1
|
Postigo C, Moreno-Merino L, López-García E, López-Martínez J, López de Alda M. Human footprint on the water quality from the northern Antarctic Peninsula region. JOURNAL OF HAZARDOUS MATERIALS 2023; 453:131394. [PMID: 37086669 DOI: 10.1016/j.jhazmat.2023.131394] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
This study assessed the human footprint on the chemical pollution of Antarctic waters by characterizing inorganic chemicals and selected organic anthropogenic contaminants of emerging concern (CECs) in inland freshwater and coastal seawater and the associated ecotoxicological risk. Nicotine and tolytriazole, present in 74% and 89% of the samples analyzed, respectively, were the most ubiquitous CECs in the investigated area. The most abundant CECs were citalopram, clarithromycin, and nicotine with concentrations reaching 292, 173, and 146 ng/L, respectively. The spatial distribution of CECs was not linked to any water characteristic or inorganic component. The contamination pattern by CECs in inland freshwater varied among locations, whereas it was very similar in coastal seawater. This suggests that concentrations in inland freshwater may be ruled by environmental processes (reemission from ice, atmospheric deposition, limited photo- and biodegradation processes, etc.) in addition to human activities. Following risk assessment, citalopram, clarithromycin, nicotine, venlafaxine, and hydrochlorothiazide should be considered of concern in this area, and hence, included in future monitoring of Antarctic waters and biota. This work provides evidence on the fact that current measures taken to protect the pristine environment of Antarctica from human activities are not effective to avoid CEC spread in its aquatic environment.
Collapse
Affiliation(s)
- Cristina Postigo
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva s/n, Granada 18071, Spain; Institute for Water Research (IdA), University of Granada, Ramón y Cajal 4, 18071, Granada, Spain.
| | - Luis Moreno-Merino
- Spanish Geological Survey CN IGME (CSIC), Ríos Rosas, 23, Madrid 28003, Spain
| | - Ester López-García
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, Barcelona 08034, Spain
| | - Jerónimo López-Martínez
- Faculty of Sciences, Universidad Autónoma de Madrid, Campus de Cantoblanco, Madrid 28049, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, Barcelona 08034, Spain
| |
Collapse
|
2
|
Chai L, Zhou Y, Wang X. Impact of global warming on regional cycling of mercury and persistent organic pollutants on the Tibetan Plateau: current progress and future prospects. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1616-1630. [PMID: 35770617 DOI: 10.1039/d1em00550b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Global warming profoundly affects not only mountainous and polar environments, but also the global and regional cycling of pollutants. Mercury (Hg) and persistent organic pollutants (POPs) have global transport capacity and are regulated by the Minamata Convention and Stockholm Convention, respectively. Since the beginning of this century, understanding of the origin and fate of Hg and POPs on the Tibetan Plateau (TP, also known as the third pole) has been deepening. In this paper, the existing literature is reviewed to comprehensively understand the atmospheric transport, atmospheric deposition, cumulative transformation and accumulation of Hg and POPs on the TP region under the background of global warming. The biogeochemical cycle of both Hg and POPs has the following environmental characteristics: (1) the Indian summer monsoon and westerly winds carry Hg and POPs inland to the TP; (2) the cold trapping effect causes Hg and POPs to be deposited on the TP by dry and wet deposition, making glaciers, permafrost, and snow the key sinks of Hg and POPs; (3) Hg and POPs can subsequently be released due to the melting of glaciers and permafrost; (4) bioaccumulation and biomagnification of Hg and POPs have been examined in the aquatic food chain; (5) ice cores and lake cores preserve the impacts of both regional emissions and glacial melting on Hg and POP migration. This implies that comprehensive models will be needed to evaluate the fate and toxicity of Hg and POPs on larger spatial and longer temporal scales to forecast their projected tendencies under diverse climate scenarios. Future policies and regulations should address the disrupted repercussions of inclusive CC such as weather extremes, floods and storms, and soil sustainable desertification on the fate of Hg and POPs. The present findings advocate the strengthening of the cross-national programs aimed at the elimination of Hg and POPs in polar (Arctic, Antarctic and TP) and certain mountainous (the Himalaya, Rocky Mountains, and Alps) ecosystems for better understanding the impacts of global warming on the accumulation of Hg/POPs in cold and remote areas.
Collapse
Affiliation(s)
- Lei Chai
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Yunqiao Zhou
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiaoping Wang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China.
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Toxic and essential trace element concentrations in Pacific walrus (Odobenus rosmarus divergens) skeletal muscle varies by location and reproductive status. Polar Biol 2022. [DOI: 10.1007/s00300-022-03069-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
4
|
Ranjbar Jafarabadi A, Mashjoor S, Mohamadjafari Dehkordi S, Riyahi Bakhtiari A, Cappello T. Emerging POPs-type cocktail signatures in Pusa caspica in quantitative structure-activity relationship of Caspian Sea. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124334. [PMID: 33162245 DOI: 10.1016/j.jhazmat.2020.124334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 10/17/2020] [Accepted: 10/17/2020] [Indexed: 06/11/2023]
Abstract
The Caspian seal Pusa caspica is the only endemic mammalian species throughout the Caspian Sea. This is the first report on risk assessment of persistent organic pollutants (POPs) in Caspian seals by age-sex and tissue-specific uptake, and their surrounding environment (seawater, surface sediments, and suspended particulate matters, SPMs) in the Gorgan Bay (Caspian Sea, Iran). Among the quantified 70 POPs (∑35PCBs, ∑3HCHs, ∑6CHLs, ∑6DDTs, ∑17PCDD/Fs, HCB, dieldrin, and aldrin), ∑35PCBs were dominant in abiotic matrices (48.80% of ∑70POPs), followed by HCHs > CHLs > DDTs > PCDD/Fs > other POPs in surface sediments > SPMs > seawater, while the toxic equivalent quantity (TEQWHO) exceeded the safe value (possible risk in this area). In biota, the highest levels of ∑70POPs were found in males (756.3 ng g-1 dw, p < 0.05), followed by females (419.0 ng g-1 dw) and pups (191.6 ng g-1 dw) in liver > kidney > muscle > blubber > intestine > fur > heart > spleen > brain. The positive age-related POPs declining correlation between mother-pup pairs suggested the possible maternal transfer of POPs to offspring. The cocktail toxicity assessment revealed that Caspian seals can pose a low risk based on their mixed-TEQ values. Self-organizing map (SOM) indicated the non-coplanar PCB-93 as the most over-represented functional congener in tissue-specific POPs bioaccumulation. Quantitative toxicant tissue-profiling is valuable for predicting the state of mixture toxicity in pinniped species.
Collapse
Affiliation(s)
- Ali Ranjbar Jafarabadi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Sakineh Mashjoor
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Shirin Mohamadjafari Dehkordi
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran
| | - Alireza Riyahi Bakhtiari
- Department of Environmental Sciences, Faculty of Natural Resources and Marine Sciences, Tarbiat Modares University, Noor, Mazandaran, Iran.
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
5
|
Chynel M, Munschy C, Bely N, Héas-Moisan K, Pollono C, Jaquemet S. Legacy and emerging organic contaminants in two sympatric shark species from Reunion Island (Southwest Indian Ocean): Levels, profiles and maternal transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141807. [PMID: 33181997 DOI: 10.1016/j.scitotenv.2020.141807] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/09/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
The contamination of tiger sharks (Galeocerdo cuvier) and bull sharks (Carcharhinus leucas) by legacy persistent organic pollutants (POPs) and emerging organic contaminants was investigated in specimens from Reunion Island (Southwest Indian Ocean) in 2018 and 2019. Contamination levels were determined in the muscle of adult individuals of both sexes in relation to biological and trophic parameters. Maternal transfer was additionally investigated in one set of embryos in each species. Polychlorinated biphenyl (PCB), organochlorinated pesticide (OCP) and perfluoroalkylated substance (PFAS) concentrations were 2597 ± 2969, 785 ± 966 and 267 ± 194 pg g-1 ww, respectively, in bull sharks, and 339 ± 270, 1025 ± 946 and 144 ± 53 pg g-1 ww in tiger sharks. The results highlighted higher PCB contamination, and by the heavier congeners, in adult bull sharks versus tiger sharks. The significant differences found in PCB profiles and concentrations suggest that the two species are exposed to different contamination sources. As bull sharks rely on a more coastal habitat for feeding, their higher contamination by PCBs suggests the occurrence of local PCB sources. DDT concentrations were similar in both species, suggesting a more homogeneous contamination on the scale of the Southwest Indian Ocean. Female bull sharks showed lower OCP and PCB concentrations than males, while this trend was not observed in tiger sharks. The ratio of chlorinated contaminants in muscle between the mother and her embryos was related to molecule hydrophobicity in bull shark but not in tiger shark, suggesting that shark mode of gestation, known to be different in the two species, is a key driver of organic contaminant maternal transfer. Finally, the results show that organic contaminant levels in the studied species were lower than those of other shark species in the Southern Hemisphere, related to the limited urbanization and industrialization of Reunion Island.
Collapse
Affiliation(s)
- M Chynel
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - C Munschy
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France.
| | - N Bely
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - K Héas-Moisan
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - C Pollono
- IFREMER (French Research Institute for Exploitation of the Sea), Laboratory of Biogeochemistry of Organic Contaminants, Rue de l'Ile d'Yeu, BP 21105, 44311 Nantes Cedex 3, France
| | - S Jaquemet
- Université de La Réunion, UMR 9220 ENTROPIE (Université de La Réunion-CNRS-IRD), Avenue René Cassin CS 92003, 97744 Saint-Denis Cedex 9, Ile de La Réunion, France
| |
Collapse
|
6
|
Krasnobaev A, ten Dam G, Boerrigter-Eenling R, Peng F, van Leeuwen SPJ, Morley SA, Peck LS, van den Brink NW. Legacy and Emerging Persistent Organic Pollutants in Antarctic Benthic Invertebrates near Rothera Point, Western Antarctic Peninsula. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:2763-2771. [PMID: 31950826 PMCID: PMC7057541 DOI: 10.1021/acs.est.9b06622] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Pollutant levels in polar regions are gaining progressively more attention from the scientific community. This is especially so for pollutants that persist in the environment and can reach polar latitudes via a wide range of routes, such as some persistent organic pollutants (POPs). In this study, samples of Antarctic marine benthic organisms were analyzed for legacy and emerging POPs (polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs), and organochlorine pesticides) to comprehensively assess their current POP concentrations and infer the potential sources of the pollutants. Specimens of five benthic invertebrate species were collected at two distinct locations near Rothera research station on the Antarctic Peninsula (67°35'8 ̋ S and 68°7'59 ̋ W). Any impact of the nearby Rothera station as a local source of pollution appeared to be negligible. The most abundant chemicals detected were hexachlorobenzene (HCB) and BDE-209. The highest concentrations detected were in limpets and sea urchins, followed by sea stars, ascidians, and sea cucumbers. The relative congener patterns of PCBs and PBDEs were similar in all of the species. Some chemicals (e.g., heptachlor, oxychlordane, and mirex) were detected in the Antarctic invertebrates for the first time. Statistical analyses revealed that the distribution of the POPs was not only driven by the feeding traits of the species but also by the physicochemical properties of the specific compounds.
Collapse
Affiliation(s)
- Artem Krasnobaev
- Sub-Department
of Toxicology, Wageningen University, PO Box 8000, NL 6700 EA Wageningen, the Netherlands
| | - Guillaume ten Dam
- Wageningen
Research, Wageningen Food Safety Research
(WFSR), PO Box 230, NL 6700 AE Wageningen, the Netherlands
- DSP-systems, Food Valley
BTA12, Darwinstraat 7a, 6718 XR Ede, the Netherlands
| | - Rita Boerrigter-Eenling
- Wageningen
Research, Wageningen Food Safety Research
(WFSR), PO Box 230, NL 6700 AE Wageningen, the Netherlands
| | - Fang Peng
- Luxembourg
Institute of Health, Rue Thomas Edison 1A−B, 1445 Strassen, Luxembourg
| | - Stefan P. J. van Leeuwen
- Wageningen
Research, Wageningen Food Safety Research
(WFSR), PO Box 230, NL 6700 AE Wageningen, the Netherlands
| | - Simon A. Morley
- Natural
Environment Research Council (NERC), British
Antarctic Survey, Cambridge CB3 0ET, United Kingdom
| | - Lloyd S. Peck
- Natural
Environment Research Council (NERC), British
Antarctic Survey, Cambridge CB3 0ET, United Kingdom
| | - Nico W. van den Brink
- Sub-Department
of Toxicology, Wageningen University, PO Box 8000, NL 6700 EA Wageningen, the Netherlands
- E-mail:
| |
Collapse
|
7
|
Chen X, Mo J, Zhang S, Li X, Huang T, Zhu Q, Wang S, Chen X, Ge RS. 4-Bromodiphenyl Ether Causes Adrenal Gland Dysfunction in Rats during Puberty. Chem Res Toxicol 2019; 32:1772-1779. [PMID: 31423765 DOI: 10.1021/acs.chemrestox.9b00123] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polybrominated diphenyl ethers (PBDEs) are a group of flame retardants with two or more bromines attached. They are endocrine disruptors. PBDEs photodegrade into 4-bromodiphenyl ether (BDE3). Whether BDE3 impairs adrenal cortical cell function during postnatal development still remains unknown. The aim of the current study was to investigate the influence of BDE3 on adrenal cortical cell function. Sprague-Dawley rats (35 days of age, male) were orally administered with BDE3 (0, 50, 100, and 200 mg/kg/day body weight) for 21 days. BDE3 significantly increased serum aldosterone and corticosterone levels at 200 mg/kg without affecting adrenocorticotropic hormone level. Further study showed that BDE3 up-regulated Cyp11b1 at 100 and 200 mg/kg and Scarb1, Star, Cyp11b2, Cyp21, and Nr5a1 mRNA levels in the 200 mg/kg group. BDE3 also decreased the phosphorylation of AMP-activated protein kinase (AMPK) at 200 mg/kg and increased PGC-1α and phosphorylated cyclic AMP-responsive element-binding protein (CREB)/CREB at 200 mg/kg. Taken together, these findings demonstrate that BDE3 stimulates adrenal cell function likely through decreasing phosphorylation of AMPK and increasing phosphorylation of CREB.
Collapse
Affiliation(s)
- Xiuxiu Chen
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Jiaying Mo
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Song Zhang
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Xiaoheng Li
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Tongliang Huang
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Qiqi Zhu
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Songxue Wang
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Xianwu Chen
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| | - Ren-Shan Ge
- Department of Anesthesiology , the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University , Wenzhou 325000 , China
| |
Collapse
|
8
|
Burd B, Lowe C, Morales-Caselles C, Noel M, Ross P, Macdonald T. Uptake and trophic changes in polybrominated diphenyl ethers in the benthic marine food chain in southwestern British Columbia, Canada. Facets (Ott) 2019. [DOI: 10.1139/facets-2018-0021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We examined the physical and geochemical effects of sediment on the uptake of polybrominated diphenyl ethers (PBDEs) into marine sediment feeders and their transfer to higher trophic fauna. Sediment PBDEs increased with % total organic carbon (%TOC), organic carbon (OC) flux and grain size (%fines). Tissue PBDE variance was best explained ( R2 = 0.70) by sediment acid volatile sulfides (AVS), PBDEs, and organic lability and input, with the highest values near wastewater outfalls. Dry weight tissue/sediment PBDEs declined with increasing sediment PBDEs, resulting in tissue dilution (ratio <1) at >10 000 pg/g in harbours. Ratios also decreased with increasing %fines, resulting in regional differences. These patterns imply that high levels of fines and high sediment concentrations make PBDEs less bioavailable. Dry weight PBDEs increased >100× between background deposit feeders and predators (polychaetes, crabs, bottom fish, seal), but lipid normalized PBDEs barely increased (<1.3%), suggesting remarkably high uptake in low-lipid sediment feeders, and that PBDEs don’t accumulate at higher trophic levels, but lipid content does. Filter feeders had lower lipid-normalized PBDEs than deposit feeders, highlighting the importance of food resources in higher trophic fauna for bioaccumulation. The most profound congener change occurred with sediment uptake, with nona/deca-BDEs declining and tetra-hexa-BDEs increasing. Harbour sediment feeders had more deca-BDEs than other samples, suggesting PBDEs mostly pass unmodifed through them. Deca-BDEs persist patchily in all tissues, reflecting variable dependence on sediment/pelagic food.
Collapse
Affiliation(s)
- Brenda Burd
- Ecostat Research Ltd., North Saanich, Vancouver, BC V8L 5P6, Canada
- Vancouver Aquarium, Vancouver, BC V6G 3E2, Canada
| | - Chris Lowe
- Capital Regional District, Victoria, BC V8W 2S6, Canada
| | | | - Marie Noel
- Vancouver Aquarium, Vancouver, BC V6G 3E2, Canada
| | - Peter Ross
- Vancouver Aquarium, Vancouver, BC V6G 3E2, Canada
| | - Tara Macdonald
- Biologica Environmental Services Ltd., Victoria, BC V8T 5H2, Canada
| |
Collapse
|
9
|
Kim I, Lee S, Kim SD. Determination of toxic organic pollutants in fine particulate matter using selective pressurized liquid extraction and gas chromatography–tandem mass spectrometry. J Chromatogr A 2019; 1590:39-46. [DOI: 10.1016/j.chroma.2019.01.009] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 01/03/2019] [Accepted: 01/05/2019] [Indexed: 02/04/2023]
|
10
|
Potapowicz J, Szumińska D, Szopińska M, Polkowska Ż. The influence of global climate change on the environmental fate of anthropogenic pollution released from the permafrost: Part I. Case study of Antarctica. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:1534-1548. [PMID: 30360282 DOI: 10.1016/j.scitotenv.2018.09.168] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 09/12/2018] [Accepted: 09/13/2018] [Indexed: 06/08/2023]
Abstract
This article presents a review of information related to the influence of potential permafrost degradation on the environmental fate of chemical species which are released and stored, classified as potential influence in future Antarctic environment. Considering all data regarding climate change prediction, this topic may prove important issue for the future state of the Antarctic environment. A detailed survey on soil and permafrost data permitted the assumption that this medium may constitute a sink for organic and inorganic pollution (especially for persistent organic pollution, POPs, and heavy metals). The analysis of the environmental fate and potential consequences of the presence of pollutants for the existence of the Antarctic fauna leads to a conclusion that they may cause numerous negative effects (e.g. Endocrine disruptions, DNA damage, cancerogenicity). In the case of temperature increase and enhanced remobilisation processes, this effect may be even stronger, and may disturb natural balance in the environment. Therefore, regular research on the environmental fate of pollution is required, especially in terms of processes of remobilisation from the permafrost reserves.
Collapse
Affiliation(s)
- Joanna Potapowicz
- Gdansk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Danuta Szumińska
- Kazimierz Wielki University, Institute of Geography, Kościelecki Sq 8, 85-033 Bydgoszcz, Poland
| | - Małgorzata Szopińska
- Gdansk University of Technology, Faculty of Civil and Environmental Engineering, Department of Water and Waste Water Technology, 11/12 Narutowicza St., Gdansk 80-233, Poland
| | - Żaneta Polkowska
- Gdansk University of Technology, Faculty of Chemistry, Department of Analytical Chemistry, 11/12 Narutowicza St., Gdansk 80-233, Poland.
| |
Collapse
|
11
|
Markham E, Brault EK, Khairy M, Robuck AR, Goebel ME, Cantwell MG, Dickhut RM, Lohmann R. Time Trends of Polybrominated Diphenyl Ethers (PBDEs) in Antarctic Biota. ACS OMEGA 2018; 3:6595-6604. [PMID: 30023953 PMCID: PMC6045470 DOI: 10.1021/acsomega.8b00440] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Accepted: 06/01/2018] [Indexed: 05/05/2023]
Abstract
Polybrominated diphenyl ethers (PBDEs) are "emerged" contaminants that were produced and used as flame retardants in numerous consumer and industrial applications for decades until banned. They remain ubiquitously present in the environment today. Here, a unique set of >200 biotic samples from the Antarctic was analyzed for PBDEs, including phytoplankton, krill, fish, and fur seal milk, spanning several sampling seasons over 14 years. PBDE-47 and -99 were the dominant congeners determined in all samples, constituting >60% of total PBDEs. A temporal trend was observed for ∑7PBDE concentrations in fur seal milk, where concentrations significantly increased (R2 = 0.57, p < 0.05) over time (2000-2014). Results for krill and phytoplankton also suggested increasing PBDE concentrations over time. Trends of PBDEs in fur seal milk of individual seals sampled 1 or more years apart showed no clear temporal trends. Overall, there was no indication of PBDEs decreasing in Antarctic biota yet, whereas numerous studies have reported decreasing trends in the northern hemisphere. Similar PBDE concentrations in perinatal versus nonperinatal milk implied the importance of local PBDE sources for bioaccumulation. These results indicate the need for continued assessment of contaminant trends, such as PBDEs, and their replacements, in Antarctica.
Collapse
Affiliation(s)
- Erin Markham
- Graduate
School of Oceanography, University of Rhode
Island, 215 South Ferry
Road, Narragansett, Rhode
Island 02882, United
States
| | - Emily K. Brault
- Virginia
Institute of Marine Science, 1208 Greate Road, Gloucester Point, Virginia 23062, United
States
| | - Mohammed Khairy
- Graduate
School of Oceanography, University of Rhode
Island, 215 South Ferry
Road, Narragansett, Rhode
Island 02882, United
States
| | - Anna R. Robuck
- Graduate
School of Oceanography, University of Rhode
Island, 215 South Ferry
Road, Narragansett, Rhode
Island 02882, United
States
| | - Michael E. Goebel
- Antarctic
Ecosystem Research Division, NOAA Fisheries, Southwest Fisheries Science Center, 8901 La Jolla Shores Drive, La Jolla, California 92037, United States
| | - Mark G. Cantwell
- Atlantic
Ecology Division, U.S. Environmental Protection
Agency, Narragansett, Rhode Island 02882, United States
| | - Rebecca M. Dickhut
- Virginia
Institute of Marine Science, 1208 Greate Road, Gloucester Point, Virginia 23062, United
States
| | - Rainer Lohmann
- Graduate
School of Oceanography, University of Rhode
Island, 215 South Ferry
Road, Narragansett, Rhode
Island 02882, United
States
- E-mail: .
Phone: 401-874-6612. Fax: 401-874-6811
| |
Collapse
|
12
|
Acampora H, White P, Lyashevska O, O'Connor I. Contrasting congener profiles for persistent organic pollutants and PAH monitoring in European storm petrels (Hydrobates pelagicus) breeding in Ireland: a preen oil versus feathers approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:16933-16944. [PMID: 29623645 DOI: 10.1007/s11356-018-1844-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 03/20/2018] [Indexed: 06/08/2023]
Abstract
Persistent organic pollutants (POPs) and polycyclic aromatic hydrocarbons (PAHs) are anthropogenic contaminants of environmental concern due to their persistence in the environment and capacity to accumulate in biota. Many of these contaminants have been found to have ill effects over wildlife and humans. Birds are known to be particularly affected through endocrine disruption and eggshell thinning. POPs have been banned or restricted through the Stockholm Convention (2001), making monitoring essential for tracking effects of regulation. Seabirds have been used as monitoring tools for being top predators and consuming a diverse array of prey in different trophic levels. Non-destructive sampling has become widely popular using feathers and preen oil, as opposed to carcasses and internal organs. This study aimed to set baseline levels of POP and PAH concentration in a highly pelagic and abundant seabird in Ireland and the Atlantic, the European storm petrel, Hydrobates pelagicus, and to investigate the profiles of contaminant congeners in preen oil and feathers, comparatively. Mean concentrations in preen oil followed: PCB (10.1 ng/g ww) > PAH (7.1 ng/g ww) > OCP (5.4 ng/g ww) > PBDE (3.9 ng/g ww), whilst mean concentrations in feathers followed the order: PAH (38.9 ng/g ww) > PCB (27.2 ng/g ww) > OCP (17.9 ng/g ww) > PBDE (4.5 ng/g ww). Congener profiles highly differed between preen oil and feathers, and little correlation was found between the matrices. These results demonstrate that the sampling of a single matrix alone (preen oil or feathers) might produce confounding results on contamination in seabirds and that more than one matrix is recommended to obtain a full picture of contamination by persistent organic pollutants.
Collapse
Affiliation(s)
- Heidi Acampora
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Rd, Galway, Ireland.
| | - Philip White
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Rd, Galway, Ireland
| | - Olga Lyashevska
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Rd, Galway, Ireland
| | - Ian O'Connor
- Marine and Freshwater Research Centre, Galway-Mayo Institute of Technology, Dublin Rd, Galway, Ireland
| |
Collapse
|
13
|
Corsolini S, Ademollo N, Martellini T, Randazzo D, Vacchi M, Cincinelli A. Legacy persistent organic pollutants including PBDEs in the trophic web of the Ross Sea (Antarctica). CHEMOSPHERE 2017; 185:699-708. [PMID: 28732330 DOI: 10.1016/j.chemosphere.2017.07.054] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 06/29/2017] [Accepted: 07/11/2017] [Indexed: 05/22/2023]
Abstract
The ecological features of the Ross Sea trophic web are peculiar and different from other polar food webs, with respect to the use of habitat and species interactions; due to its ecosystem integrity, it is the world's largest Marine Protected Area, established in 2016. Polar organisms are reported to bioaccumulate lipophilic contaminant, viz persistent organic pollutants (POPs). Legacy POPs and flame retardants (polybrominated diphenyl ethers, PBDEs) were studied in key species of the Ross Sea (Euphausia superba, Pleuragramma antarctica) and their predators (Dissostichus mawsoni, Pygoscelis adeliae, Aptenodytes forsteri, Catharacta maccormicki, Leptonychotes weddellii). Gaschromatography revealed the presence of PCBs, HCB, DDTs, PBDEs in most of the samples; HCHs, dieldrin, Eldrin, non-ortho PCBs, PCDDs, PCDFs were detected only in some species. The average ∑PBDEs was 0.19-1.35 pg/g wet wt in the key-species and one-two order of magnitude higher in the predators. Penguins and skuas from an area where a long-term field camp is located showed higher BDE concentrations. The ΣDDTs was higher in the Antarctic toothfish (20 ± 6.73 ng/g wet wt) and in the South Polar skua (5.911 ± 3.425 ng/g wet wt). The TEQs were evaluated and the highest concentration was found in the Weddell seal, due to PCB169, 1,2,3,4,7,8-HxCDF, and 2,3,4,6,7,8-HxCDF. There was no significant relationship between the trophic level and the POP concentrations. Although low concentrations, organisms of the Ross Sea trophic web should be further studied: lack of information on some ecotoxicological features and human impacts including global change may distress the ecosystem with unpredictable effects.
Collapse
Affiliation(s)
- Simonetta Corsolini
- University of Siena, Department of Physics, Earth and Environmental Sciences, Via Mattioli, 4, 53100 Siena, Italy.
| | - Nicoletta Ademollo
- Water Research Institute (IRSA), National Research Council, Via Salaria Km 29.300, 00015 Monterotondo Scalo (RM), Italy
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (Florence), Italy
| | - Demetrio Randazzo
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (Florence), Italy
| | - Marino Vacchi
- Institute of Marine Sciences (ISMAR), National Research Council, Via De Marini 6, 16149 Genova, Italy
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, 50019 Sesto Fiorentino (Florence), Italy
| |
Collapse
|
14
|
Norman SA, Winfield ZC, Rickman BH, Usenko S, Klope M, Berta S, Dubpernell S, Garrett H, Adams MJ, Lambourn D, Huggins JL, Lysiak N, Clark AE, Sanders R, Trumble SJ. Persistent Organic Pollutant and Hormone Levels in Harbor Porpoise with B Cell Lymphoma. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 72:596-605. [PMID: 28447121 DOI: 10.1007/s00244-017-0404-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Accepted: 04/12/2017] [Indexed: 06/07/2023]
Abstract
B-cell lymphoma, a common morphologic variant of non-Hodgkin lymphoma, has been associated with persistent pollutants in humans, but this association is not well-characterized in top-level predators sharing marine resources with humans. We characterized and compared blubber contaminants and hormones of a pregnant harbor porpoise (Phocoena phocoena) with B-cell lymphoma, with those in two presumed healthy fishery by-caught porpoises with no lymphoma: a pregnant adult and female juvenile. Common historic use compounds, including polychlorinated biphenyls, polybrominated diphenyl ethers, and pesticides, were evaluated in blubber samples from three porpoises. In addition, blubber cortisol and progesterone levels (ng/g) were determined in all three animals. Total pollutant concentrations were highest in the juvenile porpoise, followed by the lymphoma porpoise and the nonlymphoma adult. Blubber cortisol concentrations were 191% greater in the pregnant with lymphoma porpoise compared with the pregnant no lymphoma porpoise, and 89% greater in the juvenile female compared with the pregnant no lymphoma porpoise. Although both adults were pregnant, progesterone levels were substantially greater (90%) in the healthy compared with the lymphoma adult. Health monitoring of top-level marine predators, such as porpoise, provides a sentinel measure of contaminants that serve as indicators of potential environmental exposure to humans.
Collapse
Affiliation(s)
- Stephanie A Norman
- Department of Environmental Science, Baylor Sciences Building, Baylor University, 101 Bagby Avenue, B407, Waco, TX, 76798, USA.
- Department of Biology, One Bear Place, #97388, Baylor University, Waco, TX, 76798, USA.
- Central Puget Sound Marine Mammal Stranding Network, c/o Orca Network, 485 Labella Way, Freeland, WA, 98249, USA.
- Marine-Med: Marine Research, Epidemiology, and Veterinary Medicine, 24225 15th Place SE, Bothell, WA, 98021, USA.
| | - Zach C Winfield
- Department of Chemistry and Biochemistry, One Bear Place, #97348, Baylor University, Waco, TX, 76798, USA
| | - Barry H Rickman
- Central Puget Sound Marine Mammal Stranding Network, c/o Orca Network, 485 Labella Way, Freeland, WA, 98249, USA
- Faculty of Veterinary Science, University of Sydney, Private Mail Bag 3, 425 Werombi Road, Camden, NSW, 2570, Australia
| | - Sascha Usenko
- Department of Environmental Science, Baylor Sciences Building, Baylor University, 101 Bagby Avenue, B407, Waco, TX, 76798, USA
| | - Matthew Klope
- Central Puget Sound Marine Mammal Stranding Network, c/o Orca Network, 485 Labella Way, Freeland, WA, 98249, USA
| | - Susan Berta
- Central Puget Sound Marine Mammal Stranding Network, c/o Orca Network, 485 Labella Way, Freeland, WA, 98249, USA
| | - Sandra Dubpernell
- Central Puget Sound Marine Mammal Stranding Network, c/o Orca Network, 485 Labella Way, Freeland, WA, 98249, USA
| | - Howard Garrett
- Central Puget Sound Marine Mammal Stranding Network, c/o Orca Network, 485 Labella Way, Freeland, WA, 98249, USA
| | - Mary Jo Adams
- Central Puget Sound Marine Mammal Stranding Network, c/o Orca Network, 485 Labella Way, Freeland, WA, 98249, USA
| | - Dyanna Lambourn
- Washington Department of Fish and Wildlife, Marine Mammal Investigations, 7801 Phillips Rd. S.W., Lakewood, WA, 98498, USA
| | - Jessica L Huggins
- Cascadia Research Collective, 218 1/2 4th Ave W, Olympia, WA, 98501, USA
| | - Nadine Lysiak
- Department of Environmental Science, Baylor Sciences Building, Baylor University, 101 Bagby Avenue, B407, Waco, TX, 76798, USA
- Department of Biology, One Bear Place, #97388, Baylor University, Waco, TX, 76798, USA
- Biology Department, University of Massachusetts Boston, 100 Morrissey Blvd., Boston, MA, 02125, USA
| | - Adelaide E Clark
- Department of Chemistry and Biochemistry, One Bear Place, #97348, Baylor University, Waco, TX, 76798, USA
| | - Rebel Sanders
- Department of Biology, One Bear Place, #97388, Baylor University, Waco, TX, 76798, USA
| | - Stephen J Trumble
- Department of Biology, One Bear Place, #97388, Baylor University, Waco, TX, 76798, USA
| |
Collapse
|
15
|
Szopińska M, Namieśnik J, Polkowska Ż. How Important Is Research on Pollution Levels in Antarctica? Historical Approach, Difficulties and Current Trends. REVIEWS OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2017; 239:79-156. [PMID: 26857123 DOI: 10.1007/398_2015_5008] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Despite the fact that Antarctica is a continent notably free from large negative impact of human activities, literature data can be the basis for concluding that this is not an area free from anthropogenic pollutants. Pollutants, which are identified in various elements of the environment of Antarctica, are mostly connected with long-range atmospheric transport (LRAT) and deposition in this area. The study presents: a historical overview of research pertaining to the presence of pollutants in entire Antarctica; a description of the development of research on pollutants in various environmental samples conducted in this area since 1960; a detailed description of contemporary analytical research (2000-2014); information on concentration levels of a broad range of pollutants present in various elements of the environment. The data collected can provide grounds for concluding that pollutants present in this area can contribute to gradual degradation of Antarctic ecosystem.
Collapse
Affiliation(s)
- Małgorzata Szopińska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk, 80-233, Poland
| | - Jacek Namieśnik
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk, 80-233, Poland
| | - Żaneta Polkowska
- Department of Analytical Chemistry, Faculty of Chemistry, Gdansk University of Technology, 11/12 Narutowicza St., Gdansk, 80-233, Poland.
| |
Collapse
|
16
|
Noyes PD, Garcia GR, Tanguay RL. ZEBRAFISH AS AN IN VIVO MODEL FOR SUSTAINABLE CHEMICAL DESIGN. GREEN CHEMISTRY : AN INTERNATIONAL JOURNAL AND GREEN CHEMISTRY RESOURCE : GC 2016; 18:6410-6430. [PMID: 28461781 PMCID: PMC5408959 DOI: 10.1039/c6gc02061e] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Heightened public awareness about the many thousands of chemicals in use and present as persistent contaminants in the environment has increased the demand for safer chemicals and more rigorous toxicity testing. There is a growing recognition that the use of traditional test models and empirical approaches is impractical for screening for toxicity the many thousands of chemicals in the environment and the hundreds of new chemistries introduced each year. These realities coupled with the green chemistry movement have prompted efforts to implement more predictive-based approaches to evaluate chemical toxicity early in product development. While used for many years in environmental toxicology and biomedicine, zebrafish use has accelerated more recently in genetic toxicology, high throughput screening (HTS), and behavioral testing. This review describes major advances in these testing methods that have positioned the zebrafish as a highly applicable model in chemical safety evaluations and sustainable chemistry efforts. Many toxic responses have been shown to be shared among fish and mammals owing to their generally well-conserved development, cellular networks, and organ systems. These shared responses have been observed for chemicals that impair endocrine functioning, development, and reproduction, as well as those that elicit cardiotoxicity and carcinogenicity, among other diseases. HTS technologies with zebrafish enable screening large chemical libraries for bioactivity that provide opportunities for testing early in product development. A compelling attribute of the zebrafish centers on being able to characterize toxicity mechanisms across multiple levels of biological organization from the genome to receptor interactions and cellular processes leading to phenotypic changes such as developmental malformations. Finally, there is a growing recognition of the links between human and wildlife health and the need for approaches that allow for assessment of real world multi-chemical exposures. The zebrafish is poised to be an important model in bridging these two conventionally separate areas of toxicology and characterizing the biological effects of chemical mixtures that could augment its role in sustainable chemistry.
Collapse
Affiliation(s)
- Pamela D. Noyes
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Gloria R. Garcia
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| | - Robert L. Tanguay
- Department of Environmental & Molecular Toxicology, Oregon State University, Corvallis, OR 97331
| |
Collapse
|
17
|
Klees M, Bogatzki C, Hiester E. Selective pressurized liquid extraction for the analysis of polychlorinated biphenyls, polychlorinated dibenzo- p -dioxins and dibenzofurans in soil. J Chromatogr A 2016; 1468:10-16. [DOI: 10.1016/j.chroma.2016.09.029] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/12/2016] [Accepted: 09/13/2016] [Indexed: 10/21/2022]
|
18
|
Truong L, Bugel SM, Chlebowski A, Usenko CY, Simonich MT, Simonich SLM, Tanguay RL. Optimizing multi-dimensional high throughput screening using zebrafish. Reprod Toxicol 2016; 65:139-147. [PMID: 27453428 DOI: 10.1016/j.reprotox.2016.05.015] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 05/04/2016] [Accepted: 05/20/2016] [Indexed: 11/17/2022]
Abstract
The use of zebrafish for high throughput screening (HTS) for chemical bioactivity assessments is becoming routine in the fields of drug discovery and toxicology. Here we report current recommendations from our experiences in zebrafish HTS. We compared the effects of different high throughput chemical delivery methods on nominal water concentration, chemical sorption to multi-well polystyrene plates, transcription responses, and resulting whole animal responses. We demonstrate that digital dispensing consistently yields higher data quality and reproducibility compared to standard plastic tip-based liquid handling. Additionally, we illustrate the challenges in using this sensitive model for chemical assessment when test chemicals have trace impurities. Adaptation of these better practices for zebrafish HTS should increase reproducibility across laboratories.
Collapse
Affiliation(s)
- Lisa Truong
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | - Sean M Bugel
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | - Anna Chlebowski
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | | | - Michael T Simonich
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | - Staci L Massey Simonich
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA
| | - Robert L Tanguay
- Department of Environmental and Molecular Toxicology, The Sinnhuber Aquatic Research Laboratory, and the Environmental Health Sciences Center at Oregon State University, Corvallis, OR, USA.
| |
Collapse
|
19
|
Gui D, Karczmarski L, Yu RQ, Plön S, Chen L, Tu Q, Cliff G, Wu Y. Profiling and Spatial Variation Analysis of Persistent Organic Pollutants in South African Delphinids. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:4008-4017. [PMID: 26967261 DOI: 10.1021/acs.est.5b06009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
The continuous disposal of persistent organic pollutants (POPs) in South Africa (SA) warrants concern about their detrimental effects on humans and wildlife. We surveyed six dolphin species (n = 90) incidentally captured in shark net installations or stranded off the SA east and south coast from 2005 to 2009 to study the POP exposure. Sousa plumbea, an inshore and estuarine species, was found to be the most contaminated by total POPs (21 100 ng g(-1) lw) of all the dolphins off SA, followed by Tursiops aduncus (19 800 ng g(-1) lw), Lagenodelphis hosei (13 600 ng g(-1) lw), and Delphinus capensis (5500 ng g(-1) lw), whereas POP levels in the offshore or pelagic delphinids were much lower. In all delphinids, dominant pollutants were dichlorodiphenyltrichloroethanes (DDTs), which represented more than 60% of the total concentration of total POPs, followed by polychlorinated biphenyls (PCBs, 30%). Concentrations of DDTs in S. plumbea and T. aduncus off SA were among the highest levels reported in delphinids globally. Approximately half of the adult T. aduncus had PCB concentrations above the effect threshold for impairment of immune functions. The concentrations of Mirex and Dieldrin in SA delphinids were higher than those found in species from other regions of the Southern Hemisphere.
Collapse
Affiliation(s)
- Duan Gui
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, Guangdong 510275, China
| | - Leszek Karczmarski
- The Swire Institute of Marine Sciences, School of Biological Sciences, The University of Hong Kong , Cape d'Aguilar Road, Shek O, Hong Kong
| | - Ri-Qing Yu
- Department of Biology, University of Texas at Tyler , Tyler, Texas 75799, United States
| | - Stephanie Plön
- Coastal and Marine Research Institute, Nelson Mandela Metropolitan University , PO Box 77000, Port Elizabeth, Eastern Cape 6031, South Africa
| | - Laiguo Chen
- Urban Environment and Ecology Research Center, South China Institute of Environmental Sciences (SCIES), Ministry of Environmental Protection, Guangzhou, Guangdong 510655, China
| | - Qin Tu
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, Guangdong 510275, China
| | - Geremy Cliff
- KwaZulu-Natal Sharks Board, Private Bag 2, Umhlanga Rocks 4320, KwaZulu-Natal, South Africa and Biomedical Resource Unit, University of KwaZulu-Natal , Durban, KwaZulu-Natal 4001, South Africa
| | - Yuping Wu
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Zhuhai Key Laboratory of Marine Bioresources and Environment, School of Marine Sciences, Sun Yat-Sen University , Guangzhou, Guangdong 510275, China
| |
Collapse
|
20
|
Clark AE, Yoon S, Sheesley RJ, Usenko S. Pressurized liquid extraction technique for the analysis of pesticides, PCBs, PBDEs, OPEs, PAHs, alkanes, hopanes, and steranes in atmospheric particulate matter. CHEMOSPHERE 2015; 137:33-44. [PMID: 25985427 DOI: 10.1016/j.chemosphere.2015.04.051] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 04/14/2015] [Accepted: 04/16/2015] [Indexed: 06/04/2023]
Abstract
An analytical method has been developed for the pressurized liquid extraction (PLE) of a wide range of semi-volatile organic compounds (SVOCs) from atmospheric particulate matter. Approximately 130 SVOCs from eight compound classes were selected as molecular markers of (1) agricultural activity (30 current and historic-use pesticides), (2) industrial activity (18 PCBs), (3) consumer products and building materials (16 PBDEs, 11 OPEs), and (4) motor vehicle exhaust (22 PAHs, 16 alkanes, 9 hopanes, 8 steranes). Currently, there is no analytical method validated for the extraction of all eight compound classes in a single automated technique. The extraction efficiencies of varying solvents and solvent combinations at high temperatures and pressures were examined. Extracts were concentrated and analyzed by gas chromatography coupled with mass spectrometry. The optimized PLE method utilized methylene chloride:acetone (2:1 v/v) at 100 °C with three (5 min) static cycles, flush volume of 80%, and a 100 s N2 purge. Spike and recovery experiments (n=7) provided average percent recoveries for pesticides, PCBs, PBDEs, OPEs, PAHs, alkanes, hopanes, and steranes of 88.8±4.0%, 86.9±2.6%, 83.8±2.9%, 101±6%, 90.3±6.1%, 74.4±8.8%, 104±8%, and 86.5±8.6%, respectively. The developed method was applied to atmospheric particulate matter samples collected in the greater Houston, TX metropolitan area. Ambient concentrations of eight classes of compounds (92 SVOCs) were reported in pg m(-3).
Collapse
Affiliation(s)
- Adelaide E Clark
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, USA
| | - Subin Yoon
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA
| | - Rebecca J Sheesley
- Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA
| | - Sascha Usenko
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX 76798, USA; Department of Environmental Science, Baylor University, One Bear Place #97266, Waco, TX 76798, USA.
| |
Collapse
|
21
|
Li Y, Shi X, He M. Computational investigation on NO3-initiated degradation of p,p′-DDE in atmosphere: Mechanism and kinetics. COMPUT THEOR CHEM 2015. [DOI: 10.1016/j.comptc.2015.06.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
22
|
Selective pressurized liquid extraction as a sample-preparation technique for persistent organic pollutants and contaminants of emerging concern. Trends Analyt Chem 2015. [DOI: 10.1016/j.trac.2015.02.011] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Selective pressurized liquid extraction technique for halogenated organic pollutants in marine mammal blubber: A lipid-rich matrix. J Chromatogr A 2015; 1385:111-5. [DOI: 10.1016/j.chroma.2015.01.064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 11/18/2022]
|
24
|
Routti H, Krafft BA, Herzke D, Eisert R, Oftedal O. Perfluoroalkyl substances detected in the world's southernmost marine mammal, the Weddell seal (Leptonychotes weddellii). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2015; 197:62-67. [PMID: 25497307 DOI: 10.1016/j.envpol.2014.11.026] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2014] [Revised: 11/18/2014] [Accepted: 11/21/2014] [Indexed: 06/04/2023]
Abstract
This study investigates concentrations of 18 perfluoroalkyl substances (PFAS) in blood plasma of adult lactating Weddell seals (Leptonychotes weddellii) (n = 10) from McMurdo Sound, Antarctica. Perfluoroundecanoic acid (PFUnDA) was detected in all samples at concentrations ranging from 0.08 to 0.23 ng/ml. Perfluorooctane sulfonate (PFOS), perfluorohexanoate (PFHxA) and perfluorotridecanoate (PFTriDA) were sporadically detected, while the remaining compounds were below the limit of detection. This is the first report of detectible concentrations of PFASs in an endemic Antarctic marine mammal species. We suggest that the pollutants have been subjected to long range atmospheric transportation and/or derive from a local source. A review of these and published data indicate that perfluoroalkyl carboxylates (PFCAs) dominate in biotic PFAS patterns in species feeding south of the Antarctic Circumpolar Current (ACC), whereas PFOS was the major PFAS detected in species feeding predominantly north of the current.
Collapse
Affiliation(s)
- Heli Routti
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway.
| | - Bjørn A Krafft
- Institute of Marine Research, PO Box 1870 Nordnes, 5817 Bergen, Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research, Fram Centre, 9296 Tromsø, Norway
| | - Regina Eisert
- Gateway Antarctica, University of Canterbury, Christchurch 8140, New Zealand; Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| | - Olav Oftedal
- Smithsonian Environmental Research Center, Edgewater, MD 21037, USA
| |
Collapse
|
25
|
Magi E, Tanwar S. 'Extreme mass spectrometry': the role of mass spectrometry in the study of the Antarctic environment. JOURNAL OF MASS SPECTROMETRY : JMS 2014; 49:1071-1085. [PMID: 25395123 DOI: 10.1002/jms.3442] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Revised: 06/16/2014] [Accepted: 07/11/2014] [Indexed: 06/04/2023]
Abstract
A focus on the studies of the Antarctic environment that have been performed by mass spectrometry is presented herein; our aim is to give evidence of the essential role of this instrumental technique in the framework of the scientific research in Antarctica, with a comprehensive review on the main literature of the last two decades. Due to the wideness of the topic, the present review is limited to the determination of organic pollutants, natural molecules and biomarkers in Antarctica, thus excluding elemental analysis and studies on inorganic species. The work has been divided into five sections, on the basis of the considered environmental compartment: air; ice and snow; seawater, pack ice and lakes; soil and sediments; and organisms and biomarkers.
Collapse
Affiliation(s)
- Emanuele Magi
- Department of Chemistry and Industrial Chemistry, University of Genoa, Via Dodecaneso 31, 16146, Genoa, Italy
| | | |
Collapse
|
26
|
Louis C, Dirtu AC, Stas M, Guiot Y, Malarvannan G, Das K, Costa DP, Crocker DE, Covaci A, Debier C. Mobilisation of lipophilic pollutants from blubber in northern elephant seal pups (Mirounga angustirostris) during the post-weaning fast. ENVIRONMENTAL RESEARCH 2014; 132:438-448. [PMID: 24858284 DOI: 10.1016/j.envres.2014.04.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2014] [Revised: 03/14/2014] [Accepted: 04/15/2014] [Indexed: 06/03/2023]
Abstract
Northern elephant seals (NES) (Mirounga angustirostris) from the Año Nuevo State Reserve (CA, USA) were longitudinally sampled during the post-weaning fast in order to study the mobilisation and redistribution of various classes of persistent organic pollutants (POPs), such as polybrominated diphenyl ethers (PBDEs), polychlorinated biphenyls (PCBs), dichlorodiphenyldichloroethylene (p,p'-DDE) and hexachlorobenzene (HCB) between blubber and blood. Inner and outer blubber layers were analysed separately. Organohalogenated compounds were detected in all blubber samples in the decreasing order of their concentrations: p,p'-DDE > PCBs ⪢ HCB > PBDEs. The concentrations of all studied compounds were homogeneously distributed in the blubber layer at early fast, since the concentrations of POPs were statistically not different in the inner and outer layers. With the progression of the fast, the concentrations of PBDEs, PCBs and p,p'-DDE increased more sharply in inner blubber than in outer blubber. As a result, their levels became significantly higher in inner blubber as compared to outer blubber at late fast. The rise of pollutant concentrations in blubber might result from a less efficient mobilisation than triglycerides and/or a reuptake by adipocytes of some of the pollutants released into the circulation. The mobilisation of pollutants from blubber was higher at late fast. An increase of pollutant concentrations was observed in serum between early and late fast. Lower halogenated congeners (i.e. tetra-CBs) were present in higher proportions in serum, whereas the higher halogenated congeners (i.e. hepta-CBs) were mainly found in the inner and outer blubber layers. The transfer ratios of both PBDEs and PCBs from inner blubber to serum decreased with the number of chlorine and bromine atoms. In addition, the distribution of both types of compounds between serum and blubber was strongly influenced by their lipophilic character (logKow values), with more lipophilic compounds being less efficiently released from blubber to serum.
Collapse
Affiliation(s)
- Caroline Louis
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve, Belgium
| | - Alin C Dirtu
- Department of Pharmaceutical Sciences, Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk, Belgium; Department of Chemistry, "Al. I. Cuza" University of Iasi, 700506 Iasi, Romania
| | - Marie Stas
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve, Belgium
| | - Yves Guiot
- Department of Pathology, Faculty of Medicine, UCLouvain, Brussels, Belgium
| | - Govindan Malarvannan
- Department of Pharmaceutical Sciences, Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Krishna Das
- Laboratoire d'Océanologie, MARE Center B6c, Université de Liège, 4000 Liège, Belgium
| | - Daniel P Costa
- Ecology and Evolutionary Biology Department, University of California Santa Cruz, 100 Shaffer Rd, Santa Cruz, CA 95060, USA
| | - Daniel E Crocker
- Department of Biology, Sonoma State University, 1801 East Cotati Ave, Rohnert Park, CA 94928, USA
| | - Adrian Covaci
- Department of Pharmaceutical Sciences, Toxicological Center, Campus Drie Eiken, Universiteit Antwerpen, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Cathy Debier
- Institut des Sciences de la Vie, UCLouvain, Croix du Sud 2/L7.05.08, 1348 Louvain-la-Neuve, Belgium.
| |
Collapse
|
27
|
Gump BB, Yun S, Kannan K. Polybrominated diphenyl ether (PBDE) exposure in children: possible associations with cardiovascular and psychological functions. ENVIRONMENTAL RESEARCH 2014; 132:244-50. [PMID: 24834818 PMCID: PMC4104497 DOI: 10.1016/j.envres.2014.04.009] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2013] [Revised: 03/31/2014] [Accepted: 04/02/2014] [Indexed: 05/20/2023]
Abstract
BACKGROUND Polybrominated diphenyl ethers (PBDE) have been used widely in consumer products and are currently found at detectable levels in the blood of humans and animals across the globe. In stark contrast to this widespread exposure to PBDEs, there is relatively little research on potential adverse health effects of exposure of children to these chemicals. OBJECTIVES We performed this cross-sectional study to determine if blood PBDE levels (for 4 congeners) are associated with cardiovascular stress responses and psychological states in children. METHODS Levels of 4 PBDE congeners (BDE-28, -47, -99, and -100) in whole blood were measured in children (N=43). These levels were analyzed in relation to cardiovascular disease risk factors, including cardiovascular responses to acute stress and relevant psychological variables, namely, hostility and depression. RESULTS Higher levels of blood PBDEs were associated with significantly greater sympathetic activation during acute psychological stress and greater anger, as evidenced by significant associations with 3 different measures of this psychological variable. CONCLUSIONS This study suggests an association between PBDE exposure and children's cardiovascular responses to stress as well as parental and self-reported anger in the child. These variables are particularly important as they may be of potential relevance to the future development of cardiovascular disease (CVD). Although intriguing, there is a need for further investigation and replication with a larger sample of children.
Collapse
Affiliation(s)
- Brooks B Gump
- Department of Public Health, Food Studies, and Nutrition, Syracuse University, Syracuse NY 13244, USA.
| | - Sehun Yun
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, School of Public Health, State University of New York, Albany, N Y 12201-0509, USA
| | - Kurunthachalam Kannan
- Wadsworth Center, New York State Department of Health and Department of Environmental Health Sciences, School of Public Health, State University of New York, Albany, N Y 12201-0509, USA; Experimental Biochemistry Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
28
|
Wu Q, Wang X, Zhou Q. Biomonitoring persistent organic pollutants in the atmosphere with mosses: performance and application. ENVIRONMENT INTERNATIONAL 2014; 66:28-37. [PMID: 24518433 DOI: 10.1016/j.envint.2013.12.021] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 12/30/2013] [Accepted: 12/31/2013] [Indexed: 06/03/2023]
Abstract
Persistent organic pollutants (POPs) have aroused environmentalists and public concerns due to their toxicity, bioaccumulation and persistency in the environment. However, monitoring atmospheric POPs using conventional instrumental methods is difficult and expensive, and POP levels in air samples represent an instantaneous value at a sampling time. Biomonitoring methods can overcome this limitation, because biomonitors can accumulate POPs, serve as long-term integrators of POPs and provide reliable information to assess the impact of pollutants on the biota and various ecosystems. Recently, mosses are increasingly employed to monitor atmospheric POPs. Mosses have been applied to indicate POP pollution levels in the remote continent of Antarctica, trace distribution of POPs in the vicinity of pollution sources, describe the spatial patterns at the regional scale, and monitor the changes in the pollution intensity along time. In the future, many aspects need to be improved and strengthened: (i) the relationship between the concentrations of POPs in mosses and in the atmosphere (different size particulates and vapor phases); and (ii) the application of biomonitoring with mosses in human health studies.
Collapse
Affiliation(s)
- Qimei Wu
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Xin Wang
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China
| | - Qixing Zhou
- Key Laboratory of Pollution Processes and Environmental Criteria (Ministry of Education), College of Environmental Science and Engineering, Nankai University, Tianjin 300071, PR China.
| |
Collapse
|
29
|
Law RJ, Covaci A, Harrad S, Herzke D, Abdallah MAE, Fernie K, Toms LML, Takigami H. Levels and trends of PBDEs and HBCDs in the global environment: status at the end of 2012. ENVIRONMENT INTERNATIONAL 2014; 65:147-58. [PMID: 24486972 DOI: 10.1016/j.envint.2014.01.006] [Citation(s) in RCA: 293] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 01/03/2014] [Accepted: 01/04/2014] [Indexed: 05/03/2023]
Abstract
In this paper, we have compiled and reviewed the most recent literature, published in print or online from January 2010 to December 2012, relating to the human exposure, environmental distribution, behaviour, fate and concentration time trends of polybrominated diphenyl ether (PBDE) and hexabromocyclododecane (HBCD) flame retardants, in order to establish their current trends and priorities for future study. More data are now becoming available for remote areas not previously studied, Indian Ocean islands, for example. Decreasing time trends for penta-mix PBDE congeners were seen for soils in northern Europe, sewage sludge in Sweden and the USA, carp from a US river, trout from three of the Great Lakes and in Arctic and UK marine mammals and many birds, but increasing time trends continue in polar bears and some birds at high trophic levels in northern Europe. This may be partially a result of the time delay inherent in long-range atmospheric transport processes. In general, concentrations of BDE209 (the major component of the deca-mix PBDE product) are continuing to increase. Of major concern is the possible/likely debromination of the large reservoir of BDE209 in soils and sediments worldwide, to yield lower brominated congeners which are both more mobile and more toxic, and we have compiled the most recent evidence for the occurrence of this degradation process. Numerous studies reported here reinforce the importance of this future concern. Time trends for HBCDs are mixed, with both increases and decreases evident in different matrices and locations and, notably, with increasing occurrence in birds of prey. Temporal trends for both PBDEs and HBCD in Asia are unclear currently. A knowledge gap has been noted in relation to metabolism and/or debromination of BDE209 and HBCD in birds. Further monitoring of human exposure and environmental contamination in areas of e-waste recycling, particularly in Asia and Africa, is warranted. More data on temporal trends of BDE and HBCD concentrations in a variety of matrices and locations are needed before the current status of these compounds can be fully assessed, and the impact of regulation and changing usage patterns among different flame retardants determined.
Collapse
Affiliation(s)
- Robin J Law
- The Centre for Environment, Fisheries and Aquaculture Science, Cefas Lowestoft Laboratory, Pakefield Road, Lowestoft, Suffolk NR33 0HT, UK.
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Antwerp, Belgium
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Dorte Herzke
- Norwegian Institute for Air Research, FRAM - High North Research Centre for Climate and the Environment, H. Johansens gate 14, 9296 Tromsø, Norway
| | - Mohamed A-E Abdallah
- Department of Analytical Chemistry, Faculty of Pharmacy, Assiut University, 71526 Assiut, Egypt
| | - Kim Fernie
- Ecotoxicology and Wildlife Health Division, Wildlife and Landscape Science Directorate, Science and Technology Branch, Environment Canada, 867 Lakeshore Road, Burlington L7R 4A6, Ontario, Canada
| | - Leisa-Maree L Toms
- School of Clinical Sciences and Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Hidetaka Takigami
- Centre for Material Cycles and Waste Management Research, National institute for Environmental Studies (NIES), 16-2 Onogawa, Tsukuba, 305-8506 Ibaraki, Japan
| |
Collapse
|
30
|
Subedi B, Aguilar L, Williams ES, Brooks BW, Usenko S. Selective pressurized liquid extraction technique capable of analyzing dioxins, furans, and PCBs in clams and crab tissue. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 92:460-465. [PMID: 24318163 DOI: 10.1007/s00128-013-1162-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2013] [Accepted: 11/15/2013] [Indexed: 06/02/2023]
Abstract
A selective pressurized liquid extraction technique (SPLE) was developed for the analysis of polychlorodibenzo-p-dioxins, polychlorodibenzofurans (PCDD/Fs) and dioxin-like polychlorobiphenyls (dl-PCBs) in clam and crab tissue. The SPLE incorporated multiple cleanup adsorbents (alumina, florisil, silica gel, celite, and carbopack) within the extraction cell. Tissue extracts were analyzed by high resolution gas chromatography coupled with electron capture negative ionization mass spectrometry. Mean recovery (n = 3) and percent relative standard deviation for PCDD/Fs and dl-PCBs in clam and crabs was 89 ± 2.3 and 85 ± 4.0, respectively. The SPLE method was applied to clams and crabs collected from the San Jacinto River Waste Pits, a Superfund site in Houston, TX. The dl-PCBs concentrations in clams and crabs ranged from 50 to 2,450 and 5 to 800 ng/g ww, respectively. Sample preparation time and solvents were reduced by 92 % and 65 %, respectively, as compared to USEPA method 1613.
Collapse
Affiliation(s)
- Bikram Subedi
- Department of Chemistry and Biochemistry, Baylor University, One Bear Place #97348, Waco, TX, 76798, USA
| | | | | | | | | |
Collapse
|
31
|
Robinson EM, Trumble SJ, Subedi B, Sanders R, Usenko S. Selective pressurized liquid extraction of pesticides, polychlorinated biphenyls and polybrominated diphenyl ethers in a whale earplug (earwax): A novel method for analyzing organic contaminants in lipid-rich matrices. J Chromatogr A 2013; 1319:14-20. [DOI: 10.1016/j.chroma.2013.10.023] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 11/26/2022]
|
32
|
Blue whale earplug reveals lifetime contaminant exposure and hormone profiles. Proc Natl Acad Sci U S A 2013; 110:16922-6. [PMID: 24043814 DOI: 10.1073/pnas.1311418110] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Lifetime contaminant and hormonal profiles have been reconstructed for an individual male blue whale (Balaenoptera musculus, Linnaeus 1758) using the earplug as a natural aging matrix that is also capable of archiving and preserving lipophilic compounds. These unprecedented lifetime profiles (i.e., birth to death) were reconstructed with a 6-mo resolution for a wide range of analytes including cortisol (stress hormone), testosterone (developmental hormone), organic contaminants (e.g., pesticides and flame retardants), and mercury. Cortisol lifetime profiles revealed a doubling of cortisol levels over baseline. Testosterone profiles suggest this male blue whale reached sexual maturity at approximately 10 y of age, which corresponds well with and improves on previous estimates. Early periods of the reconstructed contaminant profiles for pesticides (such as dichlorodiphenyltrichloroethanes and chlordanes), polychlorinated biphenyls, and polybrominated diphenyl ethers demonstrate significant maternal transfer occurred at 0-12 mo. The total lifetime organic contaminant burden measured between the earplug (sum of contaminants in laminae layers) and blubber samples from the same organism were similar. Total mercury profiles revealed reduced maternal transfer and two distinct pulse events compared with organic contaminants. The use of a whale earplug to reconstruct lifetime chemical profiles will allow for a more comprehensive examination of stress, development, and contaminant exposure, as well as improve the assessment of contaminant use/emission, environmental noise, ship traffic, and climate change on these important marine sentinels.
Collapse
|