1
|
Wang Y, Li X, Yang H, Wu Y, Pu Q, He W, Li X. A review of tire wear particles: Occurrence, adverse effects, and control strategies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116782. [PMID: 39059345 DOI: 10.1016/j.ecoenv.2024.116782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 06/16/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Tire wear particles (TWPs), common mixed particulate emerging contaminants in the environment, have global per capita emissions accounting for 0.23-1.9 kg/year, attracting global attention recently due to their wide detection, small size, mobility, and high toxicity. This review focuses on the occurrence characteristics of TWPs in multiple environmental media, adverse effects on organisms, potential toxicity mechanisms, and environmental risk prevention and control strategies of TWPs. The environmental fate of TWPs throughout the entire process is systematically investigated by the bibliometric analysis function of CiteSpace. This review supplements the gap in the joint toxicity and related toxicity mechanisms of TWPs with other environmental pollutants. Based on the risks review of TWPs and their additives, adverse impacts have been found in organisms from aquatic environments, soil, and humans, such as the growth inhibition effect on Chironomus dilutes. A multi-faceted and rationalized prevention and control treatment of "source-process-end" for the whole process can be achieved by regulating the use of studded tires, improving the tire additive formula, growing plants roadside, encouraging micro-degradation, and other methods, which are first reviewed. By addressing the current knowledge gaps and exploring prospects, this study contributes to developing strategies for reducing risks and assessing the fate of TWPs in multiple environmental media.
Collapse
Affiliation(s)
- Yu Wang
- School of Life Science, Zhuhai College of Science and Technology, Zhuhai 519041, China.
| | - Xinao Li
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Hao Yang
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Yang Wu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Qikun Pu
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Wei He
- College of Environmental Science and Engineering, North China Electric Power University, Beijing 102206, China.
| | - Xixi Li
- State Environmental Protection Key Laboratory of Ecological Effect and Risk Assessment of Chemicals, State Key Laboratory of Environmental Criteria and Risk Assessment, State Environmental Protection Key Laboratory for Lake Pollution Control, National Engineering Laboratory for Lake Pollution Control and Ecological Restoration, Chinese Research Academy of Environmental Sciences, Beijing 100012, China; Northern Region Persistent Organic Pollution Control (NRPOP) Laboratory, Faculty of Engineering and Applied Science, Memorial University, St. John's A1B 3X5, Canada.
| |
Collapse
|
2
|
Chang J, Huang R, Zhang Z, Pan Y, Ma Z, Wan B, Wang H. A ubiquitous tire rubber additive induced serious eye injury in zebrafish (Danio rerio). JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134461. [PMID: 38696959 DOI: 10.1016/j.jhazmat.2024.134461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/12/2024] [Accepted: 04/26/2024] [Indexed: 05/04/2024]
Abstract
Previous studies have indicated that tire wear particles (TWPs) leachate exposure induced serious eye injury in fish through inhibiting the thyroid peroxidase (TPO) enzyme activity. However, the main TPO inhibitors in the leachate were still unknown. In this study, we identified 2-Mercaptobenzothiazole (MBT) as the potential TPO inhibitor in the TWPs leachate through references search, model prediction based on Danish QSAR and ToxCast database, molecular docking, and in vivo assay. We further explored the toxic mechanism of MBT under environmentally relevant concentrations. The decreased eye size of zebrafish larvae was mainly caused by the decreased lens diameter and cell density in the inner nuclear layer (INL) and outer nuclear layer (ONL) of the retina. Transcriptomics analysis demonstrated that the eye phototransduction function was significantly suppressed by inhibiting the photoreceptor cell proliferation process after MBT exposure. The altered opsin gene expression and decreased opsin protein levels were induced by weakening thyroid hormone signaling after MBT treatment. These results were comparable to those obtained from a known TPO inhibitor, methimazole. This study has identified MBT as the primary TPO inhibitor responsible for inducing eye impairment in zebrafish larvae exposed to TWPs leachate. It is crucial for reducing the toxicity of TWPs leachate in fish.
Collapse
Affiliation(s)
- Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Rui Huang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Zhaoguang Zhang
- North China Electric Power University, Beinong RD 2, Beijing 102206, China
| | - Yunrui Pan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Zheng Ma
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Bin Wan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Huili Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China.
| |
Collapse
|
3
|
Mayer PM, Moran KD, Miller EL, Brander SM, Harper S, Garcia-Jaramillo M, Carrasco-Navarro V, Ho KT, Burgess RM, Thornton Hampton LM, Granek EF, McCauley M, McIntyre JK, Kolodziej EP, Hu X, Williams AJ, Beckingham BA, Jackson ME, Sanders-Smith RD, Fender CL, King GA, Bollman M, Kaushal SS, Cunningham BE, Hutton SJ, Lang J, Goss HV, Siddiqui S, Sutton R, Lin D, Mendez M. Where the rubber meets the road: Emerging environmental impacts of tire wear particles and their chemical cocktails. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:171153. [PMID: 38460683 PMCID: PMC11214769 DOI: 10.1016/j.scitotenv.2024.171153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 02/18/2024] [Accepted: 02/19/2024] [Indexed: 03/11/2024]
Abstract
About 3 billion new tires are produced each year and about 800 million tires become waste annually. Global dependence upon tires produced from natural rubber and petroleum-based compounds represents a persistent and complex environmental problem with only partial and often-times, ineffective solutions. Tire emissions may be in the form of whole tires, tire particles, and chemical compounds, each of which is transported through various atmospheric, terrestrial, and aquatic routes in the natural and built environments. Production and use of tires generates multiple heavy metals, plastics, PAH's, and other compounds that can be toxic alone or as chemical cocktails. Used tires require storage space, are energy intensive to recycle, and generally have few post-wear uses that are not also potential sources of pollutants (e.g., crumb rubber, pavements, burning). Tire particles emitted during use are a major component of microplastics in urban runoff and a source of unique and highly potent toxic substances. Thus, tires represent a ubiquitous and complex pollutant that requires a comprehensive examination to develop effective management and remediation. We approach the issue of tire pollution holistically by examining the life cycle of tires across production, emissions, recycling, and disposal. In this paper, we synthesize recent research and data about the environmental and human health risks associated with the production, use, and disposal of tires and discuss gaps in our knowledge about fate and transport, as well as the toxicology of tire particles and chemical leachates. We examine potential management and remediation approaches for addressing exposure risks across the life cycle of tires. We consider tires as pollutants across three levels: tires in their whole state, as particulates, and as a mixture of chemical cocktails. Finally, we discuss information gaps in our understanding of tires as a pollutant and outline key questions to improve our knowledge and ability to manage and remediate tire pollution.
Collapse
Affiliation(s)
- Paul M Mayer
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR 97333, United States of America.
| | - Kelly D Moran
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Ezra L Miller
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Susanne M Brander
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR 97333, United States of America.
| | - Manuel Garcia-Jaramillo
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Victor Carrasco-Navarro
- Department of Environmental and Biological Sciences, University of Eastern Finland, Kuopio Campus, Yliopistonranta 1 E, 70211 Kuopio, Finland.
| | - Kay T Ho
- US Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, United States of America.
| | - Robert M Burgess
- US Environmental Protection Agency, ORD/CEMM Atlantic Coastal Environmental Sciences Division, Narragansett, RI 02882, United States of America.
| | - Leah M Thornton Hampton
- Southern California Coastal Water Research Project, 3535 Harbor Blvd, Suite 110, Costa Mesa, CA 92626, United States of America.
| | - Elise F Granek
- Environmental Science & Management, Portland State University, Portland, OR 97201, United States of America.
| | - Margaret McCauley
- US Environmental Protection Agency, Region 10, Seattle, WA 98101, United States of America.
| | - Jenifer K McIntyre
- School of the Environment, Washington State University, Puyallup Research & Extension Center, Washington Stormwater Center, 2606 W Pioneer Ave, Puyallup, WA 98371, United States of America.
| | - Edward P Kolodziej
- Interdisciplinary Arts and Sciences (UW Tacoma), Civil and Environmental Engineering (UW Seattle), Center for Urban Waters, University of Washington, Tacoma, WA 98402, United States of America.
| | - Ximin Hu
- Civil and Environmental Engineering (UW Seattle), University of Washington, Seattle, WA 98195, United States of America.
| | - Antony J Williams
- US Environmental Protection Agency, Center for Computational Toxicology and Exposure, Chemical Characterization and Exposure Division, Computational Chemistry & Cheminformatics Branch, 109 T.W. Alexander Drive, Research Triangle Park, NC 27711, United States of America.
| | - Barbara A Beckingham
- Department of Geology & Environmental Geosciences, College of Charleston, Charleston, SC, 66 George Street Charleston, SC 29424, United States of America.
| | - Miranda E Jackson
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Rhea D Sanders-Smith
- Washington State Department of Ecology, 300 Desmond Drive SE, Lacey, WA 98503, United States of America.
| | - Chloe L Fender
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97331, United States of America.
| | - George A King
- CSS, Inc., 200 SW 35th St, Corvallis, OR 97333, United States of America.
| | - Michael Bollman
- US Environmental Protection Agency, Office of Research and Development, Center for Public Health and Environmental Assessment, Pacific Ecological Systems Division, Corvallis, OR 97333, United States of America.
| | - Sujay S Kaushal
- Department of Geology and Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD 20740, United States of America.
| | - Brittany E Cunningham
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR 97333, United States of America.
| | - Sara J Hutton
- GSI Environmental, Inc., Olympia, Washington 98502, USA.
| | - Jackelyn Lang
- Department of Anatomy, Physiology, and Cell Biology, Department of Medicine and Epidemiology and the Karen C. Drayer Wildlife Health Center, University of California, Davis School of Veterinary Medicine, Davis, CA 95616, United States of America.
| | - Heather V Goss
- US Environmental Protection Agency, Office of Water, Office of Wastewater Management, Washington, DC 20004, United States of America.
| | - Samreen Siddiqui
- Department of Fisheries, Wildlife, and Conservation Sciences, Coastal Oregon Marine Experiment Station, Oregon State University, Corvallis, OR 97331, United States of America.
| | - Rebecca Sutton
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Diana Lin
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| | - Miguel Mendez
- San Francisco Estuary Institute, 4911 Central Ave, Richmond, CA 94804, United States of America.
| |
Collapse
|
4
|
Mitchell CJ, Jayakaran AD. Mitigating tire wear particles and tire additive chemicals in stormwater with permeable pavements. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168236. [PMID: 37939940 DOI: 10.1016/j.scitotenv.2023.168236] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 10/10/2023] [Accepted: 10/29/2023] [Indexed: 11/10/2023]
Abstract
6PPD-quinone (6PPDQ) is a recently discovered chemical that is acutely toxic to coho salmon (Oncorhynchus kisutch) and can form via environmental exposure of 6PPD, a compound found extensively in tire wear particles (TWPs). TWPs deposited on roads are transported to aquatic ecosystems via stormwater, contributing to microplastic pollution and organic contaminant loads. However, little is known about the fate of TWPs and their leachable contaminants in these systems. We conducted three experiments at a high school in Tacoma, Washington, to quantify the treatment performance of permeable pavement (PP) formulations, a type of green stormwater infrastructure (GSI), for TWPs and ten tire-associated contaminants, including 6PPDQ. The PPs comprised concrete and asphalt, with and without cured carbon fibers, to improve the mechanical properties of PPs. Pavements were artificially dosed and had underdrains to capture effluent. Three experiments were conducted to evaluate PP mitigation of tire-associated pollution using cryomilled tire particles (cTPs). The 1st and 3rd experiments established a baseline for TWPs and contaminants and assessed the potential for continued pollutant release. During experiment 2, cTPs were applied to each pavement. Our results showed that the PPs attenuated >96 % of the deposited cTPs mass. An estimated 52-100 % of potentially leachable 6PPDQ was removed by the PP systems between the influent and effluent sampling stations. Background 6PPDQ concentrations in effluents ranged from 0 to 0.0029 μg/L. Effluent 6PPDQ concentrations were not explained by effluent TWP concentrations in experiments 1 or 2 but were significantly correlated in experiment 3, suggesting that leaching of 6PPDQ from TWPs retained in the pavement was minimal during a subsequent storm. Our results suggest that PPs may be an effective form of GSI for mitigating tire-associated stormwater pollution. The improved strength offered by cured carbon fiber-amended pavements extends PP deployment on high-traffic roadways where tire-associated pollution poses the greatest environmental risk.
Collapse
Affiliation(s)
- Chelsea J Mitchell
- School of the Environment, Puyallup Research and Extension Center, Washington State University, 2606 W Pioneer Ave, Puyallup, WA 98371, USA
| | - Anand D Jayakaran
- Extension and Washington Stormwater Center, Puyallup Research and Extension Center, Washington State University, 2606 W Pioneer Ave, Puyallup, WA 98371, USA.
| |
Collapse
|
5
|
McIntyre JK, Spromberg J, Cameron J, Incardona JP, Davis JW, Scholz NL. Bioretention filtration prevents acute mortality and reduces chronic toxicity for early life stage coho salmon (Oncorhynchus kisutch) episodically exposed to urban stormwater runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:165759. [PMID: 37495136 DOI: 10.1016/j.scitotenv.2023.165759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/10/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
As the human population of western North America continues to expand, widespread patterns of urban growth pose increasingly existential threats to certain wild stocks of Pacific salmon and steelhead (Oncorhynchus sp.). Rainfall previously absorbed into the soils of forests and grasslands falls instead on pavement and other hardened surfaces. This creates stormwater runoff that carries toxic metals, oil, and many other contaminants into salmon-bearing habitats. These include freshwater streams where coho salmon (O. kisutch) spawn in gravel beds. Coho salmon embryos develop within a thick eggshell (chorion) for weeks to months before hatching as alevins and ultimately emerging from the gravel as fry. Untreated urban runoff is highly toxic to older coho salmon (freshwater-resident juveniles and adult spawners), but the vulnerability of the earliest life stages remains poorly understood. To address this uncertainty, we fertilized eggs and raised them under an episodic stormwater exposure regimen, using runoff collected from a high-traffic arterial roadway from 15 discrete storm events. We monitored survival and morphological development, as well as molecular markers for contaminant exposure and cardiovascular stress. We also evaluated the benefit of treating runoff with green infrastructure (bioretention filtration) on coho salmon health and survival. Untreated runoff caused subtle sublethal toxicity in pre-hatch embryos with no mortality, followed by high rates of mortality from exposure at hatch. Bioretention filtration removed most measured contaminants (bacteria, dissolved metals, and polycyclic aromatic hydrocarbons), and the treated effluent was considerably less toxic - notably preventing mortality at the alevin stage. Our findings indicate that untreated urban runoff poses an important threat to early life stage coho salmon, in terms of both acute and delayed-in-time mortality. Moreover, while inexpensive management strategies involving bioinfiltration are promising, future green infrastructure effectiveness research should emphasize sublethal metrics for contaminant exposure and adverse health outcomes in salmonids.
Collapse
Affiliation(s)
- Jenifer K McIntyre
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W Pioneer Ave, Puyallup, WA 98371, USA.
| | - Julann Spromberg
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - James Cameron
- Saltwater Inc, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - John P Incardona
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Jay W Davis
- United States Fish and Wildlife Service, Environmental Contaminants Program, 510 Desmond Dr. SE, Lacey, WA 98503, USA
| | - Nathaniel L Scholz
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
6
|
Alves RN, Mariz CF, de Melo Alves MK, da Silva ASX, Zanardi-Lamardo E, Carvalho PSM. Zebrafish as a biological model for assessing water quality along tropical hydrographic river basins in Northeast Brazil. ECOTOXICOLOGY (LONDON, ENGLAND) 2023; 32:908-925. [PMID: 37726560 DOI: 10.1007/s10646-023-02695-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/24/2023] [Indexed: 09/21/2023]
Abstract
Tropical rivers are the main destinations for tailings from urban, industrial and agricultural activities in the region studied. The present study aimed to investigate if early stages of zebrafish (Danio rerio) development is a viable biological model to assess the toxicity of surface waters of tropical rivers, and whether that toxicity could be correlated to standard water quality indexes. Embryos were exposed to samples from 55 sites from 10 hydrographic basins of rivers in Pernambuco State, northeastern Brazil. Lethality rates, sublethal toxicity based on the general morphology score (GMS) and frequencies of abnormalities were analyzed. Significant mortality was observed in samples of 7 basins. The GMS indicated significant delay in embryo-larval development in 50% of the samples. The highest toxicity was detected in basins within Recife metropolitan area, where 61% of the samples caused sublethal toxicity. Most frequent developmental abnormalities included non-inflation of the swim bladder, delayed hatching and blood stasis. The highest frequencies of blood stasis were detected in samples with highest NH3 concentrations, corroborated by a positive correlation suggesting the existence of a causal relationship. A significant correlation was detected between water quality indexes and GMS with a greater toxic effect being observed in samples collected in areas of greater urban density and greater contamination by domestic sewage. This study demonstrates that the early stages of the zebrafish is a viable ecotoxicological model to assess the toxicity of surface waters and can contribute to a better understanding between the chemical composition and the adverse effects suffered by fish early life stage fish in tropical rivers.
Collapse
Affiliation(s)
- Romulo Nepomuceno Alves
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, 50670-920, Brazil
| | - Célio Freire Mariz
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, 50670-920, Brazil
| | - Maria Karolaine de Melo Alves
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, 50670-920, Brazil
| | | | - Eliete Zanardi-Lamardo
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR), Departamento de Oceanografia, Centro de Tecnologia e Geociências, Universidade Federal de Pernambuco, Recife, 50740-550, Brazil
| | - Paulo S M Carvalho
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Universidade Federal de Pernambuco, Recife, 50670-920, Brazil.
| |
Collapse
|
7
|
Chang J, Jiao M, Zhang Z, Liu W, Li W, Xu P, Wan B. Mechanistic insight into the adverse outcome of tire wear and road particle leachate exposure in zebrafish (Danio rerio) larvae. ENVIRONMENT INTERNATIONAL 2023; 178:108053. [PMID: 37356306 DOI: 10.1016/j.envint.2023.108053] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 05/15/2023] [Accepted: 06/17/2023] [Indexed: 06/27/2023]
Abstract
Tire wear particles (TWP) have become the major microplastic pollution in China. Road runoff containing TWP leachate can decrease the eye size and even induced mortality in the aquatic organisms. However, the toxic mechanism of TWP and road particles (RP) leachate on aquatic organisms is still unclear. In this study, the zebrafish embryos were exposed to TWP or RP leachate for 5 days at both environmental relevant and high concentrations. The adverse outcome pathways (AOPs) were screened from individual to molecular levels. The morphological and behavioral analysis demonstrated that the leachate exposure mainly impaired the eye development of zebrafish larvae and inhibited the larval swim behavior and phototactic response, which are the adverse outcomes. The phototransduction modulated by zebrafish retina was significantly down-regulated through transcriptomics and metabolomics analysis. The eye histopathological analysis showed that the decreased thickness of the retinal outer nuclear layer (ONL) and retinal pigmented epithelium (RPE) after leachate exposure were caused by the decreased photoreceptor cells. Moreover, the expression of NR2E3 and TPO genes showed concentration-dependent down-regulation after leachate exposure. The inhibition of photoreceptor cell proliferation was identified as the main reason for photoreceptor cell decrease in zebrafish larval eye. This study, for the first time, uncovered the underlying toxic mechanism of TWP and RP on zebrafish larval eyes.
Collapse
Affiliation(s)
- Jing Chang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Meng Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Zhaoguang Zhang
- Tongzhou Asphalt Factory, Beijing Municipal Road and Bridge Building Material Group Co. LTD, Beijing 101108, China
| | - Wentao Liu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China; University of Chinese Academy of Sciences, Yuquan RD 19 a, Beijing 100049, China
| | - Wei Li
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Peng Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China
| | - Bin Wan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing RD 18, Beijing 100085, China.
| |
Collapse
|
8
|
Li J, Xu J, Jiang X. Urban runoff mortality syndrome in zooplankton caused by tire wear particles. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 329:121721. [PMID: 37116570 DOI: 10.1016/j.envpol.2023.121721] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 04/17/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Stormwater runoff from roadways is a global threat to water quality, aquatic organisms, and ecosystems. Tire tread wear particles (TWP) from roadway runoff may lead to urban runoff mortality syndrome (URMS) in some aquatic organisms. We tested the hypothesis that urban runoff from roadways can kill zooplankton. Both roadway runoff and TWP leachate were acutely lethal to a model species, the water flea Daphnia pulex. Life table experiments further revealed the lowered survival rates, intrinsic rate of increase, average life span, and net productive rate of D. pulex when exposed to roadway runoff and TWP leachate. The tire rubber antioxidant N-(1,3-dimethylbutyl)-N'-phenyl-p-phenylenediamine (6PPD) mainly contributed to the TWP toxicity. The toxicity of TWP and 6PPD extracted varied with time in nature. Cladocerans and rotifers were more sensitive to TWP and 6PPD than copepods. These results demonstrate the presence of URMS in zooplankton, which may cascade through food webs and affect aquatic ecosystems.
Collapse
Affiliation(s)
- Jianan Li
- State Key Laboratory Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Jiale Xu
- State Key Laboratory Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China
| | - Xiaodong Jiang
- State Key Laboratory Estuarine and Coastal Research, School of Life Sciences, East China Normal University, Shanghai, 200241, People's Republic of China.
| |
Collapse
|
9
|
Barrallo-Gimeno A, Llorens J. Hair cell toxicology: With the help of a little fish. Front Cell Dev Biol 2022; 10:1085225. [PMID: 36582469 PMCID: PMC9793777 DOI: 10.3389/fcell.2022.1085225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 11/28/2022] [Indexed: 12/15/2022] Open
Abstract
Hearing or balance loss are disabling conditions that have a serious impact in those suffering them, especially when they appear in children. Their ultimate cause is frequently the loss of function of mechanosensory hair cells in the inner ear. Hair cells can be damaged by environmental insults, like noise or chemical agents, known as ototoxins. Two of the most common ototoxins are life-saving medications: cisplatin against solid tumors, and aminoglycoside antibiotics to treat infections. However, due to their localization inside the temporal bone, hair cells are difficult to study in mammals. As an alternative animal model, zebrafish larvae have hair cells similar to those in mammals, some of which are located in a fish specific organ on the surface of the skin, the lateral line. This makes them easy to observe in vivo and readily accessible for ototoxins or otoprotective substances. These features have made possible advances in the study of the mechanisms mediating ototoxicity or identifying new potential ototoxins. Most importantly, the small size of the zebrafish larvae has allowed screening thousands of molecules searching for otoprotective agents in a scale that would be highly impractical in rodent models. The positive hits found can then start the long road to reach clinical settings to prevent hearing or balance loss.
Collapse
Affiliation(s)
- Alejandro Barrallo-Gimeno
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| | - Jordi Llorens
- Department de Ciències Fisiològiques, Facultat de Medicina i Ciències de la Salut, Campus de Bellvitge, Universitat de Barcelona, L’Hospitalet de Llobregat, Spain
- Institut de Neurociències, Universitat de Barcelona, Barcelona, Spain
- Institut D'Investigació Biomèdica de Bellvitge, IDIBELL, L’Hospitalet de Llobregat, Spain
| |
Collapse
|
10
|
Yu T, Xu X, Mao H, Han X, Liu Y, Zhang H, Lai J, Gu J, Xia M, Hu C, Li D. Fenpropathrin exposure induces neurotoxicity in zebrafish embryos. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:1539-1554. [PMID: 36266516 DOI: 10.1007/s10695-022-01134-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Fenpropathrin has been a commonly used insecticide to control agricultural and household insects over a few decades. Up to now, fenpropathrin residue in soil and water has been often determined due to its widespread use, which poses serious threat to environment and aquatic organisms. The potential of fenpropathrin to affect aquatic lives is still poorly understood. In this study, we used zebrafish (Danio rerio) embryo as an experimental model system to evaluate the toxicity of fenpropathrin to the development of zebrafish nervous system. Zebrafish embryos were separately exposed to fenpropathrin at the dose of 0.016 mg/L, 0.032 mg/L, 0.064 mg/L, starting at 6 h post-fertilizationhpf (hpf) up to 96 hpf. The results showed that fenpropathrin exposure gives rise to physiological, behavioral, and neurodevelopmental impairments in zebrafish embryos, including enhanced acetylcholinesterase (AChE) activity, abnormal swimming behavior, karyopyknosis in brain cells, increased intercellular space, and uneven migration of neuron in brain area. In addition, the expressions of genes concerning neurodevelopment and neurotransmitter system were inhibited following fenpropathrin exposure. We also found that fenpropathrin exposure distinctly induced oxidative stress by increasing reactive oxygen species (ROS) generation and inhibiting the production of antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD). Expectedly, some apoptosis-associated genes were induced and the apoptosis appeared in the brain and heart cells of zebrafish embryos. Moreover, fenpropathrin exposure also inhibited the expressions of genes in Nrf2 signaling pathway, such as heme oxygenase-1 (HO-1) and SOD. In summary, the results of this study indicate that oxidative stress-triggered apoptosis may be an underlying fundamental of fenpropathrin-induced neurotoxicity in zebrafish embryos.
Collapse
Affiliation(s)
- Tingting Yu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xiaowen Xu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Huiling Mao
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Xue Han
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Yulong Liu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Hongying Zhang
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jingli Lai
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Jianfeng Gu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Mengling Xia
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Chengyu Hu
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China
| | - Dongming Li
- School of Life Science, Nanchang University, Nanchang, 330031, Jiangxi, China.
- School of Basic Medical Sciences, Fuzhou Medical College, Nanchang University, Fuzhou, 344000, Jiangxi, China.
| |
Collapse
|
11
|
Wiener E, LeFevre GH. White Rot Fungi Produce Novel Tire Wear Compound Metabolites and Reveal Underappreciated Amino Acid Conjugation Pathways. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2022; 9:391-399. [PMID: 35578639 PMCID: PMC9100321 DOI: 10.1021/acs.estlett.2c00114] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/14/2022] [Accepted: 03/16/2022] [Indexed: 06/01/2023]
Abstract
There is increasing concern about tire wear compounds (TWCs) in surface water and stormwater as evidence grows on their toxicity and widespread detection in the environment. Because TWCs are prevalent in stormwater, there is a need to understand fate and treatment options including biotransformation in green infrastructure (e.g., bioretention). Particularly, fungal biotransformation is not well-studied in a stormwater context despite the known ability of certain fungi to remove recalcitrant contaminants. Here, we report the first study on fungal biotransformation of the TWCs acetanilide and hexamethoxymethylmelamine (HMMM). We found that the model white rot fungus, Trametes versicolor, removed 81.9% and 69.6% of acetanilide and HMMM, respectively, with no significant sorption to biomass. The bicyclic amine 1,3-diphenylguanidine was not removed. Additionally, we identified novel TWC metabolites using semi-untargeted metabolomics via high-resolution mass spectrometry. Key metabolites include multiple isomers of HMMM biotransformation products, melamine as a possible "dead-end" product of HMMM (verified with an authentic standard), and a glutamine-conjugated product of acetanilide. These metabolites have implications for environmental toxicity and treatment. Our discovery of the first fungal glutamine-conjugated product highlights the need to investigate amino acid conjugation as an important pathway in biotransformation of contaminants, with implications in other fields including natural products discovery.
Collapse
Affiliation(s)
- Erica
A. Wiener
- Department
of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United
States
- C.
Maxwell Stanley Hydraulics Laboratory, IIHR−Hydroscience
& Engineering, Iowa City, Iowa 52242, United States
| | - Gregory H. LeFevre
- Department
of Civil & Environmental Engineering, University of Iowa, 4105 Seamans Center, Iowa City, Iowa 52242, United
States
- C.
Maxwell Stanley Hydraulics Laboratory, IIHR−Hydroscience
& Engineering, Iowa City, Iowa 52242, United States
| |
Collapse
|
12
|
Cunningham B, Harper B, Brander S, Harper S. Toxicity of micro and nano tire particles and leachate for model freshwater organisms. JOURNAL OF HAZARDOUS MATERIALS 2022; 429:128319. [PMID: 35236035 DOI: 10.1016/j.jhazmat.2022.128319] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 01/12/2022] [Accepted: 01/18/2022] [Indexed: 06/14/2023]
Abstract
Environmental sampling has documented a diversity of microplastics, including high levels of black rubber- generally identified as tire debris. Though organisms have been shown to ingest tire particles (TPs), past research focused on toxicity of leachate alone, overlooking potential effects of particles. To address these gaps, we assessed the toxicity of micro (1-20 µm) and nano (<1 µm) TPs for two model organisms, embryonic Zebrafish Danio rerio and the crustacean Daphnia magna. To assess effects on development, Zebrafish embryos were exposed to concentrations of TPs or leachate ranging from 0 to 3.0 × 109 particles/ml and 0-100% respectively (n = 4). Greater mortality and sublethal malformations were observed following nano TP and leachate exposures as compared to micro TPs. Unique abnormalities between the exposures indicates that there is both chemical and particle-specific toxicity. We also observed D. magna mortality following a 48 h exposure of neonate to TPs or leachate, ranging from 0 to 3.3 × 109 particles/ml and 0-100% respectively (n = 3). Though, particle-enhancement of toxicity was observed for both Zebrafish and D. magna, overall sensitivity to TPs differed. It is important to identify differential toxicities across species to achieve an understanding of the environmental impacts of TPs and the chemicals they leach.
Collapse
Affiliation(s)
- Brittany Cunningham
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Bryan Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States
| | - Susanne Brander
- Coastal Oregon Marine Experiment Station, Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Newport, OR, United States
| | - Stacey Harper
- Department of Environmental and Molecular Toxicology, Oregon State University, Corvallis, OR, United States; School of Chemical, Biological and Environmental Engineering, Oregon State University, Corvallis, OR, United States.
| |
Collapse
|
13
|
Chibwe L, Parrott JL, Shires K, Khan H, Clarence S, Lavalle C, Sullivan C, O'Brien AM, De Silva AO, Muir DC, Rochman CM. A Deep Dive into the Complex Chemical Mixture and Toxicity of Tire Wear Particle Leachate in Fathead Minnow. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:1144-1153. [PMID: 34125977 PMCID: PMC9291566 DOI: 10.1002/etc.5140] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 03/24/2021] [Accepted: 06/08/2021] [Indexed: 05/19/2023]
Abstract
The ecological impact of tire wear particles in aquatic ecosystems is a growing environmental concern. We combined toxicity testing, using fathead minnow (Pimephales promelas) embryos, with nontarget high-resolution liquid chromatography Orbitrap mass spectrometry to characterize the toxicity and chemical mixture of organic chemicals associated with tire particle leachates. We assessed: 1) exposure to tire particle leachates after leaching for 1-, 3-, and 10-d; and 2) the effect of the presence and absence of small tire particulates in the leachates. We observed a decrease in embryonic heart rates, hatching success, and lengths, as well as an increase in the number of embryos with severe deformities and diminished eye and body pigmentation, after exposure to the leachates. Overall, there was a pattern whereby we observed more toxicity in the 10-d leachates, and greater toxicity in unfiltered leachates. Redundancy analysis showed that several benzothiazoles and aryl-amines were correlated with the toxic effects observed in the embryos. These included benzothiazole, 2-aminobenzothiazole, 2-mercaptobenzothiazole, N,N'-diphenylguanidine, and N,N'-diphenylurea. However, many other chemicals characterized as unknowns are likely to also play a key role in the adverse effects observed. Our study provides insight into the types of chemicals likely to be important toxicological drivers in tire leachates, and improves our understanding of the ecotoxicological impacts of tire wear particles. Environ Toxicol Chem 2022;41:1144-1153. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Leah Chibwe
- Department of Ecology and Evolutionary BiologyUniversity of Toronto, TorontoOntarioCanada
| | - Joanne L. Parrott
- Aquatic Contaminants Research DivisionEnvironment & Climate Change Canada, BurlingtonOntarioCanada
| | - Kallie Shires
- Aquatic Contaminants Research DivisionEnvironment & Climate Change Canada, BurlingtonOntarioCanada
| | - Hufsa Khan
- Aquatic Contaminants Research DivisionEnvironment & Climate Change Canada, BurlingtonOntarioCanada
| | - Stacey Clarence
- Aquatic Contaminants Research DivisionEnvironment & Climate Change Canada, BurlingtonOntarioCanada
| | - Christine Lavalle
- Aquatic Contaminants Research DivisionEnvironment & Climate Change Canada, BurlingtonOntarioCanada
| | - Cheryl Sullivan
- Aquatic Contaminants Research DivisionEnvironment & Climate Change Canada, BurlingtonOntarioCanada
| | - Anna M. O'Brien
- Department of Ecology and Evolutionary BiologyUniversity of Toronto, TorontoOntarioCanada
| | - Amila O. De Silva
- Aquatic Contaminants Research DivisionEnvironment & Climate Change Canada, BurlingtonOntarioCanada
| | - Derek C.G. Muir
- Aquatic Contaminants Research DivisionEnvironment & Climate Change Canada, BurlingtonOntarioCanada
| | - Chelsea M. Rochman
- Department of Ecology and Evolutionary BiologyUniversity of Toronto, TorontoOntarioCanada
| |
Collapse
|
14
|
Alves RN, Mariz CF, de Melo Alves MK, Cavalcanti MGN, de Melo TJB, de Arruda-Santos RH, Zanardi-Lamardo E, Carvalho PSM. Contamination and Toxicity of Surface Waters Along Rural and Urban Regions of the Capibaribe River in Tropical Northeastern Brazil. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:3063-3077. [PMID: 34324728 DOI: 10.1002/etc.5180] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 02/09/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
The Capibaribe River provides water to a population of 1.7 million people in the Brazilian northeast, while receiving agricultural runoff and industrial and domestic effluents along its 280 km. The present study evaluated the ecotoxicity of surface waters along ten sites in rural and urban areas using zebrafish (Danio rerio) early-life stages and related it to water quality indices and chemical abiotic variables. Lethality rates, delays in embryo-larval development quantified by the general morphology score (GMS), and frequencies of developmental abnormalities were analyzed. A correlation was detected between zebrafish GMS and water quality index (WQI), sensitivity to domestic sewage contamination, and trophic state index, focused on eutrophication. These indices agreed in identifying a spatial pattern of smaller impact in terms of ecotoxicity, domestic sewage contamination, and eutrophication risk at three sites in rural areas (mean GMS 16.9), an intermediate impact at four sites with urban and agricultural influence (mean GMS 16.4), and greatest impacts at three more urbanized sites (mean GMS 14.9). Most frequent developmental abnormalities included noninflation of the swim bladder, delayed hatching, nonprotrusion of the mouth, blood stasis, and nondevelopment of pectoral fins. Toxic NH3 concentrations varied spatially, with higher concentrations in urban sites; and blood stasis correlated positively with NH3 , suggesting a causal relationship. Polycyclic aromatic hydrocarbons were detected in both rural and urbanized sites, contributing to detected toxicity. The present study demonstrates the potential of zebrafish early-life stages as an ecotoxicological model that may contribute to a better understanding of surface water quality and ecotoxicity in tropical river systems. Environ Toxicol Chem 2021;40:3063-3077. © 2021 SETAC.
Collapse
Affiliation(s)
- Romulo Nepomuceno Alves
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Federal University of Pernambuco, Recife, Brazil
| | - Célio Freire Mariz
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Federal University of Pernambuco, Recife, Brazil
| | | | | | | | - Roxanny Helen de Arruda-Santos
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR), Centro de Tecnologia e Geociências, Federal University of Pernambuco, Recife, Brazil
| | - Eliete Zanardi-Lamardo
- Laboratório de Compostos Orgânicos em Ecossistemas Costeiros e Marinhos (OrganoMAR), Centro de Tecnologia e Geociências, Federal University of Pernambuco, Recife, Brazil
| | - Paulo S M Carvalho
- Laboratório de Ecotoxicologia Aquática, Centro de Biociências, Federal University of Pernambuco, Recife, Brazil
| |
Collapse
|
15
|
Wilfong MT, Casey RE, Ownby DR. Performance of commercially available soil amendments for enhanced Cu attenuation in bioretention media. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 295:113047. [PMID: 34146781 DOI: 10.1016/j.jenvman.2021.113047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/03/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Bioretention structures such as planter boxes, swales and rain gardens are being increasingly utilized in built landscapes as a strategy to attenuate both stormwater flows and contaminant loads. Copper (Cu) roofing materials contribute significantly higher mass loads of dissolved Cu per unit area than other surfaces such as parking lots and roadways. While a recent study demonstrated that conventional bioretention media can remove greater than 90% of Cu from copper roof runoff, the median Cu concentrations at the point of discharge from bioretention structures (66 μg L-1) still did not achieve Cu concentrations in stormwater discharges sought in some jurisdictions (for example, < 14 μg L-1). Consequently, commercially available soil amendments were assessed to improve bioretention Cu removal. The ability of biochar, greensand, and zeolite to improve Cu removal was evaluated in laboratory column studies. Additionally, the performance of zeolite as an underlayer amendment was evaluated in bioretention planter boxes treating stormwater from a picnic shelter with a partitioned copper roof. Cu was measured in the planter box influent and effluent. The field setup included 2 control planter boxes containing only standard bioretention media and 2 amended with the zeolite underlayer. Samples from ten storms were collected with flow-weighted composite sampling. Total Cu in composite samples of the influent waters ranged from 445 to 1683 μg L-1 and had a median concentration of 934 μg L-1. Total Cu in the effluent from the control planter boxes ranged from 10 to 64 μg L-1, with a mean of 29 μg L-1. Total Cu in effluent from the zeolite amended planter boxes ranged from 4 to 44 μg L-1 with a mean of 18 μg L-1. Attenuation in the control planter boxes ranged from 90 to 99% with a median of 93.4% by concentration and ranged from 95 to 99% with a median of 97.5% in the zeolite amended planter boxes.
Collapse
Affiliation(s)
- Matthew T Wilfong
- Urban Environmental Biogeochemistry Laboratory (UEBL), Towson University, Towson, MD 21252, USA; Environmental Science and Technology Department, University of Maryland, College Park, MD 20740, USA
| | - Ryan E Casey
- Urban Environmental Biogeochemistry Laboratory (UEBL), Towson University, Towson, MD 21252, USA
| | - David R Ownby
- Urban Environmental Biogeochemistry Laboratory (UEBL), Towson University, Towson, MD 21252, USA.
| |
Collapse
|
16
|
Harding LB, Tagal M, Ylitalo GM, Incardona JP, Davis JW, Scholz NL, McIntyre JK. Urban stormwater and crude oil injury pathways converge on the developing heart of a shore-spawning marine forage fish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 229:105654. [PMID: 33161306 DOI: 10.1016/j.aquatox.2020.105654] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 10/02/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Understanding how aquatic organisms respond to complex chemical mixtures remains one of the foremost challenges in modern ecotoxicology. Although oil spills are typically high-profile disasters that release hundreds or thousands of chemicals into the environment, there is growing evidence for a common adverse outcome pathway (AOP) for the vulnerable embryos and larvae of fish species that spawn in oiled habitats. Molecular initiating events involve the disruption of excitation-contraction coupling in individual cardiomyocytes, which then dysregulate the form and function of the embryonic heart. Phenanthrenes and other three-ring (tricyclic) polycyclic aromatic hydrocarbons (PAHs) are key drivers for this developmental cardiotoxicity and are also relatively enriched in land-based urban runoff. Similar to oil spills, stormwater discharged from roadways and other high-traffic impervious surfaces contains myriad contaminants, many of which are uncharacterized in terms of their chemical identity and toxicity to aquatic organisms. Nevertheless, given the exceptional sensitivity of the developing heart to tricyclic PAHs and the ubiquitous presence of these compounds in road runoff, cardiotoxicity may also be a dominant aspect of the stormwater-induced injury phenotype in fish early life stages. Here we assessed the effects of traffic-related runoff on the embryos and early larvae of Pacific herring (Clupea pallasii), a marine forage fish that spawns along the coastline of western North America. We used the well-characterized central features of the oil toxicity AOP for herring embryos as benchmarks for a detailed analysis of embryolarval cardiotoxicity across a dilution gradient ranging from 12 to 50% stormwater diluted in clean seawater. These injury indicators included measures of circulatory function, ventricular area, heart chamber looping, and the contractility of both the atrium and the ventricle. We also determined tissue concentrations of phenanthrenes and other PAHs in herring embryos. We find that tricyclic PAHs are readily bioavailable during cardiogenesis, and that stormwater-induced toxicity is in many respects indistinguishable from canonical crude oil toxicity. Given the chemical complexity of urban runoff, non-tricyclic PAH-mediated mechanisms of developmental toxicity in fish remain likely. However, from the standpoint of managing wild herring populations, our results suggest that stormwater-driven threats to individual survival (both near-term and delayed mortality) can be understood from decades of past research on crude oil toxicity. Moreover, Pacific herring embryos are promising sentinels for water quality monitoring in nearshore marine habitats, as in situand sensitive indicators of both toxic runoff and the effectiveness of pollution reduction efforts such as green stormwater infrastructure.
Collapse
Affiliation(s)
- Louisa B Harding
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W. Pioneer Ave., Puyallup, WA, 98371, USA.
| | - Mark Tagal
- Lynker Technologies, Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA, 98112, USA
| | - Gina M Ylitalo
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - John P Incardona
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Jay W Davis
- U.S. Fish and Wildlife Service, Washington Fish and Wildlife Office, 510 Desmond Dr. S.E., Lacey, WA 98503, USA
| | - Nathaniel L Scholz
- Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Jenifer K McIntyre
- Washington State University, School of the Environment, Puyallup Research and Extension Center, 2606 W. Pioneer Ave., Puyallup, WA, 98371, USA.
| |
Collapse
|
17
|
Price ER, Mager EM. The effects of exposure to crude oil or PAHs on fish swim bladder development and function. Comp Biochem Physiol C Toxicol Pharmacol 2020; 238:108853. [PMID: 32777466 DOI: 10.1016/j.cbpc.2020.108853] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/03/2020] [Accepted: 07/27/2020] [Indexed: 11/17/2022]
Abstract
The failure of the swim bladder to inflate during fish development is a common and sensitive response to exposure to petrochemicals. Here, we review potential mechanisms by which petrochemicals or their toxic components (polycyclic aromatic hydrocarbons; PAHs) may affect swim bladder inflation, particularly during early life stages. Surface films formed by oil can cause a physical barrier to primary inflation by air gulping, and are likely important during oil spills. The act of swimming to the surface for primary inflation can be arduous for some species, and may prevent inflation if this behavior is limited by toxic effects on vision or musculature. Some studies have noted altered gene expression in the swim bladder in response to PAHs, and Cytochrome P450 1A (CYP1A) can be induced in swim bladder or rete mirabile tissue, suggesting that PAHs can have direct effects on swim bladder development. Swim bladder inflation failure can also occur secondarily to the failure of other systems; cardiovascular impairment is the best elucidated of these mechanisms, but other mechanisms might include non-inflation as a sequela of disruption to thyroid signaling or cholesterol metabolism. Failed swim bladder inflation has the potential to lead to chronic sublethal effects that are as yet unstudied.
Collapse
Affiliation(s)
- Edwin R Price
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, TX 76203, United States of America.
| | - Edward M Mager
- Department of Biological Sciences and Advanced Environmental Research Institute, University of North Texas, Denton, TX 76203, United States of America
| |
Collapse
|
18
|
Burgis CR, Hayes GM, Henderson DA, Zhang W, Smith JA. Green stormwater infrastructure redirects deicing salt from surface water to groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138736. [PMID: 32361433 DOI: 10.1016/j.scitotenv.2020.138736] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 04/11/2020] [Accepted: 04/14/2020] [Indexed: 06/11/2023]
Abstract
Winter deicing salt application has led to water quality impairment as stormwater carries salt ions (Na+ and Cl-) through watersheds. Green infrastructure (GI) is a promising urban stormwater management practice, but its efficacy in managing salt is unknown. GI is not yet designed to remove salt, but may have potential to mitigate its loading to surface waters. Two roadside infiltration-based GI practices in Northern Virginia (bioretention and bioswale) were monitored year-round over 28 precipitation events to investigate the transport of salt through modern stormwater infrastructure. Stormwater runoff volumes and concentrations of salt ions entering and exiting each GI were monitored to determine reductions of salt ions. Both the bioretention and bioswale significantly reduced effluent surface loads of Cl- and Na+ (76% to 82%), displaying ability to temporarily retain and infiltrate salts and delay their release to surface waters. Changes in bioretention soil chemistry revealed a small percentage of Na+ was stored long-term by ion exchange, but no long-term Cl- storage was observed. Limited soil storage along with groundwater observations suggest the majority of salt removed from stormwater by the bioretention infiltrates into groundwater. Infiltration GI can buffer surface waters from salt, but are also an avenue for groundwater salt loading.
Collapse
Affiliation(s)
- Charles R Burgis
- Department of Engineering Systems and Environment, University of Virginia, 351 McCormick Rd., Charlottesville, VA 22904, United States
| | - Gail M Hayes
- Department of Engineering Systems and Environment, University of Virginia, 351 McCormick Rd., Charlottesville, VA 22904, United States
| | - Derek A Henderson
- Department of Engineering Systems and Environment, University of Virginia, 351 McCormick Rd., Charlottesville, VA 22904, United States
| | - Wuhuan Zhang
- Department of Engineering Systems and Environment, University of Virginia, 351 McCormick Rd., Charlottesville, VA 22904, United States
| | - James A Smith
- Department of Engineering Systems and Environment, University of Virginia, 351 McCormick Rd., Charlottesville, VA 22904, United States.
| |
Collapse
|
19
|
Peter KT, Hou F, Tian Z, Wu C, Goehring M, Liu F, Kolodziej EP. More Than a First Flush: Urban Creek Storm Hydrographs Demonstrate Broad Contaminant Pollutographs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:6152-6165. [PMID: 32302122 DOI: 10.1021/acs.est.0c00872] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/25/2023]
Abstract
Stormwater runoff clearly impacts water quality and ecological health of urban receiving waters. Subsequent management efforts are often guided by conceptual models of contaminant "first flushes", defined by disproportionate concentrations or mass loads early in the storm hydrograph. However, studies examining the dynamics of contaminant transport and receiving water hydrology have primarily focused on "traditional" stormwater contaminants and point sources, with less evaluation of chemically complex nonpoint pollution sources. Accordingly, we conducted baseflow and storm sampling in Miller Creek, a representative small, urban watershed in the Puget Sound region (WA, USA). We comprehensively characterized organic contaminant profiles and dynamics via targeted quantification of 35 stormwater-derived chemicals, complementary nontarget HRMS analyses, and surrogate chemical metrics of ecological health. For quantified analytes, total daily baseflow loads were 0.8-3.4 g/day and storm event loads were ∼80-320 g/storm (∼48 h interval), with nine contaminants detected during storms at >500 ng/L. Notably, urban creek "pollutographs" were much broader than relatively sharp storm hydrographs and exhibited transport-limited (rather than mass-limited) source dynamics, with immediate water quality degradation during low-intensity precipitation and continued mobilization of contaminant mass across the entire hydrograph. Study outcomes support prioritization of source identification and focused stormwater management efforts to improve water quality and promote ecosystem function in small urban receiving waters.
Collapse
Affiliation(s)
- Katherine T Peter
- Center for Urban Waters, Tacoma, Washington 98421 United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421 United States
| | - Fan Hou
- Center for Urban Waters, Tacoma, Washington 98421 United States
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Zhenyu Tian
- Center for Urban Waters, Tacoma, Washington 98421 United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421 United States
| | - Christopher Wu
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421 United States
| | - Matt Goehring
- Green/Duwamish & Central Puget Sound Watershed (WRIA 9), King County, Seattle, Washington 98104 United States
| | - Fengmao Liu
- Department of Applied Chemistry, College of Science, China Agricultural University, Beijing, 100193 China
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, Washington 98421 United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, Washington 98421 United States
- Department of Civil and Environmental Engineering, University of Washington, Seattle, Washington 98195 United States
| |
Collapse
|
20
|
Kane Driscoll S, Kulacki K, Marzooghi S. A Review of the Literature on Potential Effects of Runoff from Refined Coal-Tar-Based Sealant Coating on Aquatic Organisms. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2020; 16:17-27. [PMID: 31469226 DOI: 10.1002/ieam.4210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 05/17/2019] [Accepted: 08/27/2019] [Indexed: 06/10/2023]
Abstract
Pavement sealants are frequently applied to parking lots and driveways to improve their appearance and protect the integrity of the underlying asphalt. We performed a comprehensive literature review to summarize the potential impacts of refined coal-tar-based sealant (RCTS) runoff to aquatic organisms and to evaluate the strengths and weaknesses of the lines of evidence presented in the literature. The studies reviewed included both laboratory and field exposures, with and without exposure to UV light, and measured effects on multiple endpoints associated with bacteria, benthic macroinvertebrates, and fish. Several studies demonstrated that constituents in RCTS runoff can affect survival, growth, behavior, development, and molecular responses of aquatic organisms in controlled laboratory settings. However, translating effects observed in the laboratory to field settings, where runoff is diluted and constituents interact with particulate and dissolved stream constituents (e.g., organic matter), has proven difficult. In this review, we identify the strengths and weaknesses of the existing literature and provide recommendations for study designs and methods to fill the most critical data gaps in understanding the risk of this material to aquatic organisms. Our review highlights the need for environmentally relevant study designs that demonstrate cause-effect relationships under field conditions. Integr Environ Assess Manag 2019;00:1-11. © 2019 SETAC.
Collapse
Affiliation(s)
| | | | - Solmaz Marzooghi
- Exponent, Maynard, Massachusetts, USA
- Present address:, California State Water Resources Control Board, Sacramento, California, USA
| |
Collapse
|
21
|
McIntyre JK, Winters N, Rozmyn L, Haskins T, Stark JD. Metals leaching from common residential and commercial roofing materials across four years of weathering and implications for environmental loading. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 255:113262. [PMID: 31563771 DOI: 10.1016/j.envpol.2019.113262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 09/11/2019] [Accepted: 09/15/2019] [Indexed: 06/10/2023]
Abstract
Urban stormwater is a major source of chemical pollution to receiving waters. Anthropogenic materials in the built environment can be an important source of chemicals to stormwater runoff. Roofing materials can leach significant amounts of metals, which vary over the life of the roof. We report concentrations of three metals (As, Cu, Zn) leaching into runoff from experimental panels of 14 roofing materials over 4.5 years of weathering. Ten roofing materials leached metals. Several leached >10 ppb during one or more study periods. The most common correlate with metal concentration was panel age, followed by precipitation amount. Extrapolating from these observations, we estimated the loading of metals from each roofing material during the first 10 years following installation. Eight materials were predicted to leach metals above background at the end of the 10 years. In combination with information on the prevalence of different roofing materials in the Puget Sound region of the Pacific Northwest, we estimated the relative amount of metals contributed from roofing materials in this basin. Most arsenic and copper was estimated to be contributed by residential roofing; nearly all arsenic from wood shakes manufactured with copper chromated arsenic, and copper contributed mainly from treated wood shakes followed by copper granule-containing asphalt shingles. Most zinc was estimated to be contributed by commercial roofs, including Zincalume and painted metal roofs. Overall our data shows that roofing materials can be an important long-term source of As, Cu, and Zn to stormwater runoff. Compared with atmospheric deposition, roof materials were a significant source, particularly of As and Cu. To get a complete picture of metals sourced from buildings, there is a need to study whole roof systems, including gutters, downspouts, and HVAC systems, as well as metals contributed from homeowner-applied treatments to their roofs.
Collapse
Affiliation(s)
- J K McIntyre
- Washington State University, Washington Stormwater Center, Puyallup Research & Extension Center, 2606 W. Pioneer Ave, Puyallup, WA 98371, USA.
| | - N Winters
- Washington State University, Washington Stormwater Center, Puyallup Research & Extension Center, 2606 W. Pioneer Ave, Puyallup, WA 98371, USA
| | - L Rozmyn
- Washington State University, Washington Stormwater Center, Puyallup Research & Extension Center, 2606 W. Pioneer Ave, Puyallup, WA 98371, USA
| | - T Haskins
- Washington State University, Washington Stormwater Center, Puyallup Research & Extension Center, 2606 W. Pioneer Ave, Puyallup, WA 98371, USA
| | - J D Stark
- Washington State University, Washington Stormwater Center, Puyallup Research & Extension Center, 2606 W. Pioneer Ave, Puyallup, WA 98371, USA
| |
Collapse
|
22
|
Li X, Xiong D, Ding G, Fan Y, Ma X, Wang C, Xiong Y, Jiang X. Exposure to water-accommodated fractions of two different crude oils alters morphology, cardiac function and swim bladder development in early-life stages of zebrafish. CHEMOSPHERE 2019; 235:423-433. [PMID: 31272002 DOI: 10.1016/j.chemosphere.2019.06.199] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Revised: 06/25/2019] [Accepted: 06/25/2019] [Indexed: 06/09/2023]
Abstract
The present study investigated the developmental toxicity of water-accommodated fractions (WAFs) of Oman crude oil (OCO) and Merey crude oil (MCO) on zebrafish (Danio rerio) in early-life stages (ELS). Based on total petroleum hydrocarbons (TPH), LC50 values manifested that OCO WAF was 1.2-fold more lethal to zebrafish embryos than MCO WAF. As for hatching rate, EC50 value for OCO WAF was 5.7-fold lower than that for MCO WAF. To evaluate the sublethal morphological effects, semi-quantitative extended general morphological score (GMS) and general teratogenic score (GTS) systems were adopted. The GMS and GTS scores indicated that the WAFs caused remarkable developmental delay and high frequencies of malformation in a dose-dependent manner. Additionally, OCO and MCO WAFs exposure exhibited severe bradycardia (reduced heart rate) and overt reduction of stroke volume, with a concomitant decrease in the cardiac output. Meanwhile, the WAFs also induced dose-dependent down-regulated expressions of several key functional genes of excitation-contraction coupling in cardiomyocytes, including ryr2, atp2a2a, atp2a2b, ncx1h, and kcnh2. For key gene markers of swim bladder development, results showed that high dose of TPH induced significant down-regulation of hb9 and anxa5 with no obvious change of acta2, suggesting that the WAFs could affect the specification and development of epithelium and outer mesothelium of swim bladder in zebrafish ELS. A strong negative relationship between the failure of swim bladder inflation and cardiac dysfunction via cardiac output was found. All these findings provide novel insights into the complicated mechanisms of the developmental toxicity of crude oil on fish in ELS.
Collapse
Affiliation(s)
- Xishan Li
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Deqi Xiong
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China.
| | - Guanghui Ding
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Youmei Fan
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Xinrui Ma
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Chengyan Wang
- College of Environmental Science and Engineering, Dalian Maritime University, Dalian, 116026, China
| | - Yijun Xiong
- Biological Chemistry & Statistics, Grinnell College, IA, 50112, USA
| | - Xi Jiang
- China Railway No.9 Group Fourth Engineering Co., Ltd, Shenyang, 110013, China
| |
Collapse
|
23
|
Hong N, Liu A, Zhu P, Zhan Y, Yang M, Zhang Z, Yang B, Guan Y. Comparative toxicity of organic mixture attached to road deposited sediments: Inadequacy of conventionally using individual pollutants to assess comprehensive hazard effects. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 180:357-365. [PMID: 31102843 DOI: 10.1016/j.ecoenv.2019.05.025] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 05/07/2019] [Accepted: 05/09/2019] [Indexed: 06/09/2023]
Abstract
Organic pollutants attached on road deposited sediments (RDS) during dry days can be washed-off into stormwater runoff during rainfall events, undermining stormwater reuse safety. Previous research studies commonly utilized individual pollutant groups and their quantity to evaluate the hazard effect of pollutants attached to RDS in terms of stormwater reuse. Since many types of organic pollutants are present together rather than individually, conventional approaches might not permit a comprehensive understanding of how appropriately the RDS polluted stormwater can be reused. This study undertook a toxicity test of organic pollutants attached to RDS using Chinese hamster ovary cells (CHO), testing a hypothesis that solely focusing on individual pollutant groups are not adequate to represent hazard effects of resulting stormwater and hence their adequacy for reuse. It is noted that comparative toxicity of RDS is not strongly related to total solids (commonly seen as the key carrier of pollutants) and chemical oxygen demand (COD, representing organic matters). Additionally, the comparison results of spatial distributions of toxicity (in this study) and individual pollutants in previous studies did not show a similar trend. These results imply that toxicity should be also used to indicate how stormwater can be safely reused while solely investigating individual pollutants can not adequately show a comprehensive hazard effect in terms of ensuring stormwater reuse safety. Based on study outcomes, a new assessment approach considering both pollutant and toxicity were proposed. This will assist on effective stormwater reuse and ensuring their reuse safety.
Collapse
Affiliation(s)
- Nian Hong
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, China; Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, 518060, Shenzhen, China
| | - An Liu
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, China; Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, 518060, Shenzhen, China.
| | - Panfeng Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, China
| | - Yuting Zhan
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, China; Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, 518060, Shenzhen, China
| | - Mengting Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, China; Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, 518060, Shenzhen, China.
| | - Zhenxuan Zhang
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, China; Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, 518060, Shenzhen, China
| | - Bo Yang
- College of Chemistry and Environmental Engineering, Shenzhen University, 518060, Shenzhen, China; Shenzhen Key Laboratory of Environmental Chemistry and Ecological Remediation, 518060, Shenzhen, China
| | - Yuntao Guan
- Guangdong Provincial Engineering Technology Research Centre for Urban Water Cycle and Water Environment Safety, Graduate School at Shenzhen, Tsinghua University, 518055, Shenzhen, China
| |
Collapse
|
24
|
Fan LY, Zhu D, Yang Y, Huang Y, Zhang SN, Yan LC, Wang S, Zhao YH. Comparison of modes of action among different trophic levels of aquatic organisms for pesticides and medications based on interspecies correlations and excess toxicity: Theoretical consideration. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 177:25-31. [PMID: 30954009 DOI: 10.1016/j.ecoenv.2019.03.111] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 06/09/2023]
Abstract
Pesticides and medications have adverse effects in non-target organisms that can lead to different modes of action (MOAs). However, no study has been performed to compare the MOAs between different levels of aquatic species. In this study, theoretical equations of interspecies relationship and excess toxicity have been developed and used to investigate the MOAs among fish, Daphnia magna, Tetrahymena pyriformis and Vibrio fischeri for pesticides and medications. The analysis on the interspecies correlation and excess toxicity suggested that fungicides, herbicides and medications share the similar MOAs among the four species. On the other hand, insecticides share different MOAs among the four species. Exclusion of insecticides from the interspecies correlation can significantly improve regression coefficient. Interspecies relationship is dependent not only on the difference in interaction of chemicals with the target receptor(s), but also on the difference in bio-uptake between two species. The difference in physiological structures will result in the difference in bioconcentration potential between two different trophic levels of organisms. Increasing of molecular size or hydrophobicity will increase the toxicity to higher level of aquatic organisms; on the other hand, chemical ionization will decrease the toxicity to higher level organisms. Hydrophilic compounds can more easily pass through cell membrane than skin or gill, leading to greater excess toxicity to Vibrio fischeri, but not to fish and Daphnia magna.
Collapse
Affiliation(s)
- Ling Y Fan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Di Zhu
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yi Yang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yu Huang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Sheng N Zhang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Li C Yan
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Shuo Wang
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China
| | - Yuan H Zhao
- State Environmental Protection Key Laboratory of Wetland Ecology and Vegetation Restoration, School of Environment, Northeast Normal University, Changchun, Jilin, 130117, PR China.
| |
Collapse
|
25
|
Al-Kandari H, Younes N, Al-Jamal O, Zakaria ZZ, Najjar H, Alserr F, Pintus G, Al-Asmakh MA, Abdullah AM, Nasrallah GK. Ecotoxicological Assessment of Thermally- and Hydrogen-Reduced Graphene Oxide/TiO₂ Photocatalytic Nanocomposites Using the Zebrafish Embryo Model. NANOMATERIALS (BASEL, SWITZERLAND) 2019; 9:488. [PMID: 30925821 PMCID: PMC6523634 DOI: 10.3390/nano9040488] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/13/2019] [Accepted: 03/18/2019] [Indexed: 01/04/2023]
Abstract
Advanced oxidation processes (AOPs) have recently attracted great interest in water pollution management. Using the zebrafish embryo model, we investigated the environmental impacts of two thermally (RGOTi)- and hydrogen (H₂RGOTi)-reduced graphene oxide/TiO₂ semiconductor photocatalysts recently employed in AOPs. For this purpose, acutoxicity, cardiotoxicity, neurobehavioral toxicity, hematopoietic toxicity, and hatching rate were determinate. For the RGOTi, the no observed effect concentration (NOEC, mortality/teratogenicity score <20%) and the median lethal concentration (LC50) were <400 and 748.6 mg/L, respectively. H₂RGOTi showed a NOEC similar to RGOTi. However, no significant mortality was detected at all concentrations used in the acutoxicity assay (up to1000 mg/L), thus indicating a hypothetical LC50 higher than 1000 mg/L. According to the Fish and Wildlife Service Acute Toxicity Rating Scale, RGOTi can be classified as "practically not toxic" and H₂RGOTi as "relatively harmless". However, both nanocomposites should be used with caution at concentration higher than the NOEC (400 mg/L), in particular RGOTi, which significantly (i) caused pericardial and yolk sac edema; (ii) decreased the hatching rate, locomotion, and hematopoietic activities; and (iii) affected the heart rate. Indeed, the aforementioned teratogenic phenotypes were less devastating in H₂RGOTi-treated embryos, suggesting that the hydrogen-reduced graphene oxide/TiO₂ photocatalysts may be more ecofriendly than the thermally-reduced ones.
Collapse
Affiliation(s)
- Halema Al-Kandari
- Department of Health Environment, College of Health Sciences, PAAET, P.O. Box 1428, Faiha, Kuwait City 72853, Kuwait.
| | - Nadin Younes
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar.
| | - Ola Al-Jamal
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar.
| | - Zain Z Zakaria
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar.
| | - Huda Najjar
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar.
| | - Farah Alserr
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar.
| | - Gianfranco Pintus
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar.
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar.
| | - Maha A Al-Asmakh
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar.
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar.
| | - Aboubakr M Abdullah
- Department of Chemical Engineering, College of Engineering, Doha, Qatar University, Doha 2713, Qatar.
- Center for Advanced Materials, Qatar University, Doha 2713, Qatar.
| | - Gheyath K Nasrallah
- Department of Biomedical Science, College of Health Sciences, QU Health, Qatar University, Doha 2713, Qatar.
- Biomedical Research Center, QU Health, Qatar University, Doha 2713, Qatar.
| |
Collapse
|
26
|
Fairbairn DJ, Elliott SM, Kiesling RL, Schoenfuss HL, Ferrey ML, Westerhoff BM. Contaminants of emerging concern in urban stormwater: Spatiotemporal patterns and removal by iron-enhanced sand filters (IESFs). WATER RESEARCH 2018; 145:332-345. [PMID: 30165318 DOI: 10.1016/j.watres.2018.08.020] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 08/01/2018] [Accepted: 08/07/2018] [Indexed: 05/02/2023]
Abstract
Numerous contaminants of emerging concern (CECs) typically occur in urban rivers. Wastewater effluents are a major source of many CECs. Urban runoff (stormwater) is a major urban water budget component and may constitute another major CEC pathway. Yet, stormwater-based CEC field studies are rare. This research investigated 384 CECs in 36 stormwater samples in Minneapolis-St. Paul, Minnesota, USA. Nine sampling sites included three large stormwater conveyances (pipes) and three paired iron-enhanced sand filters (IESFs; untreated inlets and treated outlets). The 123 detected compounds included commercial-consumer compounds, veterinary and human pharmaceuticals, lifestyle and personal care compounds, pesticides, and others. Thirty-one CECs were detected in ≥50% of samples. Individual samples contained a median of 35 targeted CECs (range: 18-54). Overall, median concentrations were ≥10 ng/L for 25 CECs and ≥100 ng/L for 9 CECs. Ranked, hierarchical linear modeling indicated significant seasonal- and site type-based concentration variability for 53 and 30 CECs, respectively, with observed patterns corresponding to CEC type, source, usage, and seasonal hydrology. A primarily warm-weather, diffuse, runoff-based profile included many herbicides. A second profile encompassed winter and/or late summer samples enriched with some recalcitrant, hydrophobic compounds (e.g., PAHs), especially at pipes, suggesting conservative, less runoff-dependent sources (e.g., sediments). A third profile, indicative of mixed conservative/non-runoff, runoff, and/or atmospheric sources and transport that collectively affect a variety of conditions, included various fungicides, lifestyle, non-prescription, and commercial-consumer CECs. Generally, pipe sites had large, diverse land-use catchments, and showed more frequent detections of diverse CECs, but often at lower concentrations; while untreated sites (with smaller, more residential-catchments) demonstrated greater detections of "pseudo-persistent" and other ubiquitous or residentially-associated CECs. Although untreated stormwater transports an array of CECs to receiving waters, IESF treatment significantly removed concentrations of 14 (29%) of the 48 most detected CECs; for these, median removal efficiencies were 26%-100%. Efficient removal of some hydrophobic (e.g., PAHs, bisphenol A) and polar-hydrophilic (e.g., caffeine, nicotine) compounds indicated particulate-bound contaminant filtration and for certain dissolved contaminants, sorption.
Collapse
Affiliation(s)
- David J Fairbairn
- Minnesota Pollution Control Agency, 520 LaFayette Rd., St Paul, MN, 55155, USA.
| | - Sarah M Elliott
- United States Geological Survey, 2280 Woodale Dr., Mounds View, MN 55112, USA
| | - Richard L Kiesling
- United States Geological Survey, 2280 Woodale Dr., Mounds View, MN 55112, USA
| | - Heiko L Schoenfuss
- St. Cloud State University Aquatic Toxicology Laboratory, 720 Fourth Ave. South, St. Cloud, MN 56301, USA
| | - Mark L Ferrey
- Minnesota Pollution Control Agency, 520 LaFayette Rd., St Paul, MN, 55155, USA
| | - Benjamin M Westerhoff
- St. Cloud State University Aquatic Toxicology Laboratory, 720 Fourth Ave. South, St. Cloud, MN 56301, USA
| |
Collapse
|
27
|
Zhou S, Wei Z, Chu T, Yu H, Li S, Zhang W, Gui W. Transcriptomic analysis of zebrafish (Danio rerio) embryos to assess integrated biotoxicity of Xitiaoxi River waters. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:42-53. [PMID: 29958174 DOI: 10.1016/j.envpol.2018.06.060] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 05/22/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
Assessing the toxicity posed by mixtures of unknown chemicals to aquatic organisms is challenging. In this study, water samples from six cross-sections along the Xitiaoxi River Basin (XRB) were monthly or bimonthly collected in 2014. The year-period physiochemical parameters as well as one-month-water sample based acute biotoxicity tests showed that the river water quality of the year was generally in a good status. High performance liquid chromatography (HPLC) screening based on one-month-water samples suggested that the organic pollutants might be non-to-moderately-polar chemicals in very low concentrations. One-month-water sample based RNA-seq was performed to measure the mRNA differential expression profile of zebrafish larvae to furtherly explore the potential bioeffect and the spatial water quality change of the river. Result indicated that the number of deferentially expressed genes (DEGs) tended to increase along the downstream direction of the river. Gene ontology (GO) enrichment analysis implied that the key pollutants might mainly be the function disruptors of biological processes. Principle components analysis (PCA) combining with transcripts and one-month-water sample based physiochemical parameters indicated that the pollution might be similar at TP, DP and CTB sites while pollution homology existed on some extent between YBQ and JW sites. Although the water quality of the river had a complex time-space alternation during the year, and the one-month-data based RNA-seq could not reflex the whole year-water quality of a watershed, the gene expression profile via RNA-seq provided an alternative way for assessing integrated biotoxicity of surface water, and it was relatively fit for early-warning of water quality of a watershed with unobservable acute toxicity. However, the identification of detail toxicants and the links between DEGs and pollution level as well as physiological-biochemical toxicity needed further investigation.
Collapse
Affiliation(s)
- Shengli Zhou
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China; Zhejiang Province Environmental Monitoring Center, Hangzhou, 310012, PR China
| | - Zheng Wei
- Zhejiang Province Environmental Monitoring Center, Hangzhou, 310012, PR China
| | - Tianyi Chu
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Haiyan Yu
- Zhejiang Province Environmental Monitoring Center, Hangzhou, 310012, PR China
| | - Shuying Li
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China
| | - Wei Zhang
- Department of Plant, Soil and Microbial Sciences, Environmental Science and Policy Program, Michigan State University, East Lansing, 48824, USA
| | - Wenjun Gui
- Institute of Pesticide and Environmental Toxicology, Zhejiang University, Hangzhou, 310058, PR China.
| |
Collapse
|
28
|
Westerhoff BM, Fairbairn DJ, Ferrey ML, Matilla A, Kunkel J, Elliott SM, Kiesling RL, Woodruff D, Schoenfuss HL. Effects of urban stormwater and iron-enhanced sand filtration on Daphnia magna and Pimephales promelas. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2018; 37:2645-2659. [PMID: 29978500 DOI: 10.1002/etc.4227] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 03/19/2018] [Accepted: 07/03/2018] [Indexed: 06/08/2023]
Abstract
Urban stormwater is an important but incompletely characterized contributor to surface-water toxicity. The present study used 5 bioassays of 2 model organisms (Daphnia magna and fathead minnow, Pimephales promelas) to investigate stormwater toxicity and mitigation by full-scale iron-enhanced sand filters (IESFs). Stormwater samples were collected from major stormwater conveyances and full-scale IESFs during 4 seasonal events (winter snowmelt and spring, early summer, and late summer rainfalls) and analyzed for a diverse range of contaminants of emerging concern including pharmaceuticals, personal care products, industrial chemicals, and pesticides. Concurrently, stormwater samples were collected for toxicity testing. Seasonality appeared more influential and consistent than site type for most bioassays. Typically, biological consequences were least in early summer and greatest in late summer and winter. In contrast with the unimproved and occasionally reduced biological outcomes in IESF-treated and late summer samples, water chemistry indicated that numbers and total concentrations of detected organic chemicals, metals, and nutrients were reduced in late summer and in IESF-treated stormwater samples. Some potent toxicants showed more specific seasonality (e.g., high concentrations of polycyclic aromatic hydrocarbons and industrial compounds in winter, pesticides in early summer and spring, flame retardants in late summer), which may have influenced outcomes. Potential explanations for insignificant or unexpected stormwater treatment outcomes include confounding effects of complex stormwater matrices, IESF nutrient removal, and, less likely, unmonitored toxicants. Environ Toxicol Chem 2018;37:2645-2659. © 2018 SETAC.
Collapse
Affiliation(s)
- Benjamin M Westerhoff
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, USA
| | | | - Mark L Ferrey
- Minnesota Pollution Control Agency, St. Paul, Minnesota, USA
| | - Adriana Matilla
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, USA
| | - Jordan Kunkel
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, USA
| | | | | | - Dustin Woodruff
- Mid-continent Ecology Division, US Environmental Protection Agency, Duluth, Minnesota
| | - Heiko L Schoenfuss
- Aquatic Toxicology Laboratory, Saint Cloud State University, Saint Cloud, Minnesota, USA
| |
Collapse
|
29
|
Peter KT, Tian Z, Wu C, Lin P, White S, Du B, McIntyre JK, Scholz NL, Kolodziej EP. Using High-Resolution Mass Spectrometry to Identify Organic Contaminants Linked to Urban Stormwater Mortality Syndrome in Coho Salmon. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:10317-10327. [PMID: 30192129 DOI: 10.1021/acs.est.8b03287] [Citation(s) in RCA: 132] [Impact Index Per Article: 18.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Urban stormwater is a major threat to ecological health, causing a range of adverse, mostly sublethal effects. In western North America, urban runoff is acutely lethal to adult coho salmon ( Oncorhynchus kisutch) that spawn each fall in freshwater creeks. Although the mortality syndrome is correlated to urbanization and attributed to road runoff contaminant(s), the causal agent(s) remain unknown. We applied high-resolution mass spectrometry to isolate a coho mortality chemical signature: a list of nontarget and identified features that co-occurred in waters lethal to coho spawners (road runoff from controlled exposures and urban receiving waters from two field observations of symptomatic coho). Hierarchical cluster analysis indicated that tire wear particle (TWP) leachates were most chemically similar to the waters with observed toxicity, relative to other vehicle-derived sources. Prominent road runoff contaminants in the signature included two groups of nitrogen-containing compounds derived from TWP, polyethylene glycols, octylphenol ethoxylates, and polypropylene glycols. A (methoxymethyl)melamine compound family, previously unreported in North America, was detected in road runoff and urban creeks at concentrations up to ∼9 and ∼0.3 μg/L, respectively. The results indicate TWPs are an under-appreciated contaminant source in urban watersheds and should be prioritized for fate and toxicity assessment.
Collapse
Affiliation(s)
- Katherine T Peter
- Center for Urban Waters , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Zhenyu Tian
- Center for Urban Waters , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Christopher Wu
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Peter Lin
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Sarah White
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
| | - Bowen Du
- Southern California Coastal Water Research Project , Costa Mesa , California 92626 , United States
| | - Jenifer K McIntyre
- School of the Environment , Washington State University , Puyallup , Washington 98371 , United States
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service , National Oceanic and Atmospheric Administration , 2725 Montlake Blvd. E. , Seattle , Washington 98112 , United States
| | - Edward P Kolodziej
- Center for Urban Waters , Tacoma , Washington 98421 , United States
- Interdisciplinary Arts and Sciences , University of Washington Tacoma , Tacoma , Washington 98421 , United States
- Department of Civil and Environmental Engineering , University of Washington , Seattle , Washington 98195 , United States
| |
Collapse
|
30
|
McIntyre JK, Lundin JI, Cameron JR, Chow MI, Davis JW, Incardona JP, Scholz NL. Interspecies variation in the susceptibility of adult Pacific salmon to toxic urban stormwater runoff. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 238:196-203. [PMID: 29554567 DOI: 10.1016/j.envpol.2018.03.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 05/26/2023]
Abstract
Adult coho salmon (Oncorhynchus kisutch) prematurely die when they return from the ocean to spawn in urban watersheds throughout northwestern North America. The available evidence suggests the annual mortality events are caused by toxic stormwater runoff. The underlying pathophysiology of the urban spawner mortality syndrome is not known, and it is unclear whether closely related species of Pacific salmon are similarly at risk. The present study co-exposed adult coho and chum (O. keta) salmon to runoff from a high traffic volume urban arterial roadway. The spawners were monitored for the familiar symptoms of the mortality syndrome, including surface swimming, loss of orientation, and loss of equilibrium. Moreover, the hematology of both species was profiled by measuring arterial pH, blood gases, lactate, plasma electrolytes, hematocrit, and glucose. Adult coho developed behavioral symptoms within a few hours of exposure to stormwater. Various measured hematological parameters were significantly altered compared to coho controls, indicating a blood acidosis and ionoregulatory disturbance. By contrast, runoff-exposed chum spawners showed essentially no indications of the mortality syndrome, and measured blood hematological parameters were similar to unexposed chum controls. We conclude that contaminant(s) in urban runoff are the likely cause of the disruption of ion balance and pH in coho but not chum salmon. Among the thousands of chemicals in stormwater, future forensic analyses should focus on the gill or cardiovascular system of coho salmon. Because of their distinctive sensitivity to urban runoff, adult coho remain an important vertebrate indicator species for degraded water quality in freshwater habitats under pressure from human population growth and urbanization.
Collapse
Affiliation(s)
- Jenifer K McIntyre
- Washington State University, Puyallup Research and Extension Center, 2606 W. Pioneer Ave., Puyallup, WA 98371, USA.
| | - Jessica I Lundin
- National Research Council, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - James R Cameron
- Earth Resources Technologies, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Michelle I Chow
- University of Washington, School of Aquatic and Fisheries Sciences, 1122 Boat St., Seattle, WA 98105, USA
| | - Jay W Davis
- U.S. Fish and Wildlife Service, Washington Fish and Wildlife Office, 510 Desmond Dr. S.E., Lacey, WA 98503, USA
| | - John P Incardona
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, WA 98112, USA
| |
Collapse
|
31
|
Urban stormwater runoff negatively impacts lateral line development in larval zebrafish and salmon embryos. Sci Rep 2018; 8:2830. [PMID: 29434264 PMCID: PMC5809384 DOI: 10.1038/s41598-018-21209-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/31/2018] [Indexed: 11/08/2022] Open
Abstract
After a storm, water often runs off of impervious urban surfaces directly into aquatic ecosystems. This stormwater runoff is a cocktail of toxicants that have serious effects on the ecological integrity of aquatic habitats. Zebrafish that develop in stormwater runoff suffer from cardiovascular toxicity and impaired growth, but the effects of stormwater on fish sensory systems are not understood. Our study investigated the effect of stormwater on hair cells of the lateral line in larval zebrafish and coho salmon. Our results showed that although toxicants in stormwater did not kill zebrafish hair cells, these cells did experience damage. Zebrafish developing in stormwater also experienced impaired growth, fewer neuromasts in the lateral line, and fewer hair cells per neuromast. A similar reduction in neuromast number was observed in coho salmon reared in stormwater. Bioretention treatment, intended to filter out harmful constituents of stormwater, rescued the lateral line defects in zebrafish but not in coho salmon, suggesting that not all of the harmful constituents were removed by the filtration media and that salmonids are particularly sensitive to aquatic toxicants. Collectively, these data demonstrate that sub-lethal exposure to stormwater runoff negatively impacts a fish sensory system, which may have consequences for organismal fitness.
Collapse
|
32
|
Feist BE, Buhle ER, Baldwin DH, Spromberg JA, Damm SE, Davis JW, Scholz NL. Roads to ruin: conservation threats to a sentinel species across an urban gradient. ECOLOGICAL APPLICATIONS : A PUBLICATION OF THE ECOLOGICAL SOCIETY OF AMERICA 2017; 27:2382-2396. [PMID: 29044812 PMCID: PMC6084292 DOI: 10.1002/eap.1615] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 08/01/2017] [Accepted: 08/03/2017] [Indexed: 05/02/2023]
Abstract
Urbanization poses a global challenge to species conservation. This is primarily understood in terms of physical habitat loss, as agricultural and forested lands are replaced with urban infrastructure. However, aquatic habitats are also chemically degraded by urban development, often in the form of toxic stormwater runoff. Here we assess threats of urbanization to coho salmon throughout developed areas of the Puget Sound Basin in Washington, USA. Puget Sound coho are a sentinel species for freshwater communities and also a species of concern under the U.S. Endangered Species Act. Previous studies have demonstrated that stormwater runoff is unusually lethal to adult coho that return to spawn each year in urban watersheds. To further explore the relationship between land use and recurrent coho die-offs, we measured mortality rates in field surveys of 51 spawning sites across an urban gradient. We then used spatial analyses to measure landscape attributes (land use and land cover, human population density, roadways, traffic intensity, etc.) and climatic variables (annual summer and fall precipitation) associated with each site. Structural equation modeling revealed a latent urbanization gradient that was associated with road density and traffic intensity, among other variables, and positively related to coho mortality. Across years within sites, mortality increased with summer and fall precipitation, but the effect of rainfall was strongest in the least developed areas and was essentially neutral in the most urbanized streams. We used the best-supported structural equation model to generate a predictive mortality risk map for the entire Puget Sound Basin. This map indicates an ongoing and widespread loss of spawners across much of the Puget Sound population segment, particularly within the major regional north-south corridor for transportation and development. Our findings identify current and future urbanization-related threats to wild coho, and show where green infrastructure and similar clean water strategies could prove most useful for promoting species conservation and recovery.
Collapse
Affiliation(s)
- Blake E. Feist
- Conservation Biology DivisionNorthwest Fisheries Science CenterNational Marine Fisheries Service, NOAA2725 Montlake Boulevard EastSeattleWashington98112USA
| | - Eric R. Buhle
- Quantitative Consultants, Inc.Under contract to Northwest Fisheries Science CenterNational Marine Fisheries Service, NOAA2725 Montlake Boulevard EastSeattleWashington98112USA
| | - David H. Baldwin
- Environmental and Fisheries Sciences DivisionNorthwest Fisheries Science CenterNational Marine Fisheries Service, NOAA2725 Montlake Boulevard EastSeattleWashington98112USA
| | - Julann A. Spromberg
- Environmental and Fisheries Sciences DivisionNorthwest Fisheries Science CenterNational Marine Fisheries Service, NOAA2725 Montlake Boulevard EastSeattleWashington98112USA
| | - Steven E. Damm
- Washington Fish and Wildlife OfficeUnited States Fish and Wildlife Service510 Desmond Drive SELaceyWashington98392USA
| | - Jay W. Davis
- Washington Fish and Wildlife OfficeUnited States Fish and Wildlife Service510 Desmond Drive SELaceyWashington98392USA
| | - Nathaniel L. Scholz
- Environmental and Fisheries Sciences DivisionNorthwest Fisheries Science CenterNational Marine Fisheries Service, NOAA2725 Montlake Boulevard EastSeattleWashington98112USA
| |
Collapse
|
33
|
Du B, Lofton JM, Peter KT, Gipe AD, James CA, McIntyre JK, Scholz NL, Baker JE, Kolodziej EP. Development of suspect and non-target screening methods for detection of organic contaminants in highway runoff and fish tissue with high-resolution time-of-flight mass spectrometry. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2017; 19:1185-1196. [PMID: 28825428 DOI: 10.1039/c7em00243b] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Untreated urban stormwater runoff contributes to poor water quality in receiving waters. The ability to identify toxicants and other bioactive molecules responsible for observed adverse effects in a complex mixture of contaminants is critical to effective protection of ecosystem and human health, yet this is a challenging analytical task. The objective of this study was to develop analytical methods using liquid chromatography coupled to high-resolution quadrupole time-of-flight mass spectrometry (LC-QTOF-MS) to detect organic contaminants in highway runoff and in runoff-exposed fish (adult coho salmon, Oncorhynchus kisutch). Processing of paired water and tissue samples facilitated contaminant prioritization and aided investigation of chemical bioavailability and uptake processes. Simple, minimal processing effort solid phase extraction (SPE) and elution procedures were optimized for water samples, and selective pressurized liquid extraction (SPLE) procedures were optimized for fish tissues. Extraction methods were compared by detection of non-target features and target compounds (e.g., quantity and peak area), while minimizing matrix interferences. Suspect screening techniques utilized in-house and commercial databases to prioritize high-risk detections for subsequent MS/MS characterization and identification efforts. Presumptive annotations were also screened with an in-house linear regression (log Kowvs. retention time) to exclude isobaric compounds. Examples of confirmed identifications (via reference standard comparison) in highway runoff include ethoprophos, prometon, DEET, caffeine, cotinine, 4(or 5)-methyl-1H-methylbenzotriazole, and acetanilide. Acetanilide was also detected in runoff-exposed fish gill and liver samples. Further characterization of highway runoff and fish tissues (14 and 19 compounds, respectively with tentative identification by MS/MS data) suggests that many novel or poorly characterized organic contaminants exist in urban stormwater runoff and exposed biota.
Collapse
Affiliation(s)
- Bowen Du
- Interdisciplinary Arts and Sciences, Center for Urban Waters, University of Washington Tacoma, Tacoma, WA, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Alves RN, Mariz CF, Paulo DVD, Carvalho PSM. Toxicity of effluents from gasoline stations oil-water separators to early life stages of zebrafish Danio rerio. CHEMOSPHERE 2017; 178:224-230. [PMID: 28329712 DOI: 10.1016/j.chemosphere.2017.03.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 03/03/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
Used petroleum hydrocarbons and gasoline stations runoff are significant sources of polycyclic aromatic hydrocarbons (PAHs) to aquatic ecosystems. Samples of the final effluent of oil-water-separators were collected at gasoline stations in the metropolitan region of Recife, Brazil, before release to sewage or rainwater systems. Effluent soluble fractions (ESF) were prepared and bioassays were performed according to the Fish Embryo Toxicity Test. The test involved exposing zebrafish Danio rerio embryos to dilutions of the ESFs for 96 h, with daily examination of lethality and sublethal morphological effects integrated through the General Morphology Score (GMS), based on the achievement of developmental hallmarks. Frequencies of abnormalities were recorded after exposures. ESF LC50-96h (lethal concentration to 50% of exposed embryos) in the most toxic effluent achieved 8.9% (v/v), equivalent to 11 μg phenanthrene equivalents L-1. GMS scores indicated significantly delayed embryo-larval development at ESF dilutions of 10% and 20% from effluents of all gas stations. Major abnormalities detected after the 96 h exposure included the presence of a yolk sac not fully absorbed coupled with the lack of an inflated swim bladder, lack of both pectoral fins, and the failure to develop a protruding mouth. Effective equivalent PAH concentrations that induce a 50% frequency of larvae without an inflated swim bladder (EC50) were 4.9 μg phenanthrene L-1, 21.8 μg naphthalene L-1, and 34.1 μg chrysene L-1. This study shows that PAHs in ESFs from gas stations oil water separators are toxic to zebrafish, contributing to the toxicity of urban storm waters.
Collapse
Affiliation(s)
| | - Célio Freire Mariz
- Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Brazil
| | | | - Paulo S M Carvalho
- Departamento de Zoologia, Universidade Federal de Pernambuco, Recife, Brazil.
| |
Collapse
|
35
|
Li K, Wu JQ, Jiang LL, Shen LZ, Li JY, He ZH, Wei P, Lv Z, He MF. Developmental toxicity of 2,4-dichlorophenoxyacetic acid in zebrafish embryos. CHEMOSPHERE 2017; 171:40-48. [PMID: 28002765 DOI: 10.1016/j.chemosphere.2016.12.032] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 12/06/2016] [Accepted: 12/07/2016] [Indexed: 05/03/2023]
Abstract
2,4-Dichlorophenoxyacetic acid (2,4-D) is widely used in agriculture as herbicide/pesticide, plant growth regulator and fruit preservative agent. It progressively accumulates in the environment including surface water, air and soil. It could be detected in human food and urine, which poses great risk to the living organisms. In the present study, we investigated the developmental toxicity of 2,4-D on zebrafish (Danio rerio) embryo. 2,4-D exposure significantly decreased both the survival rate (LC50 = 46.71 mg/L) and hatching rate (IC50 = 46.26 mg/L) of zebrafish embryos. The most common developmental defect in 2,4-D treated embryos was pericardial edema. 2,4-D (25 mg/L) upregulated marker genes of cardiac development (vmhc, amhc, hand2, vegf, and gata1) and downregulated marker genes of oxidative stress (cat and gpx1a). Whole mount in situ hybridization confirmed the vmhc and amhc upregulation by 2,4-D treatment. LC/MS/MS showed that the bioaccumulation of 2,4-D in zebrafish embryos were increased in a time-dependent manner after 25 mg/L of 2,4-D treatment. Taken together, our study investigated the toxic effects of 2,4-D on zebrafish embryonic development and its potential molecular mechanisms, gave evidence for the full understanding of 2,4-D toxicity on living organisms and shed light on its environmental impact.
Collapse
Affiliation(s)
- Kang Li
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Jia-Qi Wu
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Ling-Ling Jiang
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Li-Zhen Shen
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Jian-Ying Li
- Nanjing Emory Biotechnology Company, Nanjing, 210042, PR China
| | - Zhi-Heng He
- School of Medicine, Yale University, New Haven, CT 06511, USA
| | - Ping Wei
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China
| | - Zhuo Lv
- Shanxi Institute for Food and Drug Control, Xi'an, 710065, PR China
| | - Ming-Fang He
- Institute of Translational Medicine, College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211800, PR China.
| |
Collapse
|
36
|
|
37
|
Anderson BS, Phillips BM, Voorhees JP, Siegler K, Tjeerdema R. Bioswales reduce contaminants associated with toxicity in urban storm water. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2016; 35:3124-3134. [PMID: 27145488 DOI: 10.1002/etc.3472] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2016] [Revised: 03/25/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
Contamination and toxicity associated with urban storm water runoff are a growing concern because of the potential impacts on receiving systems. California water regulators are mandating implementation of green infrastructure as part of new urban development projects to treat storm water and increase infiltration. Parking lot bioswales are low impact development practices that promote filtering of runoff through plants and soil. Studies have demonstrated that bioswales reduce concentrations of suspended sediments, metals, and hydrocarbons. There have been no published studies evaluating how well these structures treat current-use pesticides, and studies have largely ignored whether bioswales reduce toxicity in surface water. Three storms were monitored at 3 commercial and residential sites, and reductions of contaminants and associated toxicity were quantified. Toxicity testing showed that the majority of untreated storm water samples were toxic to amphipods (Hyalella azteca) and midges (Chironomus dilutus), and toxicity was reduced by the bioswales. No samples were toxic to daphnids (Ceriodaphnia dubia) or fish (Pimephales promelas). Contaminants were significantly reduced by the bioswales, including suspended solids (81% reduction), metals (81% reduction), hydrocarbons (82% reduction), and pyrethroid pesticides (74% reduction). The single exception was the phenypyrazole pesticide fipronil, which showed inconsistent treatment. The results demonstrate these systems effectively treat contaminated storm water associated with surface water toxicity but suggest that modifications of their construction may be required to treat some contaminant classes. Environ Toxicol Chem 2016;35:3124-3134. © 2016 SETAC.
Collapse
Affiliation(s)
- Brian S Anderson
- Marine Pollution Studies Laboratory, Department of Environmental Toxicology, University of California, Davis, Monterey, California, USA
| | - Bryn M Phillips
- Marine Pollution Studies Laboratory, Department of Environmental Toxicology, University of California, Davis, Monterey, California, USA
| | - Jennifer P Voorhees
- Marine Pollution Studies Laboratory, Department of Environmental Toxicology, University of California, Davis, Monterey, California, USA
| | - Katie Siegler
- Marine Pollution Studies Laboratory, Department of Environmental Toxicology, University of California, Davis, Monterey, California, USA
| | - Ronald Tjeerdema
- Marine Pollution Studies Laboratory, Department of Environmental Toxicology, University of California, Davis, Monterey, California, USA
| |
Collapse
|
38
|
Carpenter KD, Kuivila KM, Hladik ML, Haluska T, Cole MB. Storm-event-transport of urban-use pesticides to streams likely impairs invertebrate assemblages. ENVIRONMENTAL MONITORING AND ASSESSMENT 2016; 188:345. [PMID: 27170357 PMCID: PMC4869748 DOI: 10.1007/s10661-016-5215-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 03/01/2016] [Indexed: 05/22/2023]
Abstract
Insecticide use in urban areas results in the detection of these compounds in streams following stormwater runoff at concentrations likely to cause toxicity for stream invertebrates. In this 2013 study, stormwater runoff and streambed sediments were analyzed for 91 pesticides dissolved in water and 118 pesticides on sediment. Detections included 33 pesticides, including insecticides, fungicides, herbicides, degradates, and a synergist. Patterns in pesticide occurrence reveal transport of dissolved and sediment-bound pesticides, including pyrethroids, from upland areas through stormwater outfalls to receiving streams. Nearly all streams contained at least one insecticide at levels exceeding an aquatic-life benchmark, most often for bifenthrin and (or) fipronil. Multiple U.S. EPA benchmark or criterion exceedances occurred in 40 % of urban streams sampled. Bed sediment concentrations of bifenthrin were highly correlated (p < 0.001) with benthic invertebrate assemblages. Non-insects and tolerant invertebrates such as amphipods, flatworms, nematodes, and oligochaetes dominated streams with relatively high concentrations of bifenthrin in bed sediments, whereas insects, sensitive invertebrates, and mayflies were much more abundant at sites with no or low bifenthrin concentrations. The abundance of sensitive invertebrates, % EPT, and select mayfly taxa were strongly negatively correlated with organic-carbon normalized bifenthrin concentrations in streambed sediments. Our findings from western Clackamas County, Oregon (USA), expand upon previous research demonstrating the transport of pesticides from urban landscapes and linking impaired benthic invertebrate assemblages in urban streams with exposure to pyrethroid insecticides.
Collapse
Affiliation(s)
- Kurt D Carpenter
- Oregon Water Science Center, 2130 SW 5th Avenue, Portland, OR, 97201, USA.
| | - Kathryn M Kuivila
- Oregon Water Science Center, 2130 SW 5th Avenue, Portland, OR, 97201, USA
| | - Michelle L Hladik
- California Water Science Center, 6000 J Street, Placer Hall, Sacramento, CA, 95819, USA
| | - Tana Haluska
- Oregon Water Science Center, 2130 SW 5th Avenue, Portland, OR, 97201, USA
| | - Michael B Cole
- Cole Ecological, Inc., 15 Bank Row, Suite B, Greenfield, MA, 01301, USA
| |
Collapse
|
39
|
Sommers F, Mudrock E, Labenia J, Baldwin D. Effects of salinity on olfactory toxicity and behavioral responses of juvenile salmonids from copper. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 175:260-8. [PMID: 27082980 DOI: 10.1016/j.aquatox.2016.04.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 04/01/2016] [Accepted: 04/02/2016] [Indexed: 05/28/2023]
Abstract
Dissolved copper is one of the more pervasive and toxic constituents of stormwater runoff and is commonly found in stream, estuary, and coastal marine habitats of juvenile salmon. While stormwater runoff does not usually carry copper concentrations high enough to result in acute lethality, they are of concern because sublethal concentrations of copper exposure have been shown to both impair olfactory function and alter behavior in various species in freshwater. To compare these results to other environments that salmon are likely to encounter, experiments were conducted to evaluate the effects of salinity on the impairment of olfactory function and avoidance of copper. Copper concentrations well within the range of those found in urban watersheds, have been shown to diminish or eliminate the olfactory response to the amino acid, l-serine in freshwater using electro-olfactogram (EOG) techniques. The olfactory responses of both freshwater-phase and seawater-phase coho and seawater-phase Chinook salmon, were tested in freshwater or seawater, depending on phase, and freshwater-phase coho at an intermediate salinity of 10‰. Both 10‰ salinity and full strength seawater protected against the effects of 50μg copper/L. In addition to impairing olfactory response, copper has also been shown to alter salmon behavior by causing an avoidance response. To determine whether copper will cause avoidance behavior at different salinities, experiments were conducted using a multi-chambered experimental tank. The circular tank was divided into six segments by water currents so that copper could be contained within one segment yet fish could move freely between them. The presence of individual fish in each of the segments was counted before and after introduction of dissolved copper (<20μg/L) to one of the segments in both freshwater and seawater. To address whether use of preferred habitat is altered by the presence of copper, experiments were also conducted with a submerged structural element. The presence of sub-lethal levels of dissolved copper altered the behavior of juvenile Chinook salmon by inducing an avoidance response in both freshwater and seawater. While increased salinity is protective against loss of olfactory function from dissolved copper, avoidance could potentially affect behaviors beneficial to growth, survival and reproductive success.
Collapse
Affiliation(s)
- Frank Sommers
- National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Blvd, E., Seattle, WA 98112, United States.
| | - Emma Mudrock
- Washington State University, Puyallup Research and Extension Center, 2606 W. Pioneer Ave., Puyallup, WA 98371, United States.
| | - Jana Labenia
- National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Blvd, E., Seattle, WA 98112, United States.
| | - David Baldwin
- National Marine Fisheries Service, Northwest Fisheries Science Center, 2725 Montlake Blvd, E., Seattle, WA 98112, United States.
| |
Collapse
|
40
|
Tierney KB. Chemical avoidance responses of fishes. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2016; 174:228-241. [PMID: 26970365 DOI: 10.1016/j.aquatox.2016.02.021] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 02/05/2016] [Accepted: 02/26/2016] [Indexed: 06/05/2023]
Abstract
The hydrosphere is a repository for all of our waste and mistakes, be they sewage, garbage, process-affected waters, runoff, and gases. For fish living in environments receiving undesirable inputs, moving away seems an obvious way to avoid harm. While this should occur, there are numerous examples where it will not. The inability to avoid harmful environments may lead to sensory impairments that in turn limit the ability to avoid other dangers or locate benefits. For avoidance to occur, the danger must first be perceived, which may not happen if the fish is 'blinded' in some capacity. Second, the danger must be recognized for what it is, which may also not happen if the fish is cognitively confused or impaired. Third, it is possible that the fish may not be able to leave the area, or worse, learns to prefer a toxic environment. Concerning generating regulations around avoidance, there are two possibilities: that an avoidance threshold be used to set guidelines for effluent release with the intention of driving fishes away; the second is to set a contaminant concentration that would not affect the avoidance or attraction responses to other cues. With the complexities of the modern world in which we release diverse pollutants, from light to municipal effluents full of 1000s of chemicals, to the diversity present in ecosystems, it is impossible to have avoidance data on every stimulus-species combination. Nevertheless, we may be able to use existing avoidance response data to predict the likelihood of avoidance of untested stimuli. Where we cannot, this review includes a framework that can be used to direct new research. This review is intended to collate existing avoidance response data, provide a framework for making decisions in the absence of data, and suggest studies that would facilitate the prediction of risk to fish health in environments receiving intentional and unintentional human-based chemical inputs.
Collapse
Affiliation(s)
- Keith B Tierney
- Department of Biological Sciences, University of Alberta, T6 G 2E9, Canada.
| |
Collapse
|
41
|
McIntyre JK, Edmunds RC, Anulacion BF, Davis JW, Incardona JP, Stark JD, Scholz NL. Severe Coal Tar Sealcoat Runoff Toxicity to Fish Is Prevented by Bioretention Filtration. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1570-1578. [PMID: 26654684 DOI: 10.1021/acs.est.5b04928] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Coal tar sealcoats applied to asphalt surfaces in North America, east of the Continental Divide, are enriched in petroleum-derived compounds, including polycyclic aromatic hydrocarbons (PAHs). The release of PAHs and other chemicals from sealcoat has the potential to contaminate nearby water bodies, reducing the resiliency of aquatic communities. Despite this, relatively little is known about the aquatic toxicology of sealcoat-derived contaminants. We assessed the impacts of stormwater runoff from sealcoated asphalt on juvenile coho salmon (Oncorhynchus kisutch) and embryo-larval zebrafish (Danio rerio). We furthermore evaluated the effectiveness of bioretention as a green stormwater method to remove PAHs and reduce lethal and sublethal toxicity in both species. We applied a coal tar sealcoat to conventional asphalt and collected runoff from simulated rainfall events up to 7 months postapplication. Whereas sealcoat runoff was more acutely lethal to salmon, a spectrum of cardiovascular abnormalities was consistently evident in early life stage zebrafish. Soil bioretention effectively reduced PAH concentrations by an order of magnitude, prevented mortality in juvenile salmon, and significantly reduced cardiotoxicity in zebrafish. Our findings show that inexpensive bioretention methods can markedly improve stormwater quality and protect fish health.
Collapse
Affiliation(s)
- Jenifer K McIntyre
- Washington State University , Puyallup Research and Extension Center, 2606 W. Pioneer Avenue, Puyallup, Washington 98371, United States
| | - Richard C Edmunds
- National Research Council Associates Program, under contract to Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard E., Seattle, Washington 98112, United States
| | - Bernadita F Anulacion
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard E., Seattle, Washington 98112, United States
| | - Jay W Davis
- U.S. Fish and Wildlife Service, Washington Fish and Wildlife Office, 510 Desmond Drive S.E., Lacey, Washington 98503, United States
| | - John P Incardona
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard E., Seattle, Washington 98112, United States
| | - John D Stark
- Washington State University , Puyallup Research and Extension Center, 2606 W. Pioneer Avenue, Puyallup, Washington 98371, United States
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, NOAA, 2725 Montlake Boulevard E., Seattle, Washington 98112, United States
| |
Collapse
|
42
|
McIntyre JK, Edmunds RC, Redig MG, Mudrock EM, Davis JW, Incardona JP, Stark JD, Scholz NL. Confirmation of Stormwater Bioretention Treatment Effectiveness Using Molecular Indicators of Cardiovascular Toxicity in Developing Fish. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:1561-1569. [PMID: 26727247 DOI: 10.1021/acs.est.5b04786] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Urban stormwater runoff is a globally significant threat to the ecological integrity of aquatic habitats. Green stormwater infrastructure methods such as bioretention are increasingly used to improve water quality by filtering chemical contaminants that may be harmful to fish and other species. Ubiquitous examples of toxics in runoff from highways and other impervious surfaces include polycyclic aromatic hydrocarbons (PAHs). Certain PAHs are known to cause functional and structural defects in developing fish hearts. Therefore, abnormal heart development in fish can be a sensitive measure of clean water technology effectiveness. Here we use the zebrafish experimental model to assess the effects of untreated runoff on the expression of genes that are classically responsive to contaminant exposures, as well as heart-related genes that may underpin the familiar cardiotoxicity phenotype. Further, we assess the effectiveness of soil bioretention for treating runoff, as measured by prevention of both visible cardiac toxicity and corresponding gene regulation. We find that contaminants in the dissolved phase of runoff (e.g., PAHs) are cardiotoxic and that soil bioretention protects against these harmful effects. Molecular markers were more sensitive than visible toxicity indicators, and several cardiac-related genes show promise as novel tools for evaluating the effectiveness of evolving stormwater mitigation strategies.
Collapse
Affiliation(s)
- Jenifer K McIntyre
- Puyallup Research and Extension Center, Washington State University , 2606 West Pioneer Avenue, Puyallup, Washington 98371, United States
| | | | - Maria G Redig
- Evergreen State College, 2700 Parkway NW, Olympia, Washington 98505, United States
| | - Emma M Mudrock
- Puyallup Research and Extension Center, Washington State University , 2606 West Pioneer Avenue, Puyallup, Washington 98371, United States
| | - Jay W Davis
- U.S. Fish and Wildlife Service, Washington Fish and Wildlife Office, 510 Desmond Drive S.E., Lacey, Washington 98503, United States
| | | | - John D Stark
- Puyallup Research and Extension Center, Washington State University , 2606 West Pioneer Avenue, Puyallup, Washington 98371, United States
| | | |
Collapse
|
43
|
Gosset A, Ferro Y, Durrieu C. Methods for evaluating the pollution impact of urban wet weather discharges on biocenosis: A review. WATER RESEARCH 2016; 89:330-354. [PMID: 26720196 DOI: 10.1016/j.watres.2015.11.020] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Revised: 11/02/2015] [Accepted: 11/07/2015] [Indexed: 06/05/2023]
Abstract
Rainwater becomes loaded with a large number of pollutants when in contact with the atmosphere and urban surfaces. These pollutants (such as metals, pesticides, PAHs, PCBs) reduce the quality of water bodies. As it is now acknowledged that physico-chemical analyses alone are insufficient for identifying an ecological impact, these analyses are frequently completed or replaced by impact studies communities living in freshwater ecosystems (requiring biological indices), ecotoxicological studies, etc. Thus, different monitoring strategies have been developed over recent decades aimed at evaluating the impact of the pollution brought by urban wet weather discharges on the biocenosis of receiving aquatic ecosystems. The purpose of this review is to establish a synthetic and critical view of these different methods used, to define their advantages and disadvantages, and to provide recommendations for futures researches. Although studies on aquatic communities are used efficiently, notably on benthic macroinvertebrates, they are difficult to interpret. In addition, despite the fact that certain bioassays lack representativeness, the literature at present appears meagre regarding ecotoxicological studies conducted in situ. However, new tools for studying urban wet weather discharges have emerged, namely biosensors. The advantages of biosensors are that they allow monitoring the impact of discharges in situ and continuously. However, only one study on this subject has been identified so far, making it necessary to perform further research in this direction.
Collapse
Affiliation(s)
- Antoine Gosset
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue Maurice Audin, 69518 Vaulx-en-Velin, France.
| | - Yannis Ferro
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue Maurice Audin, 69518 Vaulx-en-Velin, France
| | - Claude Durrieu
- Université de Lyon, ENTPE, CNRS, UMR 5023 LEHNA, 3 Rue Maurice Audin, 69518 Vaulx-en-Velin, France
| |
Collapse
|
44
|
Spromberg JA, Baldwin DH, Damm SE, McIntyre JK, Huff M, Sloan CA, Anulacion BF, Davis JW, Scholz NL. Coho salmon spawner mortality in western US urban watersheds: bioinfiltration prevents lethal storm water impacts. J Appl Ecol 2015; 53:398-407. [PMID: 27667853 PMCID: PMC5019255 DOI: 10.1111/1365-2664.12534] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/02/2015] [Indexed: 01/22/2023]
Abstract
Adult coho salmon Oncorhynchus kisutch return each autumn to freshwater spawning habitats throughout western North America. The migration coincides with increasing seasonal rainfall, which in turn increases storm water run-off, particularly in urban watersheds with extensive impervious land cover. Previous field assessments in urban stream networks have shown that adult coho are dying prematurely at high rates (>50%). Despite significant management concerns for the long-term conservation of threatened wild coho populations, a causal role for toxic run-off in the mortality syndrome has not been demonstrated.We exposed otherwise healthy coho spawners to: (i) artificial storm water containing mixtures of metals and petroleum hydrocarbons, at or above concentrations previously measured in urban run-off; (ii) undiluted storm water collected from a high traffic volume urban arterial road (i.e. highway run-off); and (iii) highway run-off that was first pre-treated via bioinfiltration through experimental soil columns to remove pollutants.We find that mixtures of metals and petroleum hydrocarbons - conventional toxic constituents in urban storm water - are not sufficient to cause the spawner mortality syndrome. By contrast, untreated highway run-off collected during nine distinct storm events was universally lethal to adult coho relative to unexposed controls. Lastly, the mortality syndrome was prevented when highway run-off was pretreated by soil infiltration, a conventional green storm water infrastructure technology.Our results are the first direct evidence that: (i) toxic run-off is killing adult coho in urban watersheds, and (ii) inexpensive mitigation measures can improve water quality and promote salmon survival. Synthesis and applications. Coho salmon, an iconic species with exceptional economic and cultural significance, are an ecological sentinel for the harmful effects of untreated urban run-off. Wild coho populations cannot withstand the high rates of mortality that are now regularly occurring in urban spawning habitats. Green storm water infrastructure or similar pollution prevention methods should be incorporated to the maximal extent practicable, at the watershed scale, for all future development and redevelopment projects, particularly those involving transportation infrastructure.
Collapse
Affiliation(s)
- Julann A Spromberg
- Ocean Associates, Under Contract to Northwest Fisheries Science Center National Marine Fisheries Service NOAA 2725 Montlake Blvd. E. Seattle WA 98112 USA
| | - David H Baldwin
- Environmental and Fisheries Science Division Northwest Fisheries Science Center National Marine Fisheries Service NOAA 2725 Montlake Blvd. E. Seattle WA 98112 USA
| | - Steven E Damm
- U.S. Fish and Wildlife Service Washington Fish and Wildlife Office 510 Desmond Dr. S.E. Lacey WA 98503 USA
| | - Jenifer K McIntyre
- Puyallup Research and Extension Center Washington State University 2606 W. Pioneer Ave. Puyallup WA 98371 USA
| | - Michael Huff
- Suquamish Tribe PO Box 498 18490, Suquamish Way Suquamish WA 98392 USA
| | - Catherine A Sloan
- Environmental and Fisheries Science Division Northwest Fisheries Science Center National Marine Fisheries Service NOAA 2725 Montlake Blvd. E. Seattle WA 98112 USA
| | - Bernadita F Anulacion
- Environmental and Fisheries Science Division Northwest Fisheries Science Center National Marine Fisheries Service NOAA 2725 Montlake Blvd. E. Seattle WA 98112 USA
| | - Jay W Davis
- U.S. Fish and Wildlife Service Washington Fish and Wildlife Office 510 Desmond Dr. S.E. Lacey WA 98503 USA
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division Northwest Fisheries Science Center National Marine Fisheries Service NOAA 2725 Montlake Blvd. E. Seattle WA 98112 USA
| |
Collapse
|
45
|
McIntyre JK, Davis JW, Hinman C, Macneale KH, Anulacion BF, Scholz NL, Stark JD. Soil bioretention protects juvenile salmon and their prey from the toxic impacts of urban stormwater runoff. CHEMOSPHERE 2015; 132:213-9. [PMID: 25576131 DOI: 10.1016/j.chemosphere.2014.12.052] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2014] [Revised: 12/11/2014] [Accepted: 12/12/2014] [Indexed: 05/14/2023]
Abstract
Green stormwater infrastructure (GSI), or low impact development, encompasses a diverse and expanding portfolio of strategies to reduce the impacts of stormwater runoff on natural systems. Benchmarks for GSI success are usually framed in terms of hydrology and water chemistry, with reduced flow and loadings of toxic chemical contaminants as primary metrics. Despite the central goal of protecting aquatic species abundance and diversity, the effectiveness of GSI treatments in maintaining diverse assemblages of sensitive aquatic taxa has not been widely evaluated. In the present study we characterized the baseline toxicity of untreated urban runoff from a highway in Seattle, WA, across six storm events. For all storms, first flush runoff was toxic to the daphniid Ceriodaphnia dubia, causing up to 100% mortality or impairing reproduction among survivors. We then evaluated whether soil media used in bioretention, a conventional GSI method, could reduce or eliminate toxicity to juvenile coho salmon (Oncorhynchus kisutch) as well as their macroinvertebrate prey, including cultured C. dubia and wild-collected mayfly nymphs (Baetis spp.). Untreated highway runoff was generally lethal to salmon and invertebrates, and this acute mortality was eliminated when the runoff was filtered through soil media in bioretention columns. Soil treatment also protected against sublethal reproductive toxicity in C. dubia. Thus, a relatively inexpensive GSI technology can be highly effective at reversing the acutely lethal and sublethal effects of urban runoff on multiple aquatic species.
Collapse
Affiliation(s)
- J K McIntyre
- Washington State University, Puyallup Research and Extension Center, Puyallup, WA, USA.
| | - J W Davis
- U.S. Fish & Wildlife Service, Washington Fish and Wildlife Office, Lacey, WA, USA
| | - C Hinman
- Washington State University, Puyallup Research and Extension Center, Puyallup, WA, USA
| | - K H Macneale
- National Ocean and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA, USA
| | - B F Anulacion
- National Ocean and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA, USA
| | - N L Scholz
- National Ocean and Atmospheric Administration, National Marine Fisheries Service, Northwest Fisheries Science Center, Seattle, WA, USA
| | - J D Stark
- Washington State University, Puyallup Research and Extension Center, Puyallup, WA, USA
| |
Collapse
|
46
|
Liu Y, Bralts VF, Engel BA. Evaluating the effectiveness of management practices on hydrology and water quality at watershed scale with a rainfall-runoff model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2015; 511:298-308. [PMID: 25553544 DOI: 10.1016/j.scitotenv.2014.12.077] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Revised: 12/16/2014] [Accepted: 12/22/2014] [Indexed: 06/04/2023]
Abstract
The adverse influence of urban development on hydrology and water quality can be reduced by applying best management practices (BMPs) and low impact development (LID) practices. This study applied green roof, rain barrel/cistern, bioretention system, porous pavement, permeable patio, grass strip, grassed swale, wetland channel, retention pond, detention basin, and wetland basin, on Crooked Creek watershed. The model was calibrated and validated for annual runoff volume. A framework for simulating BMPs and LID practices at watershed scales was created, and the impacts of BMPs and LID practices on water quantity and water quality were evaluated with the Long-Term Hydrologic Impact Assessment-Low Impact Development 2.1 (L-THIA-LID 2.1) model for 16 scenarios. The various levels and combinations of BMPs/LID practices reduced runoff volume by 0 to 26.47%, Total Nitrogen (TN) by 0.30 to 34.20%, Total Phosphorus (TP) by 0.27 to 47.41%, Total Suspended Solids (TSS) by 0.33 to 53.59%, Lead (Pb) by 0.30 to 60.98%, Biochemical Oxygen Demand (BOD) by 0 to 26.70%, and Chemical Oxygen Demand (COD) by 0 to 27.52%. The implementation of grass strips in 25% of the watershed where this practice could be applied was the most cost-efficient scenario, with cost per unit reduction of $1m3/yr for runoff, while cost for reductions of two pollutants of concern was $445 kg/yr for Total Nitrogen (TN) and $4871 kg/yr for Total Phosphorous (TP). The scenario with very high levels of BMP and LID practice adoption (scenario 15) reduced runoff volume and pollutant loads from 26.47% to 60.98%, and provided the greatest reduction in runoff volume and pollutant loads among all scenarios. However, this scenario was not as cost-efficient as most other scenarios. The L-THIA-LID 2.1 model is a valid tool that can be applied to various locations to help identify cost effective BMP/LID practice plans at watershed scales.
Collapse
Affiliation(s)
- Yaoze Liu
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093, USA
| | - Vincent F Bralts
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093, USA
| | - Bernard A Engel
- Department of Agricultural and Biological Engineering, Purdue University, 225 South University Street, West Lafayette, IN 47907-2093, USA.
| |
Collapse
|