1
|
Ross CA, Moslenko LL, Biagi KM, Oswald CJ, Wellen CC, Thomas JL, Raby M, Sorichetti RJ. Total and dissolved phosphorus losses from agricultural headwater streams during extreme runoff events. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 848:157736. [PMID: 35926630 DOI: 10.1016/j.scitotenv.2022.157736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/17/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Eutrophication continues to be a concerning global water quality issue. Managing and mitigating harmful algal blooms demands clear information on the conditions promoting large phosphorus losses from contributing watersheds. Of particular concern is the amount and form of phosphorus loading to receiving water bodies during extreme runoff events, which are expected to increase in frequency due to climate change. Five years (2015 to 2020) of water quantity and quality data from 11 agricultural watersheds in the lower Great Lakes basin were analyzed and used to model total and dissolved phosphorus losses. This study aimed to assess temporal dynamics in phosphorus concentrations and losses over runoff events covering a wide range of hydrologic conditions and to quantify their relative importance on annual phosphorus losses. Event concentration-discharge relationships for total and dissolved phosphorus were hysteretic and had contrasting dominant patterns across watersheds. The proportion of annual phosphorus losses during events was highly variable between watersheds, accounting for 47-94 %. Extreme events were particularly impactful: as few as three events per year were found to be responsible for nearly half of total phosphorus (20-50 %) and total dissolved phosphorus (14-44 %) losses. Variability in total and dissolved phosphorus losses and concentrations over a wide range of flow conditions suggests that event magnitude is an important control on the relative mobility of particulate and dissolved phosphorus fractions. This study showed that insights into nutrient dynamics and phosphorus budgets in the lower Great Lakes basin and agriculture dominated environments more broadly can be gained by assessing event nutrient losses with respect to flow conditions and patterns in concentration-discharge relationships.
Collapse
Affiliation(s)
- C A Ross
- Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto M5B 2K3, Canada.
| | - L L Moslenko
- Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto M5B 2K3, Canada
| | - K M Biagi
- Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto M5B 2K3, Canada
| | - C J Oswald
- Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto M5B 2K3, Canada
| | - C C Wellen
- Department of Geography and Environmental Studies, Toronto Metropolitan University, 350 Victoria St, Toronto M5B 2K3, Canada
| | - J L Thomas
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto M9P 3V6, Canada
| | - M Raby
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto M9P 3V6, Canada
| | - R J Sorichetti
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto M9P 3V6, Canada
| |
Collapse
|
2
|
Guan T, Xue B, A Y, Lai X, Li X, Zhang H, Wang G, Fang Q. Contribution of nonpoint source pollution from baseflow of a typical agriculture-intensive basin in northern China. ENVIRONMENTAL RESEARCH 2022; 212:113589. [PMID: 35661734 DOI: 10.1016/j.envres.2022.113589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 05/11/2022] [Accepted: 05/28/2022] [Indexed: 06/15/2023]
Abstract
Baseflow is an essential component of total surface runoff that is widely considered one of the most influential factors regarding water quality via nonpoint source (NPS) pollution. Previously, many researchers and policy makers have directed their efforts toward surface runoff pollution, largely ignoring nutrient delivery via baseflow. Taking a typical agriculture-intensive basin of northern China as an example, this study explored the spatiotemporal characteristics of baseflow and pollution load in relation to NPS pollution. Baseflow was quantified using digital filtering techniques, and the results together with observed pollution data were used to validate a physically based hydrological model, i.e., the Soil and Water Assessment Tool. Then, the spatial and temporal distribution characteristics of NPS and baseflow pollution were investigated using the modeling results. Results indicated that baseflow contribution to total runoff accounted for more than 70% during the studied years (2016-2018), and 84.15% of the basin area showed non-point source pollution dominated by baseflow pollution; both baseflow and its pollution load were greater in the nonflood seasons (spring, autumn, and winter) than in the flood season (summer); the spatial distribution of baseflow total nitrogen and total phosphorus pollution intensity showed higher values in the east and lower values in the west; the scaling effects of baseflow and its pollution load was found with increasing basin area. The results of our study highlighted the necessity for management of pollution load via baseflow in the river basin and provided reference information for improvement of NPS pollution management in other similar basins.
Collapse
Affiliation(s)
- Tiesheng Guan
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China; State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, Nanjing Hydraulic Research Institute, Nanjing, 210029, China
| | - Baolin Xue
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China.
| | - Yinglan A
- China Institute of Water Resources and Hydropower Research, Beijing, China
| | - Xiaoying Lai
- College of Management and Economics, Tianjin University, No. 92 Weijin Road, Nankai District, Tianjin, 300072, China
| | - Xinyue Li
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Hanwen Zhang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Guoqiang Wang
- College of Water Sciences, Beijing Normal University, Beijing, 100875, China
| | - Qingqing Fang
- School of Water Resources and Hydropower Engineering, North China Electric Power University, Beijing, 102206, China
| |
Collapse
|
3
|
Mougin J, Superville PJ, Ruckebusch C, Billon G. Optimising punctual water sampling with an on-the-fly algorithm based on multiparameter high-frequency measurements. WATER RESEARCH 2022; 221:118750. [PMID: 35749923 DOI: 10.1016/j.watres.2022.118750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/09/2022] [Accepted: 06/12/2022] [Indexed: 06/15/2023]
Abstract
The way in which aquatic systems is sampled has a strong influence on our understanding of them, especially when they are highly dynamic. High frequency sampling has the advantage over spot sampling for representativeness but leads to a high amount of analysis. This study proposes a new methodology to choose when sampling accurately with an automated sampler coupled with a high frequency (HF) multiparameter probe. After each HF measurement, an optimised sampling algorithm (OSA) determines on-the-fly the relevance of taking a new sample in relation to previous waters already collected. Once the OSA was optimised, considering the number of HF parameters and their variabilities, it was demonstrated through a study case that the number of samples could be significantly reduced, while still covering periods of low and high variabilities. The comparison between the total HF dataset and the sampled subdataset shows that physicochemical parameter variability is preserved (Pearson correlations > 0.96) as well as the multiparameter variability (PCA axes remained similar with Tucker congruence > 0.99). This algorithm simplifies HF studies by making it easier to take samples during brief phenomena such as storms or accidental spills that are often poorly monitored. In addition, it optimises the number of samples to be taken to correctly describe a system and thus reduce the human and financial costs of these environmental studies.
Collapse
Affiliation(s)
- Jérémy Mougin
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, CNRS, UMR 8516 - LASIRE, Université Lille, Lille F-59000, France
| | - Pierre-Jean Superville
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, CNRS, UMR 8516 - LASIRE, Université Lille, Lille F-59000, France.
| | - Cyril Ruckebusch
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, CNRS, UMR 8516 - LASIRE, Université Lille, Lille F-59000, France
| | - Gabriel Billon
- Laboratoire de Spectroscopie pour les Interactions, la Réactivité et l'Environnement, CNRS, UMR 8516 - LASIRE, Université Lille, Lille F-59000, France
| |
Collapse
|
4
|
Lloyd CEM, Johnes PJ, Pemberton JA, Yates CA, Jones D, Evershed RP. Sampling, storage and laboratory approaches for dissolved organic matter characterisation in freshwaters: Moving from nutrient fraction to molecular-scale characterisation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 827:154105. [PMID: 35219656 DOI: 10.1016/j.scitotenv.2022.154105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/18/2022] [Accepted: 02/19/2022] [Indexed: 06/14/2023]
Abstract
Recent research has highlighted the importance of dissolved organic matter (DOM) for ecosystem function and because of this paradigm shift, it has become crucial to not only quantify its contribution to river nutrient loads but also to characterise its composition. There has been a significant research effort utilising optical methods, such as fluorescence and UV-Vis spectrophotometry, in order to start exploring DOM character. However, these methods still lack the granularity to understand the chemical composition at the molecular level, which is vital to properly understanding its functional role in freshwater ecosystems. As a direct result, there has been a shift towards including molecular-scale analyses to investigate the in-stream processing of the material. Alongside this, recent methodological advancements, particularly in mass spectrometry are opening new opportunities for probing one of the most complex environmental mixtures. However, in order to fully exploit these opportunities, it is key that the way that samples are collected, processed and stored is considered carefully such that sample integrity is maintained. There are additional challenges when collecting water samples for analysis at molecular scale, for example the ultra-low concentrations of individual compounds within DOM means that the samples are sensitive to contamination. This paper discusses current sample collection, processing and storage protocols for this C, N and P quantification and characterisation in freshwaters, and proposes a new standardised protocol suitable for both nutrient fraction quantification and molecular scale analyses, based on method development and testing undertaken in our UK Natural Environment Research Council large grant programme, characterising the nature, origins and ecological significance of Dissolved Organic Matter IN freshwater Ecosystems (DOMAINE).
Collapse
Affiliation(s)
- C E M Lloyd
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK; School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK.
| | - P J Johnes
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK
| | - J A Pemberton
- Wessex Water, Operations Centre, Claverton Down, Bath BA2 7WW, UK
| | - C A Yates
- School of Geographical Sciences, University of Bristol, Bristol BS8 1SS, UK; Atkins, The Hub, 500 Park Avenue, Aztec West, Bristol BS32 4RZ, UK
| | - D Jones
- Environment Centre Wales, Bangor University, Bangor, Gwynedd LL57 2UW, UK; SoilsWest, Centre for Sustainable Farming Systems, Food Futures Institute, Murdoch University, Murdoch, WA 6105, Australia
| | - R P Evershed
- School of Chemistry, University of Bristol, Cantock's Close, Bristol BS8 1TS, UK
| |
Collapse
|
5
|
Biagi KM, Ross CA, Oswald CJ, Sorichetti RJ, Thomas JL, Wellen CC. Novel predictors related to hysteresis and baseflow improve predictions of watershed nutrient loads: An example from Ontario's lower Great Lakes basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 826:154023. [PMID: 35202681 DOI: 10.1016/j.scitotenv.2022.154023] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 01/13/2022] [Accepted: 02/16/2022] [Indexed: 06/14/2023]
Abstract
Eutrophication has re-emerged in the lower Great Lakes basin resulting in critical water quality issues. Models that accurately predict nutrient loading from streams are needed to inform appropriate nutrient management decisions. Generalized additive models (GAMs) that use surrogate data from sensors to predict nutrient loads offer an alternative to commonly applied linear regression and may better handle relationship non-linearities and skewed water quality data. Five years (2015-2020) of water quantity and quality data from 11 agricultural watersheds in southern Ontario were used to develop GAMs to predict total phosphorus (TP) and nitrate (NO3-) loads. This study aimed to 1) use GAMs to predict nutrient loads using both common and novel predictors and 2) quantify and examine the variability in seasonal and annual nutrient loads. Along with routine surrogate model predictors (i.e., flow, turbidity, and seasonality), the addition of the baseflow proportion and the hydrograph position of flow observations improved model performance. Conversely, including the antecedent precipitation index minimally affected model performance, regardless of constituent. Seasonal and annual patterns in TP and NO3- load predictions mirrored that of the hydrologic regime. This study showed that parsimonious GAMs featuring novel model predictors can be used to predict nutrient loads while accounting for the partitioning of surface and subsurface flow paths and hysteresis between streamflow and water quality parameters that are frequently observed in a wide range of environments.
Collapse
Affiliation(s)
- K M Biagi
- Department of Geography and Environmental Studies, Ryerson University, 350 Victoria St, Toronto M5B 2K3, Canada
| | - C A Ross
- Department of Geography and Environmental Studies, Ryerson University, 350 Victoria St, Toronto M5B 2K3, Canada.
| | - C J Oswald
- Department of Geography and Environmental Studies, Ryerson University, 350 Victoria St, Toronto M5B 2K3, Canada
| | - R J Sorichetti
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto M9P 3V6, Canada
| | - J L Thomas
- Ontario Ministry of the Environment, Conservation and Parks, 125 Resources Rd, Toronto M9P 3V6, Canada
| | - C C Wellen
- Department of Geography and Environmental Studies, Ryerson University, 350 Victoria St, Toronto M5B 2K3, Canada
| |
Collapse
|
6
|
Campeau A, Eklöf K, Soerensen AL, Åkerblom S, Yuan S, Hintelmann H, Bieroza M, Köhler S, Zdanowicz C. Sources of riverine mercury across the Mackenzie River Basin; inferences from a combined HgC isotopes and optical properties approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150808. [PMID: 34637879 DOI: 10.1016/j.scitotenv.2021.150808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
The Arctic environment harbors a complex mosaic of mercury (Hg) and carbon (C) reservoirs, some of which are rapidly destabilizing in response to climate warming. The sources of riverine Hg across the Mackenzie River basin (MRB) are uncertain, which leads to a poor understanding of potential future release. Measurements of dissolved and particulate mercury (DHg, PHg) and carbon (DOC, POC) concentration were performed, along with analyses of Hg stable isotope ratios (incl. ∆199Hg, δ202Hg), radiocarbon content (∆14C) and optical properties of DOC of river water. Isotopic ratios of Hg revealed a closer association to terrestrial Hg reservoirs for the particulate fraction, while the dissolved fraction was more closely associated with atmospheric deposition sources of shorter turnover time. There was a positive correlation between the ∆14C-OC and riverine Hg concentration for both particulate and dissolved fractions, indicating that waters transporting older-OC (14C-depleted) also contained higher levels of Hg. In the dissolved fraction, older DOC was also associated with higher molecular weight, aromaticity and humic content, which are likely associated with higher Hg-binding potential. Riverine PHg concentration increased with turbidity and SO4 concentration. There were large contrasts in Hg concentration and OC age and quality among the mountain and lowland sectors of the MRB, which likely reflect the spatial distribution of various terrestrial Hg and OC reservoirs, including weathering of sulfate minerals, erosion and extraction of coal deposits, thawing permafrost, forest fires, peatlands, and forests. Results revealed major differences in the sources of particulate and dissolved riverine Hg, but nonetheless a common positive association with older riverine OC. These findings reveal that a complex mixture of Hg sources, supplied across the MRB, will contribute to future trends in Hg export to the Arctic Ocean under rapid environmental changes.
Collapse
Affiliation(s)
- Audrey Campeau
- Department of Earth Sciences, Uppsala University, Sweden; Depatment of Forest Ecology and Management, Swedish University of Agricultural Sciences, Umeå, Sweden.
| | - Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Anne L Soerensen
- Department of Environmental Research and Monitoring, Swedish Museum of Natural History, Sweden
| | - Staffan Åkerblom
- Statistiska centralbyrån (SCB), Statistic Sweden, Stockholm, Sweden
| | - Shengliu Yuan
- Water Quality Center, Trent University, Peterborough, Ontario, Canada
| | - Holger Hintelmann
- Water Quality Center, Trent University, Peterborough, Ontario, Canada
| | - Magdalena Bieroza
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stephan Köhler
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | |
Collapse
|
7
|
Zhao S, Wang J, Feng S, Xiao Z, Chen C. Effects of ecohydrological interfaces on migrations and transformations of pollutants: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150140. [PMID: 34509841 DOI: 10.1016/j.scitotenv.2021.150140] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/24/2021] [Accepted: 08/31/2021] [Indexed: 06/13/2023]
Abstract
With the rapid development of society, the soil and water environments in many countries are suffering from severe pollution. Pollutants in different phases will eventually gather into the soil and water environments, and a series of migrations and transformations will take place at ecohydrological interfaces with water flow. However, it is still not clear how ecohydrological interfaces affect the migration and the transformation of pollutants. Therefore, this paper summarizes the physical, ecological, and biogeochemical characteristics of ecohydrological interfaces on the basis of introducing the development history of ecohydrology and the concept of ecohydrological interfaces. The effects of ecohydrological interfaces on the migration and transformation of heavy metals, organic pollutants, and carbon‑nitrogen‑phosphorus (C-N-P) pollutants are emphasized. Lastly, the prospects of applying ecohydrological interfaces for the removal of pollutants from the soil and water environment are put forward, including strengthening the ability to monitor and simulate ecohydrological systems at micro and macro scales, enhancing interdisciplinary research, and identifying main influencing factors that can provide theoretical basis and technical support.
Collapse
Affiliation(s)
- Shan Zhao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China; College of Civil Engineering, Tongji University, Shanghai 200092, China
| | - Jianhua Wang
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Shijin Feng
- College of Civil Engineering, Tongji University, Shanghai 200092, China.
| | - Zailun Xiao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| | - Chunyan Chen
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai 201306, China
| |
Collapse
|
8
|
Chen YT, Crossman J. The impacts of biofouling on automated phosphorus analysers during long-term deployment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 784:147188. [PMID: 33905920 DOI: 10.1016/j.scitotenv.2021.147188] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 03/26/2021] [Accepted: 04/11/2021] [Indexed: 06/12/2023]
Abstract
In-situ nutrient analysers are a promising tool for improving the temporal resolution of data and filling knowledge gaps in drivers of harmful algal blooms. There are significant challenges however regarding instrument biofouling and data drift, which remain largely unquantified and unresolved. In this study the effects of biofouling on data consistency and accuracy is quantified on automated wet chemical analysers during long-term monitoring. In 2019 three fractions of phosphorus (P); total phosphorus (TP), total dissolved phosphorus (TDP) and soluble reactive phosphorus (SRP), were measured in-situ at four sites in Southern Ontario, Canada. The analysers were exposed to a wide range of P concentrations and biofouling extremes over an 8-month period. They were calibrated using chemical standards both in the field and the lab, and validated with fortnightly grab samples, and the representativeness of real-time data under a range of biofouling conditions were analysed. Results show that analysers biofouling during long-term deployment can desensitize instrument measurements, with greatest impacts on instruments operating in highly turbid environments. Temporal changes in calibration curves suggest that equilibrium P concentrations (EPC0) of sediments accumulating inside filters can elicit a rapid exchange of dissolved P (SRP, TDP) with the water sample. Data drift increases the further from the EPC0 an instrument is required to analyse, and thus this study demonstrates that for in-situ P monitoring, unless filters are frequently replaced or renovated, in-situ probes should ideally be dedicated to a specific waterbody type defined by similar EPC0 values. It is recommended that in order to ensure accuracy in in-situ monitoring of TP, TDP and SRP during long-term deployment, preliminary site trials should be conducted to ascertain sediment EPC0; the extent of biofouling should be monitored; and/or frequent grab samples taken for post-deployment validation. The findings apply to any in-situ phosphorus monitoring techniques for SRP or TDP.
Collapse
Affiliation(s)
- Yu-Ting Chen
- Great Lakes Institute of Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada
| | - Jill Crossman
- School of the Environment and Great Lakes Institute of Environmental Research, University of Windsor, 401 Sunset Avenue, Windsor, Ontario N9B 3P4, Canada.
| |
Collapse
|
9
|
Burbery L, Abraham P, Wood D, de Lima S. Applications of a UV optical nitrate sensor in a surface water/groundwater quality field study. ENVIRONMENTAL MONITORING AND ASSESSMENT 2021; 193:303. [PMID: 33900460 DOI: 10.1007/s10661-021-09084-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 04/15/2021] [Indexed: 06/12/2023]
Abstract
Examples of the utility of UV optical nitrate sensors are provided for two field applications, investigating nitrate pollution in a lowland, peri-urban catchment. In one application, rapid, in-stream longitudinal nitrate surveys were made in summer and winter, by fixing an optical nitrate sensor operating in continuous measurement mode to a kayak that was paddled along 10 km of the mainstem of the low-order stream in under 4 h. Nitrate concentrations ranged between 3.45 and 6.39 mg NO3-N/L. Nitrate hot-spots and cool-spots were mapped and found to relate to point discharges from spring-fed tributaries and land drains. Effective nitrate removal (dN/dx = - 0.08 mg N/L/km), inferred to be from assimilation reactions, was evident in the summer dataset, but not the winter nitrate dataset. In a second application, the optical sensor was configured with appropriate technology to establish an autonomous and fully automated nitrate monitoring station. The station makes daily nitrate measurements of surface water, and groundwater, sampled from a cluster of four multi-level wells. Quarterly maintenance of the nitrate sensor has proven sufficient to keep measurement errors under 5%. Most nitrate variation has been recorded at or near the water table where concentrations have ranged between 3.47 and 5.88 mg NO3-N/L, and annual maxima have occurred in late winter/spring, which coincides with when most nitrate leaching occurs from agricultural land. Seasonal nitrate patterns are not evident in groundwater sampled from 8-m depth, or deeper. High-frequency monitoring has revealed that some infra-season, short-term variability also occurs in shallow groundwater nitrate, driven by storm events, and which on occasion results in a temporary inversion of the groundwater nitrate-depth profile.
Collapse
Affiliation(s)
- Lee Burbery
- Institute of Environmental Science and Research Ltd. (ESR), Christchurch, New Zealand.
| | - Phil Abraham
- Institute of Environmental Science and Research Ltd. (ESR), Christchurch, New Zealand
| | - David Wood
- Institute of Environmental Science and Research Ltd. (ESR), Christchurch, New Zealand
| | - Steve de Lima
- National Institute of Water and Atmospheric Research (NIWA), Christchurch, New Zealand
| |
Collapse
|
10
|
Goffin A, Vasquez-Vergara LA, Guérin-Rechdaoui S, Rocher V, Varrault G. Temperature, turbidity, and the inner filter effect correction methodology for analyzing fluorescent dissolved organic matter in urban sewage. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:35712-35723. [PMID: 32601876 DOI: 10.1007/s11356-020-09889-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Dissolved organic matter (DOM) will be increasingly monitored by means of in situ fluorescence spectroscopy devices in order to supervise wastewater treatment plant efficiency, due to their ease of implementation and high-frequency measurement capacity. However, fluorescence spectroscopy measurements are reported to be sensitive to the sample matrix effects of temperature, the inner filter effect (IFE), and turbidity. Matrix effect estimation tests and signal correction have been developed for DOM (tyrosine-like, tryptophan-like, and humic substances-like fluorescent compounds) fluorescence measurements in unfiltered urban sewage samples. All such tests are conducted in temperature, absorbance, and turbidity ranges representative of urban sewage. For all fluorophores studied, an average of 1% fluorescence intensity decrease per degree (°C) of temperature increase could be observed. Protein-like fluorescent compound signals were found to be significantly affected by turbidity (0 to 210 NTU) and IFE (absorbance 254 nm > 0.200). Only temperature needs to be corrected for humic substances-like fluorescent compounds since other effects were not observed over the studied ranges of absorbance and turbidity. The fluorescence intensity correction method was applied first to each matrix effect separately and then combined by using a sequential mathematical correction methodology. An efficient methodology for determining the matrix effect correction equations for DOM fluorescence analysis into unfiltered urban sewage samples has been highlighted and could be used for in situ fluorescence measurement devices.
Collapse
Affiliation(s)
- Angélique Goffin
- LEESU, Universite Paris Est Créteil, F-94010, Créteil, France.
- SIAAP, Direction Innovation, Colombes, France.
| | | | | | | | - Gilles Varrault
- LEESU, Universite Paris Est Créteil, F-94010, Créteil, France
| |
Collapse
|
11
|
Sorensen JPR, Carr AF, Nayebare J, Diongue DML, Pouye A, Roffo R, Gwengweya G, Ward JST, Kanoti J, Okotto-Okotto J, van der Marel L, Ciric L, Faye SC, Gaye CB, Goodall T, Kulabako R, Lapworth DJ, MacDonald AM, Monjerezi M, Olago D, Owor M, Read DS, Taylor RG. Tryptophan-like and humic-like fluorophores are extracellular in groundwater: implications as real-time faecal indicators. Sci Rep 2020; 10:15379. [PMID: 32958794 PMCID: PMC7505957 DOI: 10.1038/s41598-020-72258-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Accepted: 06/17/2020] [Indexed: 12/17/2022] Open
Abstract
Fluorescent natural organic matter at tryptophan-like (TLF) and humic-like fluorescence (HLF) peaks is associated with the presence and enumeration of faecal indicator bacteria in groundwater. We hypothesise, however, that it is predominantly extracellular material that fluoresces at these wavelengths, not bacterial cells. We quantified total (unfiltered) and extracellular (filtered at < 0.22 µm) TLF and HLF in 140 groundwater sources across a range of urban population densities in Kenya, Malawi, Senegal, and Uganda. Where changes in fluorescence occurred following filtration they were correlated with potential controlling variables. A significant reduction in TLF following filtration (ΔTLF) was observed across the entire dataset, although the majority of the signal remained and thus considered extracellular (median 96.9%). ΔTLF was only significant in more urbanised study areas where TLF was greatest. Beneath Dakar, Senegal, ΔTLF was significantly correlated to total bacterial cells (ρs 0.51). No significant change in HLF following filtration across all data indicates these fluorophores are extracellular. Our results suggest that TLF and HLF are more mobile than faecal indicator bacteria and larger pathogens in groundwater, as the predominantly extracellular fluorophores are less prone to straining. Consequently, TLF/HLF are more precautionary indicators of microbial risks than faecal indicator bacteria in groundwater-derived drinking water.
Collapse
Affiliation(s)
- James P R Sorensen
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK.
- Department of Geography, University College London, London, WC1E 6BT, UK.
| | - Andrew F Carr
- Department of Geography, University College London, London, WC1E 6BT, UK
| | - Jacintha Nayebare
- Department of Geology and Petroleum Studies, Makerere University, Kampala, Uganda
| | - Djim M L Diongue
- Department of Geology, Universite Cheikh Anta Diop, Dakar, Senegal
| | - Abdoulaye Pouye
- Department of Geology, Universite Cheikh Anta Diop, Dakar, Senegal
| | - Raphaëlle Roffo
- Department of Geography, University College London, London, WC1E 6BT, UK
| | - Gloria Gwengweya
- Chancellor College, University of Malawi, P.O. Box 280, Zomba, Malawi
| | - Jade S T Ward
- British Geological Survey, Keyworth, NG12 5GG, UK
- Department of Civil and Environmental Engineering, University of Surrey, Guildford, GU2 7XH, UK
| | - Japhet Kanoti
- Department of Geology, University of Nairobi, Nairobi, Kenya
| | - Joseph Okotto-Okotto
- Victoria Institute for Research on Environment and Development (VIRED) International, Rabuour Environment and Development Centre, Kisumu-Nairobi Road, P.O. Box, Kisumu, 6423-40103, Kenya
| | | | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering, University College London, London, WC1E 6BT, UK
| | - Seynabou C Faye
- Department of Geology, Universite Cheikh Anta Diop, Dakar, Senegal
| | - Cheikh B Gaye
- Department of Geology, Universite Cheikh Anta Diop, Dakar, Senegal
| | - Timothy Goodall
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, OX10 8BB, UK
| | - Robinah Kulabako
- Department of Civil and Environmental Engineering, Makerere University, Kampala, Uganda
| | - Daniel J Lapworth
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK
| | - Alan M MacDonald
- British Geological Survey, Lyell Centre, Research Avenue South, Edinburgh, EH14 4AP, UK
| | - Maurice Monjerezi
- Chancellor College, University of Malawi, P.O. Box 280, Zomba, Malawi
| | - Daniel Olago
- Department of Geology, University of Nairobi, Nairobi, Kenya
| | - Michael Owor
- Department of Geology and Petroleum Studies, Makerere University, Kampala, Uganda
| | - Daniel S Read
- Centre for Ecology and Hydrology, Maclean Building, Wallingford, OX10 8BB, UK
| | - Richard G Taylor
- Department of Geography, University College London, London, WC1E 6BT, UK
| |
Collapse
|
12
|
Cooper RJ, Hiscock KM, Lovett AA, Dugdale SJ, Sünnenberg G, Vrain E. Temporal hydrochemical dynamics of the River Wensum, UK: Observations from long-term high-resolution monitoring (2011-2018). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138253. [PMID: 32247122 DOI: 10.1016/j.scitotenv.2020.138253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 02/28/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
In 2010, the UK government established the Demonstration Test Catchment (DTC) initiative to evaluate the extent to which on-farm mitigation measures can cost-effectively reduce the impacts of agricultural water pollution on river ecology whilst maintaining food production capacity. A central component of the DTC platform was the establishment of a comprehensive network of automated, web-based sensor technologies to generate high-temporal resolution (30 min) empirical datasets of surface water, groundwater and meteorological parameters over a long period (2011-2018). Utilising 8.9 million water quality measurements generated for the River Wensum, this paper demonstrates how long-term, high-resolution monitoring of hydrochemistry can improve our understanding of the complex temporal dynamics of riverine processes from 30 min to annual timescales. This paper explores the impact of groundwater-surface water interactions on instream pollutant concentrations (principally nitrogen, phosphorus and turbidity) and reveals how varying hydrochemical associations under contrasting flow regimes can elicit important information on the dominant pollution pathways. Furthermore, this paper examines the relationships between agricultural pollutants and precipitation events of varying magnitude, whilst demonstrating how high-resolution data can be utilised to develop conceptual models of hydrochemical processes for contrasting winter and summer seasons. Finally, this paper considers how high-resolution hydrochemical data can be used to increase land manager awareness of environmentally damaging farming operations and encourage the adoption of more water sensitive land management practices.
Collapse
Affiliation(s)
- Richard J Cooper
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, UK.
| | - Kevin M Hiscock
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | - Andrew A Lovett
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | - Stephen J Dugdale
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | - Gisela Sünnenberg
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| | - Emilie Vrain
- School of Environmental Sciences, University of East Anglia, Norwich Research Park, NR4 7TJ, UK
| |
Collapse
|
13
|
Jacobs SR, Weeser B, Rufino MC, Breuer L. Diurnal Patterns in Solute Concentrations Measured with In Situ UV-Vis Sensors: Natural Fluctuations or Artefacts? SENSORS 2020; 20:s20030859. [PMID: 32041157 PMCID: PMC7039225 DOI: 10.3390/s20030859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Revised: 01/28/2020] [Accepted: 02/03/2020] [Indexed: 11/16/2022]
Abstract
In situ spectrophotometers measuring in the UV-visible spectrum are increasingly used to collect high-resolution data on stream water quality. This provides the opportunity to investigate short-term solute dynamics, including diurnal cycling. This study reports unusual changes in diurnal patterns observed when such sensors were deployed in four tropical headwater streams in Kenya. The analysis of a 5-year dataset revealed sensor-specific diurnal patterns in nitrate and dissolved organic carbon concentrations and different patterns measured by different sensors when installed at the same site. To verify these patterns, a second mobile sensor was installed at three sites for more than 3 weeks. Agreement between the measurements performed by these sensors was higher for dissolved organic carbon (r > 0.98) than for nitrate (r = 0.43–0.81) at all sites. Higher concentrations and larger amplitudes generally led to higher agreement between patterns measured by the two sensors. However, changing the position or level of shading of the mobile sensor resulted in inconsistent changes in the patterns. The results of this study show that diurnal patterns measured with UV-Vis spectrophotometers should be interpreted with caution. Further work is required to understand how these measurements are influenced by environmental conditions and sensor-specific properties.
Collapse
Affiliation(s)
- Suzanne R. Jacobs
- Center for international Development and Environmental Research (ZEU), Justus Liebig University, Senckenbergstr. 3, 35390 Giessen, Germany; (B.W.); (L.B.)
- Institute for Landscape Ecology and Resources Management (ILR), Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
- Correspondence:
| | - Björn Weeser
- Center for international Development and Environmental Research (ZEU), Justus Liebig University, Senckenbergstr. 3, 35390 Giessen, Germany; (B.W.); (L.B.)
- Institute for Landscape Ecology and Resources Management (ILR), Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| | - Mariana C. Rufino
- Lancaster Environment Centre, Lancaster University, Lancaster LA1 4YQ, UK;
- Centre for International Forestry Research (CIFOR), c/o World Agroforestry Centre, United Nations Avenue, Gigiri, 00100 Nairobi, Kenya
| | - Lutz Breuer
- Center for international Development and Environmental Research (ZEU), Justus Liebig University, Senckenbergstr. 3, 35390 Giessen, Germany; (B.W.); (L.B.)
- Institute for Landscape Ecology and Resources Management (ILR), Justus Liebig University, Heinrich-Buff-Ring 26, 35392 Giessen, Germany
| |
Collapse
|
14
|
Carstea EM, Popa CL, Baker A, Bridgeman J. In situ fluorescence measurements of dissolved organic matter: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134361. [PMID: 31683216 DOI: 10.1016/j.scitotenv.2019.134361] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 08/20/2019] [Accepted: 09/07/2019] [Indexed: 05/22/2023]
Abstract
There is a need for an inexpensive, reliable and fast monitoring tool to detect contaminants in a short time, for quick mitigation of pollution sources and site remediation, and for characterization of natural dissolved organic matter (DOM). Fluorescence spectroscopy has proven to be an excellent technique in quantifying aquatic DOM, from autochthonous, allochthonous or anthropogenic sources. This paper reviews the advances in in situ fluorescence measurements of DOM and pollutants in various water environments. Studies have demonstrated, using high temporal-frequency DOM fluorescence data, that marine autochthonous production of DOM is highly complex and that the allochthonous input of DOM from freshwater to marine water can be predicted. Furthermore, river measurement studies found a delayed fluorescence response of DOM following precipitation compared to turbidity and discharge, with various lags, depending on season, site and input of dissolved organic carbon (DOC) concentration. In addition, research has shown that blue light fluorescence (λemission = 430-500 nm) can be a good proxy for DOC, in environments with terrestrial inputs, and ultraviolet fluorescence (λemission = UVA-320-400 nm) for biochemical oxygen demand, and also E. coli in environments with sanitation issues. The correction of raw fluorescence data improves the relationship between fluorescence intensity and these parameters. This review also presents the specific steps and parameters that must be considered before and during in situ fluorescence measurement session for a harmonized qualitative and quantitative protocol. Finally, the strengths and weaknesses of the research on in situ fluorescence are identified.
Collapse
Affiliation(s)
- Elfrida M Carstea
- National Institute of R&D for Optoelectronics, Atomistilor 409, 077125 Magurele, Romania.
| | - Cristina L Popa
- National Institute of R&D for Optoelectronics, Atomistilor 409, 077125 Magurele, Romania.
| | - Andy Baker
- Connected Waters Initiative Research Centre, UNSW Sydney, Sydney, NSW 2052, Australia.
| | - John Bridgeman
- Faculty of Engineering and Informatics, University of Bradford, Richmond Road, Bradford BD7 1DP, UK.
| |
Collapse
|
15
|
Meyer AM, Klein C, Fünfrocken E, Kautenburger R, Beck HP. Real-time monitoring of water quality to identify pollution pathways in small and middle scale rivers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:2323-2333. [PMID: 30332665 DOI: 10.1016/j.scitotenv.2018.10.069] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2018] [Revised: 09/14/2018] [Accepted: 10/05/2018] [Indexed: 06/08/2023]
Abstract
The quality standards for surface waters increase steadily bearing new challenges for water policy. Precise knowledge of the sources and transport pathway of various impacts in a catchment area is of particular importance for any management activities. Online measurements with high temporal resolution are particularly suited for this purpose especially in small and middle scale catchments. In this paper we present an approach applying mobile measuring stations in which commercial available sensors and wet chemical analysers are combined in a new set to enable real-time monitoring of various parameters. The resulting data and the interpretation of their relationships allow the identification of diverse pollution situations in a river. In this paper some examples of impacts from diffuse and point sources are given to illustrate the high information density obtained through the use of this system.
Collapse
Affiliation(s)
- Angelika M Meyer
- Institute of Inorganic and Analytical Chemistry, Saarland University, Saarbrücken, Germany.
| | - Christina Klein
- Hessian Agency for Nature Conservation, Environment and Geology, Water Quality Department, Wiesbaden, Germany
| | - Elisabeth Fünfrocken
- Institute of Inorganic and Analytical Chemistry, Saarland University, Saarbrücken, Germany
| | - Ralf Kautenburger
- Institute of Inorganic Solid State Chemistry - WASTe-Elemental analysis group, Saarland University, Saarbrücken, Germany
| | - Horst P Beck
- Institute of Inorganic and Analytical Chemistry, Saarland University, Saarbrücken, Germany
| |
Collapse
|
16
|
Nowicki S, Lapworth DJ, Ward JST, Thomson P, Charles K. Tryptophan-like fluorescence as a measure of microbial contamination risk in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 646:782-791. [PMID: 30064104 DOI: 10.1016/j.scitotenv.2018.07.274] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Microbial water quality is frequently assessed with a risk indicator approach that relies on Escherichia coli. Relying exclusively on E. coli is limiting, particularly in low-resource settings, and we argue that risk assessments could be improved by a complementary parameter, tryptophan-like fluorescence (TLF). Over two campaigns (June 2016 and March 2017) we sampled 37 water points in rural Kwale County, Kenya for TLF, E. coli and thermotolerant coliforms (total n = 1082). Using three World Health Organization defined classes (very high, high, and low/intermediate), risk indicated by TLF was not significantly different from risk indicated by E. coli (p = 0.85). However, the TLF and E. coli risk classifications did show disagreement, with TLF indicating higher risk for 14% of samples and lower risk for 13% of samples. Comparisons of duplicate/replicate results demonstrated that precision is higher for TLF (average relative percent difference of duplicates = 14%) compared to culture-based methods (average RPD of duplicates ≥ 26%). Additionally, TLF sampling is more practical because it requires less time and resources. Precision and practicality make TLF well-suited to high-frequency sampling in low resource contexts. Interpretation and interference challenges are minimised when TLF is measured in groundwaters, which typically have low dissolved organic carbon, relatively consistent temperature, negligible turbidity and pH between 5 and 8. TLF cannot be used as a proxy for E. coli on an individual sample basis, but it can add value to groundwater risk assessments by improving prioritization of sampling and by increasing understanding of spatiotemporal variability.
Collapse
Affiliation(s)
- Saskia Nowicki
- University of Oxford, School of Geography and the Environment, Oxford OX1 3QY, UK.
| | - Dan J Lapworth
- British Geological Survey, Maclean Building, Wallingford OX10 8BB, UK
| | - Jade S T Ward
- British Geological Survey, Maclean Building, Wallingford OX10 8BB, UK; University of Surrey, Department of Civil and Environmental Engineering, Guildford GU2 7XH, UK
| | - Patrick Thomson
- University of Oxford, School of Geography and the Environment, Oxford OX1 3QY, UK
| | - Katrina Charles
- University of Oxford, School of Geography and the Environment, Oxford OX1 3QY, UK
| |
Collapse
|
17
|
Microbial Processing and Production of Aquatic Fluorescent Organic Matter in a Model Freshwater System. WATER 2018. [DOI: 10.3390/w11010010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Organic matter (OM) has an essential biogeochemical influence along the hydrological continuum and within aquatic ecosystems. Organic matter derived via microbial processes was investigated within a range of model freshwater samples over a 10-day period. For this, excitation-emission matrix (EEM) fluorescence spectroscopy in combination with parallel factor (PARAFAC) analysis was employed. This research shows the origin and processing of both protein-like and humic-like fluorescence within environmental and synthetic samples over the sampling period. The microbial origin of Peak T fluorescence is demonstrated within both synthetic samples and in environmental samples. Using a range of incubation temperatures provides evidence for the microbial metabolic origin of Peak T fluorescence. From temporally resolved experiments, evidence is provided that Peak T fluorescence is an indication of metabolic activity at the microbial community level and not a proxy for bacterial enumeration. This data also reveals that humic-like fluorescence can be microbially derived in situ and is not solely of terrestrial origin, likely to result from the upregulation of cellular processes prior to cell multiplication. This work provides evidence that freshwater microbes can engineer fluorescent OM, demonstrating that microbial communities not only process, but also transform, fluorescent organic matter.
Collapse
|
18
|
Bieroza MZ, Heathwaite AL, Bechmann M, Kyllmar K, Jordan P. The concentration-discharge slope as a tool for water quality management. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 630:738-749. [PMID: 29499532 DOI: 10.1016/j.scitotenv.2018.02.256] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 05/23/2023]
Abstract
Recent technological breakthroughs of optical sensors and analysers have enabled matching the water quality measurement interval to the time scales of stream flow changes and led to an improved understanding of spatially and temporally heterogeneous sources and delivery pathways for many solutes and particulates. This new ability to match the chemograph with the hydrograph has promoted renewed interest in the concentration-discharge (c-q) relationship and its value in characterizing catchment storage, time lags and legacy effects for both weathering products and anthropogenic pollutants. In this paper we evaluated the stream c-q relationships for a number of water quality determinands (phosphorus, suspended sediments, nitrogen) in intensively managed agricultural catchments based on both high-frequency (sub-hourly) and long-term low-frequency (fortnightly-monthly) routine monitoring data. We used resampled high-frequency data to test the uncertainty in water quality parameters (e.g. mean, 95th percentile and load) derived from low-frequency sub-datasets. We showed that the uncertainty in water quality parameters increases with reduced sampling frequency as a function of the c-q slope. We also showed that different sources and delivery pathways control c-q relationship for different solutes and particulates. Secondly, we evaluated the variation in c-q slopes derived from the long-term low-frequency data for different determinands and catchments and showed strong chemostatic behaviour for phosphorus and nitrogen due to saturation and agricultural legacy effects. The c-q slope analysis can provide an effective tool to evaluate the current monitoring networks and the effectiveness of water management interventions. This research highlights how improved understanding of solute and particulate dynamics obtained with optical sensors and analysers can be used to understand patterns in long-term water quality time series, reduce the uncertainty in the monitoring data and to manage eutrophication in agricultural catchments.
Collapse
Affiliation(s)
- M Z Bieroza
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Box 7014, 750 07, Sweden.
| | - A L Heathwaite
- Lancaster Environment Centre, Library Avenue, Lancaster University, Lancaster LA1 4YQ, United Kingdom.
| | - M Bechmann
- Norwegian Institute of Bioeconomy Research, P.O. Box 115, NO-1431 Ås, Norway.
| | - K Kyllmar
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Box 7014, 750 07, Sweden.
| | - P Jordan
- School of Geography & Environmental Sciences, Ulster University, Coleraine BT52 1SA, United Kingdom.
| |
Collapse
|
19
|
Sorensen JPR, Vivanco A, Ascott MJ, Gooddy DC, Lapworth DJ, Read DS, Rushworth CM, Bucknall J, Herbert K, Karapanos I, Gumm LP, Taylor RG. Online fluorescence spectroscopy for the real-time evaluation of the microbial quality of drinking water. WATER RESEARCH 2018; 137:301-309. [PMID: 29554534 DOI: 10.1016/j.watres.2018.03.001] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 01/29/2018] [Accepted: 03/01/2018] [Indexed: 05/22/2023]
Abstract
We assessed the utility of online fluorescence spectroscopy for the real-time evaluation of the microbial quality of untreated drinking water. Online fluorimeters were installed on the raw water intake at four groundwater-derived UK public water supplies alongside existing turbidity sensors that are used to forewarn of the presence of microbial contamination in the water industry. The fluorimeters targeted fluorescent dissolved organic matter (DOM) peaks at excitation/emission wavelengths of 280/365 nm (tryptophan-like fluorescence, TLF) and 280/450 nm (humic-like fluorescence, HLF). Discrete samples were collected for Escherichia coli, total bacterial cell counts by flow cytometry, and laboratory-based fluorescence and absorbance. Both TLF and HLF were strongly correlated with E. coli (ρ = 0.71-0.77) and total bacterial cell concentrations (ρ = 0.73-0.76), whereas the correlations between turbidity and E. coli (ρ = 0.48) and total bacterial cell counts (ρ = 0.40) were much weaker. No clear TLF peak was observed at the sites and all apparent TLF was considered to be optical bleed-through from the neighbouring HLF peak. Therefore, a HLF fluorimeter alone would be sufficient to evaluate the microbial water quality at these sources. Fluorescent DOM was also influenced by site operations such as pump start-up and the precipitation of cations on the sensor windows. Online fluorescent DOM sensors are a better indicator of the microbial quality of untreated drinking water than turbidity and they have wide-ranging potential applications within the water industry.
Collapse
Affiliation(s)
- J P R Sorensen
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK.
| | - A Vivanco
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK
| | - M J Ascott
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK
| | - D C Gooddy
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK
| | - D J Lapworth
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK
| | - D S Read
- Centre for Ecology & Hydrology, Maclean Building, Wallingford, OX10 8BB, UK
| | - C M Rushworth
- Chelsea Technologies Group, 55 Central Ave, Molesey, West Molesey, KT8 2QZ, UK
| | - J Bucknall
- Portsmouth Water, PO Box 99, West Street, Havant, Hampshire, PO9 1LG, UK
| | - K Herbert
- Wessex Water, Wessex Road, Dorchester, DT1 2NY, UK
| | - I Karapanos
- Affinity Water, Tamblin Way, Hatfield, AL10 9EZ, UK
| | - L P Gumm
- British Geological Survey, Maclean Building, Wallingford, OX10 8BB, UK
| | - R G Taylor
- Department of Geography, University College London, Gower Street, London, WC1E 6BT, UK
| |
Collapse
|
20
|
Fox BG, Thorn RMS, Anesio AM, Reynolds DM. The in situ bacterial production of fluorescent organic matter; an investigation at a species level. WATER RESEARCH 2017; 125:350-359. [PMID: 28881211 DOI: 10.1016/j.watres.2017.08.040] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2017] [Revised: 07/31/2017] [Accepted: 08/17/2017] [Indexed: 06/07/2023]
Abstract
Aquatic dissolved organic matter (DOM) plays an essential role in biogeochemical cycling and transport of organic matter throughout the hydrological continuum. To characterise microbially-derived organic matter (OM) from common environmental microorganisms (Escherichia coli, Bacillus subtilis and Pseudomonas aeruginosa), excitation-emission matrix (EEM) fluorescence spectroscopy was employed. This work shows that bacterial organisms can produce fluorescent organic matter (FOM) in situ and, furthermore, that the production of FOM differs at a bacterial species level. This production can be attributed to structural biological compounds, specific functional proteins (e.g. pyoverdine production by P. aeruginosa), and/or metabolic by-products. Bacterial growth curve data demonstrates that the production of FOM is fundamentally related to microbial metabolism. For example, the majority of Peak T fluorescence (> 75%) is shown to be intracellular in origin, as a result of the building of proteins for growth and metabolism. This underpins the use of Peak T as a measure of microbial activity, as opposed to bacterial enumeration as has been previously suggested. This study shows that different bacterial species produce a range of FOM that has historically been attributed to high molecular weight allochthonous material or the degradation of terrestrial FOM. We provide definitive evidence that, in fact, it can be produced by microbes within a model system (autochthonous), providing new insights into the possible origin of allochthonous and autochthonous organic material present in aquatic systems.
Collapse
Affiliation(s)
- B G Fox
- Centre for Research in Biosciences, University of the West of England, Bristol, BS16 1QY, UK
| | - R M S Thorn
- Centre for Research in Biosciences, University of the West of England, Bristol, BS16 1QY, UK
| | - A M Anesio
- School of Geographical Sciences, University of Bristol, Bristol, BS8 1SS, UK
| | - D M Reynolds
- Centre for Research in Biosciences, University of the West of England, Bristol, BS16 1QY, UK.
| |
Collapse
|
21
|
Ruhala SS, Zarnetske JP. Using in-situ optical sensors to study dissolved organic carbon dynamics of streams and watersheds: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 575:713-723. [PMID: 27678048 DOI: 10.1016/j.scitotenv.2016.09.113] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 09/14/2016] [Accepted: 09/14/2016] [Indexed: 05/21/2023]
Abstract
It is important to understand how dissolved organic carbon (DOC) is processed and transported through stream networks because DOC is a master water quality variable in aquatic ecosystems. High-frequency sampling is necessary to capture important, rapid shifts in DOC source, concentration, and composition (i.e. quality) in streams. Until recently, this high-frequency sampling was logistically difficult or impossible. However, this type of sampling can now be conducted using in-situ optical measurements through long-term, field-deployable fluorometers and spectrophotometers. The optical data collected from these instruments can quantify both DOC concentration and composition properties (e.g., specific ultra-violet absorbance at 254nm, spectral slope ratio, and fluorescence index). Previously, the use of these sensors was limited to a small number of specialized users, mainly in Europe and North America, where they were used predominantly in marine DOC studies as well as water treatment and management infrastructure. However, recent field demonstrations across a wide range of river systems reveals a large potential for the use of these instruments in freshwater environments, heightening interest and demand across multiple environmental research and management disciplines. Hence, this review provides an up-to-date synthesis on 1) the use of spectroscopy as a diagnostic tool in stream DOC studies, 2) the instrumentation, its applications, potential limitations and future considerations, and 3) the new watershed DOC research directions made possible via these in-situ optical sensors.
Collapse
Affiliation(s)
- Sydney S Ruhala
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA.
| | - Jay P Zarnetske
- Department of Earth and Environmental Sciences, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
22
|
Crossman J, Whitehead PG. Bridging gaps across macronutrient cycles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 572:1447-1448. [PMID: 27817803 DOI: 10.1016/j.scitotenv.2016.10.117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Affiliation(s)
- J Crossman
- Chemistry Department, Trent University, West Bank Drive, Peterborough, Ontario, Canada, K9J 7B8.
| | - P G Whitehead
- School of Geography and the Environment, Oxford University Centre for the Environment, South Parks Road, Oxford, OX1 3QY, United Kingdom
| |
Collapse
|
23
|
Blaen PJ, Khamis K, Lloyd CEM, Bradley C, Hannah D, Krause S. Real-time monitoring of nutrients and dissolved organic matter in rivers: Capturing event dynamics, technological opportunities and future directions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2016; 569-570:647-660. [PMID: 27376920 DOI: 10.1016/j.scitotenv.2016.06.116] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2016] [Revised: 06/15/2016] [Accepted: 06/15/2016] [Indexed: 05/28/2023]
Abstract
Excessive riverine nutrient concentrations threaten aquatic ecosystem structure and functioning and can pose substantial risks to human health. Robust monitoring strategies are therefore required to generate reliable estimates of river nutrient loads and to improve understanding of the catchment processes that drive nutrient fluxes. Furthermore, these data are vital for prediction of future trends under changing environmental conditions and thus the development of appropriate mitigation measures. In recent years, technological developments have led to an increase in the use of in-situ nutrient analysers, which enable measurements at far higher temporal resolutions than can be achieved with discrete sampling and subsequent laboratory analysis. In this paper, we review the principles underlying the key techniques used for in-situ nutrient monitoring and highlight both the advantages, opportunities and challenges associated with high-resolution sampling programs. We then suggest how adaptive monitoring strategies, comprising several different temporal sample frequencies, controlled by one or more 'trigger variables' (e.g. river stage, turbidity, or nutrient concentration), can advance our understanding of catchment nutrient dynamics while simultaneously overcoming many of the practical and economic challenges encountered in typical in-situ river nutrient monitoring applications. We present examples of short-term variability in river nutrient dynamics, driven by complex catchment behaviour, which support our case for the development of monitoring systems that can adapt in real-time to rapid changes in environmental conditions. Finally, we suggest future research directions based on emerging technologies in this field.
Collapse
Affiliation(s)
- Phillip J Blaen
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; Birmingham Institute of Forest Research (BIFoR), University of Birmingham, Edgbaston, Birmingham B15 2TT, UK.
| | - Kieran Khamis
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Charlotte E M Lloyd
- Organic Geochemistry Unit, Bristol Biogeochemistry Research Centre, School of Chemistry, University of Bristol, Cantocks Close, Bristol BS8 1TS, UK
| | - Chris Bradley
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - David Hannah
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| | - Stefan Krause
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
| |
Collapse
|