1
|
Halabowski D, Pyrzanowski K, Zięba G, Grabowska J, Przybylski M, Smith C, Reichard M. The impact of invasive Sinanodonta woodiana (Bivalvia, Unionidae) and mussel macroparasites on the egg distribution of parasitic bitterling fish in host mussels. Sci Rep 2025; 15:9417. [PMID: 40108247 PMCID: PMC11923366 DOI: 10.1038/s41598-025-93717-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Accepted: 03/10/2025] [Indexed: 03/22/2025] Open
Abstract
Facilitative and competitive interactions among coexisting parasite species, as well as among alternative host species, produce considerable ecological and evolutionary responses to host-parasite relationships. Such effects can be illuminated by impacts of non-native species on relationships in local communities. We used the association between parasitic European bitterling fish (Rhodeus amarus) and unionid mussels (which host bitterling eggs in their gills) to test the effects of the invasive Chinese pond mussel (Sinanodonta woodiana) and the presence of non-bitterling mussel macroparasites on the pattern of host mussel use by the bitterling across 12 unionid mussel communities with the absence or presence of S. woodiana (and variation in duration of coexistence with local species). While all six European mussel species were used by the bitterling (with the prevalence of > 30% in Unio spp.), no S. woodiana individual was infected by the bitterling. The presence of S. woodiana did not affect bitterling eggs distribution in native mussels. Large native mussels hosted more bitterling. Infection by non-bitterling parasites, mostly water mites (prevalence 47%) and trematodes (25%), did not affect rates of bitterling parasitism. We discuss our results in the context of the rapid evolution of non-native species in their new range and its implication on mussel conservation.
Collapse
Affiliation(s)
- Dariusz Halabowski
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland.
- Institute of Vertebrate Biology, Czech Academy of Science, Brno, Czech Republic.
| | - Kacper Pyrzanowski
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Institute of Vertebrate Biology, Czech Academy of Science, Brno, Czech Republic
| | - Grzegorz Zięba
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Joanna Grabowska
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Mirosław Przybylski
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
| | - Carl Smith
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Modelling and Computational Science, Lodz Centre for Analysis, University of Lodz, Lodz, Poland
| | - Martin Reichard
- Department of Ecology and Vertebrate Zoology, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, Poland
- Institute of Vertebrate Biology, Czech Academy of Science, Brno, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
2
|
Ennouri R, Bejaoui S, Ghribi F, Belhassen D, Soudani N, Mili S. Assessing of trace elements health risks in the crab Portunus segnis from northern Tunisian lagoons. ENVIRONMENTAL MONITORING AND ASSESSMENT 2025; 197:327. [PMID: 40000503 DOI: 10.1007/s10661-025-13766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 02/11/2025] [Indexed: 02/27/2025]
Abstract
The current study aims to examine the concentrations of eight trace elements (TE) (nickel, aluminum, copper, cadmium, lead, cobalt, chromium, and zinc) in the edible tissue of the invasive blue crab Portunus segnis in two southern Mediterranean lagoons (i.e., Bizerte Lagoon (BL) and Ghar El-Melh Lagoon (GML)) between 2020 and 2021. The samples were analyzed for TE using inductively coupled plasma mass spectrometry (ICP-MS). The results showed that the mean concentrations in P. segnis muscles were significantly lower in Ghar El-Melh (0.183 mg/kg DW, 1.887 mg/kg DW, and 0.986 mg/kg DW for Cd, Cu, and Al, respectively) compared to Bizerte Lagoon (0.227 mg/kg DW, 8.016 mg/kg DW, and 3.658 mg/kg DW for Cd, Cu, and Al respectively), except for Zn which exhibited similar concentrations in crabs harvested from both lagoons. The recorded concentrations of all TE measured in both lagoons were within acceptable limits per the recommended standards. The highest TE concentrations in P. segnis muscle tissue of crabs from both lagoons were recorded during the summer. The analysis of trace element (TE) levels in P. segnis and the assessment parameters, including estimated daily intake (EDI), target hazard quotient (THQ), and target cancer risk (TCr), revealed values below the acceptable limits for human health. THQ and TCr are commonly utilized in environmental and health risk assessments to gauge the potential impact of contaminants on human health. As a result, we can affirm that the invasive crab P. segnis figures as a secure shellfish product suitable for human consumption in Tunisia. This study provides an opportunity to assess the health risks of consuming blue crabs, with the toxicity risk index aiding decision-making for consumers, policymakers, and stakeholders focused on safety and sustainability. Additionally, it offers fundamental insights to lay the groundwork for forthcoming studies on environmental assessments.
Collapse
Affiliation(s)
- Rym Ennouri
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis (FST), University of Tunis El Manar, 2092, Tunis, Tunisia.
- University of Carthage, Higher Institute of Marine Sciences of Bizerte (ISSMB), B.P.15. 7080, Errimel, Bizerte, Tunisia.
| | - Safa Bejaoui
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis (FST), University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Feriel Ghribi
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis (FST), University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Dalya Belhassen
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis (FST), University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Nejla Soudani
- Laboratory of Ecology, Biology and Physiology of Aquatic Organisms, Department of Biology, Faculty of Science of Tunis (FST), University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Sami Mili
- Laboratory of Fisheries Sciences, University of Carthage, National Institute of Marine Sciences and Technologies (INSTM), 28 Rue du 2 Mars 1934, Salammbô 2025, Tunis, Tunisia
| |
Collapse
|
3
|
Major T, Jeffrey L, Limia Russel G, Bracegirdle R, Gandini A, Morgan R, Marshall BM, Mulley JF, Wüster W. A reliance on human habitats is key to the success of an introduced predatory reptile. PLoS One 2025; 20:e0310352. [PMID: 39908252 PMCID: PMC11798526 DOI: 10.1371/journal.pone.0310352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/19/2024] [Indexed: 02/07/2025] Open
Abstract
Understanding the success of animals in novel environments is increasingly important as human-mediated introductions continue to move species far beyond their natural ranges. Alongside these introductions, inhabited and agricultural areas are spreading, and correspondingly most animal introductions occur in populated areas. Commensal species which can live alongside humans by making use of specific conditions, structures, or prey, have a significant advantage. Introduced mammal species often use anthropogenic features in their environment and demonstrate a higher tolerance of human disturbance, but their importance remains understudied in ectotherms. The Aesculapian snake (Zamenis longissimus) is an ectotherm which has been introduced beyond the northern extremities of its natural range. To understand their persistence, we radio-tracked snakes daily over two active seasons, including high-frequency tracking of a subset of males. We investigated snake home range size using Autocorrelated Kernel Density Estimators (AKDE). Using AKDE-weighted Habitat Selection Functions we identified preferences for habitat features in a mosaic of habitats, and we used Integrated Step Selection Functions to further explore how these features influence movement. We revealed a particular preference for buildings in male snakes, while females preferred woodland. We demonstrate that the success of this ectothermic predator is likely tied to a willingness to use human features of the landscape.
Collapse
Affiliation(s)
- Tom Major
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
- Department of Life & Environmental Sciences, Bournemouth University, Poole, Dorset, United Kingdom
| | - Lauren Jeffrey
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Guillem Limia Russel
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Rebecca Bracegirdle
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Antonio Gandini
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Rhys Morgan
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Benjamin Michael Marshall
- Department of Biological and Environmental Sciences, University of Stirling, Stirling, Scotland, United Kingdom
| | - John F. Mulley
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| | - Wolfgang Wüster
- School of Environmental and Natural Sciences, Bangor University, Bangor, Gwynedd, United Kingdom
| |
Collapse
|
4
|
Prestes JG, Carneiro L, Miiller NOR, Neundorf AKA, Pedroso CR, Braga RR, Sousa R, Vitule JRS. A systematic review of invasive non-native freshwater bivalves. Biol Rev Camb Philos Soc 2024; 99:2082-2107. [PMID: 38973333 DOI: 10.1111/brv.13113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 07/09/2024]
Abstract
The introduction of invasive species has become an increasing environmental problem in freshwater ecosystems due to the high economic and ecological impacts it has generated. This systematic review covers publications from 2010 to 2020, focusing on non-native invasive freshwater bivalves, a particularly relevant and widespread introduced taxonomic group in fresh waters. We collected information on the most studied species, the main objectives of the studies, their geographical location, study duration, and type of research. Furthermore, we focused on assessing the levels of ecological evidence presented, the type of interactions of non-native bivalves with other organisms and the classification of their impacts. A total of 397 publications were retrieved. The studies addressed a total of 17 species of non-native freshwater bivalves; however, most publications focused on the species Corbicula fluminea and Dreissena polymorpha, which are recognised for their widespread distribution and extensive negative impacts. Many other non-native invasive bivalve species have been poorly studied. A high geographical bias was also present, with a considerable lack of studies in developing countries. The most frequent studies had shorter temporal periods, smaller spatial extents, and more observational data, were field-based, and usually evaluated possible ecological impacts at the individual and population levels. There were 94 publications documenting discernible impacts according to the Environmental Impact Classification for Alien Taxa (EICAT). However, 41 of these publications did not provide sufficient data to determine an impact. The most common effects of invasive bivalves on ecosystems were structural alterations, and chemical and physical changes, which are anticipated due to their role as ecosystem engineers. Despite a considerable number of studies in the field and advances in our understanding of some species over the past decade, long-term data and large-scale studies are still needed to understand better the impacts, particularly at the community and ecosystem levels and in less-studied geographic regions. The widespread distribution of several non-native freshwater bivalves, their ongoing introductions, and high ecological and economic impacts demand continued research. Systematic reviews such as this are essential for identifying knowledge gaps and guiding future research to enable a more complete understanding of the ecological implications of invasive bivalves, and the development of effective management strategies.
Collapse
Affiliation(s)
- Juliani Giselli Prestes
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Laís Carneiro
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Natali Oliva Roman Miiller
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Ananda Karla Alves Neundorf
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Laboratory of Adaptive Biology, Department of Cell Biology, Sector of Biological Sciences, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Clemerson Richard Pedroso
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
- Graduate Program in Ecology and Conservation, Federal University of Paraná, Curitiba, 81530-000, Brazil
| | - Raul Rennó Braga
- Department of Animal and Plant Biology, State University of Londrina, Londrina, 86057-970, Brazil
| | - Ronaldo Sousa
- CBMA - Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus Gualtar, Braga, 4710-057, Portugal
| | - Jean Ricardo Simões Vitule
- Laboratory of Ecology and Conservation, Department of Environmental Engineering, Technology Sector, Federal University of Paraná, Curitiba, 81530-000, Brazil
| |
Collapse
|
5
|
Crespo D, Leston S, Rato LD, Moutinho AB, Martinho F, Novais SC, Pardal MA, Lemos MFL. The effects of different densities of Asparagopsis armata (Harvey, 1855) seaweed on the clam Ruditapes philippinarum (A. Adams and Reeve, 1850): Insights from a laboratory assessment. MARINE ENVIRONMENTAL RESEARCH 2024; 202:106812. [PMID: 39481138 DOI: 10.1016/j.marenvres.2024.106812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 10/04/2024] [Accepted: 10/23/2024] [Indexed: 11/02/2024]
Abstract
Several invasive species can occupy the same geographic area. Interaction between species depends on several factors, and the results of such interactions can be highly diverse. Asparagopsis armata is a invasive red seaweed whose exudates contain a cocktail of toxic halogenated compounds. In this study, the impact of high and low levels of A. armata on the bivalve Ruditapes philippinarum was assessed in a laboratory experiment. Both are prominent invasive species in Europe and could share the same habitats. The effects of the algae were measured at different biological levels, framed by an integrated approach: bioturbation as a proxy for organismal activity and behaviour within the sediment, and several subcellular biomarkers related to oxidative stress and damage, energy metabolism, detoxification, and neurotransmission. While bioturbation revealed the effects of exudates on the bivalve, with a decrease in most parameters when exposed to the different amounts of algae, only marginal responses were found for biomarkers, suggesting a possible temporal decoupling between the behavioural response and the intrinsic biochemical environment. These results denote that despite the recognized potential of biomarkers to address a myriad of situations, a proxy for higher levels of biological organization, such as behaviour, for its integration of lower-level effects, is a robust tool to address complex and lesser-known mixtures of stressors.
Collapse
Affiliation(s)
- Daniel Crespo
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal; CFE - Centre for Functional Ecology - Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Sara Leston
- CFE - Centre for Functional Ecology - Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal; LAQV, REQUIMTE, Laboratory of Bromatology and Pharmacognosy, Faculty of Pharmacy, University of Coimbra, Polo III, Azinhaga de Sta Comba, Coimbra, 3000-548, Portugal
| | - Lénia D Rato
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Ariana B Moutinho
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Filipe Martinho
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Sara C Novais
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal
| | - Miguel A Pardal
- CFE - Centre for Functional Ecology - Science for People & the Planet, Associate Laboratory TERRA, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Marco F L Lemos
- MARE - Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network, ESTM, Polytechnic of Leiria, 2520-641, Peniche, Portugal.
| |
Collapse
|
6
|
Žagar A, Dajčman U, Megía-Palma R, Simčič T, Barroso FM, Baškiera S, Carretero MA. Analysis of subcellular energy metabolism in five Lacertidae lizards across varied environmental conditions. Comp Biochem Physiol A Mol Integr Physiol 2024; 297:111729. [PMID: 39181180 DOI: 10.1016/j.cbpa.2024.111729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 08/12/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024]
Abstract
Aerobic respiration is the main energy source for most eukaryotes, and efficient mitochondrial energy transfer greatly influences organismal fitness. To survive environmental changes, cells have evolved to adjust their biochemistry. Thus, measuring energy metabolism at the subcellular level can enhance our understanding of individual performance, population dynamics, and species distribution ranges. We investigated three important metabolic traits at the subcellular level in five lacertid lizard species sampled from different elevations, from sea level up to 2000 m. We examined hemoglobin concentration, two markers of oxidative stress (catalase activity and carbonyl concentration) and maximum rate of metabolic respiration at the subcellular level (potential metabolic activity at the electron transport system). The traits were analysed in laboratory acclimated adult male lizards to investigate the adaptive metabolic responses to the variable environmental conditions at the local sampling sites. Potential metabolic activity at the cellular level was measured at four temperatures - 28 °C, 30 °C, 32 °C and 34 °C - covering the range of preferred body temperatures of the species studied. Hemoglobin content, carbonyl concentration and potential metabolic activity did not differ significantly among species. Interspecific differences were found in the catalase activity, Potential metabolic activity increased with temperature in parallel in all five species. The highest response of the metabolic rate with temperature (Q10) and Arrhenius activation energy (Ea) was recorded in the high-mountain species Iberolacerta monticola.
Collapse
Affiliation(s)
- Anamarija Žagar
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia; CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 7. 4485-661 Vairão, Vila do Conde, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal.
| | - Urban Dajčman
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Jamnikarjeva ulica 101, Ljubljana, Slovenia
| | - Rodrigo Megía-Palma
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 7. 4485-661 Vairão, Vila do Conde, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, School of Pharmacy, E-28805, Alcalá de Henares, Madrid, Spain
| | - Tatjana Simčič
- National Institute of Biology, Večna pot 121, 1000 Ljubljana, Slovenia
| | - Frederico M Barroso
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 7. 4485-661 Vairão, Vila do Conde, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| | - Senka Baškiera
- Department of Botany and Zoology, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Miguel A Carretero
- CIBIO Research Centre in Biodiversity and Genetic Resources, InBIO, Universidade do Porto, Campus Agrário de Vairão, Rua Padre Armando Quintas, 7. 4485-661 Vairão, Vila do Conde, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, 4485-661 Vairão, Portugal; Departamento de Biologia, Faculdade de Ciências da Universidade do Porto, Rua do Campo Alegre, 4169-007 Porto, Portugal
| |
Collapse
|
7
|
Chen A, Wang B, Feng Q, Wang R. Potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies: A review. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 285:117019. [PMID: 39317077 DOI: 10.1016/j.ecoenv.2024.117019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/02/2024] [Accepted: 09/06/2024] [Indexed: 09/26/2024]
Abstract
Carbonaceous nanomaterials (CNMs) are widely used in electronics, biomedicine, agriculture, environmental remediation, and catalysis due to their excellent biocompatibility, high reactivity, and high specific surface area. However, the extensive applications of CNMs cause their inevitable release into water, which may result in toxic effects on the aquatic ecological environment and organisms. CNMs can cause lipid peroxidation damage and neurotoxicity in aquatic organisms, affecting embryo hatching and larval morphology. The effects of CNMs on aquatic organisms vary depending on their structures and physicochemical properties, as well as the species, age, and tolerance of the tested organisms. The above uncertainties have increased the difficulty of exploring the impact of carbonaceous nanomaterials on the toxicity of aquatic organisms to a certain extent. Solving these issues is of great significance and reference value for promoting the research and safe utilization of carbon nanomaterials. Therefore, a systematic review of the effects of potential toxicity of carbonaceous nanomaterials on aquatic organisms and their alleviation strategies is needed. This paper firstly summarizes the toxic effects of commonly used CNMs (i.e., carbon nanotubes, graphene, and fullerene) on different aquatic organisms, which include developmental toxicity, behavioral and metabolic toxicity, reproductive toxicity, and organ toxicity. Then the main mechanisms of CNMs to aquatic organisms are further explored, and the methods to reduce the toxicity of CNMs are also summarized. Finally, the current challenges and future perspectives for studying CNM toxicity to aquatic organisms are proposed.
Collapse
Affiliation(s)
- Anying Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China; Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China.
| | - Qianwei Feng
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, Guizhou 550025, China
| | - Rui Wang
- Key Laboratory of Karst Georesources and Environment (Guizhou University), Ministry of Education, Guiyang, Guizhou 550025, China
| |
Collapse
|
8
|
Neves B, Oliveira M, Frazão C, Almeida M, Pinto RJB, Figueira E, Pires A. The Role of Life Stages in the Sensitivity of Hediste diversicolor to Nanoplastics: A Case Study with Poly(Methyl)Methacrylate (PMMA). TOXICS 2024; 12:352. [PMID: 38787131 PMCID: PMC11126148 DOI: 10.3390/toxics12050352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/01/2024] [Accepted: 05/06/2024] [Indexed: 05/25/2024]
Abstract
The presence of plastic particles in oceans has been recognized as a major environmental concern. The decrease in particle size increases their ability to directly interact with biota, with particles in the nanometer size range (nanoplastics-NPs) displaying a higher ability to penetrate biological membranes, which increases with the decrease in particle size. This study aimed to evaluate the role of life stages in the effects of poly(methyl)methacrylate (PMMA) NPs on the polychaete Hediste diversicolor, a key species in the marine food web and nutrient cycle. Thus, behavioral (burrowing activity in clean and spiked sediment) and biochemical endpoints (neurotransmission, energy reserves, antioxidant defenses, and oxidative damage) were assessed in juvenile and adult organisms after 10 days of exposure to spiked sediment (between 0.5 and 128 mg PMMA NPs/Kg sediment). Overall, the results show that H. diversicolor is sensitive to the presence of PMMA NPs. In juveniles, exposed organisms took longer to burrow in sediment, with significant differences from the controls being observed at all tested concentrations when the test was performed with clean sediment, whereas in PMMA NP-spiked sediment, effects were only found at the concentrations 8, 32, and 128 mg PMMA NPs/Kg sediment. Adults displayed lower sensitivity, with differences to controls being found, for both sediment types, at 8, 32, and 128 mg PMMA NPs/Kg sediment. In terms of Acetylcholinesterase, used as a marker of effects on neurotransmission, juveniles and adults displayed opposite trends, with exposed juveniles displaying increased activity (suggesting apoptosis), whereas in adults, overall decreased activity was found. Energy-related parameters revealed a generally similar pattern (increase in exposed organisms) and higher sensitivity in juveniles (significant effects even at the lower concentrations). NPs also demonstrated the ability to increase antioxidant defenses (higher in juveniles), with oxidative damage only being found in terms of protein carbonylation (all tested NPs conditions) in juveniles. Overall, the data reveal the potential of PMMA NPs to affect behavior and induce toxic effects in H. diversicolor, with greater effects in juveniles.
Collapse
Affiliation(s)
- Beatriz Neves
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.O.); (C.F.); (M.A.); (E.F.)
| | - Carolina Frazão
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.O.); (C.F.); (M.A.); (E.F.)
| | - Mónica Almeida
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.O.); (C.F.); (M.A.); (E.F.)
| | - Ricardo J. B. Pinto
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, 3810-193 Aveiro, Portugal;
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.O.); (C.F.); (M.A.); (E.F.)
| | - Adília Pires
- Centre for Environmental and Marine Studies, Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; (M.O.); (C.F.); (M.A.); (E.F.)
| |
Collapse
|
9
|
Hilliam K, Floerl O, Treml EA. Priorities for improving predictions of vessel-mediated marine invasions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171162. [PMID: 38401736 DOI: 10.1016/j.scitotenv.2024.171162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/22/2024] [Accepted: 02/19/2024] [Indexed: 02/26/2024]
Abstract
Nonindigenous marine species are impacting the integrity of marine ecosystems worldwide. The invasion rate is increasing, and vessel traffic, the most significant human-assisted transport pathway for marine organisms, is predicted to double by 2050. The ability to predict the transfer of marine species by international and domestic maritime traffic is needed to develop cost-effective proactive and reactive interventions that minimise introduction, establishment and spread of invasive species. However, despite several decades of research into vessel-mediated species transfers, some important knowledge gaps remain, leading to significant uncertainty in model predictions, often limiting their use in decision making and management planning. In this review, we discuss the sequential ecological process underlying human-assisted biological invasions and adapt it in a marine context. This process includes five successive stages: entrainment, transport, introduction, establishment, and the subsequent spread. We describe the factors that influence an organism's progression through these stages in the context of maritime vessel movements and identify key knowledge gaps that limit our ability to quantify the rate at which organisms successfully pass through these stages. We then highlight research priorities that will address these knowledge gaps and improve our capability to manage biosecurity risks at local, national and international scales. We identified four major data and knowledge gaps: (1) quantitative rates of entrainment of organisms by vessels; (2) the movement patterns of vessel types lacking maritime location devices; (3) quantifying the release (introduction) of organisms as a function of vessel behaviour (e.g. time spent at port); and (4) the influence of a species' life history on establishment success, for a given magnitude of propagule pressure. We discuss these four research priorities and how they can be addressed in collaboration with industry partners and stakeholders to improve our ability to predict and manage vessel-mediated biosecurity risks over the coming decades.
Collapse
Affiliation(s)
- Kyle Hilliam
- School of Life and Environmental Sciences, Centre for Marine Science, Deakin University, Geelong, Victoria 3220, Australia; Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand.
| | - O Floerl
- Cawthron Institute, 98 Halifax Street East, Nelson 7010, New Zealand; LWP Ltd, 212 Antigua Street, Christchurch 8011, New Zealand
| | - E A Treml
- School of Life and Environmental Sciences, Centre for Marine Science, Deakin University, Geelong, Victoria 3220, Australia; Australian Institute of Marine Science (AIMS) and UWA Oceans Institute, The University of Western Australia, MO96, 35 Stirling Highway, Crawley, WA 6009, Australia
| |
Collapse
|
10
|
Klaassen H, Tissot S, Meliani J, Boutry J, Miltiadous A, Biro PA, Mitchell DJ, Ujvari B, Schultz A, Thomas F, Dujon AM. Behavioural ecology meets oncology: quantifying the recovery of animal behaviour to a transient exposure to a cancer risk factor. Proc Biol Sci 2024; 291:20232666. [PMID: 38351808 PMCID: PMC10865010 DOI: 10.1098/rspb.2023.2666] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Wildlife is increasingly exposed to sublethal transient cancer risk factors, including mutagenic substances, which activates their anti-cancer defences, promotes tumourigenesis, and may negatively impact populations. Little is known about how exposure to cancer risk factors impacts the behaviour of wildlife. Here, we investigated the effects of a sublethal, short-term exposure to a carcinogen at environmentally relevant concentrations on the activity patterns of wild Girardia tigrina planaria during a two-phase experiment, consisting of a 7-day exposure to cadmium period followed by a 7-day recovery period. To comprehensively explore the effects of the exposure on activity patterns, we employed the double hierarchical generalized linear model framework which explicitly models residual intraindividual variability in addition to the mean and variance of the population. We found that exposed planaria were less active compared to unexposed individuals and were able to recover to pre-exposure activity levels albeit with a reduced variance in activity at the start of the recovery phase. Planaria showing high activity levels were less predictable with larger daily activity variations and higher residual variance. Thus, the shift in behavioural variability induced by an exposure to a cancer risk factor can be quantified using advanced tools from the field of behavioural ecology. This is required to understand how tumourous processes affect the ecology of species.
Collapse
Affiliation(s)
- Hiske Klaassen
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Sophie Tissot
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Jordan Meliani
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Justine Boutry
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Anna Miltiadous
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
| | - Peter A. Biro
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | | | - Beata Ujvari
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Aaron Schultz
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Frédéric Thomas
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| | - Antoine M. Dujon
- Geelong, School of Life and Environmental Sciences, Centre for Integrative Ecology, Deakin University, Waurn Ponds, Victoria 3216, Australia
- CREEC/CANECEV (CREES), MIVEGEC, IRD 224–CNRS 5290–Université de Montpellier, Montpellier, France
| |
Collapse
|
11
|
Gu S, Qi T, Rohr JR, Liu X. Meta-analysis reveals less sensitivity of non-native animals than natives to extreme weather worldwide. Nat Ecol Evol 2023; 7:2004-2027. [PMID: 37932385 DOI: 10.1038/s41559-023-02235-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 09/21/2023] [Indexed: 11/08/2023]
Abstract
Extreme weather events (EWEs; for example, heatwaves, cold spells, storms, floods and droughts) and non-native species invasions are two major threats to global biodiversity and are increasing in both frequency and consequences. Here we synthesize 443 studies and apply multilevel mixed-effects metaregression analyses to compare the responses of 187 non-native and 1,852 native animal species across terrestrial, freshwater and marine ecosystems to different types of EWE. Our results show that marine animals, regardless of whether they are non-native or native, are overall insensitive to EWEs, except for negative effects of heatwaves on native mollusks, corals and anemone. By contrast, terrestrial and freshwater non-native animals are only adversely affected by heatwaves and storms, respectively, whereas native animals negatively respond to heatwaves, cold spells and droughts in terrestrial ecosystems and are vulnerable to most EWEs except cold spells in freshwater ecosystems. On average, non-native animals displayed low abundance in terrestrial ecosystems, and decreased body condition and life history traits in freshwater ecosystems, whereas native animals displayed declines in body condition, life history traits, abundance, distribution and recovery in terrestrial ecosystems, and community structure in freshwater ecosystems. By identifying areas with high overlap between EWEs and EWE-tolerant non-native species, we also provide locations where native biodiversity might be adversely affected by their joint effects and where EWEs might facilitate the establishment and/or spread of non-native species under continuing global change.
Collapse
Affiliation(s)
- Shimin Gu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tianyi Qi
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jason R Rohr
- Department of Biological Sciences, Environmental Change Initiative, University of Notre Dame, Notre Dame, IN, USA
| | - Xuan Liu
- Key Laboratory of Animal Ecology and Conservation Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
12
|
Silva MSS, Pires A, Vethaak AD, Martínez-Gómez C, Almeida M, Pinto R, Figueira E, Oliveira M. Effects of polymethylmethacrylate nanoplastics on the polychaete Hediste diversicolor: Behavioural, regenerative, and biochemical responses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106743. [PMID: 37931377 DOI: 10.1016/j.aquatox.2023.106743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/27/2023] [Accepted: 10/30/2023] [Indexed: 11/08/2023]
Abstract
Plastics, particularly microplastics (MPs) and nanoplastics (NPs), have been regarded as pollutants of emerging concern due to their effects on organisms and ecosystems, especially considering marine environments. However, in terms of NPs, there is still a knowledge gap regarding the effects of size and polymer on marine invertebrates, such as benthic organisms. Therefore, this study aimed to understand, regarding behavioural, physiological, and biochemical endpoints (neurotransmission, energy metabolism, antioxidant status, and oxidative damage), the effects of 50 nm waterborne polymethylmethacrylate (PMMA) NPs (0.5 to 500 µg/L) on the marine benthic polychaete Hediste diversicolor, a key species in estuarine and coastal ecosystems. Results demonstrated that worms exposed to PMMA NPs had a shorter burrowing time than control organisms. Nevertheless, worms exposed to PMMA NPs (0.5 and 500 µg/L) decreased cholinesterase activity. Energy metabolism was decreased at 50 and 500 µg/L, and glycogen content decreased at all concentrations of PMMA NPs. Enzymes related to the antioxidant defence system (superoxide dismutase and glutathione peroxidase) displayed increased activities in H. diversicolor specimens exposed to concentrations between 0.5 and 500 µg/L, which led to no damage at the cell membrane and protein levels. In this study, polychaetes also displayed a lower regenerative capacity when exposed to PMMA NPs. Overall, the data obtained in this study emphasize the potential consequences of PMMA NPs to benthic worms, particularly between 0.5 and 50 µg/L, with polychaetes exposed to 50 µg/L being the most impacted by the analysed NPs. However, since sediments are considered to be sinks and sources of plastics, further studies are needed to better understand the impacts of different sizes and polymers on marine organisms, particularly benthic species.
Collapse
Affiliation(s)
- M S S Silva
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adília Pires
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - A Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Deltares, Marine and Coastal Systems, Delft, the Netherlands
| | - Concepción Martínez-Gómez
- Instituto Español de Oceanografía (IEO), CSIC, Centro Oceanográfico de Murcia, C/Varadero, 1, San Pedro del Pinatar, Murcia 30740, Spain
| | - Mónica Almeida
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Ricardo Pinto
- CICECO-Aveiro Institute of Materials, Department of Chemistry, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
13
|
Wang X, Li F, Meng X, Xia C, Ji C, Wu H. Abnormality of mussel in the early developmental stages induced by graphene and triphenyl phosphate: In silico toxicogenomic data-mining, in vivo, and toxicity pathway-oriented approach. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 263:106674. [PMID: 37666107 DOI: 10.1016/j.aquatox.2023.106674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/25/2023] [Accepted: 08/27/2023] [Indexed: 09/06/2023]
Abstract
Increasing number of complex mixtures of organic pollutants in coastal area (especially for nanomaterials and micro/nanoplastics associated chemicals) threaten aquatic ecosystems and their joint hazards are complex and demanding tasks. Mussels are the most sensitive marine faunal groups in the world, and their early developmental stages (embryo and larvae) are particularly susceptible to environmental contaminants, which can distinguish the probable mechanisms of mixture-induced growth toxicity. In this study, the potential critical target and biological processes affected by graphene and triphenyl phosphate (TPP) were developed by mining public toxicogenomic data. And their combined toxic effects were verified by toxicological assay at early developmental stages in filter-feeding mussels (embryo and larvae). It showed that interactions among graphene/TPP with 111 genes (ABCB1, TP53, SOD, CAT, HSP, etc.) affected phenotypes along conceptual framework linking these chemicals to developmental abnormality endpoints. The PPAR signaling pathway, monocarboxylic acid metabolic process, regulation of lipid metabolic process, response to oxidative stress, and gonad development were noted as the key molecular pathways that contributed to the developmental abnormality. Enriched phenotype analysis revealed biological processes (cell proliferation, cell apoptosis, inflammatory response, response to oxidative stress, and lipid metabolism) affected by the investigated mixture. Combined, our results supported that adverse effects induced by contaminants/ mixture could not only be mediated by single receptor signaling or be predicted by the simple additive effect of contaminants. The results offer a framework for better comprehending the developmental toxicity of environmental contaminants in mussels and other invertebrate species, which have considerable potential for hazard assessment of coastal mixture.
Collapse
Affiliation(s)
- Xiaoqing Wang
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Fei Li
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China.
| | - Xiangjing Meng
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; University of Chinese Academy of Sciences, Beijing 100049, PR China
| | - Chunlei Xia
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Chenglong Ji
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| | - Huifeng Wu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research (YIC), Chinese Academy of Sciences (CAS), Shandong Key Laboratory of Coastal Environmental Processes, YICCAS, Yantai 264003, PR China; Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao 266071, PR China
| |
Collapse
|
14
|
Horak CN, Miserendino ML, Assef YA. Multixenobiotic defence mechanism in native and exotic freshwater snails as a biomarker for land uses-changes. Comp Biochem Physiol C Toxicol Pharmacol 2023; 267:109580. [PMID: 36822297 DOI: 10.1016/j.cbpc.2023.109580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/09/2023] [Accepted: 02/16/2023] [Indexed: 02/23/2023]
Abstract
Human activities such as agriculture and urbanization generate a large number of substances like personal care products, pharmaceutical compounds, and pesticides, which often reach aquatic environments and represent a threat to biodiversity. Many organisms have developed different evolutionary strategies to remove pervasive substances from their bodies, allowing them to persist even in polluted environments, and one of these is the multixenobiotic resistance (MXR) mechanism associated with the expression of membrane proteins like P-glycoprotein (P-gp). Numerous chemical compounds with diverse functions and structures can modulate this mechanism, which can be employed as a pollution biomarker. We examined the MXR activity in two species of snails that inhabit Patagonian freshwaters. Functional assay measurements of MXR were conducted on the native Chilina dombeiana and the exotic Physella acuta in stream reaches affected by anthropogenic impacts. Results indicated that at agricultural sites, C. dombeiana snails had a more active MXR system than organisms sampled at reference and moderately disturbed urban sites, whereas P. acuta snails from agricultural and highly disturbed urban sites showed better detoxifying activity than organisms from reference sites. Only in exotic snails, part of this activity was due to the action of P-gp. The most important environmental variables explaining MXR activity were ammonium, nitrate and nitrite, phosphates, and electrical conductivity. These results show the promise of measuring MXR activity in native and exotic snails, as a biomarker in the environmental monitoring of Patagonian freshwaters.
Collapse
Affiliation(s)
- Cristina Natalia Horak
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP-CONICET-UNPSJB-FCNyCS), Laboratorio de Investigaciones en Ecología y Sistemática Animal, Roca 780 Esquel, Chubut, Argentina, Universidad Nacional de la Patagonia San Juan Bosco, 9200 Esquel, Chubut, Argentina.
| | - María Laura Miserendino
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP-CONICET-UNPSJB-FCNyCS), Laboratorio de Investigaciones en Ecología y Sistemática Animal, Roca 780 Esquel, Chubut, Argentina, Universidad Nacional de la Patagonia San Juan Bosco, 9200 Esquel, Chubut, Argentina; Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Ruta 259, km 16.4, Esquel, Chubut, Argentina
| | - Yanina Andrea Assef
- Centro de Investigación Esquel de Montaña y Estepa Patagónica (CIEMEP-CONICET-UNPSJB-FCNyCS), Laboratorio de Investigaciones en Ecología y Sistemática Animal, Roca 780 Esquel, Chubut, Argentina, Universidad Nacional de la Patagonia San Juan Bosco, 9200 Esquel, Chubut, Argentina; Facultad de Ciencias Naturales y Ciencias de la Salud, Universidad Nacional de la Patagonia San Juan Bosco, Ruta 259, km 16.4, Esquel, Chubut, Argentina
| |
Collapse
|
15
|
Gendre H, Ben Cheikh Y, Le Foll F, Geffard A, Palos Ladeiro M. Comparative immune responses of blue mussel and zebra mussel haemocytes to simultaneous chemical and bacterial exposure. FISH & SHELLFISH IMMUNOLOGY 2023; 135:108654. [PMID: 36868539 DOI: 10.1016/j.fsi.2023.108654] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 06/18/2023]
Abstract
Biomonitoring at the scale of the aquatic continuum and based on biomarkers, requires various representative species and a knowledge of their sensitivity to contaminants. Mussel immunomarkers are established tools for evaluating immunotoxic stress, but little is known about the consequences of an immune activation by local microorganisms on their response to pollution. This study aims to compare the sensitivity of cellular immunomarkers in two mussel species from different environments, the marine mussel Mytilus edulis (blue mussel) and the freshwater mussel Dreissena polymorpha (zebra mussel), to chemical stressors combined with bacterial challenge. Haemocytes were exposed ex vivo to the contaminants (bisphenol A, caffeine, copper chloride, oestradiol, ionomycin) for 4 h. The chemical exposures were coupled with simultaneous bacterial challenges (Vibrio splendidus and Pseudomonas fluorescens) to trigger activation of the immune response. Cellular mortality, phagocytosis efficiency and phagocytosis avidity were then measured by flow cytometry. The two mussel species had different basal levels since D. polymorpha showed higher cell mortality than M. edulis (23.9 ± 11% and 5.5 ± 3% dead cells respectively), and lower phagocytosis efficiency (52.6 ± 12% and 62.2 ± 9%), but similar phagocytosis avidity (17.4 ± 5 and 13.4 ± 4 internalised beads). Both bacterial strains led to an increase in cellular mortality (+8.4% dead cells in D. polymorpha, +4.9% in M. edulis), as well an activation of phagocytosis (+9.2% of efficient cells in D. polymorpha, +6.2% efficient cells and +3 internalised beads per cell in M. edulis). All chemicals triggered an increase in haemocyte mortality and/or phagocytotic modulations, except for bisphenol A. The two species differed in the amplitude of their response. The addition of a bacterial challenge significantly altered cell responses to chemicals with synergetic and antagonistic variations compared to a single exposure, depending on the compound used and the mussel species. This work highlights the species-specific sensitivity of mussel immunomarkers to contaminants, with or without bacterial challenge, and the necessity of considering the presence of in natura non-pathogenic microorganisms for future in situ applications of immunomarkers.
Collapse
Affiliation(s)
- Héloïse Gendre
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, SEBIO, UMR-I 02, Reims, France; Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, SEBIO, UMR-I 02, Le Havre, France
| | - Yosra Ben Cheikh
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, SEBIO, UMR-I 02, Le Havre, France
| | - Frank Le Foll
- Université Le Havre Normandie, Université de Reims Champagne-Ardenne, INERIS, SEBIO, UMR-I 02, Le Havre, France
| | - Alain Geffard
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, SEBIO, UMR-I 02, Reims, France
| | - Mélissa Palos Ladeiro
- Université de Reims Champagne-Ardenne, Université Le Havre Normandie, INERIS, SEBIO, UMR-I 02, Reims, France.
| |
Collapse
|
16
|
Valente P, Cardoso P, Giménez V, Silva MSS, Sá C, Figueira E, Pires A. Biochemical and Behavioural Alterations Induced by Arsenic and Temperature in Hediste diversicolor of Different Growth Stages. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15426. [PMID: 36497501 PMCID: PMC9738520 DOI: 10.3390/ijerph192315426] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Contamination with Arsenic, a toxic metalloid, is increasing in the marine environment. Additionally, global warming can alter metalloids toxicity. Polychaetes are key species in marine environments. By mobilizing sediments, they play vital roles in nutrient and element (including contaminants) cycles. Most studies with marine invertebrates focus on the effects of metalloids on either adults or larvae. Here, we bring information on the effects of temperature increase and arsenic contamination on the polychaete Hediste diversicolor in different growth stages and water temperatures. Feeding activity and biochemical responses-cholinesterase activity, indicators of cell damage, antioxidant and biotransformation enzymes and metabolic capacity-were evaluated. Temperature rise combined with As imposed alterations on feeding activity and biochemical endpoints at different growth stages. Small organisms have their antioxidant enzymes increased, avoiding lipid damage. However, larger organisms are the most affected class due to the inhibition of superoxide dismutase, which results in protein damage. Oxidative damage was observed on smaller and larger organisms exposed to As and temperature of 21 °C, demonstrating higher sensibility to the combination of temperature rise and As. The observed alterations may have ecological consequences, affecting the cycle of nutrients, sediment oxygenation and the food chain that depends on the bioturbation of this polychaete.
Collapse
Affiliation(s)
- Pedro Valente
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Paulo Cardoso
- Department of Biology & CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valéria Giménez
- Department of Biology & CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Marta Sofia Salvador Silva
- Department of Biology & CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carina Sá
- Department of Biology & CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adília Pires
- Department of Biology & CESAM—Centre for Environmental and Marine Studies, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
17
|
Silva MSS, Oliveira M, Almeida H, Vethaak AD, Martínez-Gómez C, Figueira E, Pires A. Does parental exposure to nanoplastics modulate the response of Hediste diversicolor to other contaminants: A case study with arsenic. ENVIRONMENTAL RESEARCH 2022; 214:113764. [PMID: 35803342 DOI: 10.1016/j.envres.2022.113764] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 05/17/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Plastic pollution is a serious problem in aquatic systems throughout the world. Despite the increasing number of studies addressing the impact of macro- and microplastics on biota, there is still a significant knowledge gap regarding the effects of nanoplastics alone and in combination with other contaminants. Among the aquatic contaminants that may interact with nanoplastics is arsenic (As), a metalloid found in estuarine and coastal ecosystems, pernicious to benthic organisms. This study aimed to understand how a parental pre-exposure to 100 nm polystyrene nanoplastics (PS NPs) would influence the response of Hediste diversicolor to exposure to arsenic in terms of behaviour, neurotransmission, antioxidant defences and oxidative damage, and energy metabolism. The obtained data revealed an increase in burrowing time and a significant inhibition in cholinesterase activity in all polychaetes exposed to As, regardless of the pre-exposure to PS NPs. Oxidative status was altered particularly in parentally exposed organisms, with damage detected in terms of lipid peroxidation at 50 μg/L and protein carbonylation at 50 and 250 μg As/L exposed organisms when compared to control. Overall, data shows that parental pre-exposure to plastics influences the response of aquatic organisms, increasing their susceptibility to other contaminants. Thus, more studies should be performed with other environmental contaminants, to better understand the potential increased risk associated with the presence of nanoplastics to aquatic ecosystems.
Collapse
Affiliation(s)
- M S S Silva
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Miguel Oliveira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Helena Almeida
- Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - A Dick Vethaak
- Department of Environment and Health, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands; Deltares, Marine and Coastal Systems, Delft, the Netherlands
| | - Concepción Martínez-Gómez
- Instituto Español de Oceanografía (IEO), CSIC, Centro Oceanográfico de Murcia, C/Varadero, 1, San Pedro del Pinatar, Murcia, 30740, Spain
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Adília Pires
- Centre for Environmental and Marine Studies (CESAM), Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
18
|
Gao Y, Li JN, Pu JJ, Tao KX, Zhao XX, Yang QQ. Genome-wide identification and characterization of the HSP gene superfamily in apple snails (Gastropoda: Ampullariidae) and expression analysis under temperature stress. Int J Biol Macromol 2022; 222:2545-2555. [DOI: 10.1016/j.ijbiomac.2022.10.038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 09/28/2022] [Accepted: 10/02/2022] [Indexed: 11/05/2022]
|
19
|
Žagar A, Simčič T, Dajčman U, Megía-Palma R. Parasitemia and elevation as predictors of hemoglobin concentration and antioxidant capacity in two sympatric lizards. Comp Biochem Physiol A Mol Integr Physiol 2022; 270:111233. [PMID: 35589083 DOI: 10.1016/j.cbpa.2022.111233] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 11/25/2022]
Abstract
Studies which quantify the influence of abiotic factors on physiological variation are paramount to comprehend organismal responses to diverse environments. We studied three physiological aspects of metabolism in two sympatric and ecologically similar European lizard species, Podarcis muralis and Iberolacerta horvathi, across an 830-m elevational gradient. We collected blood samples and tail tips from adult lizards, which were analyzed for parasitemia, hemoglobin concentration, potential metabolic activity and catalase activity. Hemoglobin concentration was higher in males than females and it increased across elevation in one of the studied species - P. muralis. Parasitemia was not an important predictor of the variation in hemoglobin concentration, which suggests that blood parasites do not constraint the aerobic capacity of the lizards. On the other hand, catalase activity reflected increased antioxidant activity in the presence of higher parasitemia, possibly acting as an adaptive mechanism to reduce oxidative stress during immune activation. Potential metabolic activity, as a proxy for maximum respiratory enzymatic capacity, did not differ between species or sexes nor was it affected by elevation or levels of parasitemia. The results provide insight into the relationships between physiological, biotic, and environmental traits in sympatric lizards.
Collapse
Affiliation(s)
- Anamarija Žagar
- Department of Organisms and Ecosystem Research, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia; CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, P-4485-661 Vairão, Portugal.
| | - Tatjana Simčič
- Department of Organisms and Ecosystem Research, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Urban Dajčman
- Department of Organisms and Ecosystem Research, National Institute of Biology, Večna pot 111, SI-1000 Ljubljana, Slovenia; Biotechnical Faculty, University of Ljubljana, Večna pot 111, SI-1000 Ljubljana, Slovenia
| | - Rodrigo Megía-Palma
- CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Campus de Vairão, Universidade do Porto, P-4485-661 Vairão, Portugal; BIOPOLIS Program in Genomics, Biodiversity and Land Planning, CIBIO, Campus de Vairão, P-4485-661 Vairão, Portugal; Universidad de Alcalá (UAH), Department of Biomedicine and Biotechnology, School of Pharmacy, E-28805, Alcalá de Henares, Madrid, Spain
| |
Collapse
|
20
|
Baratange C, Paris-Palacios S, Bonnard I, Delahaut L, Grandjean D, Wortham L, Sayen S, Gallorini A, Michel J, Renault D, Breider F, Loizeau JL, Cosio C. Metabolic, cellular and defense responses to single and co-exposure to carbamazepine and methylmercury in Dreissena polymorpha. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118933. [PMID: 35122922 DOI: 10.1016/j.envpol.2022.118933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 01/18/2022] [Accepted: 01/30/2022] [Indexed: 06/14/2023]
Abstract
Carbamazepine (CBZ) and Hg are widespread and persistent micropollutants in aquatic environments. Both pollutants are known to trigger similar toxicity mechanisms, e.g. reactive oxygen species (ROS) production. Here, their effects were assessed in the zebra mussel Dreissena polymorpha, frequently used as a freshwater model in ecotoxicology and biomonitoring. Single and co-exposures to CBZ (3.9 μg L-1) and MeHg (280 ng L-1) were performed for 1 and 7 days. Metabolomics analyses evidenced that the co-exposure was the most disturbing after 7 days, reducing the amount of 25 metabolites involved in protein synthesis, energy metabolism, antioxidant response and osmoregulation, and significantly altering cells and organelles' structure supporting a reduction of functions of gills and digestive glands. CBZ alone after 7 days decreased the amount of α-aminobutyric acid and had a moderate effect on the structure of mitochondria in digestive glands. MeHg alone had no effect on mussels' metabolome, but caused a significant alteration of cells and organelles' structure in gills and digestive glands. Single exposures and the co-exposure increased antioxidant responses vs control in gills and digestive glands, without resulting in lipid peroxidation, suggesting an increased ROS production caused by both pollutants. Data globally supported that a higher number of hyperactive cells compensated cellular alterations in the digestive gland of mussels exposed to CBZ or MeHg alone, while CBZ + MeHg co-exposure overwhelmed this compensation after 7 days. Those effects were unpredictable based on cellular responses to CBZ and MeHg alone, highlighting the need to consider molecular toxicity pathways for a better anticipation of effects of pollutants in biota in complex environmental conditions.
Collapse
Affiliation(s)
- Clément Baratange
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Séverine Paris-Palacios
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Isabelle Bonnard
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Laurence Delahaut
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France
| | - Dominique Grandjean
- ENAC, IIE, Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, 1015, Lausanne, Switzerland
| | - Laurence Wortham
- Inserm UMR-S-1250 P3Cell, Université de Reims Champagne-Ardenne, 51685, Reims, Cedex 2, France
| | - Stéphanie Sayen
- Université de Reims Champagne-Ardenne, Institut de Chimie Moléculaire de Reims (ICMR), UMR CNRS 7312, BP 1039, F-51687 Reims Cedex 2, France
| | - Andrea Gallorini
- Department F.-A. Forel for Environmental and Aquatic Sciences, And Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, 1211, Geneva 4, Switzerland
| | - Jean Michel
- Inserm UMR-S-1250 P3Cell, Université de Reims Champagne-Ardenne, 51685, Reims, Cedex 2, France
| | - David Renault
- University of Rennes, CNRS, ECOBIO (Ecosystèmes, Biodiversité, évolution), UMR, 6553, Rennes, France; Institut Universitaire de France, 1 Rue Descartes, 75231, Paris Cedex 05, France
| | - Florian Breider
- ENAC, IIE, Central Environmental Laboratory, Ecole Polytechnique Fédérale de Lausanne (EPFL), Station 2, 1015, Lausanne, Switzerland
| | - Jean-Luc Loizeau
- Department F.-A. Forel for Environmental and Aquatic Sciences, And Institute for Environmental Sciences, University of Geneva, Boulevard Carl-Vogt 66, 1211, Geneva 4, Switzerland
| | - Claudia Cosio
- Université de Reims Champagne-Ardenne, UMR-I 02 INERIS-URCA-ULH SEBIO, Unité Stress Environnementaux et BIOsurveillance des Milieux Aquatiques (SEBIO), BP 1039 F, 51687, Reims, Cedex, France.
| |
Collapse
|
21
|
Pires A, Figueira E, Silva MSS, Sá C, Marques PAAP. Effects of graphene oxide nanosheets in the polychaete Hediste diversicolor: Behavioural, physiological and biochemical responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 299:118869. [PMID: 35063544 DOI: 10.1016/j.envpol.2022.118869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/07/2022] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Numerous applications exist for graphene-based materials, such as graphene oxide (GO) nanosheets. Increased concentrations of GO nanosheets in the environment have the potential to have a large negative effect on the aquatic environment, with consequences for benthic organisms, such as polychaetes. The polychaete Hediste diversicolor mobilises the sediments, hence altering the availability of contaminants and the nutrients biogeochemical cycle. As such, this study proposes to assess the effects of different GO nanosheet concentrations on the behaviour, feeding activity, mucus production, regenerative capacity, antioxidant status, biochemical damage and metabolism of H. diversicolor. This study evidenced that H. diversicolor exposed to GO nanosheets had a significantly lower ability to regenerate their bodies, took longer to feed and burrow into the sediment and produced more mucus. Membrane oxidative damage (lipid peroxidation) increased in exposed specimens. The increased metabolic rate (ETS) evidenced a higher energy expenditure in exposed organisms (high use of ready energy sources - soluble sugars) to fight the toxicity induced by GO nanosheets, such as SOD activity. The increase in SOD activity was enough to reduce reactive oxygen species (ROS) induced by GO on cytosol at the lowest concentrations, avoiding the damage on proteins (lower PC levels), but not on membranes (LPO increase). This study revealed that the presence of GO nanosheets, even at the lower levels tested, impaired behavioural, physiological, and biochemical traits in polychaetes, suggesting that the increase of this engineered nanomaterial in the environment can disturb these benthic organisms, affecting the H. diversicolor population. Moreover, given the important role of this group of organisms in coastal and estuarine food webs, the biogeochemical cycle of nutrients, and sediment oxygenation, there is a real possibility for repercussions into the estuarine community.
Collapse
Affiliation(s)
- Adília Pires
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Etelvina Figueira
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - M S S Silva
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carina Sá
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Paula A A P Marques
- Centre for Mechanical Technology and Automation (TEMA) & Department of Mechanics, University of Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
22
|
Zhang S, Zheng Y, Zhan A, Dong C, Zhao J, Yao M. Environmental DNA captures native and non-native fish community variations across the lentic and lotic systems of a megacity. SCIENCE ADVANCES 2022; 8:eabk0097. [PMID: 35148174 PMCID: PMC8836804 DOI: 10.1126/sciadv.abk0097] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Globally, urbanization poses a major threat to terrestrial biodiversity, yet its impact on fish diversity is poorly understood, mainly because of surveying difficulties. In this study, environmental DNA metabarcoding was used to survey fish communities at 109 lentic and lotic sites across Beijing, and how environmental variables affect fish biodiversity at fine urban spatial scales was investigated. We identified 52 native and 23 non-native taxa, with lentic and lotic waters harboring both common and habitat-specific species. Water quality strongly affected native fish diversity, especially in lentic systems, but had little influence on non-native diversity. Fish diversity showed little response to urban land cover variation, but the relative sequence abundance of non-natives in lotic waters increased linearly with distance from the city center. Our findings illustrate the complex effects of urbanization on native versus non-native fishes in different aquatic habitats and highlight the distinctive considerations needed to conserve urban aquatic biodiversity.
Collapse
Affiliation(s)
- Shan Zhang
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Yitao Zheng
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Aibin Zhan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing 100049, China
| | - Chunxia Dong
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jindong Zhao
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Meng Yao
- School of Life Sciences, Peking University, Beijing 100871, China
- Institute of Ecology, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
- Corresponding author. ,
| |
Collapse
|
23
|
Ekelund Ugge GM, Jonsson A, Berglund O. Molecular biomarker responses in the freshwater mussel Anodonta anatina exposed to an industrial wastewater effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:2158-2170. [PMID: 34363176 PMCID: PMC8732836 DOI: 10.1007/s11356-021-15633-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/21/2021] [Indexed: 05/27/2023]
Abstract
Using a selection of molecular biomarkers, we evaluated responses in freshwater mussels (Anodonta anatina) exposed to effluent from an industrial wastewater treatment facility. The aims of this work were to (1) assess biomarkers of general toxicity under sublethal exposure to an anthropogenic mixture of chemicals, represented by an arbitrary effluent, and (2) evaluate the potential of A. anatina as a bioindicator of pollution. Adult mussels (n = in total 32; 24 males and 8 females) were exposed (96 h) in the laboratory to a fixed dilution of effluent or to a control treatment of standardized freshwater. Metal concentrations were in general higher in the effluent, by an order of magnitude or more, compared to the control. Toxic unit estimates were used as proxies of chemical stress, and Cu, Ni, and Zn were identified as potential major contributors (Cu> Ni > Zn). Six transcriptional (cat, gst, hsp70, hsp90, mt, sod) and two biochemical (AChE, GST) biomarkers were analyzed in two tissues, gills, and digestive glands. Out of the 16 responses (eight biomarkers × two tissues), 14 effect sizes were small (within ± 28 % of control) and differences non-significant (p > 0.05). Results did however show that (1) AChE activity increased by 40% in gills of exposed mussels compared to control, (2) hsp90 expression was 100% higher in exposed female gills compared to control, and (3) three marker signals (AChE in both tissues, and hsp70 in gills) differed between sexes, independent of treatment. Results highlight a need for further investigation of molecular biomarker variability and robustness in A. anatina.
Collapse
Affiliation(s)
- Gustaf Mo Ekelund Ugge
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.
- School of Bioscience, University of Skövde, Högskolevägen 3, 541 46, Skövde, Sweden.
| | - Annie Jonsson
- School of Bioscience, University of Skövde, Högskolevägen 3, 541 46, Skövde, Sweden
| | - Olof Berglund
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| |
Collapse
|
24
|
Crespo D, Leston S, Rato LD, Martinho F, Novais SC, Pardal MA, Lemos MFL. Does an Invasive Bivalve Outperform Its Native Congener in a Heat Wave Scenario? A Laboratory Study Case with Ruditapes decussatus and R. philippinarum. BIOLOGY 2021; 10:biology10121284. [PMID: 34943199 PMCID: PMC8698865 DOI: 10.3390/biology10121284] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 11/29/2021] [Accepted: 12/04/2021] [Indexed: 12/05/2022]
Abstract
Simple Summary Global climate change is responsible for more frequent heat waves, which offers opportunities for invasive species to expand their range. Two congener bivalves, the native Ruditapes decussatus and the invasive R. philippinarum, were exposed to a heat wave aquaria simulation and analysed for ecological and subcellular biomarkers responses. Despite reduced responses on the ecological level (bioturbation and nutrient concentration), there were differential responses to the heat wave at the subcellular level, where the invasive species seems to be less impacted than the native by the heat wave. This reinforces the common notion that climate change events may provide opportunities for biological invasions. Abstract Global warming and the subsequent increase in the frequency of temperature anomalies are expected to affect marine and estuarine species’ population dynamics, latitudinal distribution, and fitness, allowing non-native opportunistic species to invade and thrive in new geographical areas. Bivalves represent a significant percentage of the benthic biomass in marine ecosystems worldwide, often with commercial interest, while mediating fundamental ecological processes. To understand how these temperature anomalies contribute to the success (or not) of biological invasions, two closely related species, the native Ruditapes decussatus and the introduced R. philippinarum, were exposed to a simulated heat wave. Organisms of both species were exposed to mean summer temperature (~18 °C) for 6 days, followed by 6 days of simulated heat wave conditions (~22 °C). Both species were analysed for key ecological processes such as bioturbation and nutrient generation—which are significant proxies for benthic function and habitat quality—and subcellular biomarkers—oxidative stress and damage, and energetic metabolism. Results showed subcellular responses to heat waves. However, such responses were not expressed at the addressed ecological levels. The subcellular responses to the heat wave in the invasive R. philippinarum pinpoint less damage and higher cellular energy allocation to cope with thermal stress, which may further improve its fitness and thus invasiveness behaviour.
Collapse
Affiliation(s)
- Daniel Crespo
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (L.D.R.); (S.C.N.)
- CFE—Centre for Functional Ecology—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (F.M.); (M.A.P.)
- CIIMAR—Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
- Correspondence: (D.C.); (M.F.L.L.)
| | - Sara Leston
- CFE—Centre for Functional Ecology—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (F.M.); (M.A.P.)
| | - Lénia D. Rato
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (L.D.R.); (S.C.N.)
| | - Filipe Martinho
- CFE—Centre for Functional Ecology—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (F.M.); (M.A.P.)
| | - Sara C. Novais
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (L.D.R.); (S.C.N.)
| | - Miguel A. Pardal
- CFE—Centre for Functional Ecology—Science for People & the Planet, Department of Life Sciences, University of Coimbra, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal; (S.L.); (F.M.); (M.A.P.)
| | - Marco F. L. Lemos
- MARE—Marine and Environmental Sciences Centre, ESTM, Polytechnic of Leiria, 2520-641 Peniche, Portugal; (L.D.R.); (S.C.N.)
- Correspondence: (D.C.); (M.F.L.L.)
| |
Collapse
|
25
|
Abdelsaleheen O, Abdolahpur Monikh F, Keski-Saari S, Akkanen J, Taskinen J, Kortet R. The joint adverse effects of aged nanoscale plastic debris and their co-occurring benzo[α]pyrene in freshwater mussel (Anodonta anatina). THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 798:149196. [PMID: 34340087 DOI: 10.1016/j.scitotenv.2021.149196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/18/2021] [Accepted: 07/18/2021] [Indexed: 06/13/2023]
Abstract
Although the presence of small-scale plastics, including nanoscale plastic debris (NPD, size <1 μm), is expected in the environment, our understanding of their potential uptake and biodistribution in organisms is still limited. This mostly is because of the limitations in analytical techniques to characterize NPD in organisms' bodies. Moreover, it is still debatable whether aged NPD can sorb and transfer chemicals into organisms. Here, we apply iron oxide-doped polystyrene nanoparticles (Fe-PS NPs) of 270 nm size to quantify the uptake and biodistribution of NPD in freshwater mussels (Anodonta anatina). The Fe-PS NPs were, first, oxidized using heat-activated potassium persulfate treatments to produce NPD (aged particles). Then, the sorption of benzo[a]pyrene (B[α]P), as a model of organic chemicals, into the aged NPD was studied. Chemical oxidation (i.e. aging) significantly decreased the sorption of B[α]P into the particles over 5 days when compared to pristine particles. After 72-h of exposure, A. anatina accumulated NPD in the gills and digestive gland. When exposed to the mixture of NPD and B[α]P, the number of particles in the gills and digestive gland increased significantly compared to the mussels exposed to NPD alone. Moreover, the mixture of NPD and B[α]P increased the activity of Superoxide dismutase and Catalase enzymes in the exposed mussels when compared to the control and to the NPD alone. The present study provides evidence that aged NPD not only could accumulate and alter the toxicity profile of organic chemicals in aquatic organisms, but the chemicals also could facilitate the uptake of NPD (combined effects).
Collapse
Affiliation(s)
- Olfat Abdelsaleheen
- Department of Environmental & Biological Sciences, University of Eastern Finland, PO Box 111, FI80101 Joensuu, Finland; Department of Zoology, Sohag University, P.O. Box 82524, Sohag, Egypt
| | - Fazel Abdolahpur Monikh
- Department of Environmental & Biological Sciences, University of Eastern Finland, PO Box 111, FI80101 Joensuu, Finland.
| | - Sarita Keski-Saari
- Department of Environmental & Biological Sciences, University of Eastern Finland, PO Box 111, FI80101 Joensuu, Finland
| | - Jarkko Akkanen
- Department of Environmental & Biological Sciences, University of Eastern Finland, PO Box 111, FI80101 Joensuu, Finland
| | - Jouni Taskinen
- Department of Biological and Environmental Science, University of Jyväskylä, PO Box 35, FI40014 University of Jyväskylä, Finland
| | - Raine Kortet
- Department of Environmental & Biological Sciences, University of Eastern Finland, PO Box 111, FI80101 Joensuu, Finland
| |
Collapse
|
26
|
Freitas R, Coppola F, Meucci V, Battaglia F, Soares AMVM, Pretti C, Faggio C. The influence of salinity on sodium lauryl sulfate toxicity in Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103715. [PMID: 34311115 DOI: 10.1016/j.etap.2021.103715] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 07/19/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
The influence of salinity on the effects of sodium lauryl sulfate (SLS) was evaluated using the Mediterranean mussel Mytilus galloprovincialis, exposed for 28 days to SLS (control-0.0 and 4.0 mg/L) under three salinity levels (Control-30, 25 and 35). The effects were monitored using biomarkers related to metabolism and energy reserves, defence mechanisms (antioxidant and biotransformation enzymes) and cellular damage. The results revealed that non-contaminated mussels tended to maintain their metabolic capacity regardless of salinity, without activation of antioxidant defence strategies. On the contrary, although contaminated mussels presented decreased metabolic capacity at salinities 25 and 35, they were able to activate their antioxidant mechanisms, preventing cellular damage. Overall, the present findings indicate that SLS, especially under stressful salinity levels, might potentially jeopardize population survival and reproduction success since reduced metabolism and alterations on mussels' antioxidant mechanisms will impair their biochemical and, consequently, physiological performance.
Collapse
Affiliation(s)
- Rosa Freitas
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Francesca Coppola
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Valentina Meucci
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Federica Battaglia
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy
| | - Amadeu M V M Soares
- Centre for Environmental and Marine Studies (CESAM) & Department of Biology, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, 56122, San Piero a Grado, PI, Italy; Interuniversity Consortium of Marine Biology of Leghorn "G. Bacci", 57128, Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166, S. Agata-Messina, Italy.
| |
Collapse
|
27
|
The Chinese pond mussel Sinanodonta woodiana demographically outperforms European native mussels. Sci Rep 2021; 11:17058. [PMID: 34426636 PMCID: PMC8382766 DOI: 10.1038/s41598-021-96568-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/05/2021] [Indexed: 11/09/2022] Open
Abstract
Unionid mussels are essential for the integrity of freshwater ecosystems but show rapid worldwide declines. The large-sized, thermophilic Chinese pond mussel Sinanodonta woodiana s.l., however, is a successful global invader, spread with commercially traded fish encysted with mussel larvae; its negative impacts on native mussels are expected. Here, we exploit a natural experiment provided by a simultaneous introduction of S. woodiana and four species of native unionids for water filtration to a pond in north-eastern Poland. Sinanodonta woodiana established a self-sustaining population and persisted for 19 years in suboptimal thermal conditions (mean annual temperature, 7.4 °C; mean temperature of the coldest month, - 3.7 °C, 73-day mean yearly ice-formation), extending the known limits of its cold tolerance. Over four study years, its frequency increased, and it showed higher potential for population growth than the native mussels, indicating possible future dominance shifts. Outbreaks of such sleeper populations are likely to be triggered by increasing temperatures. Additionally, our study documents the broad tolerance of S. woodiana concerning bottom sediments. It also points to the importance of intentional introductions of adult individuals and the bridgehead effect facilitating its further spread. We argue that S. woodiana should be urgently included in invasive species monitoring and management programmes.
Collapse
|
28
|
Boat ramps facilitate the dispersal of the highly invasive zebra mussel (Dreissena polymorpha). Biol Invasions 2021. [DOI: 10.1007/s10530-020-02453-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
29
|
Clutton EA, Alurralde G, Repolho T. Early developmental stages of native populations of Ciona intestinalis under increased temperature are affected by local habitat history. J Exp Biol 2021; 224:jeb233403. [PMID: 33472872 PMCID: PMC7938807 DOI: 10.1242/jeb.233403] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 01/06/2021] [Indexed: 11/20/2022]
Abstract
Temperature modulates marine ectotherm physiology, influencing survival, abundance and species distribution. While native species could be susceptible to ocean warming, thermal tolerance might favour the spread of non-native species. Determining the success of invasive species in response to climate change is confounded by the cumulative, synergistic or antagonistic effects of environmental drivers, which vary at a geographical and temporal scale. Thus, an organism's acclimation or adaptive potential could play an important evolutionary role by enabling or conditioning species tolerance to stressful environmental conditions. We investigated developmental performance of early life stages of the ascidian Ciona intestinalis (derived from populations of anthropogenically impacted and control sites) to an extreme weather event (i.e. marine heatwave). Fertilization rate, embryo and larval development, settlement, metamorphosis success and juvenile heart rate were assessed as experimental endpoints. With the exception of fertilization and heart rates, temperature influenced all analysed endpoints. C. intestinalis derived from control sites were the most negatively affected by increased temperature conditions. By contrast, C. intestinalis from anthropogenically impacted sites showed a positive response to thermal stress, with a higher proportion of larvae development, settlement and metamorphosis success being observed under increased temperature conditions. No differences were observed for heart rates between sampled populations and experimental temperature conditions. Moreover, interaction between temperature and populations was statistically significant for embryo and larvae development, and metamorphosis. We hypothesize that selection resulting from anthropogenic forcing could shape stress resilience of species in their native range and subsequently confer advantageous traits underlying their invasive potential.
Collapse
Affiliation(s)
- Elizabeth A Clutton
- Institute of Marine Sciences, Faculty of Science and Health, University of Portsmouth, Eastney, Portsmouth PO4 9LY, UK
| | - Gaston Alurralde
- Universidad Nacional de Córdoba, Facultad de Ciencias Exactas, Físicas y Naturales, Departamento Diversidad Biológica y Ecología, Ecología Marina, Av. Velez Sarsfield 299 (X5000JJC), Córdoba, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Instituto de Diversidad y Ecologıa Animal (IDEA), Av. Velez Sarsfield 299 (X5000JJC), Córdoba, Argentina
| | - Tiago Repolho
- MARE - Centro de Ciências do Mar e do Ambiente (MARE), Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisboa, Portugal
| |
Collapse
|
30
|
Balzani P, Haubrock PJ, Russo F, Kouba A, Haase P, Veselý L, Masoni A, Tricarico E. Combining metal and stable isotope analyses to disentangle contaminant transfer in a freshwater community dominated by alien species. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115781. [PMID: 33049575 DOI: 10.1016/j.envpol.2020.115781] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 10/03/2020] [Accepted: 10/04/2020] [Indexed: 05/25/2023]
Abstract
Freshwater ecosystems are negatively impacted by various pollutants, from agricultural, urban and industrial wastewater, with metals being one of the largest concerns. Moreover, freshwater ecosystems are often affected by alien species introductions that can modify habitats and trophic relationships. Accordingly, the threat posed by metals interacts with those by alien species, since the latter can accumulate and transfer these substances across the food web to higher trophic levels. How metals transfer within such communities is little studied. We analysed the concentration of 14 metals/metalloids (Al, As, Cd, Co, Cr, Cu, Fe, Hg, Mg, Mn, Ni, Pb, Se, Zn, hereafter 'metal(s)') of eight fish and three crustacean species co-existing in the Arno River (Central Italy), most of which were alien. To assess the pathway of contaminants within the community, we coupled metal analysis with carbon and nitrogen stable isotope analysis derived from the same specimens. Crustaceans showed higher metal concentration than fish, except for Cd, Hg and Se that were higher in fish. We found evidence of trophic transfer for six metals (Cd, Cr, Hg, Mg, Se, Zn). Additionally, ontogenetic differences and differences among various fish tissues (muscle, liver, and gills) were found in metals concentration. Considerable biomagnification along the trophic chain was found for Hg, while other metals were found to biodilute. Using stable isotopes and Hg as a third diet tracer, we refined the estimations of consumed preys in the diet previously reconstructed with stable isotope mixing models. Alien species reach high biomass and can both survive to and accumulate high pollutants concentrations, potentially posing a risk for their predators and humans. A combined effect of environmental filtering and increased competition may potentially contribute to the disappearance of native species with lower tolerances.
Collapse
Affiliation(s)
- Paride Balzani
- University of Florence, Department of Biology, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy.
| | - Phillip J Haubrock
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571, Gelnhausen, Germany; University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Francesco Russo
- University of Florence, Department of Biology, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| | - Antonín Kouba
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Peter Haase
- Senckenberg Research Institute and Natural History Museum Frankfurt, Department of River Ecology and Conservation, Clamecystrasse 12, 63571, Gelnhausen, Germany; University of Duisburg-Essen, Faculty of Biology, Universitätsstraße 5, 45141, Essen, Germany
| | - Lukáš Veselý
- University of South Bohemia in České Budějovice, Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Zátiší 728/II, 389 25, Vodňany, Czech Republic
| | - Alberto Masoni
- University of Florence, Department of Biology, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| | - Elena Tricarico
- University of Florence, Department of Biology, Via Madonna del Piano 6, 50019, Sesto Fiorentino, Italy
| |
Collapse
|
31
|
Santos C, Bueno Dos Reis Martinez C. Biotransformation in the fish Prochilodus lineatus: An organ-specific approach to cyp1a gene expression and biochemical activity. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2020; 80:103467. [PMID: 32791344 DOI: 10.1016/j.etap.2020.103467] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 07/09/2020] [Accepted: 08/03/2020] [Indexed: 06/11/2023]
Abstract
The biotransformation ability of the organism is the result of organ-specific responses. This paper presents a molecular and biochemical approach to elucidate the biotransformation mechanisms in different organs of Prochilodus lineatus induced at 6, 24, and 96 h after a benzo[a]pyrene (B[a]P) injection. The induction in cyp1a transcription showed an organ-specific intensity at every tested time time. The EROD (ethoxyresorufin-O-deethylase) activity increased rapidly (6 h) in the liver and the kidney; the gills and the brain showed an increase at 24 h; and the gills demonstrated the highest activity among all the organs tested. There was no increase in glutathione S-transferase (GST) activity or lipoperoxidation. The decreased hepatic glutathione content (GSH) may be due to its role as an antioxidant. B[a]P was detected in the bile, confirming the xenobiotic efflux from the metabolizing organs. The gills, liver, brain, and kidney of P. lineatus presented an integrated mechanism to deal with the xenobiotic biotransformation.
Collapse
Affiliation(s)
- Caroline Santos
- Department of Physiological Sciences, State University of Londrina, Rod. Celso Garcia Cid, km 380, Londrina, Parana, 86057-970, Brazil
| | - Claudia Bueno Dos Reis Martinez
- Department of Physiological Sciences, State University of Londrina, Rod. Celso Garcia Cid, km 380, Londrina, Parana, 86057-970, Brazil.
| |
Collapse
|
32
|
The Role of Temperature on the Impact of Remediated Water towards Marine Organisms. WATER 2020. [DOI: 10.3390/w12082148] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Marine organisms are frequently exposed to pollutants, including trace metals, derived from natural and anthropogenic activities. In order to prevent environmental pollution, different approaches have been applied to remove pollutants from waste water and avoid their discharge into aquatic systems. However, organisms in their natural aquatic environments are also exposed to physico-chemical changes derived from climate change-related factors, including temperature increase. According to recent studies, warming has a negative impact on marine wildlife, with known effects on organisms physiological and biochemical performance. Recently, a material based on graphene oxide (GO) functionalized with polyethyleneimine (PEI) proved to be effective in the remediation of mercury (Hg) contaminated water. Nevertheless, no information is available on the toxic impacts of such remediated water towards aquatic systems, neither under actual nor predicted temperature conditions. For this, the present study assessed the toxicity of seawater, previously contaminated with Hg and remediated by GO-PEI, using the clam species Ruditapes philippinarum exposed to actual and a predicted temperature conditions. The results obtained demonstrated that seawater contaminated with Hg and/or Hg+GO-PEI induced higher toxicity in clams exposed to 17 and 22 °C compared to organisms exposed to remediated seawater at the same temperatures. Moreover, similar histological and biochemical results were observed between organisms exposed to control and remediated seawater, independently of the temperatures (17 and 21 °C), highlighting the potential use of GO-PEI to remediate Hg from seawater without significant toxicity issues to the selected marine species.
Collapse
|
33
|
Costa S, Coppola F, Pretti C, Intorre L, Meucci V, Soares AMVM, Solé M, Freitas R. Biochemical and physiological responses of two clam species to Triclosan combined with climate change scenario. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138143. [PMID: 32408439 DOI: 10.1016/j.scitotenv.2020.138143] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/16/2020] [Accepted: 03/21/2020] [Indexed: 06/11/2023]
Abstract
Ocean acidification and warming are among the man-induced factors that most likely impact aquatic wildlife worldwide. Besides effects caused by temperature rise and lowered pH conditions, chemicals of current use can also adversely affect aquatic organisms. Both climate change and emerging pollutants, including toxic impacts in marine invertebrates, have been investigated in recent years. However, less information is available on the combined effects of these physical and chemical stressors that, in nature, occur simultaneously. Thus, this study contrasts the effects caused by the antimicrobial agent and plastic additive, Triclosan (TCS) in the related clams Ruditapes philippinarum (invasive) and Ruditapes decussatus (native) and evaluates if the impacts are influenced by combined temperature and pH modifications. Organisms were acclimated for 30 days at two conditions (control: 17 °C; pH 8.1 and climate change scenario: 21 °C, pH 7.7) in the absence of the drug (experimental period I) followed by a 7 days exposure under the same water physical parameters but either in absence (unexposed) or presence of TCS at 1 μg/L (experimental period II). Biochemical responses covering metabolic, oxidative defences and damage-related biomarkers were contrasted in clams at the end of experimental period II. The overall picture showed a well-marked antioxidant activation and higher TCS bioaccumulation of the drug under the forecasted climate scenario despite a reduction on respiration rate and unaltered metabolism in the exposed clams. Since clams are highly consumed shellfish, the consequences for higher tissue bioaccumulation of anthropogenic chemicals to final consumers should be alerted not only at present conditions but more significantly under predicted climatic conditions for humans but also for other components of the marine trophic chain.
Collapse
Affiliation(s)
- Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | | | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Montserrat Solé
- Instituto de Ciencias del Mar ICM-CSIC, E-08003 Barcelona, Spain
| | - Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
34
|
Environmental Fate of Multistressors on Carpet Shell Clam Ruditapes decussatus: Carbon Nanoparticles and Temperature Variation. SUSTAINABILITY 2020. [DOI: 10.3390/su12124939] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Ruditapes decussatus is a native clam from the Southern Europe and Mediterranean area, relevant to the development of sustainable aquaculture in these regions. As sessile organisms, bivalves are likely to be exposed to chemical contaminations and environmental changes in the aquatic compartment and are widely used as bioindicator species. Carbon-based nanomaterials (CNTs) use is increasing and, consequently, concentrations of these contaminants in aquatic systems will rise. Therefore, it is imperative to assess the potential toxic effects of such compounds and the interactions with environmental factors such as water temperature. For this, we exposed R. decussatus clams to four different water temperatures (10, 15, 20 and 25 °C) in the presence or absence of CNTs for 96 h. Different parameters related with oxidative stress status, aerobic metabolism, energy reserves and neurotoxicity were evaluated. The relationship and differences among water temperatures and contamination were highlighted by principal coordinates analysis (PCO). CNTs exposure increased oxidative damage as protein carbonylation (PC) in exposed clams at 10 °C. Higher temperatures (25 °C) were responsible for the highest redox status (ratio between reduced and oxidized glutathione, GSH/GSSG) observed as well as neurotoxic effects (acetylcholinesterase—AChE activity). Antioxidant defenses were also modulated by the combination of CNTs exposure with water temperatures, with decrease of glutathione peroxidase (GR) activity at 15 °C and of glutathione S-transferases (GSTs) activity at 20 °C, when compared with unexposed clams. Clams energy reserves were not altered, probably due to the short exposure period. Overall, the combined effects of CNTs exposure and increasing water temperatures can impair R. decussatus cellular homeostasis inducing oxidative stress and damage.
Collapse
|
35
|
Mandlate JS, Soares BM, Andrade CFF, Colling LA, Primel EG, Mesko MF, Duarte FA. Determination of trace elements in Sergio mirim: an evaluation of sample preparation methods and detection techniques. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:21914-21923. [PMID: 32285391 DOI: 10.1007/s11356-020-08766-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 04/03/2020] [Indexed: 06/11/2023]
Abstract
In this work, some trace elements (As, Cd, Cr, Cu, and Pb) were determined for the first time in the crustacean Sergio mirim (Decapoda: Thalassinidea: Callianassidae) from Southern Coast (Rio Grande, RS) of Brazil. The trace element determination was carried out by graphite furnace atomic absorption spectrometry (GF AAS) and inductively coupled plasma mass spectrometry (ICP-MS). Different microwave radiation-based sample digestion methods were evaluated. The analyte concentration ranged from 1.45 to 3.70 μg g-1 for As, 0.615 to 0.942 μg g-1 for Cd, 0.884 to 7.20 μg g-1 for Cr, 122 to 275 μg g-1 for Cu, and 0.390 to 0.916 μg g-1 for Pb. The limits of quantification for As, Cd, Cr, Cu, and Pb were 0.12, 0.01, 0.16, 0.92, and 0.06 μg g-1, respectively. The accuracy was evaluated by results comparison between GF AAS and ICP-MS techniques, as well as by analysis of certified reference materials of fish muscle and oyster tissue, with agreement from 92 to 108%. The feasibility of using Sergio mirim as a promising environmental bioindicator candidate was evaluated, since that it is an abundant organism in the studied area (South cost of Brazil) as well as in other places around the world.
Collapse
Affiliation(s)
- Jaime S Mandlate
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, RS, 96203-900, Brazil
- Departamento de Química, Universidade Eduardo Mondlane, P.O. Box 252, Maputo, Mozambique
| | - Bruno M Soares
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Carlos F F Andrade
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Leonir A Colling
- Instituto de Oceanografia, Universidade Federal do Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Ednei G Primel
- Escola de Química e Alimentos, Universidade Federal do Rio Grande, Rio Grande, RS, 96203-900, Brazil
| | - Marcia F Mesko
- Centro de Ciências Químicas, Farmacêuticas e de Alimentos, Universidade Federal de Pelotas, Pelotas, RS, 96010-610, Brazil
| | - Fabio A Duarte
- Departamento de Química, Universidade Federal de Santa Maria, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
36
|
Freitas R, Cardoso CED, Costa S, Morais T, Moleiro P, Lima AFD, Soares M, Figueiredo S, Águeda TL, Rocha P, Amador G, Soares AMVM, Pereira E. New insights on the impacts of e-waste towards marine bivalves: The case of the rare earth element Dysprosium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 260:113859. [PMID: 31991344 DOI: 10.1016/j.envpol.2019.113859] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2019] [Revised: 11/30/2019] [Accepted: 12/19/2019] [Indexed: 06/10/2023]
Abstract
With the technological advances and economic development, the multiplicity and wide variety of applications of electrical and electronic equipment have increased, as well as the amount of end-of-life products (waste of electrical and electronic equipment, WEEE). Accompanying their increasing application, there is an increasing risk to aquatic ecosystems and inhabiting organisms. Among the most common elements present in WEEE are rare earth elements (REE) such as Dysprosium (Dy). The present study evaluated the metabolic and oxidative stress responses of mussels Mytilus galloprovincialis exposed to an increasing range of Dy concentrations, after a 28 days experimental period. The results obtained highlighted that Dy was responsible for mussel's metabolic increase associated with glycogen expenditure, activation of antioxidant and biotransformation defences and cellular damage, with a clear loss of redox balance. Such effects may greatly impact mussel's physiological functions, including reproduction capacity and growth, with implications for population conservation. Overall the present study pointed out the need for more research on the toxic impacts resulting from these emerging pollutants, especially towards marine and estuarine invertebrate species.
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Celso E D Cardoso
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Tiago Morais
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Pedro Moleiro
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - André F D Lima
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Márcio Soares
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Samuel Figueiredo
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Tiago L Águeda
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Pedro Rocha
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Gonçalo Amador
- Departamento de Química, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Eduarda Pereira
- Departamento de Química & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
37
|
Silva MSS, Oliveira M, Valente P, Figueira E, Martins M, Pires A. Behavior and biochemical responses of the polychaeta Hediste diversicolor to polystyrene nanoplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 707:134434. [PMID: 31863996 DOI: 10.1016/j.scitotenv.2019.134434] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Revised: 09/11/2019] [Accepted: 09/11/2019] [Indexed: 06/10/2023]
Abstract
Plastic debris has been reaching the world's oceans since it started being used. Multiple studies have been addressing the effects of microplastics in various organisms but, despite the increased scientific awareness, there is still a significant gap in knowledge when it comes to small-sized plastic particles of sizes below 100 nm. The aim of this study was to understand the effect of waterborne 100 nm polystyrene nanoplastics (PS NPs) on the marine polychaeta Hediste diversicolor, a keystone species in intertidal and coastal environments, in terms of behavior, neurotransmission, oxidative status, energy metabolism and oxidative damage. Results of PS NPs characterization showed an aggregation along the time and with increasing concentrations. Results also revealed a considerable impact of PS NPs on ecologically relevant endpoints like cholinesterase (ChE) and burrowing, but no increases in most of the parameters associated with oxidative stress. Protein carbonylation was found to be more sensitive to PS NPs effects than lipid peroxidation. Behavioral alterations induced by PS NPs may affect nutrient cycling and (endo-)benthic fauna. The data revealed in this study highlighted the potential consequences of NPs to benthic organisms and the need for further studies.
Collapse
Affiliation(s)
- M S S Silva
- Departament of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Miguel Oliveira
- Departament of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Pedro Valente
- Departament of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Departament of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Manuel Martins
- Department of Physics & CICECO, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Adília Pires
- Departament of Biology & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
38
|
Ekelund Ugge GMO, Jonsson A, Olsson B, Sjöback R, Berglund O. Transcriptional and biochemical biomarker responses in a freshwater mussel (Anodonta anatina) under environmentally relevant Cu exposure. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:9999-10010. [PMID: 31933076 PMCID: PMC7089896 DOI: 10.1007/s11356-020-07660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 01/07/2020] [Indexed: 05/09/2023]
Abstract
Molecular biomarkers, like gene transcripts or enzyme activities, are potentially powerful tools for early warning assessment of pollution. However, a thorough understanding of response and baseline variation is required to distinguish actual effects from pollution. Here, we assess the freshwater mussel Anodonta anatina as a biomarker model species for freshwater ecosystems, by testing responses of six transcriptional (cat, gst, hsp70, hsp90, mt, and sod) and two biochemical (AChE and GST) biomarkers to environmentally relevant Cu water concentrations. Mussels (n = 20), collected from a stream free from point source pollution, were exposed in the laboratory, for 96 h, to Cu treatments (< 0.2 μg/L, 0.77 ± 0.87 μg/L, and 6.3 ± 5.4 μg/L). Gills and digestive glands were extracted and analyzed for transcriptional and biochemical responses. Biological and statistical effect sizes from Cu treatments were in general small (mean log2 fold-change ≤ 0.80 and Cohen's f ≤ 0.69, respectively), and no significant treatment effects were observed. In contrast, four out of eight biomarkers (cat, gst, hsp70, and GST) showed a significant sex:tissue interaction, and additionally one (sod) showed significant overall effects from sex. Specifically, three markers in gills (cat, mt, GST) and one in digestive gland (AChE) displayed significant sex differences, independent of treatment. Results suggest that sex or tissue effects might obscure low-magnitude biomarker responses and potential early warnings. Thus, variation in biomarker baselines and response patterns needs to be further addressed for the future use of A. anatina as a biomarker model species.
Collapse
Affiliation(s)
- Gustaf Magnus Oskar Ekelund Ugge
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden.
- School of Bioscience, University of Skövde, Högskolevägen 3, 541 28, Skövde, Sweden.
| | - Annie Jonsson
- School of Bioscience, University of Skövde, Högskolevägen 3, 541 28, Skövde, Sweden
| | - Björn Olsson
- School of Bioscience, University of Skövde, Högskolevägen 3, 541 28, Skövde, Sweden
| | - Robert Sjöback
- TATAA Biocenter, Odinsgatan 28, 411 03, Gothenburg, Sweden
| | - Olof Berglund
- Department of Biology, Lund University, Sölvegatan 37, 223 62, Lund, Sweden
| |
Collapse
|
39
|
Coppola F, Bessa A, Henriques B, Russo T, Soares AMVM, Figueira E, Marques PAAP, Polese G, Di Cosmo A, Pereira E, Freitas R. Oxidative stress, metabolic and histopathological alterations in mussels exposed to remediated seawater by GO-PEI after contamination with mercury. Comp Biochem Physiol A Mol Integr Physiol 2020; 243:110674. [PMID: 32058044 DOI: 10.1016/j.cbpa.2020.110674] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 02/05/2020] [Accepted: 02/07/2020] [Indexed: 12/16/2022]
Abstract
The modern technology brought new engineering materials (e.g. nanostructured materials) with advantageous characteristics such as a high capacity to decontaminate water from pollutants (for example metal(loid)s). Among those innovative materials the synthesis of nanostructured materials (NSMs) based on graphene as graphene oxide (GO) functionalized with polyethyleneimine (GO-PEI) had a great success due to their metal removal capacity from water. However, research dedicated to environmental risks related to the application of these materials is still non-existent. To evaluate the impacts of such potential stressors, benthic species can be a good model as they are affected by several environmental constraints. Particularly, the mussel Mytilus galloprovincialis has been identified by several authors as a bioindicator that responds quickly to environmental disturbances, with a wide spatial distribution and economic relevance. Thus, the present study aimed to evaluate the impacts caused in M. galloprovincialis by seawater previously contaminated by Hg and decontaminated using GO-PEI. For this, histopathological and biochemical alterations were examined. This study demonstrated that mussels exposed to the contaminant (Hg), the decontaminant (GO-PEI) and the combination of both (Hg + GO-PEI) presented an increment of histopathological, oxidative stress and metabolic alterations if compared to organisms under remediated seawater and control conditions The present findings highlight the possibility to remediate seawater with nanoparticles for environmental safety purposes.
Collapse
Affiliation(s)
- Francesca Coppola
- CESAM & Department of Biology, University of Aveiro, 3810-193, Portugal
| | - Ana Bessa
- TEMA & Department of Mechanical Engineering, University of Aveiro, 3810-193, Portugal
| | - Bruno Henriques
- CESAM & LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Portugal
| | - Tania Russo
- Department of Biology, University of Naples Federico II, 80126, Italy
| | | | - Etelvina Figueira
- CESAM & Department of Biology, University of Aveiro, 3810-193, Portugal
| | - Paula A A P Marques
- TEMA & Department of Mechanical Engineering, University of Aveiro, 3810-193, Portugal
| | - Gianluca Polese
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Anna Di Cosmo
- Department of Biology, University of Naples Federico II, 80126, Italy
| | - Eduarda Pereira
- CESAM & LAQV-REQUIMTE & Department of Chemistry, University of Aveiro, 3810-193, Portugal
| | - Rosa Freitas
- CESAM & Department of Biology, University of Aveiro, 3810-193, Portugal.
| |
Collapse
|
40
|
Freitas R, Silvestro S, Coppola F, Costa S, Meucci V, Battaglia F, Intorre L, Soares AMVM, Pretti C, Faggio C. Toxic impacts induced by Sodium lauryl sulfate in Mytilus galloprovincialis. Comp Biochem Physiol A Mol Integr Physiol 2020; 242:110656. [PMID: 31927089 DOI: 10.1016/j.cbpa.2020.110656] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 01/08/2020] [Accepted: 01/08/2020] [Indexed: 12/17/2022]
Abstract
Pharmaceuticals and personal care products (PPCPs) are continuously dispersed into the environment, as a result of human and veterinary use, reaching aquatic coastal systems and inhabiting organisms. However, information regarding to toxic effects of these compounds towards marine invertebrates is still scarce, especially in what regards to metabolic capacity and oxidative status alterations induced in bivalves after chronic exposure. In the present study, the toxic impacts of Sodium lauryl sulfate (SLS), an anionic surfactant widely used as an emulsifying cleaning agent in household and cosmetics, were evaluated in the mussel Mytilus galloprovincialis, after exposure for 28 days to different concentrations (0.0; 0.5; 1.0; 2.0 and 4.0 mg/L). For this, effects on mussels respitation rate, metabolic capacity and oxidative status were evaluated. The obtained results indicate a significant decrease on mussel's respiration rate after exposure to different SLS concentrations, an alteration that was accompanied by a decrease of bioconcentration factor along the increasing exposure gradient, especially at the highest exposure concentration. Nonetheless, the amount of SLS accumulated in organisms originated alterations in mussel's metabolic performance, with higher metabolic capacity up to 2.0 mg/L followed by a decrease at the highest tested concentration (4.0 mg/L). Mussels exposed to SLS revealed limited antioxidant defense mecanhisms but cellular damage was only observed at the highest exposure concentration (4.0 mg/L). In fact, up to 2.0 mg/L of SLS limited toxic impacts were observed, namely in terms of oxidative stress and redox balance. However, since mussel's respiration rate was greatly affected by the presence of SLS, the present study may highlight the potential threat of SLS towards marine bivalves, limiting their filtration capacity and, thus, affecting their global physiological development (including growth and reproduction) and ultimely their biochemical performance (afecting their defense capacity towards stressful conditons).
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal.
| | - Serena Silvestro
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal; Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Silvana Costa
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | | | | | - Luigi Intorre
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Dipartimento di Scienze Veterinarie, Università di Pisa, Italy; Consorzio per il Centro Interuniversitario di Biologia Marina ed Ecologia Applicata "G. Bacci" (CIBM), Livorno, Italy
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Italy
| |
Collapse
|
41
|
Szczerkowska-Majchrzak E, Jarosiewicz M. A comparative study of the oxidative system in Chironomidae larvae with contrasting feeding strategies. THE EUROPEAN ZOOLOGICAL JOURNAL 2020. [DOI: 10.1080/24750263.2020.1810336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Affiliation(s)
- E. Szczerkowska-Majchrzak
- Faculty of Biology and Environmental Protection, Department of Ecology and Vertebrate Zoology, University of Lodz, Poland
| | - M. Jarosiewicz
- Faculty of Biology and Environmental Protection, Department of Biophysics of Environmental Pollution, University of Lodz, Poland
- Faculty of Biology and Environmental Protection, Department of Cytobiochemistry, University of Lodz, Poland
| |
Collapse
|
42
|
Gomes-Silva G, Pereira BB, Liu K, Chen B, Santos VSV, de Menezes GHT, Pires LP, Santos BMT, Oliveira DM, Machado PHA, de Oliveira Júnior RJ, de Oliveira AMM, Plath M. Using native and invasive livebearing fishes (Poeciliidae, Teleostei) for the integrated biological assessment of pollution in urban streams. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134336. [PMID: 31783440 DOI: 10.1016/j.scitotenv.2019.134336] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2019] [Revised: 08/14/2019] [Accepted: 09/05/2019] [Indexed: 06/10/2023]
Abstract
Invasive species are increasingly replacing native species, especially in anthropogenically transformed or polluted habitats. This opens the possibility to use invasive species as indicator taxa for the biological assessment of pollution. Integrated biological assessment, however, additionally relies on the application of multiple approaches to quantify physiological or cytogenetic responses to pollution within the same focal species. This is challenging when species are restricted to either polluted or unpolluted sites. Here, we make use of a small group of neotropical livebearing fishes (family Poeciliidae) for the integrated biological assessment of water quality. Comparing urban and suburban stream sections that receive varying degrees of pollution from industrial and domestic waste waters in and around the Brazilian city of Uberlândia, we demonstrate that two members of this family may indeed serve as indicators of water pollution levels. The native species Phalloceros caudimaculatus appears to be replaced by invasive guppies (Poecilia reticulata) at heavily polluted sites. Nevertheless, we demonstrate that both species could be used for the assessment of bioaccumulation of heavy metals (Pb, Cu, and Cr). Ambient (sediment) concentrations predicted concentrations in somatic tissue across species (R2-values between 0.74 and 0.96). Moreover, we used cytogenetic methods to provide an estimate of genotoxic effects of water pollution and found pollution levels (multiple variables, condensed into principal components) to predict the occurrence of nuclear abnormalities (e.g., frequencies of micro-nucleated cells) across species (R2 between 0.69 and 0.83). The occurrence of poeciliid fishes in urban and polluted environments renders this family a prime group of focal organisms for biological water quality monitoring and assessment. Both species could be used interchangeably to assess genotoxic effects of water pollution, which may facilitate future comparative analyses over extensive geographic scales, as members of the family Poeciliidae have become invasive in tropical and subtropical regions worldwide.
Collapse
Affiliation(s)
- Guilherme Gomes-Silva
- College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Boscolli Barbosa Pereira
- Institute of Geography, Universidade Federal de Uberlândia, Uberlândia, Brazil; Institute of Biotechnology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | - Kai Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, PR China
| | - Bojian Chen
- College of Environmental Science and Engineering, Tongji University, Shanghai, PR China
| | | | | | - Luís Paulo Pires
- Institute of Biology, Universidade Federal de Uberlândia, Uberlândia, Brazil
| | | | | | | | | | | | - Martin Plath
- College of Animal Science and Technology, Northwest A&F University, Yangling, PR China; Shaanxi Key Laboratory for Molecular Biology in Agriculture, Northwest A&F University, Yangling, PR China.
| |
Collapse
|
43
|
Spyra A, Cieplok A, Strzelec M, Babczyńska A. Freshwater alien species Physella acuta (Draparnaud, 1805) - A possible model for bioaccumulation of heavy metals. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 185:109703. [PMID: 31561074 DOI: 10.1016/j.ecoenv.2019.109703] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 09/18/2019] [Accepted: 09/19/2019] [Indexed: 06/10/2023]
Abstract
In this study we focused on Physella acuta, an alien snail species in order to determine their ability of bioaccumulation of heavy metals in their shells, bodies, the difference in accumulation in relation to age classes, and the influence of ecological variables on the community composition and density. On the basis of the results of ecological, toxicological, and experimental analyses we aimed to study the potential invasive features of P. acuta in comparision with the native species Stagnicola palustris. The content of Cu and Zn in the substratum and ammonia in the water was strongly related to the patterns of distribution of P. acuta. The content of Cd, Pb, and Cu in the shell fraction was always significantly lower than in the body fraction. A comparison of accumulation with respect to the size classes of P. acuta indicated that the lowest metal concentration in the body was typical for the largest individuals, except for Zn. Metal content in the bodies of the native species did not differ from the content measured in their analogous group of the largest individuals of P. acuta. The lowest value of bioaccumulation factor (BAF) was found for the large class of specimens of this species for each metal. A distinct decrease in the value of BAF in relation to the size of snails was found for cadmium. A 100% hatching success found in masses collected from pond confirmed the high reproductive potential of P. acuta which can be a factor that promotes its invasive features following its ability to occur in very high densities, but not necessarily the ability of metal accumulation in the body. Physella acuta can be used as a model organism in the studies on the accumulation of heavy metals however, the extend of accumulation can differ among the age classes. Because of the high tolerance of P. acuta to heavy metal pollution, in the future this species can be found in significantly polluted habitats, inhabiting free ecological niches, and occurring in high densities in snail communities.
Collapse
Affiliation(s)
- Aneta Spyra
- Department of Hydrobiology, Faculty of Biology & Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, Poland.
| | - Anna Cieplok
- Department of Hydrobiology, Faculty of Biology & Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - Małgorzata Strzelec
- Department of Hydrobiology, Faculty of Biology & Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - Agnieszka Babczyńska
- Department of Animal Physiology and Ecotoxicology & Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| |
Collapse
|
44
|
Freitas R, Leite C, Pinto J, Costa M, Monteiro R, Henriques B, Di Martino F, Coppola F, Soares AMVM, Solé M, Pereira E. The influence of temperature and salinity on the impacts of lead in Mytilus galloprovincialis. CHEMOSPHERE 2019; 235:403-412. [PMID: 31272000 DOI: 10.1016/j.chemosphere.2019.05.221] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 05/13/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
Mussels, such as the marine bivalve Mytilus galloprovincialis are sentinels for marine pollution but they are also excellent bioindicators under laboratory conditions. For that, in this study we tested the modulation of biochemical responses under realistic concentrations of the toxic metal Lead (Pb) in water for 28 days under different conditions of salinity and temperature, including control condition (temperature 17 ± 1.0 °C and salinity 30 ± 1.0) as well as those within the range expected to occur due to climate change predictions (± 5 in salinity and + 4 °C in temperature). A comprehensive set of biomarkers was applied to search on modulation of biochemical responses in terms of energy metabolism, energy reserves, oxidative stress and damage occurrence in lipids, proteins as well as neurotoxicity signs. The application of an integrative Principal Coordinates Ordination (PCO) tool was successful and demonstrated that Pb caused an increase in the detoxification activity mainly evidenced by glutathione S-transferases and that the salinities 25 and 35 were, even in un-exposed mussels, responsible for cell damage seen as increased levels of lipid peroxidation (at salinity 25) and oxidised proteins (at salinity 35).
Collapse
Affiliation(s)
- Rosa Freitas
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal.
| | - Carla Leite
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - João Pinto
- Departamento de Química & CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Marcelo Costa
- Departamento de Química & CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Rui Monteiro
- Departamento de Química & CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal; CIIMAR, Universidade do Porto, 4450-208, Matosinhos, Portugal
| | - Bruno Henriques
- Departamento de Química & CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Francesco Di Martino
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Francesca Coppola
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Amadeu M V M Soares
- Departamento de Biologia & CESAM, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Instituto de Ciencias del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - Eduarda Pereira
- Departamento de Química & CESAM & LAQV-REQUIMTE, Universidade de Aveiro, 3810-193, Aveiro, Portugal
| |
Collapse
|
45
|
El Haj Y, Bohn S, Souza MM. Tolerance of native and invasive bivalves under herbicide and metal contamination: an ex vivo approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31198-31206. [PMID: 31463750 DOI: 10.1007/s11356-019-06256-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/16/2019] [Indexed: 05/25/2023]
Abstract
The literature indicates that exotic species have a greater tolerance to environmental stressors compared with native species. In recent decades, the introduction of contaminants into the environment has increased as a result of industrialization. The objective of this study was to verify the resistance of bivalve mollusks from freshwater native (Anodontites trapesialis) and exotic (Limnoperna fortunei) species to chemical contamination using an ex vivo/in vitro approach. Gill and muscle tissues were exposed to two different types of environmental stressors, copper (metal), and Roundup Transorb® (herbicide). The tissues were submitted to a cytotoxicity test in which the lysosomal integrity was assessed, from the adaptation of a method to isolated cells, and multixenobiotic resistance (MXR) test which evaluated cellular defense. In the exotic species, only copper at 9000 μg/L and Roundup Transorb® at 5000 μg/L were cytotoxic. In the native species, copper cytotoxicity at 900 and 9000 μg/L and Roundup Transorb® at 50 and 5000 μg/L were observed. Results were the same in both tissues. The MXR, responsible for the extrusion of contaminants (cell defense), was inhibited in both species when exposed to the contaminants, this cell defense system seems to be more inhibited in the native species, when exposed to both pollutants, indicating greater sensitivity. Therefore, cytotoxicity may be related to the lack of capacity of cellular defense. In relation to lysosomal integrity, the native species was more sensitive to cytotoxic pollutants, where a greater number of experimental conditions of metals and herbicide showed cytotoxicity, as well as more experimental situations inhibited its ability to defend itself.
Collapse
Affiliation(s)
- Yasmin El Haj
- Postgraduate Program in Biology of Continental Aquatic Environments, Universidade Federal do Rio Grande - FURG, Rio Grande/RS, Brazil
| | - Sofia Bohn
- Biological Science Graduation, Instituto Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande/RS, Brazil
| | - Marta Marques Souza
- Postgraduate Program in Biology of Continental Aquatic Environments, Universidade Federal do Rio Grande - FURG, Rio Grande/RS, Brazil.
- Instituto Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande/RS, Brazil.
| |
Collapse
|
46
|
Reproduction success of the invasive Sinanodonta woodiana (Lea 1834) in relation to native mussel species. Biol Invasions 2019. [DOI: 10.1007/s10530-019-02060-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
47
|
De Marchi L, Pretti C, Chiellini F, Morelli A, Neto V, Soares AMVM, Figueira E, Freitas R. The influence of simulated global ocean acidification on the toxic effects of carbon nanoparticles on polychaetes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 666:1178-1187. [PMID: 30970483 DOI: 10.1016/j.scitotenv.2019.02.109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 06/09/2023]
Abstract
Ocean acidification events are recognized as important drivers of change in biological systems. Particularly, the impacts of acidification are more severe in estuarine systems than in surface ocean due to their shallowness, low buffering capacity, low salinity and high organic matter from land drainage. Moreover, because they are transitional areas, estuaries can be seriously impacted by a vast number of anthropogenic activities and in the last decades, carbon nanomaterials (CNMs) are considered as emerging contaminants in these ecosystems. Considering all these evidences, chronic experiment was carried out, trying to understand the possible alteration on the chemical behaviour of two different CNMs (functionalized and pristine) in predicted climate change scenarios and consequently, how these alterations could modify the sensitivity of one the most common marine and estuarine organisms (the polychaeta Hediste diversicolor) assessing a set of biomarkers related to polychaetes oxidative status as well as the metabolic performance and neurotoxicity. Our results demonstrated that all enzymes worked together to counteract seawater acidification and CNMs, however oxidative stress in the exposed polychaetes to both CNMs, especially under ocean acidification conditions, was enhanced. In fact, although the antioxidant enzymes tried to cope as compensatory response of cellular defense systems against oxidative stress, the synergistic interactive effects of pH and functionalized CNMs indicated that acidified pH significantly increased the oxidative damage (in terms of lipid peroxidation) in the cotaminated organisms. Different responses were observed in organisms submitted to pristine CNMs under pH control, where the lipid peroxidation did not increase along with the increasing exposure concentrations. The present results further demonstrated neurotoxicity caused by both CNMs, especially noticeable at acidified conditions. The mechanism of enhanced toxicity could be attributed to slighter aggregation and more suspended NMs in acidified seawater (as demonstrated by the DLS analysis). Therefore, ocean acidification may cause a higher risk of CNMs to marine ecosystems.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal; Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa 56122, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Victor Neto
- Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro 3810-193, Aveiro, Portugal.
| |
Collapse
|
48
|
Gonino GMR, Figueiredo BRS, Manetta GI, Zaia Alves GH, Benedito E. Fire increases the productivity of sugarcane, but it also generates ashes that negatively affect native fish species in aquatic systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:215-221. [PMID: 30743114 DOI: 10.1016/j.scitotenv.2019.02.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 01/15/2019] [Accepted: 02/01/2019] [Indexed: 06/09/2023]
Abstract
Sugarcane is one of the main crops used around the world as a feedstock for the production of sucrose and biofuel. Prior to harvesting, sugarcane dry leaves are burned to facilitate manual cutting and enhance productivity. This practice generates ashes from sugarcane straw (hereafter referred as SCA), which may be carried to aquatic ecosystems, where its impacts on organisms and ecosystem integrity remain unknown. Here, we experimentally tested the toxicity of five different concentrations of SCA (0, 1000, 1500, 2000 and 2500 mg/L) on three native (Astyanax lacustris, Moenkhausia bonita and M. forestii) and two non-native (Oreochromis niloticus and Poecilia reticulata) fish from the Paraná River Basin, Brazil. The toxicity was estimated by calculating the median lethal concentration (LC50-24h) and the hepatosomatic index (HSI). We hypothesised that native fish are more sensitive to an increase in SCA than non-native fish. We verified that the mortality of native fish sharply increased with the increase in higher SCA concentration (LC50-24h values: A. lacustris = 2525.71 mg/L, M. bonita = 2124.95 mg/L and M. forestii = 1981.74 mg/L). However, no deaths were recorded for non-native fish species in any SCA concentrations. Accordingly, the HSI index values statistically differed with the increase in SCA concentrations for native fish, while for non-native fish we did not observe any difference. Therefore, only native species died or suffered liver damage with an increase in SCA concentrations. Extrapolating our findings to natural environments, we suggest that sugarcane burning, a widely used agricultural technique, has the potential to reduce the population size of native organisms and facilitate the dominance of non-native fish species in aquatic ecosystems.
Collapse
Affiliation(s)
- Gabriel M R Gonino
- Instituto Federal Catarinense (IFC-Câmpus Ibirama), Ibirama, Santa Catarina, Brazil; Programa de Pós-Graduação em Biologia Comparada (PGB), Universidade Estadual de Maringá, Maringá, Paraná, Brazil.
| | - Bruno R S Figueiredo
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupelia), Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Gislaine I Manetta
- Programa de Pós-Graduação em Biologia Comparada (PGB), Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Gustavo H Zaia Alves
- Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupelia), Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| | - Evanilde Benedito
- Programa de Pós-Graduação em Biologia Comparada (PGB), Universidade Estadual de Maringá, Maringá, Paraná, Brazil; Núcleo de Pesquisas em Limnologia, Ictiologia e Aquicultura (Nupelia), Universidade Estadual de Maringá, Maringá, Paraná, Brazil
| |
Collapse
|
49
|
De Marchi L, Neto V, Pretti C, Chiellini F, Morelli A, Soares AMVM, Figueira E, Freitas R. The influence of Climate Change on the fate and behavior of different carbon nanotubes materials and implication to estuarine invertebrates. Comp Biochem Physiol C Toxicol Pharmacol 2019; 219:103-115. [PMID: 30797982 DOI: 10.1016/j.cbpc.2019.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Revised: 02/14/2019] [Accepted: 02/15/2019] [Indexed: 11/29/2022]
Abstract
The widespread use of Carbon nanotubes (CNTs) has been increasing exponentially, leading to a significant potential release into the environment. Nevertheless, the toxic effects of CNTs in natural aquatic systems are related to their ability to interact with abiotic compounds. Considering that salinity variations are one of the main challenges in the environment and thus may influence the behavior and toxicity of CNTs, a laboratory experiment was performed exposing the tube-building polychaete Diopatra neapolitana (Delle Chiaje 1841) for 28 days to pristine multi-walled carbon nanotube (MWCNTs) and carboxylated MWCNTs, maintained at control salinity 28 and low salinity 21. An innovative approach based on thermogravimetric analysis (TGA) was adopted for the first time to assess the presence of MWCNTs aggregates in the organisms. Both CNTs generated toxic impacts in terms of regenerative capacity, energy reserves and metabolic capacity as well as oxidative and neuro status, however greater toxic impacts were observed in polychaetes exposed to carboxylated MWCNTs. Moreover, both CNTs maintained under control salinity (28) generated higher toxic impacts in the polychaetes compared to individuals maintained under low salinity (21), indicating that exposed polychaetes tend to be more sensitive to the alteration induced by salinity variations on the chemical behavior of both MWCNTs in comparison to salt stress.
Collapse
Affiliation(s)
- Lucia De Marchi
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal; Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Victor Neto
- Department of Mechanical Engineering & Center for Mechanical Technology and Automation (TEMA), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlo Pretti
- Department of Veterinary Sciences, University of Pisa, San Piero a Grado, Pisa 56122, Italy
| | - Federica Chiellini
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Andrea Morelli
- Department of Chemistry and Industrial Chemistry, University of Pisa, Udr INSTM Pisa, Pisa 56126, Italy
| | - Amadeu M V M Soares
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Etelvina Figueira
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
50
|
Rosani U, Shapiro M, Venier P, Allam B. A Needle in A Haystack: Tracing Bivalve-Associated Viruses in High-Throughput Transcriptomic Data. Viruses 2019; 11:v11030205. [PMID: 30832203 PMCID: PMC6466128 DOI: 10.3390/v11030205] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 02/25/2019] [Accepted: 02/25/2019] [Indexed: 02/08/2023] Open
Abstract
Bivalve mollusks thrive in environments rich in microorganisms, such as estuarine and coastal waters, and they tend to accumulate various particles, including viruses. However, the current knowledge on mollusk viruses is mainly centered on few pathogenic viruses, whereas a general view of bivalve-associated viromes is lacking. This study was designed to explore the viral abundance and diversity in bivalve mollusks using transcriptomic datasets. From analyzing RNA-seq data of 58 bivalve species, we have reconstructed 26 nearly complete and over 413 partial RNA virus genomes. Although 96.4% of the predicted viral proteins refer to new viruses, some sequences belong to viruses associated with bivalve species or other marine invertebrates. We considered short non-coding RNAs (sncRNA) and post-transcriptional modifications occurring specifically on viral RNAs as tools for virus host-assignment. We could not identify virus-derived small RNAs in sncRNA reads obtained from the oyster sample richest in viral reads. Single Nucleotide Polymorphism (SNP) analysis revealed 938 A-to-G substitutions occurring on the 26 identified RNA viruses, preferentially impacting the AA di-nucleotide motif. Under-representation analysis revealed that the AA motif is under-represented in these bivalve-associated viruses. These findings improve our understanding of bivalve viromes, and set the stage for targeted investigations on the specificity and dynamics of identified viruses.
Collapse
Affiliation(s)
- Umberto Rosani
- Department of Biology, University of Padua, 35121 Padua, Italy.
| | - Maxwell Shapiro
- Department of Applied Mathematics and Statistics, Stony Brook University, Stony Brook, NY 11794-5000, USA.
| | - Paola Venier
- Department of Biology, University of Padua, 35121 Padua, Italy.
| | - Bassem Allam
- School of Marine and Atmospheric Sciences, Stony Brook University, Stony Brook, NY 11794-5000, USA.
| |
Collapse
|