1
|
Arenas M, Feijão E, Duarte IA, Fonseca VF, Aparicio I, Alonso E, Duarte B. Enantioselective toxicity of propranolol on marine diatoms: Assessing growth, energy metabolism and oxidative damage in Phaeodactylum tricornutum. MARINE POLLUTION BULLETIN 2025; 214:117751. [PMID: 40043661 DOI: 10.1016/j.marpolbul.2025.117751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 02/12/2025] [Accepted: 02/24/2025] [Indexed: 04/02/2025]
Abstract
Concern about the presence of pharmaceuticals in aquatic systems has increased in recent years owing to their continued release and the impact they may have on non-target organisms. Over half of these pharmaceuticals are chiral, with enantiomers that may have different pharmacokinetics and effects. However, most studies on their toxicity in marine biota have used racemic mixtures, ignoring the effects of isolated enantiomers. This work examines the potential enantioselective toxic effects of the chiral β-blocker propranolol, widely prescribed for cardiovascular diseases and migraines, and increasingly concerning due to its long-term use and raising consumption. This study used the diatom Phaeodactylum tricornutum as a model organism to assess the effect of each enantiomer on growth, photosynthesis, energy metabolism, and oxidative damage. The results showed that exposure of diatoms to R-propranolol induced growth inhibition due to deficiencies in photochemical metabolism, which was reflected in changes in the photosynthetic pigment profile. Oxidative stress also occurred in cells, resulting in lipid oxidation and DNA damage. In contrast, such effects were not observed for the S-enantiomer at the tested concentrations. This work shows the importance of considering enantiomer-specific effects in ecotoxicological assessments, as the two PRO enantiomers exhibit different toxicities in marine diatoms.
Collapse
Affiliation(s)
- Marina Arenas
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Seville, Spain.
| | - Eduardo Feijão
- MARE-Marine and Environmental Sciences Centre & ARNET-Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; BioISI-Instituto de Biossistemas e Ciências Integrativas, Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Irina A Duarte
- MARE-Marine and Environmental Sciences Centre & ARNET-Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Vanessa F Fonseca
- MARE-Marine and Environmental Sciences Centre & ARNET-Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; Departamento de Biologia Animal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| | - Irene Aparicio
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Seville, Spain
| | - Esteban Alonso
- Departamento de Química Analítica, Escuela Politécnica Superior, Universidad de Sevilla, C/Virgen de África, 7, E-41011 Seville, Spain
| | - Bernardo Duarte
- MARE-Marine and Environmental Sciences Centre & ARNET-Aquatic Research Network Associated Laboratory, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal; Departamento de Biologia Vegetal, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisbon, Portugal
| |
Collapse
|
2
|
Beldean-Galea MS, Herghelegiu MC, Pănescu VA, Vial J, Bruzzoniti MC, Coman MV. The Effectiveness of Liquid-Phase Microextraction of Beta-Blockers from Aqueous Matrices for Their Analysis by Chromatographic Techniques. Molecules 2025; 30:1016. [PMID: 40076241 PMCID: PMC11901778 DOI: 10.3390/molecules30051016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 02/19/2025] [Accepted: 02/19/2025] [Indexed: 03/14/2025] Open
Abstract
Beta-blockers are pharmaceuticals used to treat cardiovascular diseases such as hypertension, angina pectoris, and arrhythmia. Due to high consumption, they are continuously released into the environment, being detected in many aqueous matrices. The aim of this research is to test the effectiveness of two green liquid-phase microextraction procedures, such as dispersive liquid-liquid microextraction (DLLME) and solidification of floating organic droplet microextraction (SFOME) for the selective extraction of eight beta-blockers (atenolol, nadolol, pindolol, acebutolol, metoprolol, bisoprolol, propranolol, and betaxolol) from aqueous matrices for their analysis by gas chromatography (GC) or liquid chromatography (LC). The influence of extraction parameters, such as the type and volume of extraction and disperser solvents, and ionic strength were studied. The developed extraction procedures provide a good enrichment factor for six compounds (61.22-243.97), good extraction recovery (53.04-92.1%), and good sample cleaning for both extraction procedures. Good limits of detection (0.13 to 0.69 µg/mL for GC and 0.07 to 0.15 µg/mL for HPLC) and limits of quantification (0.39 to 2.10 µg/mL for GC and 0.20 to 0.45 µg/mL for LC) were obtained. The developed procedures were successfully applied to the analysis of selected beta-blockers in wastewater samples, proving their applicability to the real samples.
Collapse
Affiliation(s)
- Mihail Simion Beldean-Galea
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania;
- “Raluca Ripan” Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania;
| | - Mihaela-Cătălina Herghelegiu
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania;
- “Raluca Ripan” Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania;
| | - Vlad-Alexandru Pănescu
- Faculty of Environmental Science and Engineering, Babeș-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania;
- “Raluca Ripan” Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania;
| | - Jérôme Vial
- Chemistry, Biology and Innovation Department, École Supérieure de Physique et de Chimie Industrielles ESPCI Paris PSL, 10 Rue Vauquelin, 75005 Paris, France
| | | | - Maria-Virginia Coman
- “Raluca Ripan” Institute for Research in Chemistry, Babeş-Bolyai University, 30 Fântânele Str., RO-400294 Cluj-Napoca, Romania;
| |
Collapse
|
3
|
Wołowicz A, Munir HMS. Emerging organic micropollutants as serious environmental problem: A comprehensive review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:177948. [PMID: 39675281 DOI: 10.1016/j.scitotenv.2024.177948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 12/02/2024] [Accepted: 12/04/2024] [Indexed: 12/17/2024]
Abstract
The escalating problem of environmental pollution can be attributed to the accelerated pace of global development, which often prioritizes human needs over planetary health. Despite huge global attempts endeavours to mitigate legacy pollutants, the uninterrupted introduction of novel substances such as the emerging organic micropollutants (EOMs) represents a significant menace to the natural environment and all forms of life on the earth. The widespread occurrence of EOMs in water and wastewater is a consequence of both their growing consumption as well as the limitations of the conventional wastewater treatment methods containing such pollutants resulting in deterioration of water quality and its supplies as well as this is a significant challenge for researchers and the scientific community alike. EOMs possibility to bioaccumulate, their toxic properties, resistance to degradation, and the limitations of conventional wastewater treatment methods for quantitative removal of EOMs at low concentrations give a significant environmental risk. These compounds are not commonly monitored, which exacerbates further the problem. Therefore the wide knowledge concerning EOMs properties, their occurrence as well as awareness about their migration in the environment and harmful effects is also extremely important. Therefore the EOMs characterization of various types, their classification and sources, concentrations in the aquatic systems and wastewaters, existing regulatory guidelines and their impacts on the environment and human health are thoroughly vetted in this review. Although the full extent of EOMs' effects on aquatic ecosystems and human health is still in the process of investigations, there are evident indications of their potential acute and chronic impacts, which warrant urgent attention. In practical terms the results of the research presented in this paper will help to fill the knowledge gaps concerning EOMs as a serious problem and to raise public awareness of actions to move to sustainable pollution management practices to protect our planet for future generations are vital.
Collapse
Affiliation(s)
- Anna Wołowicz
- Department of Inorganic Chemistry, Faculty of Chemistry, Institute of Chemical Sciences, Maria Curie-Sklodowska University, Maria Curie-Sklodowska Square 2, 20-031 Lublin, Poland.
| | - Hafiz Muhammad Shahzad Munir
- Institute of Chemical and Environmental Engineering, Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Abu Dhabi Rd, Rahim Yar Khan 64200, Pakistan.
| |
Collapse
|
4
|
Jin S, Fu J, Qian J, Lu B, Liu Y, Tang S, Shen J, Yan Y, Zhao S. Metabolomic insights into rhizosphere soil carbon component variations of Phragmites communis in the exposure of propranolol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177776. [PMID: 39612712 DOI: 10.1016/j.scitotenv.2024.177776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 12/01/2024]
Abstract
Propranolol (PRO) has been detected in water bodies worldwide, attributed to the incomplete removal by wastewater treatment processes. Although reports exist on the removal of PRO by wetland plants such as Phragmites communis, research on the impact of PRO on soil organic carbon (SOC) components in these plants' rhizospheres remains scarce. This investigation examined the impacts of 0.5 μg/L and 50 μg/L concentrations of PRO on the rhizosphere of P. communis over a 21-day laboratory experiment. PRO exposure slightly promoted root growth, notably enhancing fine root development at a lower concentration. A notable decrease in SOC content was observed in the PRO-treated samples: specifically, the proportion of mineral-associated organic carbon (MAOC) rose (from 47.90 % to 33.17 %), whereas the proportion of particulate organic carbon (POC) significantly declined following PRO treatment (from 52.10 % to 66.83 %). Moreover, Proteobacteria and Nitrospirae experienced significant promotion in the high-concentration samples while Bacteroidetes and Verrucomicrobia were inhibited. The metabolomic analysis demonstrated that glycine, serine, and threonine metabolism was the principal differential metabolic pathway in varying concentrations of PRO exposure. Additionally, across varying PRO concentrations, plant influence emerged as the predominant factor affecting POC alterations, whereas MAOC changes resulted from the synergistic interaction of plants and associated bacteria. The outcomes of this study mark a critical advancement towards a thorough assessment of PRO's impact on the rhizosphere of wetland plants, bearing significant ramifications for evaluating PRO's environmental effects.
Collapse
Affiliation(s)
- Shuai Jin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Jingjing Fu
- PowerChina Huadong Engineering Corporation Limited, Hangzhou 311122, People's Republic of China
| | - Jin Qian
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China.
| | - Bianhe Lu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yin Liu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Sijing Tang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Junwei Shen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Yitong Yan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| | - Shasha Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098, People's Republic of China; College of Environment, Hohai University, Nanjing 210098, People's Republic of China
| |
Collapse
|
5
|
Love D, Slovisky M, Costa KA, Megarani D, Mehdi Q, Colombo V, Ivantsova E, Subramaniam K, Bowden JA, Bisesi JH, Martyniuk CJ. Toxicity Risks Associated With the Beta-Blocker Metoprolol in Marine and Freshwater Organisms: A Review. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2530-2544. [PMID: 39291828 DOI: 10.1002/etc.5981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 09/19/2024]
Abstract
The detection of pharmaceuticals in aquatic ecosystems has generated concern for wildlife and human health over the past several decades. β-adrenergic blocking agents are a class of drugs designed to treat cardiovascular diseases and high blood pressure. Metoprolol is a second-generation β1-adrenergic receptor inhibitor detected in effluent derived from sewage treatment plants. Our review presents an updated survey of the current state of knowledge regarding the sources, occurrence, and toxicity of metoprolol in aquatic ecosystems. We further aimed to summarize the current literature on the presence of metoprolol in various classes of aquatic species and to consider the trophic transfer of these contaminants in marine mammals. The biological impacts of metoprolol have been reported in 20 aquatic organisms, with a primary focus on cardiac function and oxidative stress. Our review reveals that concentrations of metoprolol that cause toxicity in aquatic species are above levels that are typical of marine and freshwater environments. Future studies should investigate the effects of metoprolol at lower concentrations in aquatic organisms. Other recommendations include (1) a further focus on noncardiac endpoints, because computational assessments of currently available molecular data identify gonadotropins, vitellogenin, collagen, and cytokines as potential targets of modulation, and (2) development of adverse outcome pathways for cardiac dysfunction in aquatic species to improve our understanding of molecular interactions and outcomes following exposure. As the next generation of β-blockers is developed, continued diligence is needed for assessing environmental impacts in aquatic ecosystems to determine their potential accumulation and long-term effects on wildlife and humans. Environ Toxicol Chem 2024;43:2530-2544. © 2024 SETAC.
Collapse
Affiliation(s)
- Deirdre Love
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Megan Slovisky
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kaylie Anne Costa
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Dorothea Megarani
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Qaim Mehdi
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Vincent Colombo
- Department of Animal Science, College of Agricultural and Life Sciences, University of Florida, Gainesville, Florida, USA
| | - Emma Ivantsova
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Kuttichantran Subramaniam
- Department of Infectious Disease and Immunology, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - John A Bowden
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
- Department of Chemistry, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| | - Joseph H Bisesi
- Department of Environmental and Global Health, College of Public Health and Health Professions, University of Florida, Gainesville, Florida, USA
| | - Christopher J Martyniuk
- Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
6
|
Jiang T, Wu W, Ma M, Hu Y, Li R. Occurrence and distribution of emerging contaminants in wastewater treatment plants: A globally review over the past two decades. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175664. [PMID: 39173760 DOI: 10.1016/j.scitotenv.2024.175664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/20/2024] [Accepted: 08/18/2024] [Indexed: 08/24/2024]
Abstract
Emerging contaminants are pervasive in aquatic environments globally, encompassing pharmaceuticals, personal care products, steroid hormones, phenols, biocides, disinfectants and various other compounds. Concentrations of these contaminants are detected ranging from ng/L to μg/L. Even at trace levels, these contaminants can pose significant risks to ecosystems and human health. This article systematically summarises and categorizes data on the concentrations of 54 common emerging contaminants found in the influent and effluent of wastewater treatment plants across various geographical regions: North America, Europe, Oceania, Africa, and Asia. It reviews the occurrence and distribution of these contaminants, providing spatial and causal analyses based on data from these regions. Notably, the maximum concentrations of the pollutants observed vary significantly across different regions. The data from Africa, in particular, show more frequent detection of pharmaceutical maxima in wastewater treatment plants.
Collapse
Affiliation(s)
- Tingting Jiang
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China
| | - Wenyong Wu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China; College of Water Conservancy and Architectural Engineering, Shihezi University, Shihezi, Xinjiang 832000, China.
| | - Meng Ma
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Yaqi Hu
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| | - Ruoxi Li
- State Key Laboratory of Simulation and Regulation of Water Cycles in River Basins, China Institute of Water Resources and Hydropower Research, Beijing 100048, China
| |
Collapse
|
7
|
Karkoosh H, Reguyal F, Vithanage M, Sarmah AK. Efficacy of anthocyanin, kaolinite and cabbage leaves-derived biochar for simultaneous removal of lead, copper and metoprolol from water. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124594. [PMID: 39047885 DOI: 10.1016/j.envpol.2024.124594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/15/2024] [Accepted: 07/21/2024] [Indexed: 07/27/2024]
Abstract
Simultaneous removal of toxic elements and pharmaceutical compounds at environmentally relevant concentrations in aqueous solution is challenging. Modification of biochar using environmental materials has attracted significant attention in wastewater treatment, while pristine biochar has several limitations in the simultaneous removal of Lead (Pb2+), Copper (Cu2+), and metoprolol. We investigated the efficacy of biochar composites using waste cabbage leaves-derived biochar with kaolinite, and anthocyanin for simultaneous removal of Pb2+, Cu2+, and metoprolol from water. Using ball milling, the surface area and functional groups of adsorbents were improved via breaking the biochar grains into ultrafine particles. Ball-milled biochar derived from waste cabbage leaves significantly increased Pb2+, Cu2+, and metoprolol adsorption by 105, 71, and 213%, respectively. Results of Brunauer Emmett Teller surface area, Fourier transform infrared and X-ray photoelectron spectroscopies showed that surface area of non-milled biochar improved nearly ten-fold following ball-milling, while several oxygen containing acidic functional groups also increased. The adsorbents resulted in high removal efficiency for Pb2+ (162.9 mg/g) and Cu2+ (48.5 mg/g) in ball milled-kaolinite composite biochar (BMKB) and 76.3 mg/g (metoprolol), respectively in ball milled-anthocyanin composite biochar (BMAB). The simultaneous sorption of Pb2+, Cu2+, and metoprolol in an aqueous solution to BMAB and BMKB, showed that the adsorption capacity followed the order of Pb2+ >Cu2+ > metoprolol in both types of ball-milled biochars. BMKB achieved a high adsorption capacity for Pb2+ and Cu2+ (59 mg/g and 50 mg/g), respectively, while BMAB exhibited an adsorption capacity 22.3 mg/g for metoprolol. It was postulated that sorption of Pb2+, Cu2+ and metoprolol involved multiple adsorption mechanisms namely surface complexation, π-π interaction, H-bond, pore filling, and ion bridging. The findings of this study revealed that ball milling is a potential technology in producing a highlyefficient adsorbent to remediate multi-contaminants in aqueous solution.
Collapse
Affiliation(s)
- Hasan Karkoosh
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| | - Meththika Vithanage
- Ecosphere Resilience Research Centre, Faculty of Applied Sciences, University of Sri Jayewardenepura, Gangodawila, 10250, Sri Lanka.
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
8
|
Alqarni AM. Analytical Methods for the Determination of Pharmaceuticals and Personal Care Products in Solid and Liquid Environmental Matrices: A Review. Molecules 2024; 29:3900. [PMID: 39202981 PMCID: PMC11357415 DOI: 10.3390/molecules29163900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/07/2024] [Accepted: 08/16/2024] [Indexed: 09/03/2024] Open
Abstract
Among the various compounds regarded as emerging contaminants (ECs), pharmaceuticals and personal care products (PPCPs) are of particular concern. Their continuous release into the environment has a negative global impact on human life. This review summarizes the sources, occurrence, persistence, consequences of exposure, and toxicity of PPCPs, and evaluates the various analytical methods used in the identification and quantification of PPCPs in a variety of solid and liquid environmental matrices. The current techniques of choice for the analysis of PPCPs are state-of-the-art liquid chromatography coupled to mass spectrometry (LC-MS) or tandem mass spectrometry (LC-MS2). However, the complexity of the environmental matrices and the trace levels of micropollutants necessitate the use of advanced sample treatments before these instrumental analyses. Solid-phase extraction (SPE) with different sorbents is now the predominant method used for the extraction of PPCPs from environmental samples. This review also addresses the ongoing analytical method challenges, including sample clean-up and matrix effects, focusing on the occurrence, sample preparation, and analytical methods presently available for the determination of environmental residues of PPCPs. Continuous development of innovative analytical methods is essential for overcoming existing limitations and ensuring the consistency and diversity of analytical methods used in investigations of environmental multi-class compounds.
Collapse
Affiliation(s)
- Abdulmalik M Alqarni
- Department of Pharmaceutical Chemistry, College of Clinical Pharmacy, Imam Abdulrahman Bin Faisal University, King Faisal Road, P.O. Box 1982, Dammam 31441, Saudi Arabia
| |
Collapse
|
9
|
Wang J, Guo Z, Guo Y, Zhang Y, Yu P, Ye Z, Qian Y, Yoshimura C, Wang T, Zhang L. Photochemical fate of β-blocker pindolol in riverine and its downstream coastal waters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172236. [PMID: 38582123 DOI: 10.1016/j.scitotenv.2024.172236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Pindolol (PIN) is a commonly used β-blocker drug and has been frequently detected in various natural waters. Comprehensive understanding of its environmental photochemical transformation is necessary to assess its environmental risk. In this study, the photodegradation kinetics and mechanisms of PIN in both freshwater and coastal water were investigated for the first time. The photodegradation experiments were carried out by steady-state photochemical experiment under simulated sunlight irradiation. The results showed that the photodegradation rate of PIN in the freshwater of the Pearl River estuary was significantly faster than that in its downstream coastal water. In river water, PIN can undergo both direct photolysis and indirect photolysis induced by riverine dissolved organic matter (DOM) mainly through excited triplet-state of DOM and singlet oxygen, while direct photolysis dominated its degradation in coastal water. The promotion effect was found to be much greater for Suwannee River Natural Organic Matter (SRNOM) than that of the sampled riverine DOM, due to its high steady-state concentrations of reactive species. Interestingly, coastal DOM in northern and southern China were found to have similar promotion effects on PIN photodegradation for the first time, but both less than that of riverine DOM. A total of seven degradation products of PIN resulting from hydroxylation, hydrogen abstraction and cleavage of ether bond were identified. Biological toxicity of one products were found to be higher than that of PIN. These results are of significance for knowing the persistence and ecological risk of PIN in natural waters.
Collapse
Affiliation(s)
- Jieqiong Wang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Yuchen Guo
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Yingqi Zhang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, PR China
| | - Pengfei Yu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Zimi Ye
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Yao Qian
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Tingting Wang
- Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, PR China.
| |
Collapse
|
10
|
Lanaro VM, Sombra LL, Altamirano JC, Almeida CA, Stege PW. Chiral separation of propranolol by electrokinetic chromatography using nanodiamonds and human serum albumin as a pseudo-stationary phase in river water. Chirality 2024; 36:e23640. [PMID: 38384157 DOI: 10.1002/chir.23640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 12/13/2023] [Accepted: 12/19/2023] [Indexed: 02/23/2024]
Abstract
Propranolol is currently considered as an emerging contaminant in water bodies. In this study, R- and S-propranolol were determined in river samples by electrokinetic chromatography (EKC) using nanodiamonds (NDs) and human serum albumin (HSA) as a pseudo-stationary phase in order to achieve enantioseparation. Previously, river samples were preconcentrated using a column filled with Amberlite® IR-120 and Dowex® 50WX8 resins. The setting up of influential factors such as temperature, voltage, pH, and HSA and NDs concentration is accurately described along this manuscript. A multivariate study and optimization was carried out to obtain the enantioseparation of propranolol (Rs = 2.91), which was reached under the following experimental conditions: voltage of 16 kV, temperature of 16°C, phosphate buffer pH 9.5, NDs of 0.20%, and HSA of 15 μmol l-1 . The recoveries of analytes under optimal conditions were higher than 98%. The limits of detection were 0.85 μg l-1 for R- and S-propranolol. The method was applied to real samples, and the obtained results in three different water sources studied were 1.02, 0.59, and 0.30 μg l-1 for the R-enantiomer and 0.99, 0.54, and 0.28 μg l-1 for the S-enantiomer. The accuracy of the proposed methodology (including bias and precision) has allowed us to propose it as a successful tool for the control of water quality.
Collapse
Affiliation(s)
- Verónica M Lanaro
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Lorena L Sombra
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
| | - Jorgelina C Altamirano
- IANIGLA, Laboratorio de Química Ambiental, Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales, Mendoza, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas), San Luis, Argentina
| | - César A Almeida
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas), San Luis, Argentina
| | - Patricia W Stege
- Facultad de Química, Bioquímica y Farmacia, Universidad Nacional de San Luis, San Luis, Argentina
- CONICET (Consejo Nacional de Investigaciones Científicas y Tecnológicas), San Luis, Argentina
- Laboratorio de Medicina Experimental y Transcripcional, IMIBIO-SL, Instituto Multidisciplinario de Investigación Biológica, San Luis, Argentina
| |
Collapse
|
11
|
Oyedele GT, Adedara IA, Ikeji CN, Afolabi BA, Rocha JBT, Farombi EO. Metoprolol elicits neurobehavioral insufficiency and oxidative damage in nontarget Nauphoeta cinerea nymphs. ENVIRONMENTAL TOXICOLOGY 2023; 38:3006-3017. [PMID: 37584562 DOI: 10.1002/tox.23934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/24/2023] [Accepted: 08/01/2023] [Indexed: 08/17/2023]
Abstract
Metoprolol, a drug for hypertension and cardiovascular diseases, has become a contaminant of emerging concern because of its frequent detection in various environmental matrices globally. The dwindling in the biodiversity of useful insects owing to increasing presence of environmental chemicals is currently a great interest to the scientific community. In the current research, the toxicological impact of ecologically relevant concentrations of metoprolol at 0, 0.05, 0.1, 0.25, and 0.5 μg/L on Nauphoeta cinerea nymphs following exposure for 42 consecutive days was evaluated. The insects' behavior was analyzed with automated video-tracking software (ANY-maze, Stoelting Co, USA) while biochemical assays were done using the midgut, head and fat body. Metoprolol-exposed nymphs exhibited significant diminutions in the path efficiency, mobility time, distance traveled, body rotation, maximum speed and turn angle cum more episodes, and time of freezing. In addition, the heat maps and track plots confirmed the metoprolol-mediated wane in the exploratory and locomotor fitness of the insects. Compared with control, metoprolol exposure decreased acetylcholinesterase activity in insects head. Antioxidant enzymes activities and glutathione level were markedly decreased whereas indices of inflammation and oxidative injury to proteins and lipids were significantly increased in head, midgut and fat body of metoprolol-exposed insects. Taken together, metoprolol exposure induces neurobehavioral insufficiency and oxido-inflammatory injury in N. cinerea nymphs. These findings suggest the potential health effects of environmental contamination with metoprolol on ecologically and economically important nontarget insects.
Collapse
Affiliation(s)
- Gbemisola T Oyedele
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Isaac A Adedara
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Cynthia N Ikeji
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Blessing A Afolabi
- Department of Medical Biochemistry, College of Medicine and Health Sciences, Afe Babalola University, Ado Ekiti, Nigeria
| | - Joao B T Rocha
- Department of Biochemistry and Molecular Biology, Center for Natural and Exact Sciences (CCNE), Federal University of Santa Maria, Santa Maria, Brazil
| | - Ebenezer O Farombi
- Drug Metabolism and Toxicology Research Laboratories, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan, Nigeria
| |
Collapse
|
12
|
Papaioannou C, Geladakis G, Kommata V, Batargias C, Lagoumintzis G. Insights in Pharmaceutical Pollution: The Prospective Role of eDNA Metabarcoding. TOXICS 2023; 11:903. [PMID: 37999555 PMCID: PMC10675236 DOI: 10.3390/toxics11110903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 10/30/2023] [Accepted: 11/02/2023] [Indexed: 11/25/2023]
Abstract
Environmental pollution is a growing threat to natural ecosystems and one of the world's most pressing concerns. The increasing worldwide use of pharmaceuticals has elevated their status as significant emerging contaminants. Pharmaceuticals enter aquatic environments through multiple pathways related to anthropogenic activity. Their high consumption, insufficient waste treatment, and the incapacity of organisms to completely metabolize them contribute to their accumulation in aquatic environments, posing a threat to all life forms. Various analytical methods have been used to quantify pharmaceuticals. Biotechnology advancements based on next-generation sequencing (NGS) techniques, like eDNA metabarcoding, have enabled the development of new methods for assessing and monitoring the ecotoxicological effects of pharmaceuticals. eDNA metabarcoding is a valuable biomonitoring tool for pharmaceutical pollution because it (a) provides an efficient method to assess and predict pollution status, (b) identifies pollution sources, (c) tracks changes in pharmaceutical pollution levels over time, (d) assesses the ecological impact of pharmaceutical pollution, (e) helps prioritize cleanup and mitigation efforts, and (f) offers insights into the diversity and composition of microbial and other bioindicator communities. This review highlights the issue of aquatic pharmaceutical pollution while emphasizing the importance of using modern NGS-based biomonitoring actions to assess its environmental effects more consistently and effectively.
Collapse
Affiliation(s)
- Charikleia Papaioannou
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - George Geladakis
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Vasiliki Kommata
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece; (C.P.); (G.G.); (V.K.)
| | | |
Collapse
|
13
|
Hawkins C, Foster G, Glaberman S. Chemical prioritization of pharmaceuticals and personal care products in an urban tributary of the Potomac River. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163514. [PMID: 37068687 DOI: 10.1016/j.scitotenv.2023.163514] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 04/10/2023] [Accepted: 04/11/2023] [Indexed: 06/01/2023]
Abstract
Pharmaceuticals and personal care products (PPCPs) are incredibly diverse in terms of chemical structures, physicochemical properties, and modes of action, making their environmental impacts challenging to assess. New chemical prioritization methodologies have emerged that compare contaminant monitoring concentrations to multiple toxicity data sources, including whole organism and high-throughput data, to develop a list of "high priority" chemicals requiring further study. We applied such an approach to assess PPCPs in Hunting Creek, an urban tributary of the Potomac River near Washington, DC, which has experienced extensive human population growth. We estimated potential risks of 99 PPCPs from surface water and sediment collected upstream and downstream of a major wastewater treatment plant (WWTP), nearby combined sewer overflows (CSO), and in the adjacent Potomac River. The greatest potential risks to the aquatic ecosystem occurred near WWTP and CSO outfalls, but risk levels rapidly dropped below thresholds of concern - established by previous chemical prioritization studies - in the Potomac mainstem. These results suggest that urban tributaries, rather than larger rivers, are important to monitor because their lower or intermittent flow may not adequately dilute contaminants of concern. Common psychotropics, such as fluoxetine and venlafaxine, presented the highest potential risks, with toxicity quotients often > 10 in surface water and > 1000 in sediment, indicating the need for further field studies. Several ubiquitous chemicals such as caffeine and carbamazepine also exceeded thresholds of concern throughout our study area and point to specific neurotoxic and endocrine modes of action that warrant further investigation. Since many "high priority" chemicals in our analysis have also triggered concerns in other areas around the world, better coordination is needed among environmental monitoring programs to improve global chemical prioritization efforts.
Collapse
Affiliation(s)
- Cheyenne Hawkins
- George Mason University, Department of Environmental Science and Policy, Fairfax, VA, USA
| | - Gregory Foster
- George Mason University, Department of Chemistry and Biochemistry, Fairfax, VA, USA
| | - Scott Glaberman
- George Mason University, Department of Environmental Science and Policy, Fairfax, VA, USA.
| |
Collapse
|
14
|
Franco DSP, Georgin J, Ramos CG, Eljaiek SM, Badillo DR, de Oliveira AHP, Allasia D, Meili L. The Synthesis and Evaluation of Porous Carbon Material from Corozo Fruit ( Bactris guineensis) for Efficient Propranolol Hydrochloride Adsorption. Molecules 2023; 28:5232. [PMID: 37446896 DOI: 10.3390/molecules28135232] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/27/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
This study explores the potential of the corozo fruit (Bactris guineensis) palm tree in the Colombian Caribbean as a source for porous carbon material. Its specific surface area, pore volume, and average pore size were obtained using N2 adsorption/desorption isotherms. The images of the precursor and adsorbent surface were obtained using scanning electron microscopy (SEM). Fourier transform infrared (FTIR) spectra were obtained to detect the main functional groups present and an X-ray diffraction analysis (XRD) was performed in order to analyze the structural organization of the materials. By carbonizing the fruit stone with zinc chloride, a porous carbon material was achieved with a substantial specific surface area (1125 m2 g⁻1) and pore volume (3.241 × 10-1 cm3 g⁻1). The material was tested for its adsorption capabilities of the drug propranolol. The optimal adsorption occurred under basic conditions and at a dosage of 0.7 g L⁻1. The Langmuir homogeneous surface model effectively described the equilibrium data and, as the temperature increased, the adsorption capacity improved, reaching a maximum of 134.7 mg g⁻1 at 328.15 K. The model constant was favorable to the temperature increase, increasing from 1.556 × 10-1 to 2.299 × 10-1 L mg-1. Thermodynamically, the adsorption of propranolol was found to be spontaneous and benefited from higher temperatures, indicating an endothermic nature (12.39 kJ mol⁻1). The negative ΔG0 values decreased from -26.28 to -29.99 kJ mol-1, with the more negative value occurring at 328 K. The adsorbent material exhibited rapid kinetics, with equilibrium times ranging from 30 to 120 min, depending on the initial concentration. The kinetics data were well-represented by the general order and linear driving force models. The rate constant of the general order model diminished from 1.124 × 10-3 to 9.458 × 10-14 with an increasing concentration. In summary, the leftover stone from the Bactris guineensis plant can be utilized to develop activated carbon, particularly when activated using zinc chloride. This material shows promise for efficiently adsorbing propranolol and potentially other emerging pollutants.
Collapse
Affiliation(s)
- Dison Stracke Pfingsten Franco
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58# 55-66, Atlántico, Barranquilla 080002, Colombia
| | - Jordana Georgin
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58# 55-66, Atlántico, Barranquilla 080002, Colombia
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Claudete Gindri Ramos
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58# 55-66, Atlántico, Barranquilla 080002, Colombia
| | - Salma Martinez Eljaiek
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58# 55-66, Atlántico, Barranquilla 080002, Colombia
| | - Daniel Romero Badillo
- Department of Civil and Environmental, Universidad de la Costa, CUC, Calle 58# 55-66, Atlántico, Barranquilla 080002, Colombia
| | | | - Daniel Allasia
- Graduate Program in Environmental Engineering, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| | - Lucas Meili
- Process Laboratory, Technology Center, Federal University of Alagoas, Maceió 57072-870, AL, Brazil
| |
Collapse
|
15
|
Bethke K, Kropidłowska K, Stepnowski P, Caban M. Review of warming and acidification effects to the ecotoxicity of pharmaceuticals on aquatic organisms in the era of climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 877:162829. [PMID: 36924950 DOI: 10.1016/j.scitotenv.2023.162829] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Revised: 02/17/2023] [Accepted: 03/09/2023] [Indexed: 05/06/2023]
Abstract
An increase in the temperature and the acidification of the aquatic environment are among the many consequences of global warming. Climate change can also negatively affect aquatic organisms indirectly, by altering the toxicity of pollutants. Models of climate change impacts on the distribution, fate and ecotoxicity of persistent pollutants are now available. For pharmaceuticals, however, as new environmental pollutants, there are no predictions on this issue. Therefore, this paper organizes the existing knowledge on the effects of temperature, pH and both stressors combined on the toxicity of pharmaceuticals on aquatic organisms. Besides lethal toxicity, the molecular, physiological and behavioral biomarkers of sub-lethal stress were also assessed. Both acute and chronic toxicity, as well as bioaccumulation, were found to be affected. The direction and magnitude of these changes depend on the specific pharmaceutical, as well as the organism and conditions involved. Unfortunately, the response of organisms was enhanced by combined stressors. We compare the findings with those known for persistent organic pollutants, for which the pH has a relatively low effect on toxicity. The acid-base constant of molecules, as assumed, have an effect on the toxicity change with pH modulation. Studies with bivalves have been were overrepresented, while too little attention was paid to producers. Furthermore, the limited number of pharmaceuticals have been tested, and metabolites skipped altogether. Generally, the effects of warming and acidification were rather indicated than explored, and much more attention needs to be given to the ecotoxicology of pharmaceuticals in climate change conditions.
Collapse
Affiliation(s)
- Katarzyna Bethke
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Klaudia Kropidłowska
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Piotr Stepnowski
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Magda Caban
- University of Gdansk, Faculty of Chemistry, Department of Environmental Analysis, ul. Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
16
|
Silva PMMD, Alkimin GDD, Camparotto NG, Prediger P, Nunes B. Toxicological effects resulting from co-exposure to nanomaterials and to a β-blocker pharmaceutical drug in the non-target macrophyte species Lemna minor. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121166. [PMID: 36738879 DOI: 10.1016/j.envpol.2023.121166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 01/23/2023] [Accepted: 01/27/2023] [Indexed: 06/18/2023]
Abstract
The wide use of carbon-based materials for various purposes leads to their discharge in the aquatic systems, and simultaneous occurrence with other environmental contaminants, such as pharmaceutical drugs. This co-occurrence can adversely affect exposed aquatic organisms. Up to now, few studies have considered the simultaneous toxicity of nanomaterials, and organic contaminants, including pharmaceutical drugs, towards aquatic plants. Thus, this study aimed to assess the toxic effects of the co-exposure of propranolol (PRO), and nanomaterials based on cellulose nanocrystal, and graphene oxide in the aquatic macrophyte Lemna minor. The observed effects included reduction of growth rate in 13% in co-exposure 1 (nanomaterials + PRO 5 μg L-1), and 52-64% in co-exposure 2 (nanomaterials + PRO 51.3 mg L-1), fresh weight reduction of 94-97% in co-exposure 2 compared to control group, and increased pigment production caused by co-exposure treatments. The analysis of PCA showed that co-exposure 1 (nanomaterials + PRO 5 μg L-1) positively affected growth, and fresh weight, and co-exposure 2 positively affected pigments content. The results suggested that the presence of nanomaterials enhanced the overall toxicity of PRO, exerting deleterious effects in the freshwater plant L. minor, suggesting that this higher toxicity resulting from co-exposure was a consequence of the interaction between nanomaterials and PRO.
Collapse
Affiliation(s)
| | | | | | - Patricia Prediger
- Faculdade de Tecnologia, Universidade Estadual de Campinas, Campus De Limeira, Limeira, Brazil
| | - Bruno Nunes
- Centro de Estudos Do Ambiente e Do Mar (CESAM), Universidade De Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal; Departamento De Biologia, Universidade De Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal.
| |
Collapse
|
17
|
Stracke Pfingsten Franco D, Georgin Vizualization J, Gindri Ramos C, S. Netto M, Lobo B, Jimenez G, Lima EC, Sher F. Production of adsorbent for removal of propranolol hydrochloride: use of residues from Bactris guineensis fruit palm with economically exploitable potential from the Colombian Caribbean. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2023.121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
18
|
Bhuyan A, Ahmaruzzaman M. Recent advances in new generation nanocomposite materials for adsorption of pharmaceuticals from aqueous environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:39377-39417. [PMID: 36752919 DOI: 10.1007/s11356-023-25707-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
With rapid increase in the human population, a large amount of wastewater is generated every year. The availability of fresh water is decreasing at an alarming rate due to rapid industrialization and agricultural development. Pharmaceutical drugs which are credited for improving standards of life worldwide have emerged as major water contaminants, raising global concern about their potential risk to human health and environment. The presence of pharmaceutical compounds is detected in surface water (sea, river, lakes, etc.), groundwater, effluents from municipal, hospitals, and wastewater treatment plants, and even in drinking water. Efficient removal of pharmaceutical pollutants still remains a challenging task. Many techniques, including photodegradation, photocatalysis, oxidation, reverse osmosis, biodegradation, nanofiltration, adsorption, etc., have been used for the remediation of wastewater. Adsorption of pharmaceutical compounds on nanoadsorbents, as a low-cost and feasible technology, has gained immense popularity for wastewater treatment over the last decade. Adsorption techniques can be integrated with wastewater treatment plants to achieve efficient removal on an industrial level. Herein, we review the literature on the remediation techniques used for the pharmaceutical waste treatment using carbon nanotubes, metal oxides, nanoclay, and new-generation MXenes via adsorption. These materials show excellent adsorptive properties owing to their high surface area, low cost, high porosity, easy functionalization, and high surface reactivity. The adsorption mechanism of the nanoadsorbents and their reusability as a factor of sustainability have also been included in the review. The factors affecting the adsorption, including pH, the concentration of adsorbate, ionic strength, and adsorbate dose, have also been discussed.
Collapse
Affiliation(s)
- Anindita Bhuyan
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India
| | - Md Ahmaruzzaman
- Department of Chemistry, National Institute of Technology, Silchar, 788010, Assam, India.
| |
Collapse
|
19
|
Yi M, Lou J, Zhu W, Li D, Yu P, Lu H. Mechanism of β-blocker biodegradation by wastewater microorganisms. JOURNAL OF HAZARDOUS MATERIALS 2023; 444:130338. [PMID: 36417780 DOI: 10.1016/j.jhazmat.2022.130338] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/22/2022] [Accepted: 11/04/2022] [Indexed: 06/16/2023]
Abstract
The recalcitrant β-blockers have been widely detected in aquatic environments up to several hundred μg/L, which are major contributors to β1 antagonistic activities in wastewater. Their biodegradation mechanisms remain obscure, hindering the development of efficient removal techniques. This study constructed the biodegradation pathways for three typical β-blockers, namely atenolol, metoprolol, and propranolol, assessed the toxicity of their major biotransformation products, and identified the key enzyme catalyzing the O-dealkylation reaction leading to pollutant mineralization. Atenolol and metoprolol degradation was more efficient than that of propranolol by activated sludge, producing metoprolol acid (MTPA) as a major intermediate. Hydrogenophaga sp. YM1 isolated from activated sludge possess the α-ketoglutarate dependent dioxygenase (TfdA) responsible for O-dealkylation of MTPA and propranolol, producing 4-hydroxyphenylacetic acid (4-HPA) that can be further degraded and ultimately enters the TCA cycle. The role of TfdA was verified by proteomics, enzyme stimulation/inhibition tests, and gene knockout experiments. Molecular docking suggests its different interactions with MTPA and propranolol. Acetate facilitated the degradation of β-blockers efficiently. The results may shed light on enhanced biological removals of broader β-blockers and their transformation products in the environment.
Collapse
Affiliation(s)
- Ming Yi
- Institute of Plant Protection and Microbiology, Zhejiang Academy of Agriculture Science, Hangzhou, Zhejiang, China
| | - Jinxiu Lou
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Wanlu Zhu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Dan Li
- Shanghai Key Laboratory of Atmospheric Particle Pollution and Prevention (LAP3), Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, China
| | - Pingfeng Yu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China; Academy of Ecological Civilization, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
Ahmad A, Priyadarshini M, Raj R, Das S, Ghangrekar MM. Appraising efficacy of existing and advanced technologies for the remediation of beta-blockers from wastewater: A review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:25427-25451. [PMID: 35094282 DOI: 10.1007/s11356-021-18287-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Accepted: 12/19/2021] [Indexed: 02/08/2023]
Abstract
The discharge of emerging pollutants, such as beta-blockers (BB), has been recognized as one of the major threats to the environment due to the ecotoxicity associated with these emerging pollutants. The BB are prescribed to treat high blood pressure and cardiovascular diseases; however, even at lower concentration, these pollutants can pose eco-toxic impacts towards aquatic organisms. Additionally, owing to their recalcitrant nature, BB are not effectively removed through conventional technologies, such as activated sludge process, trickling filter and moving bed bioreactor; thus, it is essential to understand the degradation mechanism of BB in established as well as embryonic technologies, like adsorption, electro-oxidation, Fenton process, ultraviolet-based advance oxidation process, ozonation, membrane systems, wetlands and algal treatment. In this regard, this review articulates the recalcitrant nature of BB and their associated removal technologies. Moreover, the major advantages and limitations of these BB removal technologies along with the recent advancements with regard to the application of innovative materials and strategies have also been elucidated. Therefore, the present review intends to aid the researchers in improving the BB removal efficiency of these technologies, thus alleviating the problem of the release of BB into the environment.
Collapse
Affiliation(s)
- Azhan Ahmad
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Monali Priyadarshini
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Rishabh Raj
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Sovik Das
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India
| | - Makarand Madhao Ghangrekar
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.
- School of Environmental Science and Engineering, Indian Institute of Technology Kharagpur, Kharagpur, India.
| |
Collapse
|
21
|
Oluwalana AE, Musvuugwa T, Sikwila ST, Sefadi JS, Whata A, Nindi MM, Chaukura N. The screening of emerging micropollutants in wastewater in Sol Plaatje Municipality, Northern Cape, South Africa. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 314:120275. [PMID: 36167166 DOI: 10.1016/j.envpol.2022.120275] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 09/01/2022] [Accepted: 09/21/2022] [Indexed: 06/16/2023]
Abstract
Although pollutants pose environmental and human health risks, the majority are not routinely monitored and regulated. Organic pollutants emanate from a variety of sources, and can be classified depending on their chemistry and environmental fate. Classification of pollutants is important because it informs fate processes and apposite removal technologies. The occurrence of emerging contaminants (ECs) in water bodies is a source of environmental and human health concern globally. Despite being widely reported, data on the occurrence of ECs in South Africa are scarce. Specifically, ECS in wastewater in the Northern Cape in South Africa are understudied. In this study, various ECs were screened in water samples collected from three wastewater treatment plants (WWTPs) in the province. The ECs were detected using liquid chromatography coupled to high resolution Orbitrap mass spectrometry following Oasis HLB solid-phase extraction. The main findings were: (1) there is a wide variety of ECs in the WWTPs, (2) physico-chemical properties such as pH, total dissolved solids, conductivity, and dissolved organic content showed reduced values in the outlet compared to the inlet which confirms the presence of less contaminants in the treated wastewater, (3) specific ultraviolet absorbance of less than 2 was observed in the WWTPs samples, suggesting the presence of natural organic matter (NOM) that is predominantly non-humic in nature, (4) most of the ECs were recalcitrant to the treatment processes, (5) pesticides, recreational drugs, and analgesics constitute a significant proportion of pollutants in wastewater, and (6) NOM removal ranged between 35 and 90%. Consequently, a comprehensive database of ECs in wastewater in Sol Plaatje Municipality was created. Since the detected ECs pose ecotoxicological risks, there is a need to monitor and quantify ECs in WWTPs. These data are useful in selecting suitable monitoring and control strategies at WWTPs.
Collapse
Affiliation(s)
- Abimbola E Oluwalana
- Risk and Vulnerability Science Centre. Sol Plaatje University, Private Bag X5008, Kimberley, 8300, South Africa; Department of Physical and Earth Sciences, School of Natural and Applied Sciences. Sol Plaatje University, Private Bag X5008, Kimberley, 8300, South Africa
| | - Tendai Musvuugwa
- Department of Biological and Agricultural Sciences. Sol Plaatje University, Private Bag X5008, Kimberley, 8300, South Africa
| | - Stephen T Sikwila
- Department of Mathematical Sciences, School of Natural and Applied Sciences. Sol Plaatje University, Private Bag X5008, Kimberley, 8300, South Africa
| | - Jeremia S Sefadi
- Department of Physical and Earth Sciences, School of Natural and Applied Sciences. Sol Plaatje University, Private Bag X5008, Kimberley, 8300, South Africa
| | - Albert Whata
- Department of Mathematical Sciences, School of Natural and Applied Sciences. Sol Plaatje University, Private Bag X5008, Kimberley, 8300, South Africa
| | - Mathew M Nindi
- Institute for Nanotechnology and Water Sustainability (iNanoWS), College of Science, Engineering and Technology, University of South Africa, South Africa
| | - Nhamo Chaukura
- Department of Physical and Earth Sciences, School of Natural and Applied Sciences. Sol Plaatje University, Private Bag X5008, Kimberley, 8300, South Africa.
| |
Collapse
|
22
|
Technologies for removing pharmaceuticals and personal care products (PPCPs) from aqueous solutions: Recent advances, performances, challenges and recommendations for improvements. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.121144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
23
|
Jovanoski Kostić A, Kanas N, Rajić V, Sharma A, Bhattacharya SS, Armaković S, Savanović MM, Armaković SJ. Evaluation of Photocatalytic Performance of Nano-Sized Sr 0.9La 0.1TiO 3 and Sr 0.25Ca 0.25Na 0.25Pr 0.25TiO 3 Ceramic Powders for Water Purification. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:4193. [PMID: 36500815 PMCID: PMC9736647 DOI: 10.3390/nano12234193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 11/08/2022] [Accepted: 11/10/2022] [Indexed: 06/17/2023]
Abstract
Water pollution is a significant issue nowadays. Among the many different technologies for water purification, photocatalysis is a very promising and environment-friendly approach. In this study, the photocatalytic activity of Sr0.9La0.1TiO3 (SLTO) and Sr0.25Ca0.25Na0.25Pr0.25TiO3 (SCNPTO) nano-sized powders were evaluated by degradation of pindolol in water. Pindolol is almost entirely insoluble in water due to its lipophilic properties. The synthesis of the SCNPTO was performed using the reverse co-precipitation method using nitrate precursors, whereas the SLTO was produced by spray pyrolysis (CerPoTech, Trondheim Norway). The phase purity of the synthesized powders was validated by XRD, while HR-SEM revealed particle sizes between 50 and 70 nm. The obtained SLTO and SCNPTO powders were agglomerated but had relatively similar specific surface areas of about 27.6 m2 g-1 and 34.0 m2 g-1, respectively. The energy band gaps of the SCNPTO and SLTO were calculated (DFT) to be about 2.69 eV and 3.05 eV, respectively. The photocatalytic performances of the materials were examined by removing the pindolol from the polluted water under simulated solar irradiation (SSI), UV-LED irradiation, and UV irradiation. Ultra-fast liquid chromatography was used to monitor the kinetics of the pindolol degradation with diode array detection (UFLC-DAD). The SLTO removed 68%, 94%, and 100% of the pindolol after 240 min under SSI, UV-LED, and UV irradiation, respectively. A similar but slightly lower photocatalytic activity was obtained with the SCNPTO under identical conditions, resulting in 65%, 84%, and 93% degradation of the pindolol, respectively. Chemical oxygen demand measurements showed high mineralization of the investigated mixtures under UV-LED and UV irradiation.
Collapse
Affiliation(s)
- Aleksandra Jovanoski Kostić
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, 21000 Novi Sad, Serbia
| | - Nikola Kanas
- University of Novi Sad, Institute BioSense, 21000 Novi Sad, Serbia
| | - Vladimir Rajić
- University of Belgrade, INS Vinča, Department of Atomic Physics, 11000 Belgrade, Serbia
| | - Annu Sharma
- Nanofunctional Materials Technology Centre, Department of MME, IIT Madras, Chennai 600001, India
| | | | - Stevan Armaković
- University of Novi Sad, Faculty of Sciences, Department of Physics, 21000 Novi Sad, Serbia
- Association for the International Development of Academic and Scientific Collaboration (AIDASCO), 21000 Novi Sad, Serbia
| | - Maria M. Savanović
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, 21000 Novi Sad, Serbia
- Association for the International Development of Academic and Scientific Collaboration (AIDASCO), 21000 Novi Sad, Serbia
| | - Sanja J. Armaković
- University of Novi Sad, Faculty of Sciences, Department of Chemistry, Biochemistry and Environmental Protection, 21000 Novi Sad, Serbia
- Association for the International Development of Academic and Scientific Collaboration (AIDASCO), 21000 Novi Sad, Serbia
| |
Collapse
|
24
|
Ahmad A, Priyadarshini M, Yadav S, Ghangrekar MM, Surampalli RY. The potential of biochar-based catalysts in advanced treatment technologies for efficacious removal of persistent organic pollutants from wastewater: A review. Chem Eng Res Des 2022. [DOI: 10.1016/j.cherd.2022.09.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
25
|
Zakari-Jiya A, Frazzoli C, Obasi CN, Babatunde BB, Patrick-Iwuanyanwu KC, Orisakwe OE. Pharmaceutical and personal care products as emerging environmental contaminants in Nigeria: A systematic review. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 94:103914. [PMID: 35738461 DOI: 10.1016/j.etap.2022.103914] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/26/2022] [Accepted: 06/17/2022] [Indexed: 06/15/2023]
Abstract
The increasingly broad and massive use of pharmaceuticals (human, veterinary) and personal care products in industrially developing nations makes their uncontrolled environmental and ecological impact a true concern. Focusing on Nigeria, this systematic literature search (databases: PubMed, ScienceDirect, Google Scholar, EMBASE, Scopus, Cochrane library and African Journals Online) aims to increase visibility to the issue. Among 275 articles identified, 7 were included in this systematic review. Studies indicated the presence of 11 personal care products (15.94 %) and 58 pharmaceutical products (84.06 %) in surface and ground water, leachates, runoffs, sludge, and sediments. The 42.86% (3/7) of reviewed studies reported 17 analgesics; 71.42 % (5/7) reported 16 antibiotics; 28.57 % (2/7) reported 5 lipid lowering drugs; 28.57% reported anti-malaria and fungal drugs; 14.29 % (1/7) reported estrogen drugs. Different studies report on sunscreen products, hormone, phytosterol, insect repellent, and β1 receptor. Gemfibrozil (<4-730 ng/L), Triclosan (55.1-297.7 ng/L), Triclocarban (35.6-232.4 ng/L), Trimethoprim (<1-388 ng/L) and Tramadol (<2-883 ng/L) had the highest range of concentrations. Findings confirm the need of i) legislation for environmental monitoring, including biota, ii) toxicological profiling of new market products, and iii) sensitization on appropriate use and disposal of pharmaceuticals and personal care products.
Collapse
Affiliation(s)
- Aliyu Zakari-Jiya
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria
| | - Chiara Frazzoli
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Ageing, Istituto Superiore di Sanità (Italian National Institute of Health), Rome, Italy
| | - Cecilia Nwadiuto Obasi
- Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Bolaji Bernard Babatunde
- Department of Animal and Environmental Biology, Faculty of Science, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Kingsley C Patrick-Iwuanyanwu
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria; Department of Biochemistry, Faculty of Science, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria
| | - Orish E Orisakwe
- African Centre of Excellence for Public Health and Toxicological Research (ACE-PUTOR), University of Port Harcourt, PMB, 5323 Port Harcourt, Choba, Nigeria; Department of Experimental Pharmacology & Toxicology, Faculty of Pharmacy, University of Port-Harcourt, Port-Harcourt, Rivers State, Nigeria.
| |
Collapse
|
26
|
Ding Y, Cui K, Liu X, Xie Q, Guo Z, Chen Y. Lignin peroxidase-catalyzed direct oxidation of trace organic pollutants through a long-range electron transfer mechanism: Using propranolol as an example. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128544. [PMID: 35228075 DOI: 10.1016/j.jhazmat.2022.128544] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 02/05/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
In this work, lignin peroxidase (LiP) was extracted for the in vitro degradation of a persistent compound (propranolol, PPN). The results showed that 94.2% of PPN was degraded at 30 U L-1 LiP activity and 10 mg L-1 PPN. The PPN degradation rate increased from 33.5% to 94.2% when the veratryl alcohol (VA) concentration varied from 0 to 180 µM, but decreased to 73.1% with further VA addition. This phenomenon confirmed that VA was indispensable, however, it also acted as a competitive inhibitor of PPN oxidation. Computational analysis revealed that the Trp171…iron porphyrin (TRP-FeP) path was responsible for specific substrate (e.g., VA) transformation, and another long-range electron transfer (LRET) path through His-Asp…FeP (HSP-FeP) was discovered for non-specific substrate (e.g., PPN) degradation. These two electron-transfer routes shared one catalytic center, and VA protected the enzyme from H2O2-dependent inactivation. The HSP-FeP path transformed PPN through single electron transfer or H abstraction mechanisms. In addition, hydroxyl radicals generated in the LiP/H2O2 system were involved in the hydroxylation of the PPN intermediates. Possible degradation pathways were deduced using these degradation mechanisms and mass-spectrometry analysis. The multipath degradation mechanism endowed LiP with a remarkable capacity for removing various recalcitrant pollutants in environmental remediation.
Collapse
Affiliation(s)
- Yan Ding
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Kangping Cui
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China.
| | - Xueyan Liu
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Qijun Xie
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Zhi Guo
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| | - Yihan Chen
- School of Resources and Environmental Engineering, Hefei University of Technology, Hefei 230009, China; Key Laboratory of Nanominerals and Pollution Control of Higher Education Institutes, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
27
|
Allouche M, Ishak S, Ben Ali M, Hedfi A, Almalki M, Karachle PK, Harrath AH, Abu-Zied RH, Badraoui R, Boufahja F. Molecular interactions of polyvinyl chloride microplastics and beta-blockers (Diltiazem and Bisoprolol) and their effects on marine meiofauna: Combined in vivo and modeling study. JOURNAL OF HAZARDOUS MATERIALS 2022; 431:128609. [PMID: 35278946 DOI: 10.1016/j.jhazmat.2022.128609] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 02/20/2022] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
The ecotoxicological effects of beta-blockers (i.e. Diltiazem and Bisoprolol) and their interactions with the microplastic polyvinyl chloride on marine meiofauna were tested in laboratory microcosms. An experimental factorial design was applied, using meiobenthic fauna collected from the Old Harbor of Bizerte (NE Tunisia), but with a main focus on the nematode communities. The meiobenthic invertebrates were exposed to two concentrations of Diltiazem and Bisoprolol, of 1.8 µg.L-1 and 1.8 mg.L-1, respectively, and one concentration of polyvinyl chloride (i.e. 20 mg.kg-1), separately and mixed. The overall meiofauna abundance was significantly reduced in all treatments, mainly that of polychaetes and amphipods. Moreover, the juveniles-gravid female ratios of the nematode communities were the lowest in the 1.8 µg.L-1 Bisoprolol treatment and for the 1.8 mg.L-1 mixture of Diltiazem and microplastics, suggesting that different dosages influence the maturity status of the examined species. The demographic results were also supported by in silico approach. The simulation of molecular interactions revealed acceptable binding affinities (up to -8.1 kcal/mol) and interactions with key residues in the germ line development protein 3 and sex-determining protein from Coenorhabditis elegans. Overall, the experimental outcome strongly indicates synergistic interactions among the beta-blockers Diltiazem and Bisoprolol and the microplastic polyvinyl chloride on marine nematode communities.
Collapse
Affiliation(s)
- Mohamed Allouche
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Sahar Ishak
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Manel Ben Ali
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Amor Hedfi
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia
| | - Mohammed Almalki
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA2 7AY, UK
| | - Paraskevi K Karachle
- Hellenic Centre for Marine Research, Institute of Marine Biological Resources and Inland Waters, 46.7 Athens-Sounio Ave., P.O. Box 712, 19013 Anavyssos, Attika, Greece
| | - Abdel Halim Harrath
- King Saud University, Zoology Department, College of Science, Box 2455, Riyadh 11451, Saudi Arabia
| | - Ramadan H Abu-Zied
- Geology department, Faculty of Science, Mansoura University, El-Mansoura 35516, Egypt
| | - Riadh Badraoui
- Section of Histology-Cytology, Medicine Faculty of Tunis, University of Tunis El Manar, 1007 La Rabta-Tunis, Tunisia
| | - Fehmi Boufahja
- University of Carthage, Faculty of Sciences of Bizerte, LR01ES14 Laboratory of Environment Biomonitoring, Coastal Ecology and Ecotoxicology Unit, 7021 Zarzouna, Tunisia.
| |
Collapse
|
28
|
Yi M, Sheng Q, Lv Z, Lu H. Novel pathway and acetate-facilitated complete atenolol degradation by Hydrogenophaga sp. YM1 isolated from activated sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 810:152218. [PMID: 34890665 DOI: 10.1016/j.scitotenv.2021.152218] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/02/2021] [Accepted: 12/02/2021] [Indexed: 06/13/2023]
Abstract
Atenolol is a widely prescribed beta-blocker that has been detected in wastewater at concentrations up to 300 μg/L. The parent compound and its transformation products pose risks to aquatic organisms. Efficient atenolol degrading microorganism has yet to be identified, and its biodegradation pathway is unknown. In this study, Hydrogenophaga sp. YM1 isolated from activated sludge can degrade atenolol efficiently (286.1 ± 4.0 μg/g dry wt/h in actual wastewater), where atenolol acid, and four newly detected products (4-hydroxyphenylacetic acid, 3-(isopropylamino)-1,2-propanediol, 3-amino-1,2-propanediol and 4-(1-amino-2-hydroxy-3-propoxy) benzeneacetic acid) were the main intermediates. Key genes involved in atenolol degradation were proposed based on RNA-seq and validated by RT-qPCR. The ether bond cleavage of atenolol acid was the rate-limiting step likely catalyzed by the α-ketoglutarate dependent 2,4-dichlorophenoxyacetate dioxygenase. The further degradation of 4-hydroxyphenylacetic acid followed the homoprotocatechuate degradation pathway, enabling complete conversion to CO2. Acetate addition (39-156 mg COD/L) under aerobic condition enhanced atenolol degradation by 29-37% and decreased the accumulation of atenolol acid, likely because acetate oxidation provided α-ketoglutarate and additional reducing power. Activated sludge core microorganisms have limited atenolol mineralization potentials. Enriching Hydrogenophaga-like populations and/or providing such as acetate can drive more complete conversion of atenolol in natural and engineered biosystems.
Collapse
Affiliation(s)
- Ming Yi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qi Sheng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhenmei Lv
- MOE Laboratory of Biosystem Homeostasis and Protection, College of Life Sciences, Zhejiang University, Hangzhou 310058, PR China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
29
|
Ye Z, Guo Z, Wang J, Zhang L, Guo Y, Yoshimura C, Niu J. Photodegradation of acebutolol in natural waters: Important roles of carbonate radical and hydroxyl radical. CHEMOSPHERE 2022; 287:132318. [PMID: 34826949 DOI: 10.1016/j.chemosphere.2021.132318] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 09/12/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Acebutolol (ACE) has been widely used for the treatment of cardiovascular disorders, and its photochemical fate in natural waters is a matter of concern due to its ubiquitous occurrence and its toxicity to aquatic organisms. In this study, the photodegradation of ACE in river water and synthetic waters were investigated under simulated sunlight irradiation. The results demonstrated that ACE photodegradation rate in river water was 3.2 times higher than that in pure water. Then the influences of HCO3-, NO3- and DOM on ACE photolysis were investigated under their concentrations similar with the ones in river water. ACE photodegradation was significantly enhanced in the presence of HCO3- alone, and the scavenging experiments and the electron paramagnetic resonance experiments together proved that HCO3- could be oxidized by triplet-excited state of ACE to generate CO3•-, which subsequently played a key role in ACE degradation. The presence of both NO3- and DOM also increased the ACE photodegradation rates, and •OH and 3DOM* were found to be involved in the degradation. In addition, when DOM was added to a solution with HCO3-, the enhancement effect of HCO3- on ACE photodegradation was weakened due to the scavenging of CO3•- by DOM combined with the light screening effect of DOM.
Collapse
Affiliation(s)
- Zimi Ye
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Jieqiong Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China.
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yuchen Guo
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Chihiro Yoshimura
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| |
Collapse
|
30
|
Gonçalves NPF, Iezzi L, Belay MH, Dulio V, Alygizakis N, Dal Bello F, Medana C, Calza P. Elucidation of the photoinduced transformations of Aliskiren in river water using liquid chromatography high-resolution mass spectrometry. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 800:149547. [PMID: 34391152 DOI: 10.1016/j.scitotenv.2021.149547] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 07/16/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
Aliskiren was selected as a compound of potential concern among a suspect screening list of more than 40,000 substances on a basis of high occurrence, potential risk and the absence of information about its environmental fate. This study investigated the photoinduced degradation of aliskiren in river water samples spiked at trace levels exposed to simulated sunlight. A half-life time of 24 h was observed with both direct and indirect photolysis playing a role on pollutant degradation. Its photo-induced transformation involved the formation of six transformation products (TPs), elucidated by LC-HRMS - resulted from the drug hydroxylation, oxidation and moieties loss with subsequent cyclization structurally. The retrospective suspected analysis performed on a total of 754 environmental matrices evidenced the environmental occurrence of aliskiren and two TPs in surface waters (river and seawater), fresh water, sediments and biota. In silico bioassays suggested that aliskiren degradation undergoes thought the formation of TPs with distinct toxicity comparing with the parent compound.
Collapse
Affiliation(s)
| | - Lucia Iezzi
- Department of Chemistry, University of Turin, Torino, Italy
| | - Masho H Belay
- Department of Science and Technological Innovation, University of Piemonte Orientale, Alessandria, Italy
| | - Valeria Dulio
- INERIS, National Institute for Environment and Industrial Risks, Verneuil en Halatte, France
| | - Nikiforos Alygizakis
- Laboratory of Analytical Chemistry, Department of Chemistry, University of Athens, Panepistimiopolis Zografou, 15771 Athens, Greece; Environmental Institute, Okružná 784/42, 97241 Koš, Slovak Republic
| | - Federica Dal Bello
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Claudio Medana
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Torino, Italy
| | - Paola Calza
- Department of Chemistry, University of Turin, Torino, Italy.
| |
Collapse
|
31
|
Nazarkovsky M, Czech B, Żmudka A, Bogatyrov VM, Artiushenko O, Zaitsev V, Saint-Pierre TD, Rocha RC, Kai J, Xing Y, Gonçalves WD, Veiga AG, Rocco MLM, Safeer SH, Galaburda MV, Carozo V, Aucélio RQ, Caraballo-Vivas RJ, Oranska OI, Dupont J. Structural, optical and catalytic properties of ZnO-SiO2 colored powders with the visible light-driven activity. J Photochem Photobiol A Chem 2021. [DOI: 10.1016/j.jphotochem.2021.113532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
32
|
Gueye C, Aaron JJ, Gaye-Seye MD, Cisse L, Oturan N, Oturan MA. A spectrofluorimetric method for the determination of pindolol in natural waters using various organic and cyclodextrin media. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:55029-55040. [PMID: 34128161 DOI: 10.1007/s11356-021-14801-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 06/04/2021] [Indexed: 06/12/2023]
Abstract
A simple, sensitive, and rapid spectrofluorimetric method was developed for the determination of the β-blocker pindolol. The native fluorescence of pindolol was measured in different organic solvents and in cyclodextrin aqueous media. The highest fluorescence signal was obtained in 2-propanol at λem = 303 nm with λex = 260 nm. Analytical figures of merit for the spectrofluorimetric determination of pindolol were satisfactory, with wide linear dynamic range (LDR) values of two orders of magnitude, and rather low limit of detection (LOD) values between 0.2 and 8.7 ng/mL. Moreover, the addition of cyclodextrins (HP-β-CD and β-CD) in aqueous media enhanced the fluorescence of pindolol. In addition, the inclusion complexes of pindolol with cyclodextrins were investigated and the stability constants of complexes were calculated by means of the method of nonlinear regression (NLR). The method was successfully applied to the analysis of tap water and natural water samples, spiked with pindolol.
Collapse
Affiliation(s)
- Coumba Gueye
- Laboratoire Géomatériaux et Environnement (LGE), EA 4119, Université Paris-Est Marne-la-Vallé, 5 Boulevard Descartes, Bâtiment IFI, 77454, Marne-la-Vallée Cedex 2, France
- Laboratoire de Photochimie et d'Analyse, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Jean-Jacques Aaron
- Laboratoire Géomatériaux et Environnement (LGE), EA 4119, Université Paris-Est Marne-la-Vallé, 5 Boulevard Descartes, Bâtiment IFI, 77454, Marne-la-Vallée Cedex 2, France.
| | - Mame Diabou Gaye-Seye
- Laboratoire Géomatériaux et Environnement (LGE), EA 4119, Université Paris-Est Marne-la-Vallé, 5 Boulevard Descartes, Bâtiment IFI, 77454, Marne-la-Vallée Cedex 2, France
- Laboratoire de Photochimie et d'Analyse, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Lamine Cisse
- Laboratoire de Photochimie et d'Analyse, Département de Chimie, Faculté des Sciences et Techniques, Université Cheikh Anta Diop, Dakar, Senegal
| | - Nihal Oturan
- Laboratoire Géomatériaux et Environnement (LGE), EA 4119, Université Paris-Est Marne-la-Vallé, 5 Boulevard Descartes, Bâtiment IFI, 77454, Marne-la-Vallée Cedex 2, France
| | - Mehmet A Oturan
- Laboratoire Géomatériaux et Environnement (LGE), EA 4119, Université Paris-Est Marne-la-Vallé, 5 Boulevard Descartes, Bâtiment IFI, 77454, Marne-la-Vallée Cedex 2, France
| |
Collapse
|
33
|
Adsorption of propranolol hydrochloride from aqueous solutions onto thermally treated bentonite clay: A complete batch system evaluation. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116442] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Song X, Mensah NN, Wen Y, Zhu J, Zhang Z, Tan WS, Chen X, Li J. β-Cyclodextrin-Polyacrylamide Hydrogel for Removal of Organic Micropollutants from Water. Molecules 2021; 26:molecules26165031. [PMID: 34443616 PMCID: PMC8402003 DOI: 10.3390/molecules26165031] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 08/13/2021] [Accepted: 08/15/2021] [Indexed: 11/16/2022] Open
Abstract
Water pollution by various toxic substances remains a serious environmental problem, especially the occurrence of organic micropollutants including endocrine disruptors, pharmaceutical pollutants and naphthol pollutants. Adsorption process has been an effective method for pollutant removal in wastewater treatment. However, the thermal regeneration process for the most widely used activated carbon is costly and energy-consuming. Therefore, there has been an increasing need to develop alternative low-cost and effective adsorption materials for pollutant removal. Herein, β-cyclodextrin (β-CD), a cheap and versatile material, was modified with methacrylate groups by reacting with methacryloyl chloride, giving an average degree of substitution of 3 per β-CD molecule. β-CD-methacrylate, which could function as a crosslinker, was then copolymerized with acrylamide monomer via free-radical copolymerization to form β-CD-polyacrylamide (β-CD-PAAm) hydrogel. Interestingly, in the structure of the β-CD-PAAm hydrogel, β-CD is not only a functional unit binding pollutant molecules through inclusion complexation, but also a structural unit crosslinking PAAm leading to the formation of the hydrogel 3D networks. Morphological studies showed that β-CD-PAAm gel had larger pore size than the control PAAm gel, which was synthesized using conventional crosslinker instead of β-CD-methacrylate. This was consistent with the higher swelling ratio of β-CD-PAAm gel than that of PAAm gel (29.4 vs. 12.7). In the kinetic adsorption studies, phenolphthalein, a model dye, and bisphenol A, propranolol hydrochloride, and 2-naphthol were used as model pollutants from different classes. The adsorption data for β-CD-PAAm gel fitted well into the pseudo-second-order model. In addition, the thermodynamic studies revealed that β-CD-PAAm gel was able to effectively adsorb the different dye and pollutants at various concentrations, while the control PAAm gel had very low adsorption, confirming that the pollutant removal was due to the inclusion complexation between β-CD units and pollutant molecules. The adsorption isotherms of the different dye and pollutants by the β-CD-PAAm gel fitted well into the Langmuir model. Furthermore, the β-CD-PAAm gel could be easily recycled by soaking in methanol and reused without compromising its performance for five consecutive adsorption/desorption cycles. Therefore, the β-CD-PAAm gel, which combines the advantage of an easy-to-handle hydrogel platform and the effectiveness of adsorption by β-CD units, could be a promising pollutant removal system for wastewater treatment applications.
Collapse
Affiliation(s)
- Xia Song
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (X.S.); (N.N.M.); (Y.W.); (J.Z.); (Z.Z.)
| | - Nana Nyarko Mensah
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (X.S.); (N.N.M.); (Y.W.); (J.Z.); (Z.Z.)
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore; (W.S.T.); (X.C.)
| | - Yuting Wen
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (X.S.); (N.N.M.); (Y.W.); (J.Z.); (Z.Z.)
| | - Jingling Zhu
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (X.S.); (N.N.M.); (Y.W.); (J.Z.); (Z.Z.)
| | - Zhongxing Zhang
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (X.S.); (N.N.M.); (Y.W.); (J.Z.); (Z.Z.)
| | - Wui Siew Tan
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore; (W.S.T.); (X.C.)
| | - Xinwei Chen
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Singapore 138634, Singapore; (W.S.T.); (X.C.)
| | - Jun Li
- Department of Biomedical Engineering, Faculty of Engineering, National University of Singapore, 7 Engineering Drive 1, Singapore 117574, Singapore; (X.S.); (N.N.M.); (Y.W.); (J.Z.); (Z.Z.)
- Correspondence: ; Tel.: +65-6516-7273
| |
Collapse
|
35
|
Wang J, Wang K, Guo Y, Ye Z, Guo Z, Lei Y, Yang X, Zhang L, Niu J. Dichlorine radicals (Cl 2•-) promote the photodegradation of propranolol in estuarine and coastal waters. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125536. [PMID: 33667804 DOI: 10.1016/j.jhazmat.2021.125536] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Propranolol (PRO) is frequently detected in estuarine and coastal waters, which has adverse effects on estuarine and coastal ecosystems. In this study, the effects of halide ions and DOM from estuarine and coastal waters on the photochemical transformation of PRO were investigated. The results demonstrated that the presence of Br- alone exhibited slight effect on photochemical transformation of PRO, while photodegradation rates of PRO increased with the addition of 0.1-0.54 M Cl-. The quenching experiments and the laser flash photolysis experiments together demonstrated the generation of Cl2•- in the photolytic systems. Cl2•- is possibly produced through the charge separation of exciplex of 3PRO* and Cl- rather than via direct oxidation of Cl-. Additional experiments indicated that addition of seawater DOM inhibited the halide ions-sensitized photodegradation rates of PRO, which may be due to the quenching of Cl2•- by phenolic substances in DOM molecules. Compared with pure water, three new photochemical intermediates were identified in the presence of DOM or Cl-. The direct photolysis of PRO mainly reacted by hydroxyl additions, hydroxyl elimination and de-propylation, whereas electron transfer coupled with H-abstraction by Cl2•- and 3DOM* was proposed as the primary role for PRO degradation in the presence of Cl- or DOM.
Collapse
Affiliation(s)
- Jieqiong Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Kai Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Yuchen Guo
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zimi Ye
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo 152-8552, Japan
| | - Yu Lei
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510275, China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, China
| |
Collapse
|
36
|
Angeles LF, Singh RR, Vikesland PJ, Aga DS. Increased coverage and high confidence in suspect screening of emerging contaminants in global environmental samples. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125369. [PMID: 33647625 DOI: 10.1016/j.jhazmat.2021.125369] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 02/01/2021] [Accepted: 02/06/2021] [Indexed: 05/06/2023]
Abstract
Suspect screening using liquid chromatography with high resolution mass spectrometry provides an opportunity for expanding the detection coverage of emerging contaminants in the environment. Screening workflows may suffer from high frequency of false positives or insufficient confidence in the identification of compounds; however, stringent criteria could lead to high false negatives. A workflow must have a balanced criteria, both selective and sensitive, to be able to identify real features without missing low abundant features traceable to analytes of interest. A highly selective (87%) and sensitive (97%) workflow was developed by characterizing the occurrence of contaminants in wastewater and surface water from Hong Kong, India, Philippines, Sweden, Switzerland, and the U.S. Sixty-eight contaminants were identified and confirmed with reference standards, including pharmaceuticals, pesticides, and industrial chemicals. The antimicrobials metronidazole, clindamycin, linezolid, and rifaximin were detected. Notably, antifungal compounds were detected in samples from six countries, with levels up to 1380 ng/L. Amoxicillin transformation products, penilloic acid (285-8047 ng/L) and penicilloic acid (107 ng/L), were confirmed for the first time with reference standards in wastewater samples from India, Sweden, and U.S. This workflow provides an efficient approach to broad-scale identification of emerging contaminants using publicly-available databases for suspect screening and prioritization.
Collapse
Affiliation(s)
- Luisa F Angeles
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States
| | - Randolph R Singh
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States; Laboratoire Biogéochimie des Contaminants Organiques, Ifremer, F-44311, Nantes, France
| | - Peter J Vikesland
- Department of Civil and Environmental Engineering, Virginia Polytechnic and State University, Blacksburg, VA 24060-0361, United States
| | - Diana S Aga
- Department of Chemistry, The State University of New York at Buffalo, Buffalo, New York 14260, United States.
| |
Collapse
|
37
|
Wang J, Wang K, Zhang L, Guo Y, Guo Z, Sun W, Ye Z, Niu J. Mechanism of bicarbonate enhancing the photodegradation of β-blockers in natural waters. WATER RESEARCH 2021; 197:117078. [PMID: 33819659 DOI: 10.1016/j.watres.2021.117078] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
The impact of HCO3- on the photodegradation of β-blockers was investigated under simulated sunlight irradiation. The results show that in the presence of HCO3-, the photodegradation rates increase significantly for sotalol (SOT), whereas no effects on the degradation of carvedilol and arotinolol are observed. Using quenching experiments, electron paramagnetic resonance spectra and degradation product determination, we demonstrate that carbonate radical (CO3•-) is formed by direct oxidation of HCO3- by triplet-excited SOT (3SOT*) and plays a significant role in SOT photodegradation. Competition kinetics experiments show that the three β-blockers all have high second-order rate constants (107-108 M-1 s-1) for the reaction with CO3•-. However, only 3SOT* has a higher reduction potential that can oxidize HCO3- to produce CO3•-. Thus, enhanced SOT removal rates in the presence of HCO3- were observed. In addition, the results show that seawater DOM could increase HCO3--induced photodegradation of SOT, whereas SRNOM mainly behaves as a CO3•- quencher and decreases the removal rate of SOT. The results underscore the role of HCO3- in limiting the persistence of organic pollutants like SOT in sunlit natural waters, and especially in marine and coastal waters.
Collapse
Affiliation(s)
- Jieqiong Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Kai Wang
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Lilan Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing, 400045, PR China
| | - Yuchen Guo
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Zhongyu Guo
- Department of Civil and Environmental Engineering, Tokyo Institute of Technology, Meguro-ku, Tokyo, 152-8552, Japan
| | - Wei Sun
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Zimi Ye
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China
| | - Junfeng Niu
- Research Center for Eco-Environmental Engineering, Dongguan University of Technology, Dongguan 523808, PR China.
| |
Collapse
|
38
|
Voigt M, Bartels I, Schmiemann D, Votel L, Hoffmann-Jacobsen K, Jaeger M. Metoprolol and Its Degradation and Transformation Products Using AOPs-Assessment of Aquatic Ecotoxicity Using QSAR. Molecules 2021; 26:3102. [PMID: 34067394 PMCID: PMC8196942 DOI: 10.3390/molecules26113102] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/17/2021] [Accepted: 05/19/2021] [Indexed: 11/17/2022] Open
Abstract
Pharmaceuticals are found in waterbodies worldwide. Conventional sewage treatment plants are often not able to eliminate these micropollutants. Hence, Advanced Oxidation Processes (AOPs) have been heavily investigated. Here, metoprolol is exposed to UV irradiation, hydrogen peroxide, and ozonation. Degradation was analyzed using chemical kinetics both for initial and secondary products. Photo-induced irradiation enhanced by hydrogen peroxide addition accelerated degradation more than ozonation, leading to complete elimination. Degradation and transformation products were identified by high-performance liquid-chromatography coupled to high-resolution higher-order mass spectrometry. The proposed structures allowed to apply Quantitative Structure-Activity Relationship (QSAR) analysis to predict ecotoxicity. Degradation products were generally associated with a lower ecotoxicological hazard to the aquatic environment according to OECD QSAR toolbox and VEGA. Comparison of potential structural isomers suggested forecasts may become more reliable with larger databases in the future.
Collapse
Affiliation(s)
- Melanie Voigt
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
| | - Indra Bartels
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
- Faculty of Chemistry, University Duisburg-Essen, Universitätsstraße 2, D-45141 Essen, Germany
| | - Dorothee Schmiemann
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
- Faculty of Chemistry, University Duisburg-Essen, Universitätsstraße 2, D-45141 Essen, Germany
| | - Lars Votel
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
| | - Kerstin Hoffmann-Jacobsen
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
| | - Martin Jaeger
- Department of Chemistry and ILOC, Niederrhein University of Applied Sciences, Adlerstraße 32, D-47798 Krefeld, Germany; (M.V.); (I.B.); (D.S.); (L.V.); (K.H.-J.)
| |
Collapse
|
39
|
Yıldırım S, Sellitepe HE. Vortex assisted liquid-liquid microextraction based on in situ formation of a natural deep eutectic solvent by microwave irradiation for the determination of beta-blockers in water samples. J Chromatogr A 2021; 1642:462007. [PMID: 33735640 DOI: 10.1016/j.chroma.2021.462007] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 02/09/2021] [Accepted: 02/15/2021] [Indexed: 11/19/2022]
Abstract
In this study, a simple, green, and reliable method combining vortex-assisted liquid-liquid microextraction based on in situ formation of a novel hydrophobic natural deep eutectic solvent (NADES-VA-LLME) and high-performance liquid chromatography (HPLC) was developed for the determination of metoprolol and propranolol in water samples. The novel NADES was synthesized in situ within only 20 s by subjecting the water sample containing azelaic acid and thymol to microwave irradiation at 50 ˚C. Initial studies indicated that a 17:1 ratio of thymol to azelaic acid yielded the highest response for analytes. The influence of 7 parameters, including NADES volume, salt amount, sample pH, vortex time, centrifugation time, microwave time, and temperature, were screened using a 27-3 fractional factorial design. The obtained significant parameters were optimized by response surface methodology employing a Box-Behnken design. The method displayed satisfactory linearity (r=0.9996) for metoprolol and propranolol with limits of detection of 0.2 and 0.1 µg/L, respectively. The relative standard deviation at 2.5, 40, and 80 µg/L levels was lower than 6%, with accuracy in the range of 90.8-100.2%. Enrichment factors were 147.0 and 144.4 for metoprolol and propranolol, respectively. This study demonstrates that the developed in situ NADES-VA-LLME-HPLC technique can be considered as a fast and environmentally friendly alternative for isolation/preconcentration of β-blockers from water samples.
Collapse
Affiliation(s)
- Sercan Yıldırım
- Department of Analytical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey.
| | - Hasan Erdinç Sellitepe
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
40
|
Puckowski A, Cwięk W, Mioduszewska K, Stepnowski P, Białk-Bielińska A. Sorption of pharmaceuticals on the surface of microplastics. CHEMOSPHERE 2021; 263:127976. [PMID: 32835979 DOI: 10.1016/j.chemosphere.2020.127976] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 07/21/2020] [Accepted: 08/08/2020] [Indexed: 05/22/2023]
Abstract
The presence of both pollutants: microplastics and pharmaceutical residues in various environmental compartments is an issue of increasing concern. Available literature data indicates that microplastics can affect the environmental distribution and transport of e.g. persistent organic pollutants (POPs) through sorption interactions, concentrating them at a given point and thus influencing the environmental risks represented by the sorbent and sorbate pair. Therefore, their potential to change the fate of other contaminants in the environment, such as pharmaceuticals, is worth investigating. The aim of this study was to evaluate the sorption capacity of nine pharmaceuticals, commonly used in human and veterinary medicine, which constitute known ubiquitous water pollutants: enrofloxacin (ENR), ciprofloxacin (CIP), norfloxacin (NOR), 5-fluorouracil (5-FU), methotrexate (MET), flubendazole (FLU), fenbendazole (FEN), propranolol (PRO) and nadolol (NAD), on the surface of the most often identified microscopic plastic particles in the aquatic environment, i.e. polypropylene (PP), low density polyethylene (LD-PE), high density polyethylene (HD-PE) and polyvinyl chloride (PVC). The obtained results suggest a complex nature of sorption, including both hydrophobic and electrostatic interactions. However, since the ionic strength of the medium was found to be a significant factor influencing the sorption potential, minute interactions are observed in conditions common for the natural environment.
Collapse
Affiliation(s)
- Alan Puckowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Weronika Cwięk
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Mioduszewska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
41
|
Valdez-Carrillo M, Abrell L, Ramírez-Hernández J, Reyes-López JA, Carreón-Diazconti C. Pharmaceuticals as emerging contaminants in the aquatic environment of Latin America: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:44863-44891. [PMID: 32986197 DOI: 10.1007/s11356-020-10842-9] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Pharmaceutical active compounds (PhACs) are environmentally ubiquitous around the world, and the countries of Latin America (LATAM) are not the exception; however there is still little knowledge of the magnitude and conditions of their occurrence in LATAM and of the environmental consequences of their presence. The present work reviews 79 documents published from 2007 to 2019 on the occurrence, concentrations, and sources of PhACs and hormones in surface water (SW), wastewater (WW), and treated wastewater (TWW) in LATAM and on the circumstances of their release to the environment. Research efforts are reported in only ten countries and confirm the presence of 159 PhACs, mainly analgesics and anti-inflammatories, although extraordinarily high concentrations of carbamazepine (830 μg/L) and ethinylestradiol (6.8 μg/L) were found in Ecuador and Brazil, respectively. The analysis of maximum concentrations and the ecotoxicological risk assessment corroborate that (1) these values exceed the environmental concentrations found in other parts of the world, (2) the environmental risk posed by these concentrations is remarkably high, and (3) there is no statistically significant difference between the maximum concentrations found in WW and those found in TWW. The main source of PhACs in LATAM's aquatic environment is WW; hence, these countries should direct substantial efforts to develop efficient and cost-effective treatment technologies and plan and apply WW management strategies and regulations. This analysis presents the current states of occurrence, concentrations, and sources of PhACs in the aquatic environment of LATAM and outlines the magnitude of the environmental problem in that part of the world.
Collapse
Affiliation(s)
- Melissa Valdez-Carrillo
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico
| | - Leif Abrell
- Arizona Laboratory for Emerging Contaminants, Departments of Soil, Water & Environmental Science and Chemistry & Biochemistry, University of Arizona, 1040 E. 4th St., Room 606/611, Tucson, AZ, 85721, USA
| | - Jorge Ramírez-Hernández
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico
| | - Jaime A Reyes-López
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico
| | - Concepción Carreón-Diazconti
- Universidad Autonoma de Baja California, Instituto de Ingeniería, Calle de la Normal y Blvd. Benito Juarez s/n, Col. Insurgentes Sur, 21377, Mexicali, BC, Mexico.
| |
Collapse
|
42
|
Yi M, Sheng Q, Sui Q, Lu H. β-blockers in the environment: Distribution, transformation, and ecotoxicity. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 266:115269. [PMID: 32836046 DOI: 10.1016/j.envpol.2020.115269] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/30/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
β-blockers are a class of medications widely used to treat cardiovascular disorders, including abnormal heart rhythms, high blood pressure, and angina pectoris. The prevalence of β-blockers has generated a widespread concern on their potential chronic toxicity on aquatic organisms, highlighting the necessity of comprehensive studies on their environmental distribution, fate, and toxicity. This review summarizes the up-to-date knowledge on the source, global distribution, analytical methods, transformation, and toxicity of β-blockers. Twelve β-blockers have been detected in various environmental matrices, displaying significant temporal and spatial variations. β-blockers can be reduced by 0-99% at wastewater treatment plants, where secondary processes contribute to the majority of removal. Advanced oxidation processes, e.g., photocatalysis and combined UV/persulfate can transform β-blockers more rapidly and completely than conventional wastewater treatment processes, but the transformation products could be more toxic than the parent compounds. Propranolol, especially its (S)-enantiomer, exhibits the highest toxicity among all β-blockers. Future research towards improved detection methods, more efficient and cost-effective removal techniques, and more accurate toxicity assessment is needed to prioritize β-blockers for environmental monitoring and control worldwide.
Collapse
Affiliation(s)
- Ming Yi
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qi Sheng
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qian Sui
- State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, East China University of Science and Technology, Shanghai, 200237, China
| | - Huijie Lu
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
43
|
Khan HK, Rehman MYA, Malik RN. Fate and toxicity of pharmaceuticals in water environment: An insight on their occurrence in South Asia. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 271:111030. [PMID: 32778310 DOI: 10.1016/j.jenvman.2020.111030] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 06/12/2020] [Accepted: 06/28/2020] [Indexed: 05/05/2023]
Abstract
Pharmaceutically active compounds are newly recognized micropollutants which are ubiquitous in aquatic environment mainly due to direct discharge of treated and untreated wastewater from wastewater treatment plants. These contaminants have attracted mounted attention due to their toxic effects on aquatic life. They disrupt biological processes in non-target lower organisms upon exposure. Biodegradation, photo-degradation, and sorption are key processes which determine their fate in the environment. A variety of conventional and advanced treatment processes had been extensively investigated for the removal of pharmaceuticals from wastewater. However, due to structural complexity and varying operating parameters, complete removal seems ideal. Generally, due to high energy requirement of advanced treatment technology, it is considered cost ineffective. Transport of pharmaceutical compounds occurs via aquatic channels whereas sediments and aquatic colloids play a significant role as sinks for these contaminants. The current review provides a critical understanding of fate and toxicity of pharmaceutical compounds and highlights their vulnerability and occurrence in South Asia. Antibiotics, analgesics, and psychiatric drugs were found predominantly in the water environment of South Asian regions. Despite significant advances in understanding pharmaceuticals fate, toxicity, and associated risks since the 1990s, still substantial data gaps in terms of monitoring, human health risks, and legislation exist which presses the need to develop a more in-depth and interdisciplinary understanding of the subject.
Collapse
Affiliation(s)
- Hudda Khaleeq Khan
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Muhammad Yasir Abdur Rehman
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Riffat Naseem Malik
- Environmental Health Laboratory, Department of Environmental Sciences, Quaid-i-Azam University, Islamabad, Pakistan.
| |
Collapse
|
44
|
Grabarczyk Ł, Mulkiewicz E, Stolte S, Puckowski A, Pazda M, Stepnowski P, Białk-Bielińska A. Ecotoxicity screening evaluation of selected pharmaceuticals and their transformation products towards various organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:26103-26114. [PMID: 32358747 PMCID: PMC7332481 DOI: 10.1007/s11356-020-08881-3] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 04/13/2020] [Indexed: 05/20/2023]
Abstract
The intensive development of medical science has led to an increase in the availability and use of pharmaceutical products. However, nowadays, most of scientific attention has been paid to the native forms of pharmaceuticals, while the transformation products (TPs) of these substances, understood herein as metabolites, degradation products, and selected enantiomers, remain largely unexplored in terms of their characterization, presence, fate and effects within the natural environment. Therefore, the main aim of this study was to evaluate the toxicity of seven native compounds belonging to different therapeutic groups (non-steroidal anti-inflammatory drugs, opioid analgesics, beta-blockers, antibacterial and anti-epileptic drugs), along with the toxicity of their 13 most important TPs. For this purpose, an ecotoxicological test battery, consisting of five organisms of different biological organization was used. The obtained data shows that, in general, the toxicity of TPs to the tested organisms was similar or lower compared to their parent compounds. However, for example, significantly higher toxicity of the R form of ibuprofen to algae and duckweed, as well as a higher toxicity of the R form of naproxen to luminescent bacteria, was observed, proving that the risk associated with the presence of drug TPs in the environment should not be neglected.
Collapse
Affiliation(s)
- Łukasz Grabarczyk
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Ewa Mulkiewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Stefan Stolte
- Institute of Water Chemistry, Technische Universität Dresden, 01062, Dresden, Germany
| | - Alan Puckowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Magdalena Pazda
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Piotr Stepnowski
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Anna Białk-Bielińska
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, ul. Wita Stwosza 63, 80-308, Gdańsk, Poland
| |
Collapse
|
45
|
Xiong R, Lu Z, Tang Q, Huang X, Ruan H, Jiang W, Chen Y, Liu Z, Kang J, Liu D. UV-LED/chlorine degradation of propranolol in water: Degradation pathway and product toxicity. CHEMOSPHERE 2020; 248:125957. [PMID: 32006829 DOI: 10.1016/j.chemosphere.2020.125957] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Revised: 01/16/2020] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
This study reports on the propranolol (PRO) degradation performance and product toxicity of an ultraviolet light-emitting diode (UV-LED)/chlorine process. The effects of experimental parameters including solution pH, chlorine dosage, and water matrix constituents on PRO removal were evaluated. Up to 94.5% of PRO could be eliminated within 15 min at a PRO-to-chlorine molar ratio of 1:4. The overall removal efficiency of PRO was non-pH dependent in the range of 5-9, while the initial rate was accelerated under alkaline conditions. The presence of Cl-/HCO3- had little influence on the PRO degradation, whereas either humic acid or NO3- had an obvious inhibitory effect. Radical scavenger experiments showed that both HO and Cl primarily contributed to the PRO degradation, and electron paramagnetic resonance data demonstrated the generation of 1O2. The transformation of PRO during this process led to five detected products, which exhibited a higher acute toxicity than the parent compound according to the bright luminescent bacillus T3 method. It is worth mentioning that under the same ultraviolet illumination intensity, the degradation of PRO under UV-LED/chlorine gave a better performance than UV254/chlorine, but the EEO of the former is obviously higher than the latter. So further research is required on improving the electric current to photon conversion efficiency for UV-LED. Additionally, the UV-LED/chlorine system was effective in the degradation of other drugs including sulfamethoxazole, oxytetracycline hydrochloride, and gatifloxacin, suggesting the possible application of the UV-LED/chlorine process for the removal of pharmaceuticals during wastewater treatment.
Collapse
Affiliation(s)
- Ruihan Xiong
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Zhuojun Lu
- Central and Southem China Municipal Engineering Design & Research Institute Co., Ltd, Wuhan, Hubei, 430010, PR China
| | - Qian Tang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Xueling Huang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Huazhen Ruan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Wei Jiang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China.
| | - Yiqun Chen
- School of Engineering, Wuhan University, Wuhan, 430072, PR China
| | - Zizheng Liu
- School of Engineering, Wuhan University, Wuhan, 430072, PR China
| | - Jianxiong Kang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China
| | - Dongqi Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, No. 1037 Luoyu Road, Wuhan, 430074, PR China
| |
Collapse
|
46
|
Wang J, Wang K, Guo Y, Niu J. Photochemical degradation of nebivolol in different natural organic matter solutions under simulated sunlight irradiation: Kinetics, mechanism and degradation pathway. WATER RESEARCH 2020; 173:115524. [PMID: 32006808 DOI: 10.1016/j.watres.2020.115524] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/17/2020] [Accepted: 01/18/2020] [Indexed: 06/10/2023]
Abstract
Nebivolol (NEB) is widely used for the treatment of hypertension and chronic heart failure and has become an ubiquitous emerging organic pollutant. It has been shown to undergo direct photolysis, but the role of DOM in its degradation kinetics and mechanism is not well understood. In this study, we studied the photochemical behavior of NEB in the presence of seawater DOM (SW-DOM) and freshwater DOM (SRNOM) under simulated sunlight irradiation. SW-DOM had a promotion effect on NEB photodegradation, whereas SRNOM retarded its photolytic transformation. After eliminating the influence of light screening, we found that the indirect photodegradation rate of NEB in the presence of SRNOM was lower than that in the presence of SW-DOM. Results show that the indirect photodegradation pathway occurred by reaction with triplet-excited DOM (3DOM*). The second-order rate constants for 3SW-DOM* and 3SRNOM* reaction with NEB are 3.7 × 109 M-1 s-1 and 3.7 × 108 M-1 s-1, respectively. The electron donating capacity of SRNOM is higher than that of SW-DOM, indicating that SRNOM may contain more activated phenolic moieties. SRNOM may thus have higher antioxidant activity, leading a higher inhibitory effect on NEB photodegradation. A total of six degradation products were identified in the absence and presence of DOM by HPLC-ESI-MS/MS. The substitution of F by OH-groups and further oxidation a OH-group in the lateral chain to a ketone, and cleavage of N-C bond by the attack of 3DOM* are here proposed as the main degradation pathways.
Collapse
Affiliation(s)
- Jieqiong Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Kai Wang
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Yuchen Guo
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China
| | - Junfeng Niu
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan, 523808, PR China.
| |
Collapse
|
47
|
Godoy AA, Domingues I, de Carvalho LB, Oliveira ÁC, de Jesus Azevedo CC, Taparo JM, Assano PK, Mori V, de Almeida Vergara Hidalgo V, Nogueira AJA, Kummrow F. Assessment of the ecotoxicity of the pharmaceuticals bisoprolol, sotalol, and ranitidine using standard and behavioral endpoints. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:5469-5481. [PMID: 31853849 DOI: 10.1007/s11356-019-07322-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
The pharmaceuticals bisoprolol (BIS), sotalol (SOT), and ranitidine (RAN) are among the most consumed pharmaceuticals worldwide and are frequently detected in different aquatic ecosystems. However, very few ecotoxicity data are available in the literature for them. To help fill these data gaps, toxicity tests with the algae Raphidocelis subcapitata, the macrophyte Lemna minor, the cnidarian Hydra attenuata, the crustacean Daphnia similis, and the fish Danio rerio were performed for assessing the ecotoxicity of these pharmaceuticals. Standard, as well as non-standard endpoint, was evaluated, including the locomotor behavior of D. rerio larvae. Results obtained for SOT and RAN showed that acute adverse effects are not expected to occur on aquatic organisms at the concentrations at which these pharmaceuticals are usually found in fresh surface waters. On the other hand, BIS was classified as hazardous to the environment in the acute III category. Locomotor behavior of D. rerio larvae was not affected by BIS and RAN. A disturbance on the total swimming distance at the dark cycle was observed only for larvae exposed to the highest test concentration of 500 mg L-1 of SOT. D. similis reproduction was affected by BIS with an EC10 of 3.6 (0.1-34.0) mg L-1. A risk quotient (RQ) of 0.04 was calculated for BIS in fresh surface water, considering a worst-case scenario. To the best of our knowledge, this study presents the first chronic toxicity data with BIS on non-target organisms.
Collapse
Affiliation(s)
- Aline Andrade Godoy
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil
- Science and Technology Institute, Federal University of Alfenas (Unifal-MG), Rodovia José Aurélio Vilela, 11,999, Poços de Caldas, MG, 37715-400, Brazil
| | - Inês Domingues
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Luciano Bastos de Carvalho
- Faculty of Economics, Administration and Accounting at Ribeirão Preto, University of São Paulo (USP), Avenida Bandeirantes, 3900, Ribeirão Preto, SP, 14040-905, Brazil
- Federal Institute of Education, Science and Technology of Espírito Santo (IFES) Campus Barra de São Francisco, Rua Herculano Fernandes de Jesus, 111-Irmãos Fernandes, Barra de São Francisco, ES, 29800-000, Brazil
| | - Ádria Caloto Oliveira
- School of Technology, State University of Campinas (Unicamp), Rua Paschoal Marmo, 1888-Jardim Esmeralda, Limeira, SP, 13484-461, Brazil
| | - Carina Cristina de Jesus Azevedo
- School of Technology, State University of Campinas (Unicamp), Rua Paschoal Marmo, 1888-Jardim Esmeralda, Limeira, SP, 13484-461, Brazil
| | - Jeniffer Marins Taparo
- School of Technology, State University of Campinas (Unicamp), Rua Paschoal Marmo, 1888-Jardim Esmeralda, Limeira, SP, 13484-461, Brazil
| | - Patrícia Kushim Assano
- School of Technology, State University of Campinas (Unicamp), Rua Paschoal Marmo, 1888-Jardim Esmeralda, Limeira, SP, 13484-461, Brazil
| | - Vivien Mori
- School of Technology, State University of Campinas (Unicamp), Rua Paschoal Marmo, 1888-Jardim Esmeralda, Limeira, SP, 13484-461, Brazil
| | | | | | - Fábio Kummrow
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil.
- Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), Rua São Nicolau, 210, Diadema, SP, 09972-270, Brazil.
| |
Collapse
|
48
|
Surface-Bound Humic Acid Increased Propranolol Sorption on Fe 3O 4/Attapulgite Magnetic Nanoparticles. NANOMATERIALS 2020; 10:nano10020205. [PMID: 31991558 PMCID: PMC7074867 DOI: 10.3390/nano10020205] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/20/2022]
Abstract
This study explored the feasibility of utilizing a novel sorbent humic acid (HA) coated Fe3O4/attapulgite (MATP) magnetic nanoparticles (HMATP) for the sorption of propranolol from aqueous solutions. MATP and bare Fe3O4 nanoparticles were also synthesized under similar preparation conditions. The FTIR, Zeta potential, XRD, VSM, TEM, and TGA analyses were conducted to characterize the sorbent materials. The effects of pH, sorbent dosage, ionic strength, HA in the aqueous solution, contact time and initial sorbate concentration on sorption of propranolol were investigated using batch sorption experiments. The results suggested that the sorption capacity of HMATP showed little change from pH 4 to 10. Na+ and Ca2+ slightly inhibited the sorption of propranolol on HMATP. While HA in solution enhanced both MATP and HMATP, which indicated that HMATP can resist HA interference in water. Further, the less leaching amounts of Fe and HA suggested a good stability of HMATP. In all conditions, sorption capacity of propranolol on HMATP was obviously higher than that on MATP, which indicated that surface-coated HA played an important role in the propranolol sorption process. Electrostatic interaction, cation exchange, hydrogen bonding, and π–π electron donor acceptor interactions were considered as the sorption mechanisms.
Collapse
|
49
|
Godoy AA, Oliveira ÁCD, Silva JGM, Azevedo CCDJ, Domingues I, Nogueira AJA, Kummrow F. Single and mixture toxicity of four pharmaceuticals of environmental concern to aquatic organisms, including a behavioral assessment. CHEMOSPHERE 2019; 235:373-382. [PMID: 31271997 DOI: 10.1016/j.chemosphere.2019.06.200] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/25/2019] [Accepted: 06/26/2019] [Indexed: 05/25/2023]
Abstract
Pharmaceuticals are frequently detected in aquatic environments as mixtures and can cause toxic effects to non-target organisms. We aimed to evaluate the single and mixture effects of the pharmaceuticals metformin, bisoprolol, ranitidine and sotalol using Daphnia similis and Danio rerio. In addition, we aimed to test the predictive accuracy of the mathematical models concentration addition and independent action and to evaluate the nature of the possible toxicological interactions among these pharmaceuticals using the combination index-isobologram model. The acute toxicity of these four pharmaceuticals individually and of their binary mixtures were evaluated using the D. similis tests. Developmental and behavioral effects induced by the pharmaceuticals in quaternary mixtures were evaluated using D. rerio embryos. We observed that most of the binary mixture effects were in the zone between the effects predicted by the concentration addition and the independent action model. The combination index-isobologram model showed to be adequate to describe the nature of possible interactions occurring between the combined pharmaceuticals. Developmental and behavioral acute adverse effects seem not to be induced by the joint action of the quaternary mixture of the evaluated pharmaceuticals on D. rerio embryos, at the concentrations at which they are usually found in surface fresh waters. However, from the results obtained with D. similis, we can conclude that assessing the ecological risk based on the effects of individual pharmaceuticals can underestimate the risk level posed by these environmental contaminants.
Collapse
Affiliation(s)
- Aline Andrade Godoy
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil; Science and Technology Institute, Federal University of Alfenas (Unifal-MG), Rodovia José Aurélio Vilela, 11,999, Poços de Caldas, MG, 37715-400, Brazil
| | - Ádria Caloto de Oliveira
- Faculty of Technology, State University of Campinas (Unicamp), Rua Paschoal Marmo, 1888, Limeira, SP, 13484-332, Brazil
| | - João Gabriel Mesquita Silva
- Faculty of Technology, State University of Campinas (Unicamp), Rua Paschoal Marmo, 1888, Limeira, SP, 13484-332, Brazil
| | | | - Inês Domingues
- Department of Biology & CESAM, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | | | - Fábio Kummrow
- Department of Clinical and Toxicological Analyses, Faculty of Pharmaceutical Sciences, University of São Paulo (USP), Avenida Professor Lineu Prestes, 580, São Paulo, SP, 05508-000, Brazil; Department of Pharmaceutical Sciences, Institute of Environmental, Chemical and Pharmaceutical Sciences, Federal University of São Paulo (Unifesp), Rua São Nicolau, 210, 09972-270, Diadema, SP, Brazil.
| |
Collapse
|
50
|
Deng Y, Li Y, Nie W, Gao X, Liu S, Tan X, Chen M, Hou D. New Insights into the Interaction between Graphene Oxide and Beta-Blockers. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:E1429. [PMID: 31600918 PMCID: PMC6835990 DOI: 10.3390/nano9101429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 08/24/2019] [Accepted: 09/27/2019] [Indexed: 01/16/2023]
Abstract
As a nano-adsorbent, magnetic graphene oxide (GO/Fe3O4) was synthesized to potentially adsorb propranolol (PRO) from water. The synthetic material was characterized by SEM, TEM, VSM, FTIR, XRD, zeta potential, and XPS. The environmental factors, such as pH, humic acid concentration, PRO concentration, and contact time, were investigated regarding their effect on the adsorption process. The kinetics data fitted the pseudo first-order and second-order kinetics equations. The Langmuir equation, the Freundlich equation, and the Sips equation were used to analyze the adsorption isotherms. Electrostatic attraction, hydrogen bonding, and the π-π interaction all contributed to the adsorption process of PRO onto GO/Fe3O4. The discovery of this study emphasized the feasibility of GO/Fe3O4 removal of PRO and expanded the scope of the application of GO.
Collapse
Affiliation(s)
- Yuehua Deng
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Yani Li
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Wenjie Nie
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Xiang Gao
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Shentan Liu
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| | - Xiaochun Tan
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Mingming Chen
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
| | - Dongzhuang Hou
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an 710054, China.
- Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation, Xi'an 710054, China.
| |
Collapse
|