1
|
Lan T, Zhao L, Xiong J, Wang R, Yang P, Sun W, Su S, Gan Z, Tian Z. Occurrence, ecology and health risk assessment of organophosphate triesters and diesters in surface and ground water from southwest of China. ENVIRONMENTAL RESEARCH 2025; 279:121868. [PMID: 40381713 DOI: 10.1016/j.envres.2025.121868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 05/07/2025] [Accepted: 05/14/2025] [Indexed: 05/20/2025]
Abstract
The occurrence of organophosphate triesters (OPEs) and organophosphate diesters (m-OPEs) in ground water is still unclear. To fill the blank, ground water samples in dry and wet seasons, surface river water and paired sediment samples were collected in Sichuan province and analyzed for 14 kinds of OPEs and 7 m-OPEs. Except Trimethyl phosphate was scarcely detected, the other OPEs were extensively found in aquatic environment. The concentrations of Ʃ14OPEs and Ʃ7m-OPEs ranged from 45.0 to 231 ng/L and from 1.25 to 62.3 ng/L in ground water and ranged from 2.20 to 1709 and from 0.08 to 35.5 ng/L in surface water, respectively. Compared to other reports, the pollution in Minjiang and Tuojiang river was at medium level. The concentration ratios and correlation analysis between OPEs and m-OPEs indicated that OPEs in ground water had three main sources, and m-OPEs mainly came from direct usage. Low ecological risk was found for surface water. The carcinogenic and non-carcinogenic risks of OPEs in surface and ground water via ingestion and dermal contact in moderate and high exposure scenarios were assessed, and results suggested the risks to human which mainly caused by Tri(2-chloroisopropyl) phosphate could be negligible.
Collapse
Affiliation(s)
- Tianyang Lan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Li Zhao
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Jie Xiong
- Sichuan Province Ecological Environment Monitoring Station, Chengdu, 610074, China
| | - Ruonan Wang
- Sichuan Province Ecological Environment Monitoring Station, Chengdu, 610074, China
| | - Ping Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Shijun Su
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, China.
| | - Zhiren Tian
- China National Environmental Monitoring Centre, Beijing, 100012, China.
| |
Collapse
|
2
|
Li F, Chen L, Su Z, Zheng Y, Cao F, Yang W, Wen D. Historical distribution and multi-dimensional environmental risk assessments of antibiotics in coastal sediments affected by land-based human activities. MARINE POLLUTION BULLETIN 2025; 214:117731. [PMID: 40009894 DOI: 10.1016/j.marpolbul.2025.117731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/29/2024] [Accepted: 02/20/2025] [Indexed: 02/28/2025]
Abstract
Coastal sediment cores provide important records of land-based antibiotics' deposition. This study examined sediment cores from the Hangzhou Bay, East China Sea, dating back to 1980-2020 using 210Pbex. The 40-year analysis revealed a mismatch between sediment depth and age. Wastewater treatment facilities have significantly reduced antibiotics discharge into the sea. We identified 27 antibiotics, with enrofloxacin (ERFX) and nadifloxacin (NDFX) exhibiting the highest average concentrations of 84.9 and 83.4 ng/g, respectively. Quinolones (QNs) were prominent, displaying strong co-occurrence and similar distribution patterns shaped by comparable soil-water distribution coefficient (Kd). QNs correlated positively with total antibiotic concentration, serving as indicators. We proposed a multi-dimensional risk assessment of antibiotics, encompassing ecological and antimicrobial resistance (AMR) risks, complementing each other. The assessment revealed antibiotics with distinct risks: sulfacetamide (SCM) and clindamycin (CLIN) exhibited high ecological risks, while ERFX, ciprofloxacin (CFX), norfloxacin (NFX), gatifloxacin (GTFX), moxifloxacin (MXFX), and marbofloxacin (MBFX) presented high AMR risks.
Collapse
Affiliation(s)
- Feifei Li
- School of Environment, Tsinghua University, Beijing, China
| | - Lyujun Chen
- School of Environment, Tsinghua University, Beijing, China
| | - Zhiguo Su
- School of Environment, Tsinghua University, Beijing, China
| | - Yuhan Zheng
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Feng Cao
- College of Environmental Sciences and Engineering, Peking University, Beijing, China
| | - Wendy Yang
- Faculty of Science, University of British Columbia, Vancouver, Canada
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, Beijing, China.
| |
Collapse
|
3
|
Ribeiro Trisotto LF, Figueredo CC, Gomes MP. Rivers at risks: The interplay of "COVID kit" medication misuse and urban waterway contaminants. CHEMOSPHERE 2025; 370:143933. [PMID: 39672345 DOI: 10.1016/j.chemosphere.2024.143933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/25/2024] [Accepted: 12/09/2024] [Indexed: 12/15/2024]
Abstract
This study investigates the environmental impact of the widespread use of "COVID Kit" drugs-azithromycin (AZI), ivermectin (IVE), and hydroxychloroquine (HCQ)-in urban rivers of Curitiba in Brazil, during and after the COVID-19 pandemic. The research focuses on the occurrence and concentrations of these pharmaceuticals in water and sediment samples collected from key urban rivers. Concentrations of AZI, IVE, and HCQ in water ranged from 326 to 3340 ng/L, 130-3340 ng/L, and 304-3314 ng/L, respectively, while in sediment, they ranged from 18 to 249 ng/g, 21-480 ng/g, and 38-673 ng/g, respectively. Results indicate a significant increase in AZI, IVE, and HCQ concentrations during the pandemic. Concentrations of these drugs peaked in September 2020 and March 2021, declining after the start of Brazil's vaccination campaign. However, the levels of these pharmaceuticals remained elevated in some areas even after the decline in their usage. Environmental risk assessments were conducted to evaluate the potential ecological hazards posed by these pharmaceuticals, revealing the long-term persistence of these drugs in aquatic environments and their potential to contribute to antimicrobial resistance. The findings of this study underscore the critical need for robust regulatory measures and improved wastewater treatment processes to prevent pharmaceutical contamination in urban water systems, particularly during global health crises.
Collapse
Affiliation(s)
- Luiz Felipe Ribeiro Trisotto
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C. P. 19031, Curitiba, 81531-980, Paraná, Brazil
| | - Cleber Cunha Figueredo
- Departamento de Botânica, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Pampulha, Caixa Postal 486, Belo Horizonte, Minas Gerais, 31970-901, Brazil
| | - Marcelo Pedrosa Gomes
- Laboratório de Fisiologia de Plantas sob Estresse, Departamento de Botânica, Setor de Ciências Biológicas, Universidade Federal do Paraná, Avenida Coronel Francisco H. dos Santos, 100, Centro Politécnico Jardim das Américas, C. P. 19031, Curitiba, 81531-980, Paraná, Brazil.
| |
Collapse
|
4
|
Li C, Awasthi MK, Liu J, Yao T. Veterinary tetracycline residues: Environmental occurrence, ecotoxicity, and degradation mechanism. ENVIRONMENTAL RESEARCH 2025; 266:120417. [PMID: 39579852 DOI: 10.1016/j.envres.2024.120417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/25/2024]
Abstract
Tetracycline has been widely used in the intensive livestock and poultry breeding industry to prevent and treat infectious diseases or promote animal growth. Usually, about 40.0-90.0% of tetracycline is excreted in the form of original drugs or metabolites and finally enters the surrounding water and soil, causing a series of eco-toxic effects. In this review, the toxic effects on plants, soil animals, and microorganisms are systematically reviewed. The migration and degradation mechanisms of tetracycline are emphasized, which are closely related to the physical and chemical properties of soil. In addition, the residual tetracycline in soil and water can be efficiently degraded by "plant-microorganism". Based on summarizing the current research progress, this review puts forward some important problems to be solved in the study of tetracycline residue and looks forward to the future research direction.
Collapse
Affiliation(s)
- Changning Li
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China
| | - Jie Liu
- State Key Laboratory of Grassland Agro-ecosystems, Center for Grassland Microbiome, Lanzhou University, Lanzhou, 730000, China
| | - Tuo Yao
- Key Laboratory of Grassland Ecosystem, Gansu Agricultural University, Lanzhou, 730070, Gansu, China; College of Grassland Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, China.
| |
Collapse
|
5
|
Cheng M, Li M, Zhang Y, Gu X, Gao W, Zhang S, Liu J. Exploring the mechanism of PPCPs on human metabolic diseases based on network toxicology and molecular docking. ENVIRONMENT INTERNATIONAL 2025; 196:109324. [PMID: 39952201 DOI: 10.1016/j.envint.2025.109324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 02/07/2025] [Accepted: 02/07/2025] [Indexed: 02/17/2025]
Abstract
This research endeavor seeks to delve into the potential mechanisms by which pharmaceutical and personal care products (PPCPs), recognized as emerging pollutants, could contribute to the human metabolic disorders and then trigger metabolic diseases. Therefore, we have selected lipid and atherosclerosis, Alzheimer's disease, and type Ⅱ diabetes mellitus as representative metabolic diseases, aiming to systematically explore the critical molecular pathways that may be disrupted by PPCPs for the metabolic disease development. By employing advanced network toxicology and molecular docking techniques, we have successfully elucidated the molecular mechanisms that trigger the three diseases. We pinpointed the potential targets associated with the disease by leveraging databases including PubChem, ADEMTlab2.0, SwissADME, and GeneCards. We further employed STRING analysis and Cytoscape software to pinpoint the core targets that were most significantly associated with these metabolic diseases. In addition, enrichment analysis of these core targets was conducted using Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways within the David database. To obtain the structural aspects of the target proteins, we also employed AlphaFold 3 for protein structure prediction. Finally, we validated the binding affinity of PPCPs to these target proteins using molecular docking with AutoDock Vina. Our findings suggested that PPCPs could potentially trigger metabolic diseases by modulating the expression of microRNAs, influencing cellular apoptosis and proliferation, and affecting signal transduction pathways. Interestingly, we also found the correlations among lipid and atherosclerosis, Alzheimer's disease, and type Ⅱ diabetes mellitus. Taken together, our study provides innovative insights into both the mechanisms of how environmental pollutants trigger human diseases and revealing the correlations among different diseases, thereby laying a theoretical foundation for disease prevention and treatment.
Collapse
Affiliation(s)
- Menghang Cheng
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Mengnan Li
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Yunmei Zhang
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Xuyang Gu
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Wenshan Gao
- School of Life Sciences, Hebei University, Baoding 071002, PR China
| | - Shuling Zhang
- School of Life Sciences, Hebei University, Baoding 071002, PR China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, PR China.
| | - Jianfeng Liu
- School of Life Sciences, Hebei University, Baoding 071002, PR China; Hebei Basic Science Center for Biotic Interaction, Hebei University, Baoding 071002, PR China.
| |
Collapse
|
6
|
Le ND, Dinh TTH, Vu TH, Le PT, Nguyen TMH, Hoang TTH, Rochelle-Newall E, Phung TXB, Duong TT, Luu THT, Kieu TLP, Nguyen TAH, Nguyen TD, Le TPQ. Occurrence and ecological risks of antibiotics and antiparasitics in surface water in urban lakes in Hanoi city, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1447-1465. [PMID: 39733033 DOI: 10.1007/s11356-024-35726-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 12/01/2024] [Indexed: 12/30/2024]
Abstract
The presence of antibiotics in the environment is of significant concern due to their adverse effects on aquatic ecosystems. This study provides an assessment of potential ecological risks (RQ) associated with the concentrations of eight antibiotics and antiparasitics (amoxicillin-AMO, azithromycin-AZI, ciprofloxacine-CIP, ofloxacine-OFL, oxfendazole-OXF, lincomycin-LIN, sulfacetamide-SCE and sulfamethoxazole-SME) in the surface water of 13 urban lakes in Hanoi city, Vietnam during the period 2021-2023. The findings revealed considerable variations in the total concentrations of these 8 substances (TAB), ranging from below the method detection limit (< MDL) to 2240 ng L-1 with an average of 330.4 ng L-1. Among the 8 antibiotics and antiparasitics examined, OXF, AMO, and SCE were undetectable, while the others were present at a range of concentrations (in ng L-1): OFL: 129 (< MDL-1530); CIP: 87.1 (< MDL-608); LIN: 72.7 (< MDL-676); SME: 41.5 (< MDL-504); AZI: 0.03 (< MDL-1). The calculated RQ values for these antibiotics in the Hanoi lakes indicated a high ecological risk for OFL and CIP to bacteria, a medium to high risk for SME for phytoplankton, a high risk for LIN to phytoplankton, while the risk for invertebrates was deemed negligible for all antibiotics across all lakes. The strong, positive correlation between TAB concentrations and different microbial and environmental variables (Escherichia coli, ammonium, phosphate, and chemical oxygen demand) suggests that untreated domestic wastewater is the primary pollution source in these Hanoi lakes. These results should be used to raise public awareness and to encourage the implementation of strategies targeted at managing antibiotic use. They also underscore the need to reduce inputs of untreated, antibiotic-containing wastewater into urban lakes, such as those in Hanoi and advocate for the establishment of national limits for antibiotic concentrations in surface water.
Collapse
Affiliation(s)
- Nhu Da Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| | - Thi Thanh Huyen Dinh
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
- Hanoi National University of Education, 136 Xuan Thuy, Cau Giay District, Hanoi, Vietnam
| | - Thi Huong Vu
- Hanoi National University of Education, 136 Xuan Thuy, Cau Giay District, Hanoi, Vietnam
| | - Phuong Thu Le
- University of Science and Technology of Hanoi, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam
| | - Thi Mai Huong Nguyen
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Thu Ha Hoang
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Emma Rochelle-Newall
- Sorbonne Université, Université Paris-Est Créteil, IRD, CNRS, INRAe, Institute of Ecology and Environmental Sciences of Paris (iEES-Paris), Paris, France
| | | | - Thi Thuy Duong
- Institute of Science and Technology for Energy and Environment, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Huyen Trang Luu
- National Institute for Food Control (NIFC), 65 Pham Than Duat, Hanoi, Vietnam
| | - Thi Lan Phuong Kieu
- National Institute for Food Control (NIFC), 65 Pham Than Duat, Hanoi, Vietnam
| | - Thi Anh Huong Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University-Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Tien Dat Nguyen
- Center for High Technology Research and Development, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Thi Phuong Quynh Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam.
- Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay District, Hanoi, Vietnam.
| |
Collapse
|
7
|
Zhang B, Wang X, Meng F, Du S, Li H, Xia Y, Yao Y, Zhang P, Cui J, Cui Z. Metabolic variation and oxidative stress responses of clams (Ruditapes philippinarum) perturbed by ofloxacin exposure. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135783. [PMID: 39276738 DOI: 10.1016/j.jhazmat.2024.135783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/17/2024]
Abstract
Ofloxacin (OFL), one of the most widely used fluoroquinolone antibiotics, has been frequently detected in marine environments. Nonetheless, researchers are yet to focus on the effects of OFL on the benthos. In the present study, marine clams (Ruditapes philippinarum) were exposed to OFL (0.5, 50, and 500 μg/L) for 14 d, followed by a 7 d depuration period. The accumulation of OFL, antioxidative defense responses, neurotoxicity, burrowing behavior, and metabolomic changes in clams were evaluated. The results indicated that OFL could accumulate in clams, albeit with a low bioaccumulation capacity. The intermediate (50 μg/L) and high (500 μg/L) levels of OFL induced significant antioxidative responses in the gills and digestive glands of clams, mainly manifesting as the inhibition of catalase activities and the induction of superoxide dismutase and glutathione S-transferase activities, which ultimately elevated the content of malondialdehyde, causing oxidative damage. Furthermore, the significant induction of acetylcholinesterase activities was observed, coinciding with a significant increase in burrowing rates of clams. The high level of OFL affected glycerophospholipid, arachidonic acid, steroid hormone biosynthesis, unsaturated fatty acids biosynthesis, and glycolysis/glycogenesis metabolism. In conclusion, this study has contributed to the understanding of the physiological and biochemical effects and molecular toxicity mechanisms of OFL to marine bivalves.
Collapse
Affiliation(s)
- Bo Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China; State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| | - Xiaotong Wang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China; College of Environmental Science and Engineering, Qingdao University, Qingdao 266071, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China.
| | - Shuhao Du
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Haiping Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Yufan Xia
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Yu Yao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Ping Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Jiali Cui
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao, Shandong 266100, China
| | - Zhengguo Cui
- State Key Laboratory of Mariculture Biobreeding and Sustainable Goods, Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, Shandong 266071, China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, Shandong 266237, China
| |
Collapse
|
8
|
Ariyani M, Jansen LJM, Balzer-Rutgers P, Hofstra N, van Oel P, van de Schans MGM. Antibiotic residues in the cirata reservoir, Indonesia and their effect on ecology and the selection for antibiotic-resistant bacteria. ENVIRONMENTAL RESEARCH 2024; 262:119992. [PMID: 39276829 DOI: 10.1016/j.envres.2024.119992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 08/30/2024] [Accepted: 09/11/2024] [Indexed: 09/17/2024]
Abstract
Antibiotic residues, their mixture toxicity, and the potential selection for antibiotic-resistant bacteria could pose a problem for water use and the ecosystem of reservoirs. This study aims to provide a comprehensive understanding of the occurrence, concentration, distribution, and ecological risks associated with various antibiotics in the Cirata reservoir, Indonesia. In our water and sediment samples, we detected 24 out of the 65 antibiotic residues analyzed, revealing a diverse range of antibiotic classes present. Notably, sulphonamides, diaminopyrimidine, and lincosamides were frequently found in the water, while the sediment predominantly contained tetracyclines and fluoroquinolones. Most antibiotic classes reached their highest concentrations in the water during the dry season. However, fluoroquinolones and tetracyclines showed their highest concentrations in the water during the wet season. Ecotoxicological risk assessments indicated that the impact of most antibiotic residues on aquatic organisms was negligible, except for fluoroquinolones. Looking at the impact on cyanobacteria, however, varying risks were indicated, ranging from medium to critical, with antibiotics like sulfamethoxazole, ciprofloxacin, norfloxacin, and lincomycin posing substantial threats. Among these, ciprofloxacin emerged as the antibiotic with the strongest risk. Furthermore, fluoroquinolones may have the potential to contribute to the selection of antibiotic-resistant bacteria. The presence of mixtures of antibiotic residues during the wet season significantly impacted species loss, with Potentially Affected Fraction of Species (msPAF) values exceeding 0.75 in almost 90% of locations. However, the impact of mixtures of antibiotic residues in sediment remained consistently low across all locations and seasons. Based on their occurrences and associated risks, 12 priority antibiotic residues were identified for monitoring in the reservoir and its tributaries. Moreover, the study suggests that river inflow serves as the most significant source of antibiotic residues in the reservoir. Further investigations into the relative share attribution of antibiotic sources in the reservoir is recommended to help identify effective interventions.
Collapse
Affiliation(s)
- Miranti Ariyani
- Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708, PB, Netherlands; Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands; National Research and Innovation Agency of Indonesia, Research Centre for Environment & Clean Technology, KST Samaun Samadikun, Jl. Sangkuriang, Bandung, 40135, Indonesia.
| | - Larissa J M Jansen
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands
| | - Paula Balzer-Rutgers
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands
| | - Nynke Hofstra
- Earth Systems and Global Change Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708, PB, Netherlands
| | - Pieter van Oel
- Water Resources Management Group, Wageningen University & Research, Droevendaalsesteeg 4, Wageningen, 6708, PB, Netherlands
| | - Milou G M van de Schans
- Wageningen Food Safety Research, Wageningen University & Research, Akkermaalsbos 2, Wageningen, 6708, WB, Netherlands
| |
Collapse
|
9
|
Wang M, Li J, Zhou Y, Zhou W, Huang S. Spatial and temporal distribution and ecological risk assessment of typical antibiotics in natural and wastewater of Jinjiang River Basin. PLoS One 2024; 19:e0310865. [PMID: 39541361 PMCID: PMC11563446 DOI: 10.1371/journal.pone.0310865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 09/06/2024] [Indexed: 11/16/2024] Open
Abstract
Antibiotics are widely used in human medical, livestock, and aquaculture fields. Most antibiotics are water-soluble and cannot be fully absorbed by humans or animals. If feces or wastewater containing antibiotics are improperly treated or discharged directly into surface water or groundwater, it will undoubtedly have an impact on aquatic organisms. The Ganjiang River is the largest river in Jiangxi Province and the largest tributary of Poyang Lake Basin. Jinjiang River, a tributary of Ganjiang River, is a typical livestock and poultry breeding area in the Poyang Lake Basin, along which many townships and counties are distributed. Gao'an and Shanggao counties are important agricultural and animal husbandry production areas in Jiangxi Province. In this paper, automatic solid phase extraction-ultra high performance liquid chromatography-mass spectrometry (SPE-UPLC-MS/MS) technology was used to simultaneously detect 27 antibiotics in 5 categories of macrolides, tetracyclines, quinolones, nitroimidazoles and sulfonamides in water. Based on this method, the concentrations and distributions of these antibiotics were analyzed. Ecological risk assessment of the Jinjiang River Basin was conducted using the ecological risk quotient method, aiming to supplement antibiotic data in the Jinjiang River Basin and provide scientific basis for local ecological environment management. The research results indicate that from 2019 to 2021, two years later, there was an increase in the use of Sulfadiazine and Roxithromycin in the Jinjiang River Basin, while the usage of Ciprofloxacin and Oxytetracycline was relatively low. In 2021, out of the 27 antibiotics, 24 were detected in surface water, 20 in groundwater, and all in wastewater. Among them, Sulfamethoxazole was the most widely used antibiotic, primarily in livestock and poultry farming. Gao'an City, a key breeding area in the Jinjiang River Basin, exhibited the highest concentration of Sulfamethoxazole at 409.96 ng·L-1, which far exceeds other antibiotics and warrants significant attention. A comparison of surface water concentrations between the Jinjiang River and 12 other regions revealed higher overall pollution levels of Roxithromycin and Sulfamethoxazole. Furthermore, according to the ecological risk assessment results, only Sulfamethoxazole poses a moderate risk to aquatic organisms.
Collapse
Affiliation(s)
- Meng Wang
- School of Geological Engineering, Institute of Disaster Prevention, Sanhe, China
- Hebei Key Laboratory of Earthquake Disaster Prevention and Risk Assessment, China
| | - Jiale Li
- School of Water Resources and Environmental Engineering, East China Institute of Technology, China
| | - Yongkang Zhou
- School of Water Resources and Environmental Engineering, East China Institute of Technology, China
| | - Wenjia Zhou
- School of Geological Engineering, Institute of Disaster Prevention, Sanhe, China
- Hebei Key Laboratory of Earthquake Disaster Prevention and Risk Assessment, China
| | - Shuai Huang
- School of Geological Engineering, Institute of Disaster Prevention, Sanhe, China
- Hebei Key Laboratory of Earthquake Disaster Prevention and Risk Assessment, China
| |
Collapse
|
10
|
Qiu X, Pu M, Zhang H, Xu B, Wang J, Xuan R. Occurrence, distribution, and correlation of antibiotics in the aquatic ecosystem of Poyang Lake Basin, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 479:135656. [PMID: 39213768 DOI: 10.1016/j.jhazmat.2024.135656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/18/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
The widespread existence and persistence of antibiotics in the aquatic environment, and their extensive ecological risks, have attracted considerable attention. The objective of this study was to evaluate the occurrence and distribution of 25 antibiotics in environmental and biological samples from Poyang Lake Basin in China. SPE-HPLC-MS/MS was used to quantify the concentrations in different matrices. The total concentrations ranged from 144 to 933 ng/L in the water and 346 to 1154 ng/g in the sediment. In the spatial distribution analysis of this basin, the concentrations in the Ganjiang River were generally higher than those in Poyang Lake. The seasonal distribution in the wet and dry seasons showed comparatively higher concentrations during the dry season than the wet season. Additionally, antibiotics were found in various hydrophytes and animals, and the bioconcentration factor values followed the order: emergent plants > floating plants > submerged plants and benthic organisms > ducks > fish. Moreover, correlations among different matrices showed that antibiotics in viviparid snails were significantly positively correlated with those in ducks, and negatively correlated with those in carps, indicating the transmission relationship through the food chain. The results showed the trophic transfer of antibiotics in the food web and their potential environmental impacts on Poyang Lake Basin need constant attention.
Collapse
Affiliation(s)
- Xiaojian Qiu
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China
| | - Mengjie Pu
- School of Environment, South China Normal University, Guangzhou 510006, China
| | - Haowen Zhang
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Jiazhen Wang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Rongrong Xuan
- The First Affiliated Hospital of Ningbo University, Ningbo 315020, China.
| |
Collapse
|
11
|
Liu Q, Yin S, Yi Y. A bacteria-based index of biotic integrity indicates aquatic ecosystem restoration. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2024; 22:100451. [PMID: 39148555 PMCID: PMC11325675 DOI: 10.1016/j.ese.2024.100451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 07/04/2024] [Accepted: 07/05/2024] [Indexed: 08/17/2024]
Abstract
Intensive ecological interventions have been carried out in highly polluted shallow lakes to improve their environments and restore their ecosystems. However, certain treatments, such as dredging polluted sediment and stocking fish, can impact the aquatic communities, including benthos and fishes. These impacts can alter the composition and characteristics of aquatic communities, which makes community-based ecological assessments challenging. Here we develop a bacteria-based index of biotic integrity (IBI) that can clearly indicate the restoration of aquatic ecosystems with minimal artificial interventions. We applied this method to a restored shallow lake during 3-year intensive ecological interventions. The interventions reduced nutrients and heavy metals by 27.1% and 16.7% in the sediment, while the total organic carbon (TOC) increased by 8.0% due to the proliferation of macrophytes. Additionally, the abundance of sulfur-related metabolic pathways decreased by 10.5% as the responses to improved ecosystem. The score of bacteria-based IBI, which is calculated based on the diversity, composition, and function of benthic bacterial communities, increased from 0.62 in 2018 to 0.81 in 2021. Our study not only provides an applicable method for aquatic ecological assessment under intensive artificial interventions but also extends the application of IBI to complex application scenarios, such as ecosystems with significantly different aquatic communities and comparisons between different basins.
Collapse
Affiliation(s)
- Qi Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Water Environment Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China
| | - Senlu Yin
- School of Environment, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Water Environment Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China
| | - Yujun Yi
- School of Environment, Beijing Normal University, Beijing 100875, China
- State Key Laboratory of Water Environment Simulation and Pollution Control, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
12
|
Somayya R, Ahmad K. Prevalence of Resistance Genes Among Multidrug-Resistant Gram-Negative Bacteria Isolated from Waters of Rivers Swat and Kabul, Pakistan. Foodborne Pathog Dis 2024. [PMID: 39435695 DOI: 10.1089/fpd.2023.0165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
The waters of rivers Swat and Kabul are the main water source for domestic and irrigation purposes in the northwestern part of Pakistan. However, this water has been contaminated due to human activities. This study aimed to analyze the water of these rivers for occurrence of antibiotic resistance genes among Gram-negative bacteria. Samples were collected from 10 different locations of these rivers. The samples were processed for the isolation of Gram-negative bacteria. Isolated bacteria were checked against 12 different antibiotics for susceptibility. The isolates were also analyzed for the presence of seven antibiotic resistance genes. A total of 50 bacterial isolates were recovered that belonged to five different bacterial genera, that is, Escherichia coli, Klebsiella oxytoca, Pseudomonas aeruginosa, Raoultella terrigena (Klebsiella terrigena), and Pseudomonas fluorescens. Antibiotic resistance pattern was cefixime 72%, cephalothin 72%, ampicillin 68%, nalidixic acid 68%, kanamycin 54%, streptomycin 42%, sulfamethoxazole-trimethoprim 28%, chloramphenicol 28%, meropenem 8%, gentamicin 8%, amikacin 2%, and tobramycin 2%. The prevalence of bla-TEM gene was 72% (n = 36), aadA gene 34% (n = 17), sul gene 32% (n = 16), bla-CTXM gene 12% (n = 6), int gene 66% (n = 33), and int1 gene 6% (n = 3). This information highlights the need for controlling and monitoring the release of domestic wastes to rivers.
Collapse
Affiliation(s)
- Ramla Somayya
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| | - Kafeel Ahmad
- Center of Biotechnology and Microbiology, University of Peshawar, Peshawar, Pakistan
| |
Collapse
|
13
|
Li B, Chang C, Sun C, Zhao D, Hu E, Li M. Multi-habitat distribution and coalescence of resistomes at the watershed scale based on metagenomics. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135349. [PMID: 39068887 DOI: 10.1016/j.jhazmat.2024.135349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/14/2024] [Accepted: 07/26/2024] [Indexed: 07/30/2024]
Abstract
The characteristics of the resistome distribution in rivers have been extensively studied. However, the distribution patterns of resistomes in multiple habitats and contributions of upstream habitats to the resistome profile in water bodies remains unclear. The current study explored the distribution and coalescence of antibiotic resistance genes (ARGs), metal resistance genes (MRGs), and mobile genetic elements (MGEs) in four habitats (including water bodies, sediments, biofilms, and riparian soils) within the Shichuan River watershed. The results revealed significant variations in the abundances and diversity of resistomes across the four habitats and two seasons. Assembly processes of resistomes were predominated by stochastic processes in summer but deterministic processes in winter. The main source of the resistome in summer water bodies was the movement of genes from upstream water bodies. However, the main sources of resistome in downstream water bodies in winter were the movement of resistomes in upstream sediments and the input of external pollution. The physicochemical properties of winter water bodies significantly influenced the movement of the resistomes across habitats. The current study elucidated the multi-habitat distribution pattern and migration mechanism of the resistome in the river system, providing new insights for effectively monitoring and controlling bacterial resistance.
Collapse
Affiliation(s)
- Bingcong Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Chao Chang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| | - Changshun Sun
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, PR China.
| | - Dan Zhao
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, PR China
| | - En Hu
- Shaanxi Provincial Academy of Environmental Science, Xi'an 710061, PR China
| | - Ming Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, Shaanxi, PR China
| |
Collapse
|
14
|
Chai T, Jin Y, Cui F, Li Z, Li M, Meng S, Yuan L, Qiu J, Mu J, Xiao G, Mu X, Qian Y. Multidimensional occurrence and diet risk of emerging contaminants in freshwater with urban agglomerations. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134813. [PMID: 38850951 DOI: 10.1016/j.jhazmat.2024.134813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 05/17/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024]
Abstract
Freshwater systems near highly urbanized areas are extremely susceptible to emerging contaminants (ECs), yet their stereoscopic persistence in aquatic ecosystems and related risks remain largely unknown. Herein, we characterized the multi-mediums distribution of 63 ECs in Baiyangdian Lake, the biggest urban lake in the North of China. We identified variations in the seasonal patterns of aquatic EC levels, which decreased in water and increased in sediment from wet to dry seasons. Surprisingly, higher concentrations and a greater variety of ECs were detected in reeds than in aquatic animals, indicating that plants may contribute to the transferring of ECs. Source analysis indicated that human activity considerably affected the distribution and risk of ECs. The dietary risk of ECs is most pronounced among children following the intake of aquatic products, especially with a relatively higher risk associated with fish consumption. Besides, a comprehensive scoring ranking method was proposed, and 9 ECs, including BPS and macrolide antibiotics, are identified as prioritized control pollutants. These findings highlight the risks associated with aquatic ECs and can facilitate the development of effective management strategies.
Collapse
Affiliation(s)
- Tingting Chai
- School of Food Science and Health, Zhejiang A&F University, Wusu Street # 666, Lin'an District, Hangzhou, Zhejiang 311300, PR China
| | - Yinyin Jin
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China; School of Food Science and Health, Zhejiang A&F University, Wusu Street # 666, Lin'an District, Hangzhou, Zhejiang 311300, PR China
| | - Feng Cui
- Collaborative Innovation Center of Green Pesticide, Zhejiang A & F University, Lin'an, Zhejiang Province 311300, PR China
| | - Zongjie Li
- School of Food Science and Health, Zhejiang A&F University, Wusu Street # 666, Lin'an District, Hangzhou, Zhejiang 311300, PR China
| | - Mingxiao Li
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, PR China; Wuxi Fishery College, Nanjing Agricultural University, Wuxi 214081, PR China
| | - Shunlong Meng
- Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences; Scientific Observing and Experimental Station of Fishery Resources and Environment in the Lower Reaches of the Changjiang River, Wuxi 214081, PR China.
| | - Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing 100141, PR China
| | - Jing Qiu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| | - Jiandong Mu
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066201, PR China; Hebei Marine Living Resources and Environment Key Laboratory, Qinhuangdao 066201, PR China
| | - Guohua Xiao
- Hebei Ocean and Fisheries Science Research Institute, Qinhuangdao 066201, PR China; Hebei Marine Living Resources and Environment Key Laboratory, Qinhuangdao 066201, PR China
| | - Xiyan Mu
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China.
| | - Yongzhong Qian
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China
| |
Collapse
|
15
|
Zhang L, Wei H, Wang C, Cheng Y, Li Y, Wang Z. Distribution and ecological risk assessment of antibiotics in different freshwater aquaculture ponds in a typical agricultural plain, China. CHEMOSPHERE 2024; 361:142498. [PMID: 38825250 DOI: 10.1016/j.chemosphere.2024.142498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/16/2024] [Accepted: 05/30/2024] [Indexed: 06/04/2024]
Abstract
Freshwater aquaculture serves as a significant focal point for antibiotic contamination, yet understanding antibiotic distribution across different aquaculture models and stages remains limited. This study evaluated antibiotic pollution in three distinct freshwater aquaculture models: rice-crayfish coculture, fish aquaculture, and crab-crayfish aquaculture, during various aquaculture stages. Of the 33 target antibiotics, 16 antibiotics were detected, with the total concentrations ranging from 111.81 ng/L to 15,949.05 ng/L in water and 10.11 ng/g to 8986.30 ng/g in sediment. Among these antibiotics, erythromycin and lomefloxacin are prohibited for use in Chinese aquaculture. Dominant antibiotics in water included lincomycin, enrofloxacin, and enoxacin, whereas in sediment, oxytetracycline and erythromycin were predominant. Notably, lincomycin emerged as a dominant antibiotic in aquaculture for the first time. The concentrations of these dominant antibiotics were high compared to other aquaculture settings and exhibited elevated ecological risk. Critical periods for antibiotic contamination in water and sediment were found to be incongruent, occurring during the rainy season in July for water and the dry season in October for sediment. Notably, the rice-crayfish coculture model exerts a good effect in reducing antibiotic pollution. Overall, these findings offer valuable evidence for the healthful and sustainable advancement of aquaculture.
Collapse
Affiliation(s)
- Lu Zhang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huimin Wei
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cong Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China
| | - Yiting Cheng
- School of Resource and Environmental Engineering, Wuhan University of Technology, Wuhan, 430070, China
| | - Yong Li
- China Metallurgical Geology Bureau (CMGB) Bureau-1 (Hebei) Analysis & Technology Co., Ltd, Langfang, 065201, China
| | - Zhi Wang
- Key Laboratory for Environment and Disaster Monitoring and Evaluation of Hubei, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, 430077, China.
| |
Collapse
|
16
|
Zhang T, Yan R, Gui Q, Gao Y, Wang Q, Xu S. Fine particulate matter as a key factor promoting the spread of antibiotics in river network. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 935:173323. [PMID: 38777058 DOI: 10.1016/j.scitotenv.2024.173323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024]
Abstract
The extensive utilization of antibiotics has resulted in their frequent detection, contributing to an increased abundance of antibiotic resistance genes in rivers and posing a significant threat to environmental health. Particulate matter plays a crucial role as the primary carrier of various pollutants in river ecosystem. Its physicochemical properties and processes of sedimentation and re-suspension can influence the migration and transformation of antibiotics, yet the mechanisms of this impact remain unclear. In this study, we investigated the distribution characteristics at the micro-scale of particles in the upstream plain river network of the Taihu basin and the adsorption behaviors of antibiotics in particulate matter. The results revealed that particles were predominantly in the size range of 30 to 150 μm in the river network and highest total antibiotic concentrations in 0 to 10 μm particle size fractions. Adsorption experiments also confirmed that the smaller the suspended particle size, the stronger the adsorption capacity for antibiotics. Spatially, both the average particle size and total antibiotic concentrations were lower downstream than upstream. The distribution mechanism of antibiotic in river network sediments was significantly influenced by frequent resuspension and settling of fine particles with a stronger capacity to adsorb antibiotics under hydrodynamic conditions. This ultimately facilitated the release of antibiotics from sediment into the water, resulting in lower antibiotic concentrations in downstream sediments relative to upstream These findings suggest that fine particles serve as the primary carriers of antibiotics, and their sorting and transport processes can significantly influence the distribution of antibiotics in water-sediment systems. This study enhances our understanding of the migration mechanisms of antibiotics in river networks and will prove beneficial for the development of management strategies aimed at controlling antibiotic dissemination.
Collapse
Affiliation(s)
- Tao Zhang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Ruomeng Yan
- Yangtze Three Gorges Oasis Technology Development Co.,Ltd, Wuhan 430010, China
| | - Qiyao Gui
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Environment, Hohai University, Nanjing 210024, China
| | - Yuexiang Gao
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Environment, Hohai University, Nanjing 210024, China.
| | - Qiuyue Wang
- Nanjing Institute of Environmental Sciences, Ministry of Ecology and Environment, Nanjing 210042, China; College of Environment, Hohai University, Nanjing 210024, China
| | - Sai Xu
- Jiangsu Key Laboratory of Chemical Pollution Control and Resources Reuse, School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
17
|
Zhang G, Zhang C, Liu J, Zhang Y, Fu W. Occurrence, fate, and risk assessment of antibiotics in conventional and advanced drinking water treatment systems: From source to tap. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120746. [PMID: 38593734 DOI: 10.1016/j.jenvman.2024.120746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/26/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
The occurrence and removal of 38 antibiotics from nine classes in two drinking water treatment plants (WTPs) were monitored monthly over one year to evaluate the efficiency of typical treatment processes, track the source of antibiotics in tap water and assess their potential risks to ecosystem and human health. In both source waters, 18 antibiotics were detected at least once, with average total antibiotic concentrations of 538.5 ng/L in WTP1 and 569.3 ng/L in WTP2. The coagulation/flocculation and sedimentation, sand filtration and granular activated carbon processes demonstrated limited removal efficiencies. Chlorination, on the other hand, effectively eliminated antibiotics by 48.7 ± 11.9%. Interestingly, negative removal was observed along the distribution system, resulting in a significant antibiotic presence in tap water, with average concentrations of 131.5 ng/L in WTP1 and 362.8 ng/L in WTP2. Source tracking analysis indicates that most antibiotics in tap water may originate from distribution system. The presence of antibiotics in raw water and tap water posed risks to the aquatic ecosystem. Untreated or partially treated raw water could pose a medium risk to infants under six months. Water parameters, for example, temperature, total nitrogen and total organic carbon, can serve as indicators to estimate antibiotic occurrence and associated risks. Furthermore, machine learning models were developed that successfully predicted risk levels using water quality parameters. Our study provides valuable insights into the occurrence, removal and risk of antibiotics in urban WTPs, contributing to the broader understanding of antibiotic pollution in water treatment systems.
Collapse
Affiliation(s)
- Guorui Zhang
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China
| | - Chao Zhang
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China
| | - Jie Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-ecosystems, Center for Grassland Microbiome, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, 730020, China.
| | - Yixiang Zhang
- Department of Chemistry and Key Laboratory of Organic Optoelectronics and Molecular Engineering, Ministry of Education, Tsinghua University, 100084, Beijing, China
| | - Wenjie Fu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, College of Environment and Resources, Guangxi Normal University, 541004, Guilin, China.
| |
Collapse
|
18
|
Liang C, He Y, Mo XJ, Guan HX, Liu LY. Universal occurrence of organophosphate tri-esters and di-esters in marine sediments: Evidence from the Okinawa Trough in the East China Sea. ENVIRONMENTAL RESEARCH 2024; 248:118308. [PMID: 38281563 DOI: 10.1016/j.envres.2024.118308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/18/2024] [Accepted: 01/23/2024] [Indexed: 01/30/2024]
Abstract
Despite numerous data on organophosphate tri-esters (tri-OPEs) in the environment, literatures on organophosphate di-esters (di-OPEs) in field environment, especially marine sediments remain scarce. This study addresses this gap by analyzing 35 abyssal sediment samples from the middle Okinawa Trough in the East China Sea. A total of 25 tri-OPEs and 10 di-OPEs were determined, but 13 tri-OPEs and 2 di-OPEs were nondetectable in any of these sediment samples. The concentrations of ∑12tri-OPE and ∑8di-OPE were 0.108-32.2 ng/g (median 1.11 ng/g) and 0.548-15.0 ng/g (median 2.74 ng/g). Chlorinated (Cl) tri-OPEs were the dominant tri-esters, accounting for 47.5 % of total tri-OPEs on average, whereas chlorinated di-OPEs represented only 19.2 % of total di-OPEs. This discrepancy between the relatively higher percentage of Cl-tri-OPEs and lower abundance of Cl-di-OPEs may be ascribed to the stronger environmental persistence of chlorinated tri-OPEs. Source assessment suggested that di-OPEs were primarily originated from the degradation of tri-OPEs rather than industrial production. Long range waterborne transport facilitated by oceanic currents was an important input pathway for OPEs in sediments from the Okinawa Trough. These findings enhance the understanding of the sources and transport of OPEs in marine sediments, particularly in the Okinawa Trough.
Collapse
Affiliation(s)
- Chan Liang
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Yong He
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Gas Hydrate, Guangzhou, 510640, China
| | - Xiao-Jing Mo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China
| | - Hong-Xiang Guan
- Frontiers Science Center for Deep Ocean Multispheres and Earth System, Key Lab of Submarine Geosciences and Prospecting Techniques, MOE and College of Marine Geosciences, Ocean University of China, Qingdao, 266100, China.
| | - Liang-Ying Liu
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 511443, China.
| |
Collapse
|
19
|
Li H, Zhang B, Meng F, Shao S, Xia Y, Yao Y. Adsorption, natural attenuation, and microbial community response of ofloxacin and oxolinic acid in marine sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123738. [PMID: 38458522 DOI: 10.1016/j.envpol.2024.123738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 03/05/2024] [Accepted: 03/05/2024] [Indexed: 03/10/2024]
Abstract
The pollution of quinolone antibiotics in the marine environment has attracted widespread attention, especially for ofloxacin (OFL) and oxolinic acid (OXO) due to their frequent detection. However, few studies have been conducted to assess the behaviors and microbial community response to these antibiotics in marine sediments, particularly for potential antibiotic-resistant bacteria. In this work, the adsorption characteristics, natural attenuation characteristics, and variation of microbial communities of OFL and OXO in marine sediments were investigated. The adsorption process of antibiotics in sediments occurred on the surface and internal pores of organic matter, where OFL was more likely to be transferred from seawater to sediment compared with OXO. Besides, the adsorption of two antibiotics on sediment surfaces was attributed to physisorption (pore filling, electrostatic interaction) and chemisorption (hydrogen bonding). The natural attenuation of OFL and OXO in marine sediment followed second-order reaction kinetics with half-lives of 6.02 and 26.71 days, respectively, wherein biodegradation contributed the most to attenuation, followed by photolysis. Microbial community structure in marine sediments exposure to antibiotics varied by reducing abundance and diversity of microbial communities, as a whole displaying as an increase in the relative abundance of Firmicutes whereas a decrease of Proteobacteria. In detail, Escherichia-Shigella sp., Blautia sp., Bifidobacterium sp., and Bacillus sp. were those antibiotic-resistant bacteria with potential ability to degrade OFL, while Bacillus sp. may be resistant to OXO. Furthermore, functional predictions indicated that the microbial communities in sediment may resist the stress caused by OFL and OXO through cyano-amino acid metabolism, and ascorbate and aldarate metabolism, respectively. The research is key to understanding fate and bacterial resistance of antibiotics in marine sediments.
Collapse
Affiliation(s)
- Haiping Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Bo Zhang
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| | - Siyuan Shao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yufan Xia
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Yu Yao
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| |
Collapse
|
20
|
Xue W, Shi X, Guo J, Wen S, Lin W, He Q, Gao Y, Wang R, Xu Y. Affecting factors and mechanism of removing antibiotics and antibiotic resistance genes by nano zero-valent iron (nZVI) and modified nZVI: A critical review. WATER RESEARCH 2024; 253:121309. [PMID: 38367381 DOI: 10.1016/j.watres.2024.121309] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/08/2024] [Accepted: 02/11/2024] [Indexed: 02/19/2024]
Abstract
Antibiotics and antibiotic resistance genetic pollution have become a global environmental and health concern recently, with frequent detection in various environmental media. Therefore, finding ways to control antibiotics and antibiotic resistance genes (ARGs) is urgently needed. Nano zero-valent iron (nZVI) has shown a positive effect on antibiotics degradation and restraining ARGs, making it a promising solution for controlling antibiotics and ARGs. However, given the current increasingly fragmented research focus and results, a comprehensive review is still lacking. In this work, we first introduce the origin and transmission of antibiotics and ARGs in various environmental media, and then discuss the affecting factors during the degradation of antibiotics and the control of ARGs by nZVI and modified nZVI, including pH, nZVI dose, and oxidant concentration, etc. Then, the mechanisms of antibiotic and ARGs removal promoted by nZVI are also summarized. In general, the mechanism of antibiotic degradation by nZVI mainly includes adsorption and reduction, while promoting the biodegradation of antibiotics by affecting the microbial community. nZVI can also be combined with persulfates to degrade antibiotics through advanced oxidation processes. For the control of ARGs, nZVI not only changes the microbial community structure, but also affects the proliferation of ARGs through affecting the fate of mobile genetic elements (MGEs). Finally, some new ideas on the application of nZVI in the treatment of antibiotic resistance are proposed. This paper provides a reference for research and application in this field.
Collapse
Affiliation(s)
- Wenjing Xue
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Xiaoyu Shi
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Jiaming Guo
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Siqi Wen
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Weilong Lin
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Qi He
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China
| | - Yang Gao
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410114, PR China
| | - Rongzhong Wang
- School of Resource & Environment and Safety Engineering, University of South China, Heng yang 421001, PR China
| | - Yiqun Xu
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou 225009, PR China.
| |
Collapse
|
21
|
Chen Y, Ren L, Li X, Zhou JL. Competitive adsorption and bioaccumulation of sulfamethoxazole and roxithromycin by sediment and zebrafish (Danio rerio) during individual and combined exposure in water. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132894. [PMID: 37952337 DOI: 10.1016/j.jhazmat.2023.132894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/09/2023] [Accepted: 10/28/2023] [Indexed: 11/14/2023]
Abstract
Antibiotics are extensively used for health protection and food production, causing antibiotic pollution in the aquatic environment. This study aims to determine the bioavailability and bioaccumulation of typical antibiotics sulfamethoxazole (SMX) and roxithromycin (RTM) in zebrafish under environmentally realistic conditions. Four different microcosms, i.e. water, water-sediment, water-zebrafish, and water-sediment-zebrafish were constructed, with three replicates in parallel. The concentrations of SMX and RTM in water, sediment and zebrafish were extracted and analyzed by ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) to assess their kinetic behavior and bioavailability. In the water-sediment system, the dissolved concentration of both SMX and RTM decreased with time following the first-order kinetic while their adsorption by sediment increased with time. In the water-zebrafish system, SMX and RTM bioaccumulation was increasing with time following the pseudo second-order kinetics. RTM bioaccumulation in zebrafish (up to 16.4 ng/g) was an order of magnitude higher than SMX (up to 5.2 ng/g), likely due to RTM being more hydrophobic than SMX. In addition, the bioaccumulation factor (BAF) value of SMX in zebrafish was greater than its sediment partition coefficient, while the opposite trend was observed for RTM, demonstrating the importance of antibiotics properties in affecting their bioavailability. Furthermore, increasing dissolved organic carbon concentration in water reduced SMX bioaccumulation, but increased RTM bioaccumulation at the same time. The findings are important in future studies of environmental fate and bioavailability of toxic chemicals with different pollution sources and physicochemical properties.
Collapse
Affiliation(s)
- Yue Chen
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Lei Ren
- College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | - Xiaowei Li
- School of Environmental and Chemical Engineering, Organic Compound Pollution Control Engineering, Ministry of Education, Shanghai University, Shanghai 200444, PR China
| | - John L Zhou
- School of Civil and Environmental Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| |
Collapse
|
22
|
Yao W, Qi Y, Han Y, Ge J, Dong Y, Wang J, Yi Y, Volmer DA, Li SL, Fu P. Seasonal variation and dissolved organic matter influence on the distribution, transformation, and environmental risk of pharmaceuticals and personal care products in coastal zone: A case study of Tianjin, China. WATER RESEARCH 2024; 249:120881. [PMID: 38016225 DOI: 10.1016/j.watres.2023.120881] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are emerging contaminants that have raised urgent environmental issues. The dissolved organic matter (DOM) plays a pivotal role on PPCPs' migration and transformation. To obtain a comprehensive understanding of the occurrence and distribution of PPCPs, a seasonal sampling focused on the riverine system in coastal zone, Tianjin, Bohai Rim was conducted. The distribution and transformation of thirty-three PPCPs and their interaction with DOM were investigated, and their sources and ecological risks were further evaluated. The total concentration of PPCPs ranges from 0.01 to 197.20 μg/L, and such value is affected by regional temperature, DOM and land use types. PPCPs migration at soil-water interface is controlled by temperature, sunlight, water flow and DOM. PPCPs have a high affinity to the protein-like DOM, while the humus-like DOM plays a negative influence and facilitates PPCPs' degradation. It is also found that protein-like DOM can represent point source pollution, while humus-like substances indicate non-point source (NPS) emission. Specific PPCPs can be used as markers to trace the source of domestic discharge. Additionally, daily use PPCPs such as ketoprofen, caffeine and iopromide are estimated to be the main risk substances, and their ecological risk varies on space, season and river hydraulic condition.
Collapse
Affiliation(s)
- Wenrui Yao
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Yulin Qi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China.
| | - Yufu Han
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Jinfeng Ge
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Yuanyuan Dong
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Jianwen Wang
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China
| | - Yuanbi Yi
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China; Department of Ocean Science and Center for Ocean Research in Hong Kong and Macau, The Hong Kong University of Science and Technology, Hong Kong, Hong Kong SAR, China
| | - Dietrich A Volmer
- Department of Chemistry, Humboldt-Universität zu Berlin, Berlin 12489, Germany
| | - Si-Liang Li
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| | - Pingqing Fu
- Institute of Surface-Earth System Science, School of Earth System Science, Tianjin University, Tianjin, China; Tianjin Bohai Rim Coastal Earth Critical Zone National Observation and Research Station, Tianjin University, Tianjin, China; Haihe Laboratory of Sustainable Chemical Transformations, Tianjin, China
| |
Collapse
|
23
|
Nantaba F, Wasswa J, Kylin H, Bouwman H, Palm WU, Kümmerer K. Spatial trends and ecotoxic risk assessment of selected pharmaceuticals in sediments from Lake Victoria, Uganda, East Africa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167348. [PMID: 37769731 DOI: 10.1016/j.scitotenv.2023.167348] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Pharmaceutical residues in the aquatic environment are an emerging issue of global concern because of their effects on ecosystems including; antibacterial resistance development and endocrine disruption. Lake Victoria is the largest freshwater lake in Africa, and the second largest lake in the world. It is also the main source of the White Nile River, arguably the longest river in the world, flowing through South Sudan, Sudan, Ethiopia and Egypt, discharging into the Mediterranean Sea. However, its ecology is threatened by rapid industrialisation, urbanization, and increased agricultural activities, which have led to increased pollution via polluted runoffs. In this study, the occurrence of twenty-five pharmaceutical compounds (14 antibiotics, four anti-epileptic and antidepressant drugs, three analgesic and anti-inflammatory drugs, three beta-blockers, and one lipid regulator) was studied in 55 sediment samples obtained from the Ugandan sector of Lake Victoria, and their ecotoxic risk assessed. All the target compounds were quantifiable with levofloxacin (2-120 ng g-1 dm; dry mass), ciprofloxacin (3-130 ng g-1 dm) enoxacin (9-75 ng g-1 dm), ibuprofen (6-50 ng g-1 dm), metoprolol (1-92 ng g-1 dm) and propranolol (1-52 ng g-1 dm) being predominant. Murchison Bay, being the chief recipient of sewage effluents, municipal and industrial waste from Kampala city and its suburbs, had the highest levels. Ecotoxic risk assessment revealed that ciprofloxacin, levofloxacin, sulfamethoxazole, sulfamethazine, oxytetracycline, tetracycline, erythromycin, norfloxacin, ibuprofen, diclofenac, carbamazepine, atenolol, and metoprolol posed high toxic risks to sediment-dwelling organisms (risk quotients, RQ >1). This is the first study reporting concentrations and ecotoxic risks of pharmaceuticals in sediments of Lake Victoria, Uganda, and the whole of East Africa. Detection, identification and quantification of pharmaceuticals in Lake Victoria sediments is essential for gaining knowledge on their occurrence and fate which can ultimately be used to assist in constructing relevant policy and management recommendations.
Collapse
Affiliation(s)
- Florence Nantaba
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda; Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany.
| | - John Wasswa
- Department of Chemistry, Makerere University, P.O. Box 7062, Kampala, Uganda
| | - Henrik Kylin
- Department of Thematic Research - Environmental Change, Linköping University, SE-58183 Linköping, Sweden; Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Hindrik Bouwman
- Research Unit: Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Wolf-Ulrich Palm
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| | - Klaus Kümmerer
- Institute of Sustainable and Environmental Chemistry, Leuphana University of Lüneburg, Universitätsallee 1, 21335 Lüneburg, Germany
| |
Collapse
|
24
|
Guo X, Lv M, Song L, Ding J, Man M, Fu L, Song Z, Li B, Chen L. Occurrence, Distribution, and Trophic Transfer of Pharmaceuticals and Personal Care Products in the Bohai Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:21823-21834. [PMID: 38078887 DOI: 10.1021/acs.est.3c06522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
The ubiquitous presence of pharmaceuticals and personal care products (PPCPs) in environments has aroused global concerns; however, minimal information is available regarding their multimedia distribution, bioaccumulation, and trophic transfer in marine environments. Herein, we analyzed 77 representative PPCPs in samples of surface and bottom seawater, surface sediments, and benthic biota from the Bohai Sea. PPCPs were pervasively detected in seawater, sediments, and benthic biota, with antioxidants being the most abundant PPCPs. PPCP concentrations positively correlated between the surface and bottom water with a decreasing trend from the coast to the central oceans. Higher PPCP concentrations in sediment were found in the Yellow River estuary, and the variations in the physicochemical properties of PPCPs and sediment produced a different distribution pattern of PPCPs in sediment from seawater. The log Dow, but not log Kow, showed a linear and positive relationship with bioaccumulation and trophic magnification factors and a parabolic relationship with biota-sediment accumulation factors. The trophodynamics of miconazole and acetophenone are reported for the first time. This study provides novel insights into the multimedia distribution and biomagnification potential of PPCPs and suggests that log Dow is a better indicator of their bioaccumulation and trophic magnification.
Collapse
Affiliation(s)
- Xiaotong Guo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Min Lv
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lehui Song
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Jing Ding
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Mingsan Man
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Longwen Fu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhihua Song
- School of Environmental and Material Engineering, Yantai University, Yantai 264005, China
| | - Baoquan Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China
- Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, China
| |
Collapse
|
25
|
Luo Y, Liu C, Wang Y, Yang Y, Mishra S. Occurrence, distribution and their correlation with different parameters of antibiotics and antibiotic resistance genes in lakes of China: A review. MARINE POLLUTION BULLETIN 2023; 193:115189. [PMID: 37354830 DOI: 10.1016/j.marpolbul.2023.115189] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023]
Abstract
The exposure of antibiotics and antibiotic resistance genes (ARGs) as potential threats to the environment has raised global concern. This study provides discussion on the emergence and distribution of antibiotics and ARGs in lakes. The correlation of critical water quality parameters with antibiotics and ARGs are evaluated along with their integrative potential ecological risk. Sulfonamides (∼67.18 ng/L) and quinolones (∼77.62 ng/L) were the dominant antibiotics distributed in the aqueous phase, while the quinolones and tetracyclines were the primary contamination factors in the sediment phase. The temporal and spatial distribution revealed that the antibiotic concentrations were significantly lower in summer than other seasons and the lakes in Hebei and Jiangsu provinces exhibited the highest antibiotic pollution. The detection frequency and relative abundance of sul1 gene have been the highest among all detected ARGs. Moreover, ARGs in lakes were driven by several factors, with bacterial communities and mobile genetic elements that prevailed the positive distribution of ARGs. Antibiotics have been identified as critical factors in inducing the propagation of ARGs, which could be further enhanced by chemical contaminants (e.g., heavy metals and nutrients). Involving the risk assessment strategies, research attention should be paid on three antibiotics (ofloxacin, sulfamethoxazole and erythromycin) to strengthen the policy and management of Baiyangdian Lake and East Dongting Lake. This review analysis will provide in-depth understanding to the researchers and policy-makers in formulation of strategies for remediation of antibiotic contamination in the lakes.
Collapse
Affiliation(s)
- Yuye Luo
- College of Environment, Hohai University, Nanjing 210098, China.
| | - Cheng Liu
- Key Laboratory of Integrated Regulation and Resource Development of Shallow Lakes of Ministry of Education, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Yue Wang
- College of Environment, Hohai University, Nanjing 210098, China
| | - Yuchun Yang
- College of Environment, Hohai University, Nanjing 210098, China
| | - Saurabh Mishra
- College of Civil and Transportation Engineering, Hohai University, Nanjing 210098, China
| |
Collapse
|
26
|
Kashyap A, Nishil B, Thatikonda S. Experimental and numerical elucidation of the fate and transport of antibiotics in aquatic environment: A review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:942. [PMID: 37436551 DOI: 10.1007/s10661-023-11482-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 06/08/2023] [Indexed: 07/13/2023]
Abstract
This review highlights various experimental and mathematical modeling strategies to investigate the fate and transport of antibiotics that elucidate antimicrobial selective pressure in aquatic environments. Globally, the residual antibiotic concentrations in effluents from bulk drug manufacturing industries were 30- and 1500-fold greater than values reported in municipal and hospital effluents, respectively. The antibiotic concentration from different effluents enters the waterbodies that usually get diluted as they go downstream and undergo various abiotic and biotic reactive processes. In aquatic systems, photolysis is the predominant process for antibiotic reduction in the water matrix, while hydrolysis and sorption are frequently reported in the sediment compartment. The rate of antibiotic reduction varies widely with influencing factors such as the chemical properties of the antibiotics and hydrodynamic conditions of river streams. Among all, tetracycline was found to more unstable (log Kow = - 0.62 to - 1.12) that can readily undergo photolysis and hydrolysis; whereas macrolides were more stable (log Kow = 3.06 to 4.02) that are prone to biodegradation. The processes like photolysis, hydrolysis, and biodegradation followed first-order reaction kinetics while the sorption followed a second-order kinetics for most antibiotic classes with reaction rates occurring in the decreasing order of Fluoroquinolones and Sulphonamides. The reports from various experiments on abiotic and biotic processes serve as input parameters for an integrated mathematical modeling to predict the fate of the antibiotics in the aquatic environment. Various mathematical models viz. Fugacity level IV, RSEMM, OTIS, GREAT-ER, SWAT, QWASI, and STREAM-EU are discussed for their potential capabilities. However, these models do not account for microscale interactions of the antibiotics and microbial community under real-field conditions. Also, the seasonal variations for contaminant concentrations that exert selective pressure for antimicrobial resistance has not been accounted. Addressing these aspects collectively is the key to exploring the emergence of antimicrobial resistance. Therefore, a comprehensive model involving antimicrobial resistance parameters like fitness cost, bacterial population dynamics, conjugation transfer efficiency, etc. is required to predict the fate of antibiotics.
Collapse
Affiliation(s)
- Arun Kashyap
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Benita Nishil
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India
| | - Shashidhar Thatikonda
- Environmental Engineering Division, Department of Civil Engineering, IIT Hyderabad, Kandi, Sangareddy, Telangana, 502285, India.
| |
Collapse
|
27
|
Nian Q, Yang H, Meng E, Wang C, Xu Q, Zhang Q. Efficient adsorptive removal of aminoglycoside antibiotics from environmental water. CHEMOSPHERE 2023; 337:139379. [PMID: 37422219 DOI: 10.1016/j.chemosphere.2023.139379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/25/2023] [Accepted: 06/28/2023] [Indexed: 07/10/2023]
Abstract
Aminoglycoside antibiotics (AGs) in environmental water are emerging pollutants that must be removed to protect human health and the ecosystem. However, removing AGs from environmental water remains a technical challenge due to high polarity, stronger hydrophilicity and unique characteristics of polycation. Herein, a thermal-crosslinked polyvinyl alcohol electrospun nanofiber membrane (T-PVA NFsM) is synthesized and firstly leveraged as the adsorptive removal of AGs from environmental water. The thermal crosslinking strategy is demonstrated to enhance both the water resistance and hydrophilicity of T-PVA NFsM, thereby effectively interacting with AGs with high stability. Experimental characterizations and analog calculations indicate that T-PVA NFsM utilizes multiple adsorption mechanisms, including electrostatic and hydrogen bonding interactions with AGs. As a result, the material achieves 91.09%-100% adsorption efficiencies and a maximum adsorption capacity of 110.35 mg g-1 in less than 30 min. Furthermore, the adsorption kinetics follow the pseudo-second-order model. After eight consecutive adsorption-desorption cycles, T-PVA NFsM with a simplified recycling process maintains a sustainable adsorption capability. Compared with other forms of adsorption materials, T-PVA NFsM has significant advantages such as less consumption of adsorbent, high adsorption efficiency and fast removal speed. Therefore, T-PVA NFsM-based adsorptive removal holds promise for eliminating AGs from environmental water.
Collapse
Affiliation(s)
- Qixun Nian
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Huan Yang
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Erqiong Meng
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China
| | - Chunmin Wang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, 215004, China
| | - Qian Xu
- Key Laboratory of Environmental Medicine Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing, 210009, China.
| | - Qiuping Zhang
- Suzhou Municipal Center for Disease Prevention and Control, Suzhou, 215004, China.
| |
Collapse
|
28
|
Zhang L, Bai J, Zhang K, Zhai Y, Wang Y, Liu H, Xiao R, Jorquera MA, Xia J. Spatial variability, source identification and risks assessment of antibiotics in multimedia of North China's largest freshwater lake using positive matrix factorization and Monte Carlo simulation. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131751. [PMID: 37270961 DOI: 10.1016/j.jhazmat.2023.131751] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/18/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Antibiotics are widely found in aquatic ecosystems and pose a serious threat to human and the ecological system. Samples of surface water (SW), overlying water (OW), pore water (PW) and sediments (Sedi) were collected to investigate the spatial variability, potential sources, ecological risk (RQs) and health risks (HQs) of nine common antibiotics in Baiyangdian Lake using positive matrix factorization (PMF), and Monte Carlo simulation. Significant spatial autocorrelation of most antibiotics were observed in PW and Sedi samples rather than in SW and OW samples, and higher antibiotic levels were found in the northwest of waters and the southwest of sediments. Livestock (26.74-35.57%) and aquaculture (21.62-37.70%) were identified as primary sources of antibiotics in the water and sediments. Norfloxacin and roxithromycin showed high levels of RQ and HQ in more than 50% of samples, respectively. The combined RQ (ΣRQ) in the PW can be used as a sign of across multimedia risk. Notably, appreciable health risks were observed for the combined HQ (ΣHQ) in about 80% of samples, indicating the importance of taking health risk of antibiotics into consideration. The findings of this work provides a reference for antibiotics pollution control and risk management in shallow lake.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China; School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing 100875, China; Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou 256600, China.
| | - Kegang Zhang
- Department of Environmental Engineering and Science, North China Electric Power University, Baoding, China
| | - Yujia Zhai
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Yaqi Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Haizhu Liu
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Rong Xiao
- College of Environment & Safety Engineering, FuZhou University, Fuzhou, China
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Jiangbao Xia
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou 256600, China
| |
Collapse
|
29
|
Wang T, Zhang W, Liao G, Zhang M, Li L, Wang D. Occurrence and influencing factors of antibiotics and antibiotic resistance genes in sediments of the largest multi-habitat lakes in Northern China. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2567-2578. [PMID: 36057679 DOI: 10.1007/s10653-022-01377-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Baiyangdian Lake is a typical and largest multi-habitat lake in the North plain of China. To understand the generation and transmission of antibiotics resistance genes (ARGs) in multi-habitat lakes, the contents of nutrients (TC, TOC, TN, TP and TS), heavy metals (Zn, Cr, Ni, Cu, Pb, As, Cd and Hg), 22 antibiotics, 16S-rRNA(16S), Class I integron (intI1) and 20 ARGs were determined. Samples were taken from the Fuhe river, river estuaries, reed marshes, living area, fish ponds and open water of Baiyangdian Lake. The results showed that quinolones were the main pollutants in six habitats, and the content range was ND-104.94 ng/g. Thereinto, aac (6') -IB, blaTEM-1, ermF, qnrA, qnrD, tetG, sul1, sul2 and tetM were detected in all the analyzed samples. The absolute abundance of sul1 was the highest (5.25 × 105 copies/g-6.21 × 107 copies/g) in most of the samples. In these different habitats, the abundance of antibiotics and ARGs in river estuary was the highest, and that in reed marshes was the lowest. There was a significant positive correlation between the abundance of heavy metals (Cu, Pb, Zn, Ni, Cd, Hg) and the absolute abundance of 11 ARGs (P < 0.01). Redundancy analysis showed that Cu, Zn, intI1, TP and macrolides were the important factors affecting the distribution of ARGs. Our finding provides a more likely driving and influencing factor for the transmission of ARGs in lakes with complex and diverse habitats.
Collapse
Affiliation(s)
- Tongfei Wang
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Weijun Zhang
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Guiying Liao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, Hubei, China.
| | - Meiyi Zhang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Liqing Li
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, Hubei, China
| | - Dongsheng Wang
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- Department of Environmental Engineering, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
30
|
Zhang L, Bai J, Zhai Y, Zhang K, Wei Z, Wang Y, Liu H, Xiao R, Jorquera MA. Antibiotics affected the bacterial community structure and diversity in pore water and sediments with cultivated Phragmites australis in a typical Chinese shallow lake. Front Microbiol 2023; 14:1155526. [PMID: 36998397 PMCID: PMC10043375 DOI: 10.3389/fmicb.2023.1155526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 02/22/2023] [Indexed: 03/18/2023] Open
Abstract
The migration of antibiotics and bacterial communities between sediments and pore water occurring in the lake, which is affected by aquatic vegetation. However, the differences in bacterial community structure and biodiversity between pore water and sediments with plants in lakes under antibiotic stress are still poorly understood. We collected pore water and sediments in both wild and cultivated Phragmites australis regions in the Zaozhadian (ZZD) Lake to explore the characteristics of the bacterial community. Our results showed that the diversity of bacterial community in sediment samples were significantly higher than those in pore water samples in both P. australis regions. Due to higher antibiotic levels in sediments from the cultivated P. australis region, the composition of bacterial communities showed a difference, which reduced the relative abundance of dominant phyla in pore water and increased that in sediments. The higher bacterial variations in pore water could be explained by sediment in the cultivated P. australis region than that in wild P. australis region, therefore plant cultivation might change the source-sink pattern between sediments and pore water. The dominant factors shaping the bacterial communities in the wild P. australis region pore water or sediment were NH4-N, NO3-N, and particle size, while cultivated P. australis region pore water or sediment were oxytetracycline, tetracycline, etc. The findings of this work indicates that the antibiotic pollution caused by planting activities has a greater impact on the bacterial community, which will provide a reference for the use and management of antibiotics in lake ecosystems.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environment, Beijing Normal University, Beijing, China
- School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining, China
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing, China
- *Correspondence: Junhong Bai,
| | - Yujia Zhai
- School of Environment, Beijing Normal University, Beijing, China
| | - Kegang Zhang
- Department of Environmental Engineering and Science, North China Electric Power University, Baoding, China
| | - Zhuoqun Wei
- School of Environment, Beijing Normal University, Beijing, China
| | - Yaqi Wang
- School of Environment, Beijing Normal University, Beijing, China
| | - Haizhu Liu
- School of Environment, Beijing Normal University, Beijing, China
| | - Rong Xiao
- College of Environment and Safety Engineering, FuZhou University, Fuzhou, China
| | - Milko A. Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
31
|
Zhang H, Zou H, Zhao L, Li X. Seasonal distribution and dynamic evolution of antibiotics and evaluation of their resistance selection potential and ecotoxicological risk at a wastewater treatment plant in Jinan, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:44505-44517. [PMID: 36690854 DOI: 10.1007/s11356-023-25202-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
The seasonal distribution and dynamic evolution of antibiotics in wastewater from main treatment areas and in sludge and their resistance selection potential and ecotoxicological risk were studied at a municipal wastewater treatment plant in Jinan, East China. Ten antibiotics were selected, and all were detected in wastewater and sludge samples, with fluoroquinolones showing the highest detection concentrations and frequencies. Seasonal fluctuations in the antibiotic concentrations in the influent, effluent, and sludge were observed, with the highest values in winter in most cases. The dynamic evolution of antibiotics during the treatment process differed among the seasons. The antibiotic removal efficiencies were incomplete, ranging from - 40.47 to 100%. Mass balance analysis showed that sulfonamides, roxithromycin, and metronidazole were mainly removed through biological processing, whereas fluoroquinolones, doxycycline, and chloramphenicol were removed through sludge adsorption. Levofloxacin, as well as a mixture of the 10 antibiotics from the effluent, could pose a low ecotoxicological risk to Daphnia in the receiving waters. Additionally, levofloxacin and ciprofloxacin in the effluent and ciprofloxacin and metronidazole in the sludge may facilitate the selection of antibiotic-resistant bacteria in the environment.
Collapse
Affiliation(s)
- Hui Zhang
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Huiyun Zou
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Ling Zhao
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China
| | - Xuewen Li
- Department of Environment and Health, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250012, China.
| |
Collapse
|
32
|
Caneschi A, Bardhi A, Barbarossa A, Zaghini A. The Use of Antibiotics and Antimicrobial Resistance in Veterinary Medicine, a Complex Phenomenon: A Narrative Review. Antibiotics (Basel) 2023; 12:antibiotics12030487. [PMID: 36978354 PMCID: PMC10044628 DOI: 10.3390/antibiotics12030487] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
As warned by Sir Alexander Fleming in his Nobel Prize address: “the use of antimicrobials can, and will, lead to resistance”. Antimicrobial resistance (AMR) has recently increased due to the overuse and misuse of antibiotics, and their use in animals (food-producing and companion) has also resulted in the selection and transmission of resistant bacteria. The epidemiology of resistance is complex, and factors other than the overall quantity of antibiotics consumed may influence it. Nowadays, AMR has a serious impact on society, both economically and in terms of healthcare. This narrative review aimed to provide a scenario of the state of the AMR phenomenon in veterinary medicine related to the use of antibiotics in different animal species; the impact that it can have on animals, as well as humans and the environment, was considered. Providing some particular instances, the authors tried to explain the vastness of the phenomenon of AMR in veterinary medicine due to many and diverse aspects that cannot always be controlled. The veterinarian is the main reference point here and has a high responsibility towards the human–animal–environment triad. Sharing such a burden with human medicine and cooperating together for the same purpose (fighting and containing AMR) represents an effective example of the application of the One Health approach.
Collapse
Affiliation(s)
| | - Anisa Bardhi
- Correspondence: (A.B.); (A.B.); Tel.: +39-051-2097-500 (Andrea Barbarossa)
| | - Andrea Barbarossa
- Correspondence: (A.B.); (A.B.); Tel.: +39-051-2097-500 (Andrea Barbarossa)
| | | |
Collapse
|
33
|
Chang D, Mao Y, Qiu W, Wu Y, Cai B. The Source and Distribution of Tetracycline Antibiotics in China: A Review. TOXICS 2023; 11:214. [PMID: 36976979 PMCID: PMC10052762 DOI: 10.3390/toxics11030214] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
In recent years, antibiotics have been listed as a new class of environmental pollutants. Tetracycline antibiotics (TCs) used in human medical treatment, animal husbandry and agricultural production are the most widely used antibiotics. Due to their wide range of activities and low cost, their annual consumption is increasing. TCs cannot be completely metabolized by humans and animals. They can be abused or overused, causing the continuous accumulation of TCs in the ecological environment and potential negative effects on non-target organisms. These TCs may spread into the food chain and pose a serious threat to human health and the ecology. Based on the Chinese environment, the residues of TCs in feces, sewage, sludge, soil and water were comprehensively summarized, as well as the potential transmission capacity of air. This paper collected the concentrations of TCs in different media in the Chinese environment, contributing to the collection of a TC pollutant database in China, and facilitating the monitoring and treatment of pollutants in the future.
Collapse
|
34
|
Zhu Y, Xie Q, Ye J, Wang R, Yin X, Xie W, Li D. Metabolic Mechanism of Bacillus sp. LM24 under Abamectin Stress. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3068. [PMID: 36833759 PMCID: PMC9965259 DOI: 10.3390/ijerph20043068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 02/02/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Abamectin (ABM) has been recently widely used in aquaculture. However, few studies have examined its metabolic mechanism and ecotoxicity in microorganisms. This study investigated the molecular metabolic mechanism and ecotoxicity of Bacillus sp. LM24 (B. sp LM24) under ABM stress using intracellular metabolomics. The differential metabolites most affected by the bacteria were lipids and lipid metabolites. The main significant metabolic pathways of B. sp LM24 in response to ABM stress were glycerolipid; glycine, serine, and threonine; and glycerophospholipid, and sphingolipid. The bacteria improved cell membrane fluidity and maintained cellular activity by enhancing the interconversion pathway of certain phospholipids and sn-3-phosphoglycerol. It obtained more extracellular oxygen and nutrients to adjust the lipid metabolism pathway, mitigate the impact of sugar metabolism, produce acetyl coenzyme A to enter the tricarboxylic acid (TCA) cycle, maintain sufficient anabolic energy, and use some amino acid precursors produced during the TCA cycle to express ABM efflux protein and degradative enzymes. It produced antioxidants, including hydroxyanigorufone, D-erythroascorbic acid 1'-a-D-xylopyranoside, and 3-methylcyclopentadecanone, to alleviate ABM-induced cellular and oxidative damage. However, prolonged stress can cause metabolic disturbances in the metabolic pathways of glycine, serine, threonine, and sphingolipid; reduce acetylcholine production; and increase quinolinic acid synthesis.
Collapse
Affiliation(s)
- Yueping Zhu
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Qilai Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Agricultural and Pural Pullution Abatement and Environmental Safety, Guangzhou 510642, China
| | - Jinshao Ye
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, China
| | - Ruzhen Wang
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Xudong Yin
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Wenyu Xie
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| | - Dehao Li
- Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
35
|
Ju H, Liu L, Liu X, Wu Y, Li L, Gin KYH, Zhang G, Zhang J. A comprehensive study of the source, occurrence, and spatio-seasonal dynamics of 12 target antibiotics and their potential risks in a cold semi-arid catchment. WATER RESEARCH 2023; 229:119433. [PMID: 36493699 DOI: 10.1016/j.watres.2022.119433] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 11/06/2022] [Accepted: 11/25/2022] [Indexed: 06/17/2023]
Abstract
Antibiotics are widely consumed and are ubiquitous in aquatic ecosystems, such as in agricultural and fishery lake catchments, for prophylactic treatment. However, there are very few comprehensive studies reporting all seasonal occurrences, spatiotemporal dynamics, and risk assessments of antibiotics in agricultural lake catchments, especially in cold regions during the winter season. This study measured seasonality in the concentrations of 12 antibiotics belonging to seven different classes in the surface waters (tributary rivers and lakes) of the Chagan lake catchment in northeast China. All antibiotics were detected in most of the water samples across most seasons, with concentrations varying for different compounds, locations, and seasons. These levels were discussed in terms of the main sources at different sampling sites, including agriculture, fish farming, municipal wastewater, and others. In general, the highest concentrations of most compounds were observed during the freeze-thaw periods. The number of antibiotic resistance genes (ARGs) correlated with compound lipophilicity and half-life. Based on the ecological risks of antibiotics and the relative abundance of ARGs, a hierarchical control priority list (HCPL) of antibiotics was determined, considering four levels (critical, high, medium, and low). To further strengthen the control and effectively manage antibiotics, we highly recommend the reduction and selective use of veterinary antibiotics in winter and spring during the freeze-thaw periods in the Chagan lake catchment.
Collapse
Affiliation(s)
- Hanyu Ju
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Ling Liu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China
| | - Xuemei Liu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Yao Wu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Lei Li
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Karina Yew-Hoong Gin
- Department of Civil & Environmental Engineering, National University of Singapore, E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore
| | - Guangxin Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| | - Jingjie Zhang
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China; Department of Civil & Environmental Engineering, National University of Singapore, E1A-07-03, 1 Engineering Drive 2, Singapore 117576, Singapore; NUS Environmental Research Institute, National University of Singapore, 1 Create way, Create Tower, #15-02, Singapore 138602, Singapore; Shenzhen Municipal Engineering Lab of Environmental IoT Technologies, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
36
|
Zhang L, Bai J, Zhang K, Wang Y, Xiao R, Campos M, Acuña J, Jorquera MA. Occurrence, bioaccumulation and ecological risks of antibiotics in the water-plant-sediment systems in different functional areas of the largest shallow lake in North China: Impacts of river input and historical agricultural activities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159260. [PMID: 36208765 DOI: 10.1016/j.scitotenv.2022.159260] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/13/2022] [Accepted: 10/02/2022] [Indexed: 06/16/2023]
Abstract
Antibiotics are widely used and ubiquitous in the environment, which in turn poses potential threat to human health. However, the effects of agricultural activities and river input on the fate and ecological risks of antibiotics in shallow lake are still poorly understood. Surface water, overlying water and pore water, sediments and aquatic plant samples in the historical planting subarea (PA), historical aquaculture subarea (AU), inflow subarea (IW), discharge subarea (DC), and conservation subarea (CK) of Baiyangdian Lake were collected and analyzed. Our results revealed that the total antibiotic concentrations ranged from 85.33 ng/L to 1631.47 ng/L in waters and from 66.90 ng/g to 177.03 ng/g in sediments. Generally, the total antibiotic concentrations introduced by planting activity in surface water, overlying water and sediments were higher and the levels of total antibiotics in pore water were more affected by river input. In addition, three quinolones (QNs) and two tetracyclines (TCs) were dominant antibiotics in almost five subareas. The pseudo-partitioning coefficient kd(pw) and bioaccumulation factor (BAF) of antibiotics varied according to the effects of river input and historical agricultural activities. The ecological risk (RQ) of antibiotics from agricultural activities was higher than that from river input. The norfloxacin (NOR) in pore water showed high RQ, which contributed to a large proportion (>50 %) of the combined ecological risks (∑RQs) except for surface water. Therefore, NOR should be used as the primary ecological risk control index for antibiotic contamination management in the BYD. ∑RQs showed high risk in water in the five subareas. This study can act as a reference for governments to formulate effective management strategies for protecting the ecological health of lakes.
Collapse
Affiliation(s)
- Ling Zhang
- School of Environment, Beijing Normal University, Beijing 100875, China; School of Chemistry and Chemical Engineering, Qinghai Normal University, Xining 810008, China
| | - Junhong Bai
- School of Environment, Beijing Normal University, Beijing 100875, China.
| | - Kegang Zhang
- Department of Environmental Engineering and Science, North China Electric Power University, Baoding, China
| | - Yaqi Wang
- School of Environment, Beijing Normal University, Beijing 100875, China
| | - Rong Xiao
- College of Environment & Safety Engineering, Fuzhou University, Fuzhou, China
| | - Marco Campos
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Jacquelinne Acuña
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| | - Milko A Jorquera
- Laboratorio de Ecología Microbiana Aplicada (EMALAB), Departamento de Ciencias Químicas y Recursos Naturales, Universidad de La Frontera, Temuco, Chile
| |
Collapse
|
37
|
Tian J, Chen C, Lartey-Young G, Ma L. Biodegradation of cefalexin by two bacteria strains from sewage sludge. ROYAL SOCIETY OPEN SCIENCE 2023; 10:220442. [PMID: 36686552 PMCID: PMC9832293 DOI: 10.1098/rsos.220442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 12/12/2022] [Indexed: 06/17/2023]
Abstract
Bioremediation has been used as an environmentally-friendly, energy-saving and efficient method for removing pollutants. However, there have been very few studies focusing on the specific antibiotic-degrading microorganisms in the activated sludge and their degradation mechanism. Two strains of cefalexin-degrading bacteria (Rhizobium sp. (CLX-2) and Klebsiella sp. (CLX-3)) were isolated from the activated sludge in this study. They were capable of rapidly eliminating over 99% of cefalexin at an initial concentration of 10 mg l-1 within 12 h. The exponential phase of cefalexin degradation happened a little earlier than that of bacterial growth. The first-order kinetic model could elucidate the biodegradation process of cefalexin. The optimized environmental temperature and pH values for rapid biodegradation by these two strains were found to be 30°C and 6.5-7, respectively. Furthermore, two major biodegradation metabolites of CLX-3, 7-amino-3-cephem-4-carboxylic acid and 2-hydroxy-3-phenyl pyrazine were identified using UHPLC-MS and the biodegradation pathway of cefalexin was proposed. Overall, the results showed that Rhizobium sp. (CLX-2) and Klebsiella sp. (CLX-3) could possibly be useful resources for antibiotic pollution remediation.
Collapse
Affiliation(s)
- Jichen Tian
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Chong Chen
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - George Lartey-Young
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| | - Limin Ma
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, People's Republic of China
| |
Collapse
|
38
|
Xue M, Gu X, Qin Y, Li J, Meng Q, Jia M. Enantioselective Behavior of Flumequine Enantiomers and Metabolites' Identification in Sediment. JOURNAL OF ANALYTICAL METHODS IN CHEMISTRY 2022; 2022:2184024. [PMID: 36507106 PMCID: PMC9733987 DOI: 10.1155/2022/2184024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/21/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The enantioselective adsorption, degradation, and transformation of flumequine (FLU) enantiomers in sediment were investigated to elucidate the enantioselective environmental behaviors. The results of adsorption test showed that stereoselective differences of FLU enantiomers in sediment samples and the adsorbing capacity of S-(-)-FLU and R-(+)-FLU are higher than the racemate, and the pH values of the sediment determined the adsorption capacity. Enantioselective degradation behaviors were found under nonsterilized conditions and followed pseudo-first-order kinetic. The R-(+)-FLU was preferentially degraded, and there was significant enantioselectivity of the degradation of FLU. It can be concluded that the microorganism was the main reason for the stereoselective degradation in sediments. The physicochemical property of sediments, such as pH value and organic matter content, can affect the degradation rate of FLU. In addition, the process of transformation of FLU enantiomers in water-sediment system had enantioselective behavior, and R-(+)-FLU was preferential transformed. Meanwhile, the main metabolites of FLU in the sediment were decarboxylate and dihydroxylation products. This study contributes the evidence of comprehensively assessing the fate and risk of chiral FLU antibiotic and enantioselective behavior in the environment.
Collapse
Affiliation(s)
- Moyong Xue
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
- University of Liege, Functional & Evolutionary Entomology, Agro-Bio-Tech Gembloux 5030, Liege, Belgium
| | - Xu Gu
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Yuchang Qin
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Junguo Li
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| | - Qingshi Meng
- Institute of Animal Science, Chinese Academy of Agriculture Sciences, Beijing 100193, China
| | - Ming Jia
- Feed Research Institute, Chinese Academy of Agricultural Science, Beijing 100081, China
| |
Collapse
|
39
|
Maghsodian Z, Sanati AM, Mashifana T, Sillanpää M, Feng S, Nhat T, Ramavandi B. Occurrence and Distribution of Antibiotics in the Water, Sediment, and Biota of Freshwater and Marine Environments: A Review. Antibiotics (Basel) 2022; 11:antibiotics11111461. [PMID: 36358116 PMCID: PMC9686498 DOI: 10.3390/antibiotics11111461] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 10/18/2022] [Accepted: 10/20/2022] [Indexed: 11/30/2022] Open
Abstract
Antibiotics, as pollutants of emerging concern, can enter marine environments, rivers, and lakes and endanger ecology and human health. The purpose of this study was to review the studies conducted on the presence of antibiotics in water, sediments, and organisms in aquatic environments (i.e., seas, rivers, and lakes). Most of the reviewed studies were conducted in 2018 (15%) and 2014 (11%). Antibiotics were reported in aqueous media at a concentration of <1 ng/L−100 μg/L. The results showed that the highest number of works were conducted in the Asian continent (seas: 74%, rivers: 78%, lakes: 87%, living organisms: 100%). The highest concentration of antibiotics in water and sea sediments, with a frequency of 49%, was related to fluoroquinolones. According to the results, the highest amounts of antibiotics in water and sediment were reported as 460 ng/L and 406 ng/g, respectively. In rivers, sulfonamides had the highest abundance (30%). Fluoroquinolones (with an abundance of 34%) had the highest concentration in lakes. Moreover, the highest concentration of fluoroquinolones in living organisms was reported at 68,000 ng/g, with a frequency of 39%. According to the obtained results, it can be concluded that sulfonamides and fluoroquinolones are among the most dangerous antibiotics due to their high concentrations in the environment. This review provides timely information regarding the presence of antibiotics in different aquatic environments, which can be helpful for estimating ecological risks, contamination levels, and their management.
Collapse
Affiliation(s)
- Zeinab Maghsodian
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr 7516913817, Iran
| | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr 7516913817, Iran
| | - Tebogo Mashifana
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Mika Sillanpää
- Department of Chemical Engineering, School of Mining, Metallurgy and Chemical Engineering, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
- Department of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
- Zhejiang Rongsheng Environmental Protection Paper Co., Ltd., NO. 588 East Zhennan Road, Pinghu Economic Development Zone, Pinghu 314213, China
- Department of Civil Engineering, University Centre for Research & Development, Chandigarh University, Gharuan, Mohali 140413, Punjab, India
- International Research Centre of Nanotechnology for Himalayan Sustainability (IRCNHS), Shoolini University, Solan 173212, Himachal Pradesh, India
- Correspondence: (M.S.); (B.R.)
| | - Shengyu Feng
- Zhejiang Rongsheng Environmental Protection Paper Co., Ltd., NO. 588 East Zhennan Road, Pinghu Economic Development Zone, Pinghu 314213, China
| | - Tan Nhat
- Institute of Research and Development, Duy Tan University, Da Nang 550000, Vietnam
- School of Engineering & Technology, Duy Tan University, Da Nang 550000, Vietnam
| | - Bahman Ramavandi
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran
- Correspondence: (M.S.); (B.R.)
| |
Collapse
|
40
|
Wang Y, Chen P, Yu X, Zhang J. Algae-bacteria symbiotic constructed wetlands for antibiotic wastewater purification and biological response. Front Microbiol 2022; 13:1044009. [PMID: 36312967 PMCID: PMC9611211 DOI: 10.3389/fmicb.2022.1044009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
Abstract
In this work, the removal efficiency and mechanism of various constructed wetlands microcosm systems on antibiotic wastewater, as well as the biological community response of microalgae and microorganisms were explored. Overall, the algal-bacteria symbiosis in conjunction with the gravel matrix had the most comprehensive treatment efficiency for antibiotic wastewater. However, pollutants such as high-concentration antibiotics impaired the biological community and functions. In the systems fed with microorganisms, both abundance and diversity of them were significantly reduced comparing with the initial value. According to the correlation analysis revealed that the pollutants removal rate increased with the addition of the relative abundance of some bacterial genera, while decreased with the addition of relative abundance of other bacterial genera. The presence of gravel matrix could lessen the stressful effect of antibiotics and other pollutants on the growth of microalgae and microorganisms, as well as improved treatment efficiency of antibiotic wastewater. Based on the findings of the study, the combination of gravel matrix and algal-bacteria symbiosis can considerably increase the capacity of constructed wetlands to treat antibiotic wastewater and protect biological community, which is an environmentally friendly way.
Collapse
Affiliation(s)
- Yiqi Wang
- State Environmental Protection Key Laboratory for Wetland Conservation and Vegetation Restoration, Jilin Provincial Key Laboratory of Ecological Restoration and Ecosystem Management, Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Northeast Normal University, Changchun, China
| | - Pingping Chen
- State Environmental Protection Key Laboratory for Wetland Conservation and Vegetation Restoration, Jilin Provincial Key Laboratory of Ecological Restoration and Ecosystem Management, Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Northeast Normal University, Changchun, China
| | - Xiaofei Yu
- State Environmental Protection Key Laboratory for Wetland Conservation and Vegetation Restoration, Jilin Provincial Key Laboratory of Ecological Restoration and Ecosystem Management, Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Northeast Normal University, Changchun, China
- Key Laboratory of Wetland Ecology and Environment, Jilin Provincial Joint Key Laboratory of Changbai Mountain Wetland and Ecology, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun, China
- *Correspondence: Xiaofei Yu,
| | - Jingyao Zhang
- State Environmental Protection Key Laboratory for Wetland Conservation and Vegetation Restoration, Jilin Provincial Key Laboratory of Ecological Restoration and Ecosystem Management, Key Laboratory of Geographical Processes and Ecological Security of Changbai Mountains, Ministry of Education, School of Geographical Sciences, Key Laboratory of Vegetation Ecology of Ministry of Education, School of Environment, Northeast Normal University, Changchun, China
| |
Collapse
|
41
|
Li J, Li W, Liu K, Guo Y, Ding C, Han J, Li P. Global review of macrolide antibiotics in the aquatic environment: Sources, occurrence, fate, ecotoxicity, and risk assessment. JOURNAL OF HAZARDOUS MATERIALS 2022; 439:129628. [PMID: 35905608 DOI: 10.1016/j.jhazmat.2022.129628] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Revised: 07/01/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
The extensive use of macrolide antibiotics (MCLs) has led to their frequent detection in aquatic environments, affecting water quality and ecological health. In this study, the sources, global distribution, environmental fate, ecotoxicity and global risk assessment of MCLs were analyzed based on recently published literature. The results revealed that there are eight main sources of MCLs in the water environment. These pollution sources resulted in MCL detection at average or median concentrations of up to 3847 ng/L, and the most polluted water bodies were the receiving waters of wastewater treatment plants (WWTPs) and densely inhabited areas. Considering the environmental fate, adsorption, indirect photodegradation, and bioremoval may be the main attenuation mechanisms in natural water environments. N-demethylation, O-demethylation, sugar and side chain loss from MCL molecules were the main pathways of MCLs photodegradation. Demethylation, phosphorylation, N-oxidation, lactone ring hydrolysis, and sugar loss were the main biodegradation pathways. The median effective concentration values of MCLs for microalgae, crustaceans, fish, and invertebrates were 0.21, 39.30, 106.42, and 28.00 mg/L, respectively. MCLs induced the generation of reactive oxygen species, that caused oxidative stress to biomolecules, and affected gene expression related to photosynthesis, energy metabolism, DNA replication, and repair. Moreover, over 50% of the reported water bodies represented a medium to high risk to microalgae. Further studies on the development of tertiary treatment technologies for antibiotic removal in WWTPs, the combined ecotoxicity of antibiotic mixtures at environmental concentration levels, and the development of accurate ecological risk assessment models should be encouraged.
Collapse
Affiliation(s)
- Jiping Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Kai Liu
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Yanhui Guo
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Chun Ding
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Jiangang Han
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Pingping Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Biology and the Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| |
Collapse
|
42
|
Zhao XL, Li P, Qu C, Lu R, Li ZH. Phytotoxicity of environmental norfloxacin concentrations on the aquatic plant Spirodela polyrrhiza: Evaluation of growth parameters, photosynthetic toxicity and biochemical traits. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109365. [PMID: 35525467 DOI: 10.1016/j.cbpc.2022.109365] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/28/2022] [Accepted: 05/01/2022] [Indexed: 01/12/2023]
Abstract
As an emerging pollutant, the increasing use of antibiotics in wastewater posed a serious threat to non-target organisms in the environment. Duckweed (Spirodela polyrrhiza) is a common higher aquatic plant broadly used in phytotoxicity tests for xenobiotic substances. The aim of this study was to evaluate the chronic toxicity of norfloxacin (NOR) on Spirodela polyrrhiza during 18 days of exposure. Our study investigated the addition of NOR into the medium with environment-related concentrations (0, 0.1, 10, and 1000 μg L-1). Subsequently, biomarkers of toxicity such as growth, pigment, chlorophyll fluorescence parameters, indicators of oxidative stress, and osmotic regulatory substances content were analyzed in duckweed. In response to NOR exposure, obvious chlorosis, declines in growth and photosynthetic pigment, and photosystem II inhibition were noted in a concentration dependent manner. Reactive oxygen species (ROS) and antioxidant activity content increased in the treated fronds, which indicated that oxidative stress was specifically affected by NOR exposure. A slight increase in osmotic regulatory substances in NOR treated setups than in the control represented the increasing stress resistance. These results suggest NOR exerts its toxic effects on the aquatic plant Spirodela polyrrhiza.
Collapse
Affiliation(s)
- Xue-Li Zhao
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Ping Li
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Chunfeng Qu
- Marine College, Shandong University, Weihai, Shandong 264209, China
| | - Rong Lu
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| | - Zhi-Hua Li
- Marine College, Shandong University, Weihai, Shandong 264209, China.
| |
Collapse
|
43
|
Zhao Y, Jiang H, Wang X, Liu C, Yang Y. Quinolone antibiotics enhance denitrifying anaerobic methane oxidation in Wetland sediments: Counterintuitive results. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 305:119300. [PMID: 35427678 DOI: 10.1016/j.envpol.2022.119300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2021] [Revised: 03/25/2022] [Accepted: 04/10/2022] [Indexed: 06/14/2023]
Abstract
Denitrifying anaerobic methane oxidation (DAMO) plays an important role in the element cycle of wetlands. In recent years, the content of antibiotics in wetlands has gradually increased due to human activities. However, the impact of antibiotics on the ecological function of DAMO remains unclear. Here we studied the influence of three high-content quinolone antibiotics (QNs) on DAMO in the sediments of the Baiyangdian Wetland. The results show that QNs can significantly promote the potential DAMO rates. Moreover, the enhancement of potential DAMO rates is positively correlated with the dosage of QNs. This promotion effect of QNs on nitrate-DAMO can be attributed to the hormesis phenomenon or their inhibition of substrate competitors. As antibacterial agents, QNs inhibit nitrite-DAMO conducted by bacteria, but greatly promote nitrate-DAMO conducted by archaea. These results suggest that the short-term effect of QNs on DAMO in wetlands is promotion rather than inhibition.
Collapse
Affiliation(s)
- Yuewen Zhao
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang, 050800, China
| | - Hongchen Jiang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Xiuyan Wang
- Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China; Key Laboratory of Groundwater Sciences and Engineering, Ministry of Natural Resources, Shijiazhuang, 050800, China
| | - Changli Liu
- Fujian Provincial Key Laboratory of Water Cycling and Eco-Geological Processes, Xiamen, 361021, China; Institute of Hydrogeology and Environmental Geology, Chinese Academy of Geological Sciences, Shijiazhuang, 050061, China
| | - Yuqi Yang
- School of Water Resources and Environment, China University of Geosciences, Beijing, 100083, China
| |
Collapse
|
44
|
Effect of Acid–Base Modified Biochar on Chlortetracycline Adsorption by Purple Soil. SUSTAINABILITY 2022. [DOI: 10.3390/su14105892] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
We used three purple soil (Hechuan, Jialing, and Cangxi) samples from the Jialing River basin as the research objects and added different proportions of an acid–base modified Alternanthera philoxeroides biochar (Cm) to the purple soil to study the effect of Cm on the adsorption of chlortetracycline (CTC) in the purple soil. The results indicated the following: (1) At 30 °C and pH = 6, the soil adsorption capacity increased with an increasing initial concentration of CTC. The maximum adsorption amount of CTC for each tested sample was in the range of 2054.63–3631.21 mg/kg, and the adsorption capacity in different Cm amended soils was ranked in the order of 10% Cm > 5% Cm > 2% Cm > CK. The adsorption capacity of CTC increased with an increase in the proportion of Cm. Furthermore, under the same addition ratio of Cm, Hechuan soil was found to have a better adsorption effect for CTC than Jialing and Cangxi soil. (2) The Langmuir model was the most suitable for fitting the adsorption behavior of CTC on different purple soils, and the fitting coefficients were all greater than 0.9, indicating that the adsorption of CTC on each soil sample occurred via monolayer adsorption. The thermodynamic experiment results showed that an increase in temperature was beneficial to the process of CTC adsorption, which was a spontaneous, endothermic, and entropy-adding process. (3) At pH = 6, the ionic strength ranged from 0.01 to 0.5 mol/L and the adsorption capacity of CTC of the soil samples decreased with an increase in ionic strength. In the range of pH 2–10, the adsorption capacity of CTC in all the soil samples decreased with an increase in pH. The inhibition capacity of CTC in the soil samples under acidic conditions was notably higher than that under alkaline conditions.
Collapse
|
45
|
Chen J, Huang L, Wang Q, Zeng H, Xu J, Chen Z. Antibiotics in aquaculture ponds from Guilin, South of China: Occurrence, distribution, and health risk assessment. ENVIRONMENTAL RESEARCH 2022; 204:112084. [PMID: 34563523 DOI: 10.1016/j.envres.2021.112084] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 08/12/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
Antibiotics have been widely used to prevent or treat bacterial infections in aquaculture in the past decades. However, large proportions of these compounds are excreted unchanged in feces and urine of animals, given incomplete metabolism, leading to the residual of unmetabolized compounds, and posing a potential risk to the environment. This study investigated the occurrence and distribution of seven antibiotics in surface water, sediments, fish muscle, and fish feed by high-performance liquid chromatography from the aquaculture areas in Guilin, South of China. The highest concentrations of the target antibiotics in water, sediment, fish muscle, and fish feed were 2047.53 ng/L, 13.32 μg/kg, 35.90 μg/kg, and 2203.97 μg/kg, respectively. In contrast, the most abundant antibiotic was enrofloxacin (ENR), followed by ofloxacin (OFL), sulfadimidine (SMZ), and ciprofloxacin (CIP). In this work, the concentrations of antibiotics were lower than those in other breeding areas. Correlation analyses showed significant relationships between sulfadiazine (SDZ) and TP, TN, and CODCr in water. In sediment, the release of SDZ was significantly related to TN, TP, and organic matter. The risk quotient (RQ) results revealed that sulfamethoxazole (SMX), CIP, and ENR were at high risk to microorganisms in water; while, SMX and NOR were at high risk in sediments. The result from the estimated daily intakes (health risk quotient, HQ < 1) suggested that the antibiotics might not pose a risk to human health by dietary exposure assessment; however, sediments may become an accumulation reservoir of antibiotics and cause secondary pollution, of which the local management should raise awareness.
Collapse
Affiliation(s)
- Jianlin Chen
- College of Environmental Science and Engineering, Guilin University of Technology, 541004, Guilin, China
| | - Liangliang Huang
- College of Environmental Science and Engineering, Guilin University of Technology, 541004, Guilin, China; Coordinated Innovation Center of Water Pollution Control and Water Security in Karst Area, Guilin University of Technology, 541004, Guilin, China.
| | - Qian Wang
- College of Environmental Science and Engineering, Guilin University of Technology, 541004, Guilin, China
| | - Honghu Zeng
- College of Environmental Science and Engineering, Guilin University of Technology, 541004, Guilin, China
| | - Jun Xu
- Donghu Experimental Station of Lake Ecosystems, State Key Laboratory of Freshwater Ecology and Biotechnology of China, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Zhongbing Chen
- Department of Applied Ecology, Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýcká 129, 16500, Prague, Czech Republic
| |
Collapse
|
46
|
Fu C, Xu B, Chen H, Zhao X, Li G, Zheng Y, Qiu W, Zheng C, Duan L, Wang W. Occurrence and distribution of antibiotics in groundwater, surface water, and sediment in Xiong'an New Area, China, and their relationship with antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151011. [PMID: 34715223 DOI: 10.1016/j.scitotenv.2021.151011] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/29/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
The emergence and pollution of antibiotics in surface water in various regions have drawn widespread concern because of the harm to aquatic ecosystems and human health. In this study, we aim to first investigate contamination and ecological risks of 39 antibiotics in Xiong'an New Area (XANA), China, and then illuminate relative abundances of antibiotic resistance genes (ARGs) and their correlations with antibiotics. The sum of antibiotic concentrations in the water circulation system, including surface water, groundwater, and sediment was 12.71-260.56 ng/L, ND-196.12 ng/L, and 38.03-406.31 ng/g, respectively. In surface water and sediment, cephalosporins and quinolones were the primary antibiotics, accounting for 45% and 16% of the total antibiotic concentrations in surface water and for 62% and 32% of the total antibiotic concentrations in sediment; this suggests a significant interaction between the two media. The antibiotic concentration was the highest in shallow groundwater at depths of <50 m (mean concentration of 79.22 ± 56.46 ng/L), indicating that surface water was a possible source of antibiotic contamination in groundwater. AMX presented the highest risk in both surface and groundwater and should be controlled as a priority. Moreover, the selection pressure of antibiotics on ARGs was discovered in the sediment in XANA, because the enrichment of sulA was significantly correlated with spiramycin and lincomycin and the enrichment of blaOXA-1 was significantly correlated with roxithromycin, ciprofloxacin, ofloxacin, and sulfapyridine. Thus, our investigation revealed potential antibiotic contamination in multiple environmental media in XANA, which should be addressed to prevent more serious pollution.
Collapse
Affiliation(s)
- Caixia Fu
- School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Bentuo Xu
- National and Local Joint Engineering Research Center of Ecological Treatment Technology for Urban Water Pollution, School of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - He Chen
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xue Zhao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Guanrong Li
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yan Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Wenhui Qiu
- School of Public Health and Emergency Management, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Chunmiao Zheng
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Lei Duan
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang'an University, Ministry of Education, Xi'an 710064, China
| | - Wenke Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Chang'an University, Ministry of Education, Xi'an 710064, China
| |
Collapse
|
47
|
Li F, Wen D, Bao Y, Huang B, Mu Q, Chen L. Insights into the distribution, partitioning and influencing factors of antibiotics concentration and ecological risk in typical bays of the East China Sea. CHEMOSPHERE 2022; 288:132566. [PMID: 34653494 DOI: 10.1016/j.chemosphere.2021.132566] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Revised: 10/11/2021] [Accepted: 10/11/2021] [Indexed: 06/13/2023]
Abstract
In order to obtain in-depth insight of the behavioral fate and ecological risks of antibiotics in coastal environment, this study investigated the distribution, partitioning and primary influencing factors of antibiotics in water and sediment in the East China Sea. After quantification of 77 target antibiotics in 6 categories, ten antibiotics were detected simultaneously with a detection frequency >50.0% in water and sediment; the concentrations of these ten antibiotics were 0.1-1508.0 ng L-1 and 0.01-9.4 ng g-1 in water and dry sediment, respectively. Sulfadiazine and Azithromycin (Pseudo partitioning coefficient were 28-3814 L kg-1 and 21-2405 L kg-1, respectively.) had the largest partitioning coefficient between sediment and water. In addition, pseudo partitioning coefficient of Sulfadiazine and Clindamycin were higher than the values of corresponding equilibrium partitioning constant (Kd), which would likely cause them to re-release from sediment to water. Compared to the physiochemical properties of the sediment, water quality has a greater impact on antibiotic partitioning. We found that the partitioning of antibiotics was significantly positively correlated with salinity, suspended solids, pH, NH4+-N and Zn; and negatively correlated with temperature, dissolved oxygen, PO43-, chemical oxygen demand, NO3--N, oil, Cu and Cd. The ecological risks of antibiotics in water and sediment were also evaluated for revealing their relationship with the concentration partitioning of antibiotics. Results showed that the target antibiotics mainly pose ecological risks to Daphnia with low and median chronic toxicity risk rather than fish and green algae. The antibiotics in sediment were more chronically toxic to Daphnia than that in water. The risk quotient ratio of sediment and water (RQs/RQw) ranged from 0 to 1154.0, which were exactly opposite of the values of organic carbon normalized partition coefficient (Koc), suggesting that the physical properties of antibiotics drove the ecological risk allocation of antibiotics in sediment and water.
Collapse
Affiliation(s)
- Feifei Li
- School of Environment, Tsinghua University, China
| | - Donghui Wen
- College of Environmental Sciences and Engineering, Peking University, China
| | - Yingyu Bao
- College of Environmental Sciences and Engineering, Peking University, China
| | - Bei Huang
- Zhejiang Marine Ecology and Environment Monitoring Center, China
| | - Qinglin Mu
- Zhejiang Marine Ecology and Environment Monitoring Center, China
| | - Lyujun Chen
- School of Environment, Tsinghua University, China; Zhejiang Provincial Key Laboratory of Water Science and Technology, China.
| |
Collapse
|
48
|
Yin H, Liu L, Liu Q, Song J, Fang S, Liu X. Levels and Distribution of Organophosphate Esters (OPEs) in Typical Megacity Wetland Park Landscape Water Bodies in Southwest China. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:11-20. [PMID: 34709437 DOI: 10.1007/s00244-021-00899-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Human activities have led to the release of organophosphate esters (OPEs) into the environment. This study aims to investigate the levels and partitioning of OPEs in surface water, suspended particulate matter (SPM) and sediments of landscape waters across eleven parks in the city of Chengdu, a megacity in Southwest China. The average concentration of Σ6OPEs in the SPM samples (median: 2.94 × 103 ng/L, 6.88 × 104 ng/g dry weight) was 1-3 orders of magnitude higher than that in the surface water (median: 359 ng/L) and sediment (median: 82.8 ng/g) samples. Tri-n-butyl phosphate (TnBP), tris-(2-chloroethyl)-phosphate (TCEP) and trichloropropyl phosphate (TCIPP) were the primary OPE pollutants in the surface water and SPM samples, while TnBP, tris-(2-butoxyethyl) phosphate (TBEP) and tris-(2-ethylhexyl) phosphate (TEHP) predominated the sediment samples. The higher log Koc values of OPEs in park landscape water bodies estimated in the present study relative to previous studies could be explained by the environmental conditions, such as the sources of the inputs and the hydraulic retention times in these surface waters.
Collapse
Affiliation(s)
- Hongling Yin
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, China.
| | - Liya Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, China
| | - Qin Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, China
| | - Jiaojiao Song
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, China
| | - Shuhong Fang
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, China
| | - Xiaowen Liu
- College of Resources and Environment, Chengdu University of Information Technology, Chengdu, China
| |
Collapse
|
49
|
Wang Q, Zhang Y, Feng Q, Hu G, Gao Z, Meng Q, Zhu X. Occurrence, distribution, and risk assessment of bisphenol analogues in Luoma Lake and its inflow rivers in Jiangsu Province, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1430-1445. [PMID: 34351581 DOI: 10.1007/s11356-021-15711-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/25/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol analogs (BPs) are widely used in industrial and commercial products and have been detected in surface water, sediment, sewage, and sludge. The presence of BPs in the natural environment poses threats to the aquatic ecosystem and human health. The concentration, distribution, seasonal variation, and risk assessment of BPA and BPA structural analogs including BPB, BPF, BPS, BPZ, BPAF, and BPAP in surface water and sediment during dry season and flood season in Luoma Lake and its inflow rivers in Jiangsu Province, China, were investigated in this study. The detection frequency of BPA and BPF was 100%. Although the use of BPA is restricted, BPA is still the dominant BPs in surface water and sediment. The concentration of BPs in surface water during flood season was higher than that in dry season. The concentrations of BPs in Fangting River, Zhongyun River, and Bulao River were higher than those in Luoma Lake. The average concentrations of BPs in surface water were in the order of BPA > BPF> BPS> BPB > BPZ > BPAF> BPAP. Compared with other studies, the concentration of BPs in Luoma Lake was moderate. There is no significant spatial distribution and difference in seasonal variation of BPs concentration in sediment (p > 0.05). Compared with other studies, the contamination of BPs in sediment of Luoma Lake was relatively low. Risk quotient (RQ) was used to evaluate the ecological risk of BPs in water environment, and the 17β estradiol equivalent (EEQ) method was used to estimate the estrogenic activity of BPs. The risk assessment showed no high ecological risk (RQ < 1.0) and estrogenic risk (EEQ < 1.0 ng/L) in dry season and flood season. The estimated RQ and EEQt indicated that the ecological and human health impacts were negligible in the short term.
Collapse
Affiliation(s)
- Qiuxu Wang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Yuan Zhang
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, Institute of Environmental and Ecological Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Qiyan Feng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China.
| | - Guanjiu Hu
- Jiangsu Environmental Monitoring Center, Nanjing, 210019, China
| | - Zhanqi Gao
- Jiangsu Environmental Monitoring Center, Nanjing, 210019, China
| | - Qingjun Meng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| | - Xueqiang Zhu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, 221116, China
| |
Collapse
|
50
|
Li J, Yang L, Wu Z. Toxicity of chlortetracycline and oxytetracycline on Vallisneria natans (Lour.) Hare. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:62549-62561. [PMID: 34212323 DOI: 10.1007/s11356-021-14922-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 06/11/2021] [Indexed: 06/13/2023]
Abstract
Tetracyclines are frequently detected in water bodies due to their widespread use in aquaculture and animal husbandry. A hydroponic experiment was conducted to explore the phytotoxic effects of Vallisneria natans (Lour.) Hare exposed to various concentrations of chlortetracycline (CTC) and oxytetracycline (OTC) (0, 0.1, 1, 10, 30, 50, and 100 mg/L) for 7 days (7 D) and 14 days (14 D), respectively. The results showed that similar to OTC treatment for 7 D, the relative growth rates (RGR) and catalase (CAT) activity of V. natans, after 7 D of CTC exposure, decreased significantly at 10 mg/L and 30 mg/L, respectively. The content of soluble protein notably decreased when CTC ≥ 10 mg/L and OTC ≥ 30 mg/L. The hydrogen peroxide (H2O2) content was significantly stimulated when OTC ≥ 10 mg/L, while it hardly changed when exposed to CTC. After 14 D, the malondialdehyde (MDA) and H2O2 contents of V. natans were significantly higher than those of the control group under a high concentration of OTC (≥ 30 mg/L), but they did not change significantly under a high concentration of CTC. The activity of polyphenol oxidase (PPO), under CTC treatment after 14 D, showed first a significant increase then decreases; the maximum value (125% of the control) was noticed at 10 mg/L CTC, while it remained unchanged when exposed to OTC. The soluble protein content significantly decreased at 10 mg/L CTC and 0.1 mg/L OTC, respectively. The RGR, CAT, and peroxidase (POD) activities, similar to OTC treatment after 14 D, decreased evidently when CTC was 10 mg/L, 30 mg/L, and 0.1 mg/L, respectively. CTC and OTC harm the chlorophyll content of V. natans after 14 D, and the reductions of chlorophyll a and carotenoid were more pronounced than chlorophyll b. The results suggest that CTC and OTC both have a negative effect on the growth of V. natans, and OTC can cause oxidative damage in V. natans but CTC harms the metabolism process without inducing oxidative damage. Overall, the toxicity of OTC to V. natans is stronger than that of CTC.
Collapse
Affiliation(s)
- Jing Li
- Water Pollution Ecology Laboratory, College of Life Science, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Lu Yang
- Water Pollution Ecology Laboratory, College of Life Science, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China
| | - Zhonghua Wu
- Water Pollution Ecology Laboratory, College of Life Science, Wuhan University, Wuhan, 430072, Hubei, People's Republic of China.
| |
Collapse
|