1
|
Liebmann L, Schreiner VC, Vormeier P, Weisner O, Liess M. Combined effects of herbicides and insecticides reduce biomass of sensitive aquatic invertebrates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174343. [PMID: 38960172 DOI: 10.1016/j.scitotenv.2024.174343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024]
Abstract
The structure and biomass of aquatic invertebrate communities play a crucial role in the matter dynamics of streams. However, biomass is rarely quantified in ecological assessments of streams, and little is known about the environmental and anthropogenic factors that influence it. In this study, we aimed to identify environmental factors that are associated with invertebrate structure and biomass through a monitoring of 25 streams across Germany. We identified invertebrates, assigned them to taxonomic and trait-based groups, and quantified biomass using image-based analysis. We found that insecticide pressure generally reduced the abundance of insecticide-vulnerable populations (R2 = 0.43 applying SPEARpesticides indicator), but not invertebrate biomass. In contrast, herbicide pressure reduced the biomass of several biomass aggregations. Especially, insecticide-sensitive populations, that were directly (algae feeder, R2 = 0.39) or indirectly (predators, R2 = 0.29) dependent on algae, were affected. This indicated a combined effect of possible food shortage due to herbicides and direct insecticide pressure. Specifically, all streams with increased herbicide pressure showed a reduced overall biomass share of Trichoptera from 43 % to 3 % and those of Ephemeroptera from 20 % to 3 % compared to streams grouped by low herbicide pressure. In contrast, insecticide-insensitive Gastropoda increased from 10 % to 45 %, and non-vulnerable leaf-shredding Crustacea increased from 10 % to 22 %. In summary, our results indicate that at the community level, the direct effects of insecticides and the indirect, food-mediated effects of herbicides exert a combined effect on the biomass of sensitive insect groups, thus disrupting food chains at ecosystem level.
Collapse
Affiliation(s)
- Liana Liebmann
- UFZ, Helmholtz Centre for Environmental Research, System-Ecotoxicology, 04318 Leipzig, Germany; Department Evolutionary Ecology & Environmental Toxicology (E3T), Institute of Ecology, Diversity and Evolution, Faculty of Biological Sciences, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Verena C Schreiner
- Ecotoxicology, Research Centre One Health Ruhr of the University Alliance Ruhr, Faculty of Biology, University Duisburg-Essen, 45141 Essen, Germany
| | - Philipp Vormeier
- UBA, German Environment Agency, Department Water and Soil, 06844 Dessau-Roßlau, Germany
| | - Oliver Weisner
- UBA, German Environment Agency, Department International Aspects and Pesticides, 06844 Dessau-Roßlau, Germany
| | - Matthias Liess
- UFZ, Helmholtz Centre for Environmental Research, System-Ecotoxicology, 04318 Leipzig, Germany; RWTH Aachen University, Institute of Ecology & Computational Life Science, 52056 Aachen, Germany.
| |
Collapse
|
2
|
Zeb R, Yin X, Chen F, Wang KJ. Sex-specific divergent responses of marine medaka (Oryzias melastigma) towards long-term benzo[a]pyrene exposure revealed stronger resilience and recoverability in female fish. CHEMOSPHERE 2024; 364:143077. [PMID: 39134182 DOI: 10.1016/j.chemosphere.2024.143077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 07/29/2024] [Accepted: 08/09/2024] [Indexed: 08/17/2024]
Abstract
Benzo[a]pyrene (BaP), a representative five-membered polycyclic aromatic hydrocarbon, has been extensively studied as a pollutant for decades. Despite this, sex-specific responses to BaP exposure remain poorly understood. This study employed a life-cycle exposure approach to investigate the effects of prolonged BaP exposure on marine medaka (Oryzias melastigma), highlighting sex-specific responses. After a 90-day exposure period, significant variations in biometric measurements and oxidative stress markers were observed between male and female fish. BaP exposure resulted in weak detoxification defense in males, while females exhibited an opposite response. Transcriptomic analysis revealed 13 significantly enriched pathways in males and 11 in females, with varying numbers of differentially expressed genes between the sexes, highlighting distinct biological responses. Host resistance assay showed higher mortality rates among BaP-exposed males, and suppressed immune gene expressions and lysozyme activity, while females demonstrated enhanced immune genes and lysozyme activity post-challenge, indicating a more resilient defense response. Furthermore, after a one-month depuration period following BaP exposure, male medaka demonstrated slower recoverability compared to females. These findings underscore sex-specific effects of BaP exposure on fish, with females displaying stronger resilience. Understanding these distinctions are crucial for accurately assessing the impact of environmental pollutants on the aquatic population and ecosystem maintenance.
Collapse
Affiliation(s)
- Rabia Zeb
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Xiaohan Yin
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Fangyi Chen
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| | - Ke-Jian Wang
- State Key Laboratory of Marine Environmental Science, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China; State-Province Joint Engineering Laboratory of Marine Bioproducts and Technology, College of Ocean & Earth Sciences, Xiamen University, Xiamen, Fujian, China.
| |
Collapse
|
3
|
Slaby S, Geffard A, Fisson C, Bonnevalle-Normand M, Allonier-Fernandes AS, Amara R, Bado-Nilles A, Bonnard I, Bonnard M, Burlion-Giorgi M, Cant A, Catteau A, Chaumot A, Costil K, Coulaud R, Delahaut L, Diop M, Duflot A, Geffard O, Jestin E, Le Foll F, Le Guernic A, Lopes C, Palos-Ladeiro M, Peignot Q, Poret A, Serpentini A, Tremolet G, Turiès C, Xuereb B. Advancing environmental monitoring across the water continuum combining biomarker analysis in multiple sentinel species: A case study in the Seine-Normandie Basin (France). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120784. [PMID: 38603847 DOI: 10.1016/j.jenvman.2024.120784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/04/2024] [Accepted: 03/27/2024] [Indexed: 04/13/2024]
Abstract
Nowadays, biomarkers are recognized as valuable tools to complement chemical and ecological assessments in biomonitoring programs. They provide insights into the effects of contaminant exposures on individuals and establish connections between environmental pressure and biological response at higher levels. In the last decade, strong improvements in the design of experimental protocols and the result interpretation facilitated the use of biomarker across wide geographical areas, including aquatic continua. Notably, the statistical establishment of reference values and thresholds enabled the discrimination of contamination effects in environmental conditions, allowed interspecies comparisons, and eliminated the need of a reference site. The aim of this work was to study freshwater-estuarine-coastal water continua by applying biomarker measurements in multi-species caged organisms. During two campaigns, eight sentinel species, encompassing fish, mollusks, and crustaceans, were deployed to cover 25 sites from rivers to the sea. As much as possible, a common methodology was employed for biomarker measurements (DNA damage and phagocytosis efficiency) and data interpretation based on guidelines established using reference values and induction/inhibition thresholds (establishment of three effect levels). The methodology was successfully implemented and allowed us to assess the environmental quality. Employing multiple species per site enhances confidence in observed trends. The results highlight the feasibility of integrating biomarker-based environmental monitoring programs across a continuum scale. Biomarker results align with Water Framework Directive indicators in cases of poor site quality. Additionally, when discrepancies arise between chemical and ecological statuses, biomarker findings offer a comprehensive perspective to elucidate the disparities. Presented as a pilot project, this work contributes to gain insights into current biomonitoring needs, providing new questions and perspectives.
Collapse
Affiliation(s)
- Sylvain Slaby
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Alain Geffard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Cédric Fisson
- GIP Seine-Aval, Hangar C - Espace des Marégraphes, CS 41174, 76176, Rouen, Cedex 1, France.
| | - Matthieu Bonnevalle-Normand
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | | | - Rachid Amara
- Université Littoral Côte d'Opale, Université Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Wimereux, France.
| | - Anne Bado-Nilles
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France.
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Marc Bonnard
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Mayélé Burlion-Giorgi
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Amélie Cant
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France.
| | - Audrey Catteau
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Arnaud Chaumot
- INRAE, RiverLy, Ecotoxicology Laboratory, 5 Avenue de la Doua, CS20244, 69625, Villeurbanne Cedex, France.
| | - Katherine Costil
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Université de Caen Normandie UNICAEN, Sorbonne Université, MNHN, UPMC Univ Paris 06, UA, CNRS 8067, IRD 207, Esplanade de la paix, Caen F-14032, France.
| | - Romain Coulaud
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Mamadou Diop
- Université Littoral Côte d'Opale, Université Lille, CNRS, IRD, UMR 8187, LOG, Laboratoire d'Océanologie et de Géosciences, Wimereux, France.
| | - Aurélie Duflot
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Olivier Geffard
- INRAE, RiverLy, Ecotoxicology Laboratory, 5 Avenue de la Doua, CS20244, 69625, Villeurbanne Cedex, France.
| | - Emmanuel Jestin
- Agence de l'eau Seine-Normandie, 12 rue de l'Industrie CS 80148 92416 Courbevoie Cedex, France.
| | - Frank Le Foll
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Antoine Le Guernic
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Christelle Lopes
- Université Lyon 1, CNRS, Laboratoire de Biométrie et Biologie Evolutive UMR5558, 69622, Villeurbanne, France.
| | - Mélissa Palos-Ladeiro
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Quentin Peignot
- Université de Reims Champagne-Ardenne (URCA), UMR-I 02 SEBIO, UFR Sciences Exactes et Naturelles, Campus Moulin de la Housse, BP 1039, 51687, Reims, France.
| | - Agnès Poret
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Antoine Serpentini
- Biologie des Organismes et Ecosystèmes Aquatiques (BOREA) Université de Caen Normandie UNICAEN, Sorbonne Université, MNHN, UPMC Univ Paris 06, UA, CNRS 8067, IRD 207, Esplanade de la paix, Caen F-14032, France.
| | - Gauthier Tremolet
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| | - Cyril Turiès
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO, Parc Technologique Alata, BP 2, 60550, Verneuil-en-Halatte, France.
| | - Benoît Xuereb
- Normandie Univ, UNILEHAVRE, FR CNRS 3730 SCALE, UMR-I 02 Environmental Stress and Aquatic Biomonitoring (SEBIO), F-76600, Le Havre, France.
| |
Collapse
|
4
|
Kronberg MF, Rossen A, Clavijo A, Manetti M, Moya A, Calvo D, Mariani A, Hernández R, Salatino SE, Morábito J, Rossi M, Munarriz E. Integrated water quality assessment of two Rivers Basins from a semiarid region of Argentina. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:2279-2296. [PMID: 38057677 DOI: 10.1007/s11356-023-31298-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
The Tunuyán and Mendoza River Basins (Province of Mendoza, Argentina) have been selected as a representative semiarid region to test the applicability of an integrated water quality evaluation. To detect spatio-temporal variations of anthropic contamination, physicochemical and bacteriological parameters, as well as three ecotoxicological assays, were assessed in reference sites for 3 years. Bioassays based on the nematode Caenorhabditis elegans, the vascular plant Lactuca sativa, and the algae Pseudokirchneriella subcapitata were performed and toxicological categories were established. Our results showed that water quality, as well as water toxicity, deteriorates as both river systems run through urban areas. Interestingly, monitoring sites with good physicochemical and bacteriological qualities but with toxicity were identified, illustrating that traditional water quality studies do not predict potential toxic effects on living organisms. In addition, a multivariate statistical analysis was performed to detect clusters of monitoring sites according to the water quality status. In the context of climate change, this study provides information to support that integrated water monitoring is an essential tool to ensure sustainable water management and to guarantee economic growth, human health, food security, and environmental protection.
Collapse
Affiliation(s)
- María Florencia Kronberg
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires (UBA), Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Avda. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Bioquímica, UBA, Avda. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Ariana Rossen
- Laboratorio Experimental de Tecnologías Sustentables, Instituto Nacional del Agua (INA), Au. Ezeiza -Cañuelas, Tramo Jorge Newbery Km 1620, B1804, Ezeiza, Buenos Aires, Argentina
| | - Araceli Clavijo
- CONICET - Universidad Nacional de Salta, Instituto de Investigaciones en Energía No Convencional, Avda. Bolivia 5150, A4408FVY, Ciudad de Salta, Argentina
| | - Mariana Manetti
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires (UBA), Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Avda. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
- Facultad de Agronomía, Cátedra de Bioquímica, UBA, Avda. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Aldana Moya
- Facultad de Agronomía, Cátedra de Protección Vegetal, UBA, Avda. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina
| | - Daniel Calvo
- Subgerencia de Servicios Hidrológicos, INA, Au., Ezeiza-Cañuelas, Tamo Jorge Newbery Km 1620, B1804, Ezeiza, Buenos Aires, Argentina
| | - Adriana Mariani
- Centro Regional Andino, INA, Belgrano Oeste 210, M5500FIF, Mendoza, Argentina
| | - Rocio Hernández
- Centro Regional Andino, INA, Belgrano Oeste 210, M5500FIF, Mendoza, Argentina
| | - Santa E Salatino
- Centro Regional Andino, INA, Belgrano Oeste 210, M5500FIF, Mendoza, Argentina
| | - José Morábito
- Centro Regional Andino, INA, Belgrano Oeste 210, M5500FIF, Mendoza, Argentina
| | - Mario Rossi
- CONICET - Universidad Austral Genómica Funcional y Ciencia de Datos, Instituto de Investigaciones en Medicina Traslacional (IIMT), Av. Pte. Perón 1500, Derqui, Pilar, Buenos Aires, Argentina
| | - Eliana Munarriz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET) - Universidad de Buenos Aires (UBA), Instituto de Investigaciones en Biociencias Agrícolas y Ambientales (INBA), Avda. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina.
- Facultad de Agronomía, Cátedra de Bioquímica, UBA, Avda. San Martín 4453, C1417DSE, Ciudad Autónoma de Buenos Aires, Argentina.
| |
Collapse
|
5
|
Poyntz-Wright IP, Harrison XA, Johnson A, Zappala S, Tyler CR. Pesticide pollution associations with riverine invertebrate communities in England. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166519. [PMID: 37640080 DOI: 10.1016/j.scitotenv.2023.166519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/27/2023] [Accepted: 08/21/2023] [Indexed: 08/31/2023]
Abstract
Globally freshwater biodiversity has experienced major decline and chemical pollutants are believed to have played a significant role in this decline, but this has not been well quantified for most riverine invertebrate populations. Here we applied a biogeographically independent trait-based bioindicator, SPEARpesticides across sites across five regions (Northern, Midlands and Western, Anglian, Southeast, and Southwest) in England to investigate for associations specifically between pesticide use/pollution and riverine invertebrate communities over a 55-year period (1965-2019). Both spatially and temporally post-1990, the Anglian and Thames regions consistently showed the lowest SPEARpesticides scores, illustrating the presence of fewer pesticide sensitive species. The Anglian region had the highest pesticide use compared to all other regions from 1990 to 2018 and there were negative relationships between the level of pesticide/insecticide use and the regional SPEARpesticides score. Biochemical Oxygen Demand and ammonia, as measures of general water quality, were also negatively correlated with the SPEARpesticides scores across the regions, but these factors were not the driver for the lower SPEARpesticides scores seen in the Anglian region. Based on SPEARpesticides scores, riverine invertebrate communities in England have been most impacted in the Anglian region and we evidence chronic insecticide exposure is likely a significant factor in shaping the status of those invertebrate communities.
Collapse
Affiliation(s)
- Imogen P Poyntz-Wright
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| | - Xavier A Harrison
- Centre for Ecology and Conservation, University of Exeter, Penryn TR10 9FE, UK
| | - Andrew Johnson
- Centre for Ecology and Hydrology, MacLean Building, Benson Lane, Crowmarsh Gifford, Wallingford OX10 8BB, UK
| | - Susan Zappala
- JNCC, Quay House, 2 East Station Road, Fletton Quays, Peterborough PE2 8YY, UK
| | - Charles R Tyler
- Biosciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK.
| |
Collapse
|
6
|
Din I, Khan S, Hesham AEL, Irum S, Daqiang C. Mine Wastewater Treatment with Upflow Anaerobic Fixed Film Reactors. MINE WATER AND THE ENVIRONMENT 2023; 42:340-347. [DOI: 10.1007/s10230-023-00929-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 03/23/2023] [Indexed: 09/02/2023]
|
7
|
Gouin N, Notte AM, Kolok AS, Bertin A. Pesticide exposure affects DNA methylation patterns in natural populations of a mayfly. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 864:161096. [PMID: 36572299 DOI: 10.1016/j.scitotenv.2022.161096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 12/16/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Chemical pollutants derived from agricultural activities represent a major threat to freshwater biota. Despite growing evidence involving epigenetic processes, such as DNA methylation, in response to pesticide contamination in agroecosystems, research on wild populations of non-model species remains scarce, particularly for endemic freshwater arthropods. Using the MethylRAD method, this study investigates whether exposure to pesticide contamination in natural populations of the endemic mayfly A. torrens produces genome wide changes in levels of DNA methylation. From a total of 1,377,147 MethylRAD markers produced from 285 specimens collected at 30 different study sites along the Limarí watershed of north-central Chile, six showed significant differential methylation between populations exposed and unexposed to pesticides. In all cases the effect of pesticides was positive, independent and stronger than the effects detected for other spatial and environmental factors. Only one candidate marker appeared correlated significantly with additional variables, nitrate and calcium levels, which also reflects the impact of agrichemicals and could additionally suggest, to a lower extent, antagonistic effects of mineral salts concentration for this specific marker. These results suggest that the effect of pesticide exposure on methylation levels is apparent at these six MethylRAD markers in A. torrens populations. Such data is challenging to obtain in natural populations and is, for the most part, lacking in ecotoxicological studies. Our study shows that DNA methylation processes are involved in the response to pesticide contamination in populations of the mayfly A. torrens in their natural habitat, and provides new evidence regarding the impact of pesticide contamination and agricultural activities on the endemic fauna of lotic ecosystems.
Collapse
Affiliation(s)
- Nicolas Gouin
- Instituto de Investigación Multidisciplinar en Ciencia y Tecnología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile; Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile; Centro de Estudios Avanzados en Zonas Áridas (CEAZA), Raúl Bitrán 1305, La Serena, Chile.
| | - Ana-Maria Notte
- Programa de doctorado en Biología y Ecología Aplicada, Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile
| | - Alan S Kolok
- Department of Fish and Wildlife Sciences, University of Idaho, Moscow, ID 83844-3002, United States
| | - Angéline Bertin
- Departamento de Biología, Universidad de La Serena, Raúl Bitrán 1305, La Serena, Chile
| |
Collapse
|
8
|
Tagliaferro M, Rocha C, Marques JC, Gonçalves AMM. Assessment of metal exposure (uranium and copper) in fatty acids and carbohydrate profiles of Calamoceras marsupus larvae (Trichoptera) and Alnus glutinosa leaf litter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155613. [PMID: 35523349 DOI: 10.1016/j.scitotenv.2022.155613] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
Physiological changes were explored in fatty acids (FA) and carbohydrate (CHO) composition in the shredder Calamoceras marsupus larvae (Trichoptera) and leaf litter (C. marsupus food) exposed to copper and uranium under natural and experimental conditions. We measured FA and CHO content in leaf litter and larvae specimens from reference and impacted streams, and exposed for 5 weeks to four realistic environmental concentrations of copper (35 μg L-1 and 70 μg L-1) and uranium (25 μg L-1 and 50 μg L-1). Regarding FA, (1) leaf litter had a reduced polyunsaturated FA (PUFA) content in metal treatments, s (14 to 33% of total FA), compared to natural conditions (≥39% of total FA). Leaf litter exposed to uranium also differed in saturated FA (SFA) composition, with lower values in natural conditions and higher values under low uranium concentrations. (2) C. marsupus had/showed low PUFA content under Cu and U exposure, particularly in high uranium concentrations. Detritivores also decreased in PUFA under exposure to both metals, particularly in high uranium concentrations. On the other hand, (1) microorganisms of the biofilm colonizing leaf litter differed in CHO composition between natural (impacted and reference) and experimental conditions, with glucose and galactose being consistently the most abundant sugars, found in different amounts under copper or uranium exposure; (2) CHO of detritivores showed similar high galactose and fucose concentrations in contaminated streams and high copper treatments, whereas low copper treatment showed distinct CHO profiles, with higher mannose, glucose, arabinose, and fucose concentrations. Our study provides evidence of metal exposure effects on FA and CHO contents at different trophic levels, which might alter the quality of food flow in trophic webs.
Collapse
Affiliation(s)
- Marina Tagliaferro
- IDEA - Instituto de Diversidad y Ecología Animal (Universidad Nacional de Córdoba - CONICET), Av, Vélez Sarsfield 299, X5000 JJC Córdoba, Argentina.
| | - Carolina Rocha
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, 3001-456 Coimbra, Portugal
| | - João C Marques
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, 3001-456 Coimbra, Portugal
| | - Ana M M Gonçalves
- University of Coimbra, MARE-Marine and Environmental Sciences Centre, Department of Life Sciences, 3001-456 Coimbra, Portugal; Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
9
|
Anand U, Adelodun B, Cabreros C, Kumar P, Suresh S, Dey A, Ballesteros F, Bontempi E. Occurrence, transformation, bioaccumulation, risk and analysis of pharmaceutical and personal care products from wastewater: a review. ENVIRONMENTAL CHEMISTRY LETTERS 2022; 20:3883-3904. [PMID: 35996725 PMCID: PMC9385088 DOI: 10.1007/s10311-022-01498-7] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/22/2022] [Indexed: 05/02/2023]
Abstract
Almost all aspects of society from food security to disease control and prevention have benefited from pharmaceutical and personal care products, yet these products are a major source of contamination that ends up in wastewater and ecosystems. This issue has been sharply accentuated during the coronavirus disease pandemic 2019 (COVID-19) due to the higher use of disinfectants and other products. Here we review pharmaceutical and personal care products with focus on their occurrence in the environment, detection, risk, and removal. Supplementary Information The online version contains supplementary material available at 10.1007/s10311-022-01498-7.
Collapse
Affiliation(s)
- Uttpal Anand
- Ben-Gurion University of the Negev, 84105 Beer-Sheva, Israel
- Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert Research, Ben Gurion University of the Negev, Midreshet Ben Gurion, 8499000, Israel
| | - Bashir Adelodun
- Department of Agricultural and Biosystems Engineering, University of Ilorin, PMB 1515, Ilorin, Nigeria
- Department of Agricultural Civil Engineering, Kyungpook National University, Daegu, Republic of Korea
| | - Carlo Cabreros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Pankaj Kumar
- Agro-Ecology and Pollution Research Laboratory, Department of Zoology and Environmental Science, Gurukula Kangri (Deemed to Be University), Haridwar, Uttarakhand 249404 India
| | - S. Suresh
- Department of Chemical Engineering, Maulana Azad National Institute of Technology, Bhopal, Madhya Pradesh 462 003 India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, West Bengal 700073 India
| | - Florencio Ballesteros
- Environmental Engineering Program, National Graduate School of Engineering, University of the Philippines, 1101 Diliman, Quezon City, Philippines
| | - Elza Bontempi
- INSTM and Chemistry for Technologies Laboratory, University of Brescia, Via Branze 38, 25123 Brescia, Italy
| |
Collapse
|
10
|
Larras F, Charles S, Chaumot A, Pelosi C, Le Gall M, Mamy L, Beaudouin R. A critical review of effect modeling for ecological risk assessment of plant protection products. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43448-43500. [PMID: 35391640 DOI: 10.1007/s11356-022-19111-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
A wide diversity of plant protection products (PPP) is used for crop protection leading to the contamination of soil, water, and air, which can have ecotoxicological impacts on living organisms. It is inconceivable to study the effects of each compound on each species from each compartment, experimental studies being time consuming and cost prohibitive, and animal testing having to be avoided. Therefore, numerous models are developed to assess PPP ecotoxicological effects. Our objective was to provide an overview of the modeling approaches enabling the assessment of PPP effects (including biopesticides) on the biota. Six categories of models were inventoried: (Q)SAR, DR and TKTD, population, multi-species, landscape, and mixture models. They were developed for various species (terrestrial and aquatic vertebrates and invertebrates, primary producers, micro-organisms) belonging to diverse environmental compartments, to address different goals (e.g., species sensitivity or PPP bioaccumulation assessment, ecosystem services protection). Among them, mechanistic models are increasingly recognized by EFSA for PPP regulatory risk assessment but, to date, remain not considered in notified guidance documents. The strengths and limits of the reviewed models are discussed together with improvement avenues (multigenerational effects, multiple biotic and abiotic stressors). This review also underlines a lack of model testing by means of field data and of sensitivity and uncertainty analyses. Accurate and robust modeling of PPP effects and other stressors on living organisms, from their application in the field to their functional consequences on the ecosystems at different scales of time and space, would help going toward a more sustainable management of the environment. Graphical Abstract Combination of the keyword lists composing the first bibliographic query. Columns were joined together with the logical operator AND. All keyword lists are available in Supplementary Information at https://doi.org/10.5281/zenodo.5775038 (Larras et al. 2021).
Collapse
Affiliation(s)
- Floriane Larras
- INRAE, Directorate for Collective Scientific Assessment, Foresight and Advanced Studies, Paris, 75338, France
| | - Sandrine Charles
- University of Lyon, University Lyon 1, CNRS UMR 5558, Laboratory of Biometry and Evolutionary Biology, Villeurbanne Cedex, 69622, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Ecotoxicology laboratory, Villeurbanne, F-69625, France
| | - Céline Pelosi
- Avignon University, INRAE, UMR EMMAH, Avignon, 84000, France
| | - Morgane Le Gall
- Ifremer, Information Scientifique et Technique, Bibliothèque La Pérouse, Plouzané, 29280, France
| | - Laure Mamy
- Université Paris-Saclay, INRAE, AgroParisTech, UMR ECOSYS, Thiverval-Grignon, 78850, France
| | - Rémy Beaudouin
- Ineris, Experimental Toxicology and Modelling Unit, UMR-I 02 SEBIO, Verneuil en Halatte, 65550, France.
| |
Collapse
|
11
|
Peter KT, Lundin JI, Wu C, Feist BE, Tian Z, Cameron JR, Scholz NL, Kolodziej EP. Characterizing the Chemical Profile of Biological Decline in Stormwater-Impacted Urban Watersheds. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:3159-3169. [PMID: 35166536 DOI: 10.1021/acs.est.1c08274] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Chemical contamination is an increasingly important conservation issue in urban runoff-impacted watersheds. Regulatory and restoration efforts typically evaluate limited conventional parameters and pollutants. However, complex urban chemical mixtures contain hundreds to thousands of organic contaminants that remain unidentified, unregulated, and poorly understood. This study aimed to develop broadly representative metrics of water quality impairment corresponding to previously documented biological degradation along gradients of human impacts. Stream samples (n = 65, baseflow/rainfall conditions, 2017-2018) were collected from 15 regional watersheds (Puget Sound, WA, USA) across an urbanization gradient defined by landscape characteristics. Surface water chemical composition characterized via non-targeted high-resolution mass spectrometry (7068 detections) was highly correlated with landscape-based urbanization gradient (p < 0.01) and season (p < 0.01). Landscape-scale changes in chemical composition closely aligned with two anchors of biological decline: coho salmon (Oncorhynchus kisutch) mortality risk (p < 0.001) and loss of stream macroinvertebrate diversity and abundance (p < 0.001). We isolated and identified 32 indicators for urban runoff impacts and corresponding receiving water ecological health, including well-known anthropogenic contaminants (e.g., caffeine, organophosphates, vehicle-derived chemicals), two related environmental transformation products, and a novel (methoxymethyl)melamine compound. Outcomes support data-directed selection of next-generation water quality indicators for prioritization and evaluation of watershed management efforts intended to protect aquatic ecosystems.
Collapse
Affiliation(s)
- Katherine T Peter
- Center for Urban Waters, 326 East D St., Tacoma, Washington 98421, United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce St., Tacoma, Washington 98402, United States
- National Institute of Standards and Technology, 331 Fort Johnson Rd., Charleston, South Carolina 29412, United States
| | - Jessica I Lundin
- National Research Council Research Associateship Program, Under Contract to Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E., Seattle, Washington 98112, United States
| | - Christopher Wu
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce St., Tacoma, Washington 98402, United States
| | - Blake E Feist
- Conservation Biology Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, Washington 98112, United States
| | - Zhenyu Tian
- Center for Urban Waters, 326 East D St., Tacoma, Washington 98421, United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce St., Tacoma, Washington 98402, United States
| | - James R Cameron
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, Washington 98112, United States
| | - Nathaniel L Scholz
- Environmental and Fisheries Science Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, 2725 Montlake Blvd. E, Seattle, Washington 98112, United States
| | - Edward P Kolodziej
- Center for Urban Waters, 326 East D St., Tacoma, Washington 98421, United States
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, 1900 Commerce St., Tacoma, Washington 98402, United States
- Department of Civil and Environmental Engineering, University of Washington, 201 More Hall, Box 352700, Seattle, Washington 98195, United States
| |
Collapse
|
12
|
Casillas A, de la Torre A, Navarro I, Sanz P, Martínez MDLÁ. Environmental risk assessment of neonicotinoids in surface water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151161. [PMID: 34695473 DOI: 10.1016/j.scitotenv.2021.151161] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/18/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Neonicotinoids (NNIs) are active substances used as insecticides mainly in plant protection products (PPPs) but also in veterinary applications. The increasing evidence of affecting non-targeted organisms led the European Commission to severely restrict or even ban outdoor uses. To evaluate their current use and their influence in the ecological status of freshwater ecosystem, a total of 19 river water samples were collected to determine the presence of 5 NNIs (acetamiprid, clothianidin, imidacloprid, thiamethoxam and thiacloprid) in the Tagus basin. At least one target analyte was quantified by HPLC-MS/MS analysis in 17 of the 19 water samples, with ∑NNIs ranging from <MDL to 16.8 ng/L. Imidacloprid (2.75 ng/L; mean) and acetamiprid (0.47 ng/L) were quantified in most of the samples. Source identification evidences imidacloprid agricultural use. Risk assessment for different trophic levels was conducted with the data obtained calculating Risk Characterization Ratios (RCR) by two approaches, predicted non effect concentrations (PEC/PNEC) and Toxic Units (TU). RCRs were derived for each NNI and for the mixture of all (RCRmix). Results showed risk for imidacloprid in freshwater organism (RCRfw>1) and for the mix of NNIs (RCRmix (PEC/PNEC) > 1). RCRmix(PEC/PNEC) and the sum of toxic units (STU) showed a risky situation for some locations with different organisms related to agriculture practices. This data arouses concern about NNis (legal or forbidden) use in Tagus basin, and manifest the need of monitoring their presence and effect on the aquatic ecosystem.
Collapse
Affiliation(s)
- Alba Casillas
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
| | - Adrián de la Torre
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
| | - Irene Navarro
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
| | - Paloma Sanz
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain
| | - María de Los Ángeles Martínez
- Group of Persistent Organic Pollutants, Department of Environment, CIEMAT, Avda. Complutense 40, 28040 Madrid, Spain.
| |
Collapse
|
13
|
Fernández B, Campillo JA, Chaves-Pozo E, Bellas J, León VM, Albentosa M. Comparative role of microplastics and microalgae as vectors for chlorpyrifos bioacumulation and related physiological and immune effects in mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150983. [PMID: 34678373 DOI: 10.1016/j.scitotenv.2021.150983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 09/27/2021] [Accepted: 10/10/2021] [Indexed: 06/13/2023]
Abstract
Microplastics (MP) are contaminants of concern per se, and also by their capacity to sorb dissolved chemicals from seawater, acting as vehicles for their transfer into marine organisms. Still, the role of MP as vehicles for contaminants and their associated toxicological effects have been poorly investigated. In this work we have compared the role of MP (high density polyethylene, HDPE, ≤22 μm) and of natural organic particles (microalgae, MA) as vehicle for chlorpyrifos (CPF), one of the most common pesticides found in river and coastal waters. We have compared the capacity of MP and MA to carry CPF. Then, the mussel Mytilus galloprovincialis has been exposed for 21 days to dissolved CPF, and to the same amount of CPF loaded onto MP and MA. The concentration of CPF in mussel' tissues and several physiological, energetics and immune parameters have been analyzed after 7 and 21 days of exposure. Results showed similar CPF accumulation in mussel exposed to MP and to MA spiked with CPF. This revealed that MP acted as vector for CPF in a similar way (or even to a lesser extent) than MA. After 21 days of exposure mussels exposed to MP spiked with CPF displayed similar or more pronounced biological effects than mussels exposed to dissolved CPF or to MA loaded with CPF. This suggested that the combined "particle" and "organic contaminant" effect produced an alteration on the biological responses greater than that produced by each stressor alone, although this was evident only after 3 weeks of exposure.
Collapse
Affiliation(s)
- Beatriz Fernández
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| | - Juan A Campillo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| | - Elena Chaves-Pozo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Carretera de la Azohía s/n, 30860, Puerto de Mazarrón, Murcia, Spain.
| | - Juan Bellas
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Vigo, Subida Radio Faro, 50, 36200, Vigo, Spain.
| | - Víctor M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| | - Marina Albentosa
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Calle Varadero, 1, 30740, San Pedro del Pinatar, Murcia, Spain.
| |
Collapse
|
14
|
Cheng F, Li H, Brooks BW, You J. Signposts for Aquatic Toxicity Evaluation in China: Text Mining using Event-Driven Taxonomy within and among Regions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:8977-8986. [PMID: 34142809 DOI: 10.1021/acs.est.1c00152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Selection of toxicity endpoints affects outcomes of risk assessment. Scientific decisions based on more holistic evidence is preferable for designing bioassay batteries rather than subjective selections, particularly when systems are poorly understood. Here, we propose a novel event-driven taxonomy (EDT)-based text mining tool to prioritize stressors likely to elicit water quality deterioration. The tool integrated automated literature collection, natural language processing using adverse outcome pathway-based toxicological terminologies and machine learning to classify event drivers (EDs). From aquatic toxicity assessments within China over the past decade, we gathered over 14 000 sources of information. With a dictionary that included 1039 toxicological terms, 15 bioassay-related modes of actions were mapped, yet less than half of the bioassays could be elucidated by available adverse outcome pathways. To fill these mechanistic knowledge gaps, we developed a Naïve Bayesian ED-classifier to annotate apical responses. The classifier's 4-fold cross-validation reached 74% accuracy and labeled 85% bioassays as 26 EDs. Narcosis, estrogen receptor-, and aryl hydrogen receptor-mediators were the major EDs in aquatic systems across China, whereas individual regions had distinct ED fingerprints. The EDT-based tool provides a promising diagnostic strategy to inform region-specific bioassay design and selection for water quality assessments in a big data era.
Collapse
Affiliation(s)
- Fei Cheng
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Huizhen Li
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| | - Bryan W Brooks
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
- Department of Environmental Science, Institute of Biomedical Studies, Center for Reservoir and Aquatic Systems Research, Baylor University, Waco, Texas 76798, United States
| | - Jing You
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 511443, China
| |
Collapse
|
15
|
Barbieri MV, Peris A, Postigo C, Moya-Garcés A, Monllor-Alcaraz LS, Rambla-Alegre M, Eljarrat E, López de Alda M. Evaluation of the occurrence and fate of pesticides in a typical Mediterranean delta ecosystem (Ebro River Delta) and risk assessment for aquatic organisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 274:115813. [PMID: 33257154 DOI: 10.1016/j.envpol.2020.115813] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 09/14/2020] [Accepted: 10/09/2020] [Indexed: 05/22/2023]
Abstract
Delta ecosystems are areas of high ecologic and economic values, where wildlife commonly shares the territory with intensive agricultural activities, particularly, rice cultivation and seafood production. This work aimed at evaluating the occurrence of a wide spectrum of pesticides and transformation products in the water of irrigation and drainage channels of the Ebro River Delta (NE Spain) during the main rice-growing season, when pesticide application is at its peak. Furthermore, the impact that these contaminants may have on local ecosystems and seafood production activities was assessed. A total of 35 pesticides, mainly associated with rice cultivation, out of the 66 analyzed were detected. Bentazone, propanil, MCPA, acetamiprid, and triallate were found at the μg/L level. Cybutryne, despite being banned in the European Union, was measured for the first time in the area and at concentrations above its environmental quality standard (11-49 ng/L). Sixteen additional banned pesticides were also detected at trace levels, likely due to their desorption from soil and sediment particles. Despite its dilution when discharged into the bay, this study demonstrates that the agricultural use of pesticides may have important effects on water quality and may cause a serious hazard for aquatic non-target organisms, although other factors such as temperature and salinity may play also a relevant role. Bentazone, cybutryne, dicofol, imidacloprid, MCPA, and propanil may pose a moderate to high risk for aquatic organisms at the concentration levels measured during the rice-growing season. The co-occurrence of pesticides may result in a high risk for aquatic organisms in all sampling locations. The finding of the EU Watch List insecticides imidacloprid and acetamiprid at concentrations above their maximum acceptable method detection limit calls for control of their use and revision of their legal status.
Collapse
Affiliation(s)
- Maria Vittoria Barbieri
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona, 08034, Spain
| | - Andrea Peris
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona, 08034, Spain
| | - Cristina Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona, 08034, Spain.
| | - Alba Moya-Garcés
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona, 08034, Spain; Universitat Oberta de Catalunya (UOC), Rambla Del Poblenou 156, Barcelona, 08018, Spain
| | - Luis Simón Monllor-Alcaraz
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona, 08034, Spain
| | - Maria Rambla-Alegre
- Institute of Agriculture and Food Research and Technology (IRTA), Ctra. Poble Nou Km 5.5, Sant Carles de La Ràpita, Tarragona, 43540, Spain
| | - Ethel Eljarrat
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona, 08034, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18, Barcelona, 08034, Spain
| |
Collapse
|
16
|
Castillo-Zacarías C, Barocio ME, Hidalgo-Vázquez E, Sosa-Hernández JE, Parra-Arroyo L, López-Pacheco IY, Barceló D, Iqbal HNM, Parra-Saldívar R. Antidepressant drugs as emerging contaminants: Occurrence in urban and non-urban waters and analytical methods for their detection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 757:143722. [PMID: 33221013 DOI: 10.1016/j.scitotenv.2020.143722] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 10/21/2020] [Accepted: 11/11/2020] [Indexed: 02/05/2023]
Abstract
Antidepressants are drugs with a direct action on the brain's biochemistry through their interaction with the neurotransmitters, such as dopamine, norepinephrine, and serotonin. The increasing worldwide contamination from these drugs may be witnessed through their increasing presence in the urban water cycle. Furthermore, their occurrence has been detected in non-urban water, such as rivers and oceans. Some endemic aquatic animals, such as certain fish and mollusks, have bioaccumulated different antidepressant drugs in their tissues. This problem will increase in the years to come because the present COVID-19 pandemic has increased the general worldwide occurrence of depression and anxiety, triggering the consumption of antidepressants and, consequently, their presence in the environment. This work provides information on the occurrence of the most administrated antidepressants in urban waters, wastewater treatment plants, rivers, and oceans. Furthermore, it provides an overview of the analytical approaches currently used to detect each antidepressant presented. Finally, the ecotoxicological effect of antidepressants on several in vivo models are listed. Considering the information provided in this review, there is an urgent need to test the presence of antidepressant members of the MAOI and TCA groups. Furthermore, incorporating new degradation/immobilization technologies in WWTPs will be useful to stop the increasing occurrence of these drugs in the environment.
Collapse
Affiliation(s)
| | - Mario E Barocio
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | | | | | - Lizeth Parra-Arroyo
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Itzel Y López-Pacheco
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico
| | - Damià Barceló
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18-26, 08034 Barcelona, Spain; Catalan Institute of Water Research, Parc Científic i Tecnològic de la Universitat de Girona, c/Emili Grahit, 101, Edifici H2O, 17003 Girona, Spain; College of Environmental and Resources Sciences, Zhejiang A&F University, Hangzhou 311300, China
| | - Hafiz N M Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey 64849, Mexico.
| | | |
Collapse
|
17
|
Čelić M, Jaén-Gil A, Briceño-Guevara S, Rodríguez-Mozaz S, Gros M, Petrović M. Extended suspect screening to identify contaminants of emerging concern in riverine and coastal ecosystems and assessment of environmental risks. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124102. [PMID: 33049635 DOI: 10.1016/j.jhazmat.2020.124102] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 09/18/2020] [Accepted: 09/22/2020] [Indexed: 06/11/2023]
Abstract
A suspect screening methodology was developed for the fast and reliable identification of 360 contaminants of emerging concern (CECs) of anthropogenic origin in the vulnerable area of the Ebro Delta (Catalonia, Spain) and to track for potential contamination sources. The suspect screening methodology was combined with a risk assessment approach to prioritize the most ecologically relevant CECs. Out of the 360 suspects, 37 compounds were tentatively identified, 22 of which were fully confirmed using isotopically labelled standards. The detected suspect compounds included pesticides, pharmaceuticals, personal care products, stimulants and their metabolites. Pesticides were more ubiquitous in irrigation and drainage channels, while pharmaceuticals, stimulants, and personal care products were the most common in effluent wastewaters, in the receiving freshwater systems as well as in the marine environment. Ten compounds were found to be of high ecological concern, including the pharmaceuticals telmisartan, venlafaxine, and carbamazepine, the herbicides terbuthylazine, desethylterbuthylazine, and terbutryn, the fungicides azoxystrobin, tebuconazole and prochloraz and the insecticide tebufenozide. These compounds could be used as markers of anthropogenic contamination in riverine and coastal ecosystems.
Collapse
Affiliation(s)
- Mira Čelić
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec, 3, 17004 Girona, Spain
| | - Adrián Jaén-Gil
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec, 3, 17004 Girona, Spain
| | | | - Sara Rodríguez-Mozaz
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec, 3, 17004 Girona, Spain
| | - Meritxell Gros
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003 Girona, Spain; University of Girona, Plaça de Sant Domenec, 3, 17004 Girona, Spain.
| | - Mira Petrović
- Catalan Institute for Water Research (ICRA), C/Emili Grahit 101, 17003 Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Passeig Lluís Companys 23, 08010 Barcelona, Spain
| |
Collapse
|
18
|
Peng FJ, Ter Braak CJF, Rico A, Van den Brink PJ. Double constrained ordination for assessing biological trait responses to multiple stressors: A case study with benthic macroinvertebrate communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142171. [PMID: 33254878 DOI: 10.1016/j.scitotenv.2020.142171] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 09/01/2020] [Accepted: 09/01/2020] [Indexed: 06/12/2023]
Abstract
Benthic macroinvertebrate communities are used as indicators for anthropogenic stress in freshwater ecosystems. To better understand the relationship between anthropogenic stress and changes in macroinvertebrate community composition, it is important to understand how different stressors and species traits are associated, and how these associations influence variation in species occurrence and abundances. Here, we show the capacity of the multivariate technique of double constrained correspondence analysis (dc-CA) to analyse trait-environment relationships, and we compare it with the redundancy analysis method on community weighted mean values of traits (CWM-RDA), which is frequently used for this type of analysis. The analyses were based on available biomonitoring data for macroinvertebrate communities from the Danube River. Results from forward selection of traits and environmental variables using dc-CA analyses showed that aquatic stages, reproduction techniques, dispersal tactics, locomotion and substrate relations, altitude, longitudinal and transversal distribution, and substrate preferendum were significantly related to habitat characteristics, hydromorphological alterations and water quality measurements such as physico-chemical parameters, heavy metals, pesticides and pharmaceuticals. Environmental variables significantly associated with traits using the CWM-RDA method were generally consistent with those found in dc-CA analysis. However, the CWM-RDA does neither test nor explicitly select traits, while dc-CA tests and selects both traits and environmental variables. Moreover, the dc-CA analysis revealed that the set of environmental variables was much better in explaining the community data than the available trait set, a kind of information that can neither be obtained from CWM-RDA nor from RLQ (Environment, Link and Trait data), which is a close cousin of dc-CA but not regression-based. Our results suggest that trait-based analysis based on dc-CA may be useful to assess mechanistic links between multiple anthropogenic stressors and ecosystem health, but more data sets should be analysed in the same manner.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Human Biomonitoring Research Unit, Department of Population Health, Luxembourg Institute of Health, 1 A-B rue Thomas Edison, 1445 Strassen, Luxembourg.
| | - Cajo J F Ter Braak
- Biometris, Wageningen University & Research, PO Box 16, 6700 AA Wageningen, the Netherlands
| | - Andreu Rico
- IMDEA Water Institute, Science and Technology Campus of the University of Alcalá, Avenida Punto Com 2, 28805, Alcalá de Henares, Madrid, Spain
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, the Netherlands; Wageningen Environmental Research, Wageningen University & Research, P.O. Box 47, 6700 AA Wageningen, the Netherlands
| |
Collapse
|
19
|
Köck-Schulmeyer M, Ginebreda A, Petrovic M, Giulivo M, Aznar-Alemany Ò, Eljarrat E, Valle-Sistac J, Molins-Delgado D, Diaz-Cruz MS, Monllor-Alcaraz LS, Guillem-Argiles N, Martínez E, Miren LDA, Llorca M, Farré M, Peña JM, Mandaric L, Pérez S, Majone B, Bellin A, Kalogianni E, Skoulikidis NT, Milačič R, Barceló D. Priority and emerging organic microcontaminants in three Mediterranean river basins: Occurrence, spatial distribution, and identification of river basin specific pollutants. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 754:142344. [PMID: 33254885 DOI: 10.1016/j.scitotenv.2020.142344] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/08/2020] [Accepted: 09/09/2020] [Indexed: 05/20/2023]
Abstract
There is a worldwide growing use of chemicals by our developed, industrialized, and technological society. More than 100,000 chemical substances are thus commonly used both by industry and households. Depending on the amount produced, physical-chemical properties, and mode of use, many of them may reach the environment and, notably, the aquatic receiving systems. This may result in undesirable and harmful side-effects on both the human and the ecosystem's health. Mediterranean rivers are largely different from Northern and Central European rivers in terms of hydrological regime, climate conditions (e.g. air temperature, solar irradiation, precipitation), and socio-economics (e.g. land use, tourism, crop types, etc.), with all these factors leading to differences in the relative importance of the environmental stressors, in the classes and levels of the pollutants found and their environmental fate. Furthermore, water scarcity might be critical in affecting water pollution because of the lowered dilution capacity of chemicals. This work provides raw chemical data from different families of microcontaminants identified in three selected Mediterranean rivers (the Sava, Evrotas, and Adige) collected during two sampling campaigns conducted in 2014 and 2015 in three different matrices, namely, water, sediments, and biota (fish). More than 200 organic micropollutants were analyzed, including relevant groups like pharmaceuticals, personal care products, perfluorinated compounds, pesticides, pyrethroid insecticides, flame retardants, and persistent organic pollutants. Data obtained were summarized with some basic statistics for all compound families and matrices analyzed. Observed occurrence and spatial patterns were interpreted both in terms of compound physical-chemical properties and local environmental pressures. Finally, their spatial distribution was examined and their ecotoxicological risk in the water phase was assessed. This allowed locating, at each basin, the most polluted sites ("hot spots") and identifying the respective river basin specific pollutants (RBSPs), prioritizing them in terms of the potential ecotoxicological risk posed to the aquatic ecosystems.
Collapse
Affiliation(s)
| | - Antoni Ginebreda
- Dept. of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain.
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA), Emili Grahit, 101, Edifici H(2)O, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain; Catalan Institution for Research and advanced studies (ICREA), Barcelona, Spain
| | - Monica Giulivo
- Dept. of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Òscar Aznar-Alemany
- Dept. of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ethel Eljarrat
- Dept. of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Jennifer Valle-Sistac
- Dept. of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Daniel Molins-Delgado
- Dept. of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - M Silvia Diaz-Cruz
- Dept. of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | | | - Nuria Guillem-Argiles
- Dept. of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Elena Martínez
- Dept. of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - López de Alda Miren
- Dept. of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Marta Llorca
- Dept. of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Marinella Farré
- Dept. of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Juan Manuel Peña
- Dept. of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ladislav Mandaric
- Catalan Institute for Water Research (ICRA), Emili Grahit, 101, Edifici H(2)O, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain
| | - Sandra Pérez
- Dept. of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Bruno Majone
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123 Trento, Italy
| | - Alberto Bellin
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, I-38123 Trento, Italy
| | - Eleni Kalogianni
- Institute of Marine Biological Resources and Inland Waters (IMBRIW), Hellenic Center for Marine Research (HCMR), 46.7 km Athens-Souniou Av., 190 13, P.O. Box 712, Anavissos, Greece
| | - Nikolaos Th Skoulikidis
- Institute of Marine Biological Resources and Inland Waters (IMBRIW), Hellenic Center for Marine Research (HCMR), 46.7 km Athens-Souniou Av., 190 13, P.O. Box 712, Anavissos, Greece
| | - Radmila Milačič
- Department of Environmental Sciences, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Damià Barceló
- Dept. of Environmental Chemistry, IDAEA-CSIC, c/Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Emili Grahit, 101, Edifici H(2)O, Parc Científic i Tecnològic de la Universitat de Girona, 17003 Girona, Spain
| |
Collapse
|
20
|
Navarro J, Hadjikakou M, Ridoutt B, Parry H, Bryan BA. Pesticide Toxicity Hazard of Agriculture: Regional and Commodity Hotspots in Australia. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:1290-1300. [PMID: 33404222 DOI: 10.1021/acs.est.0c05717] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
While the need to reduce the impacts of pesticide use on the environment is increasingly acknowledged, the existing data on the use of agricultural chemicals are hardly adequate to support this goal. This study presents a novel, spatially explicit, national-scale baseline analysis of pesticide toxicity hazard (the potential for chemicals to do harm). The results show an uneven contribution of land uses and growing regions toward the national aggregate toxicity hazard. A hectare of horticultural crops generates on average ten times more aquatic ecotoxicity hazard and five times more human toxicity hazard than a hectare of broadacre crops, but the higher yields and incomes in horticulture mean that both sectors are similar in terms of environmental efficiency. Livestock is the sector with the least contribution to overall hazard, even when the indirect hazard associated with feed is considered. Metrics such as pesticide use (kg/ha) or spray frequency (sprays/ha), commonly reported in highly aggregated forms, are not linearly related to toxicity hazard and are therefore less informative in driving reductions in impact. We propose toxicity hazard as a more suitable indicator for real-world risk than quantity of pesticide used, especially because actual risk can often be difficult to quantify. Our results will help broaden the discussion around pathways toward sustainability in the land-use sector and identify targeted priorities for action.
Collapse
Affiliation(s)
- Javier Navarro
- CSIRO Agriculture & Food, 306 Carmody Road, St. Lucia, Queensland 4067, Australia
| | - Michalis Hadjikakou
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| | - Bradley Ridoutt
- CSIRO Agriculture & Food, Research Way, Clayton, Victoria 3168, Australia
| | - Hazel Parry
- CSIRO Agriculture & Food, 41 Boggo Road, Dutton Park, Queensland 4102, Australia
| | - Brett A Bryan
- School of Life and Environmental Sciences, Deakin University, Burwood, Victoria 3125, Australia
| |
Collapse
|
21
|
Llorens E, Ginebreda A, la Farré M, Insa S, González-Trujillo JD, Munné A, Solà C, Flò M, Villagrasa M, Barceló D, Sabater S. Occurrence of regulated pollutants in populated Mediterranean basins: Ecotoxicological risk and effects on biological quality. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 747:141224. [PMID: 32771786 DOI: 10.1016/j.scitotenv.2020.141224] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 06/11/2023]
Abstract
Chemical stressors co-occur in mixtures into watercourses and this complicates predicting their effects on their ecological status. Our knowledge of river basin specific pollutants (RBSPs) is still limited, but it remains necessary to ensure the good chemical and ecological status. We performed an exercise on Mediterranean river sites exposed to urban and industrial pressures in order to, i) prioritize the occurring chemicals, ii) assessing the site's specific chemical risk (RQsite), and iii) relating the chemical risk to the biological quality, using as evidences invertebrates and diatom indices. Mediterranean rivers suffer from strong pressures which lead to a poor dilution ability, which makes the inhabiting biota highly vulnerable. The most frequent pollutants in the 89 sites surveyed included pharmaceutical products such as the antibiotics azithromycin, clarithromycin, and erythromycin, and the anti-inflammatory diclofenac, and products of industrial origin such as perfluorinated PFOS, nickel, and nonylphenol. Both the diatom index IPS and the macroinvertebrate index IBMWP hold strong negative correlations to RQsite, indicating a significant contribution of chemicals to biological impairment. Chemical contaminants (but not nutrients or dissolved organic carbon) were associated with significant changes to the taxonomic composition of invertebrate communities, but not to that of diatom communities. Our analyses indeed reveal that the impact of co-occurring chemicals translates onto negative effects in the biological quality. Our approach may be of use to evidence impacts on water resources and water quality in rivers under strong human pressure.
Collapse
Affiliation(s)
- Esther Llorens
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Antoni Ginebreda
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Marinel la Farré
- Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sara Insa
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Juan David González-Trujillo
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Antoni Munné
- Catalan Water Agency, Provença 260, 08036 Barcelona, Spain
| | - Carolina Solà
- Catalan Water Agency, Provença 260, 08036 Barcelona, Spain
| | - Mònica Flò
- Catalan Water Agency, Provença 260, 08036 Barcelona, Spain
| | - Marta Villagrasa
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Universitat de Girona, Girona, Spain
| | - Damià Barceló
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA), Emili Grahit 101, 17003 Girona, Spain; Institute of Aquatic Ecology, University of Girona, Girona, Spain.
| |
Collapse
|
22
|
Petitjean Q, Jean S, Côte J, Larcher T, Angelier F, Ribout C, Perrault A, Laffaille P, Jacquin L. Direct and indirect effects of multiple environmental stressors on fish health in human-altered rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 742:140657. [PMID: 32721751 DOI: 10.1016/j.scitotenv.2020.140657] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 06/24/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Freshwater fish face multiple challenges in human-altered rivers such as trace metal contamination, temperature increase and parasitism. These multiple stressors could have unexpected interactive effects on fish health due to shared physiological pathways, but few studies investigated this question in wild fish populations. In this study, we compared 16 populations of gudgeon (Gobio occitaniae) distributed along perturbation gradients in human-altered rivers in the South of France. We tested the effects of single and combined stressors (i.e., metal contamination, temperature, parasitism) on key traits linked to fish health across different biological levels using a Structural Equation Modelling approach. Parasitism and temperature alone had limited deleterious effects on fish health. In contrast, fish living in metal-contaminated sites had higher metal bioaccumulation and higher levels of cellular damage in the liver through the induction of an inflammatory response. In addition, temperature and contamination had interactive negative effects on growth. These results suggest that trace metal contamination has deleterious effects on fish health at environmentally realistic concentrations and that temperature can modulate the effects of trace metals on fish growth. With this study, we hope to encourage integrative approaches in realistic field conditions to better predict the effects of natural and anthropogenic stressors on aquatic organisms.
Collapse
Affiliation(s)
- Quentin Petitjean
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; EDB, UMR5174 EDB, Université de Toulouse, CNRS, IRD, UPS, 118 route de Narbonne, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France.
| | - Séverine Jean
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Jessica Côte
- EDB, UMR5174 EDB, Université de Toulouse, CNRS, IRD, UPS, 118 route de Narbonne, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Thibaut Larcher
- INRA-Oniris, PAnTher APEX, La Chantrerie, 44307 Nantes, France
| | - Fréderic Angelier
- Centre d'Etudes Biologiques de Chizé, UMR 7372, Université de la Rochelle, CNRS, Villiers en Bois, France
| | - Cécile Ribout
- Centre d'Etudes Biologiques de Chizé, UMR 7372, Université de la Rochelle, CNRS, Villiers en Bois, France
| | - Annie Perrault
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Pascal Laffaille
- EcoLab, Laboratoire écologie fonctionnelle et environnement, UMR5245, Université de Toulouse, CNRS, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| | - Lisa Jacquin
- EDB, UMR5174 EDB, Université de Toulouse, CNRS, IRD, UPS, 118 route de Narbonne, Toulouse, France; LTSER France, Zone Atelier PYGAR "Pyrénées-Garonne", Auzeville-Tolosane, France
| |
Collapse
|
23
|
Gornik T, Kovacic A, Heath E, Hollender J, Kosjek T. Biotransformation study of antidepressant sertraline and its removal during biological wastewater treatment. WATER RESEARCH 2020; 181:115864. [PMID: 32480056 DOI: 10.1016/j.watres.2020.115864] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 04/19/2020] [Accepted: 04/21/2020] [Indexed: 06/11/2023]
Abstract
Sertraline is one of the most commonly prescribed antidepressants in the last few years. Therefore, it is not surprising that it is regularly detected in wastewaters, surface waters, sediments, biosolids and biota. Effluents from wastewater treatment plants are the main contributors to its presence in the environment. The presented study aims to elucidate the processes involved in its removal, concentrating mainly on sorption and biodegradation during wastewater treatment. We performed our laboratory scale experiments in two sets of experiments: 1) batch biodegradation and sorption experiments and 2) flow-through laboratory scale pilot wastewater treatment bioreactors. The batch experiments revealed that sorption to activated sludge was the leading removal process, eliminating up to 90% of sertraline present in the batches. Biodegradation was however the secondary removal process, influenced by the presence of alternative easily biodegradable carbon sources. We postulated chemical structures of ten detected biotransformation products. Among these, we propose the previously recognized metabolite norsertraline, sertraline ketone and hydroxy-sertraline. All the remaining biotransformation products are herein reported for the first time. The removal efficiency of approximately 94% was determined after the treatment in the flow-through bioreactors. To support our findings, we sampled influents and effluents from two wastewater treatment plants and untreated wastewater from a psychiatric hospital. Removal efficiencies of 81% and 77% were determined, and along with the parent compound sertraline, the presence of eight transformation products was confirmed in the actual wastewaters.
Collapse
Affiliation(s)
- Tjasa Gornik
- Jozef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Ana Kovacic
- Jozef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Ester Heath
- Jozef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600, Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092, Zürich, Switzerland
| | - Tina Kosjek
- Jozef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
24
|
Treto-Suárez MA, Prieto-García JO, Mollineda-Trujillo Á, Lamazares E, Hidalgo-Rosa Y, Mena-Ulecia K. Kinetic study of removal heavy metal from aqueous solution using the synthetic aluminum silicate. Sci Rep 2020; 10:10836. [PMID: 32616826 PMCID: PMC7331683 DOI: 10.1038/s41598-020-67720-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/12/2020] [Indexed: 01/31/2023] Open
Abstract
One of the problems that most affect humanity today is the wastewater discharge into different water bodies. It was estimated that more than 7 million tons of wastewater are generated worldwide and are discharged into rivers, lakes, and reservoirs. Among the most dangerous wastewaters are those from inorganic chemistry research laboratories, mainly due to heavy metals. These problems have become a highly relevant topic, and numerous researchers have tried to design wastewater treatment systems that will deal more efficiently with heavy metals elimination. In this work, the synthesis, characterization, and evaluation of hydrated aluminium silicate were performed as alternative wastewater treatment from chemistry research and teaching laboratories. The compound obtained was [Formula: see text], which was characterized by the determination of its physicochemical properties. These revealed a low density, very porous material, with low crystallinity, strong chemical resistance, a large surface area, and a high apparent ionic exchange capacity. Absorption kinetics studies of heavy metals in aqueous solutions, through more widespread models, have demonstrated that [Formula: see text] has excellent properties as absorbents of this material. The amorphous hydrated aluminium silicate achieves a decrease in the concentration of all the metal ions studied, reducing them to discharge levels permissible.
Collapse
Affiliation(s)
| | - Julio Omar Prieto-García
- Departamento de Química y Farmacia, Universidad Central "Marta Abreu" de las Villas, Carretera de Camajuani km 5, 50100, Villa Clara, Cuba
| | - Ángel Mollineda-Trujillo
- Departamento de Química y Farmacia, Universidad Central "Marta Abreu" de las Villas, Carretera de Camajuani km 5, 50100, Villa Clara, Cuba
| | - Emilio Lamazares
- Biotechnology and Biopharmaceutical Laboratory, Pathophysiology Department, School of Biological Sciences, Universidad de Concepción, Victor Lamas 1290, P.O. Box 160-C, 4030000, Concepción, Chile
| | - Yoan Hidalgo-Rosa
- Doctorado en Fisicoquímica Molecular, Universidad Andres Bello, Ave. República 275, 8320000, Santiago, Chile
| | - Karel Mena-Ulecia
- Departamento de Ciencias Biológicas y Químicas, Facultad de Recursos Naturales, Universidad Católica de Temuco, Ave. Rudecindo Ortega 02950, 4780000, Temuco, Chile.
- Núcleo de Investigación en Bioproductos y Materiales Avanzados (BIOMA), Facultad de Ingeniería, Universidad Católica de Temuco, Ave. Rudecindo Ortega 02950, 4780000, Temuco, Chile.
| |
Collapse
|
25
|
Cheney CL, Eccles KM, Kimpe LE, Thienpont JR, Korosi JB, Blais JM. Determining the effects of past gold mining using a sediment palaeotoxicity model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 718:137308. [PMID: 32088480 DOI: 10.1016/j.scitotenv.2020.137308] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 02/07/2020] [Accepted: 02/13/2020] [Indexed: 06/10/2023]
Abstract
Ore processing techniques used in Yellowknife's largest mining operation, Giant Mine, is responsible for the atmospheric release of approximately 20,000 t of particulate arsenic trioxide and other heavy metal(loids). This rapid deposition of heavy metal(loids) may have caused ecological disturbances to aquatic food webs. Here we use 210Pb and 137Cs dated lake sediment cores from 20 lakes within a 40 km radius of Yellowknife to examine the spatial-temporal distribution of arsenic, antimony and lead. Further, we model the toxicity of the sediment to aquatic biota pre-, during, and post-mining using palaeotoxicity modelling, enrichment factor assessment, and comparisons to national sediment quality guidelines. We found that metal(loid) profiles in sediment peaked during the height of mining operations. These peak metal(loid) concentrations were highest in lakes near the mine's roaster stack, and decreased with distance from the historic mine. Palaeotoxicity modelling of lake sediment archives indicate that there is no significant difference in the mean predicted toxicity of pre- and post-mining samples (p = 0.14), however mining activities in the region significantly increased the predicted toxicity of sediments to aquatic organisms during mining operations (p < 0.001). In the years since roasting processes ceased, the mean palaeotoxicity of all lakes has decreased significantly (p < 0.05), indicating a projected pattern of biological recovery. Importantly, some lakes remain at an elevated risk, indicating that aquatic ecosystems in Yellowknife may continue to have lingering effects on aquatic biota despite the closure of the mine two decades ago.
Collapse
Affiliation(s)
- Cynthia L Cheney
- University of Ottawa, Department of Biology, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| | - Kristin M Eccles
- University of Ottawa, Department of Biology, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| | - Linda E Kimpe
- University of Ottawa, Department of Biology, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| | - Joshua R Thienpont
- York University, Department of Geography, N430 Ross Building, 4700 Keele Street, Toronto, ON M3J 1P3, Canada
| | - Jennifer B Korosi
- York University, Department of Geography, N430 Ross Building, 4700 Keele Street, Toronto, ON M3J 1P3, Canada.
| | - Jules M Blais
- University of Ottawa, Department of Biology, Gendron Hall, 30 Marie Curie, Ottawa, ON K1N 6N5, Canada.
| |
Collapse
|
26
|
Evaluation of daily and seasonal variations in a semi-closed photobioreactor for microalgae-based bioremediation of agricultural runoff at full-scale. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101859] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Gornik T, Vozic A, Heath E, Trontelj J, Roskar R, Zigon D, Vione D, Kosjek T. Determination and photodegradation of sertraline residues in aqueous environment. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 256:113431. [PMID: 31677867 DOI: 10.1016/j.envpol.2019.113431] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
Sertraline is an antidepressant drug that has been frequently reported in the aquatic environment and biota. While the research has mostly dealt with its occurrence and toxicity, there is a lack of information pertaining to its environmental transformation. The present study aimed to fill in these gaps by giving an insight into mechanisms of sertraline phototransformation in surface waters, which was recognized as the main transformation pathway for this contaminant. We performed photodegradation experiments in presence of photosensitizers or reaction quenchers to determine rate constants and used them to predict sertraline phototransformation kinetics by "Aqueous Photochemistry of Environmentally occurring Xenobiotics" (APEX) software. It was established that sertraline degrades by pseudo-first order kinetics mostly dominated by direct photolysis, while the presence of certain reactive species including •OH, CO3-• and 3CDOM* further accelerate the compound's breakdown rate. To validate the predicted results, sertraline-spiked surface water was irradiated by sunlight, where the half-life of sertraline at around 1.4 days was estimated. While following the photodegradation kinetics, we also identified five transformation products, of which three were determined in Slovenian surface waters. According to the ECOSAR toxicity prediction, these transformation products will either have comparable or lower toxicity than their parent compound.
Collapse
Affiliation(s)
- Tjasa Gornik
- Jozef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Anja Vozic
- University of Ljubljana, Faculty of Pharmacy, Department of Biopharmacy and Pharmacokinetics, Askerceva 7, Ljubljana, Slovenia
| | - Ester Heath
- Jozef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia
| | - Jurij Trontelj
- University of Ljubljana, Faculty of Pharmacy, Department of Biopharmacy and Pharmacokinetics, Askerceva 7, Ljubljana, Slovenia
| | - Robert Roskar
- University of Ljubljana, Faculty of Pharmacy, Department of Biopharmacy and Pharmacokinetics, Askerceva 7, Ljubljana, Slovenia
| | - Dusan Zigon
- Jozef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia
| | - Davide Vione
- University of Turin, Department of Chemistry, Via Pietro Giuria 5, Torino, Italy
| | - Tina Kosjek
- Jozef Stefan Institute, Department of Environmental Sciences, Jamova 39, Ljubljana, Slovenia; Jozef Stefan International Postgraduate School, Jamova 39, Ljubljana, Slovenia.
| |
Collapse
|
28
|
Wang C, Jiao X, Liu G. A toxic effect at molecular level can be expressed at community level: A case study on toxic hierarchy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 693:133573. [PMID: 31374497 DOI: 10.1016/j.scitotenv.2019.07.379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2019] [Revised: 07/22/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
This study demonstrated hierarchical toxicity and addressed the relevance and differences of toxic effects at the molecular, individual, population, and community levels. Superoxide dismutase (SOD) activity, photosynthetic oxygen production, filtration rate, life span and densities of Platymonas helgolandica var. tsingtaoensis, Isochrysis galbana, and Brachionus plicatilis in single-species tests and customized community tests were examined in response to a concentration gradient of aniline ranging from 0 to 50.0 mg L-1. The SOD activity was the most sensitive endpoint with the fastest response to aniline according to the calculated no-detection of toxic effect concentration (NDEC) and the EC50. The individual- and population-level endpoints, showing a lower response to aniline, could be constructed from the SOD activity in a stepwise manner. A multi-scale hierarchical model with endpoints at 4 levels was used to characterize toxic effects, at the scales of time and size. Linkage of SOD activity to toxic effects at a community level was established level by level to express the change in the customized community with the concentration of aniline. The calculated threshold concentration of aniline for the customized community was nearly equal to the minimum NDEC, demonstrating as great an impact on interactions by the toxic effect at subpopulation-level as that at the community level. However, we identified a trend of higher sensitivities of measured endpoints at sub-population level, decreasing sensitivity at higher levels but a great variety of sensitivities at community level. Although the characteristics of toxic effects are different at different levels, the structure and process of endpoints at adjacent levels are related to and interact with each other. The resulted indirect effects, together with direct effect, determine the toxic effect at every levels of biological complexity. The toxic effects at adjacent levels should be studied at the same time to better understand the ecological risk of contaminants.
Collapse
Affiliation(s)
- Changyou Wang
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Research Center for Ocean Survey Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China.
| | - Xinming Jiao
- Jiangsu Environmental Monitoring Center, Nanjing 210036, China
| | - Gang Liu
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China; Jiangsu Research Center for Ocean Survey Technology, Nanjing University of Information Science and Technology, Nanjing 210044, China
| |
Collapse
|
29
|
Romero F, Acuña V, Font C, Freixa A, Sabater S. Effects of multiple stressors on river biofilms depend on the time scale. Sci Rep 2019; 9:15810. [PMID: 31676856 PMCID: PMC6825187 DOI: 10.1038/s41598-019-52320-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 10/15/2019] [Indexed: 11/08/2022] Open
Abstract
Global change exposes ecosystems to a myriad of stressors differing in their spatial (i.e. surface of stressed area) and temporal (i.e. exposure time) components. Among freshwater ecosystems, rivers and streams are subject to physical, chemical and biological stressors, which interact with each other and might produce diverging effects depending on exposure time. We conducted a manipulative experiment using 24 artificial streams to examine the individual and combined effects of warming (1.6 °C increase in water temperature), hydrological stress (simulated low-flow situation) and chemical stress caused by pesticide exposure (15.1-156.7 ng L-1) on river biofilms. We examined whether co-occurring stressors could lead to non-additive effects, and if these differed at two different exposure times. Specifically, structural and functional biofilm responses were assessed after 48 hours (short-term effects) and after 30 days (long-term effects) of exposure. Hydrological stress caused strong negative impacts on river biofilms, whereas effects of warming and pesticide exposure were less intense, although increasing on the long term. Most stressor combinations (71%) resulted in non-significant interactions, suggesting overall additive effects, but some non-additive interactions also occurred. Among non-additive interactions, 59% were classified as antagonisms after short-term exposure to the different stressor combinations, rising to 86% at long term. Our results indicate that a 30-day exposure period to multiple stressors increases the frequency of antagonistic interactions compared to a 48-hour exposure to the same conditions. Overall, the impacts of multiple-stressor occurrences appear to be hardly predictable from individual effects, highlighting the need to consider temporal components such as duration when predicting the effects of multiple stressors.
Collapse
Affiliation(s)
- Ferran Romero
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain.
- Universitat de Girona (UdG), Girona, Spain.
| | - Vicenç Acuña
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain
- Universitat de Girona (UdG), Girona, Spain
| | - Carme Font
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain
- Universitat de Girona (UdG), Girona, Spain
| | - Anna Freixa
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain
- Universitat de Girona (UdG), Girona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA), C. Emili Grahit 101, 17003, Girona, Spain
- Institute of Aquatic Ecology (IEA), University of Girona, Campus de Montilivi, 17003, Girona, Spain
| |
Collapse
|
30
|
Dupuy C, Cabon J, Louboutin L, Le Floch S, Morin T, Danion M. Cellular, humoral and molecular responses in rainbow trout (Oncorhynchus mykiss) exposed to a herbicide and subsequently infected with infectious hematopoietic necrosis virus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2019; 215:105282. [PMID: 31509759 DOI: 10.1016/j.aquatox.2019.105282] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 08/19/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Aquatic ecosystems are now chronically polluted by a cocktail of many chemical substances. There is now clear evidence of associations between exposure to pollutants and greater susceptibility to pathogens. The aim of the present study was to characterize the defense capacities of rainbow trout (Oncorhynchus mykiss), chronically exposed to pendimethalin (PD), to subsequent experimental challenge with the infectious hematopoietic necrosis virus (IHNV). Immunological responses were examined at different organizational levels, from individuals to gene expression. No negative effects of PD were noted on the Fulton index nor on the liver or spleen somatic indices (LSI; SSI) before viral infection, but the infectious stress seems to generate a weak but significant decrease in Fulton and LSI values, which could be associated with consumption of energy reserves. During the viral challenges, the distribution of cumulative mortality was slightly different between infected groups. The impact of the virus on fish previously contaminated by PD started earlier and lasted longer than controls. The proportion of seropositive fish was lower in the fish group exposed to PD than in the control group, with similar quantities of anti-IHNV antibodies secreted in positive fish, regardless of the treatment. While no significant differences in C3-1 expression levels were detected throughout the experiment, TNF1&2, TLR3, Il-1β and IFN expression levels were increased in all infected fish, but the difference was more significant in fish groups previously exposed to herbicide. On the other hand, β-def expression was decreased in the pendimethalin-IHNV group compared to that in fish only infected by the virus (control-IHNV group).
Collapse
Affiliation(s)
- Célie Dupuy
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280, Plouzané, France; European University of Brittany, France
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280, Plouzané, France; European University of Brittany, France
| | - Lénaïg Louboutin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280, Plouzané, France; European University of Brittany, France
| | - Stéphane Le Floch
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (CEDRE), 715 Rue Alain Colas, 29200, Brest, France
| | - Thierry Morin
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280, Plouzané, France; European University of Brittany, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané-Niort Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280, Plouzané, France; European University of Brittany, France.
| |
Collapse
|
31
|
Mohapatra DP, Kirpalani DM. Advancement in treatment of wastewater: Fate of emerging contaminants. CAN J CHEM ENG 2019. [DOI: 10.1002/cjce.23533] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Dipti Prakash Mohapatra
- National Research Council of CanadaEnergy Mining and Environment Research Centre 1200 Montreal Road Ottawa ON K1A 0R6 Canada
| | - Deepak M. Kirpalani
- National Research Council of CanadaEnergy Mining and Environment Research Centre 1200 Montreal Road Ottawa ON K1A 0R6 Canada
| |
Collapse
|
32
|
Sabater-Liesa L, Montemurro N, Font C, Ginebreda A, González-Trujillo JD, Mingorance N, Pérez S, Barceló D. The response patterns of stream biofilms to urban sewage change with exposure time and dilution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 674:401-411. [PMID: 31005842 DOI: 10.1016/j.scitotenv.2019.04.178] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 04/01/2019] [Accepted: 04/11/2019] [Indexed: 06/09/2023]
Abstract
Urban wastewater inputs are a relevant pollution source to rivers, contributing a complex mixture of nutrients, organic matter and organic microcontaminants to these systems. Depending on their composition, WWTP effluents might perform either as enhancers (subsidizers) or inhibitors (stressors) of biological activities. In this study, we evaluated in which manner biofilms were affected by treated urban WWTP effluent, and how much they recovered after exposure was terminated. We used indoor artificial streams in a replicated regression design, which were operated for a total period of 56 days. During the first 33 days, artificial streams were fed with increasing concentration of treated effluents starting with non-contaminated water and ending with undiluted effluent. During the recovery phase, the artificial streams were fed with unpolluted water. Sewage effluents contained high concentrations of personal care products, pharmaceuticals, nutrients, and dissolved organic matter. Changes in community structure, biomass, and biofilm function were most pronounced in those biofilms exposed to 58% to 100% of WWTP effluent, moving from linear to quadratic or cubic response patterns. The return to initial conditions did not allow for complete biofilm recovery, but biofilms from the former medium diluted treatments were the most benefited (enhanced response), while those from the undiluted treatments showed higher stress (inhibited response). Our results indicated that the effects caused by WWTP effluent discharge on biofilm structure and function respond to the chemical pressure only in part, and that the biofilm dynamics (changes in community composition, increase in thickness) imprint particular response pathways over time.
Collapse
Affiliation(s)
- Laia Sabater-Liesa
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Nicola Montemurro
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Carme Font
- ICRA, Carrer Emili Grahit 101, Girona 17003, Spain
| | - Antoni Ginebreda
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | - Sandra Pérez
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, Jordi Girona 18-26, 08034 Barcelona, Spain; ICRA, Carrer Emili Grahit 101, Girona 17003, Spain
| |
Collapse
|
33
|
Waite IR, Munn MD, Moran PW, Konrad CP, Nowell LH, Meador MR, Van Metre PC, Carlisle DM. Effects of urban multi-stressors on three stream biotic assemblages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 660:1472-1485. [PMID: 30743940 DOI: 10.1016/j.scitotenv.2018.12.240] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 12/13/2018] [Accepted: 12/15/2018] [Indexed: 06/09/2023]
Abstract
During 2014, the U.S. Geological Survey (USGS) National Water-Quality Assessment (NAWQA) project assessed stream quality in 75 streams across an urban disturbance gradient within the Piedmont ecoregion of southeastern United States. Our objectives were to identify primary instream stressors affecting algal, macroinvertebrate and fish assemblages in wadeable streams. Biotic communities were surveyed once at each site, and various instream stressors were measured during a 4-week index period preceding the ecological sampling. The measured stressors included nutrients; contaminants in water, passive samplers, and sediment; instream habitat; and flow variability. All nine boosted regression tree models - three for each of algae, invertebrates, and fish - had cross-validation R2 (CV R2) values of 0.41 or above, and an invertebrate model had the highest CV R2 of 0.65. At least one contaminant metric was important in every model, and minimum daytime dissolved oxygen (DO), nutrients, and flow alteration were important explanatory variables in many of the models. Physical habitat metrics such as sediment substrate were only moderately important. Flow alteration metrics were useful factors in eight of the nine models. Total phosphorus, acetanilide herbicides and flow (time since last peak) were important in all three algal models, whereas insecticide metrics (especially those representing fipronil and imidacloprid) were dominant in the invertebrate models. DO values below approximately 7 mg/L corresponded to a strong decrease in sensitive taxa or an increase in tolerant taxa. DO also showed strong interactions with other variables, particularly contaminants and sediment, where the combined effect of low DO and elevated contaminants increased the impact on the biota more than each variable individually. Contaminants and flow alteration were strongly correlated to urbanization, indicating the importance of urbanization to ecological stream condition in the region.
Collapse
Affiliation(s)
- Ian R Waite
- U.S. Geological Survey, Oregon Water Science Center, 2130 SW 5th Ave, Portland, OR 97201, USA.
| | - Mark D Munn
- U.S. Geological Survey, Washington Water Science Center, 934 Broadway, Suite 300, Tacoma, WA 98402, USA
| | - Patrick W Moran
- U.S. Geological Survey, Washington Water Science Center, 934 Broadway, Suite 300, Tacoma, WA 98402, USA
| | - Chris P Konrad
- U.S. Geological Survey, Washington Water Science Center, 934 Broadway, Suite 300, Tacoma, WA 98402, USA
| | - Lisa H Nowell
- U.S. Geological Survey, California Water Science Center, 6000 J Street, Sacramento, CA 95819, USA
| | - Mike R Meador
- U.S. Geological Survey, Headquarters, 12201 Sunrise Valley Drive, Reston, VA 20192, USA
| | - Peter C Van Metre
- U.S. Geological Survey, Texas Water Science Center, 1505 Ferguson Lane, Austin, TX 78754, USA
| | - Daren M Carlisle
- U.S. Geological Survey, Kansas Water Science Center, 4821 Quail Crest Place, Lawrence, KS 66049, USA
| |
Collapse
|
34
|
Fernández-Domene R, Roselló-Márquez G, Sánchez-Tovar R, Lucas-Granados B, García-Antón J. Photoelectrochemical removal of chlorfenvinphos by using WO3 nanorods: Influence of annealing temperature and operation pH. Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2018.11.049] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
35
|
Pannetier P, Morin B, Clérandeau C, Lacroix C, Cabon J, Cachot J, Danion M. Comparative biomarker responses in Japanese medaka (Oryzias latipes) exposed to benzo[a]pyrene and challenged with betanodavirus at three different life stages. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:964-976. [PMID: 30380501 DOI: 10.1016/j.scitotenv.2018.10.256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 10/15/2018] [Accepted: 10/19/2018] [Indexed: 06/08/2023]
Abstract
It is now well documented that several contaminants can modulate the fish immune system, leading to disrupted host resistance against pathogens and increased incidence of disease. Since fish are usually co-exposed to chemicals and pathogens in the natural environment, analysis of the immunotoxic effects of pollutants is particularly relevant. The authorities in the European Union have recommended the development of toxicity assays on cell cultures and embryos, as an alternative to testing in vertebrates. This is why in our study, a fish immune challenge assay was developed for the early life stages of Japanese medaka to evaluate and compare the relevance of new biomarkers. Fish were exposed to benzo[a]pyrene (BaP), a model pollutant, for 8days at the embryonic stage, or for 48h at the larvae and juvenile stages, and fish were infected with betanodavirus by bath-challenge of 106TCID50/mL. Biometric changes and induction of malformations were observed after embryonic exposure. DNA damage and induction of EROD activity were recorded at the end of all chemical exposures. Viral infection increased the mortality rate significantly and disturbed the behavior of fish after light stimulation. While BaP exposure increased swimming speed, betanodavirus infection slowed swimming activity. In larvae co-exposed to BaP and the virus, the viral titer in the whole body was higher than in fish infected only with the virus. This study highlighted the sensitivity and usefulness of the immune challenge assay on the early life stages of Japanese medaka to evaluate the toxic effects of pollutants.
Collapse
Affiliation(s)
- Pauline Pannetier
- Bordeaux University, EPOC Laboratory, UMR 5805, F-33400 Talence, France
| | - Bénédicte Morin
- Bordeaux University, EPOC Laboratory, UMR 5805, F-33400 Talence, France
| | | | - Camille Lacroix
- Centre of Documentation, Research and Experimentation on Accidental Water Pollution (CEDRE), 715 Rue Alain Colas, 29200 Brest, France
| | - Joëlle Cabon
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France
| | - Jérôme Cachot
- Bordeaux University, EPOC Laboratory, UMR 5805, F-33400 Talence, France
| | - Morgane Danion
- French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Ploufragan-Plouzané Laboratory, Fish Viral Pathology Unit, Technopôle Brest-Iroise, 29280 Plouzané, France.
| |
Collapse
|
36
|
Di Lorenzo T, Cifoni M, Fiasca B, Di Cioccio A, Galassi DMP. Ecological risk assessment of pesticide mixtures in the alluvial aquifers of central Italy: Toward more realistic scenarios for risk mitigation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:161-172. [PMID: 29981516 DOI: 10.1016/j.scitotenv.2018.06.345] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 06/27/2018] [Accepted: 06/27/2018] [Indexed: 06/08/2023]
Abstract
In this study we used the data of an extensive pesticide monitoring survey that took place in 11 alluvial aquifers of central Italy from 2010 to 2015 to explore 4 different scenarios of risk. The Scenarios 1 and 2 were used to depict the risk of failing to meet the good groundwater chemical status as defined by the Water Framework Directive. The Scenarios 3 and 4 were used to assess for the first time the ecological risk in groundwater bodies, defined as the likelihood of hazard to the groundwater communities stably residing in the 11 alluvial aquifers that may be affected by pesticide contamination. The ecological risk was assessed through a new procedure called GERAp (Groundwater Ecological Risk Assessment due to pesticides). The main results of this study highlighted that: 1) the Scenario 1 provided information of little use for risk managers; 2) more realistic information was provided by using the highest concentrations measured in the six-year monitoring period and considering the ecological risk in a combined scenario (Scenarios 2 and 4); 3) the achievement of the good chemical status by 2027 in 3 aquifers will be likely much more difficult than in the others because the ecosystem services, such as pesticide biodegradation, are likely less efficient in the 3 groundwater bodies; 4) some pesticides that were banned in Europe in 2009 should be kept monitored in the next surveys because they showed a persistent occurrence in the 11 aquifers; 5) DDT forms, Dieldrin and Heptachlor are expected to damage groundwater communities at concentrations that are lower than the present legal limits.
Collapse
Affiliation(s)
- Tiziana Di Lorenzo
- Institute of Ecosystem Study of the CNR, National Research Council of Italy, Via Madonna del Piano 10, 50019 Sesto Fiorentino, Florence, Italy.
| | - Marco Cifoni
- Gran Sasso-Laga National Park, Via Del Convento 1, 67010 Assergi, L'Aquila, Italy
| | - Barbara Fiasca
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| | - Alessia Di Cioccio
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| | - Diana Maria Paola Galassi
- Department of Life, Health and Environmental Sciences, University of L'Aquila, Via Vetoio, Coppito, 67100 L'Aquila, Italy
| |
Collapse
|
37
|
Pablos MV, Rodríguez JA, García-Hortigüela P, Fernández A, Beltrán EM, Torrijos M, Fernández C. Sublethal and chronic effects of reclaimed water on aquatic organisms. Looking for relationships between physico-chemical characterisation and toxic effects. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:1537-1547. [PMID: 30021319 DOI: 10.1016/j.scitotenv.2018.05.349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2018] [Revised: 04/16/2018] [Accepted: 05/28/2018] [Indexed: 06/08/2023]
Abstract
The use of reclaimed water for irrigation and aquaculture purposes is generally considered a reliable alternative for sustainable water management in regions with water scarcity. Many organic compounds, generally called compounds of emerging concern (CECs), have been detected in reclaimed water, which implies continuous exposure for aquatic organisms. To date no quality criteria have been proposed for this group of compounds. This work aims to assess the acute, sublethal and chronic effects of reclaimed water using two representative organisms of the aquatic compartment; the green alga Chlorella vulgaris and the microcrustacean Daphnia magna. The study comprises the 72 h-algal growth inhibition test, the D. magna feeding bioassay and the D. magna reproduction test. The results highlighted, for the selected characterised compounds, no differences in the concentrations between the different tertiary WWTP treatments, except for the particular case of carbamazepine. Considering seasonality, no differences were observed between the two different sample collection campaigns. The sublethal and chronic effects observed for these samples could not be explained by the lower concentrations found in the chemical characterisation. However, in the majority of cases, dilution of raw reclaimed water reduced the toxic effects of these samples. Several interactions among compounds can affect the mixture's toxicity. Canonical correlation analyses (CCA) were included to explore the potential relationships between the physico-chemical characterisation of reclaimed water and effects on aquatic organisms. The results corroborated the toxic effect of some pharmaceuticals, in particular beta-blockers and antibiotics, on the growth and yield of green algae, as well as inhibition of daphnia reproduction. Thus the CCA methods could help to elucidate the potential relationships between the physico-chemical characterisation and toxic effects by considering all the potential interactions.
Collapse
Affiliation(s)
- M V Pablos
- Laboratory for Ecotoxicology, Department of Environment, INIA, Crta. La Coruña km 7, 28040 Madrid, Spain.
| | - J A Rodríguez
- Laboratory for Ecotoxicology, Department of Environment, INIA, Crta. La Coruña km 7, 28040 Madrid, Spain
| | - P García-Hortigüela
- Laboratory for Ecotoxicology, Department of Environment, INIA, Crta. La Coruña km 7, 28040 Madrid, Spain
| | - A Fernández
- Laboratory for Ecotoxicology, Department of Environment, INIA, Crta. La Coruña km 7, 28040 Madrid, Spain
| | - E M Beltrán
- Laboratory for Ecotoxicology, Department of Environment, INIA, Crta. La Coruña km 7, 28040 Madrid, Spain
| | - M Torrijos
- Laboratory for Ecotoxicology, Department of Environment, INIA, Crta. La Coruña km 7, 28040 Madrid, Spain
| | - C Fernández
- Laboratory for Ecotoxicology, Department of Environment, INIA, Crta. La Coruña km 7, 28040 Madrid, Spain
| |
Collapse
|
38
|
Carazo-Rojas E, Pérez-Rojas G, Pérez-Villanueva M, Chinchilla-Soto C, Chin-Pampillo JS, Aguilar-Mora P, Alpízar-Marín M, Masís-Mora M, Rodríguez-Rodríguez CE, Vryzas Z. Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 241:800-809. [PMID: 29909306 DOI: 10.1016/j.envpol.2018.06.020] [Citation(s) in RCA: 135] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Revised: 05/31/2018] [Accepted: 06/06/2018] [Indexed: 06/08/2023]
Abstract
UNLABELLED A pesticide monitoring study including 80 and 60 active ingredients (in surface waters and sediments, respectively) was carried out in a river basin in Costa Rica during 2007-2012. A special emphasis was given on the exceptional ecological conditions of the tropical agro-ecosystem and the pesticide application strategies in order to establish a reliable monitoring network. A total of 135 water samples and 129 sediment samples were collected and analyzed. Long-term aquatic ecotoxicological risk assessment based on risk quotient in three trophic levels was conducted. Short-term risk assessment was used to calculate the toxic unit and prioritization of sampling sites was conducted by the sum of toxic units in both aquatic and sediment compartments. Dimethoate (61.2 μg/L), propanil (30.6 μg/L), diuron (22.8 μg/L) and terbutryn (4.8 μg/L) were detected at the highest concentrations in water samples. Carbendazim and endosulfan were the most frequently detected pesticides in water and sediment samples, respectively. Triazophos (491 μg/kg), cypermethrin (71.5 μg/kg), permethrin (47.8 μg/kg), terbutryn (38.7 μg/kg), chlorpyrifos (18.2 μg/kg) and diuron (11.75 μg/kg) were detected at the highest concentrations in sediment samples. The pesticides carbendazim, diuron, endosulfan, epoxyconazole, propanil, triazophos and terbutryn showed non-acceptable risk even when a conservative scenario was considered. Sum TUsite higher than 1 was found for one and two sampling sites in water and sediment compartments, respectively, suggesting high acute toxicity for the ecosystem. MAIN FINDING OF THE WORK Exceptional ecological conditions of the tropical agro-ecosystem affect the fate of pesticides in water and sediment environment differently than the temperate one.
Collapse
Affiliation(s)
- Elizabeth Carazo-Rojas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Greivin Pérez-Rojas
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Marta Pérez-Villanueva
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Cristina Chinchilla-Soto
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Juan Salvador Chin-Pampillo
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Paula Aguilar-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Melvin Alpízar-Marín
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Mario Masís-Mora
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Carlos E Rodríguez-Rodríguez
- Centro de Investigación en Contaminación Ambiental (CICA), Universidad de Costa Rica, 2060, San José, Costa Rica
| | - Zisis Vryzas
- Laboratory of Agricultural Pharmacology and Ecotoxicology, Department of Agricultural Development, Democritus University of Thrace, 68200, Orestias, Greece.
| |
Collapse
|
39
|
Koler A, Gornik T, Kosjek T, Jeřabek K, Krajnc P. Preparation of molecularly imprinted copoly(acrylic acid-divinylbenzene) for extraction of environmentally relevant sertraline residues. REACT FUNCT POLYM 2018. [DOI: 10.1016/j.reactfunctpolym.2018.08.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
40
|
Pereira AS, Dâmaso-Rodrigues ML, Amorim A, Daam MA, Cerejeira MJ. Aquatic community structure in Mediterranean edge-of-field waterbodies as explained by environmental factors and the presence of pesticide mixtures. ECOTOXICOLOGY (LONDON, ENGLAND) 2018; 27:661-674. [PMID: 29909542 DOI: 10.1007/s10646-018-1944-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
Studies addressing the predicted effects of pesticides in combination with abiotic and biotic factors on aquatic biota in ditches associated with typical Mediterranean agroecosystems are scarce. The current study aimed to evaluate the predicted effects of pesticides along with environmental factors and biota interactions on macroinvertebrate, zooplankton and phytoplankton community compositions in ditches adjacent to Portuguese maize and tomato crop areas. Data was analysed with the variance partitioning procedure based on redundancy analysis (RDA). The total variance in biological community composition was divided into the variance explained by the multi-substance potentially affected fraction [(msPAF) arthropods and primary producers], environmental factors (water chemistry parameters), biotic interactions, shared variance, and unexplained variance. The total explained variance reached 39.4% and the largest proportion of this explained variance was attributed to msPAF (23.7%). When each group (phytoplankton, zooplankton and macroinvertebrates) was analysed separately, biota interactions and environmental factors explained the largest proportion of variance. Results of this study indicate that besides the presence of pesticide mixtures, environmental factors and biotic interactions also considerably influence field freshwater communities. Subsequently, to increase our understanding of the risk of pesticide mixtures on ecosystem communities in edge-of-field water bodies, variations in environmental and biological factors should also be considered.
Collapse
Affiliation(s)
- Ana Santos Pereira
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, Portugal.
| | | | - Ana Amorim
- MARE, Marine and Environmental Sciences Centre, Faculdade de Ciências, Universidade de Lisboa, Lisbon, Portugal
| | - Michiel A Daam
- CENSE, Department of Environmental Sciences and Engineering, Faculty of Sciences and Technology, New University of Lisbon, Quinta da Torre, Caparica, Portugal
| | - Maria José Cerejeira
- LEAF, Linking Landscape, Environment, Agriculture and Food, Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, Lisbon, Portugal
| |
Collapse
|
41
|
Rose NL, Turner SD, Yang H, Yang C, Hall C, Harrad S. Palaeotoxicity: reconstructing the risk of multiple sedimentary pollutants to freshwater organisms. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2018; 40:1667-1682. [PMID: 29500539 PMCID: PMC6061110 DOI: 10.1007/s10653-018-0080-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 02/21/2018] [Indexed: 05/06/2023]
Abstract
'Real-world' contaminant exposure of sediment-dwelling biota is typically long-term, low-level and to multiple pollutants. However, sediment quality guidelines, designed to protect these organisms, relate only to single contaminants. This study uses radiometrically dated sediment cores from 7 English lakes with varying contamination histories to reconstruct temporal changes in likely risk to biota (herein termed 'palaeotoxicity'). The Probable Effects Concentration Quotient (PEC-Q) approach was used to combine sediment concentrations from multiple contaminants (trace metals; PCBs; PBDEs) to determine risk allocated to metals and persistent organic pollutants (POPs) separately as well as combined (PEC-Q Mean-All). Urban-influenced lakes were considerably more contaminated, exceeding PEC-Q thresholds of 0.5 and 2.0 over long durations (some since the nineteenth century). This has been mainly due to metals (principally lead) and by factors of up to 10 for individual metals and by > 2 for PEC-Q Mean-Metals. In 6 out of 7 lakes, considerable reductions in risk associated with trace metals are observed since emissions reductions in the 1970s. However, at all lakes, PEC-Q Mean-POPs has increased sharply since the 1950s and at 5 out of 7 lakes now exceeds PEC-Q Mean-Metals. These organic pollutants are therefore now the dominant driver behind elevated contaminant risk to sediment-dwelling biota and recent temporal trends in PEC-Q Mean-All remain above threshold values as a result. Finally, PEC-Q Mean-All values were compared to standard biological toxicity tests for surface sediments at each site. While chironomid growth and daphniid reproduction were significantly reduced compared to controls at 5 out of 7, and all lakes, respectively, the scale of these reductions showed only limited quantitative agreement with predicted risk.
Collapse
Affiliation(s)
- Neil L Rose
- Environmental Change Research Centre, Department of Geography, University College London, Gower St, London, WC1E 6BT, UK.
| | - Simon D Turner
- Environmental Change Research Centre, Department of Geography, University College London, Gower St, London, WC1E 6BT, UK
| | - Handong Yang
- Environmental Change Research Centre, Department of Geography, University College London, Gower St, London, WC1E 6BT, UK
| | - Congqiao Yang
- Department of Earth Sciences, University of Toronto, Toronto, ON, M5S 3B1, Canada
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Charlotte Hall
- Environmental Change Research Centre, Department of Geography, University College London, Gower St, London, WC1E 6BT, UK
| | - Stuart Harrad
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| |
Collapse
|
42
|
Tarnawski M, Baran A. Use of Chemical Indicators and Bioassays in Bottom Sediment Ecological Risk Assessment. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2018; 74:395-407. [PMID: 29487958 PMCID: PMC5859060 DOI: 10.1007/s00244-018-0513-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2017] [Accepted: 01/29/2018] [Indexed: 05/12/2023]
Abstract
This study is was designed to assess the ecological risk associated with chemical pollution caused by heavy metals and PAHs on the basis of their ecotoxicological properties in sediments collected from the Rzeszów dam reservoir (Poland). The sediment samples were collected from three sampling stations: S1-inlet, backwater station, S2-middle of reservoir, S3 outlet, near the dam. The sediments' toxicity was evaluated using a battery of bioassays (Phytotoxkit, Phytotestkit, Ostracodtoxkit F, and Microtox). The highest content of metals (120.5 mg Zn; 22.65 mg Pb; 8.20 mg Cd ∙ kg-1 dw) and all PAHs (∑9361 μg ∙ kg-1 dw) in sediments was found at station S1. The lowest content of metals (86.72 mg Zn; 18.07 mg Cu; 17.20 mg Pb; 3.62 mg Cu; 28.78 mg Ni; 30.52 mg Cr ∙ kg-1 dw) and PAHs (∑4390 μg ∙ kg-1 dw) was found in the sediment from station S2. The ecological risk assessment of the six metals and eight PAHs revealed a high potential toxicity in sediments from stations S1 (PECq = 0.69) and S3 (PECq = 0.56) and a low potential toxicity in sediments from station S2 (PECq = 0.38). The studies also showed the actual toxicity of sediments for the test organisms. The sediment pore water was least toxic compared to the whole sediment: solid phases > whole sediment > pore water. The most sensitive organism for metals and PAHs in bottom sediments was Lepidium sativum, and in pore water-Sorghum saccharatum. The concentration of metals and PAHs in bottom sediments generally did not affect the toxicity for other organisms. Clay content and organic C content are likely to be important factors, which control heavy metal and PAH concentrations in the sediments. Data analysis by PCA found the same origin of metals as well as PAHs-mainly anthropogenic sources. The obtained information demonstrated the need to integrate ecotoxicological and chemical methods for an appropriate ecological risk assessment.
Collapse
Affiliation(s)
- Marek Tarnawski
- Department of Hydraulic Engineering and Geotechnics, University of Agriculture in Krakow, Al. Mickiewicza 24/28, 30-059 Kraków, Poland
| | - Agnieszka Baran
- Department of Agricultural and Environmental Chemistry, University of Agriculture in Krakow, Al. Mickiewicza 21, 31-120 Kraków, Poland
| |
Collapse
|
43
|
Münze R, Hannemann C, Orlinskiy P, Gunold R, Paschke A, Foit K, Becker J, Kaske O, Paulsson E, Peterson M, Jernstedt H, Kreuger J, Schüürmann G, Liess M. Pesticides from wastewater treatment plant effluents affect invertebrate communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 599-600:387-399. [PMID: 28478367 DOI: 10.1016/j.scitotenv.2017.03.008] [Citation(s) in RCA: 108] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Revised: 03/01/2017] [Accepted: 03/01/2017] [Indexed: 06/07/2023]
Abstract
We quantified pesticide contamination and its ecological impact up- and downstream of seven wastewater treatment plants (WWTPs) in rural and suburban areas of central Germany. During two sampling campaigns, time-weighted average pesticide concentrations (cTWA) were obtained using Chemcatcher® passive samplers; pesticide peak concentrations were quantified with event-driven samplers. At downstream sites, receiving waters were additionally grab sampled for five selected pharmaceuticals. Ecological effects on macroinvertebrate structure and ecosystem function were assessed using the biological indicator system SPEARpesticides (SPEcies At Risk) and leaf litter breakdown rates, respectively. WWTP effluents substantially increased insecticide and fungicide concentrations in receiving waters; in many cases, treated wastewater was the exclusive source for the neonicotinoid insecticides acetamiprid and imidacloprid in the investigated streams. During the ten weeks of the investigation, five out of the seven WWTPs increased in-stream pesticide toxicity by a factor of three. As a consequence, at downstream sites, SPEAR values and leaf litter degradation rates were reduced by 40% and 53%, respectively. The reduced leaf litter breakdown was related to changes in the macroinvertebrate communities described by SPEARpesticides and not to altered microbial activity. Neonicotinoids showed the highest ecological relevance for the composition of invertebrate communities, occasionally exceeding the Regulatory Acceptable Concentrations (RACs). In general, considerable ecological effects of insecticides were observed above and below regulatory thresholds. Fungicides, herbicides and pharmaceuticals contributed only marginally to acute toxicity. We conclude that pesticide retention of WWTPs needs to be improved.
Collapse
Affiliation(s)
- Ronald Münze
- UFZ - Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany; TU Bergakademie Freiberg, Institute of Biosciences, Leipziger Straße 29, 09596 Freiberg, Germany
| | - Christin Hannemann
- Brandenburg State Office of the Environment, Department of Water Management - River Basin Management, Seeburger Chaussee 2, 14476 Potsdam, Germany
| | - Polina Orlinskiy
- UFZ - Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany; University of Koblenz-Landau, Institute of Environmental Sciences, Fortstraße 7, 76829 Landau, Germany
| | - Roman Gunold
- UFZ - Helmholtz Centre for Environmental Research, Department of Ecological Chemistry, Permoserstr. 15, 04318 Leipzig, Germany; TU Bergakademie Freiberg, Institute of Organic Chemistry, Leipziger Straße 29, 09596 Freiberg, Germany
| | - Albrecht Paschke
- UFZ - Helmholtz Centre for Environmental Research, Department of Ecological Chemistry, Permoserstr. 15, 04318 Leipzig, Germany
| | - Kaarina Foit
- UFZ - Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Jeremias Becker
- UFZ - Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Oliver Kaske
- UFZ - Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany
| | - Elin Paulsson
- Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, 75007 Uppsala, Sweden
| | - Märit Peterson
- Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, 75007 Uppsala, Sweden
| | - Henrik Jernstedt
- Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, 75007 Uppsala, Sweden
| | - Jenny Kreuger
- Swedish University of Agricultural Sciences, Department of Aquatic Sciences and Assessment, Lennart Hjelms väg 9, 75007 Uppsala, Sweden
| | - Gerrit Schüürmann
- UFZ - Helmholtz Centre for Environmental Research, Department of Ecological Chemistry, Permoserstr. 15, 04318 Leipzig, Germany; TU Bergakademie Freiberg, Institute of Organic Chemistry, Leipziger Straße 29, 09596 Freiberg, Germany
| | - Matthias Liess
- UFZ - Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstr. 15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringerweg 1, 52074 Aachen, Germany.
| |
Collapse
|
44
|
Sonne AT, McKnight US, Rønde V, Bjerg PL. Assessing the chemical contamination dynamics in a mixed land use stream system. WATER RESEARCH 2017; 125:141-151. [PMID: 28843938 DOI: 10.1016/j.watres.2017.08.031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Revised: 08/10/2017] [Accepted: 08/14/2017] [Indexed: 06/07/2023]
Abstract
Traditionally, the monitoring of streams for chemical and ecological status has been limited to surface water concentrations, where the dominant focus has been on general water quality and the risk for eutrophication. Mixed land use stream systems, comprising urban areas and agricultural production, are challenging to assess with multiple chemical stressors impacting stream corridors. New approaches are urgently needed for identifying relevant sources, pathways and potential impacts for implementation of suitable source management and remedial measures. We developed a method for risk assessing chemical stressors in these systems and applied the approach to a 16-km groundwater-fed stream corridor (Grindsted, Denmark). Three methods were combined: (i) in-stream contaminant mass discharge for source quantification, (ii) Toxic Units and (iii) environmental standards. An evaluation of the chemical quality of all three stream compartments - stream water, hyporheic zone, streambed sediment - made it possible to link chemical stressors to their respective sources and obtain new knowledge about source composition and origin. Moreover, toxic unit estimation and comparison to environmental standards revealed the stream water quality was substantially impaired by both geogenic and diffuse anthropogenic sources of metals along the entire corridor, while the streambed was less impacted. Quantification of the contaminant mass discharge originating from a former pharmaceutical factory revealed that several 100 kgs of chlorinated ethenes and pharmaceutical compounds discharge into the stream every year. The strongly reduced redox conditions in the plume result in high concentrations of dissolved iron and additionally release arsenic, generating the complex contaminant mixture found in the narrow discharge zone. The fingerprint of the plume was observed in the stream several km downgradient, while nutrients, inorganics and pesticides played a minor role for the stream health. The results emphasize that future investigations should include multiple compounds and stream compartments, and highlight the need for holistic approaches when risk assessing these dynamic systems.
Collapse
Affiliation(s)
- Anne Th Sonne
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark.
| | - Ursula S McKnight
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | - Vinni Rønde
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| | - Poul L Bjerg
- Department of Environmental Engineering, Technical University of Denmark, Bygningstorvet 115, 2800 Kgs. Lyngby, Denmark
| |
Collapse
|
45
|
Chiaia-Hernandez AC, Keller A, Wächter D, Steinlin C, Camenzuli L, Hollender J, Krauss M. Long-Term Persistence of Pesticides and TPs in Archived Agricultural Soil Samples and Comparison with Pesticide Application. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2017; 51:10642-10651. [PMID: 28829578 DOI: 10.1021/acs.est.7b02529] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
For polar and more degradable pesticides, not many data on long-term persistence in soil under field conditions and real application practices exist. To assess the persistence of pesticides in soil, a multiple-compound screening method (log Kow 1.7-5.5) was developed based on pressurized liquid extraction, QuEChERS and LC-HRMS. The method was applied to study 80 polar pesticides and >90 transformation products (TPs) in archived topsoil samples from the Swiss Soil Monitoring Network (NABO) from 1995 to 2008 with known pesticide application patterns. The results reveal large variations between crop type and field sites. For the majority of the sites 10-15 pesticides were identified with a detection rate of 45% at concentrations between 1 and 330 μg/kgdw in soil. Furthermore, TPs were detected in 47% of the cases where the "parent-compound" was applied. Overall, residues of about 80% of all applied pesticides could be detected with half of these found as TPs with a persistence of more than a decade.
Collapse
Affiliation(s)
| | - Armin Keller
- Agroscope, Swiss Soil Monitoring Network (NABO) , Zürich, Switzerland
| | - Daniel Wächter
- Agroscope, Swiss Soil Monitoring Network (NABO) , Zürich, Switzerland
| | - Christine Steinlin
- Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| | - Louise Camenzuli
- Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
- Department of Environmental Systems Science, ETH Zürich , Zürich, Switzerland
| | - Martin Krauss
- Eawag, Swiss Federal Institute of Aquatic Science and Technology (Eawag) Dübendorf, Switzerland
- Helmholtz Centre for Environmental Research (UFZ) , Leipzig, Germany
| |
Collapse
|
46
|
Liess M, Gerner NV, Kefford BJ. Metal toxicity affects predatory stream invertebrates less than other functional feeding groups. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 227:505-512. [PMID: 28499260 DOI: 10.1016/j.envpol.2017.05.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 04/29/2017] [Accepted: 05/05/2017] [Indexed: 06/07/2023]
Abstract
Ecosystem effects of heavy metals need to be identified for a retrospective risk assessment, and potential impacts need to be predicted for a prospective risk assessment. In this study, we established a strong correlation between the toxic pressure of dissolved metals and invertebrate species. We compiled available data from a wide geographical range of Australian streams that were contaminated with heavy metals [mainly copper (Cu) and zinc (Zn)] and the corresponding invertebrate communities. Heavy metal toxicity is positively related to the proportion of predators within the invertebrate community, represented by the predatorratio, with an effect threshold range of 2.6 μg/L - 26 μg/L for Cu and 62 μg/L - 617 μg/L for Zn. These effect concentrations are in the ranges of the concentrations identified in model ecosystems and other field investigations and are just above the existing guideline limits. Heavy metals also affects the taxa richness negatively. Other community measures, such as the evenness, number of EPT (Ephemeroptera, Plecoptera, and Trichoptera) taxa, SPEcies At Risk (SPEAR)pesticides or SPEARsalinity were relatively poorly correlated with heavy metal toxicity in the streams. Therefore, we suggest applying the predatorratio within the community as a starting point for an indicator of the dissolved metal toxicity, the SPEARmetals.
Collapse
Affiliation(s)
- Matthias Liess
- UFZ, Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstraße15, 04318 Leipzig, Germany; RWTH Aachen University, Institute for Environmental Research (Biology V), Worringer Weg 1, 52074 Aachen, Germany.
| | - Nadine V Gerner
- UFZ, Helmholtz Centre for Environmental Research, Department System-Ecotoxicology, Permoserstraße15, 04318 Leipzig, Germany; Emschergenossenschaft, Kronprinzenstraße 24, 45128 Essen, Germany; Quantitative Landscape Ecology, Institute for Environmental Science, University of Koblenz-Landau, Fortstraße 7, 76829 Landau, Germany
| | - Ben J Kefford
- University of Canberra, ACT 2601, Institute for Applied Ecology, Australia
| |
Collapse
|
47
|
Peng FJ, Pan CG, Zhang M, Zhang NS, Windfeld R, Salvito D, Selck H, Van den Brink PJ, Ying GG. Occurrence and ecological risk assessment of emerging organic chemicals in urban rivers: Guangzhou as a case study in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 589:46-55. [PMID: 28264771 DOI: 10.1016/j.scitotenv.2017.02.200] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2017] [Revised: 02/21/2017] [Accepted: 02/25/2017] [Indexed: 05/18/2023]
Abstract
UNLABELLED Urban rivers may receive contamination from various sources including point sources like domestic sewage and nonpoint sources (e.g., runoff), resulting in contamination with various chemicals. This study investigated the occurrence of emerging organic contaminants (3 endocrine disrupting compounds (EDCs), and 17 pharmaceuticals and personal care products (PPCPs)) in six urban rivers of a representative subtropical city, Guangzhou (southern China). Our results showed that EDCs and personal care products were frequently detected in the water phase and sediment phase. 4-nonylphenol (4-NP) was the most predominant compound with the highest concentration of 5050ng/L in the water phase and 14,400ng/g dry weight (dw) in the sediment. Generally, higher total concentrations of EDCs and PPCPs were detected in the four urban streams compared to the main stream Zhujiang River and the Liuxi River at the suburb area. A screening-level risk assessment showed that 4-nonylphenol and triclosan (TCS) pose potential risks to aquatic organisms in most sampling sites. For individual taxa, 4-NP may pose risks to various groups of aquatic organisms, while TCS only might pose high risks to algae. CAPSULE Higher contamination of EDCs and PPCPs was observed in rivers in urban area; 4-nonylphenol and triclosan showed RQs>1 in >70% of the reported area.
Collapse
Affiliation(s)
- Feng-Jiao Peng
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Chang-Gui Pan
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China; School of Marine Sciences, Guangxi University, Nanning 530004, China
| | - Min Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Nai-Sheng Zhang
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| | - Ronja Windfeld
- Department of Environmental, Social and Spatial Change, Roskilde University, Universitetsvej 1, Denmark
| | - Daniel Salvito
- Research Institute for Fragrance Materials, 50 Tice Boulevard, Woodcliff Lake, NJ 07677, USA
| | - Henriette Selck
- Department of Environmental, Social and Spatial Change, Roskilde University, Universitetsvej 1, Denmark
| | - Paul J Van den Brink
- Aquatic Ecology and Water Quality Management Group, Wageningen University, P.O. Box 47, 6700 AA Wageningen, The Netherlands; Wageningen Environmental Research (Alterra), P.O. Box 47, 6700 AA Wageningen, The Netherlands.
| | - Guang-Guo Ying
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China.
| |
Collapse
|
48
|
Kuzmanovic M, Dolédec S, de Castro-Catala N, Ginebreda A, Sabater S, Muñoz I, Barceló D. Environmental stressors as a driver of the trait composition of benthic macroinvertebrate assemblages in polluted Iberian rivers. ENVIRONMENTAL RESEARCH 2017; 156:485-493. [PMID: 28415043 DOI: 10.1016/j.envres.2017.03.054] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 03/18/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
We used the trait composition of macroinvertebrate communities to identify the effects of pesticides and multiple stressors associated with urban land use at different sites of four rivers in Spain. Several physical and chemical stressors (high metal pollution, nutrients, elevated temperature and flow alterations) affected the urban sites. The occurrence of multiple stressors influenced aquatic assemblages at 50% of the sites. We hypothesized that the trait composition of macroinvertebrate assemblages would reflect the strategies that the assemblages used to cope with the respective environmental stressors. We used RLQ and fourth corner analysis to address the relationship between stressors and the trait composition of benthic macroinvertebrates. We found a statistically significant relationship between the trait composition and the exposure of assemblages to environmental stressors. The first RLQ dimension, which explained most of the variability, clearly separated sites according to the stressors. Urban-related stressors selected taxa that were mainly plurivoltine and fed on deposits. In contrast, pesticide impacted sites selected taxa with high levels of egg protection (better egg survival), indicating a potentially higher risk for egg mortality. Moreover, the trait diversity of assemblages at urban sites was low compared to that observed in pesticide impacted sites, suggesting the homogenization of assemblages in urban areas.
Collapse
Affiliation(s)
- Maja Kuzmanovic
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, C/Emili Grahit, 101 Edifici H2O, 17003 Girona, Spain.
| | - Sylvain Dolédec
- UMR 5023, LEHNA, Biodiversité et Plasticité dans les Hydrosystèmes, Université Lyon 1, 69100 Villeurbanne, France
| | - Nuria de Castro-Catala
- Department of Ecology, Universitat de Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain
| | - Antoni Ginebreda
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, C/Emili Grahit, 101 Edifici H2O, 17003 Girona, Spain; GRECO, Institut d'Ecologia Aquàtica, Universitat de Girona, Facultat de Ciències, Campus Montilivi, 17003 Girona, Spain
| | - Isabel Muñoz
- Department of Ecology, Universitat de Barcelona, Av. Diagonal, 643, 08028 Barcelona, Spain
| | - Damià Barceló
- Department of Environmental Chemistry, IDAEA-CSIC, C/Jordi Girona 18-26, 08034 Barcelona, Spain; Catalan Institute for Water Research (ICRA), Parc Científic i Tecnològic de la Universitat de Girona, C/Emili Grahit, 101 Edifici H2O, 17003 Girona, Spain
| |
Collapse
|
49
|
Chiu MC, Hunt L, Resh VH. Climate-change influences on the response of macroinvertebrate communities to pesticide contamination in the Sacramento River, California watershed. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 581-582:741-749. [PMID: 28069310 DOI: 10.1016/j.scitotenv.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2016] [Revised: 01/01/2017] [Accepted: 01/01/2017] [Indexed: 06/06/2023]
Abstract
Limited studies have addressed how future climate-change scenarios may alter the effects of pesticides on biotic assemblages or the effects of exposures to repeated pulses of pesticide mixtures. We used reported pesticide-use data as input to a hydrological fate and transport model (Soil and Water Assessment Tool) under multiple climate-change scenarios to simulate spatiotemporal dynamics of pesticides mixtures in streams on a daily time-step in the Sacramento River watershed of California. We predicted that there will be increased pesticide application with warming across the watershed, especially in upstream areas. Using a statistical model describing the relationship between macroinvertebrate communities and pesticide dynamics, we found that compared to the baseline period of 1970-1999: (1) most climate-change scenarios predicted increased rainfall and warming across the watershed during 2070-2099; and (2) increasing pesticide contamination and increased impact on macroinvertebrates will likely occur in most areas of the watershed by 2070-2099; and (3) lower increases in effects of pesticides on macroinvertebrates were predicted for the downstream areas with intensive agriculture compared to some upstream areas with less-intensive agriculture. Future efforts on practical adaptation and mitigation strategies can be improved by awareness of altered threats of pesticide mixtures under future climate-change conditions.
Collapse
Affiliation(s)
- Ming-Chih Chiu
- Department of Environmental Science, Policy & Management, University of California, Berkeley, 94720-3114, CA, USA.
| | - Lisa Hunt
- Department of Environmental Science, Policy & Management, University of California, Berkeley, 94720-3114, CA, USA.
| | - Vincent H Resh
- Department of Environmental Science, Policy & Management, University of California, Berkeley, 94720-3114, CA, USA.
| |
Collapse
|
50
|
Munz NA, Burdon FJ, de Zwart D, Junghans M, Melo L, Reyes M, Schönenberger U, Singer HP, Spycher B, Hollender J, Stamm C. Pesticides drive risk of micropollutants in wastewater-impacted streams during low flow conditions. WATER RESEARCH 2017; 110:366-377. [PMID: 27919541 DOI: 10.1016/j.watres.2016.11.001] [Citation(s) in RCA: 106] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Revised: 10/29/2016] [Accepted: 11/01/2016] [Indexed: 05/11/2023]
Abstract
Micropollutants enter surface waters through various pathways, of which wastewater treatment plants (WWTPs) are a major source. The large diversity of micropollutants and their many modes of toxic action pose a challenge for assessing environmental risks. In this study, we investigated the potential impact of WWTPs on receiving ecosystems by describing concentration patterns of micropollutants, predicting acute risks for aquatic organisms and validating these results with macroinvertebrate biomonitoring data. Grab samples were taken upstream, downstream and at the effluent of 24 Swiss WWTPs during low flow conditions across independent catchments with different land uses. Using liquid chromatography high resolution tandem mass spectrometry, a comprehensive target screening of almost 400 organic substances, focusing mainly on pesticides and pharmaceuticals, was conducted at two time points, and complemented with the analysis of a priority mixture of 57 substances over eight time points. Acute toxic pressure was predicted using the risk assessment approach of the multi-substance potentially affected fraction, first applying concentration addition for substances with the same toxic mode of action and subsequently response addition for the calculation of the risk of the total mixture. This toxic pressure was compared to macroinvertebrate sensitivity to pesticides (SPEAR index) upstream and downstream of the WWTPs. The concentrations were, as expected, especially for pharmaceuticals and other household chemicals higher downstream than upstream, with the detection frequency of plant protection products upstream correlating with the fraction of arable land in the catchments. While the concentration sums downstream were clearly dominated by pharmaceuticals or other household chemicals, the acute toxic pressure was mainly driven by pesticides, often caused by the episodic occurrence of these compounds even during low flow conditions. In general, five single substances explained much of the total risk, with diclofenac, diazinon and clothianidin as the main drivers. Despite the low predicted acute risk of 0%-2.1% for affected species, a significant positive correlation with macroinvertebrate sensitivity to pesticides was observed. However, more effect data for pharmaceuticals and a better quantification of episodic pesticide pollution events are needed for a more comprehensive risk assessment.
Collapse
Affiliation(s)
- Nicole A Munz
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland
| | - Francis J Burdon
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | | | - Marion Junghans
- Swiss Centre for Applied Ecotoxicology Eawag-EPFL, 8600 Dübendorf, Switzerland
| | - Laura Melo
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Marta Reyes
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Urs Schönenberger
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Heinz P Singer
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Barbara Spycher
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| | - Juliane Hollender
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland; Institute of Biogeochemistry and Pollutant Dynamics, ETH Zürich, 8092 Zürich, Switzerland.
| | - Christian Stamm
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, 8600 Dübendorf, Switzerland
| |
Collapse
|