1
|
Hartig AM, Dai W, Zhang K, Kapoor K, Rottinghaus AG, Moon TS, Parker KM. Influence of Environmental Conditions on the Escape Rates of Biocontained Genetically Engineered Microbes. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:22657-22667. [PMID: 39668804 PMCID: PMC11750180 DOI: 10.1021/acs.est.4c10893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The development of genetically engineered microbes (GEMs) has resulted in an urgent need to control their persistence in the environment. The use of biocontainment such as kill switches is a critical approach to prevent the unintended proliferation of GEMs; however, the effectiveness of kill switches─reported as escape rates, i.e., the ratio of the number of viable microbes when the kill switch is triggered relative to the number when it is not triggered─is typically assessed under laboratory conditions that do not resemble environmental conditions under which biocontainment must perform. In this study, we discovered that the escape rate of an Escherichia coli GEM biocontained with a CRISPR-based kill switch triggered by anhydrotetracycline (aTc) increased by 3-4 orders of magnitude when deployed in natural surface waters as compared to rich laboratory media. We identified that environmental conditions (e.g., pH, nutrient levels) may contribute to elevated escape rates in multiple ways, including by altering the chemical speciation of the kill switch trigger to reduce its uptake and providing limited nutrients required for the kill switch to function. Our study demonstrated that conditions in the intended environment must be considered in order to design effective GEM biocontainment strategies.
Collapse
Affiliation(s)
- Anna M. Hartig
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Wentao Dai
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Ke Zhang
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Krisha Kapoor
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Austin G. Rottinghaus
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| | - Tae Seok Moon
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
- Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis Missouri 63130, United States
- Synthetic Biology Group, J. Craig Venter Institute, La Jolla, California 92037, United States
| | - Kimberly M. Parker
- Department of Energy, Environmental, and Chemical Engineering, Washington University in St. Louis, St. Louis Missouri 63130, United States
| |
Collapse
|
2
|
Mansee AH, Ebrahim AM, Koreish EA. Sustainable indigenous bio-mixture for restoration the soil point source pollution with special reference to chlorpyrifos. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:363. [PMID: 38478213 PMCID: PMC10937809 DOI: 10.1007/s10661-024-12494-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 02/24/2024] [Indexed: 03/17/2024]
Abstract
Improper pesticide handling is the main cause of contamination of the environment in agricultural systems. This could be caused by leakage of spraying liquid, leftovers, and inappropriate washing of spraying equipment. This study assessed the ability of suggested biomixture modules for remediate repetitive cycles of high chlorpyrifos doses. In three consecutive treatments, four tested modules were contaminated with 160 µg g-1 chlorpyrifos. Chlorpyrifos residues, dehydrogenase activity, and microbial respiration were continuously monitored for 22 weeks. Six bacterial consortia were isolated at the end of the experiment from four treated modules (B+3, BF+3, S+3, and SF+3) and two from untreated modules (B and S). The isolated consortium efficiency in degrading chlorpyrifos was studied. The results revealed that the best chlorpyrifos removal efficiency was achieved when using the stimulated biomixture module (BF) recorded 98%, 100%, and 89%, at the end of three chlorpyrifos treatments, respectively. Such removal efficiency was compatible with the biological activity results of the tested modules: dehydrogenase activity and microbial respiration. There was no difference in the efficiency among the S, B, and BF+3 consortia. The results presented here demonstrate that the combination of vermicompost, wheat straw, soil, and NPK (stimulated biomixture module) can successfully reduce the risk of a point source of pesticide pollution.
Collapse
Affiliation(s)
- Ayman H Mansee
- Department of Pesticide Chemistry & Technology, Faculty of Agriculture, Alexandria University, Alexandria, Egypt.
| | - Amal M Ebrahim
- Department of Soil & Water Science, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| | - Essam A Koreish
- Department of Soil & Water Science, Faculty of Agriculture, Alexandria University, Alexandria, Egypt
| |
Collapse
|
3
|
Kumar R, Saini GK, Jawed M. Resilience of aerobic sludge biomass under chlorpyrifos stress and its recovery potential. CHEMOSPHERE 2024; 352:141324. [PMID: 38296207 DOI: 10.1016/j.chemosphere.2024.141324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 12/15/2023] [Accepted: 01/27/2024] [Indexed: 02/06/2024]
Abstract
Non-agricultural sources of pesticides in urban areas are responsible for their presence in domestic wastewater. Therefore, pesticides are typically found in sewage treatment plants in developed and developing countries as micro-pollutant. The presence of pesticides in the wastewater can impart stress on the aerobic sludge biomass and disrupt the functioning of the plant. However, there exists a knowledge gap regarding the resilience of aerobic sludge biomass towards stress due to the presence of pesticides in the wastewater. This study investigated the impact of chlorpyrifos (CPS) - a widely used pesticide, on sludge biomass and explored its recovery capability when CPS is discontinued in the influent. Four duplicate reactors were operated with different CPS concentrations ranging from 50 to 200 mg/L. Chemical oxygen demand (COD) removal for reactors has ranged within 18-73 % at the steady state of the stressed phase, whereas COD removal for the control reactor was 91 %. CPS stress slightly inhibited filamentous biomass growth. Biomass activity and cell viability have decreased significantly, whereas biochemical contents have varied slightly under CPS stress. The activities of the enzymes dehydrogenase and urease were significantly inhibited when compared to catalase and protease. Amplified ribosomal DNA restriction analysis reflected changes in the microbial community. The discontinuation of CPS has allowed aerobic sludge biomass to recover in its organic degradation capability (COD removal of more than 88 % at steady-state conditions of recovery phase operation), biomass growth, and cell viability. In addition, enzyme activities have retrieved to their original levels, and 78-93 % similarity of microbial community structure has been displayed between CPS-exposed and control reactor biomasses. Overall, the present study has indicated the orderly changes in the quality of aerobic sludge biomass under CPS stress through physico-chemical and biological characteristics. The study also has highlighted the self-recovery of sludge biomass characteristics stressed with different concentrations of CPS.
Collapse
Affiliation(s)
- Rajneesh Kumar
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
| | - Gurvinder Kaur Saini
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammad Jawed
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India; Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
4
|
Yadav R, Khare P. Dissipation kinetics of chlorpyrifos and 3,5,6 trichloro-2-pyridinol under vegetation of different aromatic grasses: Linkage with enzyme kinetics and microbial community of soil. JOURNAL OF HAZARDOUS MATERIALS 2023; 448:130960. [PMID: 36860046 DOI: 10.1016/j.jhazmat.2023.130960] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Revised: 02/02/2023] [Accepted: 02/05/2023] [Indexed: 06/18/2023]
Abstract
The dissipation of chlorpyrifos (CP) and its hydrolytic metabolite 3,5,6-trichloro-2-pyridinol (TCP) in the soil is crucial for safe agriculture. However, there is still lacking relevant information about its dissipation under different vegetation for remediation purposes. In the present study, evaluation of dissipation of CP and TCP in non-planted and planted soil with different cultivars of three types of aromatic grass viz Cymbopogon martinii (Roxb. Wats), Cymbopogon flexuosus, and Chrysopogon zizaniodes (L.) Nash was examined in light of soil enzyme kinetics, microbial communities, and root exudation. Results revealed that the dissipation of CP was well-fitted into a single first-order exponential model (SFO). A significant reduction in the half-life (DT50) of CP was observed in planted soil (30-63 days) than in non-planted soil (95 days). The presence of TCP in all soil samples was observed. The three types of the inhibitory effect of CP i.e. linear mixed inhibition (increase in enzyme-substrate affinity (Km) and decrease in enzyme pool (Vmax), un-competitive inhibition (decrease in Km and Vmax), and simple competitive inhibition were observed on soil enzymes involved in mineralization of carbon, nitrogen, phosphorus, and sulfur. The improvement in the enzyme pool (Vmax) was observed in planted soil. Streptomyces, Clostridium, Kaistobacter, Planctomyces, and Bacillus were the dominant genera in CP stress soil. CP contamination in soil demonstrated a reduction of richness in microbial diversity and enhancement of functional gene family related to cellular process, metabolism, genetic, and environmental information processing. Among all the cultivars, C. flexuosus cultivars demonstrated a higher dissipation rate of CP along with more root exudation.
Collapse
Affiliation(s)
- Ranu Yadav
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Puja Khare
- Crop Production and Protection Division, CSIR-Central Institute of Medicinal and Aromatic Plants, Lucknow 226015, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
5
|
Mokni-Tlili S, Hechmi S, Ouzari HI, Mechergui N, Ghorbel M, Jedidi N, Hassen A, Hamdi H. Co-occurrence of antibiotic and metal resistance in long-term sewage sludge-amended soils: influence of application rates and pedo-climatic conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:26596-26612. [PMID: 36369449 PMCID: PMC9652132 DOI: 10.1007/s11356-022-23802-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Urban sewage sludge (USS) is increasingly being used as an alternative organic amendment in agriculture. Because USS originates mostly from human excreta, partially metabolized pharmaceuticals have also been considered in risk assessment studies after reuse. In this regard, we investigated the cumulative effect of five annual USS applications on the spread of antibiotic-resistant bacteria (ARB) and their subsequent resistance to toxic metals in two unvegetated soils. Eventually, USS contained bacterial strains resistant to all addressed antibiotics with indices of resistance varying between 0.25 for gentamicin to 38% for ampicillin and azithromycin. Sludge-amended soils showed also the emergence of resistome for all tested antibiotics compared to non-treated controls. In this regard, the increase of sludge dose generally correlated with ARB counts, while soil texture had no influence. On the other hand, the multi-antibiotic resistance (MAR) of 52 isolates selected from USS and different soil treatments was investigated for 10 most prescribed antibiotics. Nine isolates showed significant MAR index (≥ 0.3) and co-resistance to Cd, As and Be as well. However, events including an extreme flash flood and the termination of USS applications significantly disrupted ARB communities in all soil treatments. In any case, this study highlighted the risks of ARB spread in sludge-amended soils and a greater concern with the recent exacerbation of antibiotic overuse following COVID-19 outbreak.
Collapse
Affiliation(s)
- Sonia Mokni-Tlili
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Sarra Hechmi
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Hadda-Imene Ouzari
- Laboratory of Microorganisms and Active Biomolecules, Faculty of Sciences of Tunis, University of Tunis El Manar, LR03ES03, Tunis, Tunisia
| | - Najet Mechergui
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Manel Ghorbel
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Naceur Jedidi
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Abdennaceur Hassen
- Water Research and Technology Center, University of Carthage, P.O. Box 273, 8020, Soliman, Tunisia
| | - Helmi Hamdi
- Food and Water Security Program, Center for Sustainable Development, College of Arts and Sciences, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
6
|
Lourthuraj AA, Hatshan MR, Hussein DS. Biocatalytic degradation of organophosphate pesticide from the wastewater and hydrolytic enzyme properties of consortium isolated from the pesticide contaminated water. ENVIRONMENTAL RESEARCH 2022; 205:112553. [PMID: 34902381 DOI: 10.1016/j.envres.2021.112553] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 11/21/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
The indiscriminate application of various pesticides leads to toxicity to the humans, animals, fishes and threatens the environment and ecosystem. The present study was aimed to investigate pesticide degrading bacteria from the pesticide contaminated sample and to localize organophophate hydrolase activity from the bacteria. Sediment sample was selected as the source of microorganism for the degradation of chlorpyrifos. Enterobacter aerogenes CP2 and Streptococcus pyogenes CP11 isolated from the contaminated sample removed 77 ± 1.8%, 74.2 ± 3.1 chlorpyrifos. These strains have the potential to utilize pesticide as the source of carbon and energy. The pesticides inoculated with both CP 2 and CP 11 enhanced biodegradation of chlorpyrifos at optimized condition. E. aerogenes CP2 and S. pyogenes CP11 produced organophosphate hydrolase activity and localized enzyme biosynthesis. Organophosphate hydrolase activity was high in intracellular, followed by outer membrane and extracellular sample for both bacteria. The treated wastewater has no impact on the seed germination indicated normal cell division, cell elongation and indole-3 acetic acid synthesis. The strain CP2 has the rapid rate of organophosphate degradation among Enterobacter species.
Collapse
Affiliation(s)
- A Amala Lourthuraj
- Department of Biotechnology, Guru Nanak College (Autonomous), Velachery, Chennai, 600042, Tamil Nadu, India.
| | - Mohammad Rafe Hatshan
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Dina S Hussein
- Department of Chemistry, College of Sciences and Health, Cleveland State University, Cleveland, USA
| |
Collapse
|
7
|
Bai L, Liu X, Hua K, Tian L, Wang C, Jiang H. Microbial processing of autochthonous organic matter controls the biodegradation of 17α-ethinylestradiol in lake sediments under anoxic conditions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 296:118760. [PMID: 34971738 DOI: 10.1016/j.envpol.2021.118760] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 12/02/2021] [Accepted: 12/26/2021] [Indexed: 06/14/2023]
Abstract
The decay of algal biomass and aquatic plants in freshwater lakes leads to the overproduction of autochthonous organic matter (OM) and the exhaustion of dissolved oxygen, impacting the microbial community and subsequent biodegradation of emerging contaminants in sediment. This study explored how the microbial processing of aquatic plant- and algal-derived OM (POM and AOM) mediates 17α-ethinylestradiol (EE2) biodegradation in the anoxic sediments of Lake Taihu in China. In four months of microcosm incubations, the increased concentrations of protein-like substances in AOM and POM exhibited temporary activation on microbial metabolic enzyme activity (fluorescein diacetate hydrolase and dehydrogenase) and significantly promoted the carbon mineralization with iron reduction (P < 0.001). These in turn increased the EE2 biodegradation efficiency to 77-90 ng g-1 in the anoxic sediment. However, a higher EE2 biodegradation of 109 ng g-1 was achieved with the humic acid augmentation containing more quinone-like compounds, showing a weaker substrate-priming effect but accelerated redox cycling of iron and organic substrates in the later period of incubation. The microbial analysis further revealed that the quinone-like compounds in OM were more closely associated with microbial electron transfer and strengthened their interspecies syntrophic cooperation favorable to contaminant biodegradation, even though the connective members exposed to protein-like components upregulated more functional genes related to organic carbon and xenobiotics metabolism and biodegradation. Our findings will help predict the fate of estrogens in various sedimentary environments under increasing eutrophication and further climate change scenarios.
Collapse
Affiliation(s)
- Leilei Bai
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xin Liu
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Ke Hua
- College of Biology and Environment, Nanjing Forestry University, Nanjing, 210037, China
| | - Linqi Tian
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Changhui Wang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Helong Jiang
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
8
|
Microbial Diversity and P Content Changes after the Application of Sewage Sludge and Glyphosate to Soil. MINERALS 2021. [DOI: 10.3390/min11121423] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Pesticides, despite their side effects, are still being used in almost every agriculture, horticulture, maintaining municipal greenery in urban areas and even in home gardens. They influence human life and health and the functioning of entire ecosystems, including inanimate elements such as water and soil. The aim of the study was the evaluation of the suitability of sewage sludge in improving the quality of soil treated with a non-selective herbicide-glyphosate, applied as Roundup 360 SL. A pot experiment was conducted with the use of two arable soils (MS and OS), which were amended with sewage sludge (SS), glyphosate (GL) and sewage sludge with glyphosate (SS+GL). Soil samples were taken after 24 h, 144 h and 240 h and total phosphorus (TP) content (TP), total number of bacteria/fungi, activity of dehydrogenases (Dha), acidic phosphatase (Acp), alkaline phosphatase (Alp), genetic biodiversity of bacteria/fungi using the terminal restriction fragment length polymorphism method were determined. The application of SS and GL to OS caused an increase in Acp (approximately 35%) and a decrease in Alp activity (approximately 20%). Additionally, GL may influence on an increase in the number of fungi and the decrease in the number of bacteria. In soil with SS+GL increase in the fungal diversity in MS and OS was also observed. Moreover, a positive between TP and the number of bacteria and the activity of phosphatases correlation was reported. The obtained results indicate that analyzed sewage sludge could be potentially applied into soil in in situ scale and could constitute a valuable reclamation material.
Collapse
|
9
|
Combined biostimulation and bioaugmentation for chlorpyrifos degradation in laboratory microcosms. 3 Biotech 2021; 11:439. [PMID: 34603916 DOI: 10.1007/s13205-021-02980-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 09/01/2021] [Indexed: 10/20/2022] Open
Abstract
Chlorpyrifos (CP) is a persistent organophosphorus pesticide (OP) used in soil ecosystem for insect control. Bioremediation process has been proven promising in degrading these toxic molecules and restoring the physio-chemical properties of soil. This work reports a laboratory microcosm study in both non-sterile & sterile conditions, conducted over a period of 56 days to examine the combined effect of additional supplements like biostimulants (BSs) such as N, P, and K in the presence of suitable carrier materials (compost, wheat straw, and corncob) along with bioaugmentation by a Ochrobactrum sp. CPD-03 on CP degradation from the contaminated soil. CP degradation was thoroughly monitored at an interval of 7 days over a period of 56 days. Results showed biostimulation and bioaugmentation along with compost as carrier material had shown higher CP degradation efficiency of 76 ± 2.8 and 74 ± 1.6% in non-sterile and sterile microcosms over a period of 56 days. Moreover, bacterial community profiling (16s rRNA and opd gene) demonstrated increased microbial counts, corroborating the efficiency of the bioremediation process. The survival of CPD-03 at the end of the assay validated its ability of colonizing modified soils. By this integrated method with compost as carrier material, bioremediation process could be enhanced for restoration CP-contaminated soils. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02980-9.
Collapse
|
10
|
Farhan M, Ahmad M, Kanwal A, Butt ZA, Khan QF, Raza SA, Qayyum H, Wahid A. Biodegradation of chlorpyrifos using isolates from contaminated agricultural soil, its kinetic studies. Sci Rep 2021; 11:10320. [PMID: 33990630 PMCID: PMC8121937 DOI: 10.1038/s41598-021-88264-x] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 04/01/2021] [Indexed: 11/26/2022] Open
Abstract
Extensive pesticides use is negatively disturbing the environment and humans. Pesticide bioremediation with eco-friendly techniques bears prime importance. This study evaluates the bioremediation of chlorpyrifos in soil using indigenous Bacillus cereus Ct3, isolated from cotton growing soils. Strains were identified through ribotyping (16s rRNA) by Macrogen (Macrogen Inc. Geumchen-gu, South Korea). Bacillus cereus Ct3 was resistant up to 125 mg L−1 of chlorpyrifos and successfully degraded 88% of chlorpyfifos in 8 days at pH 8. Bacillus cereus Ct3 tolerated about 30–40 °C of temperature, this is a good sign for in situ bioremediation. Green compost, farmyard manure and rice husk were tested, where ANOVA (P < 0.05) and Plackett–Burman design, results indicated that the farm yard manure has significant impact on degradation. It reduced the lag phase and brought maximum degradation up to 88%. Inoculum size is a statistically significant (P < 0.05) factor and below 106 (CFU g−1) show lag phase of 4–6 days. Michaelis–Menten model results were as follows; R2 = 0.9919, Vmax = 18.8, Ks = 121.4 and Vmax/Ks = 0.1546. GC–MS study revealed that chlorpyrifos first converted into diethylthiophosphoric acid and 3,5,6-trichloro-2-pyridinol (TCP). Later, TCP ring was broken and it was completely mineralized without any toxic byproduct. Plackett–Burman design was employed to investigate the effect of five factors. The correlation coefficient (R2) between experimental and predicted value is 0.94. Central composite design (CBD) was employed with design matrix of thirty one predicted and experimental values of chlorpyrifos degradation, having “lack of fit P value” of “0.00”. The regression coefficient obtained was R2 = 0.93 which indicate that the experimental vales and the predicted values are closely fitted. The most significant factors highlighted in CBD/ANOVA and surface response plots were chlorpyrifor concentration and inoculum size. Bacillus cereus Ct3 effectively degraded chlorpyrifos and can successfully be used for bioremediation of chlorpyrifos contaminated soils.
Collapse
Affiliation(s)
- Muhammad Farhan
- Sustainable Development Study Center, Government College University, Lahore, Pakistan.
| | - Maqsood Ahmad
- Department of Environmental Sciences, Baluchistan University of Information Technology, Engineering and Management Sciences, Quetta, Pakistan
| | - Amina Kanwal
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Zahid Ali Butt
- Department of Botany, Government College Women University, Sialkot, Pakistan
| | - Qaiser Farid Khan
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Syed Ali Raza
- Directorate of Land Reclamation, Irrigation Department, Lahore, Pakistan.,Department of Chemistry, Government College University, Lahore, Pakistan
| | - Haleema Qayyum
- Sustainable Development Study Center, Government College University, Lahore, Pakistan
| | - Abdul Wahid
- Department of Environmental Science, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
11
|
Mohanakrishna G, Al-Raoush RI, Abu-Reesh IM. Sewage enhanced bioelectrochemical degradation of petroleum hydrocarbons in soil environment through bioelectro-stimulation. ACTA ACUST UNITED AC 2020; 27:e00478. [PMID: 32518761 PMCID: PMC7270540 DOI: 10.1016/j.btre.2020.e00478] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 03/30/2020] [Accepted: 05/24/2020] [Indexed: 11/25/2022]
Abstract
Acetate and sewage were evaluated for enhanced hydrocarbons degradation in soil bioelectrochemical systems. Sewage has superior function in improving in situ bioelectrochemical degradation. Both acetate and sewage improved power density, substrate and sulfate removal. Soil contaminated with produced water was remediated by more than 70 %.
The impact of readily biodegradable substrates (sewage and acetate) in bioelectroremediation of hydrocarbons (PW) was evaluated in a bench-scale soil-based hybrid bioelectrochemical system. Addition of bioelectro-stimulants evidenced efficient degradation than control operation. Acetate and sewage were exhibited power density of 1126 mW/m2 and 1145 mW/m2, respectively, which is almost 15 % higher than control (without stimulant, 974 mW/m2). Increased electrochemical activity was correlated well with total petroleum hydrocarbons (TPH) degradation through addition of acetate (TPHR, 525 mg/L, 67.4 %) and sewage (TPHR, 560 mg/L,71.8 %) compared to the control operation (TPHR, 503 mg/L, 64.5 %). Similarly, chemical oxygen demand (COD) reduction was also enhanced from 69.0 % (control) to 72.1 % and 74.6 % with acetate and sewage, respectively. Sewage and acetate also showed a positive role in sulfates removal, which enhanced from 56.0 % (control) to 62.9 % (acetate) and 72.6 % (sewage). This study signifies the superior function of sewage as biostimulant compared to acetate for the bioelectroremediation of hydrocarbons in contaminated soils.
Collapse
Key Words
- Applied potential
- BES, Bioelectrochemical system
- BET, Bioelectrochemical treatment
- COD, Chemical oxygen demand
- DROs, Diesel range organics
- EAB, Electroactive anodic biofilms
- In situ bioelectroremediation
- MFC, Microbial fuel cell
- PRW, Petroleum refinery wastewater
- PW, Produced water
- Petroleum hydrocarbons
- Produced water
- SRB, Sulfate reducing bacteria
- Sewage supplementation
- TDS, Total dissolved solids
- TPH, Total petroleum hydrocarbons
- TPHR, Total petroleum hydrocarbons removal
Collapse
Affiliation(s)
- Gunda Mohanakrishna
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, P O Box 2713, Doha, Qatar
| | - Riyadh I Al-Raoush
- Department of Civil and Architectural Engineering, College of Engineering, Qatar University, P O Box 2713, Doha, Qatar
| | - Ibrahim M Abu-Reesh
- Department of Chemical Engineering, College of Engineering, Qatar University, P O Box 2713, Doha, Qatar
| |
Collapse
|
12
|
Tan H, Wang C, Li H, Peng D, Zeng C, Xu H. Remediation of hexavalent chromium contaminated soil by nano-FeS coated humic acid complex in combination with Cr-resistant microflora. CHEMOSPHERE 2020; 242:125251. [PMID: 31896185 DOI: 10.1016/j.chemosphere.2019.125251] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 10/25/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
A novel nano-composite material (CMC-FeS@HA) combining the advantages of humic acid (HA) and FeS was synthesized to remediate hexavalent chromium (Cr(VI)) contaminated soil along with chromium (Cr) resistant microflora. The characteristic analysis confirmed the successful synthesis of the nano-composite, which provided further mechanism evidence of its detoxification effect on polluted soil. Energy Dispersive System analysis proved the adsorption of the microbe consortium (MC) for Cr. After remediation, Cr(VI) in all treatments was dramatically reduced and the leachable Cr in soil treated by CMC-FeS@HA and MC decreased 89.14% compared with control. The result of BCR sequential extraction showed that Cr was stabilized, whose form changed to oxidizable and residual from HOAC-extractable. Besides, CMC-FeS@HA, as a sustained-release acid with high biocompatibility, could continuously decrease the pH of strongly alkaline soil and created a suitable micro-ecological environment for soil microorganisms. Moreover, CMC-FeS@HA dramatically improved soil physicochemical property, soil microbial activity (dehydrogenase, hydrolase, urease, and invertase activities), and soil microecological diversity. In total, this study provided a useful technology for soil remediation, which innovatively combined chemical remediation and microbial-remediation with a positive effect on soil quality, providing a good approach for the multiple technology combination in the environmental cause.
Collapse
Affiliation(s)
- Hang Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Can Wang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Hao Li
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Chunteng Zeng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
13
|
Ma H, Li X, Wei M, Zeng G, Hou S, Li D, Xu H. Elucidation of the mechanisms into effects of organic acids on soil fertility, cadmium speciation and ecotoxicity in contaminated soil. CHEMOSPHERE 2020; 239:124706. [PMID: 31493754 DOI: 10.1016/j.chemosphere.2019.124706] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2019] [Revised: 08/25/2019] [Accepted: 08/28/2019] [Indexed: 06/10/2023]
Abstract
The remediation effect of organic acids in heavy metal contaminated soil was widely studied. However, the comprehensive evaluation of organic acids on micro-ecological environment in heavy metal contaminated soil was less known. Herein, this experiment was conducted to investigate the impact of malic acid, citric acid and oxalic acid on soil fertility, cadmium (Cd) speciation and ecotoxicity in contaminated soil. Especially, to evaluate the ecotoxicity of Cd, high-throughput sequencing was used to investigate the soil bacterial community structure and diversity after incubation with organic acids. The results showed that obvious changes in soil pH were not observed. Whereas, the contents of available phosphorus (Olsen-P) and alkali hydrolysable nitrogen (Alkeline-N) evidently increased with a significant difference. Furthermore, compared to control, the proportion of acetic acid-extractable Cd increased by 3.06-6.63%, 6.11-9.43% and 1.91-6.22% respectively in the groups amended with malic acid, citric acid and oxalic acid, which indicated that citric acid did better in improving the availability of Cd than malic acid and oxalic acid. In terms of biological properties, citric acid did best in bacteria count increase, enzyme activities and bacterial community structure improvement. Accordingly, these results provided a better understanding for the influence of organic acids on the micro-ecological environment in Cd contaminated soil, based on physicochemical and biological analysis.
Collapse
Affiliation(s)
- Hang Ma
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Xuedan Li
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Mingyang Wei
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Guoquan Zeng
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Siyu Hou
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Dan Li
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China
| | - Heng Xu
- Key Laboratory of Bio-resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, Sichuan, PR China.
| |
Collapse
|
14
|
Zhen M, Chen H, Liu Q, Song B, Wang Y, Tang J. Combination of rhamnolipid and biochar in assisting phytoremediation of petroleum hydrocarbon contaminated soil using Spartina anglica. J Environ Sci (China) 2019; 85:107-118. [PMID: 31471017 DOI: 10.1016/j.jes.2019.05.013] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 05/13/2019] [Indexed: 06/10/2023]
Abstract
Biochar (BC) and rhamnolipid (RL) is used in bioremediation of petroleum hydrocarbons, however, the combined effect of BC and RL in phytoremediation has not been studied until now. In this paper, the phytoremediation of petroleum hydrocarbon-contaminated soil using novel plant Spartina anglica was enhanced by the combination of biochar (BC) and rhamnolipid (RL). Samples of petroleum-contaminated soil (10, 30 and 50 g/kg) were amended by BC, BC+ RL and rhamnolipid modified biochar (RMB), respectively. After 60 day's cultivation, the removal rate of total petroleum hydrocarbons (TPHs) for unplanted soil (UP), planted soil (P), planted soil with BC addition (P-BC), planted soil with BC and RL addition (P-BC + RL) and planted soil with addition of RMB (P-RMB) were 8.6%, 19.1%, 27.7%, 32.4% and 35.1% in soil with TPHs concentration of 30 g/kg, respectively. Compared with UP, the plantation of Spartina anglica significantly decreased the concentration of C8-14 and tricyclic PAHs. Furthermore, the application of BC and RMB alleviated the toxicity of petroleum hydrocarbons to Spartina anglica via improving plant growth with increasing plant height, root vitality and total chlorophyll content. High-throughput sequencing result indicated that rhizosphere microbial community of Spartina anglica was regulated by the application of BC and RMB, with increase of bacteria and plant mycorrhizal symbiotic fungus in biochar and RMB amended soil.
Collapse
Affiliation(s)
- Meinan Zhen
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Hongkun Chen
- State Key Lab of Petroleum Pollution Control, CNPC Research Institute of Safety & Environmental Technology, Beijing 102206, China
| | - Qinglong Liu
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Benru Song
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Yizhi Wang
- Tianjin Tianmai Energy Saving Equipment Co. LTD, Tianjin 300393, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin 300071, China; Tianjin Key Laboratory of Environmental Remediation and Pollution Control, Tianjin 300071, China.
| |
Collapse
|
15
|
Peng D, Wu B, Tan H, Hou S, Liu M, Tang H, Yu J, Xu H. Effect of multiple iron-based nanoparticles on availability of lead and iron, and micro-ecology in lead contaminated soil. CHEMOSPHERE 2019; 228:44-53. [PMID: 31022619 DOI: 10.1016/j.chemosphere.2019.04.106] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/08/2019] [Accepted: 04/14/2019] [Indexed: 06/09/2023]
Abstract
Although iron nanoparticles (NPs) have been used for environmental remediation of heavy metal, their potential to remediate lead (Pb) contaminated soil and effect on soil micro-ecology is unclear. The purpose of this study was to investigate the potential of nanoscale zerovalent iron (nZVI), nanoscale zerovalent iron supported by biochar (nZVI@BC), ferrous sulfide (FeS-NPs), ferrous sulfide supported by biochar (FeS-NPs@BC), ferriferrous oxide (Fe3O4-NPs) and ferriferrous oxide supported by biochar (Fe3O4-NPs@BC) to remediate Pb contaminated soil and the influences for soil micro-ecology. The results showed that biochar (BC) could improve the crystal shape and superficial area of iron-based nanoparticles. Soil pH values was significantly decreased by FeS-NPs and FeS-NPs@BC, but increased by other iron-nanoparticles. The ability to reduce available Pb concentration showed significant difference among these iron-nanoparticles, that is, the immobilized rate were nZVI by 45.80%, nZVI@BC by 54.68%, FeS-NPs by 2.70%, FeS-NPs@BC by 5.13%, Fe3O4-NPs by 47.47%, Fe3O4-NPs@BC by 30.51% at day 90. Almost all soil enzyme activities in Fe3O4-NPs and Fe3O4-NPs@BC groups were increased, but the majority of the enzyme activities were inhibited in other iron-based nanoparticles groups, while the maximum bacterial number was determined in FeS-NPs group. Furthermore, microbial diversity analysis showed that FeS-NPs has significantly changed microbial community richness and diversity, followed by nZVI and Fe3O4-NPs. Accordingly, our results suggested that nZVI@BC had the best immobilization effect on Pb in high-concentration Pb-contaminated alkaline soil, but the toxic effect of Fe3O4-NPs on soil micro-ecology was relatively minimal.
Collapse
Affiliation(s)
- Dinghua Peng
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Bin Wu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Hang Tan
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Siyu Hou
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Min Liu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Hao Tang
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China
| | - Jiang Yu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China.
| | - Heng Xu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
16
|
Liu L, Bilal M, Duan X, Iqbal HMN. Mitigation of environmental pollution by genetically engineered bacteria - Current challenges and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 667:444-454. [PMID: 30833243 DOI: 10.1016/j.scitotenv.2019.02.390] [Citation(s) in RCA: 126] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 02/08/2023]
Abstract
Industries are the paramount driving force for the economic and technological development of society. However, the flourishing industrialization and unimpeded growth of current production unit's result in widespread environmental pollution due to increased discharge of wastes loaded with baleful, hazardous, and carcinogenic contaminants. Physicochemical-based remediation means are costly, create a secondary disposal problem and remain inadequate for pollution mitigating because of the continuous emergence of new recalcitrant pollutants. Due to eco-friendly, social acceptance, and lesser health hazards, microbial bioremediation has received considerable global attention for pollution abatement. Moreover, with the recent advancement in biotechnology and microbiology, genetically engineered bacteria with high ability to remove environmental pollutants are widely used in the fields of environmental restoration, resulting in the bioremediation in a more viable and eco-friendly way. This review summarized the advantages of genetically engineered bacteria and their application in the treatment of a wide variety of environmental contaminants such as synthetic dyestuff, heavy metal, petroleum hydrocarbons, polychlorinated biphenyls, phenazines and agricultural chemicals which will include herbicides, pesticides, and fertilizers. Considering the risk of genetic material exchange by using genetically engineered bacteria, the challenges and limitations associated with the application of recombinant bacteria on contaminated sites are also discussed. An integrated microbiological, biological and ecological acquaintance accompanied by field engineering designs are the desired features for effective in situ bioremediation of hazardous waste polluted sites by recombinant bacteria.
Collapse
Affiliation(s)
- Lina Liu
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China.
| | - Xuguo Duan
- College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, China
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
17
|
Shabbir M, Singh M, Maiti S, Kumar S, Saha SK. Removal enactment of organo-phosphorous pesticide using bacteria isolated from domestic sewage. BIORESOURCE TECHNOLOGY 2018; 263:280-288. [PMID: 29753261 DOI: 10.1016/j.biortech.2018.04.122] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 04/28/2018] [Accepted: 04/30/2018] [Indexed: 06/08/2023]
Abstract
Three bacteria (MS I, II and III) i.e., Pseudomonas aeruginosa (KY781886), Enterobactor ludwigii (KX881423) and Enterobacter cloacae (KX881513) isolated from domestic sewage were identified on the basis of 16S rDNA sequencing and are capable to growth in the presence of organo-phosphorous pesticide (chlorpyrifos). The mega plasmid size >23 kb was found in MS I and III. Biosurfactants of the significant amount were produced by three isolates. The ability of the isolates to degrade pesticide over 3 days in the presence of pesticides containing chlorpyrifos as the active component was estimated. Results of UV-visible, FTIR spectroscopy and GC-MS studies confirmed the removal of chlorpyrifos rather than degradation. Pesticide uptake results showed chlorpyrifos in intracellular components and bound to the cell surface in its native state. Removal of pesticide from soil was also recorded by these bacteria. Microbial treated pesticide did not have any effect on Vigna radita seedlings and goat erythrocytes.
Collapse
Affiliation(s)
- Md Shabbir
- Department of Biotechnology, Haldia Institute of Technology, Haldia 721 657, Hatiberia, West Bengal, India; Department of Zoology, Visva-Bharati, Santiniketan 731 235, West Bengal, India
| | - Mukesh Singh
- Department of Biotechnology, Haldia Institute of Technology, Haldia 721 657, Hatiberia, West Bengal, India.
| | - Swati Maiti
- Department of Biotechnology, Haldia Institute of Technology, Haldia 721 657, Hatiberia, West Bengal, India
| | - Sunil Kumar
- Solid and Hazardous Waste Management Division, CSIR-NEERI, Nagpur 440 020, India
| | - Samar K Saha
- Department of Zoology, Visva-Bharati, Santiniketan 731 235, West Bengal, India
| |
Collapse
|
18
|
Khalid S, Han JI, Hashmi I, Hasnain G, Ahmed MA, Khan SJ, Arshad M. Strengthening calcium alginate microspheres using polysulfone and its performance evaluation: Preparation, characterization and application for enhanced biodegradation of chlorpyrifos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 631-632:1046-1058. [PMID: 29727931 DOI: 10.1016/j.scitotenv.2018.03.101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/02/2018] [Accepted: 03/09/2018] [Indexed: 06/08/2023]
Abstract
Bacterial cell immobilization offer considerable advantages over traditional biotreatment systems using free cells. Calcium alginate matrix usually used for bacterial immobilization is susceptible to biodegradation in harsh environment. Current study aimed to produce and characterize stable macrocapsules (MCs) of Chlorpyrifos (CP) degrading bacterial consortium using biocompatible calcium alginate matrix coupled with environmentally stable polysulfone. In current study bacterial consortium capable of CP biodegradation was immobilized using calcium alginate in a form of microcapsule (MC) reinforced by being coated with a synthetic polymer polysulfone (PSf) through phase inversion. Consortium comprised of five bacterial strains was immobilized using optimized concentration of sodium alginate (2.5gL-1), calcium chloride (6gL-1), biomass (600mgL-1) and polysulfone (10gL-1). It has been observed that MCs have high thermal, pH and chemical stability than CAMs. In synthetic media complete biodegradation of CP (100-600mgL-1) was achieved using macrocapsules (MCs) within 18h. CAMs could be reused effectively only upto 5cycles, contrary to this MCs could be used 13 times to achieve more than >96% CP degradation. Shelf life and reusability studies conducted for MCs indicated unaltered biomass retention and CP biodegradation activity (95%) over 16weeks of storage. MCs achieved complete biodegradation of CP (536mgL-1) in real industrial wastewater and reused several times effectively. Metabolites (3,5,6-trichloro-2-pyridinol (TCP), 3,5,6-trichloro-2-methoxypyridine (TMP) and diethyl-thiophosphate (DETP) were traced using GC-MS and possible metabolic pathway was constructed. Study indicated MCs could be used for cleanup of CP contaminated wastewater repeatedly, safely, efficiently for a longer period of time.
Collapse
Affiliation(s)
- Saira Khalid
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan; Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea.
| | - Jong-In Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Imran Hashmi
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Ghalib Hasnain
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Ajaz Ahmed
- Chemical Engineering Department, Muhammad Nawaz Sharif University of Engineering and Technology, MNS, UET, Multan, Pakistan
| | - Sher Jamal Khan
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology, Islamabad 44000, Pakistan
| |
Collapse
|
19
|
Arif MS, Riaz M, Shahzad SM, Yasmeen T, Ashraf M, Siddique M, Mubarik MS, Bragazza L, Buttler A. Fresh and composted industrial sludge restore soil functions in surface soil of degraded agricultural land. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 619-620:517-527. [PMID: 29156271 DOI: 10.1016/j.scitotenv.2017.11.143] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 11/10/2017] [Accepted: 11/13/2017] [Indexed: 06/07/2023]
Abstract
A field study was conducted to test the potential of 5-year consecutive application of fresh industrial sludge (FIS) and composted industrial sludge (CIS) to restore soil functions at surface (0-15cm) and subsurface (15-30cm) of the degraded agricultural land. Sludge amendments increased soil fertility parameters including total organic carbon (TOC), soil available nitrogen (SAN), soil available phosphorus (SAP) and soil available potassium (SAK) at 0-15cm depth. Soil enzyme activities i.e. dehydrogenase (DHA), β-glucosidase (BGA) and alkaline phosphatase (ALp) were significantly enhanced by FIS and CIS amendments in surface soil. However, urease activity (UA) and acid phosphatase (ACp) were significantly reduced compared to control soil. The results showed that sludge amendments significantly increased microbial biomass nitrogen (MBN) and microbial biomass phosphorus (MBP) at both soil depth, and soil microbial biomass carbon (MBC) only at 0-15cm depth. Significant changes were also observed in the population of soil culturable microflora (bacteria, fungi and actinomycetes) with CIS amendment in surface soil suggesting persistence of microbial activity owing to the addition of organic matter source. Sludge amendments significantly reduced soil heavy metal concentrations at 0-15cm depth, and the effect was more pronounced with CIS compared to unamended control soil. Sludge amendments generally had no significant impact on soil heavy metal concentrations in subsoil. Agronomic viability test involving maize was performed to evaluate phytotoxicity of soil solution extract at surface and sub-surface soil. Maize seeds grown in solution extract (0-15cm) from sludge treated soil showed a significant increase of relative seed germination (RSG), relative root growth (RRG) and germination index (GI). These results suggested that both sludge amendments significantly improved soil properties, however, the CIS amendment was relatively more effective in restoring soil functions and effectively immobilizing wastewater derived heavy metals compared to FIS treatment.
Collapse
Affiliation(s)
- Muhammad Saleem Arif
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan; École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Bâtiment GR, Station 2, CH-1015 Lausanne, Switzerland; WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Station 2, Case Postale 96, CH-1015 Lausanne, Switzerland.
| | - Muhammad Riaz
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Sher Muhammad Shahzad
- Department of Soil & Environmental Sciences, University College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Tahira Yasmeen
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Ashraf
- Department of Soil & Environmental Sciences, University College of Agriculture, University of Sargodha, Sargodha 40100, Pakistan
| | - Muhammad Siddique
- Department of Environmental Sciences and Engineering, Government College University Faisalabad, Faisalabad 38000, Pakistan
| | - Muhammad Salman Mubarik
- Centre of Agricultural Biochemistry and Biotechnology (CABB), University of Agriculture, Faisalabad 38040, Pakistan
| | - Luca Bragazza
- École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Bâtiment GR, Station 2, CH-1015 Lausanne, Switzerland; WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Station 2, Case Postale 96, CH-1015 Lausanne, Switzerland; University of Ferrara, Department of Life Science and Biotechnologies, Corso Ercole I d'Este 32, I-44121 Ferrara, Italy
| | - Alexandre Buttler
- École Polytechnique Fédérale de Lausanne (EPFL), School of Architecture, Civil and Environmental Engineering (ENAC), Laboratory of Ecological Systems (ECOS), Bâtiment GR, Station 2, CH-1015 Lausanne, Switzerland; WSL Swiss Federal Institute for Forest, Snow and Landscape Research, Site Lausanne, Station 2, Case Postale 96, CH-1015 Lausanne, Switzerland
| |
Collapse
|
20
|
Liu J, Zhang X, Yang M, Hu M, Zhong G. Toxicity assessment of chlorpyrifos-degrading fungal bio-composites and their environmental risks. Sci Rep 2018; 8:2152. [PMID: 29391422 PMCID: PMC5794795 DOI: 10.1038/s41598-018-20265-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Accepted: 01/16/2018] [Indexed: 11/09/2022] Open
Abstract
Bioremediation techniques coupling with functional microorganisms have emerged as the most promising approaches for in-situ elimination of pesticide residue. However, the environmental safety of bio-products based on microorganisms or engineered enzymes was rarely known. Here, we described the toxicity assessment of two previously fabricated fungal bio-composites which were used for the biodegradation of chlorpyrifos, to clarify their potential risks on the environment and non-target organisms. Firstly, the acute and chronic toxicity of prepared bio-composites were evaluated using mice and rabbits, indicating neither acute nor chronic effect was induced via short-term or continuous exposure. Then, the acute mortality on zebrafish was investigated, which implied the application of fungal bio-composites had no lethal risk on aquatic organisms. Meanwhile, the assessment on soil organic matters suggested that no threat was posed to soil quality. Finally, by monitoring, the germination of cabbage was not affected by the exposure to two bio-products. Therefore, the application of fungal bio-composites for chlorpyrifos elimination cannot induce toxic risk to the environment and non-target organisms, which insured the safety of these engineered bio-products for realistic management of pesticide residue, and provided new insights for further development of bioremediation techniques based on functional microorganisms.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Xiaoying Zhang
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Mengran Yang
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Meiying Hu
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China
| | - Guohua Zhong
- Key Laboratory of Integrated Pest Management of Crop in South China, Ministry of Agriculture, South China Agricultural University, Guangzhou, 510642, P.R. China.
| |
Collapse
|