1
|
Huo Z, Xiao J, Liu Y, Fang L, Li J, Li D, Yang W, Wu Q, Li Z, Gu J, Qin Y, Yan X. Long-term exposure to 17β-estradiol of the Manila clam (Ruditapes philippinarum): Shifts of gender ratio and changes of gene expression. Genomics 2025; 117:111052. [PMID: 40311714 DOI: 10.1016/j.ygeno.2025.111052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/15/2025] [Accepted: 04/28/2025] [Indexed: 05/03/2025]
Abstract
Estrogen is widely distributed in the aquatic environment, causing feminization, changes of gender ratio and reduced fecundity in aquatic organisms. 17β-estradiol is a potent estrogen with strong estrogenic activity and pseudo-persistence, which poses significant risks to global aquatic ecosystems. In this study, effects of long-term exposure to 17β-estradiol in the Manila clam (Ruditapes philippinarum) were investigated. The clams were treated with 17β-estradiol (10 μg/L) for 2 months and then subjected to dissection. Gonadal tissue sections were prepared for observation, and the sex ratio was calculated. The results showed that the female male ratio of clams in the control group was 0.93, which was close to 1. Nevertheless, the female male ratio of the 17β-estradiol-treated clams was 1.39, which was nearly 50 % higher than that in the control group. Furthermore, for clams in the control group, no hermaphrodites were observed. However, for clams treated with 17β-estradiol, 2 % of them were hermaphroditic, which was higher than that in natural environment (approximately one thousandth). It implies that long-term exposure to 17β-estradiol might affect sexual differentiation as well as sexual reversal in R. Philippinarum, promoting male individuals to reverse into female individuals. Comparative transcriptomics was conducted to identify genes related to sex differentiation in R. Philippinarum. Gene expression profiles of the estrogen-treated females (EF) were compared with those of the estrogen-treated males (EM), and 3751 differentially expressed genes (DEGs) were identified, among which 1512 were up-regulated in females, whereas 2239 were up-regulated in males. Meanwhile, the transcriptome profiles of females (DF) and males (DM) in the control group were compared, and 1718 differentially expressed genes (DEGs) were identified, of which 601 were upregulated in females and 1117 were upregulated in males. GO (gene ontology) and KEGG (Kyoto encyclopedia of genes and genomes) analyses showed that the above mentioned DEGs identified in both the estrogen treatment group and the control group were enriched in the ubiquitination pathway, ribosome, phagosome, and cytochrome P450 metabolic pathways. It is noteworthy that some of the gender-related DEGs identified in the comparison combination of DF vs DM were enriched in ubiquitination. In conculsion, the results indicate that exogenous estradiol treatment might influence sex differentiation in R. Philippinarum, enriching the knowledge on molecular mechanisms underlying sex differentiation in mollusks.
Collapse
Affiliation(s)
- Zhongming Huo
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China.
| | - Jiaxin Xiao
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China
| | - Yang Liu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China
| | - Lei Fang
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China; College of Marine science and environmental engineering, Dalian Ocean University, Dalian 116023, China
| | - Jiaxi Li
- Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China; College of Marine science and environmental engineering, Dalian Ocean University, Dalian 116023, China
| | - Dongdong Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China
| | - Wenwen Yang
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China
| | - Qidi Wu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China
| | - Zhuang Li
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China
| | - Jing Gu
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China
| | - Yanjie Qin
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China
| | - Xiwu Yan
- College of Fisheries and Life Science, Dalian Ocean University, Dalian 116023, China; Engineering Research Center of Shellfish Culture and Breeding in Liaoning Province, Dalian 116023, China
| |
Collapse
|
2
|
Barcellos DDS, Prokopiuk M, Owczarzak F, Possetti GRC, Bollmann HA. Economic feasibility of complementary treatments for reducing pharmaceuticals in metropolitan drinking water in southern Brazil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9164-9178. [PMID: 40113656 DOI: 10.1007/s11356-025-36262-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 03/08/2025] [Indexed: 03/22/2025]
Abstract
This study addresses complementary treatment systems' economic feasibility and environmental benefits to reduce pharmaceutical micropollutants in urban water supplies in Curitiba, Brazil. The research evaluated powdered activated carbon (PAC) dosing systems in drinking water treatment plants (DWTPs), analyzing implementation and operational costs in relation to the environmental benefits represented by the shadow price of removed pharmaceutical micropollutants. The results indicate that while technically viable, the high cost of PAC systems renders the project economically unfeasible, with a removal cost of US$1.3941 per mg/L of micropollutant, far exceeding the estimated environmental benefit of US$0.4134 per mg/L. Over a 30-year horizon, the cost per m3 of treated water with PAC accounts for approximately 78.52% of the cost of a conventional DWTP, emphasizing the need for alternative funding models. The study highlights the critical importance of integrating environmental benefits into economic analyses and proposes an industry-financed fund by pharmaceutical companies to support the modernization of these systems, aligning with principles of social and environmental justice.
Collapse
Affiliation(s)
- Demian da Silveira Barcellos
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Paraná, Brazil.
| | - Mario Prokopiuk
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Paraná, Brazil
| | - Felipe Owczarzak
- Research and Innovation Management, Paraná Sanitation Company, Curitiba, Paraná, Brazil
| | | | - Harry Alberto Bollmann
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Paraná, Brazil
| |
Collapse
|
3
|
Garvey M, Kremer TA, Rowan NJ. Efficacy of cleaning, disinfection, and sterilization modalities for addressing infectious drug-resistant fungi: a review. J Appl Microbiol 2025; 136:lxaf005. [PMID: 39774830 DOI: 10.1093/jambio/lxaf005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 12/03/2024] [Accepted: 01/06/2025] [Indexed: 01/11/2025]
Abstract
This is a timely and important review that focuses on the appropriateness of established cleaning, disinfection, and sterilization methods to safely and effectively address infectious fungal drug-resistant pathogens that can potentially contaminate reusable medical devices used in healthcare environment in order to mitigate the risk of patient infection. The release of the World Health Organization (WHO) fungal priority pathogen list (FPPL) in 2022 highlighted the public health crisis of antimicrobial resistance (AMR) in clinically relevant fungal species. Contamination of medical devices with drug-resistant fungal pathogens (including those on the FPPL) in healthcare is a rare event that is more likely to occur due to cross-transmission arising from lapses in hand hygiene practices. Established disinfection and sterilization methods decontaminate fungal pathogens on single-use and reusable medical devices; however, there are assumptions that reusable devices destined for semi-critical use are appropriately cleaned and do not harbour biofilms that may undermine the ability to effectively decontamination these type devices in healthcare. International standards dictate that manufacturer's instructions for use must provide appropriate guidance to healthcare facilities to meet safe reprocessing expectations that include addressing drug-resistant fungal pathogens. Increased environmental monitoring and vigilance surrounding fungal pathogens in healthcare is advised, including adherence to hand hygiene/aseptic practices and appropriate cleaning encompassing the simplification of reusable device features for 'ease-of-reach'. There are emereging opportunities to promote a more integrated multiactor hub approach to addressing these sophisticated challenges, including future use of artificial intelligence and machine learning for improved diagnostics, monitoring/surveillance (such as healthcare and wastewater-based epidemiology), sterility assurance, and device design. There is a knowledge gap surrounding the occurrence and potential persistence of drug-resistant fungal pathogens harboured in biofilms, particularly for ascertaining efficacy of high-level disinfection for semi-critical use devices.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, Sligo F91 YW50, Ireland
- Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo F91 YW50, Ireland
| | - Terra A Kremer
- Centre for Sustainable Disinfection and Sterilization, Technological University of the Shannon, Athlone Campus, Co. Westmeath, N37 HD68, Ireland
- Microbiological Quality and Quality Assurance, Johnson & Johnson, 1000 Route 202, South Raritan, NJ 08869, United States
| | - Neil J Rowan
- Centre for Sustainable Disinfection and Sterilization, Technological University of the Shannon, Athlone Campus, Co. Westmeath, N37 HD68, Ireland
- SFI-funded CURAM Centre for Medical Device Research, University of Galway, Ireland
| |
Collapse
|
4
|
Nosek K, Zhao D. Transformation products of diclofenac: Formation, occurrence, and toxicity implication in the aquatic environment. WATER RESEARCH 2024; 266:122388. [PMID: 39270499 DOI: 10.1016/j.watres.2024.122388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Revised: 08/27/2024] [Accepted: 09/03/2024] [Indexed: 09/15/2024]
Abstract
Diclofenac (DCF) is the first drug on the EU Watch List of Priority Substances due to its extensive uses, incomplete removal in wastewater treatment plants (WWTPs), and toxic effects. Once in the environment, DCF undergoes processes that yield various transformation products (TPs) or metabolites, whichcan be more toxic than DCF. While these TPs or metabolites often dominate the majority of the drug load in municipal wastewater, they have been largely ignored. This review critically examines recent data on the formation, occurrence, fate, and toxicology of DCF TPs in the aquatic environment. This review reveals some important findings. First, DCF TPs may constitute >57 % of DCF in wastewater influent, ∼60 % in effluent, and ∼30 % in surface waters. Second, TPs persistently retain the core structure of DCF and may pose greater environmental risks than the parent drug. Third, some metabolites may revert back to the parent drug. Fourth, WWTPs serve as a consistent source that release DCF and its by-products into the environment. Fifth, mixtures of DCF and its metabolites, along with other contaminants, may pose elevated and synergistic environmental risks than individual compounds. These findings suggest that current risk assessment practices, which ignore the impacts of the metabolites and the chemical interactions/synergies, may seriously underestimate the overall toxicity of DCF and likely other pharmaceuticals. Further studies are needed to monitor the long-term fate and toxicity of the metabolites, as well as new analytical methods and standards to unveil the hidden metabolites and the associated environmental risks.
Collapse
Affiliation(s)
- Katarzyna Nosek
- Department of Fuels Technology, Faculty of Energy and Fuels, AGH University of Krakow, Al. A. Mickiewicza 30, Krakow 30-059, Poland.
| | - Dongye Zhao
- Department of Civil, Construction and Environmental Engineering, San Diego State University, San Diego, CA 92182-1324, USA
| |
Collapse
|
5
|
Beltrán de Heredia I, González-Gaya B, Zuloaga O, Garrido I, Acosta T, Etxebarria N, Ruiz-Romera E. Occurrence of emerging contaminants in three river basins impacted by wastewater treatment plant effluents: Spatio-seasonal patterns and environmental risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174062. [PMID: 38917906 DOI: 10.1016/j.scitotenv.2024.174062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/14/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
The concern on the fate and distribution of contaminants of emerging concern (CECs) is a burning topic due to their widespread occurrence and potential harmful effects. Particularly, antibiotics have received great attention due to their implications in antimicrobial resistance occurrence. The impact of wastewater treatment plants (WWTP) is remarkable, being one of the main pathways for the introduction of CECs into aquatic systems. The combination of novel analytical methodologies and risk assessment strategies is a promising tool to find out environmentally relevant compounds posing major concerns in freshwater ecosystems impacted by those wastewater effluents. Within this context, a multi-target approach was applied in three Spanish river basins affected by different WWTP treated effluents for spatio-temporal monitoring of their chemical status. Solid phase extraction followed by ultra-high-performance liquid chromatography were used for the quantification of a large panel of compounds (n = 270), including pharmaceuticals and other consumer products, pesticides and industrial chemicals. To this end, water samples were collected in four sampling campaigns at three locations in each basin: (i) upstream from the WWTPs; (ii) WWTP effluent discharge points (effluent outfall); and (iii) downstream from the WWTPs (500 m downriver from the effluent outfall). Likewise, 24-h composite effluent samples from each of the WWTPs were provided in all sampling periods. First the occurrence and distribution of these compounds were assessed. Diverse seasonal trends were observed depending on the group of emerging compounds, though COVID-19 outbreak affected variations of certain pharmaceuticals. Detection frequencies and concentrations in effluents generally exceeded those in river samples and concentrations measured upstream WWTPs were generally low or non-quantifiable. Finally, risks associated with maximum contamination levels were evaluated using two different approaches to account for antibiotic resistance selection as well. From all studied compounds, 89 evidenced environmental risk on at least one occasion in this study.
Collapse
Affiliation(s)
- Irene Beltrán de Heredia
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain.
| | - Belén González-Gaya
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Olatz Zuloaga
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Itziar Garrido
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain
| | - Teresa Acosta
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain; Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain
| | - Nestor Etxebarria
- Department of Analytical Chemistry, University of the Basque Country (UPV/EHU), Campus of Leioa, 48940 Leioa, Spain; Research Centre for Experimental Marine Biology and Biotechnology (PIE), University of the Basque Country (UPV/EHU), Areatza Pasealekua 47, 48620 Plentzia, Basque Country, Spain
| | - Estilita Ruiz-Romera
- Department of Chemical and Environmental Engineering, University of the Basque Country (UPV/EHU), Plaza Ingeniero Torres Quevedo 1, 48013 Bilbao, Spain
| |
Collapse
|
6
|
Serrano Valera M, Martínez-Alcalá I, Piuvezam G, Mateo-Ramírez F, Pimenta IDSF, Vela N. Pharmaceutical products, drugs and personal care products in European waters: A protocol for systematic review and meta-analysis. PLoS One 2024; 19:e0308975. [PMID: 39172921 PMCID: PMC11340940 DOI: 10.1371/journal.pone.0308975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 08/03/2024] [Indexed: 08/24/2024] Open
Abstract
This study aims to describe a protocol for a systematic review and meta-analysis that assesses the detection and concentration of pharmaceutical products, drugs, and personal care products in European waters. This study protocol was developed following the recommendations of the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA-P) statement and the Cochrane Handbook of Systematic Reviews of Interventions. We will include studies conducted on European waters of various origins (watersheds, aquifers, rivers, seas, springs, wastewaters, and drinking water). A comprehensive search strategy will be implemented in the following databases: PubMed (Medline), EMBASE, Scopus, and Web of Science. Two independent reviewers will conduct all study selection procedures, data extraction, and methodological evaluation. Any disagreements will be referred to a third reviewer. If the studies are sufficiently homogeneous, we will conduct a meta-analysis to summarize the data. We will use the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) to assess the certainty of the evidence. The systematic review and meta-analysis will provide valuable information about the presence and concentration of these types of contaminants in water, aiding in the development of public policies regarding prevention and decontamination measures to enhancing water quality in Europe.
Collapse
Affiliation(s)
| | | | - Grasiela Piuvezam
- Federal University of Rio Grande do Norte and Systematic Review and Meta-Analysis Laboratory (Lab-SYS–UFRN/CNPq), Natal, Brazil
| | | | | | - Nuria Vela
- Catholic University of Murcia, Murcia, Spain
| |
Collapse
|
7
|
Hu ZJ, Meng XY, Cui YY, Yang CX. Preparation of cationic microporous organic network for efficient solid-phase extraction of nonsteroidal anti-inflammatory drugs from environmental water and milk samples. J Chromatogr A 2024; 1730:465158. [PMID: 39025023 DOI: 10.1016/j.chroma.2024.465158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Revised: 07/06/2024] [Accepted: 07/09/2024] [Indexed: 07/20/2024]
Abstract
The overuse of nonsteroidal anti-inflammatory drugs (NSAIDs) poses many serious environmental and food safety concerns. Development of effective and sensitive sample pretreatment method for monitoring trace NSAIDs from complex samples is of great significance. Depending on the ionic and aromatic structures of NSAIDs, a cationic microporous organic network (MON) named TEPM-BBDC with large specific surface area, good solvent and thermal stabilities, and numerous interaction sites was designed and prepared for efficient solid-phase extraction (SPE) of four typical NSAIDs (flurbiprofen, ketoprofen, naproxen, and diclofenac sodium) from environmental water and milk samples. By anchoring the ionic groups in the conjugated MON frameworks, the prepared TEPM-BBDC offered good extraction for NSAIDs based on the π-π, hydrophobic, ion exchange, and electrostatic interactions. Under the optimal extraction conditions (initial concentration of each NSAID: 200 g L-1; sample volume: 50 mL; desorption solvent: 1.5 mL of MeOH + 1 % NH3·H2O; sample loading rate: 5 mL min-1; NaCl concentration: 0 mmol L-1; pH = 5), the proposed TEPM-BBDC-SPE-HPLC-UV method owned wide linear range (0.50-1000 g L-1), low limits of detection (0.10-0.40 g L-1), large enrichment factors (92.2-99.2), good precisions (intra-day and inter-day, RSD% = 1.3-7.8 %, n = 6) and reproducibility (column-to-column, RSD% = 8.0 %, n = 3). The developed method also exhibited good recoveries (83.6-113.4 %) for the determination of NSAIDs in river water, lake water and milk samples. This work not only revealed the potential of TEPM-BBDC for SPE of ionic NSAIDs in complex samples, but also highlighted the prospect of ionic MONs in sample pretreatment.
Collapse
Affiliation(s)
- Zhao-Jun Hu
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Xiao-Yao Meng
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Yuan-Yuan Cui
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China
| | - Cheng-Xiong Yang
- School of Pharmaceutical Sciences & Institute of Materia Medica, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, PR China.
| |
Collapse
|
8
|
Sippola S, Todorović M, Peltola E. First-Principles Structure Search Study of 17-β-Estradiol Adsorption on Graphene. ACS OMEGA 2024; 9:34684-34691. [PMID: 39157074 PMCID: PMC11325392 DOI: 10.1021/acsomega.4c03485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 07/19/2024] [Accepted: 07/25/2024] [Indexed: 08/20/2024]
Abstract
17-Beta-estradiol (E2), a steroid hormone synthesized from cholesterol, has various impacts on health and the environment. Currently, the gold standard for its measurement in the body is a conventional blood test (mass spectrometry), but carbon-based electrochemical sensors have been proposed as an alternative due to their advantages, such as rapid analysis time and sensitivity. To improve the atomic-level understanding of the interactions at the substrate surface, we performed density functional theory (DFT) simulations to study the nature of the adsorption of E2 on pristine graphene. Bayesian Optimization Structure Search (BOSS) was employed to reduce human bias in the determination of the most favorable adsorption configurations. Two stable adsorption minimum configurations were found. Analysis of their electronic properties indicates that E2 physisorbs on graphene. Embarking upon complex carbonaceous materials, the importance of finding all possible minimum candidates with automated structure search tools is highlighted. Computational investigations facilitate tailoring substrate materials with outstanding performance and applications in neuroscientific research, fertility monitoring, and clinical trials. Combining them with experimental research carries significant potential to advance sensor design beyond the current state-of-the-art.
Collapse
Affiliation(s)
- Saara Sippola
- Department of Mechanical
and Materials Engineering, University of
Turku, Turku 20500, Finland
| | - Milica Todorović
- Department of Mechanical
and Materials Engineering, University of
Turku, Turku 20500, Finland
| | - Emilia Peltola
- Department of Mechanical
and Materials Engineering, University of
Turku, Turku 20500, Finland
| |
Collapse
|
9
|
Georgin J, Franco DSP, Manzar MS, Meili L, El Messaoudi N. A critical and comprehensive review of the current status of 17β-estradiol hormone remediation through adsorption technology. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:24679-24712. [PMID: 38488920 DOI: 10.1007/s11356-024-32876-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 03/09/2024] [Indexed: 03/17/2024]
Abstract
Even at low concentrations, steroid hormones pose a significant threat to ecosystem health and are classified as micropollutants. Among these, 17β-estradiol (molecular formula: C18H24O2; pKa = 10.46; Log Kow = 4.01; solubility in water = 3.90 mg L-1 at 27 °C; molecular weight: 272.4 g mol-1) is extensively studied as an endocrine disruptor due to its release through natural pathways and widespread use in conventional medicine. 17β-estradiol (E2) is emitted by various sources, such as animal and human excretions, hospital and veterinary clinic effluents, and treatment plants. In aquatic biota, it can cause issues ranging from the feminization of males to inhibiting plant growth. This review aims to identify technologies for remediating E2 in water, revealing that materials like graphene oxides, nanocomposites, and carbonaceous materials are commonly used for adsorption. The pH of the medium, especially in acidic to neutral conditions, affects efficiency, and ambient temperature (298 K) supports the process. The Langmuir and Freundlich models aptly describe isothermal studies, with interactions being of a low-energy, physical nature. Adsorption faces limitations when other ions coexist in the solution. Hybrid treatments exhibit high removal efficiency. To mitigate global E2 pollution, establishing national and international standards with detailed guidelines for advanced treatment systems is crucial. Despite significant advancements in optimizing technologies by the scientific community, there remains a considerable gap in their societal application, primarily due to economic and sustainable factors. Therefore, further studies are necessary, including conducting batch experiments with these adsorbents for large-scale treatment along with economic analyses of the production process.
Collapse
Affiliation(s)
- Jordana Georgin
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Mohammad Saood Manzar
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, 31451, Dammam, Saudi Arabia
| | - Lucas Meili
- Laboratory of Processes, Center of Technology, Federal University of Alagoas Campus A. C. Simões, Av. Lourival Melo Mota, Tabuleiro Dos Martins, Maceió, AL, 57072-970, Brazil
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr, University, 80000, Agadir, Morocco.
| |
Collapse
|
10
|
Al-Sareji OJ, Grmasha RA, Meiczinger M, Al-Juboori RA, Somogyi V, Stenger-Kovács C, Hashim KS. A sustainable and highly efficient fossil-free carbon from olive stones for emerging contaminants removal from different water matrices. CHEMOSPHERE 2024; 351:141189. [PMID: 38211782 DOI: 10.1016/j.chemosphere.2024.141189] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/24/2023] [Accepted: 01/09/2024] [Indexed: 01/13/2024]
Abstract
The olive stone is a large waste product of the olive oil extraction industry. The present study investigates developing activated carbon from olive stone waste (OSAC) to remove pharmaceuticals from water. Different temperatures and olive stone: KOH ratios were studied. The OSAC produced at 750 °C and 1:3 ratio was found to have the highest porosity and surface area and was tested in the adsorption process. Diclofenac and ciprofloxacin were selected as model contaminants. The adsorption process was optimized with regards to OSAC dosage, pH, temperature, and initial concentration of adsorbate. The OSAC was found to be effective for a wide pH range (2-11) with an optimum dosage of 1 g/L at 25 °C. The pharmaceuticals were almost completely removed in 75 min. The adsorption was endothermic and followed first-order kinetics with physical mechanisms such as electrostatic possibly being the main driver. The optimum conditions were applied to test the removal of diclofenac and ciprofloxacin in synthetic water, lake water (Lake Balaton, Hungary) and secondary wastewater for seven cycles. There was little difference between the removal of the tested water matrices highlighting the potency of OSAC as an adsorbent for pharmaceutical removal in industrial applications. The removal dropped from >99% for the first cycle to 20-30% for the seventh cycle.
Collapse
Affiliation(s)
- Osamah J Al-Sareji
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprém H, 8200, Hungary; Environmental Research and Studies Center, University of Babylon, Babylon, Al-Hillah 51001, Iraq.
| | - Ruqayah Ali Grmasha
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprém H, 8200, Hungary; Environmental Research and Studies Center, University of Babylon, Babylon, Al-Hillah 51001, Iraq; University of Pannonia, Faculty of Engineering, Center for Natural Science, Research Group of Limnology, H-8200, Veszprem, Egyetem u. 10, Hungary
| | - Mónika Meiczinger
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprém H, 8200, Hungary
| | - Raed A Al-Juboori
- NYUAD Water Research Center, New York University-Abu Dhabi Campus, Abu Dhabi, P.O. Box 129188, Abu Dhabi, United Arab Emirates; Water and Environmental Engineering Research Group, Department of Built Environment, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| | - Viola Somogyi
- Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem str. 10, Veszprém H, 8200, Hungary
| | - Csilla Stenger-Kovács
- University of Pannonia, Faculty of Engineering, Center for Natural Science, Research Group of Limnology, H-8200, Veszprem, Egyetem u. 10, Hungary; ELKH-PE Limnoecology Research Group, H-8200, Veszprém, Egyetem utca 10, Hungary
| | - Khalid S Hashim
- School of Civil Engineering and Built Environment, Liverpool John Moores University, Liverpool L3 2ET, UK; Department of Environmental Engineering, College of Engineering, University of Babylon, Babylon, Al-Hillah, 51001, Iraq; Dijlah University College, Baghdad, Iraq
| |
Collapse
|
11
|
Maskrey BH, Dean K, Morrell N, Younger A, Turner AD, Katsiadaki I. Seasonal profile of common pharmaceuticals in edible bivalve molluscs. MARINE POLLUTION BULLETIN 2024; 200:116128. [PMID: 38377862 DOI: 10.1016/j.marpolbul.2024.116128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/31/2024] [Accepted: 02/03/2024] [Indexed: 02/22/2024]
Abstract
Pharmaceuticals are recognised as environmental contaminants of emerging concern (CECs) due to their increasing presence in the aquatic environment, along with high bioactivity linked to their therapeutic use. Therefore, information on environmental levels is urgently required. This study examined the presence of a range of common pharmaceuticals in oysters and mussels intended for human consumption from England and Wales using stable isotope dilution tandem mass spectrometry. A range of compounds were detected in bivalve tissue, with the Selective Serotonin Reuptake Inhibitor antidepressant sertraline being most abundant, reaching a maximum concentration of 22.1 ng/g wet weight shellfish tissue. Levels of all pharmaceuticals showed seasonal and geographical patterns. A dietary risk assessment revealed that the levels of pharmaceuticals identified in bivalve molluscs represent a clear hazard, but not a risk for the consumer. This study highlights the requirement for further monitoring of the presence of pharmaceuticals and other CECs in bivalve molluscs.
Collapse
Affiliation(s)
- Benjamin H Maskrey
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom.
| | - Karl Dean
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom
| | - Nadine Morrell
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom
| | - Andrew Younger
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom
| | - Andrew D Turner
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom
| | - Ioanna Katsiadaki
- Centre for Environment Fisheries and Aquaculture Science (Cefas), Barrack Road, Weymouth, Dorset DT4 8UB, United Kingdom
| |
Collapse
|
12
|
Guarin TC, Li L, Haak L, Teel L, Pagilla KR. Contaminants of emerging concern reduction and microbial community characterization across a three-barrier advanced water treatment system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169637. [PMID: 38157893 DOI: 10.1016/j.scitotenv.2023.169637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/21/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
This research investigated the removal of contaminants of emerging concern (CECs) and characterized the microbial community across an advanced water treatment (AWT) train consisting of Coagulation/Flocculation/Clarification/Granular Media Filtration (CFCGMF), Ozone-Biological Activated Carbon Filtration (O3/BAC), Granular Activated Carbon filtration, Ultraviolet Disinfection, and Cartridge Filtration (GAC/UV/CF). The AWT train successfully met the goals of CECs and bulk organics removal. The microbial community at each treatment step of the AWT train was characterized using 16S rRNA sequencing on the Illumina MiSeq platform generated from DNA extracted from liquid and solid (treatment media) samples taken along the treatment train. Differences in the microbial community structure were observed. The dominant operational taxonomic units (OTU) decreased along the treatment train, but the treatment steps did impact the microbial community composition downstream of each unit process. These results provide insights into microbial ecology in advanced water treatment systems, which are influenced and shaped by each treatment step, the microbial community interactions, and their potential metabolic contribution to CECs degradation.
Collapse
Affiliation(s)
- Tatiana C Guarin
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA; ε-BiO: UNAB's Circular Bioeconomy Research Center, Universidad Autónoma de Bucaramanga, Colombia
| | - Lin Li
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA
| | - Laura Haak
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA
| | - Lydia Teel
- Truckee Meadows Water Authority, Reno, NV, USA
| | - Krishna R Pagilla
- Department of Civil and Environmental Engineering, University of Nevada, Reno, NV 89557, USA.
| |
Collapse
|
13
|
Glineur A, Nott K, Carbonnelle P, Ronkart S, Pollet T, Purcaro G. Occurrence and environmental risk assessment of 4 estrogenic compounds in surface water in Belgium in the frame of the EU Watch List. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:6857-6873. [PMID: 38153577 DOI: 10.1007/s11356-023-31698-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 12/20/2023] [Indexed: 12/29/2023]
Abstract
The presence of natural estrogens estrone (E1), 17β-estradiol (E2), estriol (E3) and synthetic estrogen 17α-ethynylestradiol (EE2) in the aquatic environment has raised concerns because of their high potency as endocrine disrupting chemicals. The European Commission (EC) established a Watch List of contaminants of emerging concerns including E1, E2 and EE2. The proposed environmental quality standards (EQSs) are 3.6, 0.4, 0.035 ng/L, for E1, E2, EE2, respectively. A thorough evaluation of analytical procedures developed by several studies aiming to perform sampling campaigns in different European countries highlighted that the required limits of quantification in surface water were not reached, especially for EE2 and to a lesser extent for E2. Moreover, data regarding the occurrence of these contaminants in Belgian surface water are very limited. A sampling campaign was therefore performed on a wide range of rivers in Belgium (accounting for a total of 63 samples). The detection frequencies of E1, E2, E3 and EE2 were 100, 98, 86 and 48%, respectively. E1 showed the highest mean concentration (= 4.433 ng/L). In contrast, the mean concentration of EE2 was 0.042 ng/L. The risk quotients (RQs) were calculated based on the respective EQS of each analyte. The frequency of exceedance of the EQS was 31.7% for E1, EE2, while it increased to 44.4% for E2. The extent of exceedance of the EQS, represented by the 95th percentile of the RQ dataset, was higher than 1 for E1, E2, EE2. The use of a confusion matrix was investigated to try to predict the risk posed by E2, EE2, based on the concentration of E1.
Collapse
Affiliation(s)
- Alex Glineur
- Laboratory of Analytical Chemistry, Gembloux Agro-Bio Tech, University of Liège, Bât. G1 Chimie Des Agro-Biosystèmes, Passage Des Déportés 2, 5030, Gembloux, Belgium.
| | - Katherine Nott
- La Société Wallonne Des Eaux, Rue de La Concorde 41, 4800, Verviers, Belgium
| | | | - Sébastien Ronkart
- La Société Wallonne Des Eaux, Rue de La Concorde 41, 4800, Verviers, Belgium
| | - Thomas Pollet
- Biodiversity and Landscape, Gembloux Agro-Bio Tech, University of Liège, Avenue Maréchal Juin 27, 5030, Gembloux, Belgium
| | - Giorgia Purcaro
- Laboratory of Analytical Chemistry, Gembloux Agro-Bio Tech, University of Liège, Bât. G1 Chimie Des Agro-Biosystèmes, Passage Des Déportés 2, 5030, Gembloux, Belgium
| |
Collapse
|
14
|
Odehnalová K, Přibilová P, Maršálková E, Zezulka Š, Pochylý F, Rudolf P, Maršálek B. Hydrodynamic cavitation-enhanced activation of sodium percarbonate for estrogen removal. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 88:2905-2916. [PMID: 38096077 PMCID: wst_2023_382 DOI: 10.2166/wst.2023.382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2023]
Abstract
The present paper investigated the potential of hydrodynamic cavitation (HC) as an effective tool for activating sodium percarbonate (SPC). The method's efficiency was demonstrated by effectively removing estrogens, which are pollutants that have adverse impacts on aquatic ecosystems. The effects of the SPC concentration, temperature of solution, and cavitation time were evaluated. After SPC/HC treatment, the removal of estrogens was monitored by liquid chromatography-tandem mass spectrometry (LC -MS/MS). Already after 4 s of treatment and 24 h of reaction time, more than 97% of estrogens (initial concentration of 300 ng/L) were removed. The effect of post-treatment time is not considered in several papers, even though it seems to be crucial and is discussed here. The results were supported by the values of degradation rate constants, which fit the pseudo-first-order kinetic model. We also verified that HC alone was not effective for estrogen removal under the selected conditions. The sustainability of the SPC/HC system was evaluated based on electric energy per order calculation. The combination of SPC and HC is a promising approach for rapidly degrading micropollutants such as estrogenic compounds without the need for additional technological steps, such as pH or temperature adjustment.
Collapse
Affiliation(s)
- Klára Odehnalová
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic E-mail:
| | - Petra Přibilová
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| | - Eliška Maršálková
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| | - Štěpán Zezulka
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| | - František Pochylý
- Brno University of Technology, Faculty of Mechanical Engineering, V. Kaplan Department of Fluid Engineering, Technická 2896/2, Brno 61669, Czech Republic
| | - Pavel Rudolf
- Brno University of Technology, Faculty of Mechanical Engineering, V. Kaplan Department of Fluid Engineering, Technická 2896/2, Brno 61669, Czech Republic
| | - Blahoslav Maršálek
- Institute of Botany, Czech Academy of Sciences, Lidická 25/27, Brno 60200, Czech Republic
| |
Collapse
|
15
|
Cuccarese M, Van Hulle SWH, Mancini IM, Masi S, Caniani D. Removal of organic micropollutants from water by adsorption on thermo-plasma expanded graphite encapsulated into calcium alginate. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2023; 21:497-512. [PMID: 37869604 PMCID: PMC10584748 DOI: 10.1007/s40201-023-00876-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 08/06/2023] [Indexed: 10/24/2023]
Abstract
Nowadays, public concern is focused on the degradation of water quality. For this reason, the development of innovative technologies for water treatment in view of (micro)pollutant removal is important. Indeed, organic (micro)pollutants, such as pharmaceuticals, herbicides, pesticides and plasticizers at concentration levels of μg L-1 or even ng L-1 are hardly removed during conventional wastewater treatment. In view of this, thermo-plasma expanded graphite, a light-weight innovative material in the form of a powder, was encapsulated into calcium alginate to obtain a granular form useful as filtration and adsorption material for removal of different pollutants. The produced material was used to remove atrazine, bisphenol-A, 17-α-ethinylestradiol and carbamazepine (at concentration levels of 125, 250 and 500 µg L-1) by top-down filtration. The effect of flow rate, bed depth and adsorbent composition was evaluated based on breakthrough curves. The experimental data was analysed with the Adams-Bohart model in view of scale-up. Under optimal conditions, removal and adsorption capacity of respectively about 21%, 21%, 38%,42%, 43 µg g-1, 44 µg g-1, 37 µg g-1 and 87 µg g-1 were obtained for atrazine, bisphenol, 17-α ethinylestradiol and carbamazepine when using 0.12 g of thermo-plasma expanded graphite to treat 200 mL at 500 µg L-1 (for each compound) of solution obtaining at contact time of 20 min. The granular form of TPEG obtained (GTPEG) by entrapping in calcium alginate results to have a good adsorbent property for the removal of carbamazepine, atrazine, bisphenol A and 17-α ethinylestradiol from water at concentration levels between 250 and 500 μg L-1. Promising results confirm the adsorbent properties of TPEG and push-up us to investigate on its application and improve of its performance by evaluating different entrapping materials. Supplementary Information The online version contains supplementary material available at 10.1007/s40201-023-00876-9.
Collapse
Affiliation(s)
- Marco Cuccarese
- Scuola di Ingegneria, Università degli Studi della Basilicata, viale dell’Ateneo Lucano n.10, 85100 Potenza, Italy
| | - Stijn W. H. Van Hulle
- Department of Green Chemistry and Technology, Faculty of Bioscience Engineering, Universiteit Gent, Gr.Karel.de Goedelaan 5, 8500 Kortrijk, Belgium
| | - Ignazio M. Mancini
- Scuola di Ingegneria, Università degli Studi della Basilicata, viale dell’Ateneo Lucano n.10, 85100 Potenza, Italy
| | - Salvatore Masi
- Scuola di Ingegneria, Università degli Studi della Basilicata, viale dell’Ateneo Lucano n.10, 85100 Potenza, Italy
| | - Donatella Caniani
- Scuola di Ingegneria, Università degli Studi della Basilicata, viale dell’Ateneo Lucano n.10, 85100 Potenza, Italy
| |
Collapse
|
16
|
O'Neill EA, Rowan NJ. Potential disruptive effects of zoosporic parasites on peatland-based organic freshwater aquaculture: Case study from the Republic of Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 868:161495. [PMID: 36634789 DOI: 10.1016/j.scitotenv.2023.161495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 01/05/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Irish freshwater aquaculture holds great potential for aiding food security. However, its necessary expansion has been hampered by the adoption of important environmental EU directives. A novel peatland-based recirculating aquaculture multi-trophic pond system (RAMPS) was developed to assess its potential to assist in the sustainable development of industry whilst remaining aligned with environmental protection by adhering to organic aquaculture practices. Microalgae play a pivotal role in the farms' wastewater bioremediation. However, a collapse of the algal population within the system towards the end of the pilot study was observed. No relationship between physicochemical fluctuations and the collapse were indicated. Further investigations into the potential presence of biological agents were then conducted and fourteen species of zoosporic parasites from five different genera (Labyrinthula, Vampyrella, Amoeboaphelidium, Paraphelidium and Aphelidium) were identified after conducting next-generation sequencing (MinION). The presence of these species indicated the potential cause of algal collapse. Additionally, changes in weather conditions may have also contributed to the issue. Given the lack of data available on zoosporic parasites and their potential impact on organic aquaculture practices, additional research needs to be conducted. Developing a means to monitor and mitigate against these complex zoosporic parasites will inform food security, it will particularly help safeguard "organic" freshwater aquaculture where there is a reliance on using natural-based approaches to address disease mitigation. This information will in turn inform the replication of this RAMPs system in peatlands internationally creating local employment in green technologies, as communities' transition away from burning peat as fossil fuel. Also, zoosporic parasites may reduce important microalgae in peatland-based culture ponds that serve as exceptional sequesters of carbon. Findings of this study will inform related research that focus on the emergence of microbial pathogens in local aquatic ecosystems brought on by variances in climate.
Collapse
Affiliation(s)
- Emer A O'Neill
- Centre for Sustainable Disinfection and Sustainability, Bioscience Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, Athlone, Co. Westmeath, Ireland; Faculty of Science & Health, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, Athlone, Co. Westmeath, Ireland.
| | - Neil J Rowan
- Centre for Sustainable Disinfection and Sustainability, Bioscience Research Institute, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, Athlone, Co. Westmeath, Ireland; Faculty of Science & Health, Technological University of the Shannon: Midlands Midwest, Athlone Campus, University Road, Athlone, Co. Westmeath, Ireland
| |
Collapse
|
17
|
Yang L, Su W, He Y, Yan B, Luo L, Luan T. Dark transformation from 17β-estradiol to estrone initiated by hydroxyl radical in dissolved organic matter. WATER RESEARCH 2023; 230:119570. [PMID: 36621273 DOI: 10.1016/j.watres.2023.119570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/16/2022] [Accepted: 01/03/2023] [Indexed: 06/17/2023]
Abstract
The occurrence and fate of 17β-estradiol (E2) in natural water have gained extensive attention owing to its high ecotoxic risk to wildlife. Dissolved organic matter (DOM) is a ubiquitous water constituent and contributes significantly to E2 removal, although the reaction mechanism is rarely clarified. The present study aims to investigate E2 transformation in water containing fresh or aged DOM surrogates at environmentally relevant concentrations in the dark. Experiments along with radical probes of benzene and furfuryl alcohol reveal that reactive radicals, particularly hydroxyl radical (·OH), formed non-photochemically at higher concentrations in aged DOM than in fresh DOM. The contribution of ·OH in E2 removal is indicated by the decreases in the removal of radical probes in the presence of E2; moreover, E2 removal is inhibited in the presence of radical scavengers. The dose-dependent inhibitive effect of substrate concentrations, including E2 and coexistent propylparaben, shows that the radical concentration is a limiting factor for E2 removal, which could be enhanced by increasing DOM concentration, dissolved oxygen, and light supply. As the main byproduct, estrone (E1) is persistent in the current DOM water in the dark, but it can be easily photodegraded when exposed to light. Theoretical analysis reveals that the initial step is ·OH-initiated H- abstraction on the hydroxyl group in the cyclopentane ring of E2. The formed singlet excited state of E2 undergoes further intramolecular rearrangement and oxidative dehydrogenation to generate E1 and the hydroperoxy radical (·HO2). Considering the universal occurrence of E2 in DOM-rich aquatic matrices, the present findings have special implications for the biogeochemical cycle and risk assessment of this pollutant in natural aquatic environments, particularly those beyond the photic zone.
Collapse
Affiliation(s)
- Lihua Yang
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Weiqi Su
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Yingyao He
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Binhua Yan
- South China Sea Resource Exploitation and Protection Collaborative Innovation Center, Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Lijuan Luo
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China.
| | - Tiangang Luan
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
18
|
Akkam Y, Omari D, Alhmoud H, Alajmi M, Akkam N, Aljarrah I. Assessment of Xenoestrogens in Jordanian Water System: Activity and Identification. TOXICS 2023; 11:63. [PMID: 36668789 PMCID: PMC9866086 DOI: 10.3390/toxics11010063] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Accepted: 01/04/2023] [Indexed: 06/17/2023]
Abstract
Sex hormone disruptors (xenoestrogens) are a global concern due to their potential toxicity. However, to date, there has been no study to investigate the presence of xenoestrogen pollutants in the Jordanian water system. Samples in triplicates were collected from six locations in Jordan, including dams, surface water, tap or faucet water, and filtered water (drinking water-local company). Xenoestrogens were then extracted and evaluated with a yeast estrogen screen utilizing Saccharomyces cerevisiae. Later, possible pollutants were mined using ultrahigh-performance liquid chromatography (UPLC) coupled with a Bruker impact II Q-TOF-MS. Possible hits were identified using MetaboScape software (4000 compounds), which includes pesticide, pharmaceutical pollutant, veterinary drug, and toxic compound databases and a special library of 75 possible xenoestrogens. The presence of xenoestrogens in vegetable samples collected from two different locations was also investigated. The total estrogen equivalents according to the YES system were 2.9 ± 1.2, 9.5 ± 5, 2.5 ± 1.5, 1.4 ± 0.9 ng/L for King Talal Dam, As-Samra Wastewater Treatment Plant, King Abdullah Canal, and tap water, respectively. In Almujeb Dam and drinking water, the estrogenic activity was below the detection limit. Numbers of identified xenoestrogens were: As-Samra Wastewater Treatment Plant 27 pollutants, King Talal Dam 20 pollutants, Almujeb Dam 10 pollutants, King Abdullah Canal 16 pollutants, Irbid tap water 32 pollutants, Amman tap water 30 pollutants, drinking water 3 pollutants, and vegetables 7 pollutants. However, a large number of compounds remained unknown. Xenoestrogen pollutants were detected in all tested samples, but the total estrogenic capacities were within the acceptable range. The major source of xenoestrogen pollutants was agricultural resources. Risk evaluations for low xenoestrogen activity should be taken into account, and thorough pesticide monitoring systems and regular inspections should also be established.
Collapse
Affiliation(s)
- Yazan Akkam
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Derar Omari
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| | - Hassan Alhmoud
- Department of Pharmaceutical Technology and Pharmaceutics, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
- Faculty of Pharmacy, Jerash University, Irbid 26110, Jordan
| | - Mohammad Alajmi
- Department of Law and Science Department, Kuwait International Law School, Doha 93151, Kuwait
| | - Nosaibah Akkam
- Department of Anatomy and Cell Biology, Faculty of Medicine, Universität des Saarlandes, 66424 Hamburg, Germany
| | - Islam Aljarrah
- Department of Medicinal Chemistry and Pharmacognosy, Faculty of Pharmacy, Yarmouk University, Irbid 21163, Jordan
| |
Collapse
|
19
|
Abril SIM, Pin AO, Schonemann AM, Bellot M, Gómez-Canela C, Beiras R. Evaluating the alterations of the estrogen-responsive genes in Cyprinodon variegatus larvae for biomonitoring the impacts of estrogenic endocrine disruptors (EEDs). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 97:104042. [PMID: 36549414 DOI: 10.1016/j.etap.2022.104042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 12/08/2022] [Accepted: 12/17/2022] [Indexed: 06/17/2023]
Abstract
Currently, endocrine disruptors (EDs) can be found in all the environmental compartments. To understand the effects of estrogenic EDs (EEDs), adults of Cyprinodon variegatus have been classically used as a marine model. However, it is during development that exposure to contaminants may generate permanent consequences. Thus, the aim of this study was to verify the effects produced by acute exposure to 17α-ethinylestradiol (EE2) in C. variegatus larvae. Quantitative PCR (qPCR) results revealed the induction of vtg and zp gene expression on exposure to 1000 ng/L EE2 and the induction of vtgc, zp2, zp3 and cyp19a2, and inhibition of vtgab, wap and cyp1a1 on exposure to 100 ng/L EE2. Lower concentrations inhibited the gene expression of vtgab and wap (50 ng/L), cyp1a1 (25 ng/L) and zp2 (12.5 ng/L). These alterations in gene expression allow us to affirm that larvae of C. variegatus are an efficient and sensitive model for biomonitoring EEDs.
Collapse
Affiliation(s)
- Sandra Isabel Moreno Abril
- Marine Research Centre, University of Vigo (CIM-UVigo), 36310 Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, 36310 Vigo, Galicia, Spain.
| | - Ana Olmos Pin
- Marine Research Centre, University of Vigo (CIM-UVigo), 36310 Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, 36310 Vigo, Galicia, Spain
| | - Alexandre M Schonemann
- Marine Research Centre, University of Vigo (CIM-UVigo), 36310 Vigo, Galicia, Spain; Department of Biochemistry, Genetics and Immunology, University of Vigo, 36310 Galicia, Spain
| | - Marina Bellot
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Cristian Gómez-Canela
- Department of Analytical and Applied Chemistry, School of Engineering, Institut Químic de Sarrià-Universitat Ramon Llull, 08017 Barcelona, Spain
| | - Ricardo Beiras
- Marine Research Centre, University of Vigo (CIM-UVigo), 36310 Vigo, Galicia, Spain; Department of Ecology and Animal Biology, University of Vigo, 36310 Vigo, Galicia, Spain
| |
Collapse
|
20
|
Wang K, Su Z, Reguyal F, Bian R, Li W, Yu H, Sun Y, Zhuang Y, Shang W. Seasonal occurrence of multiple classes of antibiotics in East China rivers and their association with suspended particulate matter. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 853:158579. [PMID: 36075442 DOI: 10.1016/j.scitotenv.2022.158579] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 06/15/2023]
Abstract
Understanding the occurrence and fate of antibiotics from different categories is vital to predict their environmental exposure and risks. This study presents the spatiotemporal occurrence of 45 multi-class antibiotics and their associations with suspended particulate matter (SPM) in Xiaoqing River (XRB) and Yellow River (YRB) via 10-month monitoring in East China. Thirty-five and 31 antibiotics were detected in XRB and YRB, respectively. Among them, fluoroquinolones (FQs) had the highest total mean concentration (up to 24.8 μg/L in XRB and 15.4 μg/L in YRB), followed by sulfonamides (SAs) (14.0 μg/L and 15.4 μg/L) and macrolides (MLs) (1.1 μg/L and 1.6 μg/L). Significant spatial-temporal variations were found in both rivers where higher concentrations of antibiotics were observed in urban and densely populated areas during winter and spring. Hydrological factors such as river flow and water volume, instream attenuation and antibiotic usage may cause the observed variabilities in the seasonal patterns of antibiotic pollution. Using linear regression analysis, for the first time, this study confirmed that the total concentrations of MLs (p < 0.05), FQs (p < 0.001) and SAs (p < 0.001) were strongly correlated with the turbidity/total suspended solids in the studied rivers (except MLs in YRB). It is thus suggested that partitioning processes onto SPM might affect the distribution of detected antibiotics in rivers, which are largely dependent on SPM composition and characteristics. The risk quotient (RQ) determined for up to 87 % of individual compound was below 0.1 in both rivers; however, the high joint toxicity reflected by the mixed RQs of detected antibiotics may rise risk alarm for aquatic species. Further aspects regarding active mechanisms of SPM-antibiotic interactions and ecological risks of coexistence of multiple antibiotics need to be investigated.
Collapse
Affiliation(s)
- Kun Wang
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China; Jinan Environmental Research Academy, Jinan, Shandong 250100, China.
| | - Zhaoxin Su
- Jinan Environmental Research Academy, Jinan, Shandong 250100, China
| | - Febelyn Reguyal
- Department of Civil and Environmental Engineering, University of Auckland, Private Bag 92019, New Zealand
| | - Rongxing Bian
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Weihua Li
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Haofeng Yu
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Yingjie Sun
- Qingdao Solid Waste Pollution Control and Resource Engineering Research Center, School of Environment and Municipal Engineering, Qingdao University of Technology, Qingdao 266033, China
| | - Ying Zhuang
- Qingdao Environmental Sanitation Development Center, Qingdao 266073, China
| | - Wan Shang
- Qingdao Environmental Sanitation Development Center, Qingdao 266073, China
| |
Collapse
|
21
|
O'Neill EA, Fehrenbach G, Murphy E, Alencar SA, Pogue R, Rowan NJ. Use of next generation sequencing and bioinformatics for profiling freshwater eukaryotic microalgae in a novel peatland integrated multi-trophic aquaculture (IMTA) system: Case study from the Republic of Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158392. [PMID: 36055498 DOI: 10.1016/j.scitotenv.2022.158392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 06/15/2023]
Abstract
Development of integrated multi-trophic aquaculture (IMTA) systems constitutes a step change in the sustainable production of freshwater fish to meet emerging needs for high-protein foods globally. Recently, there has been a paradigm shift away from harvesting peat as a fuel towards the development of wettable peatland innovation (termed 'paludiculture'), such as aquaculture. Such eco-innovations support carbon sequestration and align with a balanced environmental approach to protecting biodiversity. This novel peatland-based IMTA process in the Irish midlands relies upon natural microalgae for waste treatment, recirculation and water quality where there is no use of pesticides or antibiotics. This novel IMTA system is powered with a wind turbine and the process has 'organic status'; moreover, it does not discharge aquaculture effluent to receiving water. However, there is a significant lack of understanding as to diversity of microalgae in this 'paludiculture'-based IMTA processes. This constitutes the first case study to use conventional microscopy combined with next-generation sequencing and bioinformatics to profile microalgae occurring in this novel IMTA system from pooled samples over a 12 month period in 2020. Conventional microscopy combined with classic identification revealed twenty genera of algae; with Chlorophyta and Charophyta being the most common present. However, algal DNA isolation, 16 s sequencing and bioinformatics revealed a combined total of 982 species from 341 genera across nine phyla from the same IMTA system, which emphasized a significant underestimation in the number and diversity of beneficial or potentially harmful algae in the IMTA-microbiome. These new methods also yield rich data that can be used by digital technologies to transform future monitoring and performance of the IMTA system for sustainability. The findings of this study align with many sustainability development goals of the United Nations including no poverty, zero hunger, good health and well-being, responsible consumption and production, climate change, and life below water.
Collapse
Affiliation(s)
- Emer A O'Neill
- Bioscience Research Institute, Technological University of the Shannon: Midlands Midwest, University Road, Athlone, Co. Westmeath, Ireland.
| | - Gustavo Fehrenbach
- Bioscience Research Institute, Technological University of the Shannon: Midlands Midwest, University Road, Athlone, Co. Westmeath, Ireland
| | - Emma Murphy
- Bioscience Research Institute, Technological University of the Shannon: Midlands Midwest, University Road, Athlone, Co. Westmeath, Ireland
| | - Sérgio A Alencar
- Universidade Católica de Brasilia, QS 7 LOTE 1 - Taguatinga, Brasília, DF 71966-700, Brazil
| | - Robert Pogue
- Bioscience Research Institute, Technological University of the Shannon: Midlands Midwest, University Road, Athlone, Co. Westmeath, Ireland; Universidade Católica de Brasilia, QS 7 LOTE 1 - Taguatinga, Brasília, DF 71966-700, Brazil
| | - Neil J Rowan
- Bioscience Research Institute, Technological University of the Shannon: Midlands Midwest, University Road, Athlone, Co. Westmeath, Ireland
| |
Collapse
|
22
|
Garvey M, Meade E, Rowan NJ. Effectiveness of front line and emerging fungal disease prevention and control interventions and opportunities to address appropriate eco-sustainable solutions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158284. [PMID: 36029815 DOI: 10.1016/j.scitotenv.2022.158284] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/21/2022] [Accepted: 08/21/2022] [Indexed: 06/15/2023]
Abstract
Fungal pathogens contribute to significant disease burden globally; however, the fact that fungi are eukaryotes has greatly complicated their role in fungal-mediated infections and alleviation. Antifungal drugs are often toxic to host cells and there is increasing evidence of adaptive resistance in animals and humans. Existing fungal diagnostic and treatment regimens have limitations that has contributed to the alarming high mortality rates and prolonged morbidity seen in immunocompromised cohorts caused by opportunistic invasive infections as evidenced during HIV and COVID-19 pandemics. There is a need to develop real-time monitoring and diagnostic methods for fungal pathogens and to create a greater awareness as to the contribution of fungal pathogens in disease causation. Greater information is required on the appropriate selection and dose of antifungal drugs including factors governing resistance where there is commensurate need to discover more appropriate and effective solutions. Popular azole fungal drugs are widely detected in surface water and sediment due to incomplete removal in wastewater treatment plants where they are resistant to microbial degradation and may cause toxic effects on aquatic organisms such as algae and fish. UV has limited effectiveness in destruction of anti-fungal drugs where there is increased interest in the combination approaches such as novel use of pulsed-plasma gas-discharge technologies for environmental waste management. There is growing interest in developing alternative and complementary green eco-biocides and disinfection innovation. Fungi present challenges for cleaning, disinfection and sterilization of reusable medical devices such as endoscopes where they (example, Aspergillus and Candida species) can be protected when harboured in build-up biofilm from lethal processing. Information on the efficacy of established disinfection and sterilization technologies to address fungal pathogens including bottleneck areas that present high risk to patients is lacking. There is a need to address risk mitigation and modelling to inform efficacy of appropriate intervention technologies that must consider all contributing factors where there is potential to adopt digital technologies to enable real-time analysis of big data, such as use of artificial intelligence and machine learning. International consensus on standardised protocols for developing and reporting on appropriate alternative eco-solutions must be reached, particularly in order to address fungi with increasing drug resistance where research and innovation can be enabled using a One Health approach.
Collapse
Affiliation(s)
- Mary Garvey
- Department of Life Science, Atlantic Technological University, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo, Ireland
| | - Elaine Meade
- Department of Life Science, Atlantic Technological University, Sligo, Ireland; Centre for Precision Engineering, Materials and Manufacturing Research (PEM), Atlantic Technological University, Sligo, Ireland
| | - Neil J Rowan
- Bioscience Research Institute, Technological University of the Shannon Midlands Midwest, Athlone, Ireland; Centre for Decontamination, Sterilization and Biosecurity, Technological University of the Shannon Midlands Midwest, Athlone, Ireland; Empower Eco Sustainability Hub, Technological University of the Shannon Midlands Midwest, Athlone, Ireland.
| |
Collapse
|
23
|
Odinga ES, Zhou X, Mbao EO, Ali Q, Waigi MG, Shiraku ML, Ling W. Distribution, ecological fate, and risks of steroid estrogens in environmental matrices. CHEMOSPHERE 2022; 308:136370. [PMID: 36113656 DOI: 10.1016/j.chemosphere.2022.136370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/25/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Over the past two decades, steroidal estrogens (SEs) such as 17α-ethylestradiol (EE2), 17β-estradiol (E2),17α-estradiol (17α-E2), estriol (E3) and estrone (E1) have elicited worldwide attention due to their potentially harmful effects on human health and aquatic organisms even at low concentration ng/L. Natural steroidal estrogens exhibit greater endocrine disruption potency due to their high binding effect on nuclear estrogen receptors (ER). However, less has been explored regarding their associated environmental risks and fate. A comprehensive bibliometric study of the current research status of SEs was conducted using the Web of Science to assess the development trends and current knowledge of SEs in the last two decades, from 2001 to 2021 October. The number of publications has tremendously increased from 2003 to 2021. We summarized the contamination status and the associated ecological risks of SEs in different environmental compartments. The results revealed that SEs are ubiquitous in surface waters and natural SEs are most studied. We further carried out an in-depth evaluation and synthesis of major research hotspots and the dominant SEs in the matrices were E1, 17β-E2, 17α-E2, E3 and EE2. Nonetheless, investigations of SEs in soils, groundwater, and sediments remain scarce. This study elucidates SEs distribution, toxicological risks, ecological fate and mitigation measures, which will be beneficial for future monitoring, management, and risk assessment. Further studies are recommended to assess the toxicological risks of different SEs in complex environmental matrices to pursue a more precise and holistic quantitative estimation of estrogenic risk.
Collapse
Affiliation(s)
- Emmanuel Stephen Odinga
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xian Zhou
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Evance Omondi Mbao
- Department of Geosciences and the Environment, The Technical University of Kenya, PO Box 52428-00200, Nairobi, Kenya
| | - Qurban Ali
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing, 210095, China
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Margaret L Shiraku
- State Key Laboratory of Cotton Biology, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, China
| | - Wanting Ling
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
24
|
Steinhaeuser L, Westphalen T, Kaminski K, Piechotta C. Evaluation, comparison and combination of molecularly imprinted polymer solid phase extraction and classical solid phase extraction for the preconcentration of endocrine disrupting chemicals from representative whole water samples. TALANTA OPEN 2022. [DOI: 10.1016/j.talo.2022.100163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
25
|
Fehrenbach GW, Pogue R, Carter F, Clifford E, Rowan N. Implications for the seafood industry, consumers and the environment arising from contamination of shellfish with pharmaceuticals, plastics and potentially toxic elements: A case study from Irish waters with a global orientation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157067. [PMID: 35780875 DOI: 10.1016/j.scitotenv.2022.157067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/09/2022] [Accepted: 06/26/2022] [Indexed: 06/15/2023]
Abstract
Shellfish are a rich source of minerals, B-vitamins and omega-3 to the human diet. The global population is expected to reach 9.6 billion people by 2050 where there will be increased demand for shellfish and for sustained improvements in harvesting. The production of most consumed species of shellfish is sea-based and are thus susceptible to in situ environmental conditions and water quality. Population growth has contributed to expansion of urbanization and the generation of effluent and waste that reaches aquatic environments, potentially contaminating seafood by exposure to non-treated effluents or inappropriately discarded waste. Environmental contaminants as microplastics (MP), pharmaceuticals (PHAR) and potentially toxic contaminants (PTE) are being identified in all trophic levels and are a current threat to both shellfish and consumer safety. Immunotoxicity, genotoxicity, fertility reduction, mortality and bioaccumulation of PTE are representative examples of the variety of effects already established in contaminated shellfish. In humans, the consumption of contaminated shellfish can lead to neurological and developmental effects, reproductive and gastrointestinal disorders and in extreme cases, death. This timely review provides insights into the presence of MP, PHAR and PTE in shellfish, and estimate the daily intake and hazard quotient for consumption behaviours. Alternatives approaches for seafood depuration that encompass risk reduction are addressed, to reflect state of the art knowledge from a Republic of Ireland perspective. Review of best-published literature revealed that MP, PHAR and PTE contaminants were detected in commercialised species of shellfish, such as Crassostrea and Mytilus. The ability to accumulate these contaminants by shellfish due to feeding characteristics is attested by extensive in vitro studies. However, there is lack of knowledge surrounding the distribution of these contaminants in the aquatic environment their interactions with humans. Preventive approaches including risk assessment are necessary to safeguard the shellfish industry and the consumer.
Collapse
Affiliation(s)
- Gustavo Waltzer Fehrenbach
- Bioscience Research Institute, Technological University of the Shannon - Midlands Midwest, N37 F6D7, Ireland.
| | - Robert Pogue
- Bioscience Research Institute, Technological University of the Shannon - Midlands Midwest, N37 F6D7, Ireland; Post-Graduate Program in Genomic Sciences and Biotechnology, Catholic University of Brasilia, 71966-700, Brazil
| | - Frank Carter
- Coney Island Shellfish Ltd., Sligo F91YH56, Ireland
| | - Eoghan Clifford
- School of Engineering, National University of Ireland Galway, H91HX31, Ireland; Ryan Institute, National University of Ireland Galway, Ireland
| | - Neil Rowan
- Bioscience Research Institute, Technological University of the Shannon - Midlands Midwest, N37 F6D7, Ireland; Empower Eco™ Sustainability Hub, Technological University of the Shannon - Midlands Midwest, N37F6D7, Ireland
| |
Collapse
|
26
|
Azuma T, Murakami M, Sonoda Y, Ozaki A, Hayashi T. Occurrence and Quantitative Microbial Risk Assessment of Methicillin-Resistant Staphylococcus aureus (MRSA) in a Sub-Catchment of the Yodo River Basin, Japan. Antibiotics (Basel) 2022; 11:1355. [PMID: 36290013 PMCID: PMC9598951 DOI: 10.3390/antibiotics11101355] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 11/24/2022] Open
Abstract
The occurrence of Staphylococcus aureus (S. aureus) and methicillin-resistant S. aureus (MRSA) in a sub-catchment of the Yodo River Basin, a representative water system of a drinking water source in Japan, was investigated. The chromogenic enzyme-substrate medium method was used for the detection of S. aureus and MRSA by the presence or absence of antimicrobials in the medium for viable bacteria in a culture-based setting. The contributions of S. aureus and MRSA from wastewater to the rivers were estimated based on mass flux-based analysis, and quantitative microbial risk assessment (QMRA) was further conducted for S. aureus and MRSA in river environments. The mean abundance of S. aureus and MRSA was 31 and 29 CFU/mL in hospital effluent, 124 and 117 CFU/mL in sewage treatment plant (STP) influent, 16 and 13 CFU/mL in STP effluent, and 8 and 9 CFU/mL in river water, respectively. Contribution of the pollution load derived from the target STP effluent to river water ranged from 2% to 25%. The QMRA showed that to achieve the established health benchmarks, the drinking water treatment process would need to yield 1.7 log10 and 2.9 log10 inactivation in terms of infection risk and disability-adjusted life year (DALY) indexes, respectively. These findings highlight the link between medical environment and the importance of environmental risk management for antimicrobial-resistant bacteria in aquatic environments.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Japan
| | - Michio Murakami
- Center for Infectious Disease Education and Research (CiDER), Osaka University, Techno Alliance C209, 2-8 Yamadaoka, Suita 565-0871, Japan
| | - Yuki Sonoda
- Nursing Unit, Jyoban Hospital of Tokiwa Foundation, 57 Kaminodai, Jyoban-Kamiyunaga-Yamachi, Iwaki 972-8322, Japan
| | - Akihiko Ozaki
- Department of Breast and Thyroid Surgery, Jyoban Hospital of Tokiwa Foundation, 57 Kaminodai, Jyoban-Kamiyunaga-Yamachi, Iwaki 972-8322, Japan
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University, 1 Hikariga-oka, Fukushima 960-1295, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki 569-1094, Japan
- Department of Food and Nutrition Management Studies, Faculty of Human Development, Soai University, 4-4-1 Nankonaka, Osaka 559-0033, Japan
| |
Collapse
|
27
|
Azuma T, Uchiyama T, Zhang D, Usui M, Hayashi T. Distribution and characteristics of carbapenem-resistant and extended-spectrum β-lactamase (ESBL) producing Escherichia coli in hospital effluents, sewage treatment plants, and river water in an urban area of Japan. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156232. [PMID: 35623520 DOI: 10.1016/j.scitotenv.2022.156232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 05/21/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
Occurrence of profiles of the carbapenem-resistant Escherichia coli (CRE-E) and extended-spectrum β-lactamase (ESBL)-producing Escherichia coli (ESBL-E) in an urban river in a sub-catchment of the Yodo River Basin, one of the representative water systems of Japan was investigated. We conducted seasonal and year-round surveys for the antimicrobial-resistant bacteria (AMRB) and antimicrobial-resistance genes (AMRGs) in hospital effluents, sewage treatment plant (STP) wastewater, and river water; subsequently, contributions to wastewater discharge into the rivers were estimated by analyses based on the mass flux. Furthermore, the characteristics of AMRB in the water samples were evaluated on the basis of antimicrobial susceptibility tests. CRE-E and ESBL-E were detected in all water samples with mean values 11 and 1900 CFU/mL in the hospital effluent, 58 and 4550 CFU/mL in the STP influent, not detected to 1 CFU/mL in the STP effluent, and 1 and 1 CFU/mL in the STP discharge into the river, respectively. Contributions of the pollution load derived from the STP effluent discharged into the river water were 1 to 21%. The resistome profiles for blaIMP, blaTEM, and blaCTX-M genes in each water sample showed that AMRGs were not completely removed in the wastewater treatment process in the STP, and the relative abundances of blaIMP, blaTEM, and blaCTX-M genes were almost similar (P<0.05). Susceptibility testing of antimicrobial-resistant E. coli isolates showed that CRE-E and ESBL-E detected in wastewaters and river water were linked to the prevalence of AMRB in clinical settings. These results suggest the importance of conducting environmental risk management of AMRB and AMRGs in the river environment. To our knowledge, this is the first detailed study that links the medical environment to CRE-E and ESBL-E for evaluating the AMRB and AMRGs in hospital effluents, STP wastewater, and river water at the basin scale on the basis of mass flux as well as the contributions of CRE-E and ESBL-E to wastewater discharge into the river.
Collapse
Affiliation(s)
- Takashi Azuma
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Tomoharu Uchiyama
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Dongsheng Zhang
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Masaru Usui
- Food Microbiology and Food Safety, Department of Health and Environmental Sciences, School of Veterinary Medicine, Rakuno Gakuen University, 582 Midorimachi, Bunkyodai, Ebetsu, Hokkaido 069-8501, Japan
| | - Tetsuya Hayashi
- Department of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan; Faculty of Human Development, Department of Food and Nutrition Management Studies, Soai University, 4-4-1 Nankonaka, Osaka Suminoeku, Osaka 559-0033, Japan
| |
Collapse
|
28
|
Molybdenum Modified Sol–Gel Synthesized TiO2 for the Photocatalytic Degradation of Carbamazepine under UV Irradiation. Processes (Basel) 2022. [DOI: 10.3390/pr10061113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Pharmaceutical CEC compounds are a potential threat to man, animals, and the environment. In this study, a sol–gel-derived TiO2 (SynTiO2) was produced and subsequently sonochemically doped with a 1.5 wt% Mo to obtain the final product (Mo (1.5 wt%)/SynTiO2). The as-prepared materials were characterized for phase structure, surface, and optical properties by XRD, TEM, N2 adsorption–desorption BET isotherm at 77 K, and PSD by BJH applications, FTIR, XPS, and UV-Vis measurements in DRS mode. Estimated average crystallite size, particle size, surface area, pore-volume, pore size, and energy bandgap were 16.10 nm, 24.55 nm, 43.30 m2/g, 0.07 cm3/g, 6.23 nm, and 3.05 eV, respectively, for Mo/SynTiO2. The same structural parameters were also estimated for the unmodified SynTiO2 with respective values of 14.24 nm, 16.02 nm, 133.87 m2/g, 0.08 cm3/g, 2.32 nm, and 3.3 eV. Structurally improved (Mo (1.5 wt%)/SynTiO2) achieved ≈100% carbamazepine (CBZ) degradation after 240 min UV irradiation under natural (unmodified) pH conditions. Effects of initial pH, catalyst dosage, initial pollutant concentration, chemical scavengers, contaminant ions, hydrogen peroxide (H2O2), and humic acid (HA) were also investigated and discussed. The chemical scavenger test was used to propose involved photocatalytic degradation process mechanism of CBZ.
Collapse
|
29
|
Biodegradation and Metabolic Pathway of 17β-Estradiol by Rhodococcus sp. ED55. Int J Mol Sci 2022; 23:ijms23116181. [PMID: 35682859 PMCID: PMC9181579 DOI: 10.3390/ijms23116181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/26/2022] [Accepted: 05/29/2022] [Indexed: 01/25/2023] Open
Abstract
Endocrine disrupting compounds (EDCs) in the environment are considered a motif of concern, due to the widespread occurrence and potential adverse ecological and human health effects. The natural estrogen, 17β-estradiol (E2), is frequently detected in receiving water bodies after not being efficiently removed in conventional wastewater treatment plants (WWTPs), promoting a negative impact for both the aquatic ecosystem and human health. In this study, the biodegradation of E2 by Rhodococcus sp. ED55, a bacterial strain isolated from sediments of a discharge point of WWTP in Coloane, Macau, was investigated. Rhodococcus sp. ED55 was able to completely degrade 5 mg/L of E2 in 4 h in a synthetic medium. A similar degradation pattern was observed when the bacterial strain was used in wastewater collected from a WWTP, where a significant improvement in the degradation of the compound occurred. The detection and identification of 17 metabolites was achieved by means of UPLC/ESI/HRMS, which proposed a degradation pathway of E2. The acute test with luminescent marine bacterium Aliivibrio fischeri revealed the elimination of the toxicity of the treated effluent and the standardized yeast estrogenic (S-YES) assay with the recombinant strain of Saccharomyces cerevisiae revealed a decrease in the estrogenic activity of wastewater samples after biodegradation.
Collapse
|
30
|
O'Neill EA, Morse AP, Rowan NJ. Effects of climate and environmental variance on the performance of a novel peatland-based integrated multi-trophic aquaculture (IMTA) system: Implications and opportunities for advancing research and disruptive innovation post COVID-19 era. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 819:153073. [PMID: 35038521 DOI: 10.1016/j.scitotenv.2022.153073] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/07/2022] [Accepted: 01/08/2022] [Indexed: 06/14/2023]
Abstract
Advancing wet peatland 'paludiculture' innovation present enormous potential to sustain carbon-cycles, reduce greenhouse-gas (GHG) gas emissions and to transition communities to low-carbon economies; however, there is limited scientific-evidence to support and enable direct commercial viability of eco-friendly products and services. This timely study reports on a novel, paludiculture-based, integrated-multi-trophic-aquaculture (IMTA) system for sustainable food production in the Irish midlands. This freshwater IMTA process relies on a naturally occurring ecosystem of microalgae, bacteria and duckweed in ponds for managing waste and water quality that is powered by wind turbines; however, as it is recirculating, it does not rely upon end-of-pipe solutions and does not discharge effluent to receiving waters. This constitutes the first report on the effects of extreme weather events on the performance of this IMTA system that produces European perch (Perca fluviatilis), rainbow trout (Oncorhynchus mykiis) during Spring 2020. Sampling coincided with lockdown periods of worker mobility restriction due to COVID-19 pandemic. Observations revealed that the frequency and intensity of storms generated high levels of rainfall that disrupted the algal and bacterial ecosystem in the IMTA leading to the emergence and predominance of toxic cyanobacteria that caused fish mortality. There is a pressing need for international agreement on standardized set of environmental indicators to advance paludiculture innovation that addresses climate-change and sustainability. This study describes important technical parameters for advancing freshwater aquaculture (IMTA), which can be future refined using real-time monitoring-tools at farm level to inform management decision-making based on evaluating environmental indicators and weather data. The relevance of these findings to informing global sustaining and disruptive research and innovation in paludiculture is presented, along with alignment with UN Sustainable Development goals. This study also addresses global challenges and opportunities highlighting a commensurate need for international agreement on resilient indicators encompassing linked ecological, societal, cultural, economic and cultural domains.
Collapse
Affiliation(s)
- E A O'Neill
- Bioscience Research Institute, Technological University of the Shannon - Midlands and Midwest, University Road, Athlone, Ireland.
| | - A P Morse
- Department of Geography and Planning, School of Environmental Sciences, University of Liverpool, UK
| | - N J Rowan
- Bioscience Research Institute, Technological University of the Shannon - Midlands and Midwest, University Road, Athlone, Ireland
| |
Collapse
|
31
|
Mauro M, Cammilleri G, Celi M, Cicero A, Arizza V, Ferrantelli V, Vazzana M. Effects of diclofenac on the gametes and embryonic development of Arbacia lixula. THE EUROPEAN ZOOLOGICAL JOURNAL 2022. [DOI: 10.1080/24750263.2022.2059582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
Affiliation(s)
- M. Mauro
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| | - G. Cammilleri
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Palermo, Italia
| | - M. Celi
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| | - A. Cicero
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Palermo, Italia
| | - V. Arizza
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| | - V. Ferrantelli
- Istituto Zooprofilattico Sperimentale della Sicilia A. Mirri, Palermo, Italia
| | - M. Vazzana
- Tecnologie Biologiche, Chimiche e Farmaceutiche (STEBICEF), Università di Palermo, Dipartimento di Scienze e, Palermo, Italia
| |
Collapse
|
32
|
Duarte DJ, Niebaum G, Lämmchen V, van Heijnsbergen E, Oldenkamp R, Hernández‐Leal L, Schmitt H, Ragas AMJ, Klasmeier J. Ecological Risk Assessment of Pharmaceuticals in the Transboundary Vecht River (Germany and The Netherlands). ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:648-662. [PMID: 33818825 PMCID: PMC9290585 DOI: 10.1002/etc.5062] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Revised: 01/18/2021] [Accepted: 03/31/2021] [Indexed: 05/16/2023]
Abstract
Millions of people rely on active pharmaceutical ingredients (APIs) to prevent and cure a wide variety of illnesses in humans and animals, which has led to a steadily increasing consumption of APIs across the globe and concurrent releases of APIs into the environment. In the environment, APIs can have a detrimental impact on wildlife, particularly aquatic wildlife. Therefore, it is essential to assess their potential adverse effects to aquatic ecosystems. The European Water Framework Directive sets out that risk assessment should be performed at the catchment level, crossing borders where needed. The present study defines ecological risk profiles for surface water concentrations of 8 APIs (carbamazepine, ciprofloxacin, cyclophosphamide, diclofenac, erythromycin, 17α-ethinylestradiol, metformin, and metoprolol) in the Vecht River, a transboundary river that crosses several German and Dutch regions. Ultimately, 3 main goals were achieved: 1) the geo-referenced estimation of API concentrations in surface water using the geography-referenced regional exposure assessment tool for European rivers; 2) the derivation of new predicted-no-effect concentrations for 7 of the studied APIs, of which 3 were lower than previously derived values; and 3) the creation of detailed spatially explicit ecological risk profiles of APIs under 2 distinct water flow scenarios. Under average flow conditions, carbamazepine, diclofenac, and 17α-ethinylestradiol were systematically estimated to surpass safe ecological concentration thresholds in at least 68% of the catchment's water volume. This increases to 98% under dry summer conditions. Environ Toxicol Chem 2022;41:648-662. © 2021 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals LLC on behalf of SETAC.
Collapse
Affiliation(s)
- Daniel J. Duarte
- Institute for Water & Wetland Research, Department of Environmental ScienceRadboud University NijmegenNijmegenThe Netherlands
| | - Gunnar Niebaum
- Institute of Environmental Systems ResearchOsnabrück UniversityOsnabrückGermany
| | - Volker Lämmchen
- Institute of Environmental Systems ResearchOsnabrück UniversityOsnabrückGermany
| | - Eri van Heijnsbergen
- Wetsus, European Centre of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
| | - Rik Oldenkamp
- Department of Global Health, Amsterdam Institute for Global Health and Development, Amsterdam UMCUniversity of AmsterdamAmsterdamThe Netherlands
| | - Lucia Hernández‐Leal
- Wetsus, European Centre of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
| | - Heike Schmitt
- Wetsus, European Centre of Excellence for Sustainable Water TechnologyLeeuwardenThe Netherlands
- Department of Infectious Diseases and ImmunologyFaculty of Veterinary MedicineUtrecht UniversityUtrechtThe Netherlands
- Institute for Risk Assessment SciencesUtrecht UniversityUtrechtThe Netherlands
| | - Ad M. J. Ragas
- Institute for Water & Wetland Research, Department of Environmental ScienceRadboud University NijmegenNijmegenThe Netherlands
- Department of Environmental Sciences, Faculty of ScienceOpen UniversityHeerlenThe Netherlands
| | - Jörg Klasmeier
- Institute of Environmental Systems ResearchOsnabrück UniversityOsnabrückGermany
| |
Collapse
|
33
|
Barcellos DDS, Procopiuck M, Bollmann HA. Management of pharmaceutical micropollutants discharged in urban waters: 30 years of systematic review looking at opportunities for developing countries. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 809:151128. [PMID: 34710408 DOI: 10.1016/j.scitotenv.2021.151128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/17/2021] [Accepted: 10/17/2021] [Indexed: 06/13/2023]
Abstract
Pharmaceutical micropollutants' contamination of urban waters has been studied globally for decades, but the concentration of innovations in management initiatives is still in developed economies. The gap between the locus of innovations in pharmaceuticals and the relative stagnation in less developed economies to manage waste originating in this activity seems fruitful for investigations on innovation in integrated micropollutant management strategies. These tensions allow for advances in current knowledge for environmental management and, particularly, finding solutions for the contamination by pharmaceutical micropollutants of urban water bodies in developing countries. We aim to list the main strategies for managing pharmaceutical micropollutants discussed to point out opportunities for developing countries to advance in this direction. Methodologically, we conducted a systematic literature review from 1990 to 2020, covering 3027 documents on "pharmaceutical micropollutants management." The framework formed by the macro-approach to integrated management operationalized by the dimensional micro-approaches: technical, organizational, community, and governmental allowed us to understand that (1) the management of pharmaceutical micropollutants tends to occur through a technical approach centered on the removal of aquatic matrices, green chemistry, and urine diversion; (2) management with an organizational approach has enabled removing drugs from water bodies by drug take-back program, collaborative projects, drug use reduction, and better organizational practices; (3) the community approach have helped minimize this type of pollution by reducing the consumption of medicines and the proper destination for medicines that are no longer in use. Finally, the government management approach emerges as a source of legal, economic, and informational instruments to reduce pollution by pharmaceutical micropollutants. Furthermore, these management approaches allowed us to identify 15 opportunities for possible adjustments for developing societies. These opportunities can be promising for practices and research and, in the medium term, contribute to minimizing pollution by pharmaceutical micropollutants in urban waters.
Collapse
Affiliation(s)
- Demian da Silveira Barcellos
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| | - Mario Procopiuck
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| | - Harry Alberto Bollmann
- Graduate Program in Urban Management (PPGTU), Pontifical Catholic University of Paraná (PUCPR), 1155 Imaculada Conceição St, Curitiba, Parana, Brazil.
| |
Collapse
|
34
|
Assessing Occurrence and Biological Consequences of Contaminants of Emerging Concern on Oceanic Islands. WATER 2022. [DOI: 10.3390/w14030275] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Freshwater streams on oceanic islands serve critical ecological and economic functions. However, these are underrepresented in assessments of pollution from contaminants of emerging concern (CEC). Furthermore, freshwater streams and their endemic fauna often have characteristics that are distinct from those of continental streams and model species, calling extrapolations from studies of such systems into question for island streams. In the current study, we assessed the presence of CEC across three sampling events and five freshwater streams on the Island of Hawai’i. We also exposed juveniles of the native fish species Sicyopterus stimpsoni to a mixture of commonly co-occurring CEC for 96 h in static renewal experiments, testing for impacts of CEC in two ecologically relevant assays of functional performance. CEC from multiple sources were ubiquitous in Hawaiian streams, including human-use pharmaceuticals, agricultural herbicides, and industrial runoff. Concentrations of CEC were comparable to published studies from continental streams, exceeding total concentrations of 1000 ng/L for the eight quantified CEC in four samples, and approaching 2500 ng/L in one sample. Effects on exposed fish were subtle and limited to treatments with higher CEC concentrations but indicated potential impacts of CEC on locomotor performance. These results indicate that Hawaiian streams follow a global trend of widespread freshwater pollution by CEC that are accompanied by subtle effects on native fish species and highlight the need for the inclusion of endemic species and ecologically relevant assays when assessing the effects of contaminants in island habitats.
Collapse
|
35
|
Chabazite from Campanian Ignimbrite Tuff as a Potential and Sustainable Remediation Agent for the Removal of Emerging Contaminants from Water. SUSTAINABILITY 2022. [DOI: 10.3390/su14020725] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The technological performance of a chabazite-rich rock belonging to the Campanian Ignimbrite formation, outcropping in the nearby of San Mango sul Calore (southern Italy), has been evaluated for the sorption and release of ibuprofen sodium salt after a surface modification of the starting geomaterial using two different chlorinated surfactants. Equilibrium sorption isotherms and in vitro loading tests demonstrated that the maximum sorption capacities of this geomaterial reach up to 24.5 and 13.5 mg/g, respectively, for zeolite modified with cetylpyridinium and benzalkonium. These results, obtained by non-linear mathematical modeling of the experimental curves, are definitely compatible with the concentrations of the most common non-steroidal anti-inflammatory drugs (such as ibuprofen) in wastewaters, which have been recently considered as contaminants of emerging concern. This investigation also encourages a new possible sustainable exploitation of the lithified yellow facies of Campanian Ignimbrite, although future developments will be focused on using more stable and eco-friendlier two-tailed surfactants.
Collapse
|
36
|
Gudda FO, Ateia M, Waigi MG, Wang J, Gao Y. Ecological and human health risks of manure-borne steroid estrogens: A 20-year global synthesis study. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 301:113708. [PMID: 34619591 DOI: 10.1016/j.jenvman.2021.113708] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Revised: 08/17/2021] [Accepted: 09/06/2021] [Indexed: 06/13/2023]
Abstract
Estrone (E1), 17α-estradiol (17α-E2), 17β-estradiol (17β-E2), and estriol (E3) are persistent in livestock manure and present serious pollution concerns because they can trigger endocrine disruption at part-per-trillion levels. This study conducted a global analysis of estrogen occurrence in manure using all literature data over the past 20 years. Besides, predicted environmental concentration (PEC) in soil and water was estimated using fate models, and risk/harm quotient (RQ/HQ) methods were applied to screen risks on children as well as on sensitive aquatic and soil species. The estradiol equivalent values ranged from 6.6 to 4.78 × 104 ng/g and 12.4 to 9.46 × 104 ng/L in the solid and liquid fraction. The estrogenic potency ranking in both fractions were 17β-E2> E1>17α-E2>E3. RQs of measured environmental concentration in the liquid fraction pose medium (E3) to high risk (E1, 17α-E2 & 17β-E2) to fish but are lower than risks posed by xenoestrogens. However, the RQ of PECs on both soil organisms and aquatic species were insignificant (RQ < 0.01), and HQs of contaminated water and soil ingestion were within acceptable limits. Nevertheless, meticulous toxicity studies are still required to confirm (or deny) the findings because endocrine disruption potency from mixtures of these classes of compounds cannot be ignored.
Collapse
Affiliation(s)
- Fredrick Owino Gudda
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China; Faculty of Environment and Resource Development, Department of Environmental Sciences, Egerton University, Box 536, Egerton, 20115, Kenya
| | - Mohamed Ateia
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, United States
| | - Michael Gatheru Waigi
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Jian Wang
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Yanzheng Gao
- Institute of Organic Contaminant Control and Soil Remediation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
37
|
Pulicharla R, Proulx F, Behmel S, Sérodes JB, Rodriguez MJ. Spatial and temporal variability of contaminants of emerging concern in a drinking water source. RSC Adv 2022; 12:20876-20885. [PMID: 35919150 PMCID: PMC9301962 DOI: 10.1039/d2ra02962f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 12/07/2022] Open
Abstract
The spatial–temporal behaviour of contaminants of emerging concern (CECs) are not well-documented in drinking water sources, including in Quebec, Canada.
Collapse
Affiliation(s)
- Rama Pulicharla
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario, M3J 1P3, Canada
| | - Francois Proulx
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
| | | | - Jean-B. Sérodes
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
- Département de Génie civil et génie des eaux, Pavillon Pouliot, Université Laval, Québec, QC G1V 0A6, Canada
| | - Manuel J. Rodriguez
- École supérieure d'aménagement du territoire et de développement régional, Pavillon Félix-Antoine-Savard, Université Laval, Bureau 1616, 2325, rue des Bibliothèques, Québec, QC G1V 0A6, Canada
| |
Collapse
|
38
|
Sathishkumar P, Mohan K, Meena RAA, Balasubramanian M, Chitra L, Ganesan AR, Palvannan T, Brar SK, Gu FL. Hazardous impact of diclofenac on mammalian system: Mitigation strategy through green remediation approach. JOURNAL OF HAZARDOUS MATERIALS 2021; 419:126135. [PMID: 34157463 DOI: 10.1016/j.jhazmat.2021.126135] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 04/24/2021] [Accepted: 05/12/2021] [Indexed: 05/22/2023]
Abstract
Diclofenac is an anti-inflammatory drug used as an analgesic. It is often detected in various environmental sources around the world and is considered as one of the emerging contaminants (ECs). This paper reviews the distribution of diclofenac at high concentrations in diverse environments and its adverse ecological impact. Recent studies observed strong evidence of the hazardous effect of diclofenac on mammals, including humans. Diclofenac could cause gastrointestinal complications, neurotoxicity, cardiotoxicity, hepatotoxicity, nephrotoxicity, hematotoxicity, genotoxicity, teratogenicity, bone fractures, and skin allergy in mammals even at a low concentration. Collectively, this comprehensive review relates the mode of toxicity, level of exposure, and route of administration as a unique approach for addressing the destructive consequence of diclofenac in mammalian systems. Finally, the mitigation strategy to eradicate the diclofenac toxicity through green remediation is critically discussed. This review will undoubtedly shed light on the toxic effects of pseudo-persistent diclofenac on mammals as well as frame stringent guidelines against its common usage.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China
| | - Kannan Mohan
- PG and Research Department of Zoology, Sri Vasavi College, Erode, Tamil Nadu 638 316, India
| | | | - Murugesan Balasubramanian
- Department of Biotechnology, K.S. Rangasamy College of Technology, Tiruchengode 637 215, Tamil Nadu, India
| | - Loganathan Chitra
- Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Abirami Ramu Ganesan
- Group of Fermentation and Distillation, Laimburg Research Center, Vadena (BZ), Italy
| | | | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
39
|
Movahed SMA, Sarmah AK. Global trends and characteristics of nano- and micro-bubbles research in environmental engineering over the past two decades: A scientometric analysis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 785:147362. [PMID: 33957600 DOI: 10.1016/j.scitotenv.2021.147362] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The present study has two primary goals, the first goal is to investigate a bibliometric analysis and assess the trends to evaluate the global scientific production of microbubbles and nanobubbles from 2000 to 2020. The aim is to elucidate the cornucopia of benefits the two technologies (micro and nanobubbles) can offer in environmental sciences and environmental amelioration such as wastewater treatment, seed germination, separation processes, etc. The second goal is to explicate the reason behind every chart and trend through environmental engineering perspectives, which can confer value to each analysis. The data was acquired from the Web of Science and was delineated by VOS viewer software and GraphPad Prism. Considering 1034 publications in the area of micro-and nanobubbles, this study was conducted on four major aspects, including publication growth trend, countries contribution assessment, categories, journals and productivity, and keywords co-occurrence network analysis. This article revealed a notable growth in microbubbles and nanobubbles-related publications and a general growth trend in published articles in a 20-year period. China had the most significant collaboration with other countries, followed by the USA and Japan. The most dominant categories for microbubbles were environmental sciences and environmental engineering comprising 22.5% of the total publications, while multidisciplinary subjects such as nanotechnology and nanosciences (8%) were among the dominant categories for nanobubbles. Keyword's analysis results showed that microbubbles had reached the apex since their discovery. Consequently, they are being used mostly in water/wastewater treatment or environmental improvement. On the other hand, nanobubbles are still in their infancy, and their pervasive use is yet to be fully materialized. Most of the publications are still striving to understand the nature of nanobubbles and their stability; however, a critical analysis showed that during the past two years, the trend of using nanobubbles as a cost-effective and environmentally friendly approach has already begun.
Collapse
Affiliation(s)
- Saman Moftakhari Anasori Movahed
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand
| | - Ajit K Sarmah
- Department of Civil and Environmental Engineering, The Faculty of Engineering, The University of Auckland, Private Bag 92019, Auckland 1142, New Zealand.
| |
Collapse
|
40
|
García-Cambero JP, Corpa C, Lucena MA, Méndez P, Sierra P, Galán-Madruga D, Aguayo S. Presence of diclofenac, estradiol, and ethinylestradiol in Manzanares River (Spain) and their toxicity to zebrafish embryo development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:49921-49935. [PMID: 33948840 DOI: 10.1007/s11356-021-14167-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 04/26/2021] [Indexed: 06/12/2023]
Abstract
Diclofenac (DCF), 17-β-estradiol (E2), and 17-α-ethinylestradiol (EE2) are emerging pollutants included in the first watch list agreed by European countries and set in the EU Water Directive. The objective of the present study was the analytical monitoring of DCF, E2, and EE2 in surface water and sediment of the Manzanares River in a stretch that crosses the city of Madrid, Spain, and to assess whether such environmental levels could affect the development of aquatic vertebrates through a zebrafish embryo-larval assay. Samples taken during two campaigns in the spring of 2015 were analyzed for DCF, E2, and EE2 by LC-MS or GC-MS. The levels of E2 and EE2 measured in surface water and sediments of the Manzanares were within the ranges reported in other Spanish and European studies; however, DCF levels were higher in the present study. The zebrafish embryos exposed to the Manzanares River water (0-144h) showed lethal effects and sublethal effects (developmental delay, bradycardia, and reduced locomotion). Nevertheless, these effects were not primarily associated with the levels of DCF, E2, and EE2 present in the Manzanares River, because representative mixtures of the field study prepared in the laboratory did not exhibit such toxicity to the zebrafish embryos.
Collapse
Affiliation(s)
- Jesús Pablo García-Cambero
- Area of Environmental Toxicology, National Centre for Environmental Health, Institute of Health Carlos III, Majadahonda, Spain
| | - Cristina Corpa
- Unity of Antibacterial Resistance, Spanish Food Safety and Nutrition Agency, Madrid, Spain
| | - Miguel Angel Lucena
- Quality Assurance Programme, National Centre for Environmental Health, Institute of Health Carlos III, Majadahonda, Spain
| | - Paloma Méndez
- Unity of Antibacterial Resistance, Spanish Food Safety and Nutrition Agency, Madrid, Spain
| | - Pilar Sierra
- Unity of Antibacterial Resistance, Spanish Food Safety and Nutrition Agency, Madrid, Spain
| | - David Galán-Madruga
- Department of Atmospheric Pollution, National Environment Health Center, Carlos III Health Institute, 28220, Madrid, Spain.
- Centro Nacional de Sanidad Ambiental, Instituto de Salud Carlos III, Carretera de Majadahonda a Pozuelo, km 2, 28220 Majadahonda, Madrid, Spain.
| | - Sonia Aguayo
- Unity of Antibacterial Resistance, Spanish Food Safety and Nutrition Agency, Madrid, Spain
| |
Collapse
|
41
|
A simultaneous extraction and enrichment method for rapid detection of polar chlorophenoxy acid and non-steroidal anti-inflammatory drugs from wastewater based on low-generation dendrimer poly(propylene imine). Microchem J 2021. [DOI: 10.1016/j.microc.2021.106454] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
42
|
Nas B, Dolu T, Argun ME, Yel E, Ateş H, Koyuncu S. Comparison of advanced biological treatment and nature-based solutions for the treatment of pharmaceutically active compounds (PhACs): A comprehensive study for wastewater and sewage sludge. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146344. [PMID: 34030227 DOI: 10.1016/j.scitotenv.2021.146344] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2020] [Revised: 02/11/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Passing of pharmaceutical residues into environment in an uncontrolled manner as a result of continuous increase in drug consumption across the globe has become a threatening problem for the ecosystems and almost all living creatures. In this study, diclofenac (DCF), carbamazepine (CBZ), 17β-estradiol (17β-E2) and 17α-ethynylestradiol (EE2) belonging to different therapeutic classes were investigated simultaneously in advanced biological treatment and nature-based treatments during 12-months sampling campaign. In this context, behavior patterns of pharmaceutically active compounds (PhACs) throughout the both wastewater and sludge lines in advanced biological wastewater treatment plant (WWTP), wastewater stabilization pond (WSP) and constructed wetland (CW) were discussed in detail based on each treatment processes seasonally. Furthermore, statistically evaluated data obtained in full-scale WWTPs were compared with each other in order to determine the valid removal mechanisms of these pharmaceutical compounds. While DCF and CBZ were detected very intensively both in the wastewater and sludge lines of the investigated WWTPs, steroid hormones,17β-E2 and EE2, were determined below the LOQ value in general. Annual average removal efficiencies achieved in studied WWTPs for DCF ranged between -23.3% (in CW) and 75.2% (in WSP), while annual average removal rates obtained for CBZ varied between -20.7% (in advanced biological treatment) and 10.0% (in CW). It has been found that DCF was highly affected by different wastewater treatment processes applied in the WWTPs compared to CBZ which showed extraordinary resistance to all different treatment processes. Although calculated in different rates for each compounds, biodegradation/biotransformation and sorption onto sewage sludge were determined as the main removal mechanisms for PhACs in plants. Although showed a similar behavior in the sludge dewatering unit (decanter) present in the advanced biological WWTP, quite different behaviors observed in the anaerobic digester for DCF (up to 15% decrease) and CBZ (up to 95% increase). Sorption and desorption behaviors of DCF and CBZ were also evaluated in the sludge treatment processes found in advanced biological WWTP. Percentages of originated extra annual average of pharmaceutical loads were calculated as 0.64% and 0.90% for DCF and CBZ, respectively in the advanced biological WWTP due to the sidestream caused by the sludge dewatering unit.
Collapse
Affiliation(s)
- Bilgehan Nas
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - Taylan Dolu
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - Mehmet Emin Argun
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - Esra Yel
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - Havva Ateş
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - Serdar Koyuncu
- Konya Municipality Water and Sewerage Administration, Konya, Turkey.
| |
Collapse
|
43
|
Rowan NJ, Moral RA. Disposable face masks and reusable face coverings as non-pharmaceutical interventions (NPIs) to prevent transmission of SARS-CoV-2 variants that cause coronavirus disease (COVID-19): Role of new sustainable NPI design innovations and predictive mathematical modelling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 772:145530. [PMID: 33581526 PMCID: PMC7848491 DOI: 10.1016/j.scitotenv.2021.145530] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/25/2021] [Accepted: 01/26/2021] [Indexed: 05/02/2023]
Abstract
Best-published evidence supports the combined use of vaccines with non-pharmaceutical interventions (NPIs), to reduce the relative risk of contracting severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) that causes COVID-19; this will enable a safe transition to achieving herd immunity. Albeit complex, the strategic public health goal is to bundle NPIs to keep the basic reproduction number R0 below one. However, validation of these NPIs is conducted using random clinical trials, which is challenging in a swiftly moving pandemic given the need for recruiting large participant cohort over a longitudinal analysis period. This review highlights emerging innovations for potentially improving the design, functionality and improved waste management of disposable face masks such as filtering facepiece (FFPs) respirators, medical masks, and reusable face coverings to help prevent COVID-19. It describes use of different mathematical models under varying scenarios to inform efficacy of single and combined use of NPIs as important counter-measures to break the cycle of COVID-19 infection including new SARS-CoV-2 variants. Demand for face masks during COVID-19 pandemic keeps increasing, especially for FFPs worn by medical workers. Collaborative and well-conducted randomised controlled trials across borders are required to generate robust data to inform common and consistent policies for COVID-19 and future pandemic planning and management; however, current use of systematic reviews of best available evidence can be considered to guide interim policies.
Collapse
Affiliation(s)
- Neil J Rowan
- Department of Nursing and Healthcare, Athlone Institute of Technology, Ireland; Centre for Disinfection, Sterilization and Biosecurity, Athlone Institute of Technology, Ireland; Empower Eco Sustainability Hub, Lough Boora, Co. Offaly, Ireland; School of Medicine, National University of Ireland Galway, Ireland.
| | - Rafael A Moral
- Department of Mathematics and Statistics, Maynooth University, Ireland
| |
Collapse
|
44
|
Smiljanić D, de Gennaro B, Daković A, Galzerano B, Germinario C, Izzo F, Rottinghaus GE, Langella A. Removal of non-steroidal anti-inflammatory drugs from water by zeolite-rich composites: The interference of inorganic anions on the ibuprofen and naproxen adsorption. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 286:112168. [PMID: 33636624 DOI: 10.1016/j.jenvman.2021.112168] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 02/07/2021] [Accepted: 02/08/2021] [Indexed: 05/27/2023]
Abstract
Composites of two natural zeolites - clinoptilolite and phillipsite, and cationic surfactants (cetylpyridinium chloride and Arquad® 2HT-75) were tested for the removal of two emerging contaminants - ibuprofen and naproxen. For each zeolite-rich rock, two different modifications of the zeolitic surfaces were prepared (monolayer and bilayer surfactant coverage). The influence of the initial drug concentrations and contact time on adsorption of these drugs was followed in buffer solution. The Langmuir model showed the highest adsorption capacity for the composite characterized by a bilayered surfactant at the clinoptilolite surface: 19.7 mg/g and 16.1 mg/g for ibuprofen and naproxen, respectively. Also, to simulate real systems, drug adsorption isotherms were conducted in natural water (Grindstone creek water - Columbia, Missouri, USA) by using the best performing adsorbent; in this case, a slight decrease of drug adsorption was recorded. Kinetic runs were performed in distilled water as well as in the presence of ions such as sulfates and bicarbonates; also, in this case, the interfering agents defined an adsorption decrease for bilayer composites.
Collapse
Affiliation(s)
- Danijela Smiljanić
- Department of Science and Technology, University of Sannio, Via F. De Sanctis, 82100, Benevento, Italy.
| | - Bruno de Gennaro
- DICMAPI, Federico II University, Piazzale V. Tecchio 80, 80125, Naples, Italy
| | - Aleksandra Daković
- Institute for Technology of Nuclear and Other Mineral Raw Materials, Franche d' Epere 86, 11000, Belgrade, Serbia
| | - Barbara Galzerano
- DICMAPI, Federico II University, Piazzale V. Tecchio 80, 80125, Naples, Italy
| | - Chiara Germinario
- Department of Science and Technology, University of Sannio, Via F. De Sanctis, 82100, Benevento, Italy
| | - Francesco Izzo
- Department of Earth, Environment, and Resources Sciences, Federico II University, via Cinthia, 80126, Napoli, Italy
| | - George E Rottinghaus
- Veterinary Medical Diagnostic Laboratory, College of Veterinary Medicine, University of Missouri, Columbia, MO, 65211, USA
| | - Alessio Langella
- Department of Earth, Environment, and Resources Sciences, Federico II University, via Cinthia, 80126, Napoli, Italy
| |
Collapse
|
45
|
Azuma T, Hayashi T. Effects of natural sunlight on antimicrobial-resistant bacteria (AMRB) and antimicrobial-susceptible bacteria (AMSB) in wastewater and river water. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142568. [PMID: 33066962 DOI: 10.1016/j.scitotenv.2020.142568] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/17/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The effects of natural sunlight on antimicrobial-resistant bacteria (AMRB) and antimicrobial-susceptible bacteria (AMSB) were investigated in three types of water: sewage treatment plant (STP) influent, STP secondary effluent, and river water in an urban area of Japan. The AMRB were grouped into six classes: carbapenem-resistant Enterobacteriaceae (CRE), extended-spectrum β-lactamase (ESBL)-producing Enterobacteriaceae (ESBL-E), multi-drug-resistant Acinetobacter (MDRA), multi-drug-resistant Pseudomonas aeruginosa (MDRP), methicillin-resistant Staphylococcus aureus (MRSA), and vancomycin-resistant Enterococcus (VRE). The amount of each group of bacteria present was estimated using specific chromogenic agar formulations. AMRB were detected in all water samples, with 13-2,407 colony-forming units (CFU)/mL in the STP influent, N.D. to 202 CFU/mL in the secondary STP effluent, and N.D. to 207 CFU/mL in the river water. The distribution profiles of the AMSB in water samples were similar to those of AMRB. The degree to which AMRB and AMSB present in the river water were inactivated by natural sunlight was tested as the main aim of this study. Irradiation by natural sunlight was found to inactivate almost 100% of all the target AMRB after 5 h of exposure, with no significant differences (P < 0.05) observed in the effects that sunlight had on AMSB and AMRB. Analysis of the bacterial community structure based on 16S rRNA gene sequencing showed that the structure of the bacterial community was apparently not affected by the exposure to sunlight. In addition, the taxonomic diversity in the STP secondary effluent did not change as a result of additional disinfection with chlorine. The results of this study suggest that it is possible that exposure to sunlight could be used as an alternative to disinfection via chlorine. To our knowledge, this is the first report to demonstrate the mitigation of AMSB and AMRB pollution in a river environment via the exposure to natural sunlight.
Collapse
Affiliation(s)
- Takashi Azuma
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan.
| | - Tetsuya Hayashi
- Osaka University of Pharmaceutical Sciences, 4-20-1 Nasahara, Takatsuki, Osaka 569-1094, Japan
| |
Collapse
|
46
|
Solaun O, Rodríguez JG, Menchaca I, López-García E, Martínez E, Zonja B, Postigo C, López de Alda M, Barceló D, Borja Á, Manzanos A, Larreta J. Contaminants of emerging concern in the Basque coast (N Spain): Occurrence and risk assessment for a better monitoring and management decisions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 765:142765. [PMID: 33077229 DOI: 10.1016/j.scitotenv.2020.142765] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 09/17/2020] [Accepted: 09/28/2020] [Indexed: 05/23/2023]
Abstract
The study of the presence in the aquatic environment of certain substances considered as contaminants of emerging concern (CEC) is a preliminary step to the analysis of the possible harmful effects on aquatic ecosystems and the establishment of the corresponding environmental quality standards. In order to monitor the occurrence of CECs in the aquatic environment, the European Commission established in 2015 and 2018 two watch-list of substances for Union-wide monitoring in the field of water policy (Decision (EU) 2015/495 and Decision (EU) 2018/840). In the coast of the Basque Country, southeast of the Bay of Biscay, 19 of these watch list substances were monitored quarterly from May 2017 to March 2019. Water samples were collected at the effluent of three wastewater treatment plants and five control points associated with receiving waters (transitional and coastal water bodies). The most frequently quantified substances were azithromycin (91%), imidacloprid (82%), clarithromycin (80%), diclofenac (78%) and erythromycin (73%), with frequencies of quantification higher in wastewaters (83-100%) than in receiving waters (70-85%). In general, concentrations in wastewater were also higher than in receiving waters, indicating a dilution effect in the environment. In receiving waters, six out of the nineteen substances monitored exceeded their respective Predicted No-Effect Concentrations: azithromycin (34%), imidacloprid (9%), 17β-estradiol (E2) (9%), clarithromycin (7%), ciprofloxacin (7%), and diclofenac (5%); and therefore, their levels could pose an environmental risk.
Collapse
Affiliation(s)
- Oihana Solaun
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Spain.
| | - José Germán Rodríguez
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Spain
| | - Iratxe Menchaca
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Spain
| | - Ester López-García
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Elena Martínez
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Bozo Zonja
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cristina Postigo
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Damià Barceló
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA), Spanish Council for Scientific Research (CSIC), Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Ángel Borja
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Spain
| | - Alberto Manzanos
- Basque Water Agency (URA), Orio 1-3, 01010, Vitoria-Gasteiz, Spain
| | - Joana Larreta
- AZTI, Marine Research, Basque Research and Technology Alliance (BRTA), Herrera Kaia, Portualdea z/g, 20110, Pasaia, Spain
| |
Collapse
|
47
|
Li W, Zheng X, Tu G, Zhang S, Zhang P. Novel aqueous biphasic system based on ionic liquid for the simultaneous extraction of seven active pharmaceutical ingredients in aquatic environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17853-17864. [PMID: 33403632 DOI: 10.1007/s11356-020-11751-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Accepted: 11/18/2020] [Indexed: 06/12/2023]
Abstract
Nonsteroidal anti-inflammatory drugs and antibiotics are classes of active pharmaceutical ingredients (APIs), which are continuously contaminating the ecosystem through various anthropogenic activities. Because of their pseudo-persistence in the aquatic environment and their potentially chronic effects on aquatic life, it is important to closely monitor their concentrations in the aquatic environment using a sensitive analytical method. Sustainable aqueous biphasic systems (ABSs) composed of ionic liquids and biodegradable organic salt (sodium malate) were proposed. The phase diagrams of the systems were firstly determined, and [N4444]Cl-based ABS was selected for the simultaneous extraction and preconcentration of seven APIs. With the developed ABS, extraction efficiencies of APIs close to 100% were obtained. For the developed method, limits of detection (LODs) of 45, 65, 76, 14, 60, 48, and 51 ng L-1 were obtained for indomethacin, ibuprofen, diclofenac, naproxen, ketoprofen, flurbiprofen, and chloramphenicol, respectively, providing from 1216- to 1238-fold improvement as compared with the analysis without preconcentration. From an economic and environmental point of view, we can predict the prospects and competitive position of the method developed.
Collapse
Affiliation(s)
- Weixia Li
- College of Standardization, China Jiliang University, Hangzhou, 310018, China.
| | - Xiaomei Zheng
- College of Standardization, China Jiliang University, Hangzhou, 310018, China
| | - Guoping Tu
- College of Standardization, China Jiliang University, Hangzhou, 310018, China
| | - Suyin Zhang
- College of Standardization, China Jiliang University, Hangzhou, 310018, China
| | - Pengyue Zhang
- College of Standardization, China Jiliang University, Hangzhou, 310018, China.
| |
Collapse
|
48
|
Fetke JK, Martinson JW, Flick RW, Huang W, Bencic DC, See MJ, Pilgrim EM, Debry RW, Biales AD. DNA methylation and expression of estrogen receptor alpha in fathead minnows exposed to 17α-ethynylestradiol. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 233:105788. [PMID: 33662878 PMCID: PMC8317993 DOI: 10.1016/j.aquatox.2021.105788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 05/12/2023]
Abstract
The gene expression response thought to underlie the negative apical effects resulting from estrogen exposure have been thoroughly described in fish. Although epigenetics are believed to play a critical role translating environmental exposures into the development of adverse apical effects, they remain poorly characterized in fish species. This study investigated alterations of DNA methylation of estrogen receptor alpha (esr1) in brain and liver tissues from 8 to 10 month old male fathead minnows (Pimephales promelas) after a 2d exposure to either 2.5 ng/L or 10 ng/L 17α-ethynylestradiol (EE2). Changes in the patterns of methylation were evaluated using targeted deep sequencing of bisulfite treated DNA in the 5' region of esr1. Methylation and gene expression were assessed at 2d of exposure and after a 7 and 14d depuration period. After 2d EE2 exposure, males exhibited significant demethylation in the 5' upstream region of esr1 in liver tissue, which was inversely correlated to gene expression. This methylation pattern reflected what was seen in females. No gene body methylation (GBM) was observed for liver of exposed males. Differential methylation was observed for a single upstream CpG site in the liver after the 14d depuration. A less pronounced methylation response was observed in the upstream region in brain tissue, however, several CpGs were necessarily excluded from the analysis. In contrast to the liver, a significant GBM response was observed across the entire gene body, which was sustained until at least 7d post-exposure. No differential expression was observed in the brain, limiting functional interpretation of methylation changes. The identification of EE2-dependent changes in methylation levels strongly suggests the importance of epigenetic mechanisms as a mediator of the organismal response to environmental exposures and the need for further characterization of the epigenome. Further, differential methylation following depuration indicates estrogenic effects persist well after the active exposure, which has implications for the risk posed by repeated exposures..
Collapse
Affiliation(s)
- J K Fetke
- Oak Ridge Institute for Science and Education (ORISE) Research Participant at US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States; Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - J W Martinson
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - R W Flick
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - W Huang
- US Environmental Protection Agency, Office of Research and Development, Research Triangle Park, NC, 27709, United States
| | - D C Bencic
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - M J See
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - E M Pilgrim
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States
| | - R W Debry
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH, United States
| | - A D Biales
- US Environmental Protection Agency, Office of Research and Development, Cincinnati, OH, 45268, United States.
| |
Collapse
|
49
|
V M Starling MC, Costa EP, Souza FA, Machado EC, de Araujo JC, Amorim CC. Persulfate mediated solar photo-Fenton aiming at wastewater treatment plant effluent improvement at neutral PH: emerging contaminant removal, disinfection, and elimination of antibiotic-resistant bacteria. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:17355-17368. [PMID: 33398751 PMCID: PMC8004486 DOI: 10.1007/s11356-020-11802-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 11/23/2020] [Indexed: 04/16/2023]
Abstract
This work investigated an innovative alternative to improve municipal wastewater treatment plant effluent (MWWTP effluent) quality aiming at the removal of contaminants of emerging concern (caffeine, carbendazim, and losartan potassium), and antibiotic-resistant bacteria (ARB), as well as disinfection (E. coli). Persulfate was used as an alternative oxidant in the solar photo-Fenton process (solar/Fe/S2O82-) due to its greater stability in the presence of matrix components. The efficiency of solar/Fe/S2O82- at neutral pH using intermittent iron additions is unprecedented in the literature. At first, solar/Fe/S2O82- was performed in a solar simulator (30 W m-2) leading to more than 60% removal of CECs, and the intermittent iron addition strategy was proved effective. Then, solar/Fe/S2O82- and solar/Fe/H2O2 were compared in semi-pilot scale in a raceway pond reactor (RPR) and a cost analysis was performed. Solar/Fe/S2O82- showed higher efficiencies of removal of target CECs (55%), E. coli (3 log units), and ARB (3 to 4 log units) within 1.9 kJ L-1 of accumulated irradiation compared to solar/Fe/H2O2 (CECs, 49%; E. coli, 2 log units; ARB, 1 to 3 log units in 2.5 kJ L-1). None of the treatments generated acute toxicity upon Allivibrio fischeri. Lower total cost was obtained using S2O82- (0.6 € m-3) compared to H2O2 (1.2 € m-3). Therefore, the iron intermittent addition aligned to the use of persulfate is suitable for MWWTP effluent quality improvement at neutral pH.
Collapse
Affiliation(s)
- Maria Clara V M Starling
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidative Processes, Universidade Federal de Minas Gerais, UFMG, Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Elizângela P Costa
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidative Processes, Universidade Federal de Minas Gerais, UFMG, Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Felipe A Souza
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidative Processes, Universidade Federal de Minas Gerais, UFMG, Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Elayne C Machado
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidative Processes, Universidade Federal de Minas Gerais, UFMG, Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Juliana Calábria de Araujo
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidative Processes, Universidade Federal de Minas Gerais, UFMG, Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil
| | - Camila C Amorim
- Department of Sanitary and Environmental Engineering, Research Group on Environmental Applications of Advanced Oxidative Processes, Universidade Federal de Minas Gerais, UFMG, Presidente Antônio Carlos, 6627, Belo Horizonte, MG, 31270-901, Brazil.
| |
Collapse
|
50
|
Benssassi ME, Mammeri L, Talbi K, Lekikot B, Sehili T, Santaballa JA, Canle M. Removal of paracetamol in the presence of iron(III) complexes of glutamic and lactic acid in aqueous solution under NUV irradiation. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2020.118195] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|