1
|
Gindorf S, West J, Graham A, Jonsson S. Environmental drivers of monomethylmercury photodegradation along the land-to-ocean aquatic continuum. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2025; 27:401-411. [PMID: 39807774 DOI: 10.1039/d4em00636d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
In surface waters, photodegradation is a major abiotic removal pathway of the neurotoxin monomethylmercury (MMHg), acting as a key control on the amounts of MMHg available for biological uptake. Different environmental factors can alter the rate of MMHg photodegradation. However, our understanding of how MMHg photodegradation pathways in complex matrixes along the land-to-ocean aquatic continuum respond to changes in salinity, dissolved organic carbon (DOC) concentration and dissolved organic matter (DOM) composition is incomplete. In a set of laboratory experiments combining several artificial and natural waters, we demonstrate that the interplay of DOC concentration, DOM composition, and salinity affects the photodegradation rate of MMHg. The presence of DOM was found to facilitate MMHg photodegradation, but degradation rates were not altered by varying DOC concentrations over two orders of magnitude. We found DOM composition to have a stronger effect on MMHg photodegradation rates than DOC concentration. However, at high DOC levels, where most UV radiation was lost within the first cm of the reaction vessels, lower MMHg photodegradation rates were observed. When moving from terrestrially influenced waters, characterized by a high degree of humification, towards marine conditions with a protein-rich DOM pool, MMHg photodegradation rates increased. In contrast, salinity had a stabilizing effect on MMHg. Hence, especially in systems with low salt and DOC concentrations, changes in either salinity or DOC concentration can impact the photodegradation rates of MMHg.
Collapse
Affiliation(s)
- Sonja Gindorf
- Department of Environmental Science, Stockholm University, Sweden.
| | - Johannes West
- Department of Environmental Science, Stockholm University, Sweden.
- Scripps Institution of Oceanography, University of California San Diego, USA
| | - Andrew Graham
- Department of Chemistry, Grinnell College, Iowa, USA
| | - Sofi Jonsson
- Department of Environmental Science, Stockholm University, Sweden.
| |
Collapse
|
2
|
Fu X, Ju M, Wu R, Jia Z, Yin H. Identifying the fate of dissolved organic matter in wastewater treatment plant effluent-dominated urban river based on fluorescence fingerprinting and flux budget approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174580. [PMID: 38981536 DOI: 10.1016/j.scitotenv.2024.174580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2024] [Revised: 07/01/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
Effluent organic matter from wastewater treatment plants (WWTPs) is an important source of dissolved organic matter (DOM) in urban rivers worldwide and is an important water quality factor. Identifying the fate of DOM in urban river is crucial for water quality management. To address this concern, a fluorescent flux budget approach was conducted to probe the fate of DOM in WWTP effluent-dominated urban river, in combination with field measurement and fluorescence fingerprinting. An urban river receiving two WWTP effluents in Hefei City, China was chosen as the study site, where longitudinal measurements of river hydrology and water quality were performed. The fluorescence fingerprinting revealed the presence of two humic-like components (C1, C4), one fulvic-like component (C2) and one protein-like component (C3) in this investigated river, among which C2 and C4 were indicative of anthropogenic influences, closely associated with treated effluents. For each fluorescent component, the WWTP effluent contributed over 80 % of the total fluorescent dissolved organic matter (FDOM) input in this river. Using the developed FDOM flux budget model, it was found that the C1 and C3 were almost conserved within the waterbody, while the C2 and C4 experienced losses due to biogeochemical reactions. The decay rates of C2 and C4 were estimated to be 0.109-0.174 d-1 and 0.096-0.320 d-1, respectively. Spatial heterogeneity of decay rates for C2 and C4 were associated with the varied chemistries of the lateral input sources including two treated effluents and one tributary flow. Our study highlights that after treated effluent is released into the receiving waterbody, the FDOM would undergo loss from the waters particularly for anthropogenic fulvic-like substance C2 and humic-like substance C4. Additionally, the quantified FDOM decay rate in actual urban water environment provides insights for river water quality management, especially when using DOM as the surrogate indicator of organic pollutants.
Collapse
Affiliation(s)
- Xiaowei Fu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Mengdie Ju
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Ruibin Wu
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zichen Jia
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Hailong Yin
- State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Shanghai 200092, China; Key Laboratory of Urban Water Supply, Water Saving and Water Environment Governance in the Yangtze River Delta of Ministry of Water Resources, Tongji University, 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Wu Z, Li Z, Shao B, Chen J, Cui X, Cui X, Liu X, Zhao YX, Pu Q, Liu J, He W, Liu Y, Liu Y, Wang X, Meng B, Tong Y. Differential response of Hg-methylating and MeHg-demethylating microbiomes to dissolved organic matter components in eutrophic lake water. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133298. [PMID: 38141310 DOI: 10.1016/j.jhazmat.2023.133298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/01/2023] [Accepted: 12/15/2023] [Indexed: 12/25/2023]
Abstract
Methylmercury (MeHg) production in aquatic ecosystems is a global concern because of its neurotoxic effect. Dissolved organic matter (DOM) plays a crucial role in biogeochemical cycling of Hg. However, owing to its complex composition, the effects of DOM on net MeHg production have not been fully understood. Here, the Hg isotope tracer technique combined with different DOM treatments was employed to explore the influences of DOM with divergent compositions on Hg methylation/demethylation and its microbial mechanisms in eutrophic lake waters. Our results showed that algae-derived DOM treatments enhanced MeHg concentrations by 1.42-1.53 times compared with terrestrial-derived DOM. Algae-derived DOM had largely increased the methylation rate constants by approximately 1-2 orders of magnitude compared to terrestrial-derived DOM, but its effects on demethylation rate constants were less pronounced, resulting in the enhancement of net MeHg formation. The abundance of hgcA and merB genes suggested that Hg-methylating and MeHg-demethylating microbiomes responded differently to DOM treatments. Specific DOM components (e.g., aromatic proteins and soluble microbial byproducts) were positively correlated with both methylation rate constants and the abundance of Hg-methylating microbiomes. Our results highlight that the DOM composition influences the Hg methylation and MeHg demethylation differently and should be incorporated into future Hg risk assessments in aquatic ecosystems.
Collapse
Affiliation(s)
- Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Bo Shao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ji Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Xiaomei Cui
- School of Ecology and Environment, Tibet University, Lhasa 850000, China
| | - Xiaoyu Cui
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Xianhua Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Ying Xin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Wei He
- School of Water Resource and Environment, China University of Geoscience (Beijing), Beijing 100083, China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Ecology and Environment, Tibet University, Lhasa 850000, China.
| |
Collapse
|
4
|
Li D, Han X, Li Y. Mechanism of methylmercury photodegradation in the yellow sea and East China Sea: Dominant pathways, and role of sunlight spectrum and dissolved organic matter. WATER RESEARCH 2024; 251:121112. [PMID: 38198975 DOI: 10.1016/j.watres.2024.121112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/31/2023] [Accepted: 01/05/2024] [Indexed: 01/12/2024]
Abstract
Mercury (Hg) is among the most concerned contaminants in the world due to its high toxicity, prevalent existence in the environments, and bioaccumulation via food chain. Methylmercury (MeHg) is the major form of Hg that accumulates along the food chain and poses threat to humans and wild life. Photodegradation is the dominant process that MeHg is eliminated from freshwater system and upper ocean. The formation of MeHg-dissolved organic matter (DOM) complexes and a variety of free radicals (FR)/reactive oxygen species (ROS) have been previously proposed to be involved in MeHg photodegradation. However, most of these studies were conducted in freshwater, and the mechanism of MeHg photodegradation in seawater remains unclear. In this study, the main pathways of MeHg photodegradation in the seawater of Yellow Sea (YS) and East China Sea (ECS) were investigated using FR/ ROS scavenger addition and DOM competing-ligand addition techniques. The results showed that direct photodegradation of MeHg-DOM complexes is the major pathway of MeHg photodegradation in the YS and ECS, while indirect photolysis of MeHg by hydroxyl radical (·OH) also plays a certain role at some sites. MeHg photodegradation was found to be mainly induced by ultraviolet (UV) light rather than visible light in YS and ECS seawater, and the contribution of UV-B was higher than UV-A which was opposite to that previously reported in freshwater. The energy for breaking the bond of CHg in MeHg-Cl complexes formed in seawater is higher than that in MeHg-DOM complexes and this may cause the relatively greater contribution of UV-B with higher energy to MeHg photodegradation in seawater. In addition, MeHg photodegradation in various fractions of natural DOM with different molecular weights, hydrophilicity/hydrophobicity and acid-base was tested. MeHg photodegradation rates (kd) varied in these fractions and kd in high molecular weight DOM and hydrophobic Acid (HOA) fractions were faster than that in the other fractions. A significantly positive correlation was observed between kd and thiol concentrations while there was no significant correlation between kd and other measured parameters representing the composition of DOM (specific UV absorbance at 254 nm (SUVA254), spectral slope (SR), chromophoric dissolved organic matter (CDOM), humification index (HIX), biological index (BIX) and fluorescent components). These results indicate that thiol may be the key functional group in DOM affecting the photodegradation of MeHg in the YS and ECS.
Collapse
Affiliation(s)
- Dan Li
- Weifang University, Weifang 261061, China
| | - Xiaoxiao Han
- Shandong Institute for Food and Drug Control, Jinan 250000, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
5
|
Yu C, Peng M, Wang X, Pan X. Photochemical demethylation of methylmercury (MeHg) in aquatic systems: A review of MeHg species, mechanisms, and influencing factors. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123297. [PMID: 38195023 DOI: 10.1016/j.envpol.2024.123297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 12/01/2023] [Accepted: 01/02/2024] [Indexed: 01/11/2024]
Abstract
Photodemethylation is the major pathway of methylmercury (MeHg) demethylation in surface water before uptake by the food chain, whose mechanisms and influence factors are still not completely understood. Here, we review the current knowledge on photodemethylation of MeHg and divide MeHg photolysis into three pathways: (1) direct photodemethylation, (2) free radical attack, and (3) intramolecular electron or energy transfer. In aquatic environments, dissolved organic matter is involved into all above pathways, and due to its complex compositions, properties and concentrations, DOM poses multiple functions during the PD of MeHg. DOM-MeHg complex (mainly by sulfur-containing molecules) might weaken the C-Hg bond and enhance PD through both direct and indirect pathways. In special, synergistic effects of both strong binding sites and chromophoric moieties in DOM might lead to intramolecular electron or energy transfer. Moreover, DOM might play a role of radical scavenger; while triplet state DOM, which is generated by chromophoric DOM under light, might become a source of free radicals. Apart from DOMs, transition metals, halides, NO3-, NO2-, and carbonates also act as radical initialaters or scavengers, and significantly pose effects on radical demethylation, which is generally mediated by hydroxyl radicals and singlet oxygen. Environmental factors such as pH, light wavelength, light intensity, dissolved oxygen, salinity, and suspended particles also affect the PD of MeHg. This study assessed previously published works on three major mechanisms, with the goal of providing general estimates for photodemethylation under various environment factors according to know effects, and highlighting the current uncertainties for future research directions.
Collapse
Affiliation(s)
- Chenghao Yu
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Mao Peng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiaonan Wang
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China.
| |
Collapse
|
6
|
Hao Z, Zhao L, Liu J, Pu Q, Chen J, Meng B, Feng X. Relative importance of aceticlastic methanogens and hydrogenotrophic methanogens on mercury methylation and methylmercury demethylation in paddy soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167601. [PMID: 37832685 DOI: 10.1016/j.scitotenv.2023.167601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/15/2023]
Abstract
The accumulation of methylmercury (MeHg) in paddy soil results from a subtle balance between inorganic mercury (e.g., HgII) methylation and MeHg demethylation. Methanogens not only act as Hg methylators but may also facilitate MeHg demethylation. However, the diverse methanogen flora (e.g., aceticlastic and hydrogenotrophic types) that exists under ambient conditions has not previously been considered. Accordingly, the roles of different types of methanogens in HgII methylation and MeHg degradation in paddy soils were studied using the Hg isotope tracing technique combined with the application of methanogen inhibitors/stimulants. It was found that the response of HgII methylation to methanogen inhibitors or stimulants was site-dependent. Specifically, aceticlastic methanogens were suggested as the potential HgII methylators at the low Hg level background site, whereas hydrogenotrophic methanogens were potentially involved in MeHg production as Hg levels increased. In contrast, both aceticlastic and hydrogenotrophic methanogens facilitated MeHg degradation across the sampling sites. Additionally, competition between hydrogenotrophic and aceticlastic methanogens was observed in Hg-polluted paddy soils, implying that net MeHg production could be alleviated by promoting aceticlastic methanogens or inhibiting hydrogenotrophic methanogens. The findings gained from this study improve the understanding of the role of methanogens in net MeHg formation and link carbon turnover to Hg biogeochemistry in rice paddy ecosystems.
Collapse
Affiliation(s)
- Zhengdong Hao
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Zhao
- School of Management Science, Guizhou University of Finance and Economics, Guiyang 550025, China; Guizhou Key Laboratory of Big Data Statistical Analysis (No. [2019]5103), Guiyang 550025, China.
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Qiang Pu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ji Chen
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| | - Xinbin Feng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China; University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Lei P, Zhu J, Zhang J, He H, Chen M, Zhong H. Algal organic matter inhibits methylmercury photodegradation in eutrophic lake water: A dynamic study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 899:165661. [PMID: 37474073 DOI: 10.1016/j.scitotenv.2023.165661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 07/17/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023]
Abstract
Algal organic matter (AOM) is a major component of dissolved organic matter (DOM) in eutrophic lakes and could impact the photodegradation of neurotoxic methylmercury (MeHg) in water. Predicting these effects, however, is challenging, largely due to the dynamic changes of AOM during algal decomposition. Here, we investigated the effects of AOM on MeHg photodegradation throughout the algal decomposition process and elucidated these effects by characterizing dynamic changes of AOM and exploring the respective roles of various reactive oxygen species (ROS). Our results reveal that AOM derived from algal decomposition significantly inhibits MeHg photodegradation, and the extent of this inhibition varies depending on the specific lakes (8-21 %, p < 0.05) and their eutrophication states (16-28 %, p < 0.05). The inhibitory effect gradually weakened as the decomposition progressed, which may be attributed to the dynamic changes in the quantity and quality of AOM. Moreover, hydroxyl radical (·OH) was found to be the main contributor in driving MeHg photodegradation (15-23 %) during the early stages of decomposition (day 0-3), while in the later stage (day 12-24), the role of singlet oxygen (1O2, 15-20 %) and (3DOM*, 21-30 %) gradually strengthened and these three ROS jointly drove MeHg photodegradation. Based on our findings and recent studies, we propose that AOM derived from algal decomposition plays a vital role in increasing the risk of MeHg in eutrophic lakes. It promotes MeHg formation while simultaneously inhibiting its photodegradation. Integrating AOM-MeHg interactions into Hg biogeochemical cycling models would reduce uncertainties when predicting MeHg risks.
Collapse
Affiliation(s)
- Pei Lei
- School of Environment, Nanjing Normal University, Nanjing 210023, China; State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Jinjie Zhu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Suzhou Wuzhong Environmental Monitoring Station, Suzhou 215104, China
| | - Jin Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Mingying Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Science Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
8
|
Bouchet S, Soerensen AL, Björn E, Tessier E, Amouroux D. Mercury Sources and Fate in a Large Brackish Ecosystem (the Baltic Sea) Depicted by Stable Isotopes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:14340-14350. [PMID: 37698522 DOI: 10.1021/acs.est.3c03459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
Identifying Hg sources to aquatic ecosystems and processes controlling the levels of monomethylmercury (MMHg) is critical for developing efficient policies of Hg emissions reduction. Here we measured Hg concentrations and stable isotopes in sediment, seston, and fishes from the various basins of the Baltic Sea, a large brackish ecosystem presenting extensive gradients in salinity, redox conditions, dissolved organic matter (DOM) composition, and biological activities. We found that Hg mass dependent fractionation (Hg-MDF) values in sediments mostly reflect a mixing between light terrestrial Hg and heavier industrial sources, whereas odd Hg isotope mass independent fractionation (odd Hg-MIF) reveals atmospheric inputs. Seston presents intermediate Hg-MDF and odd Hg-MIF values falling between sediments and fish, but in northern basins, high even Hg-MIF values suggest the preferential accumulation of wet-deposited Hg. Odd Hg-MIF values in fish indicate an overall low extent of MMHg photodegradation due to limited sunlight exposure and penetration but also reveal large spatial differences. The photodegradation extent is lowest in the central basin with recurrent algal blooms due to their shading effect and is highest in the northern, least saline basin with high concentrations of terrestrial DOM. As increased loads of terrestrial DOM are expected in many coastal areas due to global changes, its impact on MMHg photodegradation needs to be better understood and accounted for when predicting future MMHg concentrations in aquatic ecosystems.
Collapse
Affiliation(s)
- Sylvain Bouchet
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, Pau 64000, France
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Stockholm 10405, Sweden
| | - Erik Björn
- Department of Chemistry, Umeå University, Umeå 90187, Sweden
| | - Emmanuel Tessier
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, Pau 64000, France
| | - David Amouroux
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Institut des Sciences Analytiques et de Physico-Chimie pour l'Environnement et les Matériaux, Pau 64000, France
| |
Collapse
|
9
|
Milstead RP, Horvath ER, Remucal CK. Dissolved Organic Matter Composition Determines Its Susceptibility to Complete and Partial Photooxidation within Lakes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11876-11885. [PMID: 37523443 DOI: 10.1021/acs.est.3c01500] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Dissolved organic matter (DOM) plays an important role in carbon cycling within inland surface waters. Under sunlight irradiation, DOM undergoes complete photooxidation to produce carbon dioxide (CO2) and partial photooxidation that alters the molecular composition of DOM. However, a mechanistic understanding of the relationship between DOM composition and its susceptibility to partial and complete photooxidation in surface waters is currently lacking. This work combines light exposure experiments with high-resolution mass spectrometry to investigate DOM photooxidation using two DOM isolates and DOM from 16 lakes that vary in trophic status and size. High ratios of oxygen consumption to dissolved inorganic carbon (DIC) production demonstrate that all samples undergo extensive partial photooxidation. At the molecular level, more oxidized, aromatic DOM formulas are associated with oxygen consumption and DIC production. Bulk level measurements indicate that DOM becomes less aromatic and lower in apparent molecular weight following partial photooxidation, and there is molecular level evidence of oxygen addition and loss of CO2 in all samples. However, formulas most susceptible to photooxidation vary depending on the initial DOM composition. Collectively, this work provides insights into the relationship between DOM composition and photooxidation, which has important implications for carbon cycling in diverse surface waters.
Collapse
Affiliation(s)
- Reid P Milstead
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Emma R Horvath
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Christina K Remucal
- Environmental Chemistry and Technology Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
- Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| |
Collapse
|
10
|
Lotfi-Kalahroodi E, Le Bechec M, Tessier E, Pigot T, Amouroux D. Influence of oxygen, UV light and reactive dissolved organic matter on the photodemethylation and photoreduction of monomethylmercury in model freshwater. CHEMOSPHERE 2023; 330:138675. [PMID: 37076088 DOI: 10.1016/j.chemosphere.2023.138675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/06/2023] [Accepted: 04/10/2023] [Indexed: 05/03/2023]
Abstract
The key factors which affect the abiotic photodemethylation process of monomethylmercury (MMHg) in the freshwaters has remained unclear. Hence, this work aimed to better elucidate the abiotic photodemethylation pathway in a model freshwater. Anoxic and oxic conditions were implemented to investigate the simultaneous photodemethylation to Hg(II) and photoreduction to Hg(0). MMHg freshwater solution was irradiated through exposure to three wavelength ranges of full light (280-800 nm), without short UVB (305-800 nm), and visible light (400-800 nm). The kinetic experiments were performed following dissolved and gaseous Hg species concentrations (i.e., MMHg, iHg(II), Hg(0)). A comparison between two methods of post-irradiation purging and continuous-irradiation purging confirmed MMHg photodecomposition to Hg(0) is mainly induced by a first photodemethylation step to iHg(II) followed by a photoreduction step to Hg(0). Photodemethylation under full light extent normalized to absorbed radiation energy showed a higher rate constant in anoxic conditions at 18.0 ± 2.2 kJ-1 compared to oxic conditions at 4.5 ± 0.4 kJ-1. Moreover, photoreduction also increased up to four-fold under anoxic conditions. Normalized and wavelength-specific photodemethylation (Kpd) and photoreduction (Kpr) rate constants were also calculated for natural sunlight conditions to evaluate the role of each wavelength range. The relative ratio in wavelength-specific KPAR: Klong UVB+ UVA: K short UVB showed higher dependence on UV light for photoreduction at least ten-fold compared to photodemethylation, regardless of redox conditions. Both results using Reactive Oxygen Species (ROS) scavenging methods and Volatile Organic Compounds (VOC) measurements revealed the occurrence and production of low molecular weight (LMW) organic compounds that are as photoreactive intermediates responsible for MMHg photodemethylation and iHg(II) photoreduction in the dominant pathway. This study also supports the role of dissolved oxygen as an inhibitor for the photodemethylation pathways driven by LMW photosensitizers.
Collapse
Affiliation(s)
- Elaheh Lotfi-Kalahroodi
- Universite de Pau et des Pays de L'Adour, E2S/UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour L'environnement et Les Matériaux (IPREM), 64000, Pau, France.
| | - Mickael Le Bechec
- Universite de Pau et des Pays de L'Adour, E2S/UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour L'environnement et Les Matériaux (IPREM), 64000, Pau, France
| | - Emmanuel Tessier
- Universite de Pau et des Pays de L'Adour, E2S/UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour L'environnement et Les Matériaux (IPREM), 64000, Pau, France
| | - Thierry Pigot
- Universite de Pau et des Pays de L'Adour, E2S/UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour L'environnement et Les Matériaux (IPREM), 64000, Pau, France
| | - David Amouroux
- Universite de Pau et des Pays de L'Adour, E2S/UPPA, CNRS, Institut des Sciences Analytiques et de Physico-chimie pour L'environnement et Les Matériaux (IPREM), 64000, Pau, France
| |
Collapse
|
11
|
Zhang J, Li C, Tang W, Wu M, Chen M, He H, Lei P, Zhong H. Mercury in wetlands over 60 years: Research progress and emerging trends. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161862. [PMID: 36716881 DOI: 10.1016/j.scitotenv.2023.161862] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/04/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Wetlands are considered the hotspots for mercury (Hg) biogeochemistry, garnering global attention. Therefore, it is important to review the research progress in this field and predict future frontiers. To achieve that, we conducted a literature analysis by collecting 15,813 publications about Hg in wetlands from the Web of Science Core Collection. The focus of wetland Hg research has changed dramatically over time: 1) In the initial stage (i.e., 1959-1990), research mainly focused on investigating the sources and contents of Hg in wetland environments and fish. 2) For the next 20 years (i.e., 1991-2010), Hg transformation (e.g., Hg reduction and methylation) and environmental factors that affect Hg bioaccumulation have attracted extensive attention. 3) In the recent years of 2011-2022, hot topics in Hg study include microbial Hg methylators, Hg bioavailability, methylmercury (MeHg) demethylation, Hg stable isotope, and Hg cycling in paddy fields. Finally, we put forward future research priorities, i.e., 1) clarifying the primary factors controlling MeHg production, 2) uncovering the MeHg demethylation process, 3) elucidating MeHg bioaccumulation process to better predict its risk, and 4) recognizing the role of wetlands in Hg circulation. This research shows a comprehensive knowledge map for wetland Hg research and suggests avenues for future studies.
Collapse
Affiliation(s)
- Jin Zhang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Chengjun Li
- Institute of Environmental Research at Greater Bay Area, Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Guangzhou University, Guangzhou 510006, China
| | - Wenli Tang
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mengjie Wu
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Mingying Chen
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Huan He
- School of Environment, Nanjing Normal University, Nanjing 210023, China
| | - Pei Lei
- School of Environment, Nanjing Normal University, Nanjing 210023, China.
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of Environment, Nanjing University, Nanjing 210023, China; Environmental and Life Science Program (EnLS), Trent University, Peterborough, Ontario, Canada
| |
Collapse
|
12
|
Pavithra KG, SundarRajan P, Kumar PS, Rangasamy G. Mercury sources, contaminations, mercury cycle, detection and treatment techniques: A review. CHEMOSPHERE 2023; 312:137314. [PMID: 36410499 DOI: 10.1016/j.chemosphere.2022.137314] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 11/01/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Mercury is considered a toxic pollutant harmful to our human health and the environment. Mercury is highly persistent, volatile and bioaccumulated and enters into the food chain, destroying our ecosystem. The levels of mercury in the water bodies as well as in the atmosphere are affected by anthropogenic and natural activities. In this review, the mercury species as well as the mercury contamination towards water, soil and air are discussed in detail. In addition to that, the sources of mercury and the mercury cycle in the aquatic system are also discussed. The determination of mercury with various methods such as with modified electrodes and nanomaterials was elaborated in brief. The treatment in the removal of mercury such as adsorption, electrooxidation and photocatalysis were explained with recent ideologies and among them, adsorption was considered one of the efficient techniques in terms of cost and mercury removal.
Collapse
Affiliation(s)
- K Grace Pavithra
- Department of Environmental and Water Resource Engineering, Saveetha School of Engineering, Chennai, 602 105, Tamil Nadu, India
| | - P SundarRajan
- Department of Chemical Engineering, Saveetha Engineering College, Chennai, 602 105, Tamil Nadu, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR) Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, 603 110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon.
| | - Gayathri Rangasamy
- School of Engineering, Lebanese American University, Byblos, Lebanon; University Centre for Research and Development & Department of Civil Engineering, Chandigarh University, Gharuan, Mohali, Punjab, 140413, India
| |
Collapse
|
13
|
Zhang L, Song Y, Li Y, Yin Y, Cai Y. Role of light in methylmercury photodegradation: From irradiation to absorption in the presence of organic ligands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157550. [PMID: 35907539 DOI: 10.1016/j.scitotenv.2022.157550] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/07/2022] [Accepted: 07/18/2022] [Indexed: 06/15/2023]
Abstract
Photochemical degradation acts as the principal sink for methylmercury (MeHg) in surface water, which is regulated by light and solution matrix (especially the presence of dissolved organic matter, DOM). The spectral composition of light irradiation and the light absorption properties of reaction media (often exerted by DOM) are important in MeHg photodegradation, which has not yet been clearly resolved. Aiming to understand the role of light in MeHg photodegradation from the perspectives of both light irradiation and absorption, we investigated the photodegradation of MeHg under different simulated sunlight sources, with and without DOM model compounds of different molecular structures. The results show that the photodegradation of MeHg under different sunlight irradiation yields distinct first-order date constant, mainly due to the slight difference in UVB composition. The degradation of MeHg without DOM under a light source with high intensity in the UV region and no MeHg degradation under the UV-filtered light even in the presence of DOM showed the importance of UV lights in MeHg photodegradation. The use of ultrapure water as a reaction medium may be subject to MeHg loss through vessel adsorption, not just photolysis. Additionally, this work found that the type and position of coexisting substituents on aromatic thiols play a critical role in improving the photodegradation of MeHg, following amino > hydroxyl > carboxyl, para > meta > ortho. Based on the characterization of ultraviolet-visible absorption spectra and our previous work, it was concluded that the presence of DOM could induce red-shift in light absorption and reduce the electronic transition energy of the CHg bond, facilitating MeHg photodegradation. The structures of DOM affect the light absorption properties, which are related to MeHg photodegradation.
Collapse
Affiliation(s)
- Lian Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Yue Song
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education and College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yongguang Yin
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Cai
- Department of Chemistry & Biochemistry, Florida International University, Miami, FL 33199, United States
| |
Collapse
|
14
|
McLagan DS, Schwab L, Wiederhold JG, Chen L, Pietrucha J, Kraemer SM, Biester H. Demystifying mercury geochemistry in contaminated soil-groundwater systems with complementary mercury stable isotope, concentration, and speciation analyses. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1406-1429. [PMID: 34981096 PMCID: PMC9491299 DOI: 10.1039/d1em00368b] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 11/30/2021] [Indexed: 05/08/2023]
Abstract
Interpretation of mercury (Hg) geochemistry in environmental systems remains a challenge. This is largely associated with the inability to identify specific Hg transformation processes and species using established analytical methods in Hg geochemistry (total Hg and Hg speciation). In this study, we demonstrate the improved Hg geochemical interpretation, particularly related to process tracing, that can be achieved when Hg stable isotope analyses are complemented by a suite of more established methods and applied to both solid- (soil) and liquid-phases (groundwater) across two Hg2+-chloride (HgCl2) contaminated sites with distinct geological and physicochemical properties. This novel approach allowed us to identify processes such as Hg2+ (i.e., HgCl2) sorption to the solid-phase, Hg2+ speciation changes associated with changes in groundwater level and redox conditions (particularly in the upper aquifer and capillary fringe), Hg2+ reduction to Hg0, and dark abiotic redox equilibration between Hg0 and Hg(II). Hg stable isotope analyses play a critical role in our ability to distinguish, or trace, these in situ processes. While we caution against the non-critical use of Hg isotope data for source tracing in environmental systems, due to potentially variable source signatures and overprinting by transformation processes, our study demonstrates the benefits of combining multiple analytical approaches, including Hg isotope ratios as a process tracer, to obtain an improved picture of the enigmatic geochemical behavior and fate of Hg at contaminated legacy sites.
Collapse
Affiliation(s)
- D S McLagan
- Institute for Geoecology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
- Department of Physical & Environmental Sciences, University of Toronto Scarborough, Toronto, M1C1A4, Canada
| | - L Schwab
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - J G Wiederhold
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - L Chen
- Institute for Geoecology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| | - J Pietrucha
- Institute for Geoecology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| | - S M Kraemer
- Department of Environmental Geosciences, Centre for Microbiology and Environmental Systems Science, University of Vienna, 1090 Vienna, Austria
| | - H Biester
- Institute for Geoecology, Technical University of Braunschweig, 38106 Braunschweig, Germany.
| |
Collapse
|
15
|
Zhang Z, Zhang X, Xin Y, Wu H. Ant colonization increased total mercury but reduced methylmercury contents in boreal mires, Northeast China. J Environ Sci (China) 2022; 119:50-58. [PMID: 35934465 DOI: 10.1016/j.jes.2021.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 06/15/2023]
Abstract
Soil macroinvertebrates as ecosystem engineers play significant, but largely ignored, roles in affecting mercury (Hg) cycle by altering soil physical-chemical properties. Ant is likely expanded into boreal mires with climate warming, however, its impacts on Hg cycle remained poorly understood. We compared total Hg (THg) and methylmercury (MeHg) contents in soils from antmounds (Lasius flavus) and the nearby ambient in a boreal mire in Northeast China. The present work seeks to unravel factors that controlling MeHg levels in case of ant appearance or absence. The average THg was 179 µg/kg in the ant mound and was 106.1 µg/kg in nearby soils, respectively. The average MeHg was 10.9 µg/kg in the ant mound and was 12.9 µg/kg in nearby soils, respectively. The ratios of MeHg to THg (%MeHg) were 7.61% in ant mounds and 16.75% in nearby soils, respectively. Ant colonization caused THg enrichment and MeHg depletion, and this change was obvious in the 10-20 cm depth soil layer where ants mainly inhabited. Spectrometry characteristics of soil dissolved organic matter (DOM) exert a stronger control than microorganisms on MeHg variation in soils. A structural equation model revealed that the molecular weight of DOM inhibited MeHg irrespective of ant presence or absence, while humification conducive to MeHg significantly in ant mound soils. Microorganisms mainly affected Hg methylation by altering the molecular weight and humification of DOM. We propose that the effects of ant colonization on MeHg rested on DOM feature variations caused by microorganisms in boreal mires.
Collapse
Affiliation(s)
- Zhongsheng Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China.
| | - Xuehui Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Xin
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China; Shengyang University, Shenyang 110044, China
| | - Haitao Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130012, China
| |
Collapse
|
16
|
Brooks SC, Riscassi AL, Miller CL, Lowe KA, Yin X, Mehlhorn TL. Diel mercury concentration variations in a mercury-impacted stream. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2022; 24:1195-1211. [PMID: 35829655 DOI: 10.1039/d2em00142j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Filtered and particulate mercury (Hg) and methylmercury (MMHg), and associated water chemistry parameters, were evaluated bi-hourly for several 30 h periods during the summer and winter seasons at several distinct locations (downstream forested, midstream urban/suburban, upstream industrial) along a creek contaminated with high levels of inorganic Hg to determine if biogeochemical Hg and MMHg cycles respond to the daily photocycle. In summer particulate Hg and MMHg concentrations doubled overnight (excluding the upstream industrial site) concurrent with increases in turbidity and total suspended sediment; no such pattern was evident in winter. Seasonal and diel changes in the activity of macrobiota affecting the suspension of contaminated sediments are likely responsible for these patterns as other potential explanatory variables (e.g., instrument drift, pH, discharge) could not account for the range and timing of our observations. Diel patterns in filtered Hg (HgD) were significant only at locations and times of the year when channel shading was not present and daytime concentrations increased 22-89% above nighttime minima likely caused by direct and indirect photochemical reactions. Relationships between HgD and dissolved organic carbon (DOC) concentration or character were inconsistent between sites. Unlike HgD, there were significant diel patterns in filtered MMHg (MMHgD) at all sites and times of year, with summer concentrations peaking in mid to late afternoon while the timing differed in winter, with concentrations peaking after sunset. Daily variability in MMHgD concentration ranged between 25 and 75%. The results imply key controls on net methylation occur within the stream or on the stream bed and include factors such as small-scale temperature changes in the water column and photosynthetic activity of stream biofilm. With respect to stream monitoring, results from this study indicate (1) consistent timing in stream Hg and MMHg sampling is required for accurate assessment of long-term trends, (2) in situ measurements of turbidity can be used to quantify diel dynamics of both particulate Hg and MMHg concentrations, and (3) in situ fluorescing dissolved organic matter (FDOM), a potential proxy for DOC, was not capable of resolving diel dynamics of filtered Hg or MMHg.
Collapse
Affiliation(s)
- Scott C Brooks
- Oak Ridge National Laboratory, Environmental Sciences Division, PO Box 2008, MS 6038, Oak Ridge, TN, 37831-6038, USA.
| | - Ami L Riscassi
- University of Virginia, Environmental Sciences Department, 291 McCormick Rd., Charlottesville, VA, USA
| | - Carrie L Miller
- Theoretical and Applied Science, Ramapo College of New Jersey, Mahwah, New Jersey, USA
| | - Kenneth A Lowe
- Oak Ridge National Laboratory, Environmental Sciences Division, PO Box 2008, MS 6038, Oak Ridge, TN, 37831-6038, USA.
| | - Xiangping Yin
- Oak Ridge National Laboratory, Environmental Sciences Division, PO Box 2008, MS 6038, Oak Ridge, TN, 37831-6038, USA.
| | - Tonia L Mehlhorn
- Oak Ridge National Laboratory, Environmental Sciences Division, PO Box 2008, MS 6038, Oak Ridge, TN, 37831-6038, USA.
| |
Collapse
|
17
|
Cui Y, Wu Q, Liu K, Wang S, Wang X, Jiang T, Meng B, Wu Y, Guo J. Source Apportionment of Speciated Mercury in Chinese Rice Grain Using a High-Resolution Model. ACS ENVIRONMENTAL AU 2022; 2:324-335. [PMID: 37101969 PMCID: PMC10125373 DOI: 10.1021/acsenvironau.1c00061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/28/2023]
Abstract
Rice grain consumption is a primary pathway of human mercury exposure. To trace the source of rice grain mercury in China, we developed a rice paddy mercury transport and transformation model with a grid resolution of 1 km × 1 km by using the unit cell mass conservation method. The simulated total mercury (THg) and methylmercury (MeHg) concentrations in Chinese rice grain ranged from 0.08 to 243.6 and 0.03 to 238.6 μg/kg, respectively, in 2017. Approximately, 81.3% of the national average rice grain THg concentration was due to atmospheric mercury deposition. However, soil heterogeneity, especially the variation in soil mercury, led to the wide rice grain THg distribution across grids. Approximately, 64.8% of the national average rice grain MeHg concentration was due to soil mercury. In situ methylation was the main pathway via which the rice grain MeHg concentration was increased. The coupled impact of high mercury input and methylation potential led to extremely high rice grain MeHg in partial grids among Guizhou province and junctions with surrounding provinces. The spatial variation in soil organic matter significantly impacted the methylation potential among grids, especially in Northeast China. Based on the high-resolution rice grain THg concentration, we identified 0.72% of grids as heavily polluted THg grids (rice grain THg > 20 μg/kg). These grids mainly corresponded to areas in which the human activities of nonferrous metal smelting, cement clinker production, and mercury and other metal mining were conducted. Thus, we recommended measures that are targeted at the control of heavy pollution of rice grain by THg according to the pollution sources. In addition, we observed a wide spatial variation range of MeHg to THg ratios not only in China but also in other regions of the world, which highlights the potential risk of rice intake.
Collapse
Affiliation(s)
- Yuying Cui
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
| | - Qingru Wu
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
| | - Kaiyun Liu
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
| | - Shuxiao Wang
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
- . Phone: +86
1062771466. Fax: +86 1062773597
| | - Xun Wang
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Tao Jiang
- Department
of Environmental Science and Engineering, Collage of Resources and
Environment, Southwest University, Chongqing 400716, China
| | - Bo Meng
- State
Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Yurong Wu
- University
of Chinese Academy of Sciences, Beijing 100049, China
| | - Jia Guo
- State
Key Joint Laboratory of Environment Simulation and Pollution Control,
School of Environment, Tsinghua University, Beijing 100084, China
- State
Environmental Protection Key Laboratory of Sources and Control of
Air Pollution Complex, Beijing 100084, China
| |
Collapse
|
18
|
Li Y, Li D, Song B, Li Y. The potential of mercury methylation and demethylation by 15 species of marine microalgae. WATER RESEARCH 2022; 215:118266. [PMID: 35290869 DOI: 10.1016/j.watres.2022.118266] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Revised: 02/12/2022] [Accepted: 03/07/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) and its compounds are a kind of worldwide concerned persistent toxic pollutants. As the major primary producer in the ocean, microalgae are expected to play an important role in the cycling and accumulation of Hg in marine ecosystems by either uptake Hg species from seawater or involving in the transformations of Hg species. However, there is still lack of clear knowledge on whether microalgae can induce the methylation and demethylation of Hg in aquatic environments. In this study, Hg isotope dilution and isotope addition techniques were utilized to determine the methylation and demethylation potential of Hg at concentrations comparable to that in natural environments by 15 common marine microalgae (8 species of Diatoms, 4 species of Dinoflagellates, 2 species of Chlorophyta and 1 species of Chrysophyte). Methylation of inorganic Hg was found to be negligible in the culture of all tested marine microalgae, while 6 species could significantly induce the demethylation of methylmercury (MeHg). The rates of microalgae mediated MeHg demethylation were at the same order of magnitude as that of photodemethylation, indicating that marine microalgae may play an important role in the degradation of MeHg in marine environments. Further studies suggest that the demethylation of MeHg by the microalgae may be mainly caused by their extracellular secretions (via photo-induce demethylation) and associated bacteria, rather than the direct demethylation of MeHg by microalgae cells. In addition, it was found that thiol groups may be the major component in microalgal extracellular secretions that lead to the photo-demethylation of MeHg.
Collapse
Affiliation(s)
- Ying Li
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Dan Li
- College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Beibei Song
- College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China
| | - Yanbin Li
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, and Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
19
|
Wu Z, Li Z, Shao B, Zhang Y, He W, Lu Y, Gusvitskii K, Zhao Y, Liu Y, Wang X, Tong Y. Impact of dissolved organic matter and environmental factors on methylmercury concentrations across aquatic ecosystems inferred from a global dataset. CHEMOSPHERE 2022; 294:133713. [PMID: 35074323 DOI: 10.1016/j.chemosphere.2022.133713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Mercury (Hg) input into ecosystems is estimated to have increased by twofold to fivefold since the industrial revolution. In aquatic ecosystems, methylmercury (MeHg) receives the most attentions of all the Hg species due to its neurotoxicity and strong bioaccumulation capacity in food chain. Dissolved organic matter (DOM) is crucial in impacting aquatic Hg transformation. However, only few spatially constrained studies have attempted to quantify the relative importance of DOM and other factors (e.g., Hg availability, temperature, pH, and land-use type) on MeHg concentration. In this study, we collected data of 585 water samples at 373 sites globally, including lakes, rivers, estuaries, and wetlands, and characterized the global pattern of MeHg distribution and environmental drivers of aquatic MeHg concentration. Our results showed that MeHg concentrations ranged from detection limits to 11 (geometric mean 0.11 and average 0.29) ng/L, and the highest MeHg concentration and Hg methylation potential were observed in wetlands. A positive relationship was observed between MeHg fraction in the total mercury (THg) and DOM for all the aquatic ecosystems. Using the structural equation modeling, we found that Hg availability was a dominant factor in impacting water MeHg concentration followed by DOM. According to 129 samples of specific DOM source information, we found that the percentage of THg as MeHg (%MeHg) in water dominated by the autochthonous DOM was higher than that dominated by the allochthonous DOM. Our results could advance understanding of aquatic Hg cycling and their environmental drivers, which are fundamental for predicting and mitigating MeHg productions and its potential health risks for humans.
Collapse
Affiliation(s)
- Zhengyu Wu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Zhike Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Bo Shao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yiyan Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Wei He
- School of Water Resources and Environment, China University of Geosciences (Beijing), Beijing, 100083, China
| | - Yiren Lu
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Kair Gusvitskii
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China
| | - Yurong Liu
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuejun Wang
- College of Urban and Environmental Sciences, Peking University, Beijing, 100871, China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin, 300072, China.
| |
Collapse
|
20
|
Niloy NM, Haque MM, Tareq SM. Temporal changes in hydrochemistry and DOM characteristics of the Brahmaputra River: implication to the seasonality of water quality. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:35165-35178. [PMID: 35044604 DOI: 10.1007/s11356-022-18618-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Fluorescent dissolved organic matter (fDOM) in the Brahmaputra River water was characterized using excitation-emission matrix fluorescence spectroscopy (EEM) and parallel factor analysis (PARAFAC) model. EEM and PARAFAC model identified five fluorophores (Peak A, C, M, T, Tuv) and four fDOM components (two humic-, tryptophan-, and tyrosine-like) in the Brahmaputra River water. DOC varied between 0.8 and 3.9 mg/L and along with the intensities of the fDOM components showed higher concentration in the pre-monsoon and monsoon than post-monsoon. Higher biological oxygen demand (BOD) and chemical oxygen demand (COD) confirmed the presence of a high amount of organic pollutants in the Brahmaputra River of Bangladesh. Cations and anions concentrations were comparatively lower in the monsoon and pre-monsoon compared to post-monsoon. Mg2+, Na+, and HCO3- ions were predominant; catchments were carbonate mineral-dominated; and the abundance of Na+ and SO42- ions described the presence of uncommon dissolution in the Brahmaputra River. Optical indices described that fDOM components were less aromatic, had low molecular size and weight, terrestrial and biological derived, and were largely affected by microbial decomposition. The Brahmaputra River water was in the higher microbial risk at the pre-monsoon and monsoon than the post-monsoon of the year. Entropy and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) methods based water quality index (WQI) was developed using PARAFAC components matrix of DOM. Newly derived WQI showed high seasonal variability of water quality in the Brahmaputra River due to the changes in local hydro-climate.
Collapse
Affiliation(s)
- Nahin Mostofa Niloy
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh.
| | - Md Morshedul Haque
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh
- Department of Environmental Protection Technology, German University Bangladesh, Gazipur, 1702, Bangladesh
| | - Shafi M Tareq
- Hydrobiogeochemistry and Pollution Control Laboratory, Department of Environmental Sciences, Jahangirnagar University, Dhaka, 1342, Bangladesh.
| |
Collapse
|
21
|
Barkay T, Gu B. Demethylation─The Other Side of the Mercury Methylation Coin: A Critical Review. ACS ENVIRONMENTAL AU 2022; 2:77-97. [PMID: 37101582 PMCID: PMC10114901 DOI: 10.1021/acsenvironau.1c00022] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
The public and environmental health consequences of mercury (Hg) methylation have drawn much attention and considerable research to Hg methylation processes and their dynamics in diverse environments and under a multitude of conditions. However, the net methylmercury (MeHg) concentration that accumulates in the environment is equally determined by the rate of MeHg degradation, a complex process mediated by a variety of biotic and abiotic mechanisms, about which our knowledge is limited. Here we review the current knowledge on MeHg degradation and its potential pathways and mechanisms. We describe detoxification by resistant microorganisms that employ the Hg resistance (mer) system to reductively break the carbon-mercury (C-Hg) bond producing methane (CH4) and inorganic mercuric Hg(II), which is then reduced by the mercuric reductase to elemental Hg(0). Very recent research has begun to elucidate a mechanism for the long-recognized mer-independent oxidative demethylation, likely involving some strains of anaerobic bacteria as well as aerobic methane-oxidizing bacteria, i.e., methanotrophs. In addition, photochemical and chemical demethylation processes are described, including the roles of dissolved organic matter (DOM) and free radicals as well as dark abiotic demethylation in the natural environment about which little is currently known. We focus on mechanisms and processes of demethylation and highlight the uncertainties and known effects of environmental factors leading to MeHg degradation. Finally, we suggest future research directions to further elucidate the chemical and biochemical mechanisms of biotic and abiotic demethylation and their significance in controlling net MeHg production in natural ecosystems.
Collapse
Affiliation(s)
- Tamar Barkay
- Department of Biochemistry and Microbiology, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, New Jersey 08901, United States
| | - Baohua Gu
- Environmental Sciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States
| |
Collapse
|
22
|
Wang Y, Liu J, Liem-Nguyen V, Tian S, Zhang S, Wang D, Jiang T. Binding strength of mercury (II) to different dissolved organic matter: The roles of DOM properties and sources. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150979. [PMID: 34687708 DOI: 10.1016/j.scitotenv.2021.150979] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/09/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Dissolved organic matter (DOM) influences the environmental fate and toxic effects of trace metals such as mercury (Hg). However, because of limits in DOM analytical techniques and lack of sample diversity in past studies, it remains unclear whether the binding strength of DOM complexed with Hg(II) is related to the DOM properties. In this study, different DOM isolates (n = 26) from various sources were used to determine the conditional stability constant (logK) of DOM-Hg complexes using the equilibrium dialysis ligand exchange (EDLE) method. UV-Vis and fluorescence spectrometry were used to evaluate the correlation between logK values and DOM properties, such as chromophoric moieties, aromaticity, and molecular weight. Results demonstrated that the DOM from different sources presented an extensive range of binding strengths to Hg(II), because of their heterogeneous properties. Moreover, DOM chromophores, including aromaticity and molecular weight, are critical indicators of the DOM-Hg affinity in ambient-relevant circumstances. Significantly, higher terrestrial DOM led to greater DOM-Hg affinity. Additionally, this study supports that UV-Vis and fluorescence spectroscopy can be used to estimate DOM composition and its binding strength with Hg(II). Furthermore, the observed relationship between logK and DOM properties provided a possible pathway of explanation for the spatial co-variations between Hg(II) concentrations and DOM characters observed in previous field investigations.
Collapse
Affiliation(s)
- Yuqin Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Jiang Liu
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China
| | - Van Liem-Nguyen
- Laboratory of Advanced Materials Chemistry, Advanced Institute of Materials Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam; Faculty of Applied Sciences, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
| | - Shanyi Tian
- Soil Ecology Lab, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Siqi Zhang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Dingyong Wang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China
| | - Tao Jiang
- Interdisciplinary Research Centre for Agriculture Green Development in Yangtze River Basin, College of Resources and Environment, Southwest University, Chongqing 400716, China; Institute of Environment and Health, Jianghan University, Wuhan 430056, China.
| |
Collapse
|
23
|
Eckley CS, Luxton TP, Stanfield B, Baldwin A, Holloway J, McKernan J, Johnson MG. Effect of organic matter concentration and characteristics on mercury mobilization and methylmercury production at an abandoned mine site. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 271:116369. [PMID: 33401216 PMCID: PMC7903515 DOI: 10.1016/j.envpol.2020.116369] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Revised: 12/16/2020] [Accepted: 12/20/2020] [Indexed: 05/05/2023]
Abstract
Thousands of abandoned mines throughout the western region of North America contain elevated total-mercury (THg) concentrations. Mercury is mobilized from these sites primarily due to erosion of particulate-bound Hg (THg-P). Organic matter-based soil amendments can promote vegetation growth on mine tailings, reducing erosion and subsequent loading of THg-P into downstream waterbodies. However, the introduction of a labile carbon source may stimulate microbial activity that can produce methylmercury (MeHg)-the more toxic and bioaccumulative form of Hg. Our objectives were to investigate how additions of different organic matter substrates impact Hg mobilization and methylation using a combination of field observations and controlled experiments. Field measurements of water, sediment, and porewater were collected downstream of the site and multi-year monitoring (and load calculations) were conducted at a downstream gaging station. MeHg production was assessed using stable isotope methylation assays and mesocosm experiments that were conducted using different types of organic carbon soil amendments mixed with materials from the mine site. The results showed that >80% of the THg mobilized from the mine was bound to particles and that >90% of the annual Hg loading occurred during the period of elevated discharge during spring snowmelt. Methylation rates varied between different types of soil amendments and were correlated with the components of excitation emission matrices (EEMs) associated with humic acid fractions of organic matter. The mesocosm experiments showed that under anoxic conditions carbon amendments to tailings could significantly increase porewater MeHg concentrations (up to 13 ± 3 ng/L). In addition, the carbon amendments significantly increased THg partitioning into porewater. Overall, these results indicate that soil amendment applications to reduce surface erosion at abandoned mine sites could be effective at reducing particulate Hg mobilization to downstream waterbodies; however, some types of carbon amendments can significantly increase Hg methylation as well as increase the mobilization of dissolved THg from the site.
Collapse
Affiliation(s)
- Chris S Eckley
- U.S. Environmental Protection Agency, Region-10, Seattle, WA, USA.
| | - Todd P Luxton
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Brooks Stanfield
- U.S. Environmental Protection Agency, Region-10, Seattle, WA, USA
| | - Austin Baldwin
- U.S. Geological Survey, Idaho Water Science Center, Boise, ID, USA
| | - JoAnn Holloway
- U.S. Geological Survey, Geology, Geophysics, and Geochemistry Science Center, Denver, CO, USA
| | - John McKernan
- U.S. Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, USA
| | - Mark G Johnson
- U.S. Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR, USA
| |
Collapse
|
24
|
Ren Z, Zhang H, Wang Y, Lu L, Ren D, Wang J. Multiple roles of dissolved organic matter released from decomposing rice straw at different times in organic pollutant photodegradation. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123434. [PMID: 32763715 DOI: 10.1016/j.jhazmat.2020.123434] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 07/05/2020] [Accepted: 07/06/2020] [Indexed: 06/11/2023]
Abstract
Rice straw returning causes a considerable amount of dissolved organic matter (DOM) release into aquatic croplands in a relatively short-term. The presence of rice straw-derived DOM in cropland waters may alter the photochemical behaviors of organic pollutants. However, the photochemical activity and photosensitization role of the DOMs are poorly understood. Here, eight DOM samples were extracted from decomposing rice straw at different times in 49 days to explore their photosensitizing capacities toward diuron (DIU), 17β-estradiol (E2), and sulfamethoxazole (SMX). All of the DOMs were photosensitive and mainly composed of tryptophan-, tyrosine- and fulvic-like substances. Over the decomposition period, the amount of photochemically produced reactive intermediates (PPRIs) by the DOMs peaked on days 7 and 14. The evolution of the DOM photosensitizing capacity towards DIU and E2 was consistent with the variations of PPRIs, and HO· was confirmed as a critical factor. However, the influence of the DOMs on SMX photodegradation was opposite to that on DIU and E2. The positive role of the DOMs in SMX photodegradation was attributed to the tryptophan-like components. The results suggest that straw-derived DOM is an important photosensitizer and that its photosensitization towards organic pollutants is dependent on straw decomposing time and pollutant type.
Collapse
Affiliation(s)
- Zhaogang Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Haiyang Zhang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Yunwen Wang
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Lu Lu
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China
| | - Dong Ren
- College of Environmental Science and Engineering, China West Normal University, Nanchong 637009, China; Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, China West Normal University, Nanchong 637009, China.
| | - Junjian Wang
- State Environmental Protection Key Laboratory of Integrated Surface Water-Groundwater Pollution Control, School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
25
|
Dias A, Kurian S, Thayapurath S. Optical characteristics of colored dissolved organic matter during blooms of Trichodesmium in the coastal waters off Goa. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:526. [PMID: 32676790 DOI: 10.1007/s10661-020-08494-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Accepted: 07/13/2020] [Indexed: 06/11/2023]
Abstract
Trichodesmium, a marine cyanobacterium, plays a significant role in the global nitrogen cycle due to its nitrogen fixing ability. Large patches of Trichodesmium blooms were observed in the coastal waters, off Goa during spring intermonsoon (SIM) of 2014-2018. Zeaxanthin was the dominant pigment in the bloom region. Here, we present the spectral absorption and fluorescence characteristics of colored dissolved organic matter (CDOM) during these blooms. CDOM concentration was much higher in the bloom patches as compared with nonbloom regions. During the bloom spectral CDOM absorption had distinct peaks in the UV region due to the presence of UV-absorbing/screening compounds, mycosporine-like amino acids (MAAs) and in the visible region due to phycobiliproteins (PBPs). The spectral fluorescence signatures by the traditional peak picking method exhibited three peaks, one was protein-like, and the other two were humic-like. Apart from these, Trichodesmium exhibited strong protein-like fluorescence with 370/460 nm (Ex/Em), which is a signature of cyanobacteria. A parallel factor analysis (PARAFAC) on the fluorescence excitation-emission matrix (EEM) of Trichodesmium dataset fitted a 3-component model of which one was protein-like, and two were humic-like. The fluorescence index (FI) values during Trichodesmium bloom was very high (~ 3) compared with the typical range of 1.2-1.8 observed for the natural waters. Bloom degradation experiments proved that increase in tryptophan fluorescence enhances the CDOM absorption. Our study indicates that Trichodesmium blooms provide a rich source of organic matter in the coastal waters and long-term monitoring of these blooms is essential for understanding the health of ecosystem.
Collapse
Affiliation(s)
- Albertina Dias
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India
- School of Earth, Ocean and Atmospheric Sciences, Goa University, Goa, 403206, India
| | - Siby Kurian
- CSIR-National Institute of Oceanography, Dona Paula, Goa, 403004, India.
| | | |
Collapse
|
26
|
Luo H, Cheng Q, Pan X. Photochemical behaviors of mercury (Hg) species in aquatic systems: A systematic review on reaction process, mechanism, and influencing factor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137540. [PMID: 32143045 DOI: 10.1016/j.scitotenv.2020.137540] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/23/2020] [Accepted: 02/23/2020] [Indexed: 06/10/2023]
Abstract
The fate and transport of Hg species in natural aquatic environment are strongly affected by photochemical transformation of Hg0, Hg2+, and MeHg. Migration of Hg is determined by its complexation with organic and inorganic ligands that are widely present in the water. The presence of dissolved organic matter (DOM) is closely related to photochemical reactions of Hg. DOM can strongly bind to mercury (e.g., Hg2+ and MeHg), thus affecting its speciation, mobility and toxicity, eventually dominating its bioavailability. This review summarizes extensive studies on photochemical behaviors of Hg including: (1) photo-oxidation; (2) photo-reduction; (3) photochemical methylation; and (4) MeHg photo-degradation. Photo-oxidation of Hg0 is mostly caused by oxidative free radicals (e.g., •OH, CO3•-, O3, and 1O2), while photo-reduction of Hg2+ is more complicated and it involves two pathways: (1) primary processes (direct photolysis of Hg2+ or ligand-metal charge transfer of Hg2+-DOM complex); and (2) secondary processes (reduction of Hg2+-DOM complex induced by free radicals derived from DOM photolysis). Photochemical methylation of inorganic Hg occurs as follows: (1) Hg2+ complexes with methyl donors (e.g., acetic acid, tert-butyl, alcohols, etc.) to form intermediates, followed by (2) an intramolecular methyl transfer. MeHg photo-degradation is the leading pathway for MeHg demethylation and it primarily proceeds via four different pathways. The information on DOM was also mentioned, but DOM is not the only factor that affects the photochemical behaviors of Hg. Other influencing factors such as: (1) pH value; (2) dissolved oxygen; (3) cations (Fe3+, K+) and anions (NO3-, HCO3-, CO32-, Cl-); and (4) suspended substance cannot be ignored.
Collapse
Affiliation(s)
- Hongwei Luo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qianqian Cheng
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Xiangliang Pan
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
27
|
Ackerman JT, Fleck JA, Eagles-Smith CA, Marvin-DiPasquale M, Windham-Myers L, Herzog MP, McQuillen HL. Wetland Management Strategy to Reduce Mercury in Water and Bioaccumulation in Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2019; 38:2178-2196. [PMID: 31343757 DOI: 10.1002/etc.4535] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 07/08/2019] [Accepted: 07/09/2019] [Indexed: 06/10/2023]
Abstract
Wetland environments provide numerous ecosystem services but also facilitate methylmercury (MeHg) production and bioaccumulation. We developed a wetland-management technique to reduce MeHg concentrations in wetland fish and water. We physically modified seasonal wetlands by constructing open- and deep-water treatment cells at the downstream end of seasonal wetlands to promote naturally occurring MeHg-removal processes. We assessed the effectiveness of reducing mercury (Hg) concentrations in surface water and western mosquitofish that were caged at specific locations within 4 control and 4 treatment wetlands. Methylmercury concentrations in wetland water were successfully decreased within treatment cells during only the third year of study; however, treatment cells were not effective for reducing total Hg concentrations. Furthermore, treatment cells were not effective for reducing total Hg concentrations in wetland fish. Mercury concentrations in fish were not correlated with total Hg concentrations in filtered, particulate, or whole water; and the slope of the correlation with water MeHg concentrations differed between months. Fish total Hg concentrations were weakly correlated with water MeHg concentrations in April when fish were introduced into cages but were not correlated in May when fish were retrieved from cages. Fish total Hg concentrations were greater in treatment wetlands than in control wetlands the year after the treatment wetlands' construction but declined by the second year. During the third year, fish total Hg concentrations increased in both control and treatment wetlands after an unexpected regional flooding event. Overall, we found limited support for the use of open- and deep-water treatment cells at the downstream end of wetlands to reduce MeHg concentrations in water but not fish. We suggest that additional evaluation over a longer period of time is necessary. Environ Toxicol Chem 2019;38:2178-2196. Published 2019 Wiley Periodicals, Inc. on behalf of SETAC. This article is a US government work, and as such, is in the public domain in the United States of America..
Collapse
Affiliation(s)
- Joshua T Ackerman
- US Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, California
| | - Jacob A Fleck
- US Geological Survey, California Water Science Center, Sacramento, California
| | - Collin A Eagles-Smith
- US Geological Survey, Forest and Rangeland Ecosystem Science Center, Corvallis, Oregon
| | | | | | - Mark P Herzog
- US Geological Survey, Western Ecological Research Center, Dixon Field Station, Dixon, California
| | - Harry L McQuillen
- US Bureau of Land Management, Cosumnes River Preserve, Galt, California
| |
Collapse
|
28
|
Beckers F, Awad YM, Beiyuan J, Abrigata J, Mothes S, Tsang DCW, Ok YS, Rinklebe J. Impact of biochar on mobilization, methylation, and ethylation of mercury under dynamic redox conditions in a contaminated floodplain soil. ENVIRONMENT INTERNATIONAL 2019; 127:276-290. [PMID: 30951944 DOI: 10.1016/j.envint.2019.03.040] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 03/14/2019] [Accepted: 03/14/2019] [Indexed: 06/09/2023]
Abstract
Mercury (Hg) is a highly toxic element, which is frequently enriched in flooded soils due to its anthropogenic release. The mobilization of Hg and its species is of ultimate importance since it controls the transfer into the groundwater and plants and finally ends in the food chain, which has large implications on human health. Therefore, the remediation of those contaminated sites is an urgent need to protect humans and the environment. Often, the stabilization of Hg using amendments is a reliable option and biochar is considered a candidate to fulfill this purpose. We tested two different pine cone biochars pyrolyzed at 200 °C or 500 °C, respectively, with a view to decrease the mobilization of total Hg (Hgt), methylmercury (MeHg), and ethylmercury (EtHg) and/or the formation of MeHg and EtHg in a contaminated floodplain soil (Hgt: 41 mg/kg). We used a highly sophisticated automated biogeochemical microcosm setup to systematically alter the redox conditions from ~-150 to 300 mV. We continuously monitored the redox potential (EH) along with pH and determined dissolved organic carbon (DOC), SUVA254, chloride (Cl-), sulfate (SO42-), iron (Fe), and manganese (Mn) to be able to explain the mobilization of Hg and its species. However, the impact of biochar addition on Hg mobilization was limited. We did not observe a significant decrease of Hgt, MeHg, and EtHg concentrations after treating the soil with the different biochars, presumably because potential binding sites for Hg were occupied by other ions and/or blocked by biofilm. Solubilization of Hg bound to DOC upon flooding of the soils might have occurred which could be an indirect impact of EH on Hg mobilization. Nevertheless, Hgt, MeHg, and EtHg in the slurry fluctuated between 0.9 and 52.0 μg/l, 11.1 to 406.0 ng/l, and 2.3 to 20.8 ng/l, respectively, under dynamic redox conditions. Total Hg concentrations were inversely related to the EH; however, ethylation of Hg was favored at an EH around 0 mV while methylation was enhanced between -50 and 100 mV. Phospholipid fatty acid profiles suggest that sulfate-reducing bacteria may have been the principal methylators in our experiment. In future, various biochars should be tested to evaluate their potential in decreasing the mobilization of Hg and to impede the formation of MeHg and EtHg under dynamic redox conditions in frequently flooded soils.
Collapse
Affiliation(s)
- Felix Beckers
- University of Wuppertal, Institute of Foundation Engineering, Waste and Water Management, School of Architecture and Civil Engineering, Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Yasser Mahmoud Awad
- University of Wuppertal, Institute of Foundation Engineering, Waste and Water Management, School of Architecture and Civil Engineering, Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea; Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Jingzi Beiyuan
- University of Wuppertal, Institute of Foundation Engineering, Waste and Water Management, School of Architecture and Civil Engineering, Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; School of Environment and Chemical Engineering, Foshan University, Foshan, Guangdong, China; Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Jens Abrigata
- University of Wuppertal, Institute of Foundation Engineering, Waste and Water Management, School of Architecture and Civil Engineering, Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany
| | - Sibylle Mothes
- UFZ Helmholtz Centre for Environmental Research, Department of Analytical Chemistry, Permoserstraße 15, 04318 Leipzig, Germany
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yong Sik Ok
- Korea Biochar Research Center, O-Jeong Eco-Resilience Institute (OJERI) & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea.
| | - Jörg Rinklebe
- University of Wuppertal, Institute of Foundation Engineering, Waste and Water Management, School of Architecture and Civil Engineering, Soil and Groundwater Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy & Geoinformatics, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, Republic of Korea.
| |
Collapse
|
29
|
Xie M, Zhang C, Liao X, Fan Z, Xie X, Huang C. Mechanisms of radical-initiated methylmercury degradation in soil with coexisting Fe and Cu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:52-58. [PMID: 30359801 DOI: 10.1016/j.scitotenv.2018.10.178] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/12/2018] [Accepted: 10/12/2018] [Indexed: 06/08/2023]
Abstract
Methylmercury (MeHg) is a toxic compound. It forms mainly in reducing environments, and then degrades through biogeochemical processes. Photodegradation and microorganism degradation of MeHg are among the processes that have been reported. However, little attention has been focused on the abiotic degradation of MeHg in soil/sediment without light. In our study, the percent MeHg of total Hg in Guangzhou soil in southern China was found to be variable and exhibited a significant negative correlation with the content of Fe or Cu where annite (KFe2+3(AlSi3O10)(OH)2), a Fe-bearing mineral, was identified. To understand the mechanisms of radical-initiated MeHg degradation by Fe/Cu-containing components, batch experiments were done. Results showed that annite in the soils could activate O2 to generate OH and O2- and facilitate MeHg degradation under oxic conditions. Meanwhile, Cu components in the soil further enhanced the production of O2-, and was oxidized to Cu(III) promoting degradation of MeHg directly. These findings help us understand that the distribution of MeHg in soil depends on not only external pollution sources, but also on biogeochemical processes in subsurface environments.
Collapse
Affiliation(s)
- Mengying Xie
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Caixiang Zhang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China.
| | - Xiaoping Liao
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Zenghui Fan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Xinmo Xie
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan 430074, PR China
| | - Changsheng Huang
- Wuhan Center of China Geological Survey, Wuhan 430205, Hubei, PR China
| |
Collapse
|
30
|
Zhao JY, Ye ZH, Zhong H. Rice root exudates affect microbial methylmercury production in paddy soils. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1921-1929. [PMID: 30072222 DOI: 10.1016/j.envpol.2018.07.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 07/16/2018] [Accepted: 07/16/2018] [Indexed: 06/08/2023]
Abstract
Microbial methylmercury (MeHg) production in contaminated soil-rice systems and its accumulation in rice pose health risks to consumers, especially those in Asia. However, the mechanism responsible for microbial MeHg production in paddy soils is far from clear. While previous studies examined the effect of soil and microbial factors on soil MeHg levels, in this work we explored the impact of rice cultivation itself on microbial MeHg production, focusing on the root exudate organic matter as a potential source of electron donors for microbial methylators. Effects of the cultivation of two rice cultivars, Heigu246 (H-rice) and Neiwuyou8015 (N-rice), on MeHg production in soils were therefore investigated in pot and batch incubation experiments. Soil MeHg levels measured in H-rice treatment during the heading and harvest stages were 18-49% higher than in the control and 23-108% higher than in N-rice treatment. Consequently, MeHg levels in grain, straw, and root were 38%, 81%, and 40% higher in H-rice than those in N-rice, which was mainly attributed to cultivar-specific MeHg production in soils. Results of the batch experiments suggested that root exudate organic matter could be responsible for MeHg production in soils during rice cultivation, by increasing the abundances of potential microbial methylators. For instance, root exudate organic matter increased copy numbers of Hg methylation genes (hgcA) in soils 4.1-fold. Furthermore, the 211% higher concentration of acetate (a key electron donor for microbial methylators) in the root exudate of H-rice could account for the higher MeHg production under H-rice than N-rice cultivation. Our results suggest that root exudate organic matter, especially acetate, as its key component, contributes to the elevated soil MeHg concentrations during rice cultivation. The proposed mechanism provides new insights into the elevated risk of MeHg production in contaminated soil-rice systems, as well as cultivar-specific MeHg bioaccumulation.
Collapse
Affiliation(s)
- Jia-Yin Zhao
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Zhi-Hong Ye
- State Key Laboratory for Bio-control and Guangdong Key Laboratory of Plant Resources, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510006, PR China
| | - Huan Zhong
- State Key Laboratory of Pollution Control and Resources Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China; Environmental and Life Sciences Program (EnLS), Trent University, Peterborough, Ontario, Canada.
| |
Collapse
|
31
|
Tanner KC, Windham-Myers L, Marvin-DiPasquale M, Fleck JA, Tate KW, Linquist BA. Methylmercury Dynamics in Upper Sacramento Valley Rice Fields with Low Background Soil Mercury Levels. JOURNAL OF ENVIRONMENTAL QUALITY 2018; 47:830-838. [PMID: 30025065 DOI: 10.2134/jeq2017.10.0390] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Few studies have considered how methylmercury (MeHg, a toxic form of Hg produced in anaerobic soils) production in rice ( L.) fields can affect water quality, and little is known about MeHg dynamics in rice fields. Surface water MeHg and total Hg (THg) imports, exports, and storage were studied in two commercial rice fields in the Sacramento Valley, California, where soil THg was low (25 and 57 ng g). The median concentration of MeHg in drainage water exiting the fields was 0.17 ng g (range: <0.007-2.1 ng g). Compared with irrigation water, drainage water had similar MeHg concentrations, and lower THg concentrations during the growing season. Significantly elevated drainage water MeHg and THg concentrations were observed in the fallow season compared with the growing season. An analysis of surface water loads indicates that fields were net importers of both MeHg (76-110 ng m) and THg (1947-7224 ng m) during the growing season, and net exporters of MeHg (35-200 ng m) and THg (248-6496 ng m) during the fallow season. At harvest, 190 to 700 ng MeHg m and 1400 to 1700 ng THg m were removed from fields in rice grain. Rice straw, which contained 120 to 180 ng MeHg m and 7000-10,500 ng m THg was incorporated into the soil. These results indicate that efforts to reduce MeHg and THg exports in rice drainage water should focus on the fallow season. Substantial amounts of MeHg and THg were stored in plants, and these pools should be considered in future studies.
Collapse
|
32
|
Klapstein SJ, Ziegler SE, Risk DA, O'Driscoll NJ. Assessing the utility of dissolved organic matter photoreactivity as a predictor of in situ methylmercury concentration. J Environ Sci (China) 2018; 68:160-168. [PMID: 29908735 DOI: 10.1016/j.jes.2018.02.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 02/08/2018] [Accepted: 02/09/2018] [Indexed: 06/08/2023]
Abstract
Methylmercury (MeHg) bioaccumulation is a growing concern in ecosystems worldwide. The absorption of solar radiation by dissolved organic matter (DOM) and other photoreactive ligands can convert MeHg into less toxic forms of mercury through photodemethylation. In this study, spectral changes and photoreactivity of DOM were measured to assess the potential to control photoreactions and predict in situ MeHg concentration. Water samples collected from a series of lakes in southwestern Nova Scotia in June, August, and September were exposed to controlled ultraviolet-A (UV-A) radiation for up to 24hr. Dissolved organic matter photoreactivity, measured as the loss of absorbance at 350nm at constant UV-A irradiation, was positively dependent on the initial DOM concentration in lake waters (r2=0.94). This relationship was consistent over time with both DOM concentration and photoreactivity increasing from summer into fall across lakes. Lake in situ MeHg concentration was positively correlated with DOM concentration and likely catchment transport in June (r=0.77) but not the other sampling months. Despite a consistent seasonal variation in both DOM and Fe, and their respective correlations with MeHg, no discernable seasonal trend in MeHg was observed. However, a 3-year dataset from the 6 study lakes revealed a positive correlation between DOM concentration and both Fe (r=0.91) and MeHg concentrations (r=0.51) suggesting a more dominant landscape mobility control on MeHg. The DOM-MeHg relationships observed in these lakes highlights the need to examine DOM photoreactivity controls on MeHg transport and availability in natural waters particularly given future climate perturbations.
Collapse
Affiliation(s)
- Sara J Klapstein
- Environmental Science Program, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada; Department of Earth Sciences, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada; Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6, Canada.
| | - Susan E Ziegler
- Environmental Science Program, Memorial University of Newfoundland, St. John's, NL A1C 5S7, Canada
| | - David A Risk
- Department of Earth Sciences, St. Francis Xavier University, Antigonish, NS B2G 2W5, Canada
| | - Nelson J O'Driscoll
- Department of Earth and Environmental Science, Acadia University, Wolfville, NS B4P 2R6, Canada
| |
Collapse
|
33
|
Soto Cárdenas C, Diéguez MDC, Queimaliños C, Rizzo A, Fajon V, Kotnik J, Horvat M, Ribeiro Guevara S. Mercury in a stream-lake network of Andean Patagonia (Southern Volcanic Zone): Partitioning and interaction with dissolved organic matter. CHEMOSPHERE 2018; 197:262-270. [PMID: 29353676 DOI: 10.1016/j.chemosphere.2018.01.048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2017] [Revised: 01/10/2018] [Accepted: 01/11/2018] [Indexed: 06/07/2023]
Abstract
Lake Nahuel Huapi (NH) is a large, ultraoligotrophic deep system located in Nahuel Huapi National Park (NHNP) and collecting a major headwater network of Northwestern Patagonia (Argentina). Brazo Rincón (BR), the westernmost branch of NH, is close to the active volcanic formation Puyehue-Cordón Caulle. In BR, aquatic biota and sediments display high levels of total Hg (THg), ranging in contamination levels although it is an unpolluted region. In this survey, Hg species and fractionation were assessed in association with dissolved organic matter (DOM) in several aquatic systems draining to BR. THg varied between 16.8 and 363 ng L-1, with inorganic Hg (Hg2+) contributing up to 99.8% and methyl mercury (MeHg) up to 2.10%. DOC levels were low (0.31-1.02 mg L-1) resulting in high THg:DOC and reflecting in high Hg2+ availability for binding particles (partitioning coefficient log Kd up to 6.03). In streams, Hg fractionation and speciation related directly with DOM terrestrial prints, indicating coupled Hg-DOM inputs from the catchment. In the lake, DOM quality and photochemical and biological processing drive Hg fractionation, speciation and vertical levels. Dissolved gaseous Hg (Hg0) reached higher values in BR (up to 3.8%), particularly in upper lake layers where solar radiation enhances the photoreduction of Hg2+ and Hg-DOM complexes. The environmental conditions in BR catchment promote Hg2+ binding to abiotic particles and bioaccumulation and the production of Hg0, features enhancing Hg mobilization among ecosystem compartments. Overall, the aquatic network studied can be considered a "natural Hg hotspot" within NHNP.
Collapse
Affiliation(s)
- Carolina Soto Cárdenas
- Grupo de Ecología de Sistemas Acuáticos a escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue- CCT Patagonia Norte CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina.
| | - María Del Carmen Diéguez
- Grupo de Ecología de Sistemas Acuáticos a escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue- CCT Patagonia Norte CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Claudia Queimaliños
- Grupo de Ecología de Sistemas Acuáticos a escala de Paisaje, Instituto de Investigaciones en Biodiversidad y Medioambiente (INIBIOMA, UNComahue- CCT Patagonia Norte CONICET), Quintral 1250, 8400, San Carlos de Bariloche, Río Negro, Argentina
| | - Andrea Rizzo
- Laboratorio de Análisis por Activación Neutrónica, Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Av. Bustillo km 9.5, 8400 Bariloche, Argentina; CCT Patagonia Norte CONICET Av. Pioneros 2350, 8400, Bariloche, Argentina
| | - Vesna Fajon
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Jože Kotnik
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Milena Horvat
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, SI-1000 Ljubljana, Slovenia
| | - Sergio Ribeiro Guevara
- Laboratorio de Análisis por Activación Neutrónica, Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Av. Bustillo km 9.5, 8400 Bariloche, Argentina
| |
Collapse
|
34
|
Noh S, Kim J, Hur J, Hong Y, Han S. Potential contributions of dissolved organic matter to monomethylmercury distributions in temperate reservoirs as revealed by fluorescence spectroscopy. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6474-6486. [PMID: 29250731 DOI: 10.1007/s11356-017-0913-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Accepted: 12/01/2017] [Indexed: 06/07/2023]
Abstract
The monomethylmercury (MMHg) concentrations, water quality parameters (e.g., pH, suspended particles, total phosphorus, sulfate, and chlorophyll-a), and compositions of dissolved organic matter (DOM) were analyzed to understand how the quality of DOM is related to the MMHg distributions in the surface waters of 14 reservoirs. The excitation-emission matrix (EEM) fluorescence spectroscopy identified six fluorescence peaks, and a parallel factor analysis (PARAFAC) of EEM spectra identified three components of DOM: microbial humic-like (C1), terrestrial humic-like (C2), and protein-like DOM (C3). Using the observation data, the principal component analysis (PCA) were carried out to understand the relative importance of the fluorescence properties of DOM, representing DOM quality, on the MMHg distribution. The loading plot of PCA showed a strong positive correlation between the MMHg and protein regions of the EEM spectra and no correlation between MMHg and the terrestrial humic regions of the EEM, suggesting that autochthonous DOM production is a key factor in increasing MMHg concentration in reservoir water. The preliminary mass flux estimation, which was carried out to identify the major sources of MMHg in Okjeong reservoir, revealed that the major sources are sediment diffusion and water column methylation. Because the studied reservoirs are located remotely from a large-sized river and industrial region, most MMHg in reservoir water is likely diffused from the surface sediment or produced in the water column, and these sources tend to increase in reservoirs enriched with autochthonous DOM. It is suggested that EEM fluorescence can improve our ability to trace the major sources of MMHg in diverse reservoirs.
Collapse
Affiliation(s)
- Seam Noh
- Division of Chemical Research, National Institute of Environmental Research (NIER), Incheon, 22689, Republic of Korea
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jihee Kim
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul, 05006, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, Daegu University, Daegu, 38453, Republic of Korea
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, 61005, Republic of Korea.
| |
Collapse
|
35
|
Jiang T, Chen X, Wang D, Liang J, Bai W, Zhang C, Wang Q, Wei S. Dynamics of dissolved organic matter (DOM) in a typical inland lake of the Three Gorges Reservoir area: Fluorescent properties and their implications for dissolved mercury species. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 206:418-429. [PMID: 29102844 DOI: 10.1016/j.jenvman.2017.10.048] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/20/2017] [Accepted: 10/22/2017] [Indexed: 06/07/2023]
Abstract
Dissolved organic matter (DOM) plays an important environmental and ecological role in inland aquatic systems, including lakes. In this study, using fluorescence analysis, we investigated the seasonal dynamics of DOM characteristics in Changshou Lake, which is a typical inland lake in the Three Gorges Reservoir (TGR) area. We also discuss the environmental implications of DOM for mercury (Hg) dynamics. Based on the origins of two end-members, the variations in DOM observed in this study in Changshou Lake suggest that hydrological processes (e.g., terrestrial inputs resulting from runoff and humic-like component residences) and biological activities (e.g., microbial and algae growth) are the two main principal components controlling the seasonal dynamics of DOM characteristics. Furthermore, the dynamics of dissolved Hg co-varied with variations in DOM properties, rather than with dissolved organic carbon (DOC) concentrations. This indicates that the previously reported simple correlations between DOC and Hg were not comprehensive and may lead to misunderstanding the interactions between DOM and Hg. Therefore, we recommend that when using DOM-Hg correlations to evaluate the role of DOM in the environmental fate of Hg, especially in field investigations of the spatial and temporal distribution of Hg, the properties of DOM must be taken into account.
Collapse
Affiliation(s)
- Tao Jiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400716, China; Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, SE-90183, Sweden; Environmental Geochemistry Laboratory of Natural Organic Matter, College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| | - Xueshuang Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400716, China; Environmental Geochemistry Laboratory of Natural Organic Matter, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Dingyong Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Jian Liang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400716, China; Environmental Geochemistry Laboratory of Natural Organic Matter, College of Resources and Environment, Southwest University, Chongqing, 400716, China; College of Chemistry and Environmental Engineering, Baise University, Guangxi, 533000, China
| | - Weiyang Bai
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400716, China; College of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, China
| | - Cheng Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Qilei Wang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400716, China; Environmental Geochemistry Laboratory of Natural Organic Matter, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Shiqiang Wei
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region, Ministry of Education, Chongqing Key Laboratory of Agricultural Resources and Environment, College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
36
|
Klapstein SJ, Ziegler SE, O'Driscoll NJ. Methylmercury photodemethylation is inhibited in lakes with high dissolved organic matter. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 232:392-401. [PMID: 28993027 DOI: 10.1016/j.envpol.2017.09.049] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 08/10/2017] [Accepted: 09/17/2017] [Indexed: 06/07/2023]
Abstract
Photodemethylation can be one of the primary processes for loss of neurotoxic methylmercury (MeHg) in freshwater lakes. Few studies have quantified seasonal variations in photodemethylation rate constants as a function of dissolved organic matter (DOM). We conducted 1-week irradiation experiments in two seasons to test for spatial and temporal differences in photodemethylation potential in temperate lake waters. Six study lakes in Kejimkujik National Park, Nova Scotia were sampled in summer and fall to include a range of naturally occurring DOM concentrations (4.4-13.4 and 3.9-16.4 mg C L-1, respectively). A negative linear relationship (R2 = 0.76, p = 0.01) was found between DOM concentration and photodemethylation rate constant across seasons, indicating that DOM is a strong predictor of MeHg photodemethylation independent of seasonal effects. The two highest carbon lakes (BDW and PEB) had significantly higher energy-normalized photodemethylation rate constants in summer compared to fall corresponding with lower DOM concentrations in summer relative to fall. Additionally, there were negative linear relationships between MeHg photodemethylation and DOM photomineralization (R2s = 0.58-0.72) and DOM photobleaching (R2s = 0.83-0.90). This key finding suggests that competition for photons within DOM structures may reduce the potential for MeHg photodemethylation in high carbon waters and that this relationship persists across seasons.
Collapse
Affiliation(s)
- Sara J Klapstein
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL, Canada; Department of Earth and Environmental Science, Acadia University, Wolfville, NS, Canada.
| | - Susan E Ziegler
- Department of Earth Sciences, Memorial University of Newfoundland, St. John's, NL, Canada.
| | - Nelson J O'Driscoll
- Department of Earth and Environmental Science, Acadia University, Wolfville, NS, Canada.
| |
Collapse
|
37
|
Klapstein SJ, O'Driscoll NJ. Methylmercury Biogeochemistry in Freshwater Ecosystems: A Review Focusing on DOM and Photodemethylation. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 100:14-25. [PMID: 29248954 DOI: 10.1007/s00128-017-2236-x] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/02/2017] [Indexed: 05/16/2023]
Abstract
Mercury contamination is a growing concern for freshwater food webs in ecosystems without point sources of mercury. Methylmercury (MeHg) is of particular concern, as this is the form of mercury that crosses the blood-brain barrier and is neurotoxic to organisms. Wetlands and benthic sediments have high organic content and low oxygen availability. Anaerobic bacteria drive the metabolic function in these ecosystems and subsequently can methylate mercury. The bioavailability of MeHg is controlled by physicochemical characteristics such as pH, binding affinities, and dissolved organic matter (DOM). Similarly, photodemethylation is influenced by similar characteristics and thereby the two processes should be studied in tandem. The degradation of MeHg through photochemistry is an effective destruction mechanism in freshwater lakes. This review will highlight the uncertainties and known effects of DOM on subsequent photoreactions that lead to the occurrence of mercury photodemethylation and reduction in mercury bioavailability in freshwater ecosystems.
Collapse
Affiliation(s)
- Sara J Klapstein
- Environmental Sciences Program, Memorial University of Newfoundland, St. John's, NL, Canada.
- Earth and Environmental Science Department, Acadia University, Wolfville, NS, Canada.
| | - Nelson J O'Driscoll
- Earth and Environmental Science Department, Acadia University, Wolfville, NS, Canada
| |
Collapse
|
38
|
McCarter CPR, Branfireun BA, Price JS. Nutrient and mercury transport in a sub-arctic ladder fen peatland subjected to simulated wastewater discharges. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 609:1349-1360. [PMID: 28793404 DOI: 10.1016/j.scitotenv.2017.07.225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 07/25/2017] [Accepted: 07/25/2017] [Indexed: 06/07/2023]
Abstract
Safely treating wastewater in remote communities and mining operations in sub-arctic Canada is critical to protecting the surrounding aquatic ecosystems. Undisturbed fen peatlands have been used to minimize the release of contaminants to the aquatic ecosystems; however, there is a limited understanding of wastewater transport or polishing in undisturbed fen peatlands. To elucidate these processes, a small (9800m2, ~250m long) ladder fen was continuously injected with a wastewater surrogate derived from a custom fertilizer blend and 38m3day-1 of water for 51days. The simulated wastewater included sulphate (27.2mgL-1), nitrate (7.6mgL-1), ammonium (9.1mgL-1), phosphate (7.4mgL-1), and chloride (47.2mgL-1). Major ion, total mercury (THg) and methylmercury (MeHg) pore water concentrations were measured throughout the study period. No wastewater contaminants were detected in the site outlet (~250m down-gradient) and most wastewater contaminants, except for SO42- and Cl-, remained relatively immobile. Within the SO42- plume, MeHg and THg concentrations became highly elevated relative to background (up to 10ngL-1, ~ three to five-fold increase) and MeHg comprised 60-100% of dissolved THg in the pore water. No MeHg or THg was exported at the outflow. The large increase in THg cannot be solely accounted for by the increase in MeHg and was likely due to enhanced decomposition of the peat substrate by increased microbial activity due to electron acceptor loading. Since the added nutrients were effectively transformed, sequestered or otherwise removed from pore waters in this experimental system, it appears that fen peatlands have a large capacity to safely treat residential wastewater nutrients; however, the inadvertent increases in THg and MeHg require further investigation and potential management.
Collapse
Affiliation(s)
- C P R McCarter
- Department of Earth and Environmental Sciences, University of Waterloo, Waterloo, Canada.
| | - B A Branfireun
- Department of Biology, Centre for Environment & Sustainability, The University of Western Ontario, London, Canada.
| | - J S Price
- Department of Geography and Environmental Management, University of Waterloo, Waterloo, Canada.
| |
Collapse
|
39
|
DiMento BP, Mason RP. Factors controlling the photochemical degradation of methylmercury in coastal and oceanic waters. MARINE CHEMISTRY 2017; 196. [PMID: 29515285 PMCID: PMC5836787 DOI: 10.1016/j.marchem.2017.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Many studies have recognized abiotic photochemical degradation as an important sink of methylmercury (CH3Hg) in sunlit surface waters, but the rate-controlling factors remain poorly understood. The overall objective of this study was to improve our understanding of the relative importance of photochemical reactions in the degradation of CH3Hg in surface waters across a variety of marine ecosystems by extending the range of water types studied. Experiments were conducted using surface water collected from coastal sites in Delaware, New Jersey, Connecticut, and Maine, as well as offshore sites on the New England continental shelf break, the equatorial Pacific, and the Arctic Ocean. Filtered water amended with additional CH3Hg at environmentally relevant concentrations was allowed to equilibrate with natural ligands before being exposed to natural sunlight. Water quality parameters - salinity, dissolved organic carbon, and nitrate - were measured, and specific UV absorbance was calculated as a proxy for dissolved aromatic carbon content. Degradation rate constants (0.87-1.67 day-1) varied by a factor of two across all water types tested despite varying characteristics, and did not correlate with initial CH3Hg concentrations or other environmental parameters. The rate constants in terms of cumulative photon flux values were comparable to, but at the high end of, the range of values reported in other studies. Further experiments investigating the controlling parameters of the reaction observed little effect of nitrate and chloride, and potential for bromide involvement. The HydroLight radiative transfer model was used to compute solar irradiance with depth in three representative water bodies - coastal wetland, estuary, and open ocean - allowing for the determination of water column integrated rates. Methylmercury loss per year due to photodegradation was also modeled across a range of latitudes from the Arctic to the Equator in the three model water types, resulting in an estimated global demethylation rate of 25.3 Mmol yr-1. The loss of CH3Hg was greatest in the open ocean due to increased penetration of all wavelengths, especially the UV portion of the spectrum which has a greater ability to degrade CH3Hg. Overall, this study provides additional insights and information to better constrain the importance of photochemical degradation in the cycling of CH3Hg in marine surface waters and its transport from coastal waters to the open ocean.
Collapse
|
40
|
Enhanced Two Dimensional Hydrodynamic and Water Quality Model (CE-QUAL-W2) for Simulating Mercury Transport and Cycling in Water Bodies. WATER 2017. [DOI: 10.3390/w9090643] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
41
|
Klapstein SJ, Ziegler SE, Risk DA, O'Driscoll NJ. Quantifying the effects of photoreactive dissolved organic matter on methylmercury photodemethylation rates in freshwaters. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2017; 36:1493-1502. [PMID: 27859609 DOI: 10.1002/etc.3690] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 10/21/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
The present study examined potential effects of seasonal variations in photoreactive dissolved organic matter (DOM) on methylmercury (MeHg) photodemethylation rates in freshwaters. A series of controlled experiments was carried out using natural and photochemically preconditioned DOM in water collected from 1 lake in June, August, and October. Natural DOM concentrations doubled between June and August (10.2-21.2 mg C L-1 ) and then remained stable into October (19.4 mg C L-1 ). Correspondingly, MeHg concentrations peaked in August (0.42 ng L-1 ), along with absorbances at 350 nm and 254 nm. Up to 70% of MeHg was photodemethylated in the short 48-h irradiation experiments, with June having significantly higher rates than the other sampling months (p < 0.001). Photodemethylation rate constants were not affected by photoreactive DOM, nor were they affected by initial MeHg concentrations (p > 0.10). However, MeHg photodemethylation efficiencies (quantified in moles MeHg lost/moles photon absorbed) were higher in treatments with less photoreactive DOM. Congruently, MeHg photodemethylation efficiencies also decreased over summer by up to 10 times across treatments in association with increased photoreactive DOM, and were negatively correlated with DOM concentration. These results suggest that an important driver of MeHg photodemethylation is the interplay between MeHg and DOM, with greater potential for photodemethylation in freshwaters with more photobleached DOM and lower DOM content. Environ Toxicol Chem 2017;36:1493-1502. © 2016 SETAC.
Collapse
Affiliation(s)
- Sara J Klapstein
- Department of Environmental Science, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
- Department of Earth and Environmental Science, Acadia University, Wolfville, Nova Scotia, Canada
| | - Susan E Ziegler
- Department of Environmental Science, Memorial University of Newfoundland, St. John's, Newfoundland, Canada
| | - David A Risk
- Department of Earth Sciences, St. Francis Xavier University, Antigonish, Nova Scotia, Canada
| | - Nelson J O'Driscoll
- Department of Earth and Environmental Science, Acadia University, Wolfville, Nova Scotia, Canada
| |
Collapse
|
42
|
Paranjape AR, Hall BD. Recent advances in the study of mercury methylation in aquatic systems. Facets (Ott) 2017. [DOI: 10.1139/facets-2016-0027] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
With increasing input of neurotoxic mercury to environments as a result of anthropogenic activity, it has become imperative to examine how mercury may enter biotic systems through its methylation to bioavailable forms in aquatic environments. Recent development of stable isotope-based methods in methylation studies has enabled a better understanding of the factors controlling methylation in aquatic systems. In addition, the identification and tracking of the hgcAB gene cluster, which is necessary for methylation, has broadened the range of known methylators and methylation-conducive environments. Study of abiotic factors in methylation with new molecular methods (the use of stable isotopes and genomic methods) has helped elucidate the confounding influences of many environmental factors, as these methods enable the examination of their direct effects instead of merely correlative observations. Such developments will be helpful in the finer characterization of mercury biogeochemical cycles, which will enable better predictions of the potential effects of climate change on mercury methylation in aquatic systems and, by extension, the threat this may pose to biota.
Collapse
Affiliation(s)
- Avnee R. Paranjape
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| | - Britt D. Hall
- Department of Biology, University of Regina, 3737 Wascana Parkway, Regina, SK S4S 0A2, Canada
| |
Collapse
|
43
|
Han X, Li Y, Li D, Liu C. Role of Free Radicals/Reactive Oxygen Species in MeHg Photodegradation: Importance of Utilizing Appropriate Scavengers. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:3784-3793. [PMID: 28267919 DOI: 10.1021/acs.est.7b00205] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A variety of free radicals (FR)/reactive oxygen species (ROS) have been proposed to dominate methylmercury (MeHg) photodegradation, primarily based on the results of FR/ROS scavenger addition experiments. However, in addition to eliminating FR/ROS, the added scavengers may also affect the experimental results by altering some water chemical properties, resulting in a misleading assessment of the importance of FR/ROS. In this study, 20 common FR/ROS scavengers were evaluated in terms of their influence on light absorbance, pH, MeHg analysis, MeHg-dissolved organic matter (DOM) complexation, and the scavenger-induced degradation of MeHg. Only nine scavengers were identified to be appropriate for investigating MeHg photodegradation. By utilizing these appropriate scavengers, direct photodegradation of MeHg-DOM complexes was found to be the major pathway of MeHg photodegradation in Laoshan Reservoir water and Stone Old Beach seawater. In contrast, MeHg photodegradation in Ink River water primarily occurs through both ·OH and 3DOM* mediated indirect pathways and direct photodegradation of MeHg-DOM complexes. The diverse pathways of MeHg photodegradation in the tested water may be due to differences in water chemical properties. A severe overestimation of the role of FR/ROS was observed when several improper but commonly used scavengers were adopted, highlighting the necessity of utilizing appropriate scavengers.
Collapse
Affiliation(s)
- Xiaoxiao Han
- College of Chemistry and Chemical Engineering, Ocean University of China , Qingdao 266100, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China , Qingdao 266100, China
- College of Chemistry and Chemical Engineering, Ocean University of China , Qingdao 266100, China
| | - Dan Li
- College of Chemistry and Chemical Engineering, Ocean University of China , Qingdao 266100, China
| | - Chang Liu
- College of Chemistry and Chemical Engineering, Ocean University of China , Qingdao 266100, China
| |
Collapse
|
44
|
Pan S, Feng C, Lin J, Cheng L, Wang C, Zuo Y. Occurrence and photodegradation of methylmercury in surface water of Wen-Rui-Tang River network, Wenzhou, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:11289-11298. [PMID: 28299570 DOI: 10.1007/s11356-017-8708-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2016] [Accepted: 02/27/2017] [Indexed: 06/06/2023]
Abstract
The spatial distribution and seasonal variations of methylmercury (MeHg) in Wen-Rui-Tang (WRT) River network were investigated by monitoring the MeHg concentrations in surface water samples collected from 30 sites across the river network over four seasons. Detection frequencies and concentrations of MeHg were generally higher in January, indicating that low sunlight irradiation, wind speed, and temperature conditions might enhance the persistence of MeHg in surface water. The MeHg levels varied with sampling locations, with the highest concentrations being observed in the industrial area especially around wastewater outfall, revealing that the mercury contamination in WRT River mainly comes from the industrial wastewater. Photodegradation of MeHg in WRT River surface water and the effects of natural constituents such as fulvic acid (FA), ferric ions (Fe3+), nitrate (NO3-), and dissolved oxygen on the MeHg photodegradation in aqueous solutions were studied under the simulated sunlight. The experimental data indicated that the indirect photodecomposition of MeHg occurred in WRT River surface water. Photodegradation of MeHg in FA solution was initiated by triplet 3FA* or MeHg-FA* via electron transfer interaction under light irradiations. The Fe3+ and NO3- can absorb light energy to produce ·OH and enhance the photochemical degradation of MeHg. The MeHg photodecompositions in FA, nitrate, and Fe3+ solutions were markedly accelerated after removing the dissolved oxygen.
Collapse
Affiliation(s)
- Shuihong Pan
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Chuchu Feng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Jialu Lin
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Lidong Cheng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China
| | - Chengjun Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, China.
| | - Yuegang Zuo
- Department of Chemistry and Biochemistry, University of Massachusetts Dartmouth, North Dartmouth, MA, 02747, USA.
| |
Collapse
|
45
|
Zhang D, Yin Y, Li Y, Cai Y, Liu J. Critical role of natural organic matter in photodegradation of methylmercury in water: Molecular weight and interactive effects with other environmental factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 578:535-541. [PMID: 27839761 DOI: 10.1016/j.scitotenv.2016.10.222] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2016] [Revised: 10/29/2016] [Accepted: 10/30/2016] [Indexed: 06/06/2023]
Abstract
Photodegradation is the main depletion pathway of methylmercury (MeHg) in surface water. However, the underlying mechanism of MeHg photodegradation is still not well understood. In this study, the critical role of natural organic matter (NOM) from Suwannee River natural organic matter of the International Humic Substance Society, especially its molecular weight, and the impacts of other related environmental factors in MeHg photodegradation were investigated. We observed that MeHg cannot photo-degrade in de-ionized water, excluding the direct photodegradation of MeHg. While either NOM or Fe3+ alone induced MeHg photodegradation, co-existing NOM significantly inhibited the Fe3+-induced degradation, highlighting the critical and complex role of NOM in MeHg photodegradation. Additionally, MeHg exhibited different photodegradation rates in the presence of molecular weight fractionated natural organic matter (Mf-NOM). More importantly, high concentration of NOM caused light attenuation significantly inhibited the photodegradation of MeHg, which was more significant for high molecular weight Mf-NOM. In the presence of Mf-NOM, MeHg photodegradation was also affected by light quality, pH and co-existing Cl- and NO3-. The study is helpful for a better understanding of the critical role of NOM and other environmental factors on MeHg photodegradation in surface water.
Collapse
Affiliation(s)
- Dan Zhang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yongguang Yin
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yanbin Li
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yong Cai
- Institute of Environment and Health, Jianghan University, Wuhan 430056, China
| | - Jingfu Liu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
46
|
Mailloux RJ, Yumvihoze E, Chan HM. Superoxide produced in the matrix of mitochondria enhances methylmercury toxicity in human neuroblastoma cells. Toxicol Appl Pharmacol 2015; 289:371-80. [DOI: 10.1016/j.taap.2015.11.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/28/2015] [Accepted: 11/02/2015] [Indexed: 01/08/2023]
|
47
|
Chu C, Lundeen RA, Sander M, McNeill K. Assessing the Indirect Photochemical Transformation of Dissolved Combined Amino Acids through the Use of Systematically Designed Histidine-Containing Oligopeptides. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:12798-12807. [PMID: 26425803 DOI: 10.1021/acs.est.5b03498] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Photooxidation is an important abiotic transformation pathway for amino acids (AAs) in sunlit waters. Although dissolved free AAs are well studied, the photooxidation of dissolved combined AAs (DCAAs) remains poorly investigated. This study is a systematic investigation of the effect of neighboring photostable AA residues (i.e., aliphatic, cationic, anionic, or aromatic residues) on the environmental indirect photochemical transformation of histidine (His) in His-containing oligopeptides. The pKa values of His residues in the studied oligopeptides were found to be between 4.3 and 8.1. Accordingly, the phototransformation rate constants of the His-containing oligopeptides were highly pH-dependent in an environmentally relevant pH range with higher reactivity for neutral His than for the protonated species. The photostable AA residues significantly modulated the photoreactivity of oligopeptides either through altering the accessibility of His to photochemically produced oxidants or through shifting the pKa values of His residues. In addition, the influence of neighboring photostable AA residues on the sorption-enhanced phototransformation of oligopeptides in solutions containing chromophoric dissolved organic matter (CDOM) was assessed. The constituent photostable AA residues promoted sorption of His-containing oligopeptides to CDOM macromolecules through electrostatic attraction, hydrophobic effects, and/or low-barrier hydrogen bonds, and subsequently increased the apparent phototransformation rate constants by up to 2 orders of magnitude.
Collapse
Affiliation(s)
- Chiheng Chu
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Rachel A Lundeen
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Michael Sander
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| | - Kristopher McNeill
- Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich , 8092 Zurich, Switzerland
| |
Collapse
|
48
|
Garcia RD, Reissig M, Queimaliños CP, Garcia PE, Dieguez MC. Climate-driven terrestrial inputs in ultraoligotrophic mountain streams of Andean Patagonia revealed through chromophoric and fluorescent dissolved organic matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 521-522:280-292. [PMID: 25847172 DOI: 10.1016/j.scitotenv.2015.03.102] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Revised: 03/21/2015] [Accepted: 03/23/2015] [Indexed: 06/04/2023]
Abstract
Fluvial networks transport a substantial fraction of the terrestrial production, contributing to the global carbon cycle and being shaped by hydrologic, natural and anthropogenic factors. In this investigation, four Andean Patagonian oligotrophic streams connecting a forested catchment (~125km(2)) and draining to a double-basin large and deep lake (Lake Moreno complex, Northwestern Patagonia), were surveyed to analyze the dynamics of the allochthonous subsidy. The results of a 30month survey showed that the catchment supplies nutrients and dissolved organic matter (DOM) to the streams. The eruption of the Puyehue-Cordón Caulle at the beginning of the study overlapped with seasonal precipitation events. The largest terrestrial input was timed with precipitation which increased particulate materials, nutrients and DOM through enhanced runoff. Baseline suspended solids and nutrients were very low in all the streams (suspended solids: ~1mg/L; total nitrogen: ~0.02mg/L; total phosphorus: ~5μg/L), increasing several fold with runoff. Baseline dissolved organic carbon concentrations (DOC) ranged between 0.15 and 1mg/L peaking up to three-fold. Chromophoric and fluorescent analyses characterized the DOM as of large molecular weight and high aromaticity. Parallel factor modeling (PARAFAC) of DOM fluorescence matrices revealed three components of terrestrial origin, with certain degree of microbial processing: C1 and C2 (terrestrial humic-like compounds) and C3 (protein-like and pigment derived compounds). Seasonal changes in MOD quality represent different breakdown stages of the allochthonous DOM. Our survey allowed us to record and discuss the effects of the Puyehue-Cordón Caulle eruption, showing that due to the high slopes, high current and discharge of the streams the volcanic material was rapidly exported to the Moreno Lake complex. Overall, this survey underscores the magnitude and timing of the allochthonous input revealing the terrestrial subsidy to food webs in Patagonian freshwaters, which are among the most oligotrophic systems of the world.
Collapse
Affiliation(s)
- Roberto D Garcia
- Laboratorio de Fotobiología, INIBIOMA (UNComahue-CONICET), Quintral 1250, R8400FRF, S. C de Bariloche, Río Negro, Argentina.
| | - Mariana Reissig
- Laboratorio de Fotobiología, INIBIOMA (UNComahue-CONICET), Quintral 1250, R8400FRF, S. C de Bariloche, Río Negro, Argentina
| | - Claudia P Queimaliños
- Laboratorio de Fotobiología, INIBIOMA (UNComahue-CONICET), Quintral 1250, R8400FRF, S. C de Bariloche, Río Negro, Argentina
| | - Patricia E Garcia
- Laboratorio de Fotobiología, INIBIOMA (UNComahue-CONICET), Quintral 1250, R8400FRF, S. C de Bariloche, Río Negro, Argentina
| | - Maria C Dieguez
- Laboratorio de Fotobiología, INIBIOMA (UNComahue-CONICET), Quintral 1250, R8400FRF, S. C de Bariloche, Río Negro, Argentina
| |
Collapse
|
49
|
Chu C, Lundeen RA, Remucal CK, Sander M, McNeill K. Enhanced Indirect Photochemical Transformation of Histidine and Histamine through Association with Chromophoric Dissolved Organic Matter. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2015; 49:5511-5519. [PMID: 25827214 DOI: 10.1021/acs.est.5b00466] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2023]
Abstract
Photochemical transformations greatly affect the stability and fate of amino acids (AAs) in sunlit aquatic ecosystems. Whereas the direct phototransformation of dissolved AAs is well investigated, their indirect photolysis in the presence of chromophoric dissolved organic matter (CDOM) is poorly understood. In aquatic systems, CDOM may act both as sorbent for AAs and as photosensitizer, creating microenvironments with high concentrations of photochemically produced reactive intermediates, such as singlet oxygen (1O2). This study provides a systematic investigation of the indirect photochemical transformation of histidine (His) and histamine by 1O2 in solutions containing CDOM as a function of solution pH. Both His and histamine showed pH-dependent enhanced phototransformation in the CDOM systems as compared to systems in which model, low-molecular-weight 1O2 sensitizers were used. Enhanced reactivity resulted from sorption of His and histamine to CDOM and thus exposure to elevated 1O2 concentrations in the CDOM microenvironment. The extent of reactivity enhancement depended on solution pH via its effects on the protonation state of His, histamine, and CDOM. Sorption-enhanced reactivity was independently supported by depressed rate enhancements in the presence of a cosorbate that competitively displaced His and histamine from CDOM. Incorporating sorption and photochemical transformation processes into a reaction rate prediction model improved the description of the abiotic photochemical transformation rates of His in the presence of CDOM.
Collapse
Affiliation(s)
- Chiheng Chu
- †Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Rachel A Lundeen
- †Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Christina K Remucal
- ‡Department of Civil and Environmental Engineering, University of Wisconsin-Madison, Madison, Wisconsin 53706, United States
| | - Michael Sander
- †Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| | - Kristopher McNeill
- †Institute of Biogeochemistry and Pollutant Dynamics (IBP), Department of Environmental Systems Science, ETH Zurich, 8092 Zurich, Switzerland
| |
Collapse
|
50
|
Ariya PA, Amyot M, Dastoor A, Deeds D, Feinberg A, Kos G, Poulain A, Ryjkov A, Semeniuk K, Subir M, Toyota K. Mercury Physicochemical and Biogeochemical Transformation in the Atmosphere and at Atmospheric Interfaces: A Review and Future Directions. Chem Rev 2015; 115:3760-802. [DOI: 10.1021/cr500667e] [Citation(s) in RCA: 228] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Marc Amyot
- Department
of Biological Sciences, Université de Montréal, 90
avenue Vincent-d’Indy, Montreal, Quebec, Canada, H3C 3J7
| | - Ashu Dastoor
- Air
Quality Research Division, Environment Canada, 2121 TransCanada Highway, Dorval, Quebec, Canada, H9P 1J3
| | | | | | | | - Alexandre Poulain
- Department
of Biology, University of Ottawa, 30 Marie Curie, Ottawa, Ontario, Canada, K1N 6N5
| | - Andrei Ryjkov
- Air
Quality Research Division, Environment Canada, 2121 TransCanada Highway, Dorval, Quebec, Canada, H9P 1J3
| | - Kirill Semeniuk
- Air
Quality Research Division, Environment Canada, 2121 TransCanada Highway, Dorval, Quebec, Canada, H9P 1J3
| | - M. Subir
- Department
of Chemistry, Ball State University, 2000 West University Avenue, Muncie, Indiana 47306, United States
| | - Kenjiro Toyota
- Air
Quality Research Division, Environment Canada, 4905 Dufferin Street, Toronto, Ontario, Canada, M3H 5T4
| |
Collapse
|