1
|
Lan J, Wen F, Ren Y, Liu G, Jiang Y, Wang Z, Zhu X. An overview of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2023; 16:100278. [PMID: 37251519 PMCID: PMC10220241 DOI: 10.1016/j.ese.2023.100278] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/31/2023] [Accepted: 04/03/2023] [Indexed: 05/31/2023]
Abstract
The global problem of petroleum contamination in soils seriously threatens environmental safety and human health. Current studies have successfully demonstrated the feasibility of bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils due to their easy implementation, environmental benignity, and enhanced removal efficiency compared to bioremediation. This paper reviewed recent progress and development associated with bioelectrokinetic and bioelectrochemical remediation of petroleum-contaminated soils. The working principles, removal efficiencies, affecting factors, and constraints of the two technologies were thoroughly summarized and discussed. The potentials, challenges, and future perspectives were also deliberated to shed light on how to overcome the barriers and realize widespread implementation on large scales of these two technologies.
Collapse
Affiliation(s)
- Jun Lan
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Fang Wen
- Xinjiang Academy of Environmental Protection Science, Urumqi, 830011, China
| | - Yongxiang Ren
- Shaanxi Key Laboratory of Environmental Engineering, School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yi Jiang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong, China
| | - Zimeng Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| | - Xiuping Zhu
- Department of Environmental Science and Engineering, Fudan University, Shanghai, 200433, China
| |
Collapse
|
2
|
Tao L, Song M, Jiang G. Enhanced depolluting capabilities of microbial bioelectrochemical systems by synthetic biology. Synth Syst Biotechnol 2023; 8:341-348. [PMID: 37275577 PMCID: PMC10238267 DOI: 10.1016/j.synbio.2023.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/22/2023] [Accepted: 05/22/2023] [Indexed: 06/07/2023] Open
Abstract
Microbial bioelectrochemical system (BES) is a promising sustainable technology for the electrical energy recovery and the treatment of recalcitrant and toxic pollutants. In microbial BESs, the conversion of harmful pollutants into harmless products can be catalyzed by microorganisms at the anode (Type I BES), chemical catalysts at the cathode (Type II BES) or microorganisms at the cathode (Type III BES). The application of synthetic biology in microbial BES can improve its pollutant removing capability. Synthetic biology techniques can promote EET kinetics, which is helpful for microbial anodic electro-respiration, expediting pollutant removing not only at the anode but also at the cathode. They offer tools to promote biofilm development on the electrode, enabling more microorganisms residing on the electrode for subsequent catalytic reactions, and to overexpress the pollutant removing-related genes directly in microorganisms, contributing to the pollutant decomposition. In this work, based on the summarized aspects mentioned above, we describe the major synthetic biology strategies in designing and improving the pollutant removing capabilities of microbial BES. Lastly, we discuss challenges and perspectives for future studies in the area.
Collapse
Affiliation(s)
- Le Tao
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Maoyong Song
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Guibin Jiang
- Key Laboratory of Environmental Nanotechnology and Health Effects, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing, 100085, China
| |
Collapse
|
3
|
He Y, Zhou Q, Mo F, Li T, Liu J. Bioelectrochemical degradation of petroleum hydrocarbons: A critical review and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119344. [PMID: 35483484 DOI: 10.1016/j.envpol.2022.119344] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
As typical pollutants, petroleum hydrocarbons that are widely present in various environmental media such as soil, water, sediments, and air, seriously endanger living organisms and human health. In the meantime, as a green environmental technology that integrates pollutant removal and resource recovery, bioelectrochemical systems (BESs) have been extensively applied to the removal of petroleum hydrocarbons from the environment. This review introduces working principles of BESs, following which it discusses the different reactor structures, application progresses, and key optimization factors when treating water, sewage sludges, sediments, and soil. Furthermore, bibliometrics was first used in this field to analyze the evolution of knowledge structure and forecast future hot topics. The research focus has shifted from the early generation of bioelectric energy to exploring mechanisms of soil remediation and microbial metabolisms, which will be closely integrated in the future. Finally, the future prospects of this field are proposed. This review focuses on the research status of bioelectrochemical degradation of petroleum hydrocarbons and provides a scientific reference for subsequent research.
Collapse
Affiliation(s)
- Yuqing He
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fan Mo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Tian Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianv Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
4
|
Li C, Mei T, Song TS, Xie J. Removal of petroleum hydrocarbon-contaminated soil using a solid-phase microbial fuel cell with a 3D corn stem carbon electrode modified with carbon nanotubes. Bioprocess Biosyst Eng 2022; 45:1137-1147. [PMID: 35624323 DOI: 10.1007/s00449-022-02730-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 04/15/2022] [Indexed: 11/02/2022]
Abstract
Solid-phase microbial fuel cell (SMFC) can accelerate the removal of organic pollutants through the electrons transfer between microorganisms and anodes in the process of generating electricity. Thus, the characteristics of the anode material will affect the performance of SMFCs. In this study, corn stem (CS) is first calcined into a 3D macroporous electrode, and then modified with carbon nanotubes (CNTs) through electrochemical deposition method. Scanning electron microscope analysis showed the CS/CNT anode could increase the contact area on the surface. Furthermore, electrochemical impedance spectroscopy and cyclic voltammetry analysis indicated the electrochemical double-layer capacitance of the CS/CNT anode increased while its internal resistance decreased significantly. These characteristics are crucial for increasing bacterial adhesion capability and electron transfer rate. The maximum output voltage of the SMFC with CS/CNT anode was 158.42 mV, and the removal rate of petroleum hydrocarbon (PH) reached 42.17%, 2.72 times that of unmodified CS. In conclusion, CNT-modified CS is conducive to improve electron transfer rate and microbial attachment, enhancing the removal efficiency of PH in soil.
Collapse
Affiliation(s)
- Chenrong Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Ting Mei
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Tian-Shun Song
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,State Key Laboratory of Pollution Control and Resource Reuse, Nanjing University, Nanjing, 210093, Jiangsu, China.
| | - Jingjing Xie
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China. .,Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, 211816, People's Republic of China.
| |
Collapse
|
5
|
Aleman-Gama E, Cornejo-Martell AJ, Kamaraj SK, Juárez K, Silva-Martínez S, Alvarez-Gallegos A. Boosting Power Generation by Sediment Microbial Fuel Cell in Oil-Contaminated Sediment Amended with Gasoline/Kerosene. J ELECTROCHEM SCI TE 2022. [DOI: 10.33961/jecst.2022.00045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Boas JV, Oliveira VB, Simões M, Pinto AMFR. Review on microbial fuel cells applications, developments and costs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 307:114525. [PMID: 35091241 DOI: 10.1016/j.jenvman.2022.114525] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 01/11/2022] [Accepted: 01/13/2022] [Indexed: 06/14/2023]
Abstract
The microbial fuel cell (MFC) technology has attracted significant attention in the last years due to its potential to recover energy in a wastewater treatment. The idea of using an MFC in industry is very attractive as the organic wastes can be converted into energy, reducing the waste disposal costs and the energy needs while increasing the company profit. However, taking aside these promising prospects, the attempts to apply MFCs in large-scale have not been succeeded so far since their lower performance and high costs remains challenging. This review intends to present the main applications of the MFC systems and its developments, particularly the advances on configuration and operating conditions. The diagnostic techniques used to evaluate the MFC performance as well as the different modeling approaches are described. Towards the introduction of the MFC in the market, a cost analysis is also included. The development of low-cost materials and more efficient systems, with high higher power outputs and durability, are crucial towards the application of MFCs in industrial/large scale. This work is a helpful tool for discovering new operation and design regimes.
Collapse
Affiliation(s)
- Joana Vilas Boas
- CEFT, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Vânia B Oliveira
- CEFT, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| | - Manuel Simões
- LEPABE, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal
| | - Alexandra M F R Pinto
- CEFT, Department of Chemical Engineering, Faculty of Engineering of the University of Porto, Rua Dr. Roberto Frias, 4200-465, Porto, Portugal.
| |
Collapse
|
7
|
Aleman-Gama E, Cornejo-Martell AJ, Ortega-Martínez A, Kamaraj SK, Juárez K, Silva-Martínez S, Alvarez-Gallegos A. Oil-contaminated sediment amended with chitin enhances power production by minimizing the sediment microbial fuel cell internal resistance. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115365] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
8
|
Ding P, Wu P, Jie Z, Cui MH, Liu H. Damage of anodic biofilms by high salinity deteriorates PAHs degradation in single-chamber microbial electrolysis cell reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 777:145752. [PMID: 33684746 DOI: 10.1016/j.scitotenv.2021.145752] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) in high salinity wastewater is rather hard due to the inhibition of microorganisms by complex and high dosage of salts. Microbial electrolysis cell (MEC), with its excellent characteristic of anodic biofilms, can be an effective way to enhance the PAHs biodegradation. This work evaluated the impact of NaCl concentrations (0 g/L, 10 g/L, 30 g/L, and 60 g/L) on naphthalene biodegradation and analyzed the damage protection mechanism of anodic biofilms in batching MECs. Compared with the open circuit, the degradation efficiency of naphthalene under the closed circuit with 10 g/L NaCl concentration reached the maximum of 95.17% within 5 days. Even when NaCl concentration reached 60 g/L, the degradation efficiency only decreased by 10.02%, compared with the MEC without additional NaCl. Confocal scanning laser microscope (CSLM) proved the superiority of the biofilm states of MEC anode under high salinity in terms of thicker biofilms and higher proportion of live/dead bacteria cells. The highest dehydrogenase activity (DHA) was found in the MEC with 10 g/L NaCl concentration. Moreover, microbial diversity analysis demonstrated the classical electroactive microorganisms Geobacter and Pseudomonas were found on the anodic biofilms of MECs, which have both PAHs degradability and the electrochemical activity. Therefore, this study proved that high salinity had adverse effects on the anodic biofilms, but MEC alleviated the damage caused by high salinity.
Collapse
Affiliation(s)
- Peng Ding
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Ping Wu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhang Jie
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China
| | - Min-Hua Cui
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China
| | - He Liu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Key Laboratory of Anaerobic Biotechnology, Wuxi 214122, China; Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou 215011, China.
| |
Collapse
|
9
|
Yu B, Feng L, He Y, Yang L, Xun Y. Effects of anode materials on the performance and anode microbial community of soil microbial fuel cell. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123394. [PMID: 32659585 DOI: 10.1016/j.jhazmat.2020.123394] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/30/2020] [Accepted: 07/01/2020] [Indexed: 06/11/2023]
Abstract
Five soil microbial fuel cells (SMFCs) with graphite felt, aluminium sheet, activated carbon fibre felt, graphite paper and carbon cloth as anodes were constructed using the petroleum hydrocarbon polluted soils as substrates. After 115 days of operation, the SMFC with graphite felt anode performed the best in both bioelectricity output and removal of target pollutants, with the bioelectricity output parameters of 345 mV for stable voltage, 24.0 mW/m2 for power density and 774 Ω for internal resistance, and the removal rates of 59.14 % for total petroleum hydrocarbon, 61.65 % for anthracene, and 55.92 % for pyrene, respectively. The conductivity of the material was the key factor affecting the electron transfer rate of the anode, which determined the electric acclimation and screening intensity of SMFC to soil microbes, leading to the growth and succession of the electricigens-dominanted anode microbial community with various abundances of phyla and genera. The surface structure of the anode material played a critical role in the internal resistance of SMFC through affecting the mass transfer of substrate and metabolites, and it might also change the abundance of microbes especially those non-electricigens on the community through different adhesion.
Collapse
Affiliation(s)
- Bao Yu
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; Center for Environmental Remediation, Institute of Geographic Sciences and Natural Resources Research, Beijing 100101, PR China
| | - Liu Feng
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Yali He
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Lei Yang
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Yu Xun
- Department of Environmental Sciences and Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China
| |
Collapse
|
10
|
Hao DC, Li XJ, Xiao PG, Wang LF. The Utility of Electrochemical Systems in Microbial Degradation of Polycyclic Aromatic Hydrocarbons: Discourse, Diversity and Design. Front Microbiol 2020; 11:557400. [PMID: 33193139 PMCID: PMC7644954 DOI: 10.3389/fmicb.2020.557400] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 09/25/2020] [Indexed: 12/27/2022] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs), especially high molecular weight PAHs, are carcinogenic and mutagenic organic compounds that are difficult to degrade. Microbial remediation is a popular method for the PAH removal in diverse environments and yet it is limited by the lack of electron acceptors. An emerging solution is to use the microbial electrochemical system, in which the solid anode is used as an inexhaustible electron acceptor and the microbial activity is stimulated by biocurrent in situ to ensure the PAH removal and avoid the defects of bioremediation. Based on the extensive investigation of recent literatures, this paper summarizes and comments on the research progress of PAH removal by the microbial electrochemical system of diversified design, enhanced measures and functional microorganisms. First, the bioelectrochemical degradation of PAHs is reviewed in separate and mixed PAH degradation, and the removal performance of PAHs in different system configurations is compared with the anode modification, the enhancement of substrate and electron transfer, the addition of chemical reagents, and the combination with phytoremediation. Second, the key functional microbiota including PAH degrading microbes and exoelectrogens are overviewed as well as the reduced microbes without competitive advantage. Finally, the typical representations of electrochemical activity especially the internal resistance, power density and current density of systems and influence factors are reviewed with the correlation analysis between PAH removal and energy generation. Presently, most studies focused on the anode modification in the bioelectrochemical degradation of PAHs and actually more attentions need to be paid to enhance the mass transfer and thus larger remediation radius, and other smart designs are also proposed, especially that the combined use of phytoremediation could be an eco-friendly and sustainable approach. Additionally, exoelectrogens and PAH degraders are partially overlapping, but the exact functional mechanisms of interaction network are still elusive, which could be revealed with the aid of advanced bioinformatics technology. In order to optimize the efficacy of functional community, more advanced techniques such as omics technology, photoelectrocatalysis and nanotechnology should be considered in the future research to improve the energy generation and PAH biodegradation rate simultaneously.
Collapse
Affiliation(s)
- Da-Cheng Hao
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| | - Xiao-Jing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety, Tianjin, China
| | - Pei-Gen Xiao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences, Beijing, China
| | - Lian-Feng Wang
- School of Environmental and Chemical Engineering, Dalian Jiaotong University, Dalian, China
| |
Collapse
|
11
|
Koshlaf E, Shahsavari E, Haleyur N, Osborn AM, Ball AS. Impact of necrophytoremediation on petroleum hydrocarbon degradation, ecotoxicity and soil bacterial community composition in diesel-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:31171-31183. [PMID: 32474790 DOI: 10.1007/s11356-020-09339-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 05/18/2020] [Indexed: 05/25/2023]
Abstract
Hydrocarbon degradation is usually measured in laboratories under controlled conditions to establish the likely efficacy of a bioremediation process in the field. The present study used greenhouse-based bioremediation to investigate the effects of natural attenuation (NA) and necrophytoremediation (addition of pea straw (PS)) on hydrocarbon degradation, toxicity and the associated bacterial community structure and composition in diesel-contaminated soil. A significant reduction in total petroleum hydrocarbon (TPH) concentration was detected in both treatments; however, PS-treated soil showed more rapid degradation (87%) after 5 months together with a significant reduction in soil toxicity (EC50 = 91 mg diesel/kg). Quantitative PCR analysis revealed an increase in the number of 16S rRNA and alkB genes in the PS-amended soil. Substantial shifts in soil bacterial community were observed during the bioremediation, including an increased abundance of numerous hydrocarbon-degrading bacteria. The bacterial community shifted from dominance by Alphaproteobacteria and Gammaproteobacteria in the original soil to Actinobacteria during bioremediation. The dominance of two genera of bacteria, Sphingobacteria and Betaproteobacteria, in both NA- and PS-treated soil demonstrated changes occurring within the soil bacterial community through the incubation period. Additionally, pea straw itself was found to harbour a diverse hydrocarbonoclastic community including Luteimonas, Achromobacter, Sphingomonas, Rhodococcus and Microbacterium. At the end of the experiment, PS-amended soil exhibited reduced ecotoxicity and increased bacterial diversity as compared with the NA-treated soil. These findings suggest the rapid growth of species stimulated by the bioremediation treatment and strong selection for bacteria capable of degrading petroleum hydrocarbons during necrophytoremediation. Graphical abstract.
Collapse
Affiliation(s)
- Eman Koshlaf
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia.
| | - Esmaeil Shahsavari
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Nagalakshmi Haleyur
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Andrew Mark Osborn
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| | - Andrew S Ball
- Centre for Environmental Sustainability and Remediation, School of Science, RMIT University, Bundoora, Victoria, 3083, Australia
| |
Collapse
|
12
|
Zhang F, Qian DK, Wang XB, Dai K, Wang T, Zhang W, Zeng RJ. Stimulation of methane production from benzoate with addition of carbon materials. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138080. [PMID: 32220738 DOI: 10.1016/j.scitotenv.2020.138080] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 03/18/2020] [Accepted: 03/18/2020] [Indexed: 06/10/2023]
Abstract
Huge amounts of wastewater that contain aromatic compounds such as benzene and phenols are discharged worldwide. Benzoate is a typical intermediate in the anaerobic transformation of those aromatic compounds. In this study, electrically conductive carbon-based materials of granulated activated carbon (GAC), multiwalled carbon nanotubes (MwCNTs), and graphite were evaluated for the ability to promote the benzoate degradation. The results showed that 82-93% of the electrons were recovered in CH4 production from benzoate. The carbon materials stimulated benzoate degradation in the sequence of GAC (5 g/L) > MwCNTs (1 g/L) ~ Graphite (0.1 g/L) > Control. Acetate was the only detected intermediate in the process of benzoate degradation. Taxonomic analyses revealed that benzoate was degraded by Syntrophus to acetate and H2, which were subsequently converted to methane by Methanosarcina (both acetoclastic methanogens and hydrogenotrophic methanogens) and Methanoculleus (hydrogenotrophic methanogens), and direct interspecies electron transfer (DIET) of Desulfovibrio and Methanosarcina. Thus, these results suggest a method to effectively enhance the removal of aromatic compounds and methane recovery.
Collapse
Affiliation(s)
- Fang Zhang
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ding-Kang Qian
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Xian-Bin Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Kun Dai
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
| | - Ting Wang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Wei Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China
| | - Raymond Jianxiong Zeng
- Center of Wastewater Resource Recovery, College of Resources and Environment, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, People's Republic of China.
| |
Collapse
|
13
|
He X, Wu X, Qiao Y, Hu T, Wang D, Han X, Li CM. Electrical tension-triggered conversion of anaerobic to aerobic respiration of Shewanella putrefaciens CN32 cells while promoting biofilm growth in microbial fuel cells. Chem Commun (Camb) 2020; 56:6050-6053. [PMID: 32347873 DOI: 10.1039/d0cc01605e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A global gene expression analysis of Shewanella putrefaciens CN32 cells nearby a nanostructured microbial anode reveals an electrical tension-triggered conversion of anaerobic respiration to aerobic respiration with increased excretion of flavin electron shuttles and cytochrome C proteins, which sheds light on the role of electric tension in cell organisms.
Collapse
Affiliation(s)
- Xiu He
- Institute for Clean Energy & Advanced Materials, Faculty of Materials & Energy, Southwest University, No. 2 Tiansheng Road, Chongqing 400715, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
14
|
Sharma M, Nandy A, Taylor N, Venkatesan SV, Ozhukil Kollath V, Karan K, Thangadurai V, Tsesmetzis N, Gieg LM. Bioelectrochemical remediation of phenanthrene in a microbial fuel cell using an anaerobic consortium enriched from a hydrocarbon-contaminated site. JOURNAL OF HAZARDOUS MATERIALS 2020; 389:121845. [PMID: 31862354 DOI: 10.1016/j.jhazmat.2019.121845] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 11/15/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAH) are organic pollutants that require remediation due to their detrimental impact on human and environmental health. In this study, we used a novel approach of sequestering a model PAH, phenanthrene, onto a solid carbon matrix bioanode in a microbial fuel cell (MFC) to assess its biodegradation coupled with power generation. Here, the bioanode serves as a site for enrichment of electroactive and hydrocarbon-degrading microorganisms, which can simultaneously act to biodegrade a pollutant and generate power. Carbon cloth electrodes loaded with two rates of phenanthrene (2 and 20 mg cm-2) were compared using dual chamber MFCs that were operated for 50 days. The lower loading rate of 2 mg cm-2 was most efficient in the degradation of phenanthrene and had higher power production capacities (37 mW m-2) as compared to the higher loading rate of 20 mg cm-2 (power production of 19.2 mW m-2). FTIR (Fourier-Transform Infrared Spectroscopy) analyses showed a depletion in absorbance peak signals associated with phenanthrene. Microbes known to have electroactive properties or phenanthrene biodegradation abilities like Pseudomonas, Rhodococcus, Thauera and Ralstonia were enriched over time in the MFCs, substantiating the electrochemical and FTIR analyses. The MFC approach taken here thus offers great promise towards PAH bioelectroremediation.
Collapse
Affiliation(s)
- Mohita Sharma
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Arpita Nandy
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Nicole Taylor
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Senthil Velan Venkatesan
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Vinayaraj Ozhukil Kollath
- Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Kunal Karan
- Department of Chemical & Petroleum Engineering, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Venkataraman Thangadurai
- Department of Chemistry, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada
| | - Nicolas Tsesmetzis
- Shell International Exploration and Production Inc., 3333 Highway 6 South, Houston, Texas, 77251-7171, USA
| | - Lisa M Gieg
- Petroleum Microbiology Research Group, Department of Biological Sciences, University of Calgary, 2500 University Drive NW, Calgary, Alberta, T2N 1N4, Canada.
| |
Collapse
|
15
|
Lin CW, Chen J, Zhao J, Liu SH, Lin LC. Enhancement of power generation with concomitant removal of toluene from artificial groundwater using a mini microbial fuel cell with a packed-composite anode. JOURNAL OF HAZARDOUS MATERIALS 2020; 387:121717. [PMID: 31767505 DOI: 10.1016/j.jhazmat.2019.121717] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2019] [Revised: 10/31/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
Composite beads are packed in the anode chamber of a microbial fuel cell (MFC), providing more area for microbial attachment and growth, increasing the efficiency of removal of toluene from toluene-contaminated groundwater. The composite beads were fabricated by integrating carbon coke (CC) with a relatively large specific surface area to which microorganisms easily adhere with conductive carbon black (CCB), which has low electrical resistance. Since the advantages of both are complementary, the power generation of MFC is improved. The single layer-packed anode MFC (SP-MFC) completely degraded 200 mg L-1 of toluene - 2.3 times faster than the non-packed anode MFC (NP-MFC). The high power density (44.9 mW m-3) and oxidation peak (1 mA), with low internal resistance (207 Ω) revealed that SP effectively improved the power generation efficiency. A composition ratio (CRCCB:CC) of composite beads of one to two yielded the best performance with a removal efficiency of 100 % - 76 % faster than CC. The closed circuit voltage of CR1:2 MFC reached 340 mV, which was 16 times that of CC; the power density and oxidation peak reached 103 mW m-3 and 1.38 mA, respectively. Therefore, CR1:2 effectively increased the overall removal efficiency and power generation of the MFC.
Collapse
Affiliation(s)
- Chi-Wen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, 123 University Rd., Sec. 3, Douliu, Yunlin 64002, Taiwan, ROC; National Yunlin University of Science and Technology, Feng Tay Distinguished Professor, Taiwan, ROC
| | - Jianmeng Chen
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Jingkai Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou, 310014, China
| | - Shu-Hui Liu
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, 123 University Rd., Sec. 3, Douliu, Yunlin 64002, Taiwan, ROC.
| | - Li-Chen Lin
- Department of Safety, Health and Environmental Engineering, National Yunlin University of Science and Technology, 123 University Rd., Sec. 3, Douliu, Yunlin 64002, Taiwan, ROC
| |
Collapse
|
16
|
Wang X, Aulenta F, Puig S, Esteve-Núñez A, He Y, Mu Y, Rabaey K. Microbial electrochemistry for bioremediation. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2020; 1:100013. [PMID: 36160374 PMCID: PMC9488016 DOI: 10.1016/j.ese.2020.100013] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 01/08/2020] [Accepted: 01/10/2020] [Indexed: 05/03/2023]
Abstract
Lack of suitable electron donors or acceptors is in many cases the key reason for pollutants to persist in the environment. Externally supplementation of electron donors or acceptors is often difficult to control and/or involves chemical additions with limited lifespan, residue formation or other adverse side effects. Microbial electrochemistry has evolved very fast in the past years - this field relates to the study of electrochemical interactions between microorganisms and solid-state electron donors or acceptors. Current can be supplied in such so-called bioelectrochemical systems (BESs) at low voltage to provide or extract electrons in a very precise manner. A plethora of metabolisms can be linked to electrical current now, from metals reductions to denitrification and dechlorination. In this perspective, we provide an overview of the emerging applications of BES and derived technologies towards the bioremediation field and outline how this approach can be game changing.
Collapse
Affiliation(s)
- Xiaofei Wang
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent University, Belgium
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria Km 29,300, 00015, Monterotondo, RM, Italy
| | - Sebastià Puig
- LEQUiA. Institute of the Environment, University of Girona, Campus Montilivi. C/Maria Aurèlia Capmany, 69, E-17003, Girona, Catalonia, Spain
| | - Abraham Esteve-Núñez
- Department of Analytical Chemistry and Chemical Engineering, University of Alcalá, Campus Universitario, Ctra. Madrid-Barcelona Km 33.600, 28871, Alcalá de Henares, Spain
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse (SKL-PCRR), School of the Environment, Nanjing University, Xianlin Avenue 163, Nanjing, 210023, China
| | - Yang Mu
- Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium
- Centre for Advanced Process Technology for Urban Resource Recovery (CAPTURE), Ghent University, Belgium
- Corresponding author. Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, 9000, Ghent, Belgium. http://www.capture-resources.be
| |
Collapse
|
17
|
Zhao G, Li E, Li J, Liu F, Liu F, Xu M. Goethite Hinders Azo Dye Bioreduction by Blocking Terminal Reductive Sites on the Outer Membrane of Shewanella decolorationis S12. Front Microbiol 2019; 10:1452. [PMID: 31293561 PMCID: PMC6604703 DOI: 10.3389/fmicb.2019.01452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 06/11/2019] [Indexed: 01/21/2023] Open
Abstract
Iron (hydr)oxides are the most ubiquitous Fe(III)-containing minerals in the near-surface environments and can regulate organic pollutant biotransformation by participating in bacterial extracellular electron transfer under anaerobic conditions. Mechanisms described so far are based on their redox properties in bacterial extracellular respiration. Here, we find that goethite, a typical iron (hydr)oxide, inhibits the bioreduction of different polar azo dyes by Shewanella decolorationis S12 not through electron competition, but by the contact of its surface Fe(III) with the bacterial outer surface. Through the combined results of attenuated total reflectance (ATR) Fourier transform infrared spectroscopy, two-dimensional correlation spectroscopy, and confocal laser scanning microscope, we found that the outer membrane proteins MtrC and OmcA of strain S12 are key binding sites for goethite surface. Meanwhile, they were identified as the important reductive terminals for azo dyes. These results suggest that goethite may block the terminal reductive sites of azo dyes on the bacterial outer membrane to inhibit their bioreduction. This discovered role of goethite in bioreduction provides new insight into the microbial transformation processes of organic pollutants in iron (hydr)oxide-containing environments.
Collapse
Affiliation(s)
- Gang Zhao
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Enze Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Jianjun Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Feifei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Fei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| |
Collapse
|
18
|
Li X, Zheng R, Zhang X, Liu Z, Zhu R, Zhang X, Gao D. A novel exoelectrogen from microbial fuel cell: Bioremediation of marine petroleum hydrocarbon pollutants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 235:70-76. [PMID: 30677657 DOI: 10.1016/j.jenvman.2019.01.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 12/31/2018] [Accepted: 01/02/2019] [Indexed: 06/09/2023]
Abstract
In the past decades, the microbial fuel cell (MFC) technology has caught the attention of the scientific community for its potential in transforming petroleum hydrocarbon (PHC) pollutants directly into electricity through microbial catalyzed anodic. The microbe was one of the most important factors that both influence MFCs and PHC degradation. Here we aimed to identify new microbes to expand the list of microbial species which are both electrogenic and diesel hydrocarbon degrading. In this text, we depicted a strain of microbe named E2, isolated from on the anode surface of MFC, and using diesel as sole carbon source. E2 exhibited electrochemical activity in cyclic voltammetry curve, implicating that it had electrogenic ability. E2 degraded about 50% diesel (3.26 g/L) in maximum during 8 days. Pyrosequencing of 16S rRNA gene of E2 revealed E2 was a sub-strain of Vibrio. Corresponding to salt and alkali tolerant properties of vibrio, the optimal condition for E2 in degrading diesel was 3%-4% in salinity, and pH 8-9 in mineral medium. Collectively, as a member of Gammaproteobacteria class, E2 was novel marine microbe both electricity generation and diesel degradation, which may attract its future application toward artificial microbial community construction in MFC in promoting the PHC pollution removal.
Collapse
Affiliation(s)
- Xiaoling Li
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, China
| | - Ruiyu Zheng
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, China
| | - Xuwu Zhang
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, China
| | - Zhiwei Liu
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, China
| | - Ruiyan Zhu
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, China; Asparagus Industry Technology Research Institute of Hebei Province, Qinhuangdao 066004, China
| | - Xiaoyu Zhang
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, China
| | - Dawei Gao
- Applied Chemistry Key Lab of Hebei Province, Department of Bioengineering, Yanshan University, Qinhuangdao 066004, China; Asparagus Industry Technology Research Institute of Hebei Province, Qinhuangdao 066004, China.
| |
Collapse
|
19
|
Li X, Li Y, Zhang X, Zhao X, Sun Y, Weng L, Li Y. Long-term effect of biochar amendment on the biodegradation of petroleum hydrocarbons in soil microbial fuel cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:796-806. [PMID: 30253361 DOI: 10.1016/j.scitotenv.2018.09.098] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/07/2018] [Accepted: 09/08/2018] [Indexed: 05/24/2023]
Abstract
Biochar is extensively applied in amendment of contaminated soils. However, the effect of biochar on the biodegradation of petroleum hydrocarbons and electricity generation in soil microbial fuel cells (MFCs) remains unclear. Here, three biochars respectively derived from poultry (chicken manure, CB), agriculture (wheat straw, SB) and forestry industries (wood sawdust, WB) were investigated after 223 days of amendment. Consequently, high removal for alkanes was in CB with the mineral nutrition and phosphorus while aromatics were in SB with the most N content and the highest molecular polarity. The lowest removal efficiency of total petroleum hydrocarbons was observed in WB with the highest surface area, whereas the most charge was obtained. The different performance of soil MFCs was due to physicochemical properties of biochar and colonized microbial communities of bacteria and archaea. The abundance of Actinotalea increased by 144-263% in SB and CB while that of Desulfatitalea distinctly increased in WB. Meanwhile, species from Methanosarcina, Methanoculleus, Halovivax and Natronorubrum exerted probably a methanogenic degrading role. This study revealed that the degrader, azotobacter and electricigens exhibited a close relationship in order to degrade hydrocarbons and generate electricity in soil bioelectrochemical remediation systems.
Collapse
Affiliation(s)
- Xiaojing Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin 300191, China; MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Yue Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin 300191, China
| | - Xiaolin Zhang
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin 300191, China
| | - Xiaodong Zhao
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin 300191, China
| | - Yang Sun
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin 300191, China
| | - Liping Weng
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin 300191, China
| | - Yongtao Li
- Agro-Environmental Protection Institute, Ministry of Agriculture, MOA Key Laboratory of Original Agro-Environmental Pollution Prevention and Control, Tianjin 300191, China; College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
20
|
Li X, Zeng C, Lu Y, Liu G, Luo H, Zhang R. Development of methanogens within cathodic biofilm in the single-chamber microbial electrolysis cell. BIORESOURCE TECHNOLOGY 2019; 274:403-409. [PMID: 30551043 DOI: 10.1016/j.biortech.2018.12.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 11/28/2018] [Accepted: 12/01/2018] [Indexed: 06/09/2023]
Abstract
The aim of this study was to investigate the development of cathodic biofilm and its effect on methane production in a single-chamber microbial electrolysis cell (MEC). The MEC with 1 g/L acetate was successfully operated within 31 cycles (∼2400 h). The maximum methane production rate and average current capture efficiency in the MEC reached 93 L/m3·d and 82%, respectively. Distinct stratification of Methanobacteriaceae within cathodic biofilm was observed after 9 cycles of operation. The relative abundance of Methanobacteriaceae in the microbial community increased from 45.3% (0-15 μm), 57.6% (15-30 μm), 66.9% (30-45 μm) to 77.2% (45-60 μm) within the cathodic biofilm. The methane production rates were positively correlated with the mcrA gene copy numbers in the cathodic biofilm. Our results should be useful to understand the mechanism of methane and hydrogen production in the MEC.
Collapse
Affiliation(s)
- Xiao Li
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Cuiping Zeng
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Yaobin Lu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China.
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Haiping Luo
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| | - Renduo Zhang
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
21
|
Zhang X, Li X, Zhao X, Li Y. Factors affecting the efficiency of a bioelectrochemical system: a review. RSC Adv 2019; 9:19748-19761. [PMID: 35519388 PMCID: PMC9065546 DOI: 10.1039/c9ra03605a] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/11/2019] [Indexed: 11/21/2022] Open
Abstract
The great potential of bioelectrochemical systems (BESs) in pollution control combined with energy recovery has attracted increasing attention.
Collapse
Affiliation(s)
- Xiaolin Zhang
- Agro-Environmental Protection Institute
- Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control
- MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety
- Tianjin 300191
- China
| | - Xiaojing Li
- Agro-Environmental Protection Institute
- Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control
- MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety
- Tianjin 300191
- China
| | - Xiaodong Zhao
- Agro-Environmental Protection Institute
- Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control
- MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety
- Tianjin 300191
- China
| | - Yongtao Li
- Agro-Environmental Protection Institute
- Ministry of Agriculture and Rural Affairs/Key Laboratory of Original Agro-Environmental Pollution Prevention and Control
- MARA/Tianjin Key Laboratory of Agro-Environment and Agro-Product Safety
- Tianjin 300191
- China
| |
Collapse
|
22
|
Li BB, Cheng YY, Fan YY, Liu DF, Fang CY, Wu C, Li WW, Yang ZC, Yu HQ. Estimates of abundance and diversity of Shewanella genus in natural and engineered aqueous environments with newly designed primers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 637-638:926-933. [PMID: 29763873 DOI: 10.1016/j.scitotenv.2018.05.051] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Revised: 05/04/2018] [Accepted: 05/04/2018] [Indexed: 06/08/2023]
Abstract
Shewanella species have a diverse respiratory ability and wide distribution in environments and play an important role in bioremediation and the biogeochemical cycles of elements. Primers with more accuracy and broader coverage are required with consideration of the increasing number of Shewanella species and evaluation of their roles in various environments. In this work, a new primer set of 640F/815R was developed to quantify the abundance of Shewanella species in natural and engineered environments. In silico tools for primer evaluation, quantitative polymerase chain reaction (qPCR) and clone library results showed that 640F/815R had a higher specificity and coverage than the previous primers in quantitative analysis of Shewanella. Another newly developed primer pair of 211F/815cR was also adopted to analyze the Shewanella diversity and demonstrated to be the best candidate in terms of specificity and coverage. We detected more Shewanella-related species in freshwater environments and found them to be substantially different from those in marine environments. Abundance and diversity of Shewanella species in wastewater treatment plants were largely affected by the process and operating conditions. Overall, this study suggests that investigations of abundance and diversity of Shewanella in various environments are of great importance to evaluate their ecophysiology and potential ecological roles.
Collapse
Affiliation(s)
- Bing-Bing Li
- School of Life Sciences, University of Science & Technology of China, Hefei 230026, China; CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Yuan-Yuan Cheng
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Yang-Yang Fan
- School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Dong-Feng Liu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Cai-Yun Fang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Chao Wu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Wen-Wei Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China
| | - Zong-Chuang Yang
- School of Life Sciences, University of Science & Technology of China, Hefei 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Chemistry, University of Science & Technology of China, Hefei 230026, China.
| |
Collapse
|
23
|
Wilhelm RC, Hanson BT, Chandra S, Madsen E. Community dynamics and functional characteristics of naphthalene-degrading populations in contaminated surface sediments and hypoxic/anoxic groundwater. Environ Microbiol 2018; 20:3543-3559. [PMID: 30051558 DOI: 10.1111/1462-2920.14309] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 06/07/2018] [Indexed: 12/19/2022]
Abstract
Earlier research on the biogeochemical factors affecting natural attenuation in coal-tar contaminated groundwater, at South Glens Falls, NY, revealed the importance of anaerobic metabolism and trophic interactions between degrader and bacterivore populations. Field-based characterizations of both phenomena have proven challenging, but advances in stable isotope probing (SIP), single-cell imaging and shotgun metagenomics now provide cultivation-independent tools for their study. We tracked carbon from 13 C-labelled naphthalene through microbial populations in contaminated surface sediments over 6 days using respiration assays, secondary ion mass spectrometry imaging and shotgun metagenomics to disentangle the contaminant-based trophic web. Contaminant-exposed communities in hypoxic/anoxic groundwater were contrasted with those from oxic surface sediments to identify putative features of anaerobic catabolism of naphthalene. In total, six bacteria were responsible for naphthalene degradation. Cupriavidus, Ralstonia and Sphingomonas predominated at the earliest stages of SIP incubations and were succeeded in later stages by Stenotrophomonas and Rhodococcus. Metagenome-assembled genomes provided evidence for the ecological and functional characteristics underlying these temporal shifts. Identical species of Stenotrophomonas and Rhodococcus were abundant in the most contaminated, anoxic groundwater. Apparent increases in bacterivorous protozoa were observed following exposure to naphthalene, though insignificant amounts of carbon were transferred between bacterial degraders and populations of secondary feeders.
Collapse
Affiliation(s)
- Roland C Wilhelm
- Soil and Crop Sciences, School of Integrative Plant Science, Cornell University, Ithaca, NY 14853, USA
| | - Buck T Hanson
- Department of Microbiology and Ecosystem Science, University of Vienna, Vienna, Austria
| | - Subhash Chandra
- Cornell SIMS Laboratory, Department of Earth and Atmospheric Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Eugene Madsen
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
24
|
Wan H, Yi X, Liu X, Feng C, Dang Z, Wei C. Time-dependent bacterial community and electrochemical characterizations of cathodic biofilms in the surfactant-amended sediment-based bioelectrochemical reactor with enhanced 2,3,4,5-tetrachlorobiphenyl dechlorination. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 236:343-354. [PMID: 29414357 DOI: 10.1016/j.envpol.2018.01.048] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/13/2018] [Accepted: 01/16/2018] [Indexed: 06/08/2023]
Abstract
Applying an electric field to stimulate the microbial reductive dechlorination of polychlorinated biphenyls (PCBs) represents a promising approach for bioremediation of PCB-contaminated sites. This study aimed to demonstrate the biocathodic film-facilitated reduction of PCB 61 in a sediment-based bioelectrochemical reactor (BER) and, more importantly, the characterizations of electrode-microbe interaction from microbial and electrochemical perspectives particularly in a time-dependent manner. The application of a cathodic potential (-0.45 V vs. SHE) significantly improved the rate and extent of PCB 61 dechlorination compared to the open-circuit scenario (without electrical stimulation), and the addition of an external surfactant further increased the dechlorination, with Tween 80 exerting more pronounced effects than rhamnolipid. The bacterial composition of the biofilms and the bioelectrochemical kinetics of the BERs were found to be time-dependent and to vary considerably with the incubation time and slightly with the coexistence of an external surfactant. Excellent correlations were observed between the dechlorination rate and the relative abundance of Dehalogenimonas, Dechloromonas, and Geobacter, the dechlorination rate and the cathodic current density recorded from the chronoamperometry tests, and the dechlorination rate and the charge transfer resistance derived from the electrochemical impedance tests, with respect to the 120 day-operation. After day 120, PCB 61 was resistant to further appreciable reduction, but substantial hydrogen production was detected, and the bacterial community and electrochemical parameters observed on day 180 were not distinctly different from those on day 120.
Collapse
Affiliation(s)
- Hui Wan
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoyun Yi
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, PR China
| | - Xiaoping Liu
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Chunhua Feng
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, PR China.
| | - Zhi Dang
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, PR China
| | - Chaohai Wei
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, South China University of Technology, Guangzhou 510006, PR China
| |
Collapse
|
25
|
Dos Santos JJ, Maranho LT. Rhizospheric microorganisms as a solution for the recovery of soils contaminated by petroleum: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 210:104-113. [PMID: 29331851 DOI: 10.1016/j.jenvman.2018.01.015] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 12/27/2017] [Accepted: 01/04/2018] [Indexed: 06/07/2023]
Abstract
Petroleum is currently the world's main energy source, and its demand is expected to increase in coming years. Its intense exploitation can lead to an increase in the number of environmental accidents, such as spills and leaks, and an increase in the generation of environmental liabilities resulting from refining. Due to its hydrophobic characteristics and slow process of biodegradation, petroleum can remain in the environment for a long time and its toxicity can cause a negative impact on both terrestrial and aquatic ecosystems, with the main negative effects related to its carcinogenic potential for both animals and humans. The objective of the present review is to discuss environmental contamination by oil, conventional treatment techniques and bioremediation an alternative tool for recovery petroleum-contaminated soils, focusing on the rhizodegradation process, plant growth-promoting rhizobacteria (PGPR), a phytoremediation strategy in which the microorganisms that colonize the roots of phytoremediatior plants are responsible for the biodegradation of petroleum. These microorganisms can be selected and tested individually or in the form of consortia to evaluate their potential for oil degradation, or even to measure the use of biosurfactants produced by them to constitute tools for the development of environmental recovery strategies and biotechnological application.
Collapse
Affiliation(s)
- Jéssica Janzen Dos Santos
- Master Program in Industrial Biotechnology, Universidade Positivo (UP), R. Prof. Pedro Viriato Parigot de Souza, 5300, Curitiba, PR 81.280-330, Brazil
| | - Leila Teresinha Maranho
- Master Program in Industrial Biotechnology, Universidade Positivo (UP), R. Prof. Pedro Viriato Parigot de Souza, 5300, Curitiba, PR 81.280-330, Brazil.
| |
Collapse
|
26
|
Venkidusamy K, Hari AR, Megharaj M. Petrophilic, Fe(III) Reducing Exoelectrogen Citrobacter sp. KVM11, Isolated From Hydrocarbon Fed Microbial Electrochemical Remediation Systems. Front Microbiol 2018; 9:349. [PMID: 29593662 PMCID: PMC5858583 DOI: 10.3389/fmicb.2018.00349] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 02/14/2018] [Indexed: 11/13/2022] Open
Abstract
Exoelectrogenic biofilms capable of extracellular electron transfer are important in advanced technologies such as those used in microbial electrochemical remediation systems (MERS) Few bacterial strains have been, nevertheless, obtained from MERS exoelectrogenic biofilms and characterized for bioremediation potential. Here we report the identification of one such bacterial strain, Citrobacter sp. KVM11, a petrophilic, iron reducing bacterial strain isolated from hydrocarbon fed MERS, producing anodic currents in microbial electrochemical systems. Fe(III) reduction of 90.01 ± 0.43% was observed during 5 weeks of incubation with Fe(III) supplemented liquid cultures. Biodegradation screening assays showed that the hydrocarbon degradation had been carried out by metabolically active cells accompanied by growth. The characteristic feature of diazo dye decolorization was used as a simple criterion for evaluating the electrochemical activity in the candidate microbe. The electrochemical activities of the strain KVM11 were characterized in a single chamber fuel cell and three electrode electrochemical cells. The inoculation of strain KVM11 amended with acetate and citrate as the sole carbon and energy sources has resulted in an increase in anodic currents (maximum current density) of 212 ± 3 and 359 ± mA/m2 with respective coulombic efficiencies of 19.5 and 34.9% in a single chamber fuel cells. Cyclic voltammetry studies showed that anaerobically grown cells of strain KVM11 are electrochemically active whereas aerobically grown cells lacked the electrochemical activity. Electrobioremediation potential of the strain KVM11 was investigated in hydrocarbonoclastic and dye detoxification conditions using MERS. About 89.60% of 400 mg l-1 azo dye was removed during the first 24 h of operation and it reached below detection limits by the end of the batch operation (60 h). Current generation and biodegradation capabilities of strain KVM11 were examined using an initial concentration of 800 mg l-1 of diesel range hydrocarbons (C9-C36) in MERS (maximum currentdensity 50.64 ± 7 mA/m2; power density 4.08 ± 2 mW/m2, 1000 ω, hydrocarbon removal 60.14 ± 0.7%). Such observations reveal the potential of electroactive biofilms in the simultaneous remediation of hydrocarbon contaminated environments with generation of energy.
Collapse
Affiliation(s)
- Krishnaveni Venkidusamy
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA, Australia
| | - Ananda Rao Hari
- Division of Sustainable Development, Hamad Bin Khalifa University, Education City, Doha, Qatar
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation (CERAR), University of South Australia, Mawson Lakes, SA, Australia
- CRC for Contamination Assessment and Remediation of the Environment (CRCCARE), Mawson Lakes, SA, Australia
- Global Centre for Environmental Remediation (GCER), Faculty of Science, The University of Newcastle, Callaghan, NSW, Australia
| |
Collapse
|
27
|
Kronenberg M, Trably E, Bernet N, Patureau D. Biodegradation of polycyclic aromatic hydrocarbons: Using microbial bioelectrochemical systems to overcome an impasse. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2017; 231:509-523. [PMID: 28841503 DOI: 10.1016/j.envpol.2017.08.048] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2017] [Revised: 08/09/2017] [Accepted: 08/11/2017] [Indexed: 05/22/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are hardly biodegradable carcinogenic organic compounds. Bioremediation is a commonly used method for treating PAH contaminated environments such as soils, sediment, water bodies and wastewater. However, bioremediation has various drawbacks including the low abundance, diversity and activity of indigenous hydrocarbon degrading bacteria, their slow growth rates and especially a limited bioavailability of PAHs in the aqueous phase. Addition of nutrients, electron acceptors or co-substrates to enhance indigenous microbial activity is costly and added chemicals often diffuse away from the target compound, thus pointing out an impasse for the bioremediation of PAHs. A promising solution is the adoption of bioelectrochemical systems. They guarantee a permanent electron supply and withdrawal for microorganisms, thereby circumventing the traditional shortcomings of bioremediation. These systems combine biological treatment with electrochemical oxidation/reduction by supplying an anode and a cathode that serve as an electron exchange facility for the biocatalyst. Here, recent achievements in polycyclic aromatic hydrocarbon removal using bioelectrochemical systems have been reviewed. This also concerns PAH precursors: total petroleum hydrocarbons and diesel. Removal performances of PAH biodegradation in bioelectrochemical systems are discussed, focussing on configurational parameters such as anode and cathode designs as well as environmental parameters like porosity, salinity, adsorption and conductivity of soil and sediment that affect PAH biodegradation in BESs. The still scarcely available information on microbiological aspects of bioelectrochemical PAH removal is summarised here. This comprehensive review offers a better understanding of the parameters that affect the removal of PAHs within bioelectrochemical systems. In addition, future experimental setups are proposed in order to study syntrophic relationships between PAH degraders and exoelectrogens. This synopsis can help as guide for researchers in their choices for future experimental designs aiming at increasing the power densities and PAH biodegradation rates using microbial bioelectrochemistry.
Collapse
Affiliation(s)
| | - Eric Trably
- LBE, INRA, 102 avenue des Etangs, 11100 Narbonne, France
| | - Nicolas Bernet
- LBE, INRA, 102 avenue des Etangs, 11100 Narbonne, France
| | | |
Collapse
|
28
|
Cheng Y, Wang L, Faustorilla V, Megharaj M, Naidu R, Chen Z. Integrated electrochemical treatment systems for facilitating the bioremediation of oil spill contaminated soil. CHEMOSPHERE 2017; 175:294-299. [PMID: 28235737 DOI: 10.1016/j.chemosphere.2017.02.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2016] [Revised: 02/13/2017] [Accepted: 02/14/2017] [Indexed: 06/06/2023]
Abstract
Bioremediation plays an important role in oil spill management and bio-electrochemical treatment systems are supposed to represent a new technology for both effective remediation and energy recovery. Diesel removal rate increased by four times in microbial fuel cells (MFCs) since the electrode served as an electron acceptor, and high power density (29.05 W m-3) at current density 72.38 A m-3 was achieved using diesel (v/v 1%) as the sole substrate. As revealed by Scanning electron microscope images, carbon fibres in the anode electrode were covered with biofilm and the bacterial colloids which build the link between carbon fibres and enhance electron transmission. Trace metabolites produced during the anaerobic biodegradation were identified by gas chromatography-mass spectrometry. These metabolites may act as emulsifying agents that benefit oil dispersion and play a vital role in bioremediation of oil spills in field applications.
Collapse
Affiliation(s)
- Ying Cheng
- Global Centre for Environmental Remediation, Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of Environment, Mawson Lakes Boulevard, Mawson Lakes, SA 5095, Australia
| | - Liang Wang
- Global Centre for Environmental Remediation, Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of Environment, Mawson Lakes Boulevard, Mawson Lakes, SA 5095, Australia
| | - Vilma Faustorilla
- CRC for Contamination Assessment and Remediation of Environment, Mawson Lakes Boulevard, Mawson Lakes, SA 5095, Australia; Future Industries Institute, Mawson Lakes Boulevard, Mawson Lakes, SA 5095, Australia
| | - Mallavarapu Megharaj
- Global Centre for Environmental Remediation, Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of Environment, Mawson Lakes Boulevard, Mawson Lakes, SA 5095, Australia
| | - Ravi Naidu
- Global Centre for Environmental Remediation, Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of Environment, Mawson Lakes Boulevard, Mawson Lakes, SA 5095, Australia
| | - Zuliang Chen
- Global Centre for Environmental Remediation, Faculty of Science and Information Technology, University of Newcastle, Callaghan, NSW 2308, Australia; CRC for Contamination Assessment and Remediation of Environment, Mawson Lakes Boulevard, Mawson Lakes, SA 5095, Australia.
| |
Collapse
|
29
|
Daghio M, Aulenta F, Vaiopoulou E, Franzetti A, Arends JBA, Sherry A, Suárez-Suárez A, Head IM, Bestetti G, Rabaey K. Electrobioremediation of oil spills. WATER RESEARCH 2017; 114:351-370. [PMID: 28279880 DOI: 10.1016/j.watres.2017.02.030] [Citation(s) in RCA: 61] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/27/2017] [Accepted: 02/14/2017] [Indexed: 05/20/2023]
Abstract
Annually, thousands of oil spills occur across the globe. As a result, petroleum substances and petrochemical compounds are widespread contaminants causing concern due to their toxicity and recalcitrance. Many remediation strategies have been developed using both physicochemical and biological approaches. Biological strategies are most benign, aiming to enhance microbial metabolic activities by supplying limiting inorganic nutrients, electron acceptors or donors, thus stimulating oxidation or reduction of contaminants. A key issue is controlling the supply of electron donors/acceptors. Bioelectrochemical systems (BES) have emerged, in which an electrical current serves as either electron donor or acceptor for oil spill bioremediation. BES are highly controllable and can possibly also serve as biosensors for real time monitoring of the degradation process. Despite being promising, multiple aspects need to be considered to make BES suitable for field applications including system design, electrode materials, operational parameters, mode of action and radius of influence. The microbiological processes, involved in bioelectrochemical contaminant degradation, are currently not fully understood, particularly in relation to electron transfer mechanisms. Especially in sulfate rich environments, the sulfur cycle appears pivotal during hydrocarbon oxidation. This review provides a comprehensive analysis of the research on bioelectrochemical remediation of oil spills and of the key parameters involved in the process.
Collapse
Affiliation(s)
- Matteo Daghio
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy.
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km 29,300, 00015 Monterotondo, RM, Italy
| | - Eleni Vaiopoulou
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Andrea Franzetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Jan B A Arends
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium
| | - Angela Sherry
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ana Suárez-Suárez
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Ian M Head
- School of Civil Engineering & Geosciences, Newcastle University, Newcastle upon Tyne, NE1 7RU, UK
| | - Giuseppina Bestetti
- Department of Earth and Environmental Sciences, University of Milano-Bicocca, Piazza della Scienza 1, 20126 Milan, Italy
| | - Korneel Rabaey
- Center for Microbial Ecology and Technology (CMET), Ghent University, Coupure Links 653, B-9000 Gent, Belgium.
| |
Collapse
|
30
|
Venkidusamy K, Megharaj M. Identification of Electrode Respiring, Hydrocarbonoclastic Bacterial Strain Stenotrophomonas maltophilia MK2 Highlights the Untapped Potential for Environmental Bioremediation. Front Microbiol 2016; 7:1965. [PMID: 28018304 PMCID: PMC5145854 DOI: 10.3389/fmicb.2016.01965] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/24/2016] [Indexed: 11/13/2022] Open
Abstract
Electrode respiring bacteria (ERB) possess a great potential for many biotechnological applications such as microbial electrochemical remediation systems (MERS) because of their exoelectrogenic capabilities to degrade xenobiotic pollutants. Very few ERB have been isolated from MERS, those exhibited a bioremediation potential toward organic contaminants. Here we report once such bacterial strain, Stenotrophomonas maltophilia MK2, a facultative anaerobic bacterium isolated from a hydrocarbon fed MERS, showed a potent hydrocarbonoclastic behavior under aerobic and anaerobic environments. Distinct properties of the strain MK2 were anaerobic fermentation of the amino acids, electrode respiration, anaerobic nitrate reduction and the ability to metabolize n-alkane components (C8–C36) of petroleum hydrocarbons (PH) including the biomarkers, pristine and phytane. The characteristic of diazoic dye decolorization was used as a criterion for pre-screening the possible electrochemically active microbial candidates. Bioelectricity generation with concomitant dye decolorization in MERS showed that the strain is electrochemically active. In acetate fed microbial fuel cells (MFCs), maximum current density of 273 ± 8 mA/m2 (1000 Ω) was produced (power density 113 ± 7 mW/m2) by strain MK2 with a coulombic efficiency of 34.8%. Further, the presence of possible alkane hydroxylase genes (alkB and rubA) in the strain MK2 indicated that the genes involved in hydrocarbon degradation are of diverse origin. Such observations demonstrated the potential of facultative hydrocarbon degradation in contaminated environments. Identification of such a novel petrochemical hydrocarbon degrading ERB is likely to offer a new route to the sustainable bioremedial process of source zone contamination with simultaneous energy generation through MERS.
Collapse
Affiliation(s)
- Krishnaveni Venkidusamy
- Centre for Environmental Risk Assessment and Remediation, University of South AustraliaMawson Lakes, SA, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the EnvironmentMawson Lakes, SA, Australia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation, University of South AustraliaMawson Lakes, SA, Australia; Cooperative Research Centre for Contamination Assessment and Remediation of the EnvironmentMawson Lakes, SA, Australia; Global Centre for Environmental Remediation, The University of NewcastleCallaghan, NSW, Australia
| |
Collapse
|
31
|
Ping Q, Abu-Reesh IM, He Z. Mathematical modeling based evaluation and simulation of boron removal in bioelectrochemical systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:1380-1389. [PMID: 27387806 DOI: 10.1016/j.scitotenv.2016.06.220] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2016] [Revised: 06/19/2016] [Accepted: 06/27/2016] [Indexed: 06/06/2023]
Abstract
Boron removal is an arising issue in desalination plants due to boron's toxicity. As an emerging treatment concept, bioelectrochemical systems (BES) can achieve potentially cost-effective boron removal by taking advantage of cathodic-produced alkali. Prior studies have demonstrated successful removal of boron in microbial desalination cells (MDCs) and microbial fuel cells (MFCs), both of which are representative BES. Herein, mathematical models were developed to further evaluate boron removal by different BES and understand the key operating factors. The models delivered very good prediction of the boron concentration in the MDC integrated with Donnan Dialysis (DD) system with the lowest relative root-mean-square error (RMSE) of 0.00%; the predication of the MFC performance generated the highest RMSE of 18.55%. The model results of salt concentration, solution pH, and current generation were well fitted with experimental data for RMSE values mostly below 10%. The long term simulation of the MDC-DD system suggests that the accumulation of salt in the catholyte/stripping solution could have a positive impact on the removal of boron due to osmosis-driven convection. The current generation in the MDC may have little influence on the boron removal, while in the MFC the current-driven electromigration can contribute up to 40% of boron removal. Osmosis-induced convection transport of boron could be the major driving force for boron removal to a low level <2mgL(-1). The ratio between the anolyte and the catholyte flow rates should be kept >22.2 in order to avoid boron accumulation in the anolyte effluent.
Collapse
Affiliation(s)
- Qingyun Ping
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ibrahim M Abu-Reesh
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Zhen He
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| |
Collapse
|
32
|
Domínguez-Garay A, Boltes K, Esteve-Núñez A. Cleaning-up atrazine-polluted soil by using Microbial Electroremediating Cells. CHEMOSPHERE 2016; 161:365-371. [PMID: 27448317 DOI: 10.1016/j.chemosphere.2016.07.023] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 05/17/2016] [Accepted: 07/06/2016] [Indexed: 06/06/2023]
Abstract
Biodegradation of pollutants in soil is greatly limited by the availability of terminal electron acceptors required for supporting microbial respiration. Such limitation can be overcome if soil-buried electrodes accept the electrons released in the microbial metabolism. We propose the term bioelectroventing for such a environmental treatment. The process would be performed in a device so-called Microbial Electroremediating Cell. Indeed, our studies demonstrate that the presence of electrodes as electron acceptors effectively stimulated by 5-fold the biodegradation rate of the herbicide atrazine (2-chloro-4-ethylamino-6-isopropyl amino-1,3,5-triazine) in comparison with soil natural attenuation. Furthermore, a different set of toxicological test using Pseudokirchneriella subcapitata green alga e, Salmonella typhimorium bacteria and Sorghum saccharatum plant seeds respectively, confirm that atrazine-polluted soil can be effectively cleaned-up in short time by the use of MERCs.
Collapse
Affiliation(s)
- Ainara Domínguez-Garay
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Madrid, Spain
| | - Karina Boltes
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Madrid, Spain; IMDEA-AGUA, Parque Tecnológico de Alcalá, Madrid, Spain
| | - Abraham Esteve-Núñez
- Department of Analytical Chemistry, Physical Chemistry and Chemical Engineering, University of Alcala, Madrid, Spain; IMDEA-AGUA, Parque Tecnológico de Alcalá, Madrid, Spain.
| |
Collapse
|
33
|
Mohammadi Khalfbadam H, Cheng KY, Sarukkalige R, Kaksonen AH, Kayaalp AS, Ginige MP. A bio-anodic filter facilitated entrapment, decomposition and in situ oxidation of algal biomass in wastewater effluent. BIORESOURCE TECHNOLOGY 2016; 216:529-536. [PMID: 27268438 DOI: 10.1016/j.biortech.2016.05.080] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/19/2016] [Accepted: 05/20/2016] [Indexed: 06/06/2023]
Abstract
This study examined for the first time the use of bioelectrochemical systems (BES) to entrap, decompose and oxidise fresh algal biomass from an algae-laden effluent. The experimental process consisted of a photobioreactor for a continuous production of the algal-laden effluent, and a two-chamber BES equipped with anodic graphite granules and carbon-felt to physically remove and oxidise algal biomass from the influent. Results showed that the BES filter could retain ca. 90% of the suspended solids (SS) loaded. A coulombic efficiency (CE) of 36.6% (based on particulate chemical oxygen demand (PCOD) removed) was achieved, which was consistent with the highest CEs of BES studies (operated in microbial fuel cell mode (MFC)) that included additional pre-treatment steps for algae hydrolysis. Overall, this study suggests that a filter type BES anode can effectively entrap, decompose and in situ oxidise algae without the need for a separate pre-treatment step.
Collapse
Affiliation(s)
- Hassan Mohammadi Khalfbadam
- CSIRO Land and Water, Floreat, Western Australia 6014, Australia; Department of Civil Engineering, Curtin University, Bentley, Western Australia 6102, Australia
| | - Ka Yu Cheng
- CSIRO Land and Water, Floreat, Western Australia 6014, Australia; School of Engineering and Information Technology, Murdoch University, Western Australia 6150, Australia
| | - Ranjan Sarukkalige
- Department of Civil Engineering, Curtin University, Bentley, Western Australia 6102, Australia
| | - Anna H Kaksonen
- CSIRO Land and Water, Floreat, Western Australia 6014, Australia; School of Pathology and Laboratory Medicine, and Oceans Institute, University of Western Australia, Nedlands, Western Australia 6009, Australia
| | - Ahmet S Kayaalp
- Water Corporation of Western Australia, Leederville, Western Australia 6007, Australia
| | | |
Collapse
|
34
|
Leitão P, Rossetti S, Danko AS, Nouws H, Aulenta F. Enrichment of Dehalococcoides mccartyi spp. from a municipal activated sludge during AQDS-mediated bioelectrochemical dechlorination of 1,2-dichloroethane to ethene. BIORESOURCE TECHNOLOGY 2016; 214:426-431. [PMID: 27155798 DOI: 10.1016/j.biortech.2016.04.129] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2016] [Revised: 04/22/2016] [Accepted: 04/28/2016] [Indexed: 06/05/2023]
Abstract
The application of bioelectrochemical systems (BES) for the treatment of chloroethanes has been so far limited, in spite of the high frequency that these contaminants are detected at contaminated sites. This work studied the biodegradation of 1,2-dichloroethane (1,2-DCA) in a lab-scale BES, inoculated with a municipal activated sludge and operated under a range of conditions, spanning from oxidative to reductive, both in the presence and in the absence of the humic acid analogue anthraquinone-2,6-disulfonate (AQDS) as a redox mediator. The results showed stable dechlorination of 1,2-DCA to ethene (up to 65±5μmol/Ld), when the BES was operated at a set potential of -300mV vs. SHE, in the presence of AQDS. Sustained filled-and-draw operation resulted in the enrichment of Dehalococcoides mccartyi. The results of this work provide new insights into the applicability of BES for groundwater remediation and the potential interaction between biogeochemistry and 1,2-DCA in humics-rich contaminated aquifers.
Collapse
Affiliation(s)
- Patrícia Leitão
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km. 29.300, 00015 Monterotondo (RM), Italy; CERENA, Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; REQUIMTE, Institute of Engineering of Porto, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Simona Rossetti
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km. 29.300, 00015 Monterotondo (RM), Italy
| | - Anthony S Danko
- CERENA, Department of Mining Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Henri Nouws
- REQUIMTE, Institute of Engineering of Porto, Polytechnic Institute of Porto, Rua Dr. António Bernardino de Almeida, 431, 4200-072 Porto, Portugal
| | - Federico Aulenta
- Water Research Institute (IRSA), National Research Council (CNR), Via Salaria km. 29.300, 00015 Monterotondo (RM), Italy.
| |
Collapse
|
35
|
Venkidusamy K, Megharaj M. A Novel Electrophototrophic Bacterium Rhodopseudomonas palustris Strain RP2, Exhibits Hydrocarbonoclastic Potential in Anaerobic Environments. Front Microbiol 2016; 7:1071. [PMID: 27462307 PMCID: PMC4940424 DOI: 10.3389/fmicb.2016.01071] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/27/2016] [Indexed: 11/13/2022] Open
Abstract
An electrophototrophic, hydrocarbonoclastic bacterium Rhodopseudomonas palustris stain RP2 was isolated from the anodic biofilms of hydrocarbon fed microbial electrochemical remediation systems (MERS). Salient properties of the strain RP2 were direct electrode respiration, dissimilatory metal oxide reduction, spore formation, anaerobic nitrate reduction, free living diazotrophy and the ability to degrade n-alkane components of petroleum hydrocarbons (PH) in anoxic, photic environments. In acetate fed microbial electrochemical cells, a maximum current density of 305 ± 10 mA/m(2) (1000Ω) was generated (power density 131.65 ± 10 mW/m(2)) by strain RP2 with a coulombic efficiency of 46.7 ± 1.3%. Cyclic voltammetry studies showed that anaerobically grown cells of strain RP2 is electrochemically active and likely to transfer electrons extracellularly to solid electron acceptors through membrane bound compounds, however, aerobically grown cells lacked the electrochemical activity. The ability of strain RP2 to produce current (maximum current density 21 ± 3 mA/m(2); power density 720 ± 7 μW/m(2), 1000 Ω) using PH as a sole energy source was also examined using an initial concentration of 800 mg l(-1) of diesel range hydrocarbons (C9-C36) with a concomitant removal of 47.4 ± 2.7% hydrocarbons in MERS. Here, we also report the first study that shows an initial evidence for the existence of a hydrocarbonoclastic behavior in the strain RP2 when grown in different electron accepting and illuminated conditions (anaerobic and MERS degradation). Such observations reveal the importance of photoorganotrophic growth in the utilization of hydrocarbons from contaminated environments. Identification of such novel petrochemical hydrocarbon degrading electricigens, not only expands the knowledge on the range of bacteria known for the hydrocarbon bioremediation but also shows a biotechnological potential that goes well beyond its applications to MERS.
Collapse
Affiliation(s)
- Krishnaveni Venkidusamy
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SAAustralia; CRC for Contamination Assessment and Remediation of the Environment, Mawson Lakes, SAAustralia
| | - Mallavarapu Megharaj
- Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes, SAAustralia; CRC for Contamination Assessment and Remediation of the Environment, Mawson Lakes, SAAustralia; Global Centre for Environmental Risk Assessment and Remediation, The University of Newcastle, Callaghan, NSWAustralia
| |
Collapse
|