1
|
Risso B, Miglioli A, Balbi T, Dumollard R, Canesi L. Molecular basis for the effects of SSRIs in non-target aquatic invertebrates: A case study with Mytilus galloprovincialis early larvae. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 282:107306. [PMID: 40068373 DOI: 10.1016/j.aquatox.2025.107306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 02/17/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025]
Abstract
Selective Serotonin Reuptake Inhibitors (SSRIs) are among the most prescribed antidepressants, whose increasing consumption results in a continuous discharge into aquatic compartments, where they are detected at ng-µg/L levels. Whilst designed to modulate endogenous levels of circulating Serotonin (5-HT) in humans by selectively interfering with serotonin reuptake transporters (SERTs), SSRIs have been shown to induce a variety of adverse effects in non-target species, including aquatic invertebrates. In bivalve molluscs, adult exposure to environmental concentrations of SSRIs results in tissue bioaccumulation and induces different biomarker responses. However, the effects were not related to the mechanisms of action of SSRIs, due to poor knowledge of their direct molecular targets, SERT in particular. Much less information is available in embryo-larval stages. In this work, the effects of different SSRIs (Fluoxetine, Citalopram, Sertraline, 1-100 µg/L) were compared in the model of Mytilus galloprovincialis embryo-larval development. SSRIs showed small or no effects on normal larval development at 48 h post fertilization (hpf). The possible direct or indirect molecular targets of SSRIs were thus investigated in mussel larvae. Two conserved SERT sequences, SERT1-like and SERT2-like, were identified in M. galloprovincialis genome: their developmental expression showed increased transcription only from 44 and 20 hpf, respectively. A much higher and earlier expression (from 12 hpf) was observed for TPH (Tryptophan Hydroxylase), the rate limiting enzyme in 5-HT synthesis. Double in situ Hybridization Chain Reaction (HCR) showed partial colocalisation of TPH with SERT1-like and SERT2-like transcripts in 48 hpf larvae. At this stage, SSRIs induced a small but significant decrease in the number of TPH-positive cells. Finally, 19 Nose Resistance to Fluoxetine (nrf) sequences were identified, that were highly expressed across all early stages (0-48 hpf). At 48 hpf, nrf expression was associated with the digestive system. The results represent the first data on the establishment of the serotonergic system in mussel early larvae, representing the molecular basis for understanding the effects of SSRIs and their mechanisms of action in model non-target marine invertebrates.
Collapse
Affiliation(s)
- Beatrice Risso
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Italy, Corso Europa 26, 16132 Genova, Italy; Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France.
| | - Angelica Miglioli
- Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - Teresa Balbi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Italy, Corso Europa 26, 16132 Genova, Italy; National Biodiversity Future Centre, 90133, Palermo, Italy
| | - Rémi Dumollard
- Institut de la Mer de Villefranche (IMEV), Laboratoire de Biologie du Développement de Villefranche-sur-Mer (LBDV), 181 Chemin du Lazaret, 06230 Villefranche-sur-Mer, France
| | - Laura Canesi
- Department of Earth, Environmental and Life Sciences (DISTAV), University of Genova, Italy, Corso Europa 26, 16132 Genova, Italy; National Biodiversity Future Centre, 90133, Palermo, Italy.
| |
Collapse
|
2
|
Balogh C, Faragó N, Faludi T, Kovács Z, Kobak J, Serfőző Z. Organic pollutants in a large shallow lake, and the potential of the local quagga mussel population for their removal. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118201. [PMID: 40249979 DOI: 10.1016/j.ecoenv.2025.118201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 04/09/2025] [Accepted: 04/13/2025] [Indexed: 04/20/2025]
Abstract
Filter feeders, like mussels, can significantly lower the concentration of harmful substances in the water body. In the present study, we examined the distribution of organic pollutants (polycyclic aromatic hydrocarbons [PAHs], non-steroidal anti-inflammatory drugs [NSAIDs]) in Lake Balaton, the largest shallow lake of Central Europe. We also investigated the sensitivity of the invasive quagga mussel to these substances and its potential to reduce their concentration in the water column. Our findings show that organic pollutant levels in Lake Balaton were generally below concentrations known to harm mussels, as indicated by the stress gene activity patterns observed along the lake's longitudinal axis. However, in the most urbanized eastern part of the lake, especially in spring, we detected signs of environmental contamination from certain pollutants (e.g. diclofenac), highlighting potential risks to local ecosystems and communities. Removal capacity of the mussels for PAHs reached the maximum after four days of exposure to 5-10 % diluted water accommodated fraction of fuel-oil fraction #4 when the mussels (20 ind. L-1) reduced the PAH level by 100-85 %. Mussels (50 ind. L-1) removed 28 % and 21 % of ibuprofen and ketoprofen, respectively, from 1 µg L-1 concentrated solutions within 24 h. Many of the stress response genes were activated in the quagga mussel after their exposure to PAHs. These results suggest a significant role of gregarious invasive bivalves in the removal of organic pollutants from lake water.
Collapse
Affiliation(s)
- Csilla Balogh
- Balaton Limnological Institute, Hungarian Research Network (HUN-REN), Klebelsberg Kuno u. 3, Tihany, Hungary
| | - Nóra Faragó
- Biological Research Center, Institute of Genetics, Hungarian Research Network (HUN-REN), Szeged, Hungary
| | - Tamás Faludi
- Department of Analytical Chemistry, Eötvös Loránd University, Budapest, Hungary
| | - Zsófia Kovács
- Sustainability Solutions Research Laboratory, Research Centre for Biochemical, Environmental and Chemical Engineering, University of Pannonia, Veszprém 8200, Hungary; National Laboratory for Water Science and Water Security, University of Pannonia, Veszprém 8200, Hungary
| | - Jarosław Kobak
- Nicolaus Copernicus University, Faculty of Biological and Veterinary Sciences, Department of Invertebrate Zoology and Parasitology, Toruń, Poland
| | - Zoltán Serfőző
- Balaton Limnological Institute, Hungarian Research Network (HUN-REN), Klebelsberg Kuno u. 3, Tihany, Hungary.
| |
Collapse
|
3
|
Fagundes KRC, Kasica N, Potoczna M, Okitsu-Sakurayama S, Podlasz P, de Britto Mari R. Disruptive ecotoxicological effects of fluoxetine on serotoninergic signaling and enteric neurogenesis in early zebrafish larvae (Danio rerio). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2025; 116:104698. [PMID: 40216344 DOI: 10.1016/j.etap.2025.104698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 04/04/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
This study investigated the multilevel effects of environmentally relevant concentrations of fluoxetine on serotonergic signaling and enteric neurogenesis in early zebrafish larvae (Danio rerio). To this end, zebrafish were exposed to various concentrations of fluoxetine for four days, from the 1,000-cell stage to 4 days post-fertilization (dpf).Following exposure, whole larvae were subjected to molecular, morphological, and behavioral analyses. All tested concentrations led to upregulation of the serotonin transporter (slc6a4a). At intermediate concentrations, overexpression of the serotonin receptor htr1aa was observed. The highest concentration caused a reduced total enteric neurons density, while the intermediate concentration reduced the density of serotonergic enteric neurons. Additionally, the highest concentration decreased larval locomotion and impaired their ability to differentiate between light and dark phases.Across all tested concentrations, fluoxetine disrupted serotonergic signaling, impaired enteric neurogenesis, and induced sedative-like behavioral effects.
Collapse
Affiliation(s)
- Kainã Rocha Cabrera Fagundes
- Laboratory of Animal Morphophysiology, Biosciences Institute, Sao Paulo State University, Praça Infante Dom Henrique, s/n, São Vicente, SP 11330-900, Brazil.
| | - Natalia Kasica
- Department of Animal Anatomy, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Małgorzata Potoczna
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland; Transphamation Poland Ltd., Olsztyn, Poland
| | - Shiho Okitsu-Sakurayama
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Piotr Podlasz
- Department of Pathophysiology, Forensic Veterinary Medicine and Administration, Faculty of Veterinary Medicine, University of Warmia and Mazury, Olsztyn, Poland
| | - Renata de Britto Mari
- Laboratory of Animal Morphophysiology, Biosciences Institute, Sao Paulo State University, Praça Infante Dom Henrique, s/n, São Vicente, SP 11330-900, Brazil
| |
Collapse
|
4
|
García-Pimentel MM, Mezzelani M, Valdés NJ, Giuliani ME, Gorbi S, Regoli F, León VM, Campillo JA. Integrative oxidative stress biomarkers in gills and digestive gland of the combined exposure to citalopram and bezafibrate with polyethylene microplastics on mussels Mytilus galloprovincialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125508. [PMID: 39662579 DOI: 10.1016/j.envpol.2024.125508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 11/13/2024] [Accepted: 12/08/2024] [Indexed: 12/13/2024]
Abstract
Pharmaceutical active compounds (PhACs) and microplastics (MPs) have been detected in different marine compartments from coastal areas, raising concerns due to their simultaneous discharge through wastewater treatment plants (WWTPs) and the role of MPs as vectors of pollutants for marine organisms. This study investigates the biochemical effects of citalopram (CIT) and bezafibrate (BEZ) on the mussel Mytilus galloprovincialis, at environmentally relevant concentrations, and their co-exposure with high-density polyethylene (HDPE) MPs. MPs accumulated in gills and digestive glands during exposure, but they were rapidly eliminated after depuration, except for a small fraction of the smallest MPs in gills. This study evaluated the biological effects in gills and digestive gland, and confirmed CIT induced oxidative stress in both tissues, exacerbated by the presence of MPs. BEZ, despite not being detected at high concentrations in the mussel tissues, activated an antioxidant response in gills and increasing the transcription of the genes Se-gpx and gst-pi in digestive gland. Both PhACs impaired the cholinergic pathway long-term, even after the depuration period, as indicated by decreased AChE levels in the gills, suggesting potential neurotoxic effects after prolonged exposure. Consequently, adverse effects were provoked by both PhACs with (CIT) and without (BEZ) significant bioaccumulation capacity.
Collapse
Affiliation(s)
- M M García-Pimentel
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, (30740), San Pedro Del Pinatar, Murcia, Spain.
| | - M Mezzelani
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, (60131), Ancona, Italy
| | - N J Valdés
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, (30740), San Pedro Del Pinatar, Murcia, Spain
| | - M E Giuliani
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, (60131), Ancona, Italy
| | - S Gorbi
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, (60131), Ancona, Italy
| | - F Regoli
- Dipartimento di Scienze Della Vita e Dell'Ambiente, Università Politecnica Delle Marche, Via Brecce Bianche, (60131), Ancona, Italy
| | - V M León
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, (30740), San Pedro Del Pinatar, Murcia, Spain
| | - J A Campillo
- Instituto Español de Oceanografía (IEO-CSIC), Centro Oceanográfico de Murcia, Apdo. 22, C/ Varadero 1, (30740), San Pedro Del Pinatar, Murcia, Spain.
| |
Collapse
|
5
|
Passignat C, Flayac J, Lerebourg R, Minguez L. Differential bioconcentration and sensitivity of Dreissena polymorpha and Dreissena rostriformis bugensis to the antidepressant sertraline. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136628. [PMID: 39581030 DOI: 10.1016/j.jhazmat.2024.136628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Sertraline is one of the most widely prescribed antidepressants, worldwide detected in rivers, thus raising concern about its ecotoxicology. However, there is knowledge gap on its pharmacokinetics and pharmacodynamics in freshwater bivalves. Comparative biology can help to gain in understanding and improve our ability to assess ecotoxicological risks in a wide range of species. This study investigated the kinetic-based bioconcentration and depuration of sertraline by two freshwater bivalve species, Dreissena polymorpha (zebra mussel, ZM) and Dreissena rostriformis bugensis (quagga mussel, QM), and (2) its biological effects depending on the exposure duration and frequency. Several biomarkers related to known sertraline side effects in human were followed. Results document a higher body burden in QM than in ZM. The steady-stage was not reached after 5 days of exposure. Bivalves were unable to depurate sertraline in 5 days in clean water. Findings provide evidence that environmentally relevant concentration of sertraline can disturb the physiology of Dreissena species, but not in the same way. QM was found to be more sensitive to sertraline than ZM, experiencing oxidative stress and lipid disorder. Intermittent exposure also led to biochemical changes in the two species, requiring further study.
Collapse
Affiliation(s)
- Céline Passignat
- LABÉO Manche, 1352 avenue de Paris - CS 33608, F-50008 Saint-Lô Cédex, France
| | - Justine Flayac
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; Pôle de compétences en biologie environnementale, Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Romane Lerebourg
- LABÉO Manche, 1352 avenue de Paris - CS 33608, F-50008 Saint-Lô Cédex, France
| | | |
Collapse
|
6
|
Ács A, Schmidt J, Németh Z, Fodor I, Farkas A. Elevated temperature increases the susceptibility of D. magna to environmental mixtures of carbamazepine, tramadol and citalopram. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110052. [PMID: 39437871 DOI: 10.1016/j.cbpc.2024.110052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
The joint risks assessment of thermal stress and rising loads of pharmaceuticals (PhACs) in surface waters is a relevant topic in aquatic ecotoxicology. This study investigated the relevance of increased water temperature to alter the acute toxicity of environmentally relevant carbamazepine (CBZ), citalopram (CIT) and tramadol (TRA) concentrations as mixtures (ECs) and delayed outcomes in Daphnia magna. Responses of detoxification and antioxidant pathways in premature daphnids post an acute 24 h (pulsed) exposure to the PhACs mixtures and delayed responses as the reproductive output over 14 days recovery were investigated under 21- and 26 °C incubation. Biphasic modulation in glutathione S-transferase (GST) activity and significant inhibition of superoxide dismutase (SOD) activity were observed in both thermal regimes with significant shift in effective thresholds from 10-fold ECs at 21 °C to ECs at 26 °C incubation. Significant induction in catalase (CAT) activity and oxidative stress development were recorded at elevated temperatures from the 10-fold ECs dose onward. Pulsed exposures at 26 °C also led to significant decrease in the reproduction of daphnids above the 10-fold ECs of PhACs. The Integrated Biomarker Response scoring (IBRv2) approach outlined a 1.8-fold increase in alterations of daphnids exposed to 100-fold ECs of PhACs at 26 °C.
Collapse
Affiliation(s)
- András Ács
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute (HUN-REN), 8237 Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary.
| | - János Schmidt
- Institute of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Zoltán Németh
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute (HUN-REN), 8237 Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - István Fodor
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute (HUN-REN), 8237 Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| | - Anna Farkas
- Ecophysiological and Environmental Toxicological Research Group, HUN-REN Balaton Limnological Research Institute (HUN-REN), 8237 Tihany, Hungary; National Laboratory for Water Science and Water Security, HUN-REN Balaton Limnological Research Institute, Tihany, Hungary
| |
Collapse
|
7
|
Mohanthi S, Sutha J, Gayathri M, Ramesh M. Evaluation of the citalopram toxicity on early development of zebrafish: Morphological, physiological and biochemical responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124399. [PMID: 38906410 DOI: 10.1016/j.envpol.2024.124399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 06/07/2024] [Accepted: 06/18/2024] [Indexed: 06/23/2024]
Abstract
Citalopram, an antidepressant drug have been detected in different environmental matrices due to its high consumption. Previous study has proved that citalopram may alter the behaviour of aquatic organisms at environmentally relevant concentrations. However, scientific knowledge is still lacking on the ecotoxicological effects of citalopram on aquatic organisms. For this reason, the present study is aimed to investigate the potential toxicity of citalopram in terms of development, antioxidant, neurotoxicity, apoptosis, lipogenesis, and bone mineralization in embryonic and larval zebrafish (Danio rerio) at environmentally relevant concentrations. We noticed that citalopram exposure at 1 and 10 μg/L concentration delays hatching and heartbeat at 24, 48, 72 and 96 hpf. Exposure to citalopram also significantly increased mortality at 10 μg/L. Abnormal development with yolk sac edema, pericardial edema and scoliosis were also observed after citalopram treatment. In addition, citalopram significantly (P < 0.001) induced superoxide dismutase (SOD), catalase (CAT), glutathione-S-transferase (GST) and lipid peroxidation (LPO) levels. A significant decrease in acetylcholine esterase (AChE) activity was also observed in citalopram exposed groups. We found significant dose-and time-dependent increases in apoptosis, lipogenesis, and bone mineralization. In conclusion, the findings of the present study can provide new insights on the ecotoxicity of citalopram in the aquatic environment.
Collapse
Affiliation(s)
- Sundaram Mohanthi
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Jesudass Sutha
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Murugesh Gayathri
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
| | - Mathan Ramesh
- Unit of Toxicology, Department of Zoology, School of Life Sciences, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India.
| |
Collapse
|
8
|
Ghosh S, Bhattacharya R, Pal S, Saha NC. Benzalkonium chloride induced acute toxicity and its multifaceted implications on growth, hematological metrics, biochemical profiles, and stress-responsive biomarkers in tilapia (Oreochromis mossambicus). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:52147-52170. [PMID: 39141265 DOI: 10.1007/s11356-024-34595-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
This study aimed to investigate the toxic effects of benzalkonium chloride (BAC) on Oreochromis mossambicus, a freshwater fish species. Probit analysis was used to determine the lethal concentration (LC50) of BAC for different exposure periods (24, 48, 72, and 96 h). The viability of fish exposed to BAC was assessed using the general threshold survival models (GUTS) and confirmed with relevant datasets to evaluate model accuracy. Experimental groups of fish were exposed to BAC concentrations equivalent to 10% and 20% of the 96-h LC50 for 45 days. The study revealed significant alterations in various parameters during sublethal BAC exposure. These effects included decreased specific growth rate (SGR), red blood cell count (RBC), hemoglobin (Hb) concentration, hematocrit (Ht) value, plasma protein, and albumin levels, as well as acetylcholinesterase (AChE) activities in both gills and liver. Additionally, an increase in gastrosomatic index (GSI), feed conversion ratio (FCR), plasma glucose and creatinine concentrations, alanine aminotransferase (ALT), aspartate aminotransferase (AST) enzymatic activities, catalase (CAT), superoxide dismutase (SOD), and malondialdehyde (MDA) levels were observed in the exposed fish's gills and liver. Furthermore, the study found that glutathione S-transferase (GST) and glutathione peroxidase (GPx) levels initially increased and then decreased in both gills and liver after exposure to BAC. Correlation matrix analysis, multivariate multiple regression (MMR), canonical correspondence analysis (CCA), integrated biomarker response (IBR), and biomarker response index (BRI) were utilized to assess the impact of BAC on fish, highlighting significant effects on multiple biomarkers in O. mossambicus following surfactant exposure. Thus, the study provides valuable insights into the toxic effects of BAC on this fish species, emphasizing the importance of monitoring such pollutants in aquatic environments.
Collapse
Affiliation(s)
- Shruti Ghosh
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Purba Burdwan, 713104, West Bengal, Burdwan, India
| | - Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Purba Burdwan, 713104, West Bengal, Burdwan, India
| | - Sarmila Pal
- Department of Zoology, Hooghly Mohsin College, Hooghly, Chinsurah, West Bengal, India
| | - Nimai Chandra Saha
- Undergraduate and Postgraduate Department of Zoology, Bidhannagar College (Govt.), Salt Lake, Kolkata, 700064, West Bengal, India.
| |
Collapse
|
9
|
Zhao J, Gao J, Ma S, Chen X, Wang J. Predicting the potential risks posed by antidepressants as emerging contaminants in fish based on network pharmacological analysis. Toxicol In Vitro 2024; 99:105872. [PMID: 38851602 DOI: 10.1016/j.tiv.2024.105872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/23/2024] [Accepted: 06/05/2024] [Indexed: 06/10/2024]
Abstract
This study conducted a network pharmacology-based analysis to simultaneously discern a broad spectrum of potential environmental risks and health effects of antidepressants, a common class of pharmaceutical emerging contaminants (PECs) possessing a complex pharmacological profile, and in silico predict the adverse phenotypes potentially occurring in fish associated with exposure to antidepressants and their mixtures under realistic exposure scenarios. Results showed that 24 of the included 39 antidepressants had been detected worldwide in water environment across 50 countries. Using the environmentally realistic exposure scenario for China as an example, the predicted blood concentrations of antidepressant residues that were generated based on the Fish Plasma Model ranged from 37.89 (Alprazolam) to 16,772.05 (Sertraline) ng/L in exposed fish. Hazard-based bioactivity network without regard to concentration data was composed of 148 potential targets and 701 antidepressant-target interactions. After filtering each antidepressant-target interaction node using the predicted drug concentrations in the blood of fish under realistic exposure scenarios in China, an environmental risk-based network was refined and showed that 11 targets, including muscarinic acetylcholine receptor M1, alpha-2B adrenergic receptor, serotonin 2 A receptor, etc. might be modulated by antidepressants at concentrations equal to or below the environmental exposure levels and their mixtures in fish. Environmentally relevant concentrations of antidepressants in water samples from China might perturb the behavior, stress response, phototaxis, and development in exposed fish.
Collapse
Affiliation(s)
- Jinru Zhao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jian Gao
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Sijia Ma
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Xintong Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China
| | - Jun Wang
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, Medical College, Wuhan University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Atli G, Sevgiler Y. Binary effects of fluoxetine and zinc on the biomarker responses of the non-target model organism Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:27988-28006. [PMID: 38528217 PMCID: PMC11058962 DOI: 10.1007/s11356-024-32846-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 03/06/2024] [Indexed: 03/27/2024]
Abstract
The antidepressant effect of zinc on mammals has been documented in recent decades, and the concentration of the antidepressant fluoxetine (FLX) in aquatic environments has been rising constantly. The aim of the present study is to evaluate the combined toxicity of a serotonin reuptake inhibitor (FLX) and Zn2+ on a non-target aquatic model organism Daphnia magna. Animals were exposed to single and binary combinations of FLX (20.5 and 41 µg/L for subchronic and 41 and 82 µg/L for acute exposures) and Zn2+ (40 µg/L for subchronic and 80 µg/L for acute exposures). In vivo experiments were done for 7 days subchronic and 48 h acute exposure, while subcellular supernatants of whole Daphnia lysate (WDL) were directly treated with the same concentrations used in the acute experiments. Morphological characteristics, Ca2+-ATPase, antioxidant enzyme activities, and lipid peroxidation were examined. There was antioxidant system suppression and Ca2+-ATPase inhibition despite the diverse response patterns due to duration, concentration, and toxicant type. After acute exposure, biomarkers showed a diminishing trend compared to subchronic exposure. According to integrated biomarker response index (IBR) analysis, in vivo Zn2+ exposure was reasonably effective on the health of D. magna, whereas exposure of WDL to Zn2+ had a lesser impact. FLX toxicity increased in a concentration-dependent manner, reversed by the combined exposure. We concluded that potential pro-oxidative and adverse Ca2+-ATPase effects of FLX and Zn2+ in D. magna may also have harmful impact on ecosystem levels. Pharmaceutical exposure (FLX) should be considered along with their potential to interact with other toxicants in aquatic biota.
Collapse
Affiliation(s)
- Gülüzar Atli
- Vocational School of İmamoğlu, Çukurova University, Adana, Turkey.
- Biotechnology Research and Application Center, Çukurova University, Adana, Turkey.
| | - Yusuf Sevgiler
- Faculty of Science and Letters, Department of Biology, Adiyaman University, Adiyaman, Turkey
| |
Collapse
|
11
|
Zhu X, Luo T, Wang D, Zhao Y, Jin Y, Yang G. The occurrence of typical psychotropic drugs in the aquatic environments and their potential toxicity to aquatic organisms - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165732. [PMID: 37495145 DOI: 10.1016/j.scitotenv.2023.165732] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/18/2023] [Accepted: 07/20/2023] [Indexed: 07/28/2023]
Abstract
Psychotropic drugs (PDs) and their bioactive metabolites often persist in aquatic environments due to their typical physical properties, which made them resistant to removal by traditional wastewater treatment plants (WWTPs). Consequently, such drugs and/or their metabolites are frequently detected in both aquatic environments and organisms. Even at low concentrations, these drugs can exhibit toxic effects on non-target organisms including bony fish (zebrafish (Danio rerio) and fathead minnows) and bivalves (freshwater mussels and clams). This narrative review focuses on the quintessential representatives of three different categories of PDs-antiepileptics, antidepressants, and antipsychotics. The data regarding their concentrations occurring in the environment, patterns of distribution, the degree of enrichment in various tissues of aquatic organisms, and the toxicological effects on them are summarized. The toxicological assessments of these drugs included the evaluation of their effects on the reproductive, embryonic development, oxidative stress-related, neurobehavioral, and genetic functions in various experimental models. However, the mechanisms underlying the toxicity of PDs to aquatic organisms and their potential health risks to humans remain unclear. Most studies have focused on the effects caused by acute short-term exposure due to limitations in the experimental conditions, thus making it necessary to investigate the chronic toxic effects at concentrations that are in coherence with those occurring in the environment. Additionally, this review aims to raise awareness and stimulate further research efforts by highlighting the gaps in the understanding of the mechanisms behind PD-induced toxicity and potential health risks. Ultimately, the study underscores the importance of developing advanced remediation methods for the removal of PDs in WWTPs and encourages a broader discussion on mitigating their environmental impacts.
Collapse
Affiliation(s)
- Xianghai Zhu
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Ting Luo
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Dou Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yao Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China
| | - Yuanxiang Jin
- College of Biotechnology and Bioengineering, Zhejiang University of Technology, Hangzhou 310032, China; Xianghu Laboratory, Hangzhou, 311231, China
| | - Guiling Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Laboratory (Hangzhou) for Risk Assessment of Agricultural Products of Ministry of Agriculture, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, Zhejiang, China; Xianghu Laboratory, Hangzhou, 311231, China.
| |
Collapse
|
12
|
Luan H, Zhao J, Yang J, Gao X, Song J, Chen X, Cai Q, Yang C, Zhao L, Ji M, Zhai H, Chen Z, Li X, Liu W. Integrated genotoxicity of secondary and tertiary treatment effluents in North China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161241. [PMID: 36586681 DOI: 10.1016/j.scitotenv.2022.161241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/01/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Genotoxic effects on aquatic organisms caused by wastewater discharging have raised extensive concerns. However, the efficiency of various wastewater treatment processes to reduce effluent genotoxicity was not well known. Genotoxic effects of effluents from four secondary wastewater treatment plants (SWTPs) and a tertiary wastewater treatment plant (TTP) in north China on Chinese rare minnows (Gobiocypris rarus) were evaluated and the toxicity reduction efficiency of various treatment techniques was compared. SWTPs and TTP final effluents disturbed the antioxidant system and lipid peroxidation, with malondialdehyde (MDA) contents in the fish livers and gills increasing to 1.4-2.4 folds and 1.6-3.1 folds of control, respectively. Significant increases in erythrocytes micronucleus (MN) frequency were induced by effluent, and liver DNA damage caused by final SWTPs effluent was 29-54 % lower than TTP effluent. Further, DNA repair gene atm and growth arrest gene gadd45a were remarkably upregulated by SWTP and TTP final effluents to 1.8-12 folds and 4.1-15 folds, respectively, being consistent with the chromosomal aberration and DNA damage in liver tissue. Integrated biomarker response (IBR) of the tertiary effluent was 49 %-69 % lower than the secondary effluents. However, the final ozone disinfection at TTP caused an increase in the DNA damage, suggesting the generation of genotoxic by-products. UV disinfection at secondary treatment removed part of genotoxicity, with a reduction in IBR of 0 %-47 %. The total semi-volatile organic compounds (SVOCs) detected in the final effluent contained 5 %-56 % potential genotoxic substances, removal of which was 9 %-51 % lower than non-genotoxic compounds. Microfiltration and reverse osmosis process exhibited good performance in removing both the integrated genotoxicity and the potential genotoxic SVOCs. Our finding shows that TTP is superior than SWTP for wastewater treatment due to higher genotoxicity removal, but ozone disinfection needs improvement by optimizing performance parameters or adding post-treatment processes, to achieve better protection for aquatic organisms against genotoxic contaminants.
Collapse
Affiliation(s)
- Haiyang Luan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jing Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xin Gao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jingyang Song
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xiaofeng Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Qinyu Cai
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Chen Yang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Liqian Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Min Ji
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Hongyan Zhai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300350, China
| | - Zhiqiang Chen
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin 150090, China
| | - Xuehua Li
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Wei Liu
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
13
|
Tariq U, Butt MS, Pasha I, Faisal MN. Prophylactic role of olive fruit extract against cigarette smoke-induced oxidative stress in Sprague-Dawley rats. Cell Stress Chaperones 2022; 27:545-560. [PMID: 35951259 PMCID: PMC9485526 DOI: 10.1007/s12192-022-01291-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/19/2022] [Accepted: 08/01/2022] [Indexed: 11/03/2022] Open
Abstract
Cigarette smoke exposure increases the production of free radicals leading to initiation of several pathological conditions by triggering the oxidative stress and inflammatory cascade. Olive fruit owing to its unique phytochemical composition possesses antioxidant, immune modulatory, and anti-inflammatory potential. Considering the compositional alterations in olive fruits during ripening, the current experimental trail was designed to investigate the prophylactic role of green and black olives against the oxidative stress induced by cigarette smoke exposure in rats. Purposely, rats were divided into five different groups: NC (negative control; normal diet), PC [positive control; normal diet + smoke exposure (SE)], drug (normal diet + SE + citalopram), GO (normal diet + SE + green olive extract), and BO (normal diet + SE + black olive extract). Rats of all groups were exposed to cigarette smoke except "NC" and were sacrificed for collection of blood and organs after 28 days of experimental trial. The percent reduction in total oxidative stress by citalopram and green and black olive extracts in serum was 29.72, 58.69, and 57.97%, respectively, while the total antioxidant capacity increased by 30.78, 53.94, and 43.98%, accordingly in comparison to PC. Moreover, malondialdehyde (MDA) was reduced by 29.63, 42.59, and 45.70% in drug, GO, and BO groups, respectively. Likewise, green and black olive extracts reduced the leakage of hepatic enzymes in sera, alkaline phosphatase (ALP) by 23.44 and 25.80% and 35.62 and 37.61%, alanine transaminase (ALT) by 42.68 and 24.39% and 51.04 and 35.41%, and aspartate transaminase (AST) by 31.51 and 16.07% and 40.50 and 27.09% from PC and drug group, respectively. Additionally, olive extracts also maintained the antioxidant pool, i.e., superoxide dismutase, catalase, and glutathione in serum. Furthermore, histological examination revealed that olive extracts prevented the cigarette smoke-induced necrosis, pyknotic alterations, and congestion in the lung, hepatic, and renal parenchyma. Besides, gene expression analysis revealed that olive extracts and citalopram decreased the brain and lung damage caused by stress-induced upregulation of NRF-2 and MAPK signaling pathways. Hence, it can be concluded that olives (both green and black) can act as promising antioxidant in alleviating the cigarette smoke-induced oxidative stress.
Collapse
Affiliation(s)
- Urwa Tariq
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
- Department of Human Nutrition and Dietetics, Riphah International University, Faisalabad, 38000, Pakistan
| | - Masood Sadiq Butt
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan.
| | - Imran Pasha
- Faculty of Food, Nutrition and Home Sciences, National Institute of Food Science and Technology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Pharmacy, Physiology and Pharmacology, Faculty of Veterinary Science, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
14
|
Gauvreau NL, Bragg LM, Dhiyebi HA, Servos MR, Craig PM. Impacts on antioxidative enzymes and transcripts in darter (Etheostoma spp.) brains in the Grand River exposed to wastewater effluent. Comp Biochem Physiol C Toxicol Pharmacol 2022; 258:109381. [PMID: 35605930 DOI: 10.1016/j.cbpc.2022.109381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/06/2022] [Accepted: 05/17/2022] [Indexed: 11/22/2022]
Abstract
The Grand River watershed is the largest in southern Ontario and assimilates thirty wastewater treatment plants (WWTP) with varied degrees of treatment. Many WWTPs are unable to effectively eliminate several contaminants of emerging concern (CECs) from final effluent, leading to measurable concentrations in surface waters. Exposures to CECs have reported impacts on oxidative stress measured through antioxidative enzymes (SOD, CAT, GPX). This study focuses on the effects of WWTP effluent on four Etheostoma (Darter) species endemic to the Grand River, by investigating if increased antioxidative response markers are present in darter brains downstream from the effluent outfall compared to an upstream reference site relative to the Waterloo, ON WWTP across two separate years (Oct 2020 and Oct 2021). This was assessed using transcriptional and enzyme analysis of antioxidant enzymes and an enzyme involved in serotonin synthesis, tryptophan hydroxylase (tph). In fall 2020, significant differences in transcript markers were found between sites and sexes in GSD with SOD and CAT showing increased expression downstream, in JD with both sexes showing increased SOD downstream, and an interactive effect for tph in RBD. Changes in transcripts aligned with enzyme activity where interactive effects with sex-related differences were observed in fish collected fall 2020. In contrast, transcripts measured in fall 2021 were increased upstream compared to downstream species in RBD and GSD. This study additionally displayed yearly, species and sex differences in antioxidant responses. Continued investigation on the impacts of CECs in effluent in non-target species is required to better understand WWTP effluent impacts.
Collapse
Affiliation(s)
- Nicole L Gauvreau
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada.
| | - Leslie M Bragg
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Hadi A Dhiyebi
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Mark R Servos
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| | - Paul M Craig
- Department of Biology, University of Waterloo, 200 University Ave W, Waterloo, ON N2L 3G1, Canada
| |
Collapse
|
15
|
Bhattacharya R, Chatterjee A, Chatterjee S, Saha NC. Commonly used surfactants sodium dodecyl sulphate, cetylpyridinium chloride and sodium laureth sulphate and their effects on antioxidant defence system and oxidative stress indices in Cyprinus carpio L.: an integrated in silico and in vivo approach. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:30622-30637. [PMID: 34993779 DOI: 10.1007/s11356-021-17864-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
The present study evaluated the homology modelling, in silico prediction and characterization of Cyprinus carpio cytochrome P450, as well as molecular docking experiments between the modelled protein and the surfactants sodium dodecyl sulphate (SDS), sodium laureth sulphate (SLES) and cetylpyridinium chloride (CPC). Homology modelling of cytochrome P450 was performed using the best fit template structure. The structure was optimized with 3D refine, and the ultimate 3D structure was checked with PROCHEK and ERRATA. ExPASy's ProtParam was likewise used to analyse the modelled protein's physiochemical and stereochemical attributes. To establish the binding pattern of each ligand to the targeted protein and its effect on the overall protein conformation, molecular docking calculations and protein-ligand interactions were performed. Our in silico analysis revealed that hydrophobic interactions with the active site amino acid residues of cytochrome p450 were more prevalent than hydrogen bonds and salt bridges. The in vivo analysis exhibited that exposure of fish to sublethal concentrations (10% and 30% of 96 h LC50) of SDS (0.34 and 1.02 mg/l), CPC (0.002 and 0.006 mg/l) and SLES (0.69 and 2.07 mg/l) at 15d, 30d and 45d adversely affected the oxidative stress and antioxidant enzymes (CAT, SOD, GST, GPx and MDA) in the liver of Cyprinus carpio. As a result, the study suggests that elicited oxidative stress, prompted by the induction of antioxidant enzymes activity, could be attributable to the stable binding of cytochrome P450 with SDS, CPC and SLES which ultimately leads to the evolution of antioxidant enzymes for its neutralization.
Collapse
Affiliation(s)
- Ritwick Bhattacharya
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Arnab Chatterjee
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India
| | - Soumendranath Chatterjee
- Parasitology and Microbiology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Nimai Chandra Saha
- Fishery and Ecotoxicology Research Laboratory (Vice-Chancellor's Research Group), Department of Zoology, The University of Burdwan, Burdwan, 713104, West Bengal, India.
| |
Collapse
|
16
|
Binelli A, Della Torre C, Nigro L, Riccardi N, Magni S. A realistic approach for the assessment of plastic contamination and its ecotoxicological consequences: A case study in the metropolitan city of Milan (N. Italy). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150574. [PMID: 34592284 DOI: 10.1016/j.scitotenv.2021.150574] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
The study of the contamination of plastic mixtures sampled in natural environments is currently focused on their qualitative and quantitative assessment, while the evaluation of their effects on organisms is normally performed by experiments carried out at exposure conditions (size, shape, polymers) often far from the environmental ones. To improve the ecological realism, the aim of this study was to collect different plastic mixtures in 9 sampling stations located in 7 watercourses within the metropolitan city of Milan, one of the most anthropized and industrialized European areas, to evaluate both their qualitative and quantitative characteristics and, at the same time, to assess their ecotoxicological effects by exposing for 7 days some specimens of the freshwater bivalve Dreissena polymorpha to the mixtures collected in the sampling sites. The plastic characterization was performed by a Fourier-Transform Infrared spectrometer coupled with an optical microscope (μFT-IR), after several stages aimed to sample cleaning, separation of plastics and visual sorting. The possible effects caused by the plastic mixtures were carried out by the measurements of a biomarker suite to evaluate many cellular and molecular endpoints in mussel tissues. The main results showed a widespread and heterogeneous contamination of plastics in the entire metropolitan area, with contamination peaks found above all in the only two rivers of natural origin (Olona River and Lambro River) where comparable or higher values were reached than plastic concentrations measured in several European rivers. Despite this worrying contamination, the ecotoxicological data obtained after the exposures to the plastic mixtures collected in the selected water bodies showed only a mild effect on oxidative stress and on the variation of some antioxidant enzymes.
Collapse
Affiliation(s)
- Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | | | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
17
|
Yang H, Zhang Z, Liu J, Liu Z, Zhou Z, Feng Q. Bioavailability of citalopram to Daphnia magna in the presence of suspended sediments with various properties. MARINE POLLUTION BULLETIN 2022; 175:113352. [PMID: 35092930 DOI: 10.1016/j.marpolbul.2022.113352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/12/2022] [Indexed: 06/14/2023]
Abstract
The influence of suspended sediment (SPS) properties on the biological effects of antidepressant citalopram (CIT) was investigated in our study. For CIT exposure alone, the feeding behavior, energy available, glutathione-S-transferase (GST) activity of D. magna were vitally induced at 10 μg/L. In the presence of SPS, significant dose-dependent reduction in the ingestion and filtration rates were observed with the increase of SPS concentration, while SPS organic content (foc) of 1% exhibited the most serious aggravation. The protein was the main contributor to detoxification and cellular protection under the stress of CIT and SPS. Obvious disturbance effects on the malonaldehyde content, catalase and GST activities were observed for SPS of 0.1 g/L, 60-90 μm and foc of 2%. Overall, the important role of SPS properties on the biological effects of CIT should be taken into consideration for the accurate risk assessment of pollutants.
Collapse
Affiliation(s)
- Haohan Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China.
| | - Zhiyuan Zhang
- School of Urban and Environmental Sciences, Key Laboratory of the Ministry of Education for Earth Surface Processes, Peking University, Beijing 100871, China
| | - Jiaqiang Liu
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| | - Zhigang Liu
- Ningbo Water Supply Co Ltd, Ningbo 315041, China
| | | | - Qiyan Feng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221116, China
| |
Collapse
|
18
|
Duan S, Fu Y, Dong S, Ma Y, Meng H, Guo R, Chen J, Liu Y, Li Y. Psychoactive drugs citalopram and mirtazapine caused oxidative stress and damage of feeding behavior in Daphnia magna. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 230:113147. [PMID: 34979307 DOI: 10.1016/j.ecoenv.2021.113147] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 06/14/2023]
Abstract
As the emerging contaminants, the environmental risks of drug-derived pollutants have attracted extensive attention. Citalopram (CTP) and mirtazapine (MTP) are commonly used as modern antidepressant drugs. Previous studies had proved that CTP and MTP entered the aquatic environment, but less reported the negative effects of the drugs on aquatic organisms. Herein, the effects on the feeding rate of Daphnia magna (D. magna) induced by psychotropic drugs CTP and MTP were investigated, which the possible mechanisms were analyzed with the oxidative stress and damage. Generally, the feeding rates of exposed D. magna under all concentrations of CTP and 1.03 mg/L of MTP were significantly decreased after exposure (p < 0.05 or p < 0.01). The inhibitory effect of CTP on the feeding rate of D. magna was time- and dose-dependent. The levels of reactive oxygen species (ROS) were particularly increased in D. magna after CTP and MTP exposure (p < 0.05 or p < 0.01). The level of antioxidant molecules glutathione S-transferase (GST) and the activity of scavenging enzymes superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) of D. magna were increased (p < 0.05 or p < 0.01). In consequence, the levels of malondialdehyde (MDA), protein carbonyl, and 8-hydroxydeoxyguanosine (8-OHdG) were increased (p < 0.05 or p < 0.01), which indicated oxidative damage caused by MTP and CTP, due to the imbalance of antioxidative stress system. These findings indicated that psychoactive drugs posed a high toxic threat to the aquatic organisms, and the aquatic environmental risks caused by using psychoactive drugs deserve more attention.
Collapse
Affiliation(s)
- Shengzi Duan
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yourong Fu
- Blood Transfusion Department, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Shanshan Dong
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yunfeng Ma
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Hangyu Meng
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Ruixin Guo
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jianqiu Chen
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Yanhua Liu
- School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Yang Li
- Blood Transfusion Department, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
19
|
Embryotoxicity of Selective Serotonin Reuptake Inhibitors—Comparative Sensitivity of Zebrafish (Danio rerio) and African Clawed Frog (Xenopus laevis) Embryos. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app112110015] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Over the past twenty years, the prescription of antidepressant drugs has increased all over the world. After their application, antidepressants, like other pharmaceuticals, are excreted and enter the aquatic environment. They are dispersed among surface waters mainly through waste water sources, typically at very low concentrations— from a tenth up to hundreds of ng/L. Frequently detected antidepressants include fluoxetine and citalopram—both selective serotonin reuptake inhibitors. The aim of our study was to assess the embryotoxicity of fluoxetine hydrochloride and citalopram hydrochloride on the early life stages of zebrafish (Danio rerio) and the African clawed frog (Xenopus laevis). The embryos were exposed to various concentrations of the individual antidepressants and of their mixtures for 96 h. The tested levels included both environmentally relevant and higher concentrations for the evaluation of dose-dependent effects. Our study demonstrated that even environmentally relevant concentrations of these psychiatric drugs influenced zebrafish embryos, which was proven by a significant increase (p < 0.01) in the embryos’ heart rates after fluoxetine hydrochloride exposure and in their hatching rate after exposure to a combination of both antidepressants, and thus revealed a potential risk to aquatic life. Despite these results, we can conclude that the African clawed frog is more sensitive, since exposure to the highest concentrations of fluoxetine hydrochloride (10,000 μg/L) and citalopram hydrochloride (100,000 μg/L) resulted in total mortality of the frog embryos.
Collapse
|
20
|
Magni S, Nigro L, Della Torre C, Binelli A. Characterization of plastics and their ecotoxicological effects in the Lambro River (N. Italy). JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125204. [PMID: 33513553 DOI: 10.1016/j.jhazmat.2021.125204] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 01/19/2021] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
This study had the dual objective of both the qualitative and quantitative assessment of plastic mixtures sampled in 5 different sites located along the Lambro River (northern Italy), and the contemporarily determination of the ecotoxicological effects of the same mixtures sampled, through 21-day laboratory exposures of the freshwater bivalve Dreissena polymorpha. The monitoring survey was carried out by a Fourier Transform Infrared Microscope System, while the ecotoxicological assessment was performed by the mussel mortality, a biomarker suite and the proteomics. The main results of the monitoring have highlighted some critical points, related to the concentration of plastics detected at Milan and, especially at the southernmost sampling station, where a daily flow of more than 6 million plastic debris has been estimated, ending directly into the Po River, the main Italian river. The ecotoxicological analysis highlighted how the toxicity is not exclusively due to the plastic concentration, but that the different characteristics of the polymers probably become more important. Furthermore, we observed an extensive mortality of bivalves exposed to the sampled mixtures in the two southernmost sampling stations, while the battery of biomarkers and the results of proteomics have highlighted how the sampled plastic mixtures caused an imbalance in the redox state, already indicated as a classic effect due to plastic exposure, but also an impact on energy stock and on some fundamental cellular pathways always linked to energy metabolism.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Lara Nigro
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
21
|
Use of the Zebra Mussel Dreissena polymorpha (Mollusca, Bivalvia) as a Bioindicator of Microplastics Pollution in Freshwater Ecosystems: A Case Study from Lake Iseo (North Italy). WATER 2021. [DOI: 10.3390/w13040434] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The monitoring of microplastics pollution in freshwater environments trails behind its practice in marine ecosystems. We evaluated the use of the invasive zebra mussel (Dreissena polymorpha) as a potential bioindicator of microplastic litter in freshwater lakes. Samples were collected from three sites (Lovere, Costa Volpino, Castro) at the northern end of Lake Iseo (one of the major subalpine lakes in north Italy) and compared for water physicochemical parameters, biometrical features of zebra mussels, and microplastics items/specimens (color, shape, size, and chemical composition). We hypothesized that since a wastewater treatment plant (WWTP) on the Oglio River discharges into this area of the lake, the microplastics in D.polymorpha could be measured and compared in samples from the three sites at different distances from the WWTP. There was no difference in the physicochemical water parameters and biometric features between the samples from the three sites, whereas there was a significant difference in items/specimen between the sites in decreasing order (mean ± standard deviation): Costa Volpino (0.23 ± 0.43) > Lovere (0.07 ± 0.25) > Castro (0.03 ± 0.18). The chi-square test showed a significant difference in shape, color, and chemical composition frequency in the samples from the three sites. The chemical composition of the microplastics was polyethylene terephthalate (45%), nylon (20%), polypropylene (20%), polyamide resin (10%), and polyvinyl chloride (5%). Our data show that the amount of microplastics the zebra mussel accumulated was greater the closer the sampling site to the WWTP. Our findings suggest that the zebra mussel may provide a useful tool to monitor microplastics pollution in lakes.
Collapse
|
22
|
Ahmadimanesh M, Abbaszadegan MR, Hedayati N, Yazdian-Robati R, Jamialahmadi T, Sahebkar A. A Systematic Review on the Genotoxic Effects of Selective Serotonin Reuptake Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1286:115-124. [PMID: 33725349 DOI: 10.1007/978-3-030-55035-6_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Depression is a mental disorder and a major public health concern affecting millions of people worldwide. It is a common disorder that has been associated with several medical comorbidities often linked with aging, such as dementia, type II diabetes, cardiovascular and cerebrovascular diseases, as well as metabolic syndrome. There are a variety of medications available for depression treatment. Selective serotonin reuptake inhibitors (SSRIs) are one of the antidepressant drug classes that are most widely used to treat depressive disorders and depressive symptoms in other diseases. Due to many contradictory findings on the adverse effects and toxicities of SSRIs (especially genotoxicities), we reviewed the genotoxic effects of these drugs. Based on the guidelines proposed in the PRISMA statement, we performed a systematic review by searching international electronic databases including PubMed, Scopus, Embase, and Web of Science to find the published documents on SSRIs and their genotoxic effects from January 1990 to November 2019. After the removal of 203 duplicate articles, 385 articles were screened and 167 articles met the inclusion criteria and qualified for evaluation of their full texts. After this, 26 articles were appropriate for final review. This revealed that the proportion of genotoxicities was highest for citalopram and fluoxetine, with a smaller proportion for sertraline. Limited documentations showed genotoxic and partial genotoxic effects for paroxetine and escitalopram, respectively. Although a number of studies have found genotoxic effects of SSRIs, there are also some factors including doses, duration of exposure, model of experiments, and the type of technique assay that may affect the results.
Collapse
Affiliation(s)
- Mahnaz Ahmadimanesh
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Food and Drug Vice Presidency, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Reza Abbaszadegan
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Faculty of Medical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Narges Hedayati
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Rezvan Yazdian-Robati
- Molecular and Cell biology Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Tannaz Jamialahmadi
- Department of Food Science and Technology, Quchan Branch, Islamic Azad University, Quchan, Iran
- Department of Nutrition, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Polish Mothers Memorial Hospital Research Institute (PMMHRI), Mashhad, Iran.
| |
Collapse
|
23
|
Zindler F, Stoll S, Baumann L, Knoll S, Huhn C, Braunbeck T. Do environmentally relevant concentrations of fluoxetine and citalopram impair stress-related behavior in zebrafish (Danio rerio) embryos? CHEMOSPHERE 2020; 261:127753. [PMID: 32745739 DOI: 10.1016/j.chemosphere.2020.127753] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 07/14/2020] [Accepted: 07/15/2020] [Indexed: 06/11/2023]
Abstract
Selective serotonin reuptake inhibitors (SSRIs) have been shown to interfere with various physiological functions of aquatic organisms, yet the neuroactive potential of low concentrations of SSRIs in the aquatic environment is unclear. The current study investigated the effects of fluoxetine and citalopram on the visual motor response (VMR) of 107 h old zebrafish (Danio rerio) embryos. Results document a reduction in stress-related swimming activity of zebrafish embryos at environmentally relevant concentration levels, with fluoxetine being more effective than citalopram. Further experiments were designed to elucidate (1) if the lower neuroactive potential of citalopram is due to differences in uptake kinetics, (2) if the metabolite of fluoxetine, norfluoxetine, contributes to the neuroactive potential of fluoxetine, (3) and how SSRIs and their metabolites interact in equimolar mixtures. At the stage of 120 h, zebrafish embryos accumulate citalopram at significantly lower rates (up to 127 times) than fluoxetine. Moreover, it was demonstrated that norfluoxetine reduces the embryonic VMR similarly to fluoxetine resulting in additive effects of these substances on stress-related behavior in zebrafish embryos. In contrast, the interaction of fluoxetine, norfluoxetine and citalopram varied with test concentrations of the equimolar mixtures. Findings provide evidence that environmentally relevant concentrations of fluoxetine reduce stress-related behavior of zebrafish embryos, while these effects may be enhanced by the interaction of multiple SSRIs and their metabolites in environmental exposure scenarios.
Collapse
Affiliation(s)
- Florian Zindler
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany.
| | - Saskia Stoll
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| | - Lisa Baumann
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| | - Sarah Knoll
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen, D-72076, Germany
| | - Carolin Huhn
- Institute for Physical and Theoretical Chemistry, University of Tübingen, Auf der Morgenstelle 18, Tübingen, D-72076, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Section, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg, D-69120, Germany
| |
Collapse
|
24
|
Magni S, Bonasoro F, Della Torre C, Parenti CC, Maggioni D, Binelli A. Plastics and biodegradable plastics: ecotoxicity comparison between polyvinylchloride and Mater-Bi® micro-debris in a freshwater biological model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137602. [PMID: 32325584 DOI: 10.1016/j.scitotenv.2020.137602] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 02/10/2020] [Accepted: 02/25/2020] [Indexed: 06/11/2023]
Abstract
The improper release of plastic items and wastes is nowadays one of the main environmental and social problems, whose solution or mitigation represents a great challenge worldwide. In this context, the growing use of the so-called biodegradable plastics could represent a possible solution in the short to medium term. The few information known about the ecological impact of these materials on freshwater organisms, especially the ones relative to the micro-debris derived from their aging, prompted us to study the comparison of the sub-lethal effects eventually caused by plastic and biodegradable plastic micro-debris on the mussel Dreissena polymorpha, which represents an excellent biological model for the freshwater ecosystems. We selected two powders of polyvinylchloride (PVC) and Mater-Bi® administered at 1 mg/L to D. polymorpha specimens in semi-static conditions for 14 days. The presence of micro-debris was evaluated on mussel tissues and pseudo-faeces using advanced microscopy techniques. The sub-lethal effects were investigated on exposed mussels at 6 and 14 days using a suite of biomarkers of cellular stress, oxidative damage, and genotoxicity. Lastly, we compared the ecotoxicity of these two materials integrating each endpoint in the Biomarker Response Index. Microscopy observations highlighted the surprising absence of micro-debris in the gut lumen and tissues of exposed mussels, but the presence of both PVC and Mater-Bi® micro-debris in the pseudo-faeces, suggesting a possible efficient elimination mechanism adopted by mussels to avoid the micro-debris gulping. Consequently, we did not observe significant sub-lethal effects, except for the glutathione-S-transferase activity modulation after 6 days of exposure.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | | | - Daniela Maggioni
- Department of Chemistry, University of Milan, Via Golgi 19, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
25
|
Li Z, Pan L, Guo R, Cao Y, Sun J. A verification of correlation between chemical monitoring and multi-biomarker approach using clam Ruditapes philippinarum and scallop Chlamys farreri to assess the impact of pollution in Shandong coastal area of China. MARINE POLLUTION BULLETIN 2020; 155:111155. [PMID: 32469775 DOI: 10.1016/j.marpolbul.2020.111155] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 04/03/2020] [Accepted: 04/04/2020] [Indexed: 06/11/2023]
Abstract
Biogeochemical monitoring coupled with multi-biomarker approach were performed for the assessment of marine environment, using clam Ruditapes philippinarum and scallop Chlamys farreri to indicate contamination status in sediments and seawater respectively. The bivalves were collected from three stations, Jiaozhou Bay, Rushan Bay and Laizhou Bay, of Shandong coastal area. A series of contaminants (PAHs and TBBPA) and biomarkers (AhR, EROD, GST, SOD, GPx, CAT, DNA damage) were measured. Multi-biomarker pollution index (MPI) and integrated biomarker response (IBR) were carried out to evaluate contamination status and both indexes showed that Rushan Bay was most polluted, where the pollution level of sediments reached "highly polluted" in August, followed by Jiaozhou Bay and Rushan Bay which reached "lightly polluted". The correlation of IBR values with contaminants' concentrations was verified through the Pearson correlation coefficient (p < 0.05), consolidating this scientific assessment method for marine environment.
Collapse
Affiliation(s)
- Zeyuan Li
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China.
| | - Ruiming Guo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Yunhao Cao
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| | - Jiawei Sun
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, 266003 Qingdao, China
| |
Collapse
|
26
|
Binelli A, Pietrelli L, Di Vito S, Coscia L, Sighicelli M, Torre CD, Parenti CC, Magni S. Hazard evaluation of plastic mixtures from four Italian subalpine great lakes on the basis of laboratory exposures of zebra mussels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134366. [PMID: 31683209 DOI: 10.1016/j.scitotenv.2019.134366] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/06/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
Studies related to the evaluation of plastics in freshwaters have been increasing in recent years because approximately 80% of plastic items found in the sea are from inland waters. Despite the ecological relevance of these surveys, no information has been available until now about the hazard related to plastic mixtures in freshwaters. To fill this knowledge gap, we carried out a study aimed to assess the environmental risk associated with the "cocktail" of plastics and environmental pollutants adsorbed on their surface in one of the larger European freshwater basins. Plastic debris was collected by a manta trawl along one transect each in four of the Italian subalpine great lakes (Lake Maggiore, Como, Iseo and Garda) and administered to zebra mussels (Dreissena polymorpha), a useful freshwater biological model present in all these lakes. We estimated a plastic density from 4908 MPs/km2 (Lake Iseo) to 272,261 MPs/km2 (Lake Maggiore), while the most common polymers found were polyethylene and polypropylene, with percentages varying between 73% and 100%. A biomarkers suite consisting of 10 different endpoints was performed after 7 days of exposure to investigate the molecular and cellular effects of plastics and related adsorbed pollutants. The main results highlighted a diffuse but different toxicity due to plastics for each lake, and there were significant changes in the antioxidant and detoxifying enzyme activities in Lake Maggiore, Iseo and Garda, an increase in protein carbonylation in L. Como, and a cellular viability decrease of approximately 30% for zebra mussels from L. Iseo and Garda. Despite this variability in the endpoints' responses, the application of the biomarker response index showed a similar environmental hazard due to plastics for all the sampled lakes.
Collapse
Affiliation(s)
- Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Loris Pietrelli
- ENEA, CR Casaccia, Via Anguillarese 301, 00123 S. Maria di Galeria, Rome, Italy
| | - Stefania Di Vito
- Legambiente, Legambiente Onlus, Via Salaria 403, 00199, Rome, Italy
| | - Lucia Coscia
- Legambiente, Legambiente Onlus, Via Salaria 403, 00199, Rome, Italy
| | - Maria Sighicelli
- ENEA, CR Casaccia, Via Anguillarese 301, 00123 S. Maria di Galeria, Rome, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | | | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| |
Collapse
|
27
|
Byeon E, Park JC, Hagiwara A, Han J, Lee JS. Two antidepressants fluoxetine and sertraline cause growth retardation and oxidative stress in the marine rotifer Brachionus koreanus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 218:105337. [PMID: 31739108 DOI: 10.1016/j.aquatox.2019.105337] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/09/2019] [Accepted: 10/17/2019] [Indexed: 06/10/2023]
Abstract
To understand effects of two widely used antidepressant on the antioxidant defense mechanism in the marine rotifer Brachionus koreanus, we assessed acute toxicity and measured population growth, reactive oxygen species (ROS) levels, glutathione (GSH) levels, and antioxidant enzymatic activities (GST, GR, and SOD) in response to fluoxetine hydrochloride (FLX) and sertraline hydrochloride (SER). The no observed effect concentration-24 h of fluoxetine and sertraline were 1000 μg/L and 450 μg/L, respectively, whereas the median lethal concentration (LC50)-24 h of fluoxetine and sertraline were 1560 μg/L and 507 μg/L, respectively. Both fluoxetine and sertraline caused significant reduction (P < 0.05) in the population growth rate indicating that both antidepressants have a potential adverse effect on life cycle parameters of B. koreanus. The intracellular ROS level and GSH level were significantly modulated (P < 0.05) in response to fluoxetine and sertraline. In addition, antioxidant enzymatic activities have shown significant modulation (P < 0.05) in response to FLX and SER in B. koreanus. Furthermore, transcriptional profiles of antioxidant genes (GSTs, SODs, and GR) have shown modulation in response to FLX compared to SER-exposed B. koreanus. Our results indicate that fluoxetine and sertraline induce oxidative stress, leading to reduction in the population density and modulation of antioxidant defense mechanism in the marine rotifer B. koreanus.
Collapse
Affiliation(s)
- Eunjin Byeon
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Jun Chul Park
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea
| | - Atsushi Hagiwara
- Institute of Integrated Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan; Organization for Marine Science and Technology, Nagasaki University, Nagasaki 852-8521, Japan
| | - Jeonghoon Han
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| | - Jae-Seong Lee
- Department of Biological Science, College of Science, Sungkyunkwan University, Suwon 16419, South Korea.
| |
Collapse
|
28
|
Parolini M, Ghilardi A, De Felice B, Del Giacco L. Environmental concentration of fluoxetine disturbs larvae behavior and increases the defense response at molecular level in zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34943-34952. [PMID: 31659707 DOI: 10.1007/s11356-019-06619-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 09/25/2019] [Indexed: 06/10/2023]
Abstract
Fluoxetine (FLX) is one of the main antidepressants used worldwide. After human use, FLX enters the aquatic ecosystems, where it has commonly detected in the high ng/L concentration range. Several investigations have shown that exposure to different concentrations of FLX caused different adverse effects towards a number of aquatic species. However, the information on the onset and the relationship between molecular and behavioral FLX-induced effects remains scant. The aim of this study was to assess the effects induced by two FLX concentrations, namely 50 ng/L and 500 ng/L, on swimming activity of zebrafish (Danio rerio) larvae at 96-h post-fertilization (hpf) and to investigate if such behavioral effects were related to modulation of the expression of oxidative stress-related (sod1, sod2, cat, gpxa, and gst), stress- and anxiety-related (oxtl, prl2, npy, and ucn3l) genes, and genes encoding for the transporters of the main neurotransmitters (slc6a3, slc6a4a, slc6a4b, slc6a11). Fluoxetine exposure altered the swimming behavior of larvae, as shown by the reduction of the distance traveled by treated larvae in response to an external stimulus. Such behavioral change was related, at molecular level, to an enhanced expression of sod1, cat, and gpxa, suggesting an overproduction of pro-oxidant molecules. In addition, FLX modulated the expression of oxtl, slc6a4a, slc6a4b, and slc6a11, suggesting its capability to affect anxiety- and neurotransmitter-related genes.
Collapse
Affiliation(s)
- Marco Parolini
- Department of Environmental Science and Policy, University of Milan, via Celoria 2, 20133, Milan, Italy.
| | - Anna Ghilardi
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| | - Beatrice De Felice
- Department of Environmental Science and Policy, University of Milan, via Celoria 2, 20133, Milan, Italy
| | - Luca Del Giacco
- Department of Biosciences, University of Milan, via Celoria 26, 20133, Milan, Italy
| |
Collapse
|
29
|
Bolognesi C. Micronucleus Experiments with Bivalve Molluscs. THE MICRONUCLEUS ASSAY IN TOXICOLOGY 2019. [DOI: 10.1039/9781788013604-00273] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The micronucleus (MN) test, as an index of accumulated DNA damage during the lifespan of cells, is the most applied assay in aquatic animals to assess the exposure to a complex mixture of genotoxic pollutants. An increase in MN frequency was reported on mussels exposed to the most common environmental pollutants under laboratory conditions, such as heavy metals, polycyclic aromatic hydrocarbons, and ionizing radiation. The test was applied in a large number of biomonitoring studies in different geographic areas to identify the exposure to different classes of pollutants with good discrimination power and to evaluate the recovery effects after accidental pollution events. A standardized MN assay protocol in hemocytes and gill cells for use in bivalve species, including scoring of different cell types, necrotic and apoptotic cells and nuclear anomalies, was established following the “cytome approach”. The mussel MNcytome (MUMNcyt) assay, using the proposed detailed criteria for the identification of cell types, is suitable for application in experimental studies under controlled conditions and in biomonitoring programs in aquatic environments.
Collapse
Affiliation(s)
- Claudia Bolognesi
- Unit of Environmental Carcinogenesis Ospedale Policlinico San Martino L.go Rosanna Benzi 10, 16132 Genova Italy
| |
Collapse
|
30
|
Magni S, Della Torre C, Garrone G, D'Amato A, Parenti CC, Binelli A. First evidence of protein modulation by polystyrene microplastics in a freshwater biological model. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 250:407-415. [PMID: 31022646 DOI: 10.1016/j.envpol.2019.04.088] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 04/15/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Microplastics (MPs) are now one of the major environmental problems due to the large amount released in aquatic and terrestrial ecosystems, as well as their diffuse sources and potential impacts on organisms and human health. Still the molecular and cellular targets of microplastics' toxicity have not yet been identified and their mechanism of actions in aquatic organisms are largely unknown. In order to partially fill this gap, we used a mass spectrometry based functional proteomics to evaluate the modulation of protein profiling in zebra mussel (Dreissena polymorpha), one of the most useful freshwater biological model. Mussels were exposed for 6 days in static conditions to two different microplastic mixtures, composed by two types of virgin polystyrene microbeads (size = 1 and 10 μm) each one. The mixture at the lowest concentration contained 5 × 105 MP/L of 1 μm and 5 × 105 MP/L of 10 μm, while the higher one was arranged with 2 × 106 MP/L of 1 μm and 2 × 106 MP/L of 10 μm. Proteomics' analyses of gills showed the complete lack of proteins' modulation after the exposure to the low-concentrated mixture, while even 78 proteins were differentially modulated after the exposure to the high-concentrated one, suggesting the presence of an effect-threshold. The modulated proteins belong to 5 different classes mainly involved in the structure and function of ribosomes, energy metabolism, cellular trafficking, RNA-binding and cytoskeleton, all related to the response against the oxidative stress.
Collapse
Affiliation(s)
- S Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - C Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - G Garrone
- UNITECH OMICS Platform, University of Milan, Viale Ortles 22/4, 20139, Milan, Italy
| | - A D'Amato
- Department of Pharmaceutical Sciences (DISFARM), University of Milan, Via Mangiagalli 25, 20133, Milan, Italy
| | - C C Parenti
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy
| | - A Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133, Milan, Italy.
| |
Collapse
|
31
|
Duarte IA, Pais MP, Reis-Santos P, Cabral HN, Fonseca VF. Biomarker and behavioural responses of an estuarine fish following acute exposure to fluoxetine. MARINE ENVIRONMENTAL RESEARCH 2019; 147:24-31. [PMID: 30987769 DOI: 10.1016/j.marenvres.2019.04.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/02/2019] [Accepted: 04/03/2019] [Indexed: 06/09/2023]
Abstract
Antidepressants such as fluoxetine are frequently detected in estuaries and can have profound effects on non-target organisms by interfering with the neural system and affecting essential physiological processes and behaviours. In this context, short-term effects of fluoxetine exposure were analysed in the common goby Pomatoschistus microps, an estuarine resident fish species. Two experiments were conducted with fish exposed to: i) fluoxetine concentrations within the μg/L range for 96 h (0.1, 0.5, 10 and 100 μg/L) and ii) fluoxetine concentrations within the mg/L range for 1 h (1, 5 and 10 mg/L). Acute toxicity was assessed via multiple biomarker responses, namely: activity levels of antioxidant (superoxide dismutase and catalase) and detoxification enzymes (ethoxyresorufin O-deethylase and glutathione S-transferase); and biomarkers of effects (lipid peroxidation and DNA damage) and of neurotoxicity (acetylcholinesterase inhibition). Furthermore, behavioural responses concerning activity (active time, movement delay and number of active individuals) and feeding (number of feeding individuals) were also recorded and analysed. Acute fluoxetine exposure for 96 h (in the μg/L range) reduced antioxidant CAT activity with increasing concentrations but had no significant effect on SOD activity. Biotransformation enzymes showed bell-shaped response curves, suggesting efficient fluoxetine metabolism at concentrations up to 10 μg/L. No significant damage (LPO and DNAd) was observed at both concentration ranges (μg/L and mg/L), yet 1 h exposure to higher fluoxetine concentrations (mg/L range) inhibited acetylcholinesterase activity (up to 37%). Fluoxetine (at mg/L) also decreased the number of both feeding and active individuals (by 67%), decreased fish active time (up to 93%) and increased movement delay almost 3-fold (274%). Overall, acutely exposed P. microps were able to cope with fluoxetine toxicity at the μg/L range but higher concentrations (mg/L) affected fish cholinergic system and behavioural responses.
Collapse
Affiliation(s)
- Irina A Duarte
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749 016, Lisboa, Portugal.
| | - Miguel P Pais
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749 016, Lisboa, Portugal
| | - Patrick Reis-Santos
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749 016, Lisboa, Portugal; Southern Seas Ecology Laboratories, School of Biological Sciences, The University of Adelaide, South Australia, 5005, Australia
| | - Henrique N Cabral
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749 016, Lisboa, Portugal; Irstea, UR EABX, 50 Avenue de Verdun, 33612, Cestas, France
| | - Vanessa F Fonseca
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749 016, Lisboa, Portugal
| |
Collapse
|
32
|
Ji R, Pan L, Guo R, Zheng L, Zhang M. Using multi-integrated biomarker indexes approach to assess marine quality and health status of marine organism: a case study of Ruditapes philippinarum in Laizhou Bay, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:9916-9930. [PMID: 30737722 DOI: 10.1007/s11356-018-04082-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 12/27/2018] [Indexed: 06/09/2023]
Abstract
With the progress of technology and the deepening of understanding of biological monitoring, much more attention has been paid to the multiple evaluation of marine pollution monitoring. In view of this, our study aimed at establishing a multi-integrated biomarker indexes approach to evaluate marine condition systematically and comprehensively. In the current study, sampling was conducted in Laizhou Bay, China (S1, S2, and S3) in May, August, and October of 2015. And then, multi-integrated biomarker indexes approach was applied to assess marine PAHs pollution, select appropriate biomarkers, and evaluate marine environmental quality and health status of the clams of Ruditapes philippinarum. As the results showed, S2 was the most PAHs-polluted site while S1 was the least polluted site, and the levels of tPAHs in seawater and sediments ranged from 69.78 to 315.30 ng/L and 163.19 to 565.17 ng/g d.w., respectively. And all three sampling sites had different sources of PAHs. IBR represented DNA damage (F value), the expression of SOD, EROD activity, GST activity, and LPO could be served as biomarkers to monitor the PAHs pollution in Laizhou Bay. And MPI suggested the quality of all three sites: S1 was generally favorable, S2 was moderately polluted, and S3 was lightly polluted. BRI values showed that the order of health status of R. philippinarum was S1 > S3 > S2.
Collapse
Affiliation(s)
- Rongwang Ji
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Luqing Pan
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China.
| | - Ruiming Guo
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Lei Zheng
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| | - Mengyu Zhang
- Key Laboratory of Mariculture, Ministry of Education, Ocean University of China, Qingdao, 266003, China
| |
Collapse
|
33
|
Magni S, Binelli A, Pittura L, Avio CG, Della Torre C, Parenti CC, Gorbi S, Regoli F. The fate of microplastics in an Italian Wastewater Treatment Plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:602-610. [PMID: 30368189 DOI: 10.1016/j.scitotenv.2018.10.269] [Citation(s) in RCA: 273] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 10/19/2018] [Accepted: 10/19/2018] [Indexed: 04/14/2023]
Abstract
The emerged threat of microplastics (MPs) in aquatic ecosystems is posing a new challenges in environmental management, in particular the civil Wastewater Treatment Plants (WWTPs) which can act both as collectors of MPs from anthropic use and as a source to natural environments. In this study, MP fate was investigated in one of the biggest WWTPs of Northern Italy, built at the beginning of the 2000s and which serves a population equivalent of about 1,200,000, by evaluating their presence at the inlet (IN), the removal efficiency after the settler (SET) and at the outlet (OUT), and their transfer to sludge. Samples were collected in three days of a week and plastic debris was characterized in terms of shape, size and polymer composition using the Fourier Transform Infrared Microscope System (μFT-IR). The number of detected MPs was 2.5 ± 0.3 MPs/L in the IN, 0.9 ± 0.3 MPs/L after the SET and 0.4 ± 0.1 MPs/L in the OUT, indicating a total removal efficiency of 84%. However, considering that this WWTP treats about 400,000,000 L wastewaters/day, the potential release of MPs to the receiving aquatic system would be approximately 160,000,000 MPs/day, mainly polyesters (35%) and polyamide (17%). Furthermore, a great amount of MPs removed from wastewater was detected in the recycled activated sludge, with 113 ± 57 MPs/g sludge dry weight, corresponding to about 3,400,000,000 MPs deposited in the 30 tons of sludge daily produced by this WWTP. Given the possible re-use of WWTP sludge in fertilizers for agriculture, our results highlight that WWTPs could represent a potential source of MPs also to agroecosystems.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - Lucia Pittura
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Carlo Giacomo Avio
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | | | - Stefania Gorbi
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Inter-University Consortium for Marine Sciences, CoNISMa, U.L.R., Ancona, Italy
| | - Francesco Regoli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Via Brecce Bianche, 60131 Ancona, Italy; National Inter-University Consortium for Marine Sciences, CoNISMa, U.L.R., Ancona, Italy
| |
Collapse
|
34
|
Parenti CC, Ghilardi A, Della Torre C, Mandelli M, Magni S, Del Giacco L, Binelli A. Environmental concentrations of triclosan activate cellular defence mechanism and generate cytotoxicity on zebrafish (Danio rerio) embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 650:1752-1758. [PMID: 30273734 DOI: 10.1016/j.scitotenv.2018.09.283] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/20/2018] [Accepted: 09/21/2018] [Indexed: 06/08/2023]
Abstract
Triclosan (TCS, 5‑chloro‑2‑(2,4‑dichlorophenoxy) phenol) is becoming a major surface waters pollutant worldwide at concentrations ranging from ng L-1 to μg L-1. Up to now, the adverse effects on aquatic organisms have been investigated at concentrations higher than the environmental ones, and the pathways underlying the observed toxicity are still not completely understood. Therefore, the aim of this study was to investigate the toxic effects of TCS at environmental concentrations on zebrafish embryos up to 120 hours post fertilization (hpf). The experimental design was planned considering both the quantity and the exposure time for the effects on the embryos, exposing them to two different concentrations (0.1 μg L-1, 1 μg L-1) of TCS, for 24 h (from 96 to 120 hpf) and for 120 h (from 0 to 120 hpf). A suite of biomarkers was applied to measure the induction of embryos defence system, the possible increase of oxidative stress and the DNA damage. We measured the activity of glutathione‑S‑transferase (GST), P‑glycoprotein efflux and ethoxyresorufin‑o‑deethylase (EROD), the level of ROS, the oxidative damage through the Protein Carbonyl Content (PCC) and the activity of antioxidant enzymes. The genetic damage was evaluated through DNA Diffusion Assay, Micronucleus test (MN test), and Comet test. The results showed a clear response of embryos defence mechanism, through the induction of P-gp efflux functionality and the activity of detoxifying/antioxidant enzymes, preventing the onset of oxidative damage. Moreover, the significant increase of cell necrosis highlighted a strong cytotoxic potential for TCS. The overall results obtained with environmental concentrations and both exposure time, underline the critical risk associated to the presence of TCS in the aquatic environment.
Collapse
Affiliation(s)
| | - Anna Ghilardi
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Matteo Mandelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Luca Del Giacco
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
35
|
Maulvault AL, Camacho C, Barbosa V, Alves R, Anacleto P, Pousão-Ferreira P, Rosa R, Marques A, Diniz MS. Living in a multi-stressors environment: An integrated biomarker approach to assess the ecotoxicological response of meagre (Argyrosomus regius) to venlafaxine, warming and acidification. ENVIRONMENTAL RESEARCH 2019; 169:7-25. [PMID: 30399468 DOI: 10.1016/j.envres.2018.10.021] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 10/02/2018] [Accepted: 10/18/2018] [Indexed: 06/08/2023]
Abstract
Pharmaceuticals, such as the antidepressant venlafaxine (VFX), have been frequently detected in coastal waters and marine biota, and there is a growing body of evidence that these pollutants can be toxic to non-target marine biota, even at low concentrations. Alongside, climate change effects (e.g. warming and acidification) can also affect marine species' physiological fitness and, consequently, compromising their ability to cope with the presence of pollutants. Yet, information regarding interactive effects between pollutants and climate change-related stressors is still scarce. Within this context, the present study aims to assess the differential ecotoxicological responses (antioxidant activity, heat shock response, protein degradation, endocrine disruption and neurotoxicity) of juvenile fish (Argyrosomus regius) tissues (muscle, gills, liver and brain) exposed to VFX (via water or feed), as well as to the interactive effects of warming (ΔT °C = +5 °C) and acidification (ΔpCO2 ~ +1000 µatm, equivalent to ΔpH = -0.4 units), using an integrated multi-biomarker response (IBR) approach. Overall, results showed that VFX toxicity was strongly influenced by the uptake pathway, as well as by warming and acidification. More significant changes (e.g. increases surpassing 100% in lipid peroxidation, LPO, heat shock response protein content, HSP70/HSC70, and total ubiquitin content, Ub,) and higher IBR index values were observed when VFX exposure occurred via water (i.e. average IBR = 19, against 17 in VFX-feed treatment). The co-exposure to climate change-related stressors either enhanced (e.g. glutathione S-transferases activity (GST) in fish muscle was further increased by warming) or attenuated the changes elicited by VFX (e.g. vitellogenin, VTG, liver content increased with VFX feed exposure acting alone, but not when co-exposed with acidification). Yet, increased stress severity was observed when the three stressors acted simultaneously, particularly in fish exposed to VFX via water (i.e. average IBR = 21). Hence, the distinct fish tissues responses elicited by the different scenarios emphasized the relevance of performing multi-stressors ecotoxicological studies, as such approach enables a better estimation of the environmental hazards posed by pollutants in a changing ocean and, consequently, the development of strategies to mitigate them.
Collapse
Affiliation(s)
- Ana Luísa Maulvault
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal; UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Carolina Camacho
- Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Vera Barbosa
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Ricardo Alves
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Patrícia Anacleto
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal; MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - Pedro Pousão-Ferreira
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal
| | - Rui Rosa
- MARE - Marine and Environmental Sciences Centre, Laboratório Marítimo da Guia, Faculdade de Ciências da Universidade de Lisboa, Av. Nossa Senhora do Cabo, 939, 2750-374 Cascais, Portugal
| | - António Marques
- Division of Aquaculture and Seafood Upgrading, Portuguese Institute for the Sea and Atmosphere, I.P. (IPMA), Rua Alfredo Magalhães Ramalho, 6, 1495-006 Lisboa, Portugal; Interdisciplinary Centre of Marine and Environmental Research (CIIMAR), Universidade do Porto,Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Mário Sousa Diniz
- UCIBIO-REQUIMTE, Department of Chemistry, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
36
|
Gajski G, Žegura B, Ladeira C, Pourrut B, Del Bo’ C, Novak M, Sramkova M, Milić M, Gutzkow KB, Costa S, Dusinska M, Brunborg G, Collins A. The comet assay in animal models: From bugs to whales – (Part 1 Invertebrates). MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2019; 779:82-113. [DOI: 10.1016/j.mrrev.2019.02.003] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 02/07/2019] [Accepted: 02/09/2019] [Indexed: 01/09/2023]
|
37
|
Ismail OH, Antonelli M, Ciogli A, De Martino M, Catani M, Villani C, Cavazzini A, Ye M, Bell DS, Gasparrini F. Direct analysis of chiral active pharmaceutical ingredients and their counterions by ultra high performance liquid chromatography with macrocyclic glycopeptide-based chiral stationary phases. J Chromatogr A 2018; 1576:42-50. [PMID: 30266236 DOI: 10.1016/j.chroma.2018.09.029] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Revised: 09/07/2018] [Accepted: 09/15/2018] [Indexed: 10/28/2022]
Abstract
In this work the simultaneous separation of chiral active pharmaceutical ingredients (API) in salt form from their counterions has been performed by using different high-efficiency macrocyclic glycopeptide-based chiral stationary phases (CSPs). Not only a new zwitterionic vancomycin-based CSP has been prepared (similarly to what was done for teicoplanin) but macrocyclic selectors have also been bonded to sub-2 μm fully porous silica particles through traditional ureidic linkage to obtain versions of CSPs suitable for ultra-high performance applications. The direct separation of chiral APIs and counterions is particularly attracting since it simplifies the workflow traditionally used with reduction of analysis time and costs. The wide selection of macrocyclic antibiotics CSPs now available has allowed to manage different cases that can happen in the simultaneous separation of APIs and their counterions (either cations or anions). Indeed, while inorganic cations are retained on traditional vancomycin- and teicoplanin-based CSPs, inorganic anions are almost unretained (due to Donnan's effect). On the other hand, cations and anions can be both retained on the zwitterionic versions of these CSPs. Afterwards, zwitterionic CSPs allowed the separation of other compounds including N-derivative amino-acids, profens, polyols, sugar anomers, oligosaccharides and inorganic anions/cations opening new perspectives in the use of this family of CSPs.
Collapse
Affiliation(s)
- Omar H Ismail
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Michela Antonelli
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Alessia Ciogli
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy.
| | - Michela De Martino
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Martina Catani
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Claudio Villani
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy
| | - Alberto Cavazzini
- Dipartimento di Scienze Chimiche e Farmaceutiche, Università di Ferrara, via L. Borsari 46, 44121 Ferrara, Italy
| | - Michael Ye
- Sigma-Aldrich/Supelco, 595 North Harrison Road, Bellefonte, PA, 16823, United States
| | - David S Bell
- Sigma-Aldrich/Supelco, 595 North Harrison Road, Bellefonte, PA, 16823, United States
| | - Francesco Gasparrini
- Dipartimento di Chimica e Tecnologie del Farmaco, "Sapienza" Università di Roma, P. le Aldo Moro 5, 00185 Roma, Italy.
| |
Collapse
|
38
|
Althakafy JT, Kulsing C, Grace MR, Marriott PJ. Determination of selected emerging contaminants in freshwater invertebrates using a universal extraction technique and liquid chromatography accurate mass spectrometry. J Sep Sci 2018; 41:3706-3715. [PMID: 30094966 DOI: 10.1002/jssc.201800507] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/02/2018] [Accepted: 08/03/2018] [Indexed: 12/14/2022]
Abstract
A simple sample preparation method based on a modified liquid-phase extraction approach to extract selected pharmaceuticals and personal care products from freshwater organisms is described. Extracted samples were analysed using liquid chromatography with Q-Exactive plus hybrid quadrupole Orbitrap mass spectrometry, using 2.6 μm C18 media. A 0.1% v/v acetic acid/acetonitrile mobile phase was applied over a 20 min gradient. Method detection limits in full scan mode were ca. 0.04-2.38 ng of analyte per g of sample. Linearity ranged from 0.9750 to 0.9996 over the calibration range of 0.01-100 μg/L; MS mass accuracy was <2 ppm for most analytes. This method was applied to quantify six pharmaceuticals and personal care products in seven invertebrate samples. For tandem mass spectrometry analysis, selection of precursor ions was performed for each pharmaceutical, with Mass Frontier software illustrating the fragmentation mechanism. Effects of collision energy on intensities of ions was further investigated. The tandem mass spectrometry condition resulting in the highest signal of respective selected product ion was selected to confirm each pharmaceutical, which was initially observed in the full scan mode. Results indicate that pharmaceuticals and personal care products found to be present in water-ways, may be incorporated into organisms that live in the environment of affected water streams.
Collapse
Affiliation(s)
- Jalal T Althakafy
- Australian Centre of Research on Separation Science, School of Chemistry, Faculty of Science, Monash University, Clayton, VIC, Australia.,Department of Chemistry, Faculty of Applied Sciences, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Chadin Kulsing
- Chromatography and Separation Research Unit, Department of Chemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand.,Center of Molecular Sensory Science, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Michael R Grace
- Water Studies Centre, School of Chemistry, Faculty of Science, Monash University, Clayton, VIC, Australia
| | - Philip J Marriott
- Australian Centre of Research on Separation Science, School of Chemistry, Faculty of Science, Monash University, Clayton, VIC, Australia
| |
Collapse
|
39
|
Yang H, Lu G, Yan Z, Liu J, Dong H. Influence of suspended sediment characteristics on the bioaccumulation and biological effects of citalopram in Daphnia magna. CHEMOSPHERE 2018; 207:293-302. [PMID: 29803878 DOI: 10.1016/j.chemosphere.2018.05.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 05/14/2018] [Accepted: 05/15/2018] [Indexed: 06/08/2023]
Abstract
The influence of suspended sediment (SPS) characteristics on the bioavailability of the antidepressant citalopram (CIT) was investigated in the cladoceran Daphnia magna. The bioaccumulation, swimming behaviours, psychological indices, and oxidative stress were examined. The CIT bioaccumulation were altered in the presence of SPS, such that the body burden of CIT decreased as the concentration of SPS increased and as the organic carbon content of SPS (foc) increased; moreover, the body burden of CIT increased as SPS particle size increased. All the biomarker activities of D. magna were markedly induced at a CIT exposure concentration of 10 μg/L. However, the biological effects of CIT did not depend on the body burden of CIT as SPS concentration increased, while the swimming activities and oxidative stress were significantly enhanced by SPS concentration at 1 g/L. The influences of SPS particle size and foc on the activities of swimming and physiological indicators were mainly associated with the CIT bioaccumulation, while foc in SPS was more substantial than particle size. In addition, the antioxidant activities decreased as foc increased and were significantly strengthened at particle sizes of 30-60 μm. The impacts of different SPS characteristics on the adsorption and desorption capacity of CIT and the ingestion habits of D. magna were the main reasons for the variations in CIT body burden and biological effects. According to the results obtained in this study, the SPS characteristics should be considered in the risk assessment of contaminants in natural aquatic environments.
Collapse
Affiliation(s)
- Haohan Yang
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing 210098, China
| | - Guanghua Lu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing 210098, China; Water Conservancy Project & Civil Engineering College, Tibet Agriculture & Animal Husbandry University, Linzhi 860000, China.
| | - Zhenhua Yan
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing 210098, China
| | - Jianchao Liu
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing 210098, China
| | - Huike Dong
- Key Laboratory of Integrated Regulation and Resources Development, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
40
|
Mezzelani M, Gorbi S, Regoli F. Pharmaceuticals in the aquatic environments: Evidence of emerged threat and future challenges for marine organisms. MARINE ENVIRONMENTAL RESEARCH 2018; 140:41-60. [PMID: 29859717 DOI: 10.1016/j.marenvres.2018.05.001] [Citation(s) in RCA: 181] [Impact Index Per Article: 25.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 04/16/2018] [Accepted: 05/03/2018] [Indexed: 05/17/2023]
Abstract
Pharmaceuticals are nowadays recognized as a threat for aquatic ecosystems. The growing consumption of these compounds and the enhancement of human health in the past two decades have been paralleled by the continuous input of such biologically active molecules in natural environments. Waste water treatment plants (WWTPs) have been identified as a major route for release of pharmaceuticals in aquatic bodies where concentrations ranging from ng/L to μg/L are ubiquitously detected. Since medicines principles are designed to be effective at very low concentrations, they have the potential to interfere with biochemical and physiological processes of aquatic species over their entire life cycle. Investigations on occurrence, bioaccumulation and effects in non target organisms are fragmentary, particularly for marine ecosystems, and related to only a limited number over the 4000 substances classified as pharmaceuticals: hence, there is a urgent need to prioritize the environmental sustainability of the most relevant compounds. The aim of this review is to summarize the main adverse effects documented for marine species exposed in both field and laboratory conditions to different classes of pharmaceuticals including non-steroidal anti-inflammatory drugs, psychiatric, cardiovascular, hypocholesterolaemic drugs, steroid hormones and antibiotics. Despite a great scientific advancement has been achieved, our knowledge is still limited on pharmaceuticals behavior in chemical mixtures, as well as their interactions with other environmental stressors. Complex ecotoxicological effects are increasingly documented and multidisciplinary, integrated approaches will be helpful to clarify the environmental hazard of these "emerged" pollutants in marine environment.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy.
| |
Collapse
|
41
|
Magni S, Gagné F, André C, Della Torre C, Auclair J, Hanana H, Parenti CC, Bonasoro F, Binelli A. Evaluation of uptake and chronic toxicity of virgin polystyrene microbeads in freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia). THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:778-788. [PMID: 29544181 DOI: 10.1016/j.scitotenv.2018.03.075] [Citation(s) in RCA: 158] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 03/07/2018] [Accepted: 03/07/2018] [Indexed: 04/14/2023]
Abstract
Microplastics (MPs), plastic debris smaller than 5mm, are widely found in both marine and freshwater ecosystems. However, few studies regarding their hazardous effects on inland water organisms, have been conducted. For this reason, the aim of our research was the evaluation of uptake and chronic toxicity of two mixtures (MIXs) of virgin polystyrene microbeads (PMs) of 10μm and 1μm in size (MIX 1, with 5×105 of 1μmsizePMs/L and 5×105 of 10μmsizePMs/L, and MIX 2 with 2×106 of 1μmsizePMs/L and 2×106 of 10μmsizePMs/L) on freshwater zebra mussel Dreissena polymorpha (Mollusca: Bivalvia) during 6 exposure days. The PM uptake in the mussel body and hemolymph was assessed using confocal microscopy, while the chronic toxicity of PMs was evaluated on exposed mussels using a comprehensive battery of biomarkers of cellular stress, oxidative damage and neuro- genotoxicity. Confocal microscopy analyses showed that MPs concentrated in the gut lumen of exposed mussels, absorbed and transferred firstly in the tissues and then in the hemolymph. The results revealed that PMs do not produce oxidative stress and genetic damage, with the exception of a significant modulation of catalase and glutathione peroxidase activities in mussels exposed to MIX 1. Regarding neurotoxicity, we observed only a significant increase of dopamine concentration in mussels exposed to both MIXs, suggesting a possible implication of this neurotransmitter in an elimination process of accumulated PMs. This research represents a first study about the evaluation of virgin MP toxicity in zebra mussel and more research is warranted concerning the long term neurological effects of virgin MPs.
Collapse
Affiliation(s)
- Stefano Magni
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| | - François Gagné
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, H2Y 2E7 Montréal, Québec, Canada
| | - Chantale André
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, H2Y 2E7 Montréal, Québec, Canada
| | - Camilla Della Torre
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy
| | - Joëlle Auclair
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, H2Y 2E7 Montréal, Québec, Canada
| | - Houda Hanana
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, 105 McGill, H2Y 2E7 Montréal, Québec, Canada
| | | | - Francesco Bonasoro
- Department of Environmental Science and Policy, University of Milan, Via Celoria 2, 20133 Milan, Italy
| | - Andrea Binelli
- Department of Biosciences, University of Milan, Via Celoria 26, 20133 Milan, Italy.
| |
Collapse
|
42
|
Yang M, Liu S, Hu L, Zhan J, Lei P, Wu M. Effects of the antidepressant, mianserin, on early development of fish embryos at low environmentally relevant concentrations. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 150:144-151. [PMID: 29272719 DOI: 10.1016/j.ecoenv.2017.12.024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 12/03/2017] [Accepted: 12/09/2017] [Indexed: 06/07/2023]
Abstract
Pharmaceuticals have been considered as emerging organic contaminants in the environment that might pose huge risk to the non-target aquatic organisms. Mianserin, a tetracyclic antidepressant, is present at low detectable concentrations in the aquatic environment; however, limited attention has been devoted to its potential adverse effects on the aquatic animals. In the present study, we first performed an acute toxicity test for mianserin exposure using zebrafish (Danio rerio) embryos during 4-124h post fertilization (hpf). Time-dependent lethal concentrations of mianserin exposure on the zebrafish embryos were firstly determined at mg/L levels. Then, a series of sublethal concentrations of 0.01, 0.1, 1, 10, 100, and 1000μg/L of mianserin were prepared for the short-term exposure of zebrafish embryos for 120h. The results showed that mianserin exposure reduced the body length of zebrafish larvae, in addition to altering multiple physiological and biochemical parameters in the exposed embryos/larvae. A dose-dependent inhibition of the total antioxidant capacity and total cholinesterase activity was revealed in the exposed fish larvae upon increasing the concentrations of mianserin exposure. A U-shaped concentration-dependent response curve was observed for the adrenocorticotropic hormone; however, an inversed U-shaped response curve was obtained for the monoamine oxidase level in response to mianserin exposure. Activities of the total adenosine triphosphatase (T-ATPase), Na+/K+-ATPase, and Ca2+/Mg2+-ATPase were significantly increased in the fish larvae exposed to relatively high doses of mianserin; interestingly however, low dose of mianserin at 10ng/L inhibited their Na+/K+-ATPase and T-ATPase activities. Additionally, the coordinated regulation of cyclic adenosine monophosphate and protein kinase A was observed in the mianserin-exposed fish larvae, implying a reserved signaling pathway involved in the fish response to the antidepressant. Therefore, our study demonstrated that mianserin exposure significantly affected the early development of fish embryos at environmentally relevant concentrations, and suggested that the risk of pharmaceutical contamination of the aquatic environment, even at low doses, should receive more attention.
Collapse
Affiliation(s)
- Ming Yang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Shuai Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Lei Hu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China; School of Life Science, Shanghai University, Shanghai 200444, China.
| | - Jing Zhan
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China.
| | - Penghui Lei
- School of Life Science, Shanghai University, Shanghai 200444, China.
| | - Minghong Wu
- Shanghai Applied Radiation Institute, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
43
|
Differential tolerance to nickel between Dreissena polymorpha and Dreissena rostriformis bugensis populations. Sci Rep 2018; 8:700. [PMID: 29335592 PMCID: PMC5768691 DOI: 10.1038/s41598-018-19228-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2017] [Accepted: 12/21/2017] [Indexed: 11/23/2022] Open
Abstract
Differential tolerance to stress is partly responsible for the heterogeneity of biomarker responses between populations of a sentinel species. Although currently used for freshwater biomonitoring, studies concerning inter-populational variability in tolerance to contaminants for the zebra mussel (Dreissena polymorpha) are scarce. Moreover, this well-known invader is currently replaced by another, the quagga mussel (Dreissena rostriformis bugensis). To evaluate the differential tolerance between dreissenids, several populations of both species were exposed to a high concentration of nickel. A LT50 (time when 50% of individuals were dead) was established for each population. Biomarker responses and internal nickel concentration were also measured, to link tolerance with physiological status. Results evidenced that D. polymorpha populations are more heterogeneous and more tolerant than D. r. bugensis ones. For D. polymorpha populations only, LT50 values were positively correlated with the nickel contamination in situ, with higher anti-oxidative defences and a higher Integrated Biomarker Response value in the field. Such findings may be explained by local adaptation and invasion dynamic within each species. The significance of this differential tolerance when using biomarker responses for biomonitoring purposes is thus discussed.
Collapse
|
44
|
Yang H, Lu G, Yan Z, Liu J, Ma B, Dong H. Biological effects of citalopram in a suspended sediment-water system on Daphnia magna. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:21180-21190. [PMID: 28733820 DOI: 10.1007/s11356-017-9763-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Accepted: 07/11/2017] [Indexed: 06/07/2023]
Abstract
Suspended sediment (SPS) plays an important role in the aquatic ecosystems. Selective serotonin uptake inhibitors (SSRIs) are commonly used antidepressants and are frequently detected in aquatic environments. However, the biological effects of SSRIs in the presence of SPS are not well understood. To fill this gap, an SPS-water system was constructed to investigate the effects of citalopram (CIT) on Daphnia magna in the presence of SPS with different concentrations (0.1, 0.5, 1 g l-1) and organic carbon contents (0.5, 1, 1.5, 2%). A dialysis bag was applied in the exposure system to control the same dissolved concentration of CIT and prevent SPS from entering into the bag. The dissolved CIT concentration obviously decreased in the SPS-water system during the exposure period. The presence of SPS significantly increased the immobilization of D. magna, and the immobilization rates were positively correlated with the SPS concentration and negatively correlated with the organic carbon content in SPS. For a single exposure, CIT significantly increased superoxide dismutase (SOD) activity and inhibited acetylcholinesterase (AChE) activity in D. magna, while SPS itself did not change the SOD and AChE activities. In the SPS-water system, SOD activity was significantly suppressed, indicating that the SPS-CIT combination could result in oxidative damage. However, SPS did not enhance the neurotoxicity of D. magna that was induced by CIT. These results suggest that SPS exerts a vital role on the biological effects of CIT and the contaminants sorbed on SPS should be taken into consideration.
Collapse
Affiliation(s)
- Haohan Yang
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Guanghua Lu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
- College of Hydraulic and Civil Engineering, XiZang Agricultural and Animal Husbandry College, Linzhi, 860000, China.
| | - Zhenhua Yan
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Jianchao Liu
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Binni Ma
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Huike Dong
- Key Laboratory for Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|