1
|
Kali SE, Österlund H, Viklander M, Blecken G. Occurrence, concentration and distribution of 50 organic contaminants in water and bottom sediment from urban streams affected by stormwater discharges. WATER RESEARCH 2025; 283:123847. [PMID: 40403556 DOI: 10.1016/j.watres.2025.123847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/24/2025]
Abstract
Stormwater runoff transports organic contaminants from urban areas to receiving water bodies, yet its contribution to these pollutants in the aquatic environment is still poorly understood. Additionally, contaminants behave differently in receiving waters, with some binding to particles and accumulating in sediments while others stay dissolved in the water. This study was carried out three Swedish urban streams receiving stormwater discharges through separate sewer systems, under dry and wet weather conditions. Stream water and bottom sediment samples were collected along an urbanization gradient, from rural upstream to urban downstream sections, and analyzed for 50 stormwater-related organic contaminants to assess the impact of stormwater on contaminant levels. Polycyclic aromatic hydrocarbons (PAHs) and phthalates were more prevalent in sediment samples, with concentrations increasing along the urbanization gradient, indicating contributions from urban areas and stormwater runoff. In contrast, organotin compounds and phenols showed no clear pattern indicating transport through stormwater runoff in the water phase. Per and polyfluoroalkyl substances (PFAS) behaved differently from other contaminant groups by exhibiting a clear contribution from stormwater runoff in both phases. Though carried out in streams passing through relatively small urban settings, the findings clearly demonstrate that stormwater discharges can impact receiving waters. Of the 50 analyzed contaminants, three exceeded toxicity-based limits in dry weather (DW), seven in wet weather (WW), and twenty in bottom sediments. In the water phase, under DW and WW conditions, the three contaminants with the highest exceedance of toxicity-based limits were Perfluorooctanesulfonic acid (PFOS), Tributyltin (TBT), and 4-nonylphenol (4-NP). In the sediment phase, 4‑tert-octylphenol (4-t-OP), Tributyltin (TBT), and di-2-ethylhexyl phthalate (DEHP) were the three compounds with the highest exceedance of toxicity-based limits. Compared to relatively hydrophilic contaminants (e.g., PFAS), hydrophobic organic contaminants, particularly those accumulating in sediments (e.g. phenols, phthalates), posed a greater risk to the aquatic environment with exceedance levels reaching up to 105 times the thresholds. These findings raise concerns about the long-term impact on aquatic environments and highlight the need for mitigation strategies, including regulatory or operational restrictions on the contaminant sources and implementation of stormwater treatment facilities.
Collapse
Affiliation(s)
- S E Kali
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| | - H Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| | - M Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| | - G Blecken
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, Luleå 971 87, Sweden.
| |
Collapse
|
2
|
Polukarova M, Gaggini EL, Rødland E, Sokolova E, Bondelind M, Gustafsson M, Strömvall AM, Andersson-Sköld Y. Tyre wear particles and metals in highway roadside ditches: Occurrence and potential transport pathways. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:125971. [PMID: 40043875 DOI: 10.1016/j.envpol.2025.125971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/14/2025] [Accepted: 03/02/2025] [Indexed: 04/01/2025]
Abstract
Tyre wear particles (TWP) pose significant environmental concerns, necessitating a comprehensive understanding of their environmental distribution for accurate risk assessment. Roadside soil has not been extensively studied for TWP occurrence and distribution. This study aims to characterise the occurrence and distribution of TWP and associated metals in roadside soils and to investigate the correlations between these contaminants. Soil samples were collected from two road ditches along a Swedish national motorway at varying depths and distances from the contamination source. TWP in fractions <500 μm were analysed using PYR-GC/MS. Results indicated that TWP concentrations in soil samples ranged from 0.74 ± 0.20 to 12.40 ± 1.88 mg/kg d.w., consistent with other studies, and decreased with distance from the road, similar to Zn. In one ditch, TWP concentrations remained constant with depth, unlike concentrations of Co and Cr, which increased, while in the other ditch, TWP and most metals did not decrease with depth or distance from the outlet. Strong correlations were found between concentrations of TWP and Zn in one, but not the other, where Zn might have followed different transport due to leaching. Metal correlations in both ditches suggest traffic-related but not necessarily tyre wear origins. These findings are crucial for risk assessments of traffic-related pollutants, particularly TWP, and their spread into soils.
Collapse
Affiliation(s)
- Maria Polukarova
- Swedish National Road and Transport Research Institute Gothenborg (VTI), Regnbågsgatan 1, 417 55, Gothenburg, Sweden; Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden.
| | - Elly Lucia Gaggini
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden
| | - Elisabeth Rødland
- Norwegian Institute for Water Research, Økernveien 94, NO-0579, Oslo, Norway
| | - Ekaterina Sokolova
- Uppsala University, Department of Earth Sciences, SE-752 36, Uppsala, Sweden
| | - Mia Bondelind
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden
| | - Mats Gustafsson
- Swedish National Road and Transport Research Institute Linköping (VTI), SE-581 95, Linköping, Sweden
| | - Ann-Margret Strömvall
- Chalmers University of Technology, Department of Architecture and Civil Engineering, Water Environment Technology, SE-412 96, Gothenburg, Sweden
| | - Yvonne Andersson-Sköld
- Swedish National Road and Transport Research Institute Gothenborg (VTI), Regnbågsgatan 1, 417 55, Gothenburg, Sweden; Chalmers University of Technology, Department of Architecture and Civil Engineering, Division of Geology and Geotechnics, SE-412 96, Gothenburg, Sweden
| |
Collapse
|
3
|
Hosseinzadeh SS, Balighi N, Saeidi J, Azimi‐Nezhad M, Mohtashami M, Hojat Bonab Z, Dehghani M, Ariamanesh M, Naimabadi A, Ghasemi A, Momtazi‐Borojeni AA. Preventive Effects of Vanillic Acid Against Lung Inflammation and Oxidative Stress Induced by Dust Particles in Wistar Rats. J Cell Mol Med 2025; 29:e70573. [PMID: 40289540 PMCID: PMC12034852 DOI: 10.1111/jcmm.70573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 04/03/2025] [Accepted: 04/17/2025] [Indexed: 04/30/2025] Open
Abstract
To evaluate dose-dependent cytotoxicity effects of indoor dust particles (DPs) collected from Neyshabur, Iran, in vitro on A545 cells and in vivo on lungs of healthy male Wistar rats, as well as the antioxidant effects of vanillic acid (VA) against DP inhalation. Heavy metal levels in DPs collected from high-traffic (HT), medium-traffic, low-traffic or rural (LT) zones were measured, and their cytotoxicity effects were evaluated by MTT assay. In vivo evaluations were conducted after rats were exposed to DPs collected from HT or LT in the presence or absence of VA. Exposure to DPs increased the activity of serum superoxide dismutase; the serum level of malondialdehyde; and mRNA expression of TNFα, IL6, CXCL15 and CYP1A1 in the lung homogenate groups receiving HT and LT compared to the control group. DP effects in the groups receiving HT were higher than those of LT. Concomitant VA intake attenuated the adverse effects mediated by DPs in the HT and LT groups. DPs had adverse effects on the lungs of healthy rats, probably because of the accumulated oxidative stress agents. VA could ameliorate the effects of DPs and may be considered as a protective substance against the undesirable effects of DPs.
Collapse
Affiliation(s)
| | - Nazanin Balighi
- Department of Biology, School of Basic ScienceNeyshabur Branch, Islamic Azad UniversityNeyshaburIran
| | - Jafar Saeidi
- Department of Physiology, School of Basic Science, Neyshabur BranchIslamic Azad UniversityNeyshaburIran
| | - Mohsen Azimi‐Nezhad
- Healthy Ageing Research CentreNeyshabur University of Medical SciencesNeyshaburIran
| | - Mahnaz Mohtashami
- Department of Biology, School of Basic ScienceNeyshabur Branch, Islamic Azad UniversityNeyshaburIran
| | - Zahra Hojat Bonab
- Department of Microbiology, School of Basic Science, Bonab BranchIslamic Azad UniversityBonabIran
| | - Mansoureh Dehghani
- Department of Radiation OncologyNeyshabur University of Medical SciencesNeyshaburIran
| | - Mona Ariamanesh
- Department of PathologyNeyshabur University of Medical SciencesNeyshaburIran
| | - Abolfazl Naimabadi
- Department of Environmental Health Engineering, School of Public HealthNeyshabur University of Medical SciencesNeyshaburIran
| | - Ahmad Ghasemi
- Department of Biochemistry, Nutrition and Food Sciences, School of MedicineGonabad University of Medical SciencesGonabadIran
| | - Amir Abbas Momtazi‐Borojeni
- Department of Medical Biotechnology, School of MedicineNeyshabur University of Medical SciencesNeyshaburIran
| |
Collapse
|
4
|
Karakaş D, Berberler E, Demir T, Bayramoğlu Karşı MB, Yenisoy S. Source identification and quantification of real-world PAH contributions from traffic-related exhaust and non-exhaust emission sources using the EFECT method. CHEMOSPHERE 2025; 374:144237. [PMID: 39983622 DOI: 10.1016/j.chemosphere.2025.144237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 01/24/2025] [Accepted: 02/16/2025] [Indexed: 02/23/2025]
Abstract
Proper identification of sources and their contribution to atmospheric gaseous and particle-bound PAHs from traffic-related sources are vital for controlling and reducing emissions in the urban atmosphere to improve environmental health. For this purpose, we used the EFECT method to quantify the PAH contributions from the pre-defined vehicular sources, namely, road dust resuspension, exhaust (tailpipe), and non-exhaust sources in a rural highway tunnel. We successfully quantified the relative source contributions of particle-bound and total PAHs (particulate plus gaseous PAHs) to the atmospheric concentrations. Study results showed that exhaust emissions were observed to be the most important emission source for both particle-bound and total PAHs. This study showed that exhaust emission sources contribute 92.4% of IcdP, 90.3% of Phe, 89.9% of AN, 89.1% of BkF, 88.2% of Np, 87.1% of Ane, 86.3% of DahA, 85.7% of BghiP, and 82.8% of Flr to atmospheric concentrations in the tunnel environment. Road dust resuspension contributed mainly to TSP (total suspended particulate matter) concentrations of BaA (29.1%), Py (28.9%), BbF (21.0%), and BaP (21.0%).
Collapse
Affiliation(s)
- Duran Karakaş
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, 14030, Bolu, Türkiye.
| | - Ercan Berberler
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, 14030, Bolu, Türkiye; Department of Environmental Engineering, Bartın University, Bartın, 74100, Türkiye
| | - Tuğçe Demir
- Department of Environmental Engineering, Bolu Abant Izzet Baysal University, 14030, Bolu, Türkiye
| | - Melike B Bayramoğlu Karşı
- Innovative Food Technologies Development Application and Research Center, Bolu Abant Izzet Baysal University, Bolu, 13030, Türkiye
| | - Serpil Yenisoy
- Department of Chemistry, Bolu Abant Izzet Baysal University, Bolu, 14030, Türkiye
| |
Collapse
|
5
|
Staub PF, Salomon M, Assoumani A, Blard-Zakar A. Multiyear and seasonal wide-scale indicators for French surface waters contamination by WFD substances. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:7513-7599. [PMID: 39714761 PMCID: PMC11950050 DOI: 10.1007/s11356-024-35511-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 10/31/2024] [Indexed: 12/24/2024]
Abstract
This study offers an unprecedented valuation of the French surface waters WFD chemical monitoring dataset, covering 101 substances (metals, industrial and persistent organic pollutants (POPs), plant protection product (PPP) and biocides active substances, combustion residues) measured monthly on 4000 sites of the 6 main continental river basins, during 12 years (2009-2020). The concentration data were first made comparable through an original process removing the bias induced by the space-and-time heterogeneity of the monitoring labs performance, to gather a reference workable set of monthly contamination indicators. These were then used to display the substances' seasonal and interannual timeseries, revealing, e.g. the succession of PPP active substances contamination peaking periods in the 6 basins, or the long-term trends of the concentrations of the various chemicals, sometimes evidencing insufficiencies in the monitoring performance. These environmental observations were put in regard of the knowledge of the substances ban, restriction or reduction measures, to assess how streams' chemical quality responds to them. Additionally, the observed contamination features and their variations over the years are discussed in terms of changes in their usages, product substitution, emission sources, and linked to environmental processes like runoff, river dilution and physicochemical conditions. Some original findings and interpretation are provided on glyphosate and AMPA wide-scale data inter-relation, and some light is cast on the efficacy of the recent national policies restricting pesticides use in populated areas. For PPPs, the developed water contamination indicators were compared to tonnage data. We assessed their degree of linear relationship, which we propose to quantitatively express through a substance specific basin-to-river contamination coefficient. The interannual variations of this coefficient appear to be related to the changes in the water contamination seasonal patterns. We were also able to describe and validate the dependency of this coefficient on the molecular properties of the substances, conferring some capabilities for predicting the relative environmental risk induced by non-yet monitored compounds. We finally discuss the relevance of the developed indicators to complement the national chemical pollutants management system currently in place.
Collapse
Affiliation(s)
- Pierre-François Staub
- Office Français de la Biodiversité (OFB), 5 Allée Félix Nadar, 94300, Vincennes, France.
| | - Morgane Salomon
- Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata - BP 2 - F-60550, Verneuil-en-Halatte, France
| | - Azziz Assoumani
- Institut National de l'Environnement Industriel et des Risques (INERIS), Parc Technologique Alata - BP 2 - F-60550, Verneuil-en-Halatte, France
| | - Adeline Blard-Zakar
- Office Français de la Biodiversité (OFB), 5 Allée Félix Nadar, 94300, Vincennes, France
| |
Collapse
|
6
|
Zhang YJ, Wang XX, Zeng LJ, Ka-Yam LAM, Dai QY, Chen Y, Chen J, Guo Y, Cai Z. Rewiring the nexus between urban traffic pollution-derived polycyclic aromatic hydrocarbon exposure and DNA injury via urinary metabolomics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125188. [PMID: 39486674 DOI: 10.1016/j.envpol.2024.125188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 09/23/2024] [Accepted: 10/22/2024] [Indexed: 11/04/2024]
Abstract
Urban road traffic environmental stress impacts outdoor population health, with oxidative damage serving as an early indicator of xenobiotic exposure. Polycyclic aromatic hydrocarbons (PAHs) as priority carcinogens pose significant public health burden, yet knowledge remains limited regarding the endogenous metabolic alternations associated with oxidative DNA injury. This cross-sectional study focused on the cohort consisting of 109 sanitation workers ("traffic exposure group") and 112 demographics-matched common residents ("controls") in South China. The goal was to elucidate the occurrence of internal exposure to nine hydroxyl PAHs, and the interrelations with oxidative DNA damage (indicated by 8-hydroxy-2'-deoxyguanosine, 8-OHdG) by linear mixed-effect regression model. T-test and orthogonal partial least squares discriminant analysis were used to determine differential metabolites in non-targeted metabolomics. Results revealed outdoor workers suffered from the heavier PAH exposure burden and exhibited a stronger dose-dependent correlation with 8-OHdG, evidenced by the higher regression coefficient (0.244, 95% CI: 0.154-0.334) than controls (0.203, 95% CI: 0.079-0.328). In total 42 differential endogenous metabolites witnessed significant expression under traffic emission scenario, mainly implicated in phenylalanine, tyrosine and tryptophan biosynthesis. The down-expressed uric acid was the unique metabolite that inversely correlated with the increased intake of ∑8PAH especially in cases. Partially attributed to the traffic-derived PAHs, the dysregulated amino acid, nicotinamide, purine, and steroid hormones metabolic pathways encompassing 11 metabolites were determined as underlying biomarkers in mediating DNA damage. Notably, our findings proposed uric acid may act as a potential antioxidant, as evidenced by the negative correlation with 8-OHdG. The study illustrates outcomes of metabolomics can collaboratively indicate DNA oxidative damage caused by PAHs linked to urban traffic exposure, which holds significant implications for future toxicological research.
Collapse
Affiliation(s)
- Ying-Jie Zhang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Xiao-Xiao Wang
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Li-Juan Zeng
- School of Environment and Energy, South China University of Technology, Guangzhou, 510006, China
| | - L A M Ka-Yam
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Qing-Yuan Dai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Yi Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Jian Chen
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China
| | - Ying Guo
- Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, 999077, China.
| |
Collapse
|
7
|
Cojoc L, de Castro-Català N, de Guzmán I, González J, Arroita M, Besolí-Mestres N, Cadena I, Freixa A, Gutiérrez O, Larrañaga A, Muñoz I, Elosegi A, Petrovic M, Sabater S. Pollutants in urban runoff: Scientific evidence on toxicity and impacts on freshwater ecosystems. CHEMOSPHERE 2024; 369:143806. [PMID: 39603359 DOI: 10.1016/j.chemosphere.2024.143806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 11/10/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Urban runoff effluents transport multiple pollutants collected from urban surfaces. which ultimately reach freshwater ecosystems. We here collect the existing scientific evidence on the urban runoff impacts on aquatic organisms and ecosystem functions, assessed the potential toxicity of the most common pollutants present in urban runoff, and characterized the ecotoxicological risk for freshwaters. We used the Toxic Units models to estimate the toxicity of individual chemicals to freshwater biota and observed that the highest ecotoxicological risk of urban runoff was associated to metals, polycyclic aromatic hydrocarbons (PAHs) and pesticides and, in a few cases, to phthalates. The potential risk was highest for copper and zinc, as well as for anthracene, fluoranthene, Di(2-ethylhexyl) phthlate (DEHP), imidacloprid, cadmium, mercury, and chromium. These pollutants had contrasting effects on freshwater biological groups, though the risk overall decreased from basal to upper trophic levels. Our analysis evidenced a lack of data on ecotoxicological effects of several pollutants present in urban runoff effluents, caused by lack of toxicity data and by the inadequate representation of biological groups in the ecotoxicological databases. Nevertheless, evidence indicates that urban runoff presents ecotoxicological risk for freshwater biota, which might increase if hydrological patterns become extreme, such as long dry periods and floods. Our study highlights the importance of considering both the acute and chronic toxicity of urban effluent pollutants, as well as recognizing the interplay with other environmental stressors, to design adequate environmental management strategies on urban freshwater ecosystems receiving urban runoff.
Collapse
Affiliation(s)
- Lorena Cojoc
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Núria de Castro-Català
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Ioar de Guzmán
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Julene González
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Maite Arroita
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Neus Besolí-Mestres
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Isabel Cadena
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Anna Freixa
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Oriol Gutiérrez
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain.
| | - Aitor Larrañaga
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Isabel Muñoz
- Department of Evolutionary Biology, Ecology and Environmental Sciences, Universitat de Barcelona, Av. Diagonal, 643, 08028, Barcelona, Spain.
| | - Arturo Elosegi
- Department of Plant Biology and Ecology, Faculty of Science and Technology, University of the Basque Country (UPV/EHU), Barrio Sarriena s/n, 48940, Leioa, Spain.
| | - Mira Petrovic
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain; Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain.
| | - Sergi Sabater
- Catalan Institute for Water Research (ICRA- CERCA), Carrer Emili Grahit 101, Parc Científic I Tecnològic de la Universitat de Girona, 17003, Girona, Spain; Institut d'Ecologia Aquàtica (IEA), Universitat de Girona, Campus de Montilivi, 17003, Girona, Spain.
| |
Collapse
|
8
|
Peter KT, Gilbreath A, Gonzalez M, Tian Z, Wong A, Yee D, Miller EL, Avellaneda PM, Chen D, Patterson A, Fitzgerald N, Higgins CP, Kolodziej EP, Sutton R. Storms mobilize organophosphate esters, bisphenols, PFASs, and vehicle-derived contaminants to San Francisco Bay watersheds. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:1760-1779. [PMID: 39291694 DOI: 10.1039/d4em00117f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
In urban to peri-urban watersheds such as those surrounding San Francisco Bay, stormwater runoff is a major pathway by which contaminants enter aquatic ecosystems. We evaluated the occurrence of 154 organic contaminants via liquid chromatography coupled to tandem mass spectrometry, including organophosphate esters (OPEs), bisphenols, per- and polyfluoroalkyl substances (PFASs), and a suite of novel urban stormwater tracers (SWCECs; i.e., vehicle-derived chemicals, pesticides, pharmaceuticals/personal care products, benzothiazoles/benzotriazoles). Time-averaged composite sampling focused on storms in highly developed watersheds over four wet seasons, with complementary sampling in less-urban reference watersheds, near-shore estuarine sites, and the open Bay. Of the targeted contaminants, 68 (21 SWCECs, 29 OPEs, 3 bisphenols, 15 PFASs) were detected in ≥10 of 26 urban stormwater samples. Median concentrations exceeded 500 ng L-1 for 1,3-diphenylguanidine, hexa(methoxymethyl)melamine, and caffeine, and exceeded 300 ng L-1 for 2-hydroxy-benzothiazole, 5-methyl-1H-benzotriazole, pentachlorophenol, and tris(2-butoxyethyl) phosphate. Median individual PFAS concentrations were <10 ng L-1, with highest concentrations for PFHxA (180 ng L-1), PFOA (110 ng L-1), and PFOS (81 ng L-1). In six of eight urban stormwater samples analyzed for 6PPD-quinone (a tire rubber-derived transformation product), concentrations exceeded coho salmon acute toxicity thresholds, suggesting (sub)lethal impacts for sensitive species. Observed concentrations were generally significantly higher in highly developed watersheds relative to reference watersheds, but not statistically different in near-shore estuarine sites, suggesting substantial transient exposure potential at stormwater outfalls or creek outflows. Results emphasized the role of stormwater in contaminant transport, the importance of vehicles/roadways as contaminant sources, and the value of monitoring broad multi-analyte contaminant suites to enable comprehensive source and toxicity evaluations.
Collapse
Affiliation(s)
- Katherine T Peter
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | | | - Melissa Gonzalez
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
| | - Zhenyu Tian
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, USA
| | - Adam Wong
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | - Don Yee
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | - Ezra L Miller
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| | | | - Da Chen
- School of Environment and Guangdong Key Laboratory of Environmental Pollution and Health, Jinan University, Guangzhou, Guangdong 510632, China
| | | | - Nicole Fitzgerald
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Christopher P Higgins
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO 80401, USA
| | - Edward P Kolodziej
- Center for Urban Waters, Tacoma, WA 98421, USA
- Interdisciplinary Arts and Sciences, University of Washington Tacoma, Tacoma, WA 98421, USA
- Department of Civil and Environmental Engineering, University of Washington, Seattle, WA 98195, USA
| | - Rebecca Sutton
- San Francisco Estuary Institute, Richmond, CA 94804, USA.
| |
Collapse
|
9
|
Fatmi B, Hazzab A, Rahmani A, Ghenaim A. Examining temporal trends in heavy metal levels to analyze sediment pollution dynamics in the Saida urban watershed (N-W Algeria). WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2024; 96:e11084. [PMID: 39117585 DOI: 10.1002/wer.11084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 06/30/2024] [Accepted: 07/07/2024] [Indexed: 08/10/2024]
Abstract
The study focuses on current pollution in the Saïda basin, a semi-arid region in north-western Algeria. By analyzing sediments, the study provides interesting results on urban pollution and its environmental impact. The research consists of two main phases, each addressing different aspects of pollution. In the first phase, different pollution indicators are used to analyze heavy metals and organic pollutants in urban drainage sediments. The results are compared with sediment quality guidelines, regulatory thresholds, and local and international references. Most of the metallic contaminants exceed the toxicity levels established by the continental crust and sediment quality guidelines, suggesting an anthropogenic origin. In addition, contamination indices show significant accumulation. In this context, the results highlight the importance of accumulation and transport processes in urban sediments. Hydrological parameters significantly influence heavy metal distribution mechanisms. Remarkable variations between copper (Cu) and lead (Pb) suggest a combined or singular source during transport. Conversely, chromium (Cr), nickel (Ni), and iron (Fe) are mainly derived from natural lithological sources. Cadmium (Cd) is associated with anthropogenic sources related to the agricultural use of phosphate fertilizers, whereas zinc (Zn) is mainly derived from physical corrosion processes. In the second phase, a combined descriptive and multivariate statistical analysis examines the mobility and distribution of heavy metals and their relationships with organic matter (OM) over time. Pronounced temporal variations in Cd, Zn, and Cu concentrations are attributed to human activities. Strong correlations exist between OM and cobalt (Co), Cu and Pb, confirming the ability of OM to adsorb these metals under specific geochemical conditions associated with waste disposal. Conversely, Zn, Cd, Cr, and Ni show weak or negative correlations with OM, suggesting diverse sources, including potential agricultural, industrial, and natural origins. The dendrogram confirms the existence of previously identified contaminant groups, suggesting common sources and potential co-occurrence patterns. This analysis highlights the role of the drainage network as a physico-chemical reactor in the mobilization of contaminants. It underlines the importance of sediment interactions in urban pollution processes. Finally, recommendations are proposed to ensure effective pollution control and remediation. PRACTITIONER POINTS: Useful information on pollution and its environmental impact is provided by the analysis of sediments in the urban basin of Saida (NW-Algeria). The results of this study indicate high levels of heavy metals in the sediments, in excess of toxicity limits, and evidence of anthropogenic sources. Temporal variations in metal concentrations indicate the influence of human activities. The study has made it possible to identify the sources, to understand the mobility and distribution, and to control the contamination by heavy metals in the urban sediments. Drainage system serves as a pathway for dispersing contaminants.
Collapse
Affiliation(s)
- Belaid Fatmi
- Modelling and Computational Methods Laboratory, Saida University Dr. Tahar Moulay, Saida, Algeria
- Algerian National Organism for the Technical Control of Hydraulic Constructions (CTH), Tlemcen, Algeria
| | - Abdelkrim Hazzab
- Modelling and Computational Methods Laboratory, Saida University Dr. Tahar Moulay, Saida, Algeria
| | - Asmaa Rahmani
- Modelling and Computational Methods Laboratory, Saida University Dr. Tahar Moulay, Saida, Algeria
| | - Abdellah Ghenaim
- Laboratory of Mechanics and Environment ICUBE/INSA, National Institute of the Applied Sciences, Strasbourg, France
| |
Collapse
|
10
|
Beryani A, Flanagan K, Viklander M, Blecken GT. Intra-event variations of organic micropollutants in highway runoff and a presedimentation-biofilter treatment facility. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135200. [PMID: 39003807 DOI: 10.1016/j.jhazmat.2024.135200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/27/2024] [Accepted: 07/12/2024] [Indexed: 07/16/2024]
Abstract
The study assessed the quality of highway runoff and a stormwater treatment system, focusing on intra-event variations (IEVs: variations within a runoff/effluent event) of the concentration of organic micropollutants (OMPs) including bisphenol-A, alkylphenols, polycyclic aromatic hydrocarbons (PAHs), and petroleum hydrocarbons (PHCs). IEVs of OMPs varied considerably with no particular recurring pattern in highway runoff and presedimentation effluent, displaying sporadic strong first flushes. IEVs are significantly associated with rainfall intensity variations, especially for particle-bound substances such as PAHs and PHCs. However, phenolic substances showed distinct IEV patterns compared to total suspended solids, PAHs, and PHCs, likely due to their higher solubility and mobility. Downstream sand filter (SF) and vegetated biofilter (BFC) mitigated IEVs, leading to more uniform discharge during outflow events. Although BFC's IEVs were indiscernible due to low effluent concentrations, SF's IEVs often peaked at the beginning of events (within the first 100 of ⁓600 m3), exceeding the lowest predicted non-effect concentrations for five PAHs, bisphenol-A, and octylphenol. This study highlights the advantage of IEV analysis over conventional event mean concentration analysis for identifying critical effluent stages, crucial for developing control strategies to protect sensitive water recipients or for reuse applications.
Collapse
Affiliation(s)
- Ali Beryani
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden.
| | - Kelsey Flanagan
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Maria Viklander
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Godecke-Tobias Blecken
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
11
|
Johansson G, Fedje KK, Modin O, Haeger-Eugensson M, Uhl W, Andersson-Sköld Y, Strömvall AM. Removal and release of microplastics and other environmental pollutants during the start-up of bioretention filters treating stormwater. JOURNAL OF HAZARDOUS MATERIALS 2024; 468:133532. [PMID: 38387172 DOI: 10.1016/j.jhazmat.2024.133532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/10/2024] [Accepted: 01/12/2024] [Indexed: 02/24/2024]
Abstract
Untreated stormwater is a major source of microplastics, organic pollutants, metals, and nutrients in urban water courses. The aim of this study was to improve the knowledge about the start-up periods of bioretention filters. A rain garden pilot facility with 13 bioretention filters was constructed and stormwater from a highway and adjacent impervious surfaces was used for irrigation for ∼12 weeks. Selected plants (Armeria maritima, Hippophae rhamnoides, Juncus effusus, and Festuca rubra) was planted in ten filters. Stormwater percolated through the filters containing waste-to-energy bottom ash, biochar, or Sphagnum peat, mixed with sandy loam. Influent and effluent samples were taken to evaluate removal of the above-mentioned pollutants. All filters efficiently removed microplastics >10 µm, organic pollutants, and most metals. Copper leached from all filters initially but was significantly reduced in the biochar filters at the end of the period, while the other filters showed a declining trend. All filters leached nutrients initially, but concentrations decreased over time, and the biochar filters had efficiently reduced nitrogen after a few weeks. To conclude, all the filters effectively removed pollutants during the start-up period. Before being recommended for full-scale applications, the functionality of the filters after a longer period of operation should be evaluated.
Collapse
Affiliation(s)
- Glenn Johansson
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden.
| | - Karin Karlfeldt Fedje
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Recycling and Waste Management, Renova AB, Box 156, Gothenburg SE-40122, Sweden
| | - Oskar Modin
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| | | | - Wolfgang Uhl
- Aquateam COWI AS, Karvesvingen 2, 0579 Oslo, Norway
| | - Yvonne Andersson-Sköld
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden; Swedish National Road and Transport Research Institute Linköping (VTI), Box 8072, SE-40278 Gothenburg, Sweden
| | - Ann-Margret Strömvall
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-41296 Gothenburg, Sweden
| |
Collapse
|
12
|
Li P, Gan Z, Li Z, Wang B, Sun W, Su S, Ding S. Occurrence and exposure evaluation of bisphenol A and its analogues in indoor and outdoor dust from China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170833. [PMID: 38367725 DOI: 10.1016/j.scitotenv.2024.170833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/19/2024]
Abstract
Bisphenol A (BPA) and its analogues have been proved to be harmful to human reproduction, endocrine and nervous system. But information on the occurrence and human exposure to bisphenol compounds (BPs) in dust (especially outdoor dust) is limited. In this study, 14 BPs were determined in 174 indoor dust samples and 202 outdoor dust samples from Chinese mainland, Hong Kong, Macau and Taiwan. BPA, BPS, BPAF, BPF, BPAP and BPE were widely detected with detection frequencies of 98.94 %, 98.67 %, 97.87 %, 95.21 %, 87.23 % and 71.54 %, respectively. The median total concentrations of the most detected six BPs in the dust were in the order of south urban indoors (556 ng/g) > south rural outdoors (438 ng/g) > south urban outdoors (432 ng/g) > south rural outdoors (418 ng/g) > north rural indoors (412 ng/g) > north urban outdoors (341 ng/g) > north urban indoors (311 ng/g) > north rural outdoors (246 ng/g). The amounts of garbage incineration, plastic output and recycled paper may have influence on the BPs levels. Some BPs (BPAF, BPAP, BPF and BPS) in the indoor and outdoor samples were significantly positively correlated. In addition, the BPs in the indoor dust from different indoor micro environments in Chengdu were investigated. BPA (median concentration: 571.2 ng/g) and BPF (median concentration: 114.3 ng/g) were the two primary BPs, accounting for 78.1 % of the median total concentrations of the investigated BPs. High concentration of BPA appeared in printing workshops and offices, while high concentration of BPAP, BPC, BPE and BPF appeared in electronic repair shops. Occupational exposure to BPs deserves attention in the future. ΣBPs exposure risk for children and adults in the urban areas of southern China was the highest. To our knowledge, this is the first report in China to study BPs in outdoor dust sample.
Collapse
Affiliation(s)
- Peixuan Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Zhiwei Gan
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China.
| | - Zhi Li
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Bin Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Weiyi Sun
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - ShiJun Su
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Sanglan Ding
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
13
|
Vistnes H, Sossalla NA, Asimakopoulos AG, Meyn T. Occurrence of traffic related trace elements and organic micropollutants in tunnel wash water. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133498. [PMID: 38232556 DOI: 10.1016/j.jhazmat.2024.133498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 01/05/2024] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Substantially polluted tunnel wash water (TWW) is produced during road tunnel maintenance. Previous literature has reported the presence of trace elements and polycyclic aromatic hydrocarbons (PAHs). However, it was hypothesized that other organic pollutants are present, and more knowledge is needed to prevent environmental harm. This study reveals for the first time the presence of four short- and 17 long-chained per- and polyfluoroalkyl substances (PFASs), three benzothiazoles (BTHs), six benzotriazoles (BTRs), four bisphenols, and four benzophenones in TWW from a Norwegian road tunnel over a period of three years. Concentrations of PAHs, PFASs, BTHs, and BTRs were higher than previously reported in e.g., road runoff and municipal wastewater. Trace elements and PAHs were largely particulate matter associated, while PFASs, BTHs, BTRs, bisphenols, and benzophenones were predominantly dissolved. 26 of the determined contaminants were classified as persistent, mobile, and toxic (PMT) and are of special concern. It was recommended that regulations for TWW quality should be expanded to include PMT contaminants (such as PFPeA, PFBS, BTR, and 4-OH-BzP) and markers of pollution (like 2-M-BTH, 2-OH-BTH, and 2-S-BTH from tire wear particles). These findings highlight the need to treat TWW before discharge into the environment, addressing both, particulate matter associated and dissolved contaminants.
Collapse
Affiliation(s)
- Hanne Vistnes
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), S. P. Andersens veg 5, 7031 Trondheim, Norway
| | - Nadine A Sossalla
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), S. P. Andersens veg 5, 7031 Trondheim, Norway
| | - Alexandros G Asimakopoulos
- Department of Chemistry, Norwegian University of Science and Technology (NTNU), Høgskoleringen 5, 7034 Trondheim, Norway
| | - Thomas Meyn
- Department of Civil and Environmental Engineering, Norwegian University of Science and Technology (NTNU), S. P. Andersens veg 5, 7031 Trondheim, Norway.
| |
Collapse
|
14
|
Beryani A, Flanagan K, Viklander M, Blecken GT. Performance of a gross pollutant trap-biofilter and sand filter treatment train for the removal of organic micropollutants from highway stormwater (field study). THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 900:165734. [PMID: 37495141 DOI: 10.1016/j.scitotenv.2023.165734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/16/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
This field study assessed the occurrence, event mean concentrations (EMCs), and removal of selected organic micro-pollutants (OMPs), namely, polycyclic aromatic hydrocarbons (PAHs), petroleum hydrocarbons (PHCs), nonylphenol (NP), 4-t-octylphenol (OP), and bisphenol A (BPA), in a gross pollutant trap (GPT)-biofilter/sand filter stormwater treatment train in Sundsvall, Sweden. The effects of design features of each treatment unit, including pre-sedimentation (GPT), sand filter medium, vegetation, and chalk amendment, were investigated by comparing the units' removal performances. Overall, the treatment train removed most OMPs from highway runoff effectively. The results showed that although the sand filter provided moderate (<50 % for phenolic substances) to high (50-80 % for PAHs and PHCs) removal of OMPs, adding a vegetated soil layer on top of the sand filter considerably improved the removal performance (by at least 30 %), especially for BPA, OP, and suspended solids. Moreover, GTP did not contribute to the treatment significantly. Uncertainties in the removal efficiencies of PAHs and PHCs by the filter cells increased substantially when the ratio of the influent concentration to the limit of quantification decreased. Thus, accounting for such uncertainties due to the low OMP concentrations should be considered when evaluating the removal performance of biofilters.
Collapse
Affiliation(s)
- Ali Beryani
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden.
| | - Kelsey Flanagan
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Maria Viklander
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| | - Godecke-Tobias Blecken
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187 Luleå, Sweden
| |
Collapse
|
15
|
Beryani A, Flanagan K, Viklander M, Blecken GT. Occurrence and concentrations of organic micropollutants (OMPs) in highway stormwater: a comparative field study in Sweden. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:77299-77317. [PMID: 37253915 PMCID: PMC10299930 DOI: 10.1007/s11356-023-27623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Accepted: 05/10/2023] [Indexed: 06/01/2023]
Abstract
This study details the occurrence and concentrations of organic micropollutants (OMPs) in stormwater collected from a highway bridge catchment in Sweden. The prioritized OMPs were bisphenol-A (BPA), eight alkylphenols, sixteen polycyclic aromatic hydrocarbons (PAHs), and four fractions of petroleum hydrocarbons (PHCs), along with other global parameters, namely, total organic carbon (TOC), total suspended solids (TSS), turbidity, and conductivity (EC). A Monte Carlo (MC) simulation was applied to estimate the event mean concentrations (EMC) of OMPs based on intra-event subsamples during eight rain events, and analyze the associated uncertainties. Assessing the occurrence of all OMPs in the catchment and comparing the EMC values with corresponding environmental quality standards (EQSs) revealed that BPA, octylphenol (OP), nonylphenol (NP), five carcinogenic and four non-carcinogenic PAHs, and C16-C40 fractions of PHCs can be problematic for freshwater. On the other hand, alkylphenol ethoxylates (OPnEO and NPnEO), six low molecule weight PAHs, and lighter fractions of PHCs (C10-C16) do not occur at levels that are expected to pose an environmental risk. Our data analysis revealed that turbidity has a strong correlation with PAHs, PHCs, and TSS; and TOC and EC highly associated with BPA concentrations. Furthermore, the EMC error analysis showed that high uncertainty in OMP data can influence the final interpretation of EMC values. As such, some of the challenges that were experienced in the presented research yielded suggestions for future monitoring programs to obtain more reliable data acquisition and analysis.
Collapse
Affiliation(s)
- Ali Beryani
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden.
| | - Kelsey Flanagan
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Maria Viklander
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| | - Godecke-Tobias Blecken
- Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 97187, Luleå, Sweden
| |
Collapse
|
16
|
Das S. Cell surface hydrophobicity and petroleum hydrocarbon degradation by biofilm-forming marine bacterium Pseudomonas furukawaii PPS-19 under different physicochemical stressors. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131795. [PMID: 37301070 DOI: 10.1016/j.jhazmat.2023.131795] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/19/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Biofilm-forming marine bacterium Pseudomonas furukawaii PPS-19 showed strong hydrophobicity under different physicochemical stressors, such as pH and salinity. Strong aggregation of P. furukawaii PPS-19 was observed at hydrophobic interfaces of n-dodecane and crude oil, while uptake of pyrene resulted in blue fluorescence of the bacterium. Changes in biofilm microcolonies were observed under different physicochemical stressors with maximum biofilm thickness of 15.15 µm and 15.77 µm at pH 7% and 1% salinity, respectively. Relative expression analysis of alkB2 gene revealed the maximum expression in n-dodecane (10.5 fold) at pH 7 (1 fold) and 1% salinity (8.3 fold). During the degradation process, a significant drop in surface tension resulted in increased emulsification activity. P. furukawaii PPS-19 showed the respective n-dodecane and pyrene degradation of 94.3% and 81.5% at pH 7% and 94.5% and 83% at 1% salinity. A significant positive correlation was obtained between cell surface hydrophobicity (CSH), biofilm formation, and PHs degradation (P < 0.05) under all the physicochemical stressors, with the highest value at pH 7% and 1% salinity. Analysis of metabolites indicated that mono-terminal oxidation and multiple pathways were followed for n-dodecane and pyrene biodegradation, respectively. Thus, P. furukawaii PPS-19 is an efficient hydrocarbonoclastic bacterium that may be exploited for large-scale oil pollution abatement.
Collapse
Affiliation(s)
- Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
17
|
Xuan C, Jianfeng Z, Changshun S. Characteristics and risk assessment of sewage sludge from urban wastewater treatment plants in Shaanxi Province, China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:799. [PMID: 37266739 DOI: 10.1007/s10661-023-11420-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 05/22/2023] [Indexed: 06/03/2023]
Abstract
In this study, an investigation of important properties, including moisture content, pH, plant nutrients, organic matter, mineral oil, and the contents of heavy metals (HMs) in sewage sludge (SS) collected from 32 urban treatment plants in Shaanxi Province, China, was carried out. The test results showed that the pH and the moisture, organic matter, total nitrogen (TN), total phosphorus (TP), and mineral oil contents of the SS varied over different rainfall periods, and most of the indicators met the standard criteria for SS agricultural reuse in China. Principal component analysis (PCA) and correlation analysis indicated that the pollutant characteristics of the SS depended on time span and geographical distribution. The mean contents of Pb, Cd, Cu, Zn, Ni, Cr, Hg, and As in SS were 3.95, 16.38, 5.43, 7.70, 1.31, 1.53, 32.77, and 1.40 times higher than the soil background values, respectively. Speciation analysis showed that the forms of HMs in the SS were significantly different. Assessments based on the geoaccumulation index (Igeo), Nemerow integrated pollution index (NIPI), and potential ecological risk index (RI) suggested that HM pollution risk levels were either uncontaminated or moderately contaminated in some regions and that SS recycled for agricultural applications carried a low risk. In conclusion, certain potential ecological risks exist for SS agricultural utilization in Shaanxi Province, and it is necessary to reduce the HM content before SS resource utilization for land application.
Collapse
Affiliation(s)
- Chen Xuan
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
- Shaanxi Provincial Academy of Environmental Sciences, Xi'an, 710061, China
| | - Zhang Jianfeng
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China.
| | - Sun Changshun
- Shaanxi Provincial Academy of Environmental Sciences, Xi'an, 710061, China
| |
Collapse
|
18
|
Nguyen AV, Van Vu T, Pham CLT, Nguyen VN, Ta NT, Hoang AQ, Minh TB, Tran TM. Widespread distribution of phthalic acid esters in indoor and ambient air samples collected from Hanoi, Vietnam. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:63175-63184. [PMID: 36959402 DOI: 10.1007/s11356-023-26558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 03/15/2023] [Indexed: 05/10/2023]
Abstract
In the present study, distribution characteristics of ten typical phthalic acid esters (PAEs) were investigated in 90 air samples collected from the urban areas in Hanoi, Vietnam from May to August 2022. The total concentrations of PAEs in indoor and ambient air samples were in the range of 320-4770 ng/m3 and 35.9-133 ng/m3, respectively. Total concentrations of PAEs in indoor air were about one order of magnitude higher than those in ambient air. Among PAEs studied, di-(2-ethyl)hexyl phthalate (DEHP) was measured at the highest levels in all air samples, followed by di-n-octyl phthalate (DnOP) and di-n-butyl phthalate (DnBP). The PAEs concentrations in air samples collected from laboratories at nighttime were significantly higher than those during daytime (p < 0.05). Meanwhile, the distributions of PAEs in various micro-environments in the same house are no statistically significant difference. The median exposure doses of PAEs through inhalation for adults and children were 248 and 725 ng/kg-bw/d, respectively. These exposure levels were still lower than the respective reference doses (RfD) proposed by the US EPA for selected compounds such as diethyl phthalate (DEP), DnBP, and DEHP.
Collapse
Affiliation(s)
- Anh Viet Nguyen
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
- Vietnam Institute of Industrial Chemistry, 2 Pham Ngu Lao, Hoan Kiem, Hanoi, Vietnam
| | - Tu Van Vu
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Chi Linh Thi Pham
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Viet Ngoc Nguyen
- Vietnam Institute of Industrial Chemistry, 2 Pham Ngu Lao, Hoan Kiem, Hanoi, Vietnam
| | - Nguyen Thuy Ta
- Institute of Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Vietnam
| | - Anh Quoc Hoang
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Tu Binh Minh
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam
| | - Tri Manh Tran
- University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Vietnam.
| |
Collapse
|
19
|
Zawierucha E, Zawierucha M, Futa B, Mocek-Płóciniak A. Impact of COVID-19 Pandemic Constraints on the Ecobiochemical Status of Cultivated Soils along Transportation Routes. TOXICS 2023; 11:329. [PMID: 37112556 PMCID: PMC10143448 DOI: 10.3390/toxics11040329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/12/2023] [Accepted: 03/14/2023] [Indexed: 06/19/2023]
Abstract
There is a lack of studies on the impact of COVID-19-related population mobility and freight transport restrictions on the soil environment. The purpose of this study was to evaluate the impact of automotive pollution on selected parameters describing the quality and healthiness of crop soils based on results obtained before the pandemic (2017-2019) in relation to data from the pandemic period (2020-2021). The study included soils from six cultivated fields located in eastern Poland along national roads (DK No. 74 and 82) and provincial roads (DW No. 761 and 835). Soil samples were taken from distances of 5, 20, 50, and 100 m from the edge of the roadway. The following soil characteristics were determined: pHKCl, content of total organic carbon (TOC), total nitrogen (TN), and activity of the three enzymes dehydrogenases (ADh), neutral phosphatase (APh), and urease (AU). The degree of traffic-generated soil pollution was assessed by determining the samples' total cadmium and lead levels (Cd and Pb) and total content of 14 polycyclic aromatic hydrocarbons (Σ14PAHs). The monitoring of cultivated soils showed that the parameters of cultivated soils varied primarily according to the distance from the edge of the roadway. There was an increase in soil acidity and TOC and TN content and a decrease in Cd, Pb, and Σ14PAHs as one moved away from the edge of the roadway. The highest ADh and APh values were found in soils located 100 m from the edge of the road. AU at 5 m and 20 m from the edge of the pavement was significantly higher than at 100 m away. The reduction in vehicular traffic associated with the pandemic did not affect the changes in the reaction of the studied soils and their TOC, TN, and Pb contents. The lowest content of Σ14PAHs was found in 2020. In the case of the amount of Cd in soils, a downward effect was also observed in 2020. However, no significant differences were noted, except for the soils in Skorzeszyce and Łuszczów Kolonia. The reduced influx of xenobiotics into the soil environment stimulated ADh and APh. In the following year (2021), the amounts of tested xenobiotics and enzyme activities in the soils were at a similar level to those in 2019. The results indicate a positive but short-term effect of the pandemic on reducing the contamination of soils located along transportation routes.
Collapse
Affiliation(s)
- Elżbieta Zawierucha
- Department of Nursing, Midwifery and Emergency Medicine, Jan Kochanowski University in Kielce, IX Wieków Kielc 19A, 25-317 Kielce, Poland
| | - Marcin Zawierucha
- Department of Agriculture and Rural Development, The Marshal Office of the Świętokrzyskie Voivodeship, IX Wieków Kielc 3, 25-516 Kielce, Poland
| | - Barbara Futa
- Institute of Soil Science and Environment Management, University of Life Sciences in Lublin, Leszczyńskiego St. 7, 20-069 Lublin, Poland
| | - Agnieszka Mocek-Płóciniak
- Department of Soil Science and Microbiology, Poznań University of Life Sciences, Szydłowska 50, 60-656 Poznan, Poland
| |
Collapse
|
20
|
Maurer L, Carmona E, Machate O, Schulze T, Krauss M, Brack W. Contamination Pattern and Risk Assessment of Polar Compounds in Snow Melt: An Integrative Proxy of Road Runoffs. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:4143-4152. [PMID: 36862848 PMCID: PMC10018729 DOI: 10.1021/acs.est.2c05784] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
To assess the contamination and potential risk of snow melt with polar compounds, road and background snow was sampled during a melting event at 23 sites at the city of Leipzig and screened for 489 chemicals using liquid chromatography high-resolution mass spectrometry with target screening. Additionally, six 24 h composite samples were taken from the influent and effluent of the Leipzig wastewater treatment plant (WWTP) during the snow melt event. 207 compounds were at least detected once (concentrations between 0.80 ng/L and 75 μg/L). Consistent patterns of traffic-related compounds dominated the chemical profile (58 compounds in concentrations from 1.3 ng/L to 75 μg/L) and among them were 2-benzothiazole sulfonic acid and 1-cyclohexyl-3-phenylurea from tire wear and denatonium used as a bittern in vehicle fluids. Besides, the analysis unveiled the presence of the rubber additive 6-PPD and its transformation product N-(1.3-dimethylbutyl)-N'-phenyl-p-phenylenediamine quinone (6-PPDQ) at concentrations known to cause acute toxicity in sensitive fish species. The analysis also detected 149 other compounds such as food additives, pharmaceuticals, and pesticides. Several biocides were identified as major risk contributors, with a more site-specific occurrence, to acute toxic risks to algae (five samples) and invertebrates (six samples). Ametryn, flumioxazin, and 1,2-cyclohexane dicarboxylic acid diisononyl ester are the main compounds contributing to toxic risk for algae, while etofenprox and bendiocarb are found as the main contributors for crustacean risk. Correlations between concentrations in the WWTP influent and flow rate allowed us to discriminate compounds with snow melt and urban runoff as major sources from other compounds with other dominant sources. Removal rates in the WWTP showed that some traffic-related compounds were largely eliminated (removal rate higher than 80%) during wastewater treatment and among them was 6-PPDQ, while others persisted in the WWTP.
Collapse
Affiliation(s)
- Loïc Maurer
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Eric Carmona
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Oliver Machate
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Tobias Schulze
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Martin Krauss
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
| | - Werner Brack
- Department
of Effect-Directed Analysis, UFZ—Helmholtz
Centre for Environmental Research, Permoserstr. 15, 04318 Leipzig, Germany
- Institute
of Ecology, Evolution and Diversity, Goethe
University, Max-von-Laue-Str.
13, 60438 Frankfurt
am Main, Germany
| |
Collapse
|
21
|
Tongu SM, Sha’Ato R, Wase GA, Okonkwo JO, Vesuwe RN. Organochlorine pesticides and polychlorinated biphenyls in city drains in Makurdi, central Nigeria: Seasonal variations, source apportionment and risk assessment. Heliyon 2023; 9:e14324. [PMID: 36950572 PMCID: PMC10025036 DOI: 10.1016/j.heliyon.2023.e14324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 02/14/2023] [Accepted: 03/01/2023] [Indexed: 03/07/2023] Open
Abstract
A study of seasonal variation, sources and potential risks of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) in open city drains in Makurdi, Central Nigeria was carried out. OCPs and PCBs were quantified using gas chromatograph-mass spectrometer. The total (∑8OCPs) concentrations (ngL-1) of OCPs in water was 2.99 with a mean ± SD of 0.75 ± 0.12 during wet season, while during dry season, the values were 11.43 and 2.86 ± 1.54 respectively. In sediment, the total concentration (ngg-1) of OCPs was 5270.66 with a mean ± SD of 1756.89 ± 450.01 during wet season and a total concentration of 5837.93 and the mean ± SD of 1945.98 ± 646.04, during dry season. Source apportionment of OCPs suggested historic application of the pollutants. The total (∑7PCBs) concentration (ngL-1) of PCBs in water was 0.24 with a mean ± SD of 0.03 ± 0.02 during wet season and a total concentration of 0.61 with a mean ± SD of 0.09 ± 0.11 during dry season. The total concentration (ngg-1) of PCBs in sediment was 37.88, mean ± SD of 5.41 ± 5.93 during wet season and a total of 47.07 and mean ± SD of 6.72 ± 7.27 during dry season. Ecological risk assessment based on effect range low (ERL) and effect range median (ERM) or threshold effect level (TEL) and probable effect level (PEL) that ecological risks were possible for some OCPs in this study, which calls for source control and remediation of the affected sites. Toxicity equivalency (TEQ) of PCB-118, the dioxin-like congener, indicated that it was most harmful to humans/mammals followed by birds, then fish.
Collapse
Affiliation(s)
- Sylvester M. Tongu
- Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi, PMB 2373, Makurdi, Benue State, Nigeria
- Corresponding author.
| | - Rufus Sha’Ato
- Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi, PMB 2373, Makurdi, Benue State, Nigeria
| | - Geoffrey A. Wase
- Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi, PMB 2373, Makurdi, Benue State, Nigeria
| | - Jonathan O. Okonkwo
- Department of Environmental, Water and Earth Sciences, Tshwane University of Technology, Pretoria, 0001, South Africa
| | - Rebecca N. Vesuwe
- Department of Chemistry, Joseph Sarwuan Tarka University, Makurdi, PMB 2373, Makurdi, Benue State, Nigeria
- WestCHEM, Department of Pure and Applied Chemistry, University of Strathclyde, 295 Cathedral Street, Glasgow, G1 1XL, United Kingdom
| |
Collapse
|
22
|
Kontchou JA, Baetz N, Grabner D, Nachev M, Tuerk J, Sures B. Pollutant load and ecotoxicological effects of sediment from stormwater retention basins to receiving surface water on Lumbriculus variegatus. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 859:160185. [PMID: 36395831 DOI: 10.1016/j.scitotenv.2022.160185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/07/2022] [Accepted: 11/10/2022] [Indexed: 06/16/2023]
Abstract
The overflow of stormwater retention basins during intense and prolonged precipitation events may result in the direct input of particulate pollutants and remobilization of already sedimented particle-bound pollutants to receiving freshwater bodies. Particle-bound pollutants may cause adverse effects on aquatic biota, particularly sediment dwellers. Therefore, we investigated the sediment pollution load of a stream connected to the outfalls of two stormwater basins to determine the impact of the basins' discharges on the metal and organic pollutant content of the sediment. Also, the possible adverse effects of the pollutant load on benthic dwellers were evaluated in sediment toxicity tests with Lumbriculus variegatus and the effects on its growth, reproduction and the biomarkers catalase, acetylcholinesterase and metallothionein were analyzed. The results showed that the retention basins contained the highest load of pollutants. The pollutant load in the stream did not show a clear pollution pattern from the inlets. However, metal enrichment ratios revealed contamination with Cu, Pb and Zn with Pb and Zn above threshold effect concentrations in all sites. Ecotoxicity results showed that the retention basin samples were the most toxic compared to sediment from the stream. Exposure experiments with the stream sediment did not show considerable effects on reproduction, catalase activity and metallothionein concentration. However, modest inhibitions of growth and activity of acetylcholinesterase were detected. Based on the observed results, it cannot be concluded that overflows of the retention basin are responsible for the pollutant contents downstream of their inlet. Other sources that were not considered in this study, such as diffuse input, historic pollution and point sources further upstream as well as along the stream, are likely the major contributors of pollutant load in the sediment of the studied transects of the stream. Additionally, the observed results in the stormwater basin sediment further highlight their importance in retaining particle-bound pollutants and preventing ecotoxicological effects from receiving surface water bodies.
Collapse
Affiliation(s)
- Julios Armand Kontchou
- Department of Aquatic Ecology, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany.
| | - Nicolai Baetz
- Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Daniel Grabner
- Department of Aquatic Ecology, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Milen Nachev
- Department of Aquatic Ecology, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| | - Jochen Tuerk
- Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Institut für Energie- und Umwelttechnik e. V. (IUTA, Institute of Energy and Environmental Technology), Bliersheimer Str. 58-60, 47229 Duisburg, Germany
| | - Bernd Sures
- Department of Aquatic Ecology, University Duisburg-Essen, Universitätsstr. 5, 45141 Essen, Germany; Centre of Water and Environmental Research (ZWU), University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany; Research Center One Health Ruhr, Research Alliance Ruhr, University Duisburg-Essen, Universitätsstr. 2, 45141 Essen, Germany
| |
Collapse
|
23
|
Du X, Chi Z, Chen M, Yu Z, Zhu Y. Characteristics of dissolved organic matter in urban road runoff under different traffic densities in Beijing, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:90520-90529. [PMID: 35870065 DOI: 10.1007/s11356-022-21791-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
The characteristics of dissolved organic matter (DOM) in road runoff under different traffic densities were compared using resin fractionation, molecular weight distribution analysis, three-dimensional excitation-emission matrix fluorescence spectroscopy, and UV-visible spectroscopy. Heavy traffic density strongly increased the concentration of DOM in road runoff, resulting in higher dissolved organic carbon. The distribution of molecular weights in DOM was not influenced by the traffic. DOM was dominated by colloidal organic matter with molecular weight in the 1 kDa to 0.45 μm size range. Hydrophobic fractions accounted for a large proportion than hydrophilic fractions in DOM, and hydrophobic acids increased with higher traffic density. Traffic density did not alter the fluorescent substances in DOM, including fulvic-like UV fluorescent substances and protein-like substances. However, more tryptophan-like protein substances were found in DOM from road runoff with heavy traffic. Moreover, the aromatization degree of DOM was not affected by heavy traffic, while the degree of humification decreased.
Collapse
Affiliation(s)
- Xiaoli Du
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
- Beijing Energy Conservation and Sustainable Urban and Rural Development Provincial and Ministry Co-Construction Collaboration Innovation Center, Beijing, 100044, China.
| | - Zhongwen Chi
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Mengyao Chen
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Zhenya Yu
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yingjie Zhu
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
24
|
Furén R, Flanagan K, Winston RJ, Tirpak RA, Dorsey JD, Viklander M, Blecken GT. Occurrence, concentration, and distribution of 38 organic micropollutants in the filter material of 12 stormwater bioretention facilities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 846:157372. [PMID: 35850337 DOI: 10.1016/j.scitotenv.2022.157372] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/05/2022] [Accepted: 07/10/2022] [Indexed: 06/15/2023]
Abstract
The increased use of bioretention facilities as a low impact development measure for treating stormwater runoff underscores the need to further understand their long-term function. Eventually, bioretention filter media must be (partly) replaced and disposed of at the end of its functional lifespan. While there are several studies of metal accumulation and distributions in bioretention media, less is known about organic pollutant pathways and accumulation in these filters. The present study considers the occurrence and accumulation of 16 polycyclic aromatic hydrocarbons, 7 polychlorinated biphenyls, 13 phthalates, and two alkylphenols throughout 12 older bioretention facilities (7-13 years old) used for stormwater treatment in Michigan and Ohio, USA. These pollutant groups appear to behave similarly, with greater instances of detection and higher concentrations in the upper media layers which decrease with increased depth from the surface. The patterns of detection and concentration in the filter material may be explained by characteristics of the pollutants, such as molecular structures and solubility that affect the removal of the organic pollutants by the filter material. There is also a large variation in concentration magnitudes between the bioretention sites, most likely due to differences in pollutant sources, contributing catchment size and/or land uses.
Collapse
Affiliation(s)
- Robert Furén
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden; NCC Sverige AB, Department of Research & Innovation, 170 80 Solna, Sweden.
| | - Kelsey Flanagan
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Ryan J Winston
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, United States; Department of Civil, Environmental, and Geodetic Engineering, The Ohio State University, Columbus, OH, United States
| | - R Andrew Tirpak
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, United States
| | - Jay D Dorsey
- Department of Food, Agricultural, and Biological Engineering, The Ohio State University, Columbus, OH, United States
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| | - Godecke-Tobias Blecken
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87 Luleå, Sweden
| |
Collapse
|
25
|
Xu P, Chen X, Li K, Meng R, Pu Y. Metagenomic Analysis of Microbial Alliances for Efficient Degradation of PHE: Microbial Community Structure and Reconstruction of Metabolic Network. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12039. [PMID: 36231339 PMCID: PMC9565075 DOI: 10.3390/ijerph191912039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/02/2022] [Accepted: 09/14/2022] [Indexed: 06/16/2023]
Abstract
Polycyclic aromatic hydrocarbons are a widespread organic pollutant worldwide. In this study, a highly efficient phenanthrene (PHE)-degrading microbial community was enriched from oil extraction soil, which could degrade 500 mg/L PHE within 4 days. Using 16S rRNA sequencing, the dominant bacteria in this community at the phylum level were found to be Proteobacteria, Actinobacteria, and Firmicutes. Metagenomic annotation of genes revealed the metabolic pathways and the contribution of different bacteria to the degradation process. Pseudomonadaceae contributed multiple functional genes in the degradation process. This study revealed the functional genes, metabolic pathways, and microbial interactions of the microbial community, which are expected to provide guidance for practical management.
Collapse
Affiliation(s)
- Pan Xu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Xiaoxiao Chen
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Kai Li
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| | - Rong Meng
- The Husbandry Technology Promotion Center of Inner Mongolia, Hohhot 010051, China
| | - Yuewu Pu
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
26
|
Cao Y, Xu S, Zhang K, Lin H, Wu R, Lao JY, Tao D, Liu M, Leung KMY, Lam PKS. Spatiotemporal occurrence of phthalate esters in stormwater drains of Hong Kong, China: Mass loading and source identification. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119683. [PMID: 35772618 DOI: 10.1016/j.envpol.2022.119683] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/08/2022] [Accepted: 06/23/2022] [Indexed: 06/15/2023]
Abstract
Urban stormwater is an important pathway for transporting anthropogenic pollutants to water bodies. Phthalate esters (PAEs) are endocrine disruptors owing to their estrogenic activity and potential carcinogenicity and their ubiquitous presence has garnered global interest. However, their transportation by urban stormwater has been largely overlooked. This study, for the first time, investigated 15 PAEs in stormwater from six major stormwater drains in the highly urbanized Hong Kong, a major metropolitan city in China. The results showed that PAEs were ubiquitous in the stormwater of Hong Kong, with total concentrations (∑15PAEs) spanning from 195 to 80,500 ng/L. Bis(2-n-butoxyethyl) phthalate (DBEP), diisopentyl phthalate (DiPP), dicyclohexyl phthalate (DCHP) and di-n-pentyl phthalate (DnPP) were detected in stormwater for the first time. Spatial variations in PAEs were observed among different stormwater drains, possibly due to the different land use patterns and intensities of human activities in their respective catchments. The highest and lowest levels of ∑15PAEs were found in Kwai Chung (3860 ± 1960 ng/L) and the Ng Tung River (672 ± 557 ng/L), respectively. Additionally, significantly higher concentrations of ∑15PAEs in stormwater were found in the wet season (2520 ± 2050 ng/L) than in the dry season (947 ± 904 ng/L). Principal component analysis classified domestic and industrial origins as two important sources of PAEs in the stormwater of Hong Kong. Stormwater played a crucial role in transporting PAEs, with an estimated annual flux of 0.705-29.4 kg. Thus, possible stormwater management measures were proposed to protect the receiving environment and local ecosystems from stormwater.
Collapse
Affiliation(s)
- Yaru Cao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao SAR, 999078, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Jia-Yong Lao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Danyang Tao
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, Department of Chemistry, City University of Hong Kong, Hong Kong SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai, 519080, China; Hong Kong Metropolitan University, Hong Kong SAR, China
| |
Collapse
|
27
|
Müller A, Österlund H, Marsalek J, Viklander M. Exploiting urban roadside snowbanks as passive samplers of organic micropollutants and metals generated by traffic. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119723. [PMID: 35810982 DOI: 10.1016/j.envpol.2022.119723] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 06/21/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Stormwater and snowmelt runoff is known to contribute to the deterioration of quality of urban surface waters. Vehicular traffic is recognised as a major source of a wide range of pollutants to urban runoff, including conventional pollutants, such as suspended solids and metals, and those referred to as 'contaminants of emerging concern'. The aim of this study was to investigate the contribution of selected metal(loid)s (Cd, Cr, Cu, Ni, Pb, Pd, Sb, W, Zn), polycyclic aromatic hydrocarbons (PAHs), nonylphenols, octylphenols and -ethoxylates, phthalates and bisphenol A (BPA) from vehicular traffic by sampling urban roadside snow at eight sites, with varying traffic intensities, and one control site without direct impacts of traffic. Our results confirmed that vehicles and traffic-related activities were the sources of octylphenols, BPA and phthalates as well as the metal(loid)s Sb and W, infrequently reported in previous studies. Among metal(loid)s, Cu, Zn and W occurred in the highest concentrations (up to 1.2 mg/L Cu, 2.4 mg/L Zn and 1.9 mg/L W), while PAHs and phthalates occurred in the highest concentrations among the trace organic pollutants (up to 540 μg/L phthalate diisononyl phthalate). Among the phthalates, di-(2-ethylhexyl)phthalate had the highest frequency of detection (43% of the roadside samples). While BPA and octylphenols had relatively high frequencies of detection (50% for BPA and 81% for octylphenols), they were present in comparatively low concentrations (up to 0.2 μg/L BPA and 1.1 μg/L octylphenols). The control site displayed generally low concentrations of the pollutants studied, indicating that atmospheric deposition was not a significant source of the pollutants found in the roadside snow. Several of the pollutants in the roadside snow exceeded the applicable surface water and stormwater effluent guideline values. Thus, the transport of these pollutants with runoff posed risk of causing adverse effects in the receiving surface waters.
Collapse
Affiliation(s)
- Alexandra Müller
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden.
| | - Heléne Österlund
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Jiri Marsalek
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| | - Maria Viklander
- Urban Water Engineering, Department of Civil, Environmental and Natural Resources Engineering, Luleå University of Technology, 971 87, Luleå, Sweden
| |
Collapse
|
28
|
Zhang X, Lu W, Xu L, Wu W, Sun B, Fan W, Zheng H, Huang J. Environmental Risk Assessment of Polycyclic Aromatic Hydrocarbons in Farmland Soils near Highways: A Case Study of Guangzhou, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191610265. [PMID: 36011899 PMCID: PMC9408701 DOI: 10.3390/ijerph191610265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/13/2022] [Accepted: 08/14/2022] [Indexed: 05/14/2023]
Abstract
Recently, the rapid growth in vehicle activity in rapidly urbanized areas has led to the discharge of large amounts of polycyclic aromatic hydrocarbons (PAHs) into roadside soils and these compounds have gradually accumulated in the soil, which poses a serious threat to national food security and public health. However, previous studies did not clearly investigate the seasonal differences in PAH pollution of roadside soil by different highways. Therefore, based on field investigations, this study collected 84 soil surface samples to compare the pollution characteristics of 16 PAHs in farmland soils located near different roads in different seasons in Guangzhou, China. The results showed that the concentration of Σ16PAHs in farmland soils in spring (with a mean value of 258.604 μg/kg) was much higher than that in autumn (with a mean value of 157.531 μg/kg). There are differences in the PAH compositions in spring (4 ring > 3 ring > 5 ring > 6 ring) and autumn (4 ring > 5 ring > 6 ring > 3 ring). The proportion of 4−6 ring PAHs was much higher than 2−3 ring PAHs in both seasons. The spatial differences were significant. The sampling areas with higher concentrations of 16 PAHs were Tanbu Town, Huadu District (TB), Shitan Town, Zengcheng District (ST), and Huashan Town, Huadu District (HS), while the lowest concentration was in Lanhe Town, Nansha District (LH). The results of the diagnostic ratios showed that the main source of soil PAHs consists of a mixed source from petroleum and biomass combustion. The results from the total pollution assessment method and Nemerow index method indicated that the pollution levels of PAHs in the farmland soils indicated weak contamination. Our study provides a scientific basis for the prevention and control of soil pollution in farmlands near highways.
Collapse
Affiliation(s)
| | | | - Linyu Xu
- Correspondence: ; Tel.: +86-10-5880-0618
| | | | | | | | | | | |
Collapse
|
29
|
The Determination of Polycyclic Aromatic Hydrocarbons (PAHs) with HPLC-DAD-FLD and GC-MS Techniques in the Dissolved and Particulate Phase of Road-Tunnel Wash Water: A Case Study for Cross-Array Comparisons and Applications. TOXICS 2022; 10:toxics10070399. [PMID: 35878304 PMCID: PMC9321833 DOI: 10.3390/toxics10070399] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 02/04/2023]
Abstract
Accelerated solvent extraction (ASE) and solid phase extraction (SPE) protocols tailored to either gas chromatography mass spectrometry (GC-MS) or high-performance liquid chromatography coupled to diode-array and fluorescence detection (HPLC-DAD-FLD) were developed for the determination of EPA 16 polycyclic aromatic hydrocarbons (PAHs) in the particulate and dissolved phase of road-tunnel wash water. An analytical approach was developed, assessed, and applied on environmental samples collected from five road tunnels in Norway. The absolute recoveries ranged from 57 to 104% for the particulates, and from 42 to 79% for the dissolved water phase. The target PAH compounds were separated in 34.75 min using the GC method and in 22.50 min by HPLC. In the particulate phases, higher molecular weight PAHs were detected in the range of 0.043 to 0.93 µg/g, and lower molecular weight PAHs were detected in the range of 0.020 to 1.0 µg/g, while the intermediate ones were present in the range of 0.075 to 2.0 µg/g. In contrast to the particulates, the dissolved phase mainly contained lower molecular weight PAHs in the range of 0.0098 to 0.50 µg/L. GC-MS demonstrated lower detection limits (LODs) than HPLC-DAD-FLD for 13 out of the 16 PAHs. A cross-array comparison of the two analytical techniques indicated that some target PAHs were detected solely or in higher concentrations with HPLC-DAD-FLD, indicating the occurrence of false positive peaks or/and co-eluting components. The resulting concentrations in the road tunnel wash water samples were used to calculate specific PAH forensic ratios to pinpoint the potential sources of PAH pollution. These ratios revealed that there are several potential sources for the origin of PAHs in tunnel wash water.
Collapse
|
30
|
Revitt DM, Ellis JB, Gilbert N, Bryden J, Lundy L. Development and application of an innovative approach to predicting pollutant concentrations in highway runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 825:153815. [PMID: 35182646 DOI: 10.1016/j.scitotenv.2022.153815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 01/13/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Recognising the challenges and limitations of current methodologies to predict highway runoff concentrations, this paper presents a novel approach based on the derivation of pollutant emission factors for twelve different types of vehicle. Published emission factor data and properties of differing vehicles types are combined with annual average daily traffic volume (AADT), highway characteristics and rainfall data to determine the pollutant distributions associated with differing highway and traffic types. In this paper, the method is applied to 126 sections of highway in the Greater London Borough of Enfield (United Kingdom; UK) and results are comparable with values reported in the literature. The approach is used to identify the level of AADT predicted to result in an exceedance of environmental quality standards (EQS), with results suggesting that runoff from highways experiencing AADT values as low as 5000 may require treatment prior to discharge to receiving waters. Future scenario analyses indicate that the impact of progressively replacing petrol and diesel vehicles with electric vehicles will have negligible impact on concentrations of zinc (Zn), copper (Cu), cadmium (Cd) and total suspended solids discharging from highway environments. The approach enables identification and ranking of urban highways in terms of their pollution runoff potential and provides an important support to users in prioritising locations for the installation of sustainable drainage options in order to protect receiving water environments.
Collapse
Affiliation(s)
- D Michael Revitt
- Urban Pollution Research Centre, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK
| | - J Bryan Ellis
- Urban Pollution Research Centre, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK
| | | | - John Bryden
- Thames 21, Bow Locks, Navigation Road, London E3 3JY, UK
| | - Lian Lundy
- Urban Pollution Research Centre, Middlesex University, The Burroughs, Hendon, London NW4 4BT, UK.
| |
Collapse
|
31
|
Fuchte HE, Beck N, Bieg E, Bayer VJ, Achten C, Krauss M, Schäffer A, Smith KEC. A look down the drain: Identification of dissolved and particle bound organic pollutants in urban runoff waters and sediments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 302:119047. [PMID: 35227846 DOI: 10.1016/j.envpol.2022.119047] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 01/29/2022] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Urban runoff contains a range of organic micropollutants which, if not removed during wastewater treatment, pose a risk to aquatic environments. These mixtures are complex and often site-specific. Street drains provide an ideal sampling point given they collect the runoff from local and defined catchments. In this study, runoff was collected and sampled in five street drains located in a medium sized town in Germany. A specially constructed trap was used to collect the particulate and total water fractions of the runoff. In addition, passive samplers were deployed to determine the freely dissolved concentrations of selected compounds in the runoff. In sum, 187 polar organic micropollutants could be quantified using LC-HRMS. Thirty of these could only be detected by the use of passive samplers. Traffic derived pollutants such as corrosion inhibitors, rubber- and plastic additives, but also pollutants of industrial origin were strongly represented with sum median concentrations of 100 μg/kg dry weight (DW) in the sediment and 400 ng/L in the water fraction. Several of these substances are of concern due to their environmental persistence and mobility. Perfluorinated compounds and pesticides occurred at lower levels of several μg/kg DW sediment or ng/L water. A number of substances including pharmaceuticals, sweeteners and stimulants indicated domestic wastewater influences. Furthermore, a total of 62 parent and alkylated PAHs were quantified by GC-MS and contributed 30-70% to the sum concentrations of the micropollutants. Non-EPA PAHs dominated the carcinogenic PAH toxicity. The increased PAH alkylation indices (0.7-0.9) showed these primarily came from combustion sources. The runoff particles were additionally microscopically characterized, and correlations were found between the rubber particle counts and the PAH alkylation-index as well as the levels of 2-(methylthio)benzothiazole, a marker compound for tire leaching.
Collapse
Affiliation(s)
- Hanna E Fuchte
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany.
| | - Natascha Beck
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany
| | - Evelyn Bieg
- Umwelt-Mikroskopie Evelyn Bieg, Greppstraße 64, 52159, Roetgen, Germany
| | - Viviane J Bayer
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149, Münster, Germany
| | - Christine Achten
- Institute of Geology and Palaeontology - Applied Geology, University of Münster, Corrensstraße 24, 48149, Münster, Germany
| | - Martin Krauss
- Helmholtz Centre for Environmental Research - UFZ, Permoserstraße 15, 04318, Leipzig, Germany
| | - Andreas Schäffer
- Institute for Environmental Research, RWTH Aachen University, Worringerweg 1, 52074, Aachen, Germany; State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing, 210093, PR China
| | - Kilian E C Smith
- Department of Water, Environment, Construction and Safety, University of Applied Sciences Magdeburg-Stendal, 39114, Magdeburg, Germany
| |
Collapse
|
32
|
Effective removal of 4-Aminophenol from aqueous environment by pea (Pisum sativum) shells activated with sulfuric acid: Characterization, isotherm, kinetics and thermodynamics. J INDIAN CHEM SOC 2022. [DOI: 10.1016/j.jics.2022.100528] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
33
|
Road Runoff Characterization: Ecotoxicological Assessment Combined with (Non-)Target Screenings of Micropollutants for the Identification of Relevant Toxicants in the Dissolved Phase. WATER 2022. [DOI: 10.3390/w14040511] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Road runoff (RR) is an important vector of micropollutants towards groundwater and soils, threatening the environment and ecosystems. Through combined chemical and biological approaches, the purpose of this study was to get insights on specific toxicants present in RR from two sites differing by their traffic intensity and their toxicological risk assessment. Non-target screening was performed by HRMS on RR dissolved phase. Ecotoxicological risk was evaluated in a zebrafish embryos model and on rat liver mitochondrial respiratory chain. Specific HRMS fingerprints were obtained for each site, reflecting their respective traffic intensities. Several micropollutants, including 1,3-diphenylguanidine (DPG) and benzotriazole (BZT) were identified in greater concentrations at the high-traffic site. The origin of DPG was confirmed by analyzing HRMS fingerprints from shredded tires. RR samples from each site, DPG and BZT were of relatively low toxicity (no mortality) to zebrafish embryos, but all generated distinct and marked stress responses in the light–dark transition test, while DPG/BZT mixes abolished this effect. The moderate-traffic RR and DPG inhibited mitochondrial complex I. Our study highlights (i) the unpredictability of pollutants cocktail effect and (ii) the importance of a multi-approaches strategy to characterize environmental matrices, essential for their management at the source and optimization of depollution devices.
Collapse
|
34
|
Hajiouni S, Mohammadi A, Ramavandi B, Arfaeinia H, De-la-Torre GE, Tekle-Röttering A, Dobaradaran S. Occurrence of microplastics and phthalate esters in urban runoff: A focus on the Persian Gulf coastline. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150559. [PMID: 34582879 DOI: 10.1016/j.scitotenv.2021.150559] [Citation(s) in RCA: 89] [Impact Index Per Article: 29.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Revised: 08/26/2021] [Accepted: 09/20/2021] [Indexed: 05/05/2023]
Abstract
Urban runoff seems an obvious pathway for the transfer of microplastics (MPs) and phthalate acid esters (PAEs) from land-based sources to the marine environment; an issue that still lacks attention. This study presents the first results on MP and PAE levels in the urban runoff into the northern part of the Persian Gulf during the dry season. Average concentrations of MPs and PAEs in the urban runoff of eight selected sampling sites (N = 72) along the Bushehr coast were 1.86 items/L and 53.57 μg/L, respectively. MPs with a size range of 500-1000 μm had the highest abundance, and the mean levels of PAEs in MPs were 99.77 μg/g. The results of this study show that urban runoff is a main source of MP and PAE contaminants that are discharged into the Persian Gulf. Therefore, to decrease these pollutants from entering the aquatic environment, decision-makers in the area should consider this problem and stop the direct discharging of urban runoff into water bodies.
Collapse
Affiliation(s)
- Shamim Hajiouni
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Azam Mohammadi
- Department of Environmental Health, School of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran
| | | | - Agnes Tekle-Röttering
- Westfälische Hochschule Gelsenkirchen, Neidenburger Strasse 43, Gelsenkirchen 45877, Germany
| | - Sina Dobaradaran
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| |
Collapse
|
35
|
Gillis PL, Parrott JL, Helm P. Environmental Fate and Effects of Road Run-Off. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2022; 82:159-161. [PMID: 34977971 PMCID: PMC8817996 DOI: 10.1007/s00244-021-00906-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Affiliation(s)
- Patricia L Gillis
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada.
| | - Joanne L Parrott
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, ON, Canada
| | - Paul Helm
- Ontario Ministry of the Environment, Conservation and Parks, Toronto, ON, Canada
| |
Collapse
|
36
|
Micropollutants in Urban Runoff from Traffic Areas: Target and Non-Target Screening on Four Contrasted Sites. WATER 2022. [DOI: 10.3390/w14030394] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Although runoff from trafficked urban areas is recognized as a potentially significant pathway of micropollutants, runoff pollution remains poorly documented, except for relatively few historical pollutants such as some metals and hydrocarbons. Therefore, in this work, road and parking lot runoff from four sites with contrasting traffic levels were analyzed for a very broad spectrum of molecules and elements. A total of 128 pollutants and micropollutants were monitored, including inorganic (n = 41) and organic (n = 87) pollutants. Both the dissolved and particulate phases were considered. For a reduced number of samples, non-targeted screening by high-resolution mass spectrometry (HRMS) was carried out. For targeted screening, the contamination profiles were quite homogeneous, but the concentrations significantly differed between the different sites. Sites with the highest traffic density exhibited the highest concentrations for polycyclic aromatic hydrocarbons (PAHs), some traffic-related metals, alkylphenols and phthalates. Overall, for most micropollutants, the parking lot runoff exhibited the lowest concentrations, and the specificity of this site was confirmed by its HRMS fingerprint. Non-target screening allowed the sites to be discriminated based on the occurrence of specific compounds. Unlike the results of targeted screening, the HRMS intra-site variability was lower than its inter-site variability. Unknown substances were tentatively identified, either characteristic of each site or ubiquitous of all samples.
Collapse
|
37
|
Barbosa AE, Fernandes JN. Review of tools for road runoff quality prediction and application to European roads. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2228-2241. [PMID: 34810307 DOI: 10.2166/wst.2021.427] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Pollutants discharged by roads may impact water bodies and soils. The best method to characterise road runoff is by monitoring, which is not always possible due to human or material constraints. Therefore, prediction tools can be a valuable method to manage road runoff discharges and protect the environment. The present work reviewed and evaluated international tools for road runoff quality prediction, in order to assess if an existing tool could be suitable for wide usage by stakeholders in Europe. Four tools from the USA and Europe were selected and tested at 22 road sites located in regions with annual precipitation values ranging from 500 to 1,000 mm, from seven European countries. The results for the site median concentration (SMC) of total suspended solids (TSS), Zn, Cu, Pb and Cd showed coefficients of determination (R2) from 0.0004 to 0.2890 for the different pollutants and tools. It was concluded that none of the tools could predict the road runoff pollutant concentrations, except for the country where it had been calibrated. The findings support practitioners and researchers all over the world, pointing out directions, and gaps to be filled, regarding the management of road runoff discharges and use of prediction tools.
Collapse
Affiliation(s)
- Ana Estela Barbosa
- Hydraulics and Environment Department, National Laboratory for Civil Engineering, Av. do Brasil 101, 1700-066 Lisbon, Portugal E-mail:
| | - João Nuno Fernandes
- Hydraulics and Environment Department, National Laboratory for Civil Engineering, Av. do Brasil 101, 1700-066 Lisbon, Portugal E-mail:
| |
Collapse
|
38
|
Lee HG, Byun YJ, Chun YW, Noh HJ, Kim DJ, Kim HK, Kim JI. Identification of Metal Contamination Sources and Evaluation of the Anthropogenic Effects in Soils near Traffic-Related Facilities. TOXICS 2021; 9:278. [PMID: 34822669 PMCID: PMC8618257 DOI: 10.3390/toxics9110278] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/18/2021] [Accepted: 10/19/2021] [Indexed: 11/26/2022]
Abstract
Traffic-related facilities typically have much lower metal emissions than other sources; however, they can be numerous and widespread as well. Subdividing pollution sources is necessary to assess soil contamination characteristics and identify sources according to the contamination cause. Anthropogenic contamination by metals was quantitatively determined using contamination factor (Cf) and evaluated using multivariate analysis. More than half of the concentrations for Zn, Pb, and Cu in soils were higher than that in the natural background (NB). Cf of metals was, in decreasing order, Zn > Pb = Cu > Ni = As. Zn, Pb, and Cu were identified as anthropogenic contaminants in correlation analysis. Principal component analysis showed that the two main contamination causes were coarse particles from the maintenance or crushing activities of vehicles and nonexhaust/exhaust emissions. Clusters were classified according to those two anthropogenic and lithogenic causes and included Group I (Zn, Pb, and Cu in garages, auto repair shops, and auto salvage yards), Group II (Zn, Pb, and Cu in parking lots, driving schools, and roadsides), and Group III (As and Ni with high lithogenic properties). Anthropogenic input and sources of soil contamination by metals in traffic-related facilities were appropriately estimated through the combination of Cf and multivariate analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Ji-In Kim
- Soil and Groundwater Research Division, National Institute of Environmental Research, 42 Hwangyoung-ro, Incheon 22689, Korea; (H.-g.L.); (Y.J.B.); (Y.-W.C.); (H.-J.N.); (D.-J.K.); (H.-K.K.)
| |
Collapse
|
39
|
Qian G, Zhang J, Li X, Yu H, Gong X, Chen J. Study on pollution characteristics of urban pavement runoff. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:1745-1756. [PMID: 34662310 DOI: 10.2166/wst.2021.371] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Urban pavement runoff has become an important pollution source endangering the quality of urban water. This paper analyzed the characteristics of particle size distribution of road-deposited sediment (RDS). The variation of pollutants with RDS content is presented. Based on continuous sampling of runoff, the variation between pollutant concentration and rainfall characteristics is revealed. The results show that each particle group shares similar content except for the group smaller than 0.075 mm. However, the smaller particles have a stronger ability to adsorb heavy metals (Zn, Pb, Cu), and a weaker ability to adsorb chemical oxygen demand (COD). The concentrations of different pollutants have different relationships with rainfall and runoff time. The concentration of suspended solids (SS) decreases steadily with runoff time, while the concentration of heavy metals increases first and then decreases. The first 30 minutes of runoff is the best time to treat heavy metals and SS. The five-day biochemical oxygen demand (BOD5) and total petroleum hydrocarbons (TPHs) concentration are mainly affected by rainfall intensity. The result presented in this paper may provide a useful reference for the treatment of pavement runoff pollution.
Collapse
Affiliation(s)
- Guoping Qian
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China E-mail: ; National Engineering Laboratory for Highway Maintenance Technology, Changsha University of Science & Technology, Changsha 410114, China
| | - Jingyu Zhang
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China E-mail:
| | - Xi Li
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China E-mail:
| | - Huanan Yu
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China E-mail:
| | - Xiangbing Gong
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha 410114, China E-mail:
| | - Juyong Chen
- Fujian Academy of Building Research Co., LTD, Fuzhou, Fujian 350108 China
| |
Collapse
|
40
|
Vasiljevic T, Harner T. Bisphenol A and its analogues in outdoor and indoor air: Properties, sources and global levels. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:148013. [PMID: 34323825 DOI: 10.1016/j.scitotenv.2021.148013] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 05/16/2021] [Accepted: 05/20/2021] [Indexed: 06/13/2023]
Abstract
Bisphenol A (BPA) and its analogues are high-volume production organic synthetic compounds used in the synthesis of plastics. BPA has been categorized as an endocrine disrupting compound due to its ability to disrupt the hormonal makeup of living organisms. Air and dust are common sources of exposure of BPA for living organisms and most sources are anthropogenic and a result of thermal destruction of BPA containing materials, import and export of recyclable materials (especially e-waste) and fugitive emissions near BPA handling facilities. Current reports on BPA levels in air are limited and focused on effluent and surface water analysis (due to BPA's propensity for environmental distribution to water). BPA's presence in the developing part of the world is of particular concern due to lack of regulations and uncontrolled incinerations of domestic and imported waste. The current review summarizes up-to-date scientific literature on BPA's occurrence in air, alongside physico-chemical and partitioning properties, persistence in air, seasonal variation, consideration of analytical strategies for BPA analysis and toxicological information. Globally reported air concentrations of BPA are included in this report, alongside reports on indoor air concentration of BPA and its analogues. As a special interest, levels of tetrabromobisphenol (TBBPA) are also mentioned. Overall, the highest outdoor air levels of BPA were reported in China (1.1 × 106 pg/m3) near a low-tech e-waste recycling site, while examination of indoor dust revealed the presence of bisphenol analogues used in "BPA-free" products, raising questions about their safety. Due to their low volatility, BPA and its analogues are mainly present in air associated with particles; this has important implications for their persistence in air and the role of particulate matter (especially microplastics) in their transport and deposition. Current understanding of BPA's particle association is limited, hence studying its potential for heterogeneous oxidative transformations is a pressing need required for accurate accounting of potential risk to human health and the environment.
Collapse
Affiliation(s)
- Tijana Vasiljevic
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| | - Tom Harner
- Air Quality Processes Research Section, Environment and Climate Change Canada, Toronto, Ontario M3H 5T4, Canada.
| |
Collapse
|
41
|
Liguori R, Rommel SH, Bengtsson-Palme J, Helmreich B, Wurzbacher C. Microbial retention and resistances in stormwater quality improvement devices treating road runoff. FEMS MICROBES 2021. [DOI: 10.1093/femsmc/xtab008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
ABSTRACT
Current knowledge about the microbial communities that occur in urban road runoff is scarce. Road runoff of trafficked roads can be heavily polluted and is treated by stormwater quality improvement devices (SQIDs). However, microbes may influence the treatment process of these devices or could lead to stress resistant opportunistic microbial strains. In this study, the microbial community in the influent, effluent and the filter materials used to remove dissolved heavy metals from two different SQIDs were analyzed to determine microbial load, retention, composition, and mobile resistance genes. Although the microbes were replaced by new taxa in the effluent, there was no major retention of microbial genera. Further, the bacterial abundance of the SQIDs effluent was relatively stable over time. The heavy metal content correlated with intl1 and with microbial genera. The filter media itself was enriched with Intl1 gene cassettes, carrying several heavy metal and multidrug resistance genes (e.g. czrA, czcA, silP, mexW and mexI), indicating that this is a hot spot for horizontal gene transfer. Overall, the results shed light on road runoff microbial communities, and pointed to distinct bacterial communities within the SQIDs, which subsequently influence the microbial community and the genes released with the treated water.
Collapse
Affiliation(s)
- Renato Liguori
- Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
- Department of Science and Technology, Parthenope University of Naples, Centro direzionale Isola –C4, 80143, Napoli, Italy
| | - Steffen H Rommel
- Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| | - Johan Bengtsson-Palme
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10A, SE-413 46, Gothenburg, Sweden
- Centre for Antibiotic Resistance Research (CARe) at University of Gothenburg, Guldhedsgatan 10, SE-413 46, Gothenburg, Sweden
| | - Brigitte Helmreich
- Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| | - Christian Wurzbacher
- Technical University of Munich, Chair of Urban Water Systems Engineering, Am Coulombwall 3, 85748 Garching, Germany
| |
Collapse
|
42
|
Salat APJ, Williams KL, Chiu S, Eickmeyer DC, Kimpe LE, Blais JM, Crump D. Extracts from Dated Lake Sediment Cores in the Athabasca Oil Sands Region Alter Ethoxyresorufin-O-deethylase Activity and Gene Expression in Avian Hepatocytes. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:1883-1893. [PMID: 33751657 DOI: 10.1002/etc.5040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/12/2021] [Accepted: 03/07/2021] [Indexed: 06/12/2023]
Abstract
Increases in oil sands mining operations in the Athabasca oil sands region have resulted in increased concentrations of polycyclic aromatic compounds (PACs) and heavy metals in aquatic systems located near surface mining operations. In the present study, sediment cores were collected from 3 lakes with varying proximity to surface mining operations to determine the differences in PAC concentrations. Sediment cores were separated into 2 sections-current mining (top; 2000-2017) and premining (bottom; pre-1945)-and extracts were prepared for in vitro screening using a well-established chicken embryonic hepatocyte (CEH) assay. Concentrations and composition of PACs varied between sites, with the highest ∑PACs in Saline Lake, 5 km from an active oil sands mine site. The proportion of alkylated PACs was greater than that of parent PACs in the top sediment sections compared with the bottom. Ethoxyresorufin-O-deethylase activity in CEH permitted the ranking of lake sites/core sections based on an aryl hydrocarbon receptor-mediated end point; mean median effect concentration values were lowest for the top cores from Saline Lake and another near-mining operations lake, referred to as WF1. A ToxChip polymerase chain reaction (PCR) array was used to evaluate gene expression changes across 43 target genes associated with numerous toxicological pathways following exposure to top and bottom sediment core extracts. The 2 study sites with the greatest ∑PAC concentrations (Saline Lake and WF1) had the highest gene expression alterations on the ToxChip PCR array (19 [top] and 17 [bottom]/43), compared with a reference site (13 [top] and 7 [bottom]/43). The avian in vitro bioassay was useful for identifying the toxicity of complex PAC extracts associated with variably contaminated sediment cores, supporting its potential use for hotspot identification and complex mixture screening. EnvironToxicol Chem 2021;40:1883-1893. © 2021 SETAC.
Collapse
Affiliation(s)
| | - Kim L Williams
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - Suzanne Chiu
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| | - David C Eickmeyer
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Linda E Kimpe
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Jules M Blais
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Doug Crump
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, Ontario, Canada
| |
Collapse
|
43
|
Järlskog I, Strömvall AM, Magnusson K, Galfi H, Björklund K, Polukarova M, Garção R, Markiewicz A, Aronsson M, Gustafsson M, Norin M, Blom L, Andersson-Sköld Y. Traffic-related microplastic particles, metals, and organic pollutants in an urban area under reconstruction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145503. [PMID: 33609838 DOI: 10.1016/j.scitotenv.2021.145503] [Citation(s) in RCA: 71] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/18/2021] [Accepted: 01/25/2021] [Indexed: 05/14/2023]
Abstract
In urban environments, particularly areas under reconstruction, metals, organic pollutants (OP), and microplastics (MP), are released in large amounts due to heavy traffic. Road runoff, a major transport route for urban pollutants, contributes significantly to a deteriorated water quality in receiving waters. This study was conducted in Gothenburg, Sweden, and is unique because it simultaneously investigates the occurrence of OP, metals, and MP on roads and in stormwater from an urban area under reconstruction. Correlations between the various pollutants were also explored. The study was carried out by collecting washwater and sweepsand generated from street sweeping, road surface sampling, and flow-proportional stormwater sampling on several occasions. The liquid and solid samples were analyzed for metals, polycyclic aromatic hydrocarbons (PAH), oxy-PAH, aliphatics, aromatics, phthalates, and MP. The occurrence of OP was also analyzed with a non-target screening method of selected samples. Microplastics, i.e. plastic fragments/fibers, paint fragments, tire wear particles (TWP) and bitumen, were analyzed with a method based on density separation with sodium iodide and identification with a stereo microscope, melt-tests, and tactile identification. MP concentrations amounted to 1500 particles/L in stormwater, 51,000 particles/L in washwater, and 2.6 × 106 particles/kg dw in sweepsand. In stormwater, washwater and sweepsand, MP ≥20 μm were found to be dominated by TWP (38%, 83% and 78%, respectively). The results confirm traffic as an important source to MP, OP, and metal emissions. Concentrations exceeding water and sediment quality guidelines for metals (e.g. Cu and Zn), PAH, phthalates, and aliphatic hydrocarbons in the C16-C35 fraction were found in most samples. The results show that the street sweeper collects large amounts of polluted materials and thereby prevents further spread of the pollutants to the receiving stormwater.
Collapse
Affiliation(s)
- Ida Järlskog
- VTI, Swedish National Road and Transport Research Institute, SE-581 95 Linköping, Sweden; Geology and Geotechnics, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden.
| | - Ann-Margret Strömvall
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Kerstin Magnusson
- IVL, Swedish Environmental Research Institute, Kristineberg, SE-451 78 Fiskebäckskil, Sweden
| | - Helén Galfi
- Sustainable Waste and Water, City of Gothenburg, SE-424 23 Gothenburg, Sweden
| | - Karin Björklund
- Kerr Wood Leidal Associates Ltd., 200 - 4185A Still Creek Drive Burnaby, British Columbia V5C 6G9, Canada
| | - Maria Polukarova
- VTI, Swedish National Road and Transport Research Institute, SE-581 95 Linköping, Sweden
| | - Rita Garção
- Engineering and Sustainability, NCC Infrastructure, NCC, SE-405 14 Gothenburg, Sweden
| | - Anna Markiewicz
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| | - Maria Aronsson
- Urban Transport Administration, City of Gothenburg, SE-403 16 Gothenburg, Sweden
| | - Mats Gustafsson
- VTI, Swedish National Road and Transport Research Institute, SE-581 95 Linköping, Sweden
| | - Malin Norin
- Engineering and Sustainability, NCC Infrastructure, NCC, SE-405 14 Gothenburg, Sweden
| | - Lena Blom
- Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden; Sustainable Waste and Water, City of Gothenburg, SE-424 23 Gothenburg, Sweden
| | - Yvonne Andersson-Sköld
- VTI, Swedish National Road and Transport Research Institute, SE-581 95 Linköping, Sweden; Geology and Geotechnics, Department of Architecture and Civil Engineering, Chalmers University of Technology, SE-412 96 Gothenburg, Sweden
| |
Collapse
|
44
|
Fronczyk J, Markowska-Lech K. Treatment efficiency of synthetic urban runoff by low-cost mineral materials under various flow conditions and in the presence of salt: Possibilities and limitations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 770:145199. [PMID: 33736397 DOI: 10.1016/j.scitotenv.2021.145199] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/10/2021] [Accepted: 01/11/2021] [Indexed: 06/12/2023]
Abstract
Urban runoff belongs to important carriers of pollutants that during infiltration can accumulate in the soil/water environment. One of the protection solutions may be the enhancement of infiltration systems by horizontal permeable treatment zones. The article presents the results of column tests carried out in order to determine (1) the influence of the hydraulic loading rate on the dynamic capacities of selected reactive materials: low-cost mineral materials (zeolite, limestone sand, halloysite) and reference material (activated carbon), and control soils (topsoil and Vistula sand) against Zn, NH4+ and PO43-, and (2) remobilization of contaminants under the influence of salt (NaCl 5 g/L) present in synthetic runoff water. The research has revealed that the most useful for the removal of zinc ions was limestone sand (>4.36 mg/g), of orthophosphates - halloysite (2.29 mg/g on the average), and of ammonium ions - zeolite (2.75 mg/g on the average). The control soils were characterized by low ability to immobilize the contaminants tested. In addition, increase in the hydraulic loading rate of synthetic runoff water reduced the dynamic capacity of materials to a variable degree depending on the material applied and the contamination removed (by 24% for limestone sand-PO43- system to 95% for activated carbon-NH4+ system). The presence of NaCl caused significant leaching of ammonium ions from zeolite and halloysite filter beds (up to 99.3%), and phosphates from the activated carbon filter bed (up to 41.3%). All tracer contaminants tested leached intensively from the Vistula sand filter bed, while only ammonium ions leached from the topsoil filter bed. It seems justified to support the performance of infiltration systems by layers of: limestone sand, to enhance the processes of heavy metal precipitation and ammonium ion volatilization by increasing the pH, and halloysite for the sorption of phosphates.
Collapse
Affiliation(s)
- J Fronczyk
- Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw 02-776, Poland.
| | - K Markowska-Lech
- Institute of Civil Engineering, Warsaw University of Life Sciences-SGGW, Nowoursynowska 159, Warsaw 02-776, Poland
| |
Collapse
|
45
|
Rogula-Kozłowska W, Rybak J, Wróbel M, Bihałowicz JS, Krasuski A, Majder-Łopatka M. Site environment type - The main factor of urban road dust toxicity? ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 218:112290. [PMID: 33962272 DOI: 10.1016/j.ecoenv.2021.112290] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 04/21/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The main objective of the study was to determine the effects of the water extracts of urban road dust (URD) samples on the growth inhibition and mortality rate of Heterocypris incongruens in various site environment type. We collected 24 samples of the road dust close to highways, main roads, crossroads as well as at other places i.e. residential area, and suburbs. We determined the selected metals (Al, As, Ba, Cd, Co, Cr, Cu, Ga, Mg, Mn, Mo, Ni, Pb, Rb, Sr, Ti, Tl, V and Zn) content of the water extracts of these samples as well as we tested the toxicity of the water extracts of URD samples using a commercial test Ostracodtoxkit F. We observed the lowest values of the growth inhibition of H. incongruens for residential areas and suburbs (<50%). The highest growth inhibition we found for water extracts of URD samples collected at the main roads in the Katowice urban area and crossroads in the urban areas. Although the mortality and growth inhibition of H. incongruens were related to the road traffic emissions it was impossible to clearly relate this finding with the urban site category.
Collapse
Affiliation(s)
- Wioletta Rogula-Kozłowska
- Institute of Safety Engineering, The Main School of Fire Service, 52/54 Słowackiego St., 01-629 Warsaw, Poland
| | - Justyna Rybak
- Wrocław University of Science and Technology, Faculty of Environmental Engineering, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland
| | - Magdalena Wróbel
- Wrocław University of Science and Technology, Faculty of Environmental Engineering, 27 Wybrzeże Wyspiańskiego Str., 50-370 Wrocław, Poland
| | - Jan Stefan Bihałowicz
- Institute of Safety Engineering, The Main School of Fire Service, 52/54 Słowackiego St., 01-629 Warsaw, Poland.
| | - Adam Krasuski
- Institute of Safety Engineering, The Main School of Fire Service, 52/54 Słowackiego St., 01-629 Warsaw, Poland
| | - Małgorzata Majder-Łopatka
- Institute of Safety Engineering, The Main School of Fire Service, 52/54 Słowackiego St., 01-629 Warsaw, Poland
| |
Collapse
|
46
|
Anh HQ, Nguyen HMN, Do TQ, Tran KQ, Minh TB, Tran TM. Air pollution caused by phthalates and cyclic siloxanes in Hanoi, Vietnam: Levels, distribution characteristics, and implications for inhalation exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:143380. [PMID: 33183807 DOI: 10.1016/j.scitotenv.2020.143380] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 10/20/2020] [Accepted: 10/21/2020] [Indexed: 06/11/2023]
Abstract
Contamination status and distribution characteristics of ten phthalic acid esters (PAEs) and three cyclic volatile methyl siloxanes (CSs) were determined in the air (gas and particle) samples collected from indoor and outdoor spaces of several chemistry laboratories, offices, and homes from urban area of Hanoi, the capital city of Vietnam. Air concentrations of Σ10PAEs (median 688; range 142-2390 ng m-3) and Σ3CSs (171; not detected-1100 ng m-3) in the indoor air samples were significantly higher than those measured in the outdoor ones (Σ10PAEs: 161; 34.1-515 ng m-3 and Σ3CSs: 43.2; not detected-258 ng m-3), partly suggesting the predominance of indoor emission sources of these substances. There were significant positive correlations in total air concentrations of phthalates and siloxanes between the indoor and outdoor air samples. The most predominant phthalates were diethyl-, di-n-butyl-, diisobutyl-, and di(2-ethylhexyl) phthalate. For siloxanes, D5 and D6 were more abundant than D4 in most samples. Except for di(2-ethylhexyl)- and di-n-octyl phthalate in some locations, almost all the compounds were likely associated with gas phase than particle phase. Daily intake doses of airborne phthalates and siloxanes, and non-cancer and cancer risks of selected phthalates were estimated for different exposure groups such as adults, children, and university subjects (e.g., laboratory staff and students), indicating relatively low levels of risk.
Collapse
Affiliation(s)
- Hoang Quoc Anh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam; Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Ha My Nu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam; Ha Tinh University, Cam Vinh commune, Cam Xuyen district, Ha Tinh 45000, Viet Nam
| | - Trung Quang Do
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Khiem Quang Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 10000, Viet Nam.
| |
Collapse
|
47
|
Flanagan K, Blecken GT, Österlund H, Nordqvist K, Viklander M. Contamination of Urban Stormwater Pond Sediments: A Study of 259 Legacy and Contemporary Organic Substances. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:3009-3020. [PMID: 33606502 PMCID: PMC8026099 DOI: 10.1021/acs.est.0c07782] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 01/25/2021] [Accepted: 02/08/2021] [Indexed: 05/20/2023]
Abstract
Stormwater ponds improve water quality by facilitating the sedimentation of particles and particulate contaminants from urban runoff. Over time, this function entails the accumulation of contaminated sediments, which must be removed periodically to maintain a pond's hydraulic and treatment capacity. In this study, sediments from 17 stormwater sedimentation facilities from four Swedish municipalities were analyzed for 259 organic substances likely to be found in the urban environment. A total of 92 substances were detected in at least one sample, while as many as 52 substances were detected in a single sample. A typical profile of urban contamination was identified, including polychlorinated biphenyls, polycyclic aromatic hydrocarbons, organotins, aliphatic hydrocarbons, phthalates, aldehydes, polybrominated diphenyl ethers, perfluorinated substances, and alkylphenols. However, levels of contamination varied greatly between ponds, influenced heavily by the dilution of urban pollutants and wear particles from other sources of particles such as eroded soil, sand, or natural organic matter. For 22 of 32 samples, the observed concentrations of at least one organic substance exceeded the regulatory threshold values derived from toxicity data for both sediment and soil.
Collapse
|
48
|
Salat APJ, Eickmeyer DC, Kimpe LE, Hall RI, Wolfe BB, Mundy LJ, Trudeau VL, Blais JM. Integrated analysis of petroleum biomarkers and polycyclic aromatic compounds in lake sediment cores from an oil sands region. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 270:116060. [PMID: 33341299 DOI: 10.1016/j.envpol.2020.116060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 11/05/2020] [Accepted: 11/09/2020] [Indexed: 06/12/2023]
Abstract
We examined polycyclic aromatic compounds (PACs) and petroleum biomarkers (steranes, hopanes, and terpanes) in radiometrically-dated lake sediment cores from the Athabasca oil sands region (AOSR) and the Peace-Athabasca Delta (PAD) region in Alberta (Canada) to determine whether contributions from petroleum hydrocarbons have changed over time. Two floodplain lakes in the PAD (PAD 30, PAD 31) recorded increased flux of alkylated PACs and increased petrogenic (petroleum-derived) hydrocarbons after ∼1980, coincident with a decline of sediment organic carbon content and a rise of bulk sedimentation rate, likely due to increased Athabasca River flow. A large expansion of upstream oilsands mining, upgrading, and refining may also have contributed to the observed shift to more petrogenic hydrocarbons to sediments since the 1980s. Alkylated PAC flux increased in the floodplain lake analyzed within the AOSR (Saline Lake) since the 1970s-1980s, coincident with a sharp rise in sediment organic carbon content and increased contributions of petrogenic hydrocarbons. These changes identify increased supply of petrogenic PACs occurred as Athabasca River floodwaters waned, and may implicate aerial contributions of petrogenic hydrocarbons from oilsands activity. PACs and petroleum biomarkers (steranes, hopanes, and terpanes) in sediment cores from Saline Lake, PAD 30 and PAD 31 revealed a predominance of petrogenic hydrocarbons in these lakes. In contrast, we recorded minimal petrogenic hydrocarbons in the reference lakes outside the surface minable area of the AOSR and PAD (Mariana Lake and BM11), though we noted slight increases in petrogenic contributions to modern (2010-2016) sediments. We show how a combined analysis of PACs and petroleum biomarkers in sediments is useful to quantify petrogenic contributions to lakes with added confidence and highlight the potential for petroleum biomarkers in lake sediment cores as a novel and effective method to track petroleum hydrocarbons in lake sediment.
Collapse
Affiliation(s)
| | | | | | - Roland I Hall
- Department of Biology, University of Waterloo, Waterloo, ON, Canada
| | - Brent B Wolfe
- Department of Geography and Environmental Studies, Wilfrid Laurier University, Waterloo, Ontario, Canada
| | - Lukas J Mundy
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Ottawa, ON, Canada
| | | | | |
Collapse
|
49
|
Grung M, Meland S, Ruus A, Ranneklev S, Fjeld E, Kringstad A, Rundberget JT, Dela Cruz M, Christensen JH. Occurrence and trophic transport of organic compounds in sedimentation ponds for road runoff. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 751:141808. [PMID: 32882565 DOI: 10.1016/j.scitotenv.2020.141808] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 08/11/2020] [Accepted: 08/17/2020] [Indexed: 06/11/2023]
Abstract
Sedimentation ponds have been shown to accumulate several groups of contaminants, most importantly polycyclic aromatic compounds (PACs) and metals. But also, other urban organic pollutants have shown to be present, including polybrominated diphenyl ethers (PBDEs), organophosphate compounds (OPCs) and benzothiazoles (BTs). This investigation aimed at determining the occurrence of these four groups of contaminants in sedimentation ponds and determine their transport from water/sediment to organisms. PACs, including alkylated PACs, PBDEs; OPCs and BTs were determined in water, sediment, plants, dragonfly larvae and fish from two sedimentation ponds and one reference site. Fish were analysed for PAC metabolites. Overall, higher concentrations of all four pollutant groups were detected in water and sediment from sedimentation ponds compared to two natural lakes in rural environments (reference sites). The concentration difference was highest in sediments, and >20 higher concentration was measured in sedimentation ponds (3.6-4.4 ng/g ww) compared to reference (0.2 ng/g ww) for sum BDE6. For PACs and PBDEs a clear transport from water/sediment to organisms were observed. Fish were the highest trophic level organism (3.5-5) in our study, and all four pollutant groups were detected in fish. For PBDEs a trophic biomagnification (TMF) was found both in sedimentation ponds and reference, but higher concentrations in all matrices were measured in sedimentation ponds. TMF was not calculated for PACs since they are metabolised by vertebrates, but a transfer from water/sediment to organisms was seen. For BTs and OPCs, no consistent transfer to plants and dragonfly larvae could be seen. One OPC and two BTs were detected in fish, but only in fish from sedimentation ponds. It is therefore concluded that sedimentation ponds are hotspots for urban and traffic related contaminants, of which especially PACs and PBDEs are transferred to organisms living there.
Collapse
Affiliation(s)
- Merete Grung
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Sondre Meland
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Anders Ruus
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Sissel Ranneklev
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Eirik Fjeld
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Alfhild Kringstad
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Jan Thomas Rundberget
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, NO-0349 Oslo, Norway.
| | - Majbrit Dela Cruz
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| | - Jan H Christensen
- Analytical Chemistry Group, Department of Plant and Environmental Science, Faculty of Science, University of Copenhagen, Thorvaldsensvej 40, 1871 Frederiksberg C, Denmark.
| |
Collapse
|
50
|
Markiewicz A, Strömvall AM, Björklund K. Alternative sorption filter materials effectively remove non-particulate organic pollutants from stormwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 730:139059. [PMID: 32416506 DOI: 10.1016/j.scitotenv.2020.139059] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/21/2020] [Accepted: 04/26/2020] [Indexed: 06/11/2023]
Abstract
Urban runoff contains a mixture of both particulate and non-particulate organic pollutants (OPs). Hydrophobic OPs such as higher petroleum hydrocarbons, phthalates, and polycyclic organic hydrocarbons (PAHs) are not exclusively bound to particles, but also present in runoff in colloidal and truly dissolved forms. These hydrophobic compounds can also form nano- and microsized emulsions that may carry pollutants in stormwater. Hence, it is of great importance to develop treatment technologies such as sorption filters that can remove non-particulate OPs from contaminated stormwater. A pilot plant using column bed-filters of sand as a pre-filter, in combination with granulated activated carbon, Sphagnum peat or Pinus sylvestris bark, was used to investigate the removal of non-particulate OPs from urban stormwater. Samples from the filter effluents were collected weekly; during or after rain events; and during stress tests when incoming water was spiked with contaminated sediment and petrol or diesel. All sorption filters showed efficient reduction of aliphatic diesel hydrocarbons C16-C35, benzene, and the PAHs phenanthrene, fluoranthene, and pyrene during most of the operation time, which was 18 months. During the stress test events, all sorption filters showed 100% reduction of PAH-16, petrol and diesel aliphatics C5-C35. All sorption filters released DOC and nanoparticles, which may explain some of the transportation of OPs through the filter beds. The recommendation is to use a combination of sand pre-filtration and all the studied sorption materials in stormwater filters in series, to achieve effective removal of different types of OPs. It is also important to improve the hydraulic conditions to obtain sufficient water flows through the filters.
Collapse
Affiliation(s)
- Anna Markiewicz
- Department of Architecture and Civil Engineering, Water Environment Technology, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| | - Ann-Margret Strömvall
- Department of Architecture and Civil Engineering, Water Environment Technology, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| | - Karin Björklund
- Department of Architecture and Civil Engineering, Water Environment Technology, Chalmers University of Technology, 412 96 Gothenburg, Sweden; Kerr Wood Leidal Associates Ltd., 200 - 4185A Still Creek Drive Burnaby, British Columbia V5C 6G9, Canada.
| |
Collapse
|