)ng/gww in vegetable samples, respectively. A significant correlation was observed between THg in vegetables and corresponding soil samples (r=0.64, p<0.01). THg and MeHg in sediment samples had respective concentrations ranging from 28 to 1019ng/gdw and 0.11 to 3.15ng/gdw. Mud skipper bought from the local market contained the highest Hg (THg: 170±45ng/gww, MeHg: 143±37ng/gww) amongst all fish species (THg: 14-170; MeHg: 11-143ng/gww) of the study. The risk assessment indicated that fish consumption should not result in a MeHg EDI exceeding the RfD (0.1μg/kgbw/d) for both adults and children, when MeHg bioaccessibility is taken into account.
Collapse
Affiliation(s)
- D D Shao
- School of Environmental and Resource Sciences, Zhejiang Agriculture and Forestry University, Linan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
48
|
Li G, Liu G, Zhou C, Chou CL, Zheng L, Wang J. Spatial distribution and multiple sources of heavy metals in the water of Chaohu Lake, Anhui, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2012; 184:2763-2773. [PMID: 21701891 DOI: 10.1007/s10661-011-2149-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Accepted: 05/25/2011] [Indexed: 05/31/2023]
Abstract
In this study, a survey for the spatial distribution of heavy metals in Chaohu Lake of China was conducted. Sixty-two surface water samples were collected from entire lake including three of its main river entrances. This is the first systematic report concerning the content, distribution, and origin of heavy metals (Cu, Cr, Cd, Hg, Zn, and Ni) in the Chaohu Lake water. The results showed that heavy metals (Cu, Cr, Zn, and Ni) concentrations in the estuary of Nanfei River were relatively higher than those in the other areas, while content of Hg is higher in the southeast lake than northwest lake. Moreover, Cd has locally concentration in the surface water from the entire Chaohu Lake. The heavy metal average concentrations, except Hg, were lower than the cutoff values for the first-grade water quality (China Environment Quality Standard) which was set as the highest standard to protect the social nature reserves. The Hg content is between the grades three and four water quality, and other heavy metals contents are higher than background values. The aquatic environment of Chaohu Lake has apparently been contaminated. Both the cluster analysis (CA) and correlation analysis provide information about the origin of heavy metals in the Lake. Our findings indicated that agricultural activities and adjacent plants chimneys may contribute the most to Cd and Hg contamination of Chaohu Lake, respectively.
Collapse
Affiliation(s)
- Guolian Li
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | | | | | | | | | | |
Collapse
|
49
|
Qiu G, Feng X, Jiang G. Synthesis of current data for Hg in areas of geologic resource extraction contamination and aquatic systems in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 421-422:59-72. [PMID: 22221874 DOI: 10.1016/j.scitotenv.2011.09.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Revised: 09/04/2011] [Accepted: 09/06/2011] [Indexed: 05/15/2023]
Abstract
China has become the largest contributor of anthropogenic atmospheric mercury (Hg) in the world owing to its fast growing economy and the largest of populations. Over the last two decades, Hg has become of increasing environmental concern in China and much has been published on its distribution, transportation, methylation, and bioaccumulation in aquatic systems and areas of geologic resource extraction contaminated sites, such as coal-fired power plants, non-ferrous smelters, Hg mining and retorting sites, Au amalgam, landfills, chemical plants, etc.. Environmental compartments, like soil, water, air, and crop from areas of geologic resource extraction contamination, especially from Hg mining regions, exhibit elevated values of total-Hg and MMHg. Risk assessments indicate that the consumption of rice, which has a high bioaccumulation of MMHg, has become the dominant pathway of MMHg exposure of inhabitants living in Hg mining areas. Low concentrations less than 5ngl(-1) in total-Hg can be observed in rivers from remote areas, however, high concentrations that reached 1600ngl(-1) in total-Hg can be found in rivers from industrial and urban areas. The studies of hydropower reservoirs of southwest China indicated the old reservoirs act as net sinks for total-Hg and net sources of MMHg, while newly established ones act as net sinks for both total-Hg and MMHg, which is in sharp contrast to the evolution of biomethylation in reservoirs established in the boreal belt of North America and Eurasia. Fish from those reservoirs have relatively low levels of total-Hg, which do not exceed the maximum total-Hg limit of 0.5mgkg(-1) recommended by WHO. Currently, however, there is still a large data gap regarding Hg even in the areas mentioned above in China, which results in poor understanding of its environmental biogeochemistry. Moreover, for a better understanding of human and environmental health effects caused by the fast growing economy, long-term Hg monitoring campaigns are urgently needed.
Collapse
Affiliation(s)
- Guangle Qiu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | | | | |
Collapse
|
50
|
Rimondi V, Gray JE, Costagliola P, Vaselli O, Lattanzi P. Concentration, distribution, and translocation of mercury and methylmercury in mine-waste, sediment, soil, water, and fish collected near the Abbadia San Salvatore mercury mine, Monte Amiata district, Italy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2012; 414:318-327. [PMID: 22169390 DOI: 10.1016/j.scitotenv.2011.10.065] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Revised: 10/25/2011] [Accepted: 10/26/2011] [Indexed: 05/31/2023]
Abstract
The distribution and translocation of mercury (Hg) was studied in the Paglia River ecosystem, located downstream from the inactive Abbadia San Salvatore mine (ASSM). The ASSM is part of the Monte Amiata Hg district, Southern Tuscany, Italy, which was one of the world's largest Hg districts. Concentrations of Hg and methyl-Hg were determined in mine-waste calcine (retorted ore), sediment, water, soil, and freshwater fish collected from the ASSM and the downstream Paglia River. Concentrations of Hg in calcine samples ranged from 25 to 1500 μg/g, all of which exceeded the industrial soil contamination level for Hg of 5 μg/g used in Italy. Stream and lake sediment samples collected downstream from the ASSM ranged in Hg concentration from 0.26 to 15 μg/g, of which more than 50% exceeded the probable effect concentration for Hg of 1.06 μg/g, the concentration above which harmful effects are likely to be observed in sediment-dwelling organisms. Stream and lake sediment methyl-Hg concentrations showed a significant correlation with TOC indicating considerable methylation and potential bioavailability of Hg. Stream water contained Hg as high as 1400 ng/L, but only one water sample exceeded the 1000 ng/L drinking water Hg standard used in Italy. Concentrations of Hg were elevated in freshwater fish muscle samples and ranged from 0.16 to 1.2 μg/g (wet weight), averaged 0.84 μg/g, and 96% of these exceeded the 0.3 μg/g (methyl-Hg, wet weight) USEPA fish muscle standard recommended to protect human health. Analysis of fish muscle for methyl-Hg confirmed that >90% of the Hg in these fish is methyl-Hg. Such highly elevated Hg concentrations in fish indicated active methylation, significant bioavailability, and uptake of Hg by fish in the Paglia River ecosystem. Methyl-Hg is highly toxic and the high Hg concentrations in these fish represent a potential pathway of Hg to the human food chain.
Collapse
Affiliation(s)
- Valentina Rimondi
- Dipartimento di Scienze della Terra, Università di Firenze, Via G La Pira 4, Firenze 50121, Italy
| | | | | | | | | |
Collapse
|