1
|
Abdulla HA, Al-Ghouti MA, Soubra L. Arsenic contamination in rice: a DPSIR analysis with a focus on top rice producers. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 978:179425. [PMID: 40245509 DOI: 10.1016/j.scitotenv.2025.179425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 04/19/2025]
Abstract
Arsenic contamination in rice poses significant risks to public health and food security. While previous reviews have examined specific aspects of this issue, they often lack a comprehensive analysis linking human activities to arsenic contamination and its broader consequences. This review applies the DPSIR (Driving Forces-Pressures-States-Impacts-Responses) framework to elucidate the cause-and-effect relationships of arsenic contamination in rice, with a focus on top rice producers. It also synthesizes current knowledge on the environmental sources, fate, and transport of arsenic across different environmental compartments, illustrating its movement from emission sources to accumulation in rice while highlighting the complex interplay between environmental conditions, rice varieties, and contamination levels. The DPSIR analysis revealed that socioeconomic factors, including population growth and industrialization, were the primary driving forces behind arsenic contamination in rice. These factors increased pressures such as reliance on arsenic-contaminated irrigation water, historical pesticide use, and industrial pollution, which contributed to arsenic accumulation in rice-growing environments. Consequently, the soil, water, and rice were contaminated with arsenic at various levels, posing serious risks to human health. The impacts extend beyond health concerns to disruptions in global rice trade and threats to food security. In response, various mitigation strategies have been implemented, including regulation, sustainable agricultural practices, water and soil remediation, and public guidance. However, challenges persist, requiring an integrated approach that incorporates scientific advancements, policy interventions, and improved agricultural techniques. Key research priorities include developing arsenic-resistant rice varieties, assessing health risks for vulnerable populations, quantifying economic losses, and determining arsenic-related foodborne diseases burden.
Collapse
Affiliation(s)
- Hasa Ali Abdulla
- Biological and environmental sciences department, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Mohammad A Al-Ghouti
- Biological and environmental sciences department, College of Arts and Sciences, Qatar University, Doha, Qatar
| | - Lama Soubra
- Biological and environmental sciences department, College of Arts and Sciences, Qatar University, Doha, Qatar.
| |
Collapse
|
2
|
Cheraghi M, Shahbazi K, Fathi-Gerdelidani A, Marzi M, Hosseini B, Srivastava S. Geochemistry of arsenic in soils with a focus on calcareous soils: control strategies and perspectives. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:12191-12220. [PMID: 40332709 DOI: 10.1007/s11356-025-36450-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 04/21/2025] [Indexed: 05/08/2025]
Abstract
Arsenic (As) contamination has become a significant environmental challenge due to the global expansion of industrial, agricultural, and mining activities, which contribute to the contamination of water, air, soils, and biota with As and other metals and metalloids. This review elucidates the geochemical behavior of As in soils, focusing on the factors influencing its dynamics and the effectiveness of various remediation techniques, particularly in calcareous soils. Calcareous soils, characterized by their unique properties, exhibit intricate interactions with As, necessitating a deeper understanding of the mechanisms driving these processes. Compared to other soil types, the bioavailability of As in calcareous soils is generally lower, largely due to their elevated pH and the presence of calcium carbonate (CaCO3). These factors contribute to the enhanced adsorption of As by soil organic and mineral components, forming less soluble As-CaCO3 complexes and decreasing As solubility. Despite this, research on As geochemistry in calcareous soils and the development of effective removal techniques still needs to be completed, emphasizing the need for further study. Additionally, this review explores future research directions in the context of As contamination and remediation, integrating case studies and advanced technologies to highlight innovative approaches for mitigating As contamination in calcareous soils.
Collapse
Affiliation(s)
- Meysam Cheraghi
- Agricultural Research, Education and Extension Organization (AREEO), Soil and Water Research Institute (SWRI), Karaj, Iran.
- Department of Soil Science, Faculty of Agriculture, University of Tehran, Tehran, Iran.
| | - Karim Shahbazi
- Agricultural Research, Education and Extension Organization (AREEO), Soil and Water Research Institute (SWRI), Karaj, Iran
| | | | - Mostafa Marzi
- Agricultural Research, Education and Extension Organization (AREEO), Soil and Water Research Institute (SWRI), Karaj, Iran
| | - Bahareh Hosseini
- Soil Biophysics and Environmental Systems, Technical University of Munich, Freising, Munich, 85354, Germany
| | - Sudhakar Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
3
|
Bhuiyan T, Akter F, Jolly YN, Kabir MJ, Siddique MAM. Spatial Distribution and Potential Health Risks of Arsenic (As) and Associated Metals (Fe and Mn) in the Coastal Accreted Land of Meghna River Estuary and Their Implication on the Agricultural Aspects. SCIENTIFICA 2025; 2025:8891363. [PMID: 40225280 PMCID: PMC11986922 DOI: 10.1155/sci5/8891363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/21/2025] [Indexed: 04/15/2025]
Abstract
Arsenic (As),iron (Fe), and manganese (Mn) pollution in the coastal areas of Bangladesh are severe problems.Irrigation by shallow wells in the agricultural lands is the primary source of these metals. Being a part of the Ganges, Brahmaputra, and Meghna (GBM) Delta, the coastal accreted land of the Meghna River estuary has experienced a series of erosion and accretion phenomena and deposited a vast amount of sediments along with potentially toxic elements. This study investigated the spatial distribution, source, fate, and potential environmental and human health risks of As, Fe, and Mn from 25 sites across the coastal accreted land in the lower Meghna River estuary, Bay of Bengal. The mean concentration of As, Fe, and Mn in the surface soil samples ranged from 0.1-5.16, 12,000-23,810, and 50.6-1025.12 mg/kg, respectively, where high concentrations of metals were found in the southern belt of the estuary. A high As concentration (> 2 mg/kg) was observed at stations 3-4, 15, and 17. Igeo values of As, Fe, and Mn were estimated as -1.05, -0.50, and -0.55, respectively. The Igeo values analyzed in the sediments were below zero for all the metals, suggesting no contamination from these metals. The pollution load index (PLI) for As, Fe, and Mn was lower than the contamination level, indicating that contamination levels remain below harmful thresholds but require regular monitoring. Potential ecological risk index (PERI) values (1.32-10.75) showed low ecological risks in the studied area. Moreover, "no risk" to "low level" of carcinogenic risk was identified. According to the threshold values, except in the southern belt (stations 3-4, 15, and 17), most of the accreted agricultural land can be considered adequately safe for food production. This study suggests that plant analyses be incorporated into future research; however, it would be more impactful to emphasize bioavailability studies and their relevance to agricultural safety.
Collapse
Affiliation(s)
- Tabarok Bhuiyan
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Fahmida Akter
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
| | - Yeasmin Nahar Jolly
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Dhaka 1000, Bangladesh
| | - Md. Jamiul Kabir
- Atmospheric and Environmental Chemistry Laboratory, Chemistry Division, Atomic Energy Centre, Dhaka 1000, Bangladesh
| | - Mohammad Abdul Momin Siddique
- Department of Oceanography, Noakhali Science and Technology University, Noakhali 3814, Bangladesh
- Faculty of Fisheries and Protection of Waters, South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Research Institute of Fish Culture and Hydrobiology, University of South Bohemia in Ceske Budejovice, Zatisi 728/II, Vodnany 389 25, Czech Republic
| |
Collapse
|
4
|
Patel V, Supriya G NR. Bioremediation potential of Pseudomonas aeruginosa to counteract Arsenite-induced phytotoxicity in Solanum lycopersicum cultivated within a contaminated agroecosystem. Lett Appl Microbiol 2025; 78:ovaf027. [PMID: 39999859 DOI: 10.1093/lambio/ovaf027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 01/11/2025] [Accepted: 02/24/2025] [Indexed: 02/27/2025]
Abstract
Trivalent arsenic (AsIII) is the most toxic form of arsenic, accumulates in plant systems through aquaporins, and inhibiting plant growth. This study focuses on mitigating the bioavailability of arsenite (AsIII) in agricultural soils through biological approaches. A potential AsIII tolerant bacterium Pseudomonas aeruginosa VS3 was isolated from contaminated soil. Subsequent analysis revealed that this strain can produce exopolysaccharides (EPS) and biofilms. Additionally, the strain exhibited production of plant growth promoting traits, incuding Indole-3-acetic acid (IAA), gibberellins, and silicon (Si) solubilisation. Biotransformation assay demonstrated that strain can oxidize AsIII to the less toxic arsenate (AsV) with conversion efficiency of 51%. Findings from the field trial proven that P. aeruginosa significantly reduced AsIII toxicity in Solanum lycopersicum and boosted plant growth under AsIII stress conditions. Additionally, inoculation with P. aeruginosa enhanced the activities of antioxidant enzymes (40% increase in peroxidase and a 17% increase in phenylalanine ammonia-lyase) compared to untreated controls under AsIII stress. The bacterial treatment reduced arsenic accumulation in root tissues, demonstrating P. aeruginosa VS3's potential as a bioremediation agent to alleviate arsenite stress and enhance plant growth.
Collapse
Affiliation(s)
- Vivek Patel
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Surat, Gujarat 394 350, India
| | - Naga Rathna Supriya G
- C. G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Surat, Gujarat 394 350, India
| |
Collapse
|
5
|
Wang M, Liu Q. Interactions between nanobiochar and arsenic: Effects of biochar aging methods on arsenic binding capacity and mechanisms. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 363:125105. [PMID: 39393757 DOI: 10.1016/j.envpol.2024.125105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/01/2024] [Accepted: 10/09/2024] [Indexed: 10/13/2024]
Abstract
Nano-biochar (nanoBC), produced from biochar aging, exhibits significant molecular heterogeneity that may affect the fate and toxicity of co-occurring pollutants. However, the interaction between nanoBC and arsenic (As) remains unclear. Herein, we simulated biochar aging through water erosion, photoaging, and thermal chemical decomposition to generate three types of nanoBC (nUBC, nPBC, and nHBC). We then investigated their distinct binding affinities and interaction mechanisms with arsenite (AsIII) and arsenate (AsV). Complementary analysis using optical spectrophotometer and high-resolution mass spectrometry revealed significant differences in properties and chemical compositions among the three nanoBCs at a size of 100 nm. Specifically, nHBC had higher yield, nPBC had higher aromaticity, and nUBC had more intricate molecular compositions and larger molecular weights. Binding experiments showed that nHBC and nUBC exhibited the highest conditional distribution coefficient (KD) for AsIII and AsV, respectively. In nHBC, a higher proportion of humic-like fluorescent component C3 enhanced its affinity for AsIII, attributed to lignin-like molecules with CHONS formulas where thiol acted as active binding sites. In contrast, the robust AsV binding capacity of nUBC stemmed from its richness in humic-like fluorescent component C1 and tryptophan-like fluorescent component C2. This is facilitated by lipid-like molecules and CHO formulas in C1 and aliphatic/peptide-like molecules and CHON formulas in C2, which provided oxygenic and nitrogen-containing groups for binding. All nanoBC had a significantly higher binding affinity for As than bulk BC. These findings provide a deeper understanding of As-nanoBC binding mechanisms at the molecular level, facilitating more accurate prediction of As fate in biochar-amended soil and associated ecosystem risks.
Collapse
Affiliation(s)
- Mao Wang
- College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Qingqing Liu
- College of Resources and Environment, Southwest University, Chongqing, 400716, China; Key Laboratory of Biomedical Analytics (Southwest University), Chongqing Science and Technology Bureau, College of Pharmaceutical Sciences, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
6
|
Smalling KL, Romanok KM, Bradley PM, Hladik ML, Gray JL, Kanagy LK, McCleskey RB, Stavreva DA, Alexander-Ozinskas AK, Alonso J, Avila W, Breitmeyer SE, Bustillo R, Gordon SE, Hager GL, Jones RR, Kolpin DW, Newton S, Reynolds P, Sloop J, Ventura A, Von Behren J, Ward MH, Solomon GM. Mixed contaminant exposure in tapwater and the potential implications for human-health in disadvantaged communities in California. WATER RESEARCH 2024; 267:122485. [PMID: 39368187 DOI: 10.1016/j.watres.2024.122485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/22/2024] [Accepted: 09/19/2024] [Indexed: 10/07/2024]
Abstract
Water is an increasingly precious resource in California as years of drought, climate change, pollution, as well as an expanding population have all stressed the state's drinking water supplies. Currently, there are increasing concerns about whether regulated and unregulated contaminants in drinking water are linked to a variety of human-health outcomes particularly in socially disadvantaged communities with a history of health risks. To begin to address this data gap by broadly assessing contaminant mixture exposures, the current study was designed to collect tapwater samples from communities in Gold Country, the San Francisco Bay Area, two regions of the Central Valley (Merced/Fresno and Kern counties), and southeast Los Angeles for 251 organic chemicals and 32 inorganic constituents. Sampling prioritized low-income areas with suspected water quality challenges and elevated breast cancer rates. Results indicated that mixtures of regulated and unregulated contaminants were observed frequently in tapwater throughout the areas studied and the types and concentrations of detected contaminants varied by region, drinking-water source, and size of the public water system. Multiple exceedances of enforceable maximum contaminant level(s) (MCL), non-enforceable MCL goal(s) (MCLG), and other health advisories combined with frequent exceedances of benchmark-based hazard indices were also observed in samples collected in all five of the study regions. Given the current focus on improving water quality in socially disadvantaged communities, our study highlights the importance of assessing mixed-contaminant exposures in drinking water at the point of consumption to adequately address human-health concerns (e.g., breast cancer risk). Data from this pilot study provide a foundation for future studies across a greater number of communities in California to assess potential linkages between breast cancer rates and tapwater contaminants.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Diana A Stavreva
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Jesus Alonso
- Clean Water Action/Clean Water Fund, Oakland, CA, USA
| | - Wendy Avila
- Communities for a Better Environment, Los Angeles, CA, USA
| | | | | | | | - Gordon L Hager
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Rena R Jones
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | | | - Seth Newton
- Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Peggy Reynolds
- University of California San Francisco, San Francisco, CA, USA
| | - John Sloop
- ORISE, Office of Research & Development, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | | | | | - Mary H Ward
- National Cancer Institute, National Institutes of Health, Rockville, MD, USA
| | - Gina M Solomon
- University of California San Francisco, San Francisco, CA, USA
| |
Collapse
|
7
|
Ren X, Wang E, Millán F, Prato JG, Senilă M, Márquez Chacón AE, González LC, Santillán Lima GP, Silva Padilla C. The Adsorption of Arsenate and Arsenite Ions on Oxidic Substrates Prepared with a Variable-Charge Lithological Material. MATERIALS (BASEL, SWITZERLAND) 2024; 17:5544. [PMID: 39597369 PMCID: PMC11595821 DOI: 10.3390/ma17225544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 11/29/2024]
Abstract
The adsorption of As(V) and As(III) (0.01-1 mM) on a calcined oxidic lithologic material substrate with pH-dependent surface variable charges, chemically modifiable, was investigated. The substrate was prepared via thermal treatment using a natural lithologic material rich in amphoteric oxides of Fe, Al, Mn and Ti. The calcined substrate was treated with acid media (HCl 0.1) to homogenize the positive charge density on the oxide surface via oxide protonation so that anion adsorption would be favored. A batch experiment was performed on the acid-treated substrate (activated) and non-activated substrate. L-type isotherms were obtained, which fit the Freundlich model. Isotherm constants showed that there was a greater affinity between the activated substrate and As(V) (K = 10.58) compared to As(III) (K = 5.45). The adsorption capacity of the activated substrate was two times greater than that of the non-activated substrate, As(V) (Kact = 10.58 and Knoact = 5.45) vs. As(III) (Kact = 5.45 y Knoact = 2.44), which was due to the greater positive charge density on the activated surface, created by the protonation of the surface oxides. Protons were liberated during the adsorption reaction (As(V): 2.17 × 10-3 and As(III): 0.96 × 10-3 mmol/mL). The forms H2AsO4- and H3AsO3 deprotonated when adsorbed by the surface groups M-OH2+ (M: Fe, Al). Kinetic data showed a second-order process for As(V) adsorption and a first-order process for As(III) adsorption. The adsorption rate on the activated substrate was two times greater compared with the non-activated substrate: As(V) (kact = 3.78 × 10-5 L/mg·min and knoact = 2.16 × 10-5 L/mg·min) vs. As(III) (kact = 0.055 h-1 and knoact = 0.027 h-1). The tested substrate is potentially useful as a low-cost natural material for arsenic removal from contaminated water.
Collapse
Affiliation(s)
- Xinyao Ren
- Department of Chemistry, Saint John’s University, Jamaica, NY 11439, USA; (X.R.); (E.W.)
| | - Enju Wang
- Department of Chemistry, Saint John’s University, Jamaica, NY 11439, USA; (X.R.); (E.W.)
| | - Fernando Millán
- Department of Chemistry, Saint John’s University, Jamaica, NY 11439, USA; (X.R.); (E.W.)
- Ingeniería Química, Instituto Universitario Politécnico “Santiago Mariño”, Mérida 5101, Venezuela
| | - José G. Prato
- Grupo de Investigación Estudios Interdisciplinarios, Facultad de Ingeniería, Universidad Nacional de Chimborazo, Av. Antonio José de Sucre km 1½ vía Guano, Riobamba 060103, Ecuador; (G.P.S.L.); (C.S.P.)
- Ingeniería Química, Facultad de Ingeniería, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Marin Senilă
- Research Institute for Analytical Instrumentation, INCDO INOE 2000, Donath 67, RO-400293 Cluj-Napoca, Romania;
| | | | - Luisa Carolina González
- Grupo de Investigación “Análisis de Muestras Biológicas y Forenses”, Laboratorio Clínico, Facultad de Ciencias de la Salud, Universidad Nacional de Chimborazo, Av. Antonio José de Sucre km 1½ vía Guano, Riobamba 060103, Ecuador;
- Laboratorio de Investigaciones Parasitológicas “Jesús Moreno Rangel”, Cátedra de Parasitología, Departamento de Microbiología y Parasitología, Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida 5101, Venezuela
| | - Guido P. Santillán Lima
- Grupo de Investigación Estudios Interdisciplinarios, Facultad de Ingeniería, Universidad Nacional de Chimborazo, Av. Antonio José de Sucre km 1½ vía Guano, Riobamba 060103, Ecuador; (G.P.S.L.); (C.S.P.)
| | - Carla Silva Padilla
- Grupo de Investigación Estudios Interdisciplinarios, Facultad de Ingeniería, Universidad Nacional de Chimborazo, Av. Antonio José de Sucre km 1½ vía Guano, Riobamba 060103, Ecuador; (G.P.S.L.); (C.S.P.)
| |
Collapse
|
8
|
Srivastava R, Singh Y, White JC, Dhankher OP. Mitigating toxic metals contamination in foods: Bridging knowledge gaps for addressing food safety. Trends Food Sci Technol 2024; 153:104725. [PMID: 39665028 PMCID: PMC11634057 DOI: 10.1016/j.tifs.2024.104725] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Background Reducing exposure to harmful substances in food is highly desired, especially for infants, young children, and pregnant women. A workshop focused on understanding and reducing toxic metal contamination in food was conducted involving leading scientists, educators, practitioners, and key stakeholders in conjunction with the USDA National Institute of Food and Agriculture. Scope and approach The goal of this review and the workshop was to advance the current knowledge of major toxic metals concerning food safety, viz. arsenic (As), lead (Pb), cadmium (Cd), mercury (Hg), and chromium (Cr), preventive measures, identify critical knowledge gaps, and the need for research, extension, and education. Being a part of the "Closer to Zero (C2Z)" initiative of the USDA, FDA, and other federal agencies, the workshop adopted a "One Health" approach to mitigate dietary exposure and environmental pollution of hazardous elements. Key findings and conclusions The experts discussed the accumulation of toxic metals in food crops and drinking water in relation to soil biogeochemistry, plant uptake, and multidisciplinary factors such as food processing, detection, regulatory standards, etc. To forward food safety, this workshop critically examined toxic metals contamination, exposure and toxicity along the farm-to-fork-to-human continuum, research gaps, prevailing regulations, and sustainable remediation approaches, and offered significant recommendations. This review paper provides perspective on key findings of the workshop relative to addressing this important aspect of food safety, emphasizing interdisciplinary research that can effectively investigate and understand the complex and dynamic relationships between soil biogeochemistry, the microbiome, plant tolerance and accumulation strategies, uniform standards for acceptable and safe toxic element levels in food and water, and raising public awareness. This article also provides a foundation for decision-making regarding toxic metal fate and effects, including risk management strategies, in the face of modern industrialization and a changing climate.
Collapse
Affiliation(s)
- Richa Srivastava
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Yogita Singh
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| | - Jason C. White
- The Connecticut Agricultural Experimental Station, New Haven, CT, 06511, USA
| | - Om Parkash Dhankher
- Stockbridge School of Agriculture, University of Massachusetts, Amherst, MA, 01003, USA
| |
Collapse
|
9
|
Zhang H, Wang L, Xie Y, Zhang S, Ning P, Wang X. Silica-supported ionic liquid for efficient gaseous arsenic oxide removal through hydrogen bonding. JOURNAL OF HAZARDOUS MATERIALS 2024; 472:134482. [PMID: 38704905 DOI: 10.1016/j.jhazmat.2024.134482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/08/2024] [Accepted: 04/28/2024] [Indexed: 05/07/2024]
Abstract
The emission of highly-toxic gaseous As2O3 (As2O3 (g)) from nonferrous metal smelting poses environmental concerns. In this study, we prepared an adsorbent (SMIL-X) by loading an ionic liquid (IL) ([HOEtMI]NTf2) into MCM-41 through an impregnation-evaporation process and then applied it to adsorb As2O3 (g). SMIL-20% exhibited an As2O3 (g) adsorption capacity of 35.48 mg/g at 400 °C, which was 490% times higher than that of neat MCM-41. Characterization of SMIL-X indicated that the IL was mainly supported on MCM-41 through O-H…O bonds formed between the hydroxyl groups (-OH) and the silanol groups (Si-OH) and the O-H…F bonds formed between the C-F groups and the Si-OH groups. The hydrogen bonds significantly contributed to the adsorption of As2O3 (g), with -NH and -OH groups forming hydrogen bonds with As-O species (i.e., N-H…O and O-H…O). This showed superior performance to traditional adsorbents that rely on van der Waals forces and chemisorption. Moreover, after exposure to high concentrations of SO2, the adsorption capacities remained at 76% of their initial values, demonstrating some sulfur resistance. This study presents an excellent adsorbent for the purification of As2O3 (g) and shows promising application potential for treating flue gas emitted by nonferrous metal smelting processes.
Collapse
Affiliation(s)
- Hui Zhang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China; Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan 430056, China
| | - Langlang Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Yibing Xie
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China
| | - Shici Zhang
- Hubei Key Laboratory of Industrial Fume and Dust Pollution Control, Jianghan University, Wuhan 430056, China
| | - Ping Ning
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| | - Xueqian Wang
- Faculty of Environmental Science and Engineering, Kunming University of Science and Technology, Kunming 650500, China.
| |
Collapse
|
10
|
Cai N, Wang X, Zhu H, Hu Y, Zhang X, Wang L. Isotopic insights and integrated analysis for heavy metal levels, ecological risks, and source apportionment in river sediments of the Qinghai-Tibet Plateau. ENVIRONMENTAL RESEARCH 2024; 251:118626. [PMID: 38467358 DOI: 10.1016/j.envres.2024.118626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/02/2024] [Accepted: 03/04/2024] [Indexed: 03/13/2024]
Abstract
The research was carried out to examine the pollution characteristics, ecological risk, and origins of seven heavy metals (Hg, As, Pb, Cu, Cd, Zn, and Ni) in 51 sediment samples gathered from 8 rivers located on the Qinghai-Tibet Plateau (QTP) in China. The contents of Hg and Cd were 5.0 and 1.1 times higher than their background values, respectively. The mean levels of other measured heavy metals were below those found naturally in the local soil. The enrichment factor showed that the study area exhibited significantly enriched Hg with 70.6% sampling sites. The Cd contents at 19.6% of sampling sites were moderately enriched. The other sampling sites were at a less enriched level. The sediments of all the rivers had a medium level of potential ecological risk. Hg was the major ecological risk factor in all sampling sites, followed by Cd. The findings from the positive matrix factorization (PMF) analysis shown agricultural activities, industrial activities, traffic emissions, and parent material were the major sources. The upper, middle, and low reaches of the Quanji river had different Hg isotope compositions, while sediments near the middle reaches were similar to the δ202Hg of the industrial source. At the upstream sampling sites, the Hg isotope content was very close to the background level. The results of this research can establish a strong scientific sound to improve the safety of the natural circumstances of rivers on the QTP.
Collapse
Affiliation(s)
- Na Cai
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xueping Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an, 710054, China; School of Water and Environment, Chang'an University, Xi'an, 710054, China
| | - Haixia Zhu
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, 810008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Hu
- Qaidam Comprehensive Geological and Mineral Exploration Institute of Qinghai Province, Golmud, 816099, China; Qinghai Provincial Key Laboratory of Exploration and Research of Salt Lake Resources in Qaidam Basin, Golmud, 816099, China
| | - Xiying Zhang
- Key Laboratory of Green and High-end Utilization of Salt Lake Resources, Qinghai Institute of Salt Lakes, Chinese Academy of Sciences, Xining, 810008, China; Qinghai Provincial Key Laboratory of Geology and Environment of Salt Lakes, Xining, 810008, China.
| | - Lingqing Wang
- Key Laboratory of Land Surface Pattern and Simulation, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
11
|
Li X, Wang X, Ma X, Sun W, Chen K, Dou F. Effectiveness of nanomaterials and their counterparts in improving rice growth and yield under arsenic contamination. FRONTIERS IN PLANT SCIENCE 2024; 15:1338530. [PMID: 38863546 PMCID: PMC11165625 DOI: 10.3389/fpls.2024.1338530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
Arsenic (As) pollution in rice (Oryza sativa L.), a staple food for over 3.5 billion people, is a global problem. Mixed effects of Zn, Cu, and Si amendments on plant growth and yield, including in the presence of As pollution have been reported in previous studies. To better investigate the effectiveness of these amendments on rice growth, yield, and As accumulation, we conducted a rice greenhouse experiment with 11 treatments, including control pots with and without As contamination and pots with amendments of ZnO, CuO, and SiO2 nanoparticles (ZnO NPs, CuO NPs, and SiO2 NPs), their ionic counterparts (ZnSO4, CuSO4, and Na2SiO3), and bulk particles (ZnO BPs, CuO BPs, and SiO2 BPs). Compared with the background soil, the treatment of adding As decreased rice plant height, panicle number, and grain yield by 16.5%, 50%, and 85.7%, respectively, but significantly increased the As accumulation in milled rice grains by 3.2 times. Under As contamination, the application of Zn amendments increased rice grain yield by 4.6-7.3 times; among the three Zn amendments, ZnSO4 performed best by fully recovering grain yield to the background level and significantly reducing grain AsIII/total As ratio by 46.9%. Under As contamination, the application of Cu amendments increased grain yield by 3.8-5.6 times; all three Cu amendments significantly reduced grain AsIII/total As ratio by 20.2-65.6%. The results reveal that Zn and Cu amendments could promote rice yield and prevent As accumulation in rice grains under As contamination. Despite the observed reduction in As toxicity by the tested NPs, they do not offer more advantages over their ionic counterparts and bulk particles in promoting rice growth under As contamination. Future field research using a broader range of rice varieties, investigating various As concentrations, and encompassing diverse climate conditions will be necessary to validate our findings in achieving more extensive understanding of effective management of arsenic contaminated rice field.
Collapse
Affiliation(s)
- Xiufen Li
- Department of Plant and Environmental Sciences, New Mexico State University, Las Cruces, NM, United States
- Texas A&M AgriLife Research and Extension Center at Beaumont, Texas A&M University System, Beaumont, TX, United States
| | - Xiaoxuan Wang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, United States
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, TX, United States
| | - Wenjie Sun
- Department of Atmospheric and Hydrologic Sciences, St. Cloud State University, St. Cloud, MN, United States
| | - Kun Chen
- Department of Statistics, University of Connecticut, Storrs, CT, United States
| | - Fugen Dou
- Texas A&M AgriLife Research and Extension Center at Beaumont, Texas A&M University System, Beaumont, TX, United States
| |
Collapse
|
12
|
He X, Lin G, Zeng J, Yang Z, Wang L. Construction of algal-bacterial consortia using green microalgae Chlorella vulgaris and As(III)-oxidizing bacteria: As tolerance and metabolomic profiling. J Environ Sci (China) 2024; 139:258-266. [PMID: 38105053 DOI: 10.1016/j.jes.2023.04.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 12/19/2023]
Abstract
Bioremediation became a promising technology to resolve arsenic (As) contamination in aquatic environment. Since monoculture such as microalgae or bacteria was sensitive to environmental disturbance and vulnerable to contamination, green microalgae Chlorella vulgaris and arsenite (As(III)) - oxidizing bacteria Pseudomonas sp. SMS11 were co-cultured to construct algal-bacterial consortia in the current study. The effects of algae-bacteria (A:B) ratio and exposure As(III) concentration on algal growth, As speciation and metabolomic profile were investigated. Algal growth arrested when treated with 100 mg/L As(III) without the co-cultured bacteria. By contrast, co-cultured with strain SMS11 significantly enhanced As tolerance in C. vulgaris especially with A:B ratio of 1:10. All the As(III) in culture media of the consortia were oxidized into As(V) on day 7. Methylation of As was observed on day 14. Over 1% and 0.5% of total As were converted into dimethylarsinic acid (DMA) after 21 days cultivation when the initial concentrations of As(III) were 1 and 10 mg/L, respectively. Metabolomic analysis was further performed to reveal the response of consortia metabolites to external As(III). The enriched metabolomic pathways were associated with carbohydrate, amino acid and energy metabolisms. Tricarboxylic acid cycle and glyoxylate and dicarboxylate metabolism were upregulated under As stress due to their biological functions on alleviating oxidative stress and protecting cells. Both carbohydrate and amino acid metabolisms provided precursors and potential substrates for energy production and cell protection under abiotic stress. Alterations of the pathways relevant to carbohydrate or amino acid metabolism were triggered by energy requirement.
Collapse
Affiliation(s)
- Xiaoman He
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Guobing Lin
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jiayuan Zeng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Zhaoguang Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China
| | - Lin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China; Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, China.
| |
Collapse
|
13
|
Chauhan PK, Pathak HK, Dubey G, Sharma H, Upadhyay SK. Impact of Bacillus cereus SPB-10 on Growth Promotion of Wheat (Triticum aestivum L.) Under Arsenic-Contaminated Soil. Curr Microbiol 2024; 81:153. [PMID: 38652152 DOI: 10.1007/s00284-024-03673-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024]
Abstract
This study investigates the impact of bacteria on arsenic reduction in wheat plants, highlighting the potential of microbe-based eco-friendly strategies for plant growth. In the present study, bacterial isolate SPB-10 was survived at high concentration against both form of arsenic (As3+ and As5+). SPB-10 produced 5.2 g/L and 11.3 g/L of exo-polysaccharide at 20 ppm of As3+ and As5+, respectively, whereas qualitative examination revealed the highest siderophores ability. Other PGP attributes such as IAA production were recorded 52.12 mg/L and 95.82 mg/L, phosphate solubilization was 90.23 mg/L and 129 mg/L at 20 ppm of As3+ and As5+, respectively. Significant amount of CAT, APX, and Proline was also observed at 20 ppm of As3+ and As5+ in SPB-10. Isolate SPB-10 was molecularly identified as Bacillus cereus through 16S rRNA sequencing. After 42 days, wheat plants inoculated with SPB-10 had a 25% increase in shoot length and dry weight, and 26% rise in chlorophyll-a pigment under As5+ supplemented T4 treatment than control. Reducing sugar content was increased by 24% in T6-treated plants compared to control. Additionally, SPB-10 enhanced the content of essential nutrients (NPK), CAT, and APX in plant's-leaf under both As3+ and As5+ stressed conditions after 42 days. The study found that arsenic uptake in plant roots and shoots decreased in SPB-10-inoculated plants, with the maximum reduction observed in As5+ treated plants. Bio-concentration factor-BCF was reduced by 90.89% in SPB-10-inoculated treatment T4 after 42 days. This suggests that Bacillus cereus-SPB-10 may be beneficial for plant growth in arsenic-contaminated soil.
Collapse
Affiliation(s)
- Prabhat K Chauhan
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Himanshu K Pathak
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Gopal Dubey
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Hritik Sharma
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India.
| |
Collapse
|
14
|
Ni X, Liu Z, Wang J, Dong M, Wang R, Qi Z, Xu H, Jiang C, Zhang Q, Wang J. Optimizing the development of contaminated land in China: Exploring machine-learning to identify risk markers. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133057. [PMID: 38043429 DOI: 10.1016/j.jhazmat.2023.133057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/12/2023] [Accepted: 11/20/2023] [Indexed: 12/05/2023]
Abstract
Often available for use, previously developed land, which includes residential and commercial/industrial areas, presents a significant challenge due to the risk to human health. China's 2018 release of health risk assessment standards for land reuse aimed to bridge this gap in soil quality standards. Despite this, the absence of representative indicators strains risk managers economically and operationally. We improved China's land redevelopment approach by leveraging a dataset of 297,275 soil samples from 352 contaminated sites, employing machine learning. Our method incorporating soil quality standards from seven countries to discern patterns for establishing a cost-effective evaluative framework. Our research findings demonstrated that detection costs could be curtailed by 60% while maintaining consistency with international soil standards (prediction accuracy = 90-98%). Our findings deepen insights into soil pollution, proposing a more efficient risk assessment system for land redevelopment, addressing the current dearth of expertise in evaluating land development in China.
Collapse
Affiliation(s)
- Xiufeng Ni
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zeyuan Liu
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jizhong Wang
- Zhejiang Ecological Civilization Academy, Anji 313300, China
| | - Mengting Dong
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Ruwei Wang
- School of Environment, Jinan University, Guangzhou 511443, Guangdong, China
| | - Zhulin Qi
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Haolong Xu
- Center of Air Quality Simulation and System Analysis, Chinese Academy of Environmental Planning, Beijing 100012, China
| | - Chao Jiang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qingyu Zhang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Ecological Civilization Academy, Anji 313300, China.
| | - Jinnan Wang
- College of Environmental & Resource Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Key Laboratory of Environmental Pollution Control Technology, Hangzhou 310000, China; State Environmental Protection Key Laboratory of Environmental Planning and Policy Simulation, Chinese Academy of Environmental Planning, Beijing 100041, China.
| |
Collapse
|
15
|
Janejobkhet J, Pongprayoon W, Obsuwan K, Jaiyindee S, Maksup S. Multifaceted response mechanisms of Oryza sativa L. 'KDML105' to high arsenite and arsenate stress levels. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:13816-13832. [PMID: 38265595 DOI: 10.1007/s11356-024-32122-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Toxicity resulting from high levels of inorganic arsenic (iAs), specifically arsenite (AsIII) and arsenate (AsV), significantly induces oxidative stress and inhibits the growth of rice plants in various ways. Despite its economic importance and significance as a potent elite trait donor in rice breeding programmes, Khao Dawk Mali 105 (KDML105) has received limited attention regarding its responses to As stress. Therefore, this study aimed to comprehensively investigate how KDML105 responds to elevated AsIII and AsV stress levels. In this study, the growth, physiology, biochemical attributes and levels of As stress-associated transcripts were analysed in 45-day-old rice plants after exposing them to media containing 0, 75, 150, 300 and 600 µM AsIII or AsV for 1 and 7 days, respectively. The results revealed that AsIII had a more pronounced impact on the growth and physiological responses of KDML105 compared to AsV at equivalent concentrations. Under elevated AsIII treatment, there was a reduction in growth and photosynthetic efficiency, accompanied by increased levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Notably, the total contents of antioxidants, such as proline, phenolics and flavonoids in the shoot, increased by 8.1-fold, 1.4-fold and 1.6-fold, respectively. Additionally, the expression of the OsABCC1 gene in the roots increased by 9.5-fold after exposure to 150 µM AsIII for 1 day. These findings suggest that KDML105's prominent responses to As stress involve sequestering AsIII in vacuoles through the up-regulation of the OsABCC1 gene in the roots, along with detoxifying excessive stress in the leaves through proline accumulation. These responses could serve as valuable traits for selecting As-tolerant rice varieties.
Collapse
Affiliation(s)
- Juthathip Janejobkhet
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Wasinee Pongprayoon
- Department of Biology, Faculty of Science, Burapha University, Chon Buri, 20131, Thailand
| | - Kullanart Obsuwan
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Supakit Jaiyindee
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand
| | - Sarunyaporn Maksup
- Department of Biology, Faculty of Science, Silpakorn University, Nakhon Pathom, 73000, Thailand.
| |
Collapse
|
16
|
Mlangeni AT. Methylation of arsenic in rice: Mechanisms, factors, and mitigation strategies. Toxicol Rep 2023; 11:295-306. [PMID: 37789952 PMCID: PMC10543780 DOI: 10.1016/j.toxrep.2023.09.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/16/2023] [Accepted: 09/23/2023] [Indexed: 10/05/2023] Open
Abstract
Arsenic contamination in rice poses a significant health risk to rice consumers across the globe. This review examines the impact of water source and type on the speciation and methylation of arsenic in rice. The review highlights that groundwater used for irrigation in arsenic-affected regions can lead to higher total arsenic content in rice grains and lower proportions of methylated arsenic species. The methylation of As in rice is influenced by microbial activity in groundwater, which can methylate arsenic that is taken up by rice plants. Reclaimed water irrigation can also increase the risk of arsenic accumulation in rice crops, although the use of organic amendments and proper water management practices can reduce arsenic accumulation. Different water management regimes, such as continuous flooding irrigation, alternate wetting and drying, aerobic rice cultivation, and subsurface drip irrigation, can affect the speciation and methylation of As in rice. Continuous flooding irrigation reduces methylation of As due to anaerobic conditions, while alternate wetting and drying and aerobic rice cultivation promote methylation by creating aerobic conditions that stimulate the activity of arsenic-methylating microorganisms. Subsurface drip irrigation reduces total arsenic content in rice grains and increases the proportion of less toxic methylated arsenic species. The review also discusses the complex mechanisms of As-methylation and transport in rice, emphasizing the importance of understanding these mechanisms to develop strategies for reducing arsenic uptake in rice plants and mitigating health risks. The review addresses the impact of water source and type on arsenic speciation and methylation in rice and highlights the need for proper water management and treatment measures to ensure the safety of the food supply as well as aiding future research and policies to reduce health risks from rice consumption. The critical information gaps that this review addresses include the specific effects of different water management regimes on As-methylation, the role of microbial communities in groundwater in As-methylation, and the potential risks associated with the use of reclaimed water for irrigation.
Collapse
|
17
|
Zhou Y, Meng F, Zhang J, Zhang H, Han K, Liu C, Gao J, Chen F. Transcriptomic analysis revealing the molecular response to arsenic stress in desert Eremostachys moluccelloides Bunge. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 266:115608. [PMID: 37856981 DOI: 10.1016/j.ecoenv.2023.115608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 10/10/2023] [Accepted: 10/14/2023] [Indexed: 10/21/2023]
Abstract
The saline, alkaline environment of arid soils is conducive to the diffusion of the metalloid arsenic (As). Desert plants in this area are of great ecological importance and practical value. However, there are few studies on the mechanism of arsenic action in desert plants. Therefore, in this study, Eremostachys moluccelloides Bunge was treated with different concentrations of As2O5 [As(V)] to analyze the physiological, biochemical, and transcriptomic changes of its roots and leaves and to explore the molecular mechanism of its response to As(Ⅴ) stress. The activities of catalase, superoxidase, peroxidase, and the contents of malondialdehyde and proline in roots and leaves first increased and then decreased under the As(Ⅴ) stress of different concentrations. The content of As was higher in roots than in leaves, and the As content was positively correlated with As(Ⅴ) stress concentration. In the differentially expressed gene analysis, the key enzymes of the oxidative stress response in roots and leaves were significantly enriched in the GO classification. In the KEGG pathway, genes related to the abscisic acid signal transduction pathway were co-enriched and up-regulated in roots and leaves. The related genes in the phenylpropanoid biosynthesis pathway were significantly enriched and down-regulated only in roots. In addition, the transcription factors NAC, HB-HD-ZIP, and NF-Y were up-regulated in roots and leaves. These results suggest that the higher the As(V) stress concentration, the more As is taken up by roots and leaves of E. molucelloides Bunge. In addition to causing greater oxidative damage, this may interfere with the production of secondary metabolites. Moreover, it may improve As(V) tolerance by regulating abscisic acid and transcription factors. The results will deepen our understanding of the molecular mechanism of As(Ⅴ) response in E. moluccelloides Bunge, lay the foundation for developing and applying desert plants, and provide new ideas for the phytoremediation of As pollution in arid areas.
Collapse
Affiliation(s)
- Yongshun Zhou
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Fanze Meng
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Jinling Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Haonan Zhang
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Kai Han
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China
| | - Changyong Liu
- Green Food Testing Center of the Ministry of Agriculture, Xinjiang Academy of Agricultural Reclamation Sciences, Shihezi 832003, People's Republic of China
| | - Jianfeng Gao
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China.
| | - Fulong Chen
- College of Life Sciences, Shihezi University, Shihezi, Xinjiang 832000, People's Republic of China.
| |
Collapse
|
18
|
Liu CJ, Peng YJ, Hu CY, He SX, Xiao SF, Li W, Deng SG, Dai ZH, Ma LQ. Copper enhanced arsenic-accumulation in As-hyperaccumulator Pteris vittata by upregulating its gene expression for As uptake, translocation, and sequestration. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132484. [PMID: 37688872 DOI: 10.1016/j.jhazmat.2023.132484] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/18/2023] [Accepted: 09/03/2023] [Indexed: 09/11/2023]
Abstract
In contaminated soils, arsenic (As) often co-exists with copper (Cu). However, its effects on As accumulation and the related mechanisms in As-hyperaccumulator Pteris vittata remain unclear. In this study, P. vittata plants were exposed to 50 µM As and/or 50 µM Cu under hydroponics to investigate the effects of Cu on plant growth and As accumulation, as well as gene expression related to arsenic uptake (P transporters), reduction (arsenate reductases), and translocation and sequestration (arsenite antiporters). After 14 d of growth and compared to the As treatment, the As concentration in P. vittata fronds increased by 1.4-times from 793 to 1131 mg·kg-1 and its biomass increased by 1.2-fold from 18.0 to 21.1 g·plant-1 in the As+Cu treatment. Copper-enhanced As accumulation was probably due to upregulated gene expressions related to As-metabolisms including As uptake (1.9-fold in P transporter PvPht1;3), translocation (2.1-2.4 fold in arsenite antiporters PvACR3/3;2) and sequestration (1.5-2.0 fold in arsenite antiporters PvACR3;1/3;3). Our results suggest that moderate amount of Cu can help to increase the As accumulation efficiency in P. vittata, which has implication in its application in phytoremedation in As and Cu co-contaminated soils.
Collapse
Affiliation(s)
- Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - You-Jing Peng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yan Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Si-Xue He
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Shu-Fen Xiao
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Song-Ge Deng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Hua Dai
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
19
|
Wei S, Berti E, Ma D, Wu Q, Peng Y, Yuan C, Zhao Z, Jin X, Ni X, Wu F, Yue K. Global patterns and drivers of lead concentration in inland waters. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132455. [PMID: 37677973 DOI: 10.1016/j.jhazmat.2023.132455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 08/09/2023] [Accepted: 08/30/2023] [Indexed: 09/09/2023]
Abstract
Water bodies are important carriers for lead (Pb) biogeochemical cycling, which is a key pathway of Pb transport. Although existing studies on Pb loading in inland waters have developed rapidly, a quantitative assessment of the distribution patterns and drivers of Pb concentration in inland waters at the global scale remains unclear. Here, by analyzing 1790 observations collected from 386 independent publications, we assessed the spatial distribution and drivers of Pb concentration in inland waters worldwide. We found that (1) globally, the median of Pb concentration in inland waters was 5.81 μg L-1; (2) among different inland water types, Pb concentration was higher in rivers, and the highest Pb concentration was in industrial land in terms of land use type; (3) Pb concentration in inland waters were positively driven by potential evapotranspiration, elevation and road density; and (4) Pb concentration showed a negative relationship with absolute latitude, decreasing from tropic to boreal regions. Overall, our global assessment of the patterns and drivers of Pb concentration in inland waters contributed to a better understanding of the natural and anthropogenic attributions of Pb in the inland hydrological cycling.
Collapse
Affiliation(s)
- Shuyuan Wei
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Emilio Berti
- EcoNetLab, German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany; Institute of Biodiversity, Friedrich-Schiller-University Jena, Jena, Germany
| | - Diting Ma
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Qiqian Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an 311300, China
| | - Yan Peng
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, China
| | - Chaoxiang Yuan
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Zemin Zhao
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xia Jin
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China
| | - Xiangyin Ni
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, China
| | - Fuzhong Wu
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, China
| | - Kai Yue
- Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, School of Geographical Sciences, Fujian Normal University, Fuzhou 350007, China; Fujian Sanming Forest Ecosystem National Observation and Research Station, Sanming 365002, China.
| |
Collapse
|
20
|
Chen JC, Patel K, Smith PA, Vidyaprakash E, Snyder C, Tagg KA, Webb HE, Schroeder MN, Katz LS, Rowe LA, Howard D, Griswold T, Lindsey RL, Carleton HA. Reoccurring Escherichia coli O157:H7 Strain Linked to Leafy Greens-Associated Outbreaks, 2016-2019. Emerg Infect Dis 2023; 29:1895-1899. [PMID: 37610207 PMCID: PMC10461648 DOI: 10.3201/eid2909.230069] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/24/2023] Open
Abstract
Genomic characterization of an Escherichia coli O157:H7 strain linked to leafy greens-associated outbreaks dates its emergence to late 2015. One clade has notable accessory genomic content and a previously described mutation putatively associated with increased arsenic tolerance. This strain is a reoccurring, emerging, or persistent strain causing illness over an extended period.
Collapse
Affiliation(s)
| | | | - Peyton A. Smith
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (J.C. Chen, K. Patel, P.A. Smith, E. Vidyaprakash, C. Snyder, K.A. Tagg, H.E. Webb, M.N. Schroeder, L.S. Katz, L.A. Rowe, D. Howard, T. Griswold, R.L. Lindsey, H.A. Carleton)
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA (K. Patel, C. Snyder)
| | - Eshaw Vidyaprakash
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (J.C. Chen, K. Patel, P.A. Smith, E. Vidyaprakash, C. Snyder, K.A. Tagg, H.E. Webb, M.N. Schroeder, L.S. Katz, L.A. Rowe, D. Howard, T. Griswold, R.L. Lindsey, H.A. Carleton)
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA (K. Patel, C. Snyder)
| | - Caroline Snyder
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (J.C. Chen, K. Patel, P.A. Smith, E. Vidyaprakash, C. Snyder, K.A. Tagg, H.E. Webb, M.N. Schroeder, L.S. Katz, L.A. Rowe, D. Howard, T. Griswold, R.L. Lindsey, H.A. Carleton)
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA (K. Patel, C. Snyder)
| | - Kaitlin A. Tagg
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (J.C. Chen, K. Patel, P.A. Smith, E. Vidyaprakash, C. Snyder, K.A. Tagg, H.E. Webb, M.N. Schroeder, L.S. Katz, L.A. Rowe, D. Howard, T. Griswold, R.L. Lindsey, H.A. Carleton)
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA (K. Patel, C. Snyder)
| | - Hattie E. Webb
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (J.C. Chen, K. Patel, P.A. Smith, E. Vidyaprakash, C. Snyder, K.A. Tagg, H.E. Webb, M.N. Schroeder, L.S. Katz, L.A. Rowe, D. Howard, T. Griswold, R.L. Lindsey, H.A. Carleton)
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA (K. Patel, C. Snyder)
| | - Morgan N. Schroeder
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (J.C. Chen, K. Patel, P.A. Smith, E. Vidyaprakash, C. Snyder, K.A. Tagg, H.E. Webb, M.N. Schroeder, L.S. Katz, L.A. Rowe, D. Howard, T. Griswold, R.L. Lindsey, H.A. Carleton)
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA (K. Patel, C. Snyder)
| | - Lee S. Katz
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (J.C. Chen, K. Patel, P.A. Smith, E. Vidyaprakash, C. Snyder, K.A. Tagg, H.E. Webb, M.N. Schroeder, L.S. Katz, L.A. Rowe, D. Howard, T. Griswold, R.L. Lindsey, H.A. Carleton)
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA (K. Patel, C. Snyder)
| | | | - Dakota Howard
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (J.C. Chen, K. Patel, P.A. Smith, E. Vidyaprakash, C. Snyder, K.A. Tagg, H.E. Webb, M.N. Schroeder, L.S. Katz, L.A. Rowe, D. Howard, T. Griswold, R.L. Lindsey, H.A. Carleton)
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA (K. Patel, C. Snyder)
| | - Taylor Griswold
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (J.C. Chen, K. Patel, P.A. Smith, E. Vidyaprakash, C. Snyder, K.A. Tagg, H.E. Webb, M.N. Schroeder, L.S. Katz, L.A. Rowe, D. Howard, T. Griswold, R.L. Lindsey, H.A. Carleton)
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA (K. Patel, C. Snyder)
| | - Rebecca L. Lindsey
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (J.C. Chen, K. Patel, P.A. Smith, E. Vidyaprakash, C. Snyder, K.A. Tagg, H.E. Webb, M.N. Schroeder, L.S. Katz, L.A. Rowe, D. Howard, T. Griswold, R.L. Lindsey, H.A. Carleton)
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA (K. Patel, C. Snyder)
| | - Heather A. Carleton
- Centers for Disease Control and Prevention, Atlanta, Georgia, USA (J.C. Chen, K. Patel, P.A. Smith, E. Vidyaprakash, C. Snyder, K.A. Tagg, H.E. Webb, M.N. Schroeder, L.S. Katz, L.A. Rowe, D. Howard, T. Griswold, R.L. Lindsey, H.A. Carleton)
- Oak Ridge Institute for Science and Education, Oak Ridge, Tennessee, USA (K. Patel, C. Snyder)
| |
Collapse
|
21
|
Valenzuela-García LI, Alarcón-Herrera MT, Ayala-García VM, Barraza-Salas M, Salas-Pacheco JM, Díaz-Valles JF, Pedraza-Reyes M. Design of a Whole-Cell Biosensor Based on Bacillus subtilis Spores and the Green Fluorescent Protein To Monitor Arsenic. Microbiol Spectr 2023; 11:e0043223. [PMID: 37284752 PMCID: PMC10433799 DOI: 10.1128/spectrum.00432-23] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/22/2023] [Indexed: 06/08/2023] Open
Abstract
A green fluorescent protein (GFP)-based whole-cell biosensor (WCB-GFP) for monitoring arsenic (As) was developed in Bacillus subtilis. To this end, we designed a reporter gene fusion carrying the gfpmut3a gene under the control of the promoter/operator region of the arsenic operon (Pars::gfpmut3a) in the extrachromosomal plasmid pAD123. This construct was transformed into B. subtilis 168, and the resultant strain was used as a whole-cell biosensor (BsWCB-GFP) for the detection of As. The BsWCB-GFP was specifically activated by inorganic As(III) and As(V), but not by dimethylarsinic acid [DMA(V)], and exhibited high tolerance to the noxious effects of arsenic. Accordingly, after 12 h exposure, B. subtilis cells carrying the Pars::gfpmut3a fusion exhibited 50 and 90% lethal doses (LD50 and LD90) to As(III) of 0.89 mM and As 1.71 mM, respectively. Notably, dormant spores from the BsWCB-GFP were able to report the presence of As(III) in a concentration range from 0.1 to 1,000 μM 4 h after the onset of germination. In summary, the specificity and high sensitivity for As, as well as its ability to proliferate under concentrations of the metal that are considered toxic in water and soil, makes the B. subtilis biosensor developed here a potentially important tool for monitoring environmental samples contaminated with this pollutant. IMPORTANCE Arsenic (As) contamination of groundwater is associated with serious worldwide health risks. Detection of this pollutant at concentrations that are established as permissible for water consumption by WHO is a matter of significant interest. Here, we report the generation of a whole-cell biosensor for As detection in the Gram-positive spore former B. subtilis. This biosensor reports the presence of inorganic As, activating the expression of the green fluorescent protein (GFP) under the control of the promoter/operator of the ars operon. The biosensor can proliferate under concentrations of As(III) that are considered toxic in water and soil and detect this ion at concentrations as low as 0.1 μM. Of note, spores of the Pars-GFP biosensor exhibited the ability to detect As(III) following germination and outgrowth. Therefore, this novel tool has the potential to be directly applied to monitor As contamination in environmental samples.
Collapse
Affiliation(s)
- Luz I. Valenzuela-García
- Department of Sustainable Engineering, Advanced Materials Research Center (CIMAV), Arroyo Seco, Durango, Mexico
| | | | - Víctor M. Ayala-García
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico
| | - Marcelo Barraza-Salas
- Facultad de Ciencias Químicas, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico
| | - José Manuel Salas-Pacheco
- Instituto de Investigación Científica, Universidad Juárez del Estado de Durango, Durango, Durango, Mexico
| | | | | |
Collapse
|
22
|
Wang Q, Lin G, Zeng J, Tang J, Wang L. As(III)-Oxidizing Bacteria Alleviate Arsenite Toxicity via Reducing As Accumulation, Elevating Antioxidative Activities and Modulating Ionome in Rice (Oryza sativa L.). Curr Microbiol 2023; 80:320. [PMID: 37587202 DOI: 10.1007/s00284-023-03434-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 07/31/2023] [Indexed: 08/18/2023]
Abstract
Paddy rice trends to accumulate more arsenic (As) from soils than other terrestrial crops. The toxicity and mobility of As mainly depend on its chemical species. Transformation of arsenite [As(III)] into arsenate [As(V)] would be a promising method to mitigate As toxicity. In the current study, As(III)-oxidizing strain SMS11 isolated from As-contaminated soils was employed for As remediation. Co-cultured with SMS11 alleviated As(III) stress to the rice plants by increasing the length and biomass of rice shoots up to 10% and 15%, respectively. Evaluation of oxidative stress indices showed that the activity of catalase in the rice shoots was weakened when exposed to As(III), increasing the risk of hydroxyl radical (·OH) formation. When co-cultivated with the bacteria, ·OH formation was significantly inhibited in the rice shoots. The ionomes of the rice plants were impacted by the external conditions. As(III) stress significantly disturbed ionome homeostasis in the rice plants. Uptake of As simultaneously elevated the levels of macro and nutrient elements such as Mg, P, K, Ca, and Zn in the rice shoots. The ionomic variation in the rice plants under As(III) stress was mitigated by inoculated with SMS11. The results represented that the As(III)-oxidizing bacteria alleviated external As(III) stress to the rice plants through elevating antioxidative activities and modulating ionome homeostasis.
Collapse
Affiliation(s)
- Qiang Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Guobing Lin
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jiayuan Zeng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
23
|
Geng A, Lian W, Wang X, Chen G. Regulatory Mechanisms Underlying Arsenic Uptake, Transport, and Detoxification in Rice. Int J Mol Sci 2023; 24:11031. [PMID: 37446207 DOI: 10.3390/ijms241311031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 06/30/2023] [Accepted: 07/02/2023] [Indexed: 07/15/2023] Open
Abstract
Arsenic (As) is a metalloid environmental pollutant ubiquitous in nature that causes chronic and irreversible poisoning to humans through its bioaccumulation in the trophic chain. Rice, the staple food crop for 350 million people worldwide, accumulates As more easily compared to other cereal crops due to its growth characteristics. Therefore, an in-depth understanding of the molecular regulatory mechanisms underlying As uptake, transport, and detoxification in rice is of great significance to solving the issue of As bioaccumulation in rice, improving its quality and safety and protecting human health. This review summarizes recent studies on the molecular mechanisms of As toxicity, uptake, transport, redistribution, regulation, and detoxification in rice. It aims to provide novel insights and approaches for preventing and controlling As bioaccumulation in rice plants, especially reducing As accumulation in rice grains.
Collapse
Affiliation(s)
- Anjing Geng
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Wenli Lian
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Xu Wang
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| | - Guang Chen
- Institute of Quality Standard and Monitoring Technology for Agro-Products of Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China
- Key Laboratory of Testing and Evaluation for Agro-Product Safety and Quality, Ministry of Agriculture and Rural Affairs, Guangzhou 510640, China
- Guangdong Provincial Key Laboratory of Quality & Safety Risk Assessment for Agro-Products, Guangzhou 510640, China
| |
Collapse
|
24
|
Mlangeni AT, Chinthenga E, Kapito NJ, Namaumbo S, Feldmann J, Raab A. Safety of African grown rice: Comparative review of As, Cd, and Pb contamination in African rice and paddy fields. Heliyon 2023; 9:e18314. [PMID: 37519744 PMCID: PMC10375803 DOI: 10.1016/j.heliyon.2023.e18314] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/07/2023] [Accepted: 07/13/2023] [Indexed: 08/01/2023] Open
Abstract
This review aimed to investigate the reported concentrations of arsenic (As), cadmium (Cd), and lead (Pb) in rice cultivated in Africa and African rice paddies compared to other regions. It also aimed to explore the factors influencing these concentrations and evaluate the associated health risks of elevated As, Cd, and Pb exposure. Relevant data were obtained from electronic databases such as PubMed, Scopus, and Google Scholar using specific keywords related to arsenic, cadmium, lead, rice, Africa, paddy, and grain. While the number of studies reporting the concentrations of As, Cd, and Pb in rice and rice paddies in Africa is relatively low compared to other regions, this review revealed that most of the African rice and paddy soils have low concentrations of these metals. However, some studies have reported elevated concentrations of As, Cd, and Pb in paddy fields, which is concerning due to the increased use of agrochemicals containing heavy metals in rice production. Nonetheless, agronomical interventions such as implementing alternate wetting and drying water management, cultivating cultivars with low accumulation of As, Cd, and Pb, amending rice fields with sorbents, and screening irrigation water can limit the bioaccumulation of these carcinogens in paddy fields using phytoremediation techniques. Therefore, we strongly urge African governments and organizations operating in Africa to enhance the capacity of rice farmers and extension officers in adopting approaches and practices that reduce the accumulation of these carcinogenic metals in rice. This is essential to achieve the sustainable development goal of providing safe food for all.
Collapse
Affiliation(s)
- Angstone Thembachako Mlangeni
- Department of Land and Water Resources, Natural Resources College, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Evans Chinthenga
- Department of Land and Water Resources, Natural Resources College, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Noel Jabesi Kapito
- Department of Land and Water Resources, Natural Resources College, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Sydney Namaumbo
- Department of Land and Water Resources, Natural Resources College, Lilongwe University of Agriculture and Natural Resources, Lilongwe, Malawi
| | - Joerg Feldmann
- TESLA Analytical Chemistry, Institute of Chemistry, University of Graz, Austria
| | - Andrea Raab
- TESLA Analytical Chemistry, Institute of Chemistry, University of Graz, Austria
| |
Collapse
|
25
|
Bascuñán KA, Orosteguí C, Rodríguez JM, Roncoroni L, Doneda L, Elli L, Araya M. Heavy Metal and Rice in Gluten-Free Diets: Are They a Risk? Nutrients 2023; 15:2975. [PMID: 37447301 DOI: 10.3390/nu15132975] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/27/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
A gluten-free diet (GFD) is the treatment of choice for gluten-related disorders. It has been associated with macro- and micronutrient deficiencies. Recently, consumption of arsenic-contaminated rice has raised concern because of the potential greater risk that it may represent for people on GFDs, whose rice consumption is high, since it is a fundamental cereal in GFDs. We reviewed the data published over the last 20 years in Medline and Scielo, in English, French and Spanish, on four metals (As, Hg, Cd, and Pb), to assess whether the evidence suggests that celiac disease or consumption of a GFD is associated with increased levels of blood/urinary metal concentrations. The review revealed a few articles that were directly related to the four metals and their relationships with a GFD. The evidence supports that rice-based products are a relevant source of As and other metals. Clinical studies and evaluations based on NHANES have indicated that persons on GFDs have higher As and Hg blood/urinary levels, suggesting that the diet and not the disease is responsible for it. The levels described are statistically significant compared to those of persons on complete diets, but far from toxic levels. The question of whether higher exposure to heavy metals associated with a GFD is biologically relevant remains unanswered and deserves study.
Collapse
Affiliation(s)
- Karla A Bascuñán
- Department of Nutrition, School of Medicine, University of Chile, Santiago 8380453, Chile
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile
| | - Claudia Orosteguí
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile
| | - Juan Manuel Rodríguez
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile
| | - Leda Roncoroni
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy
| | - Luisa Doneda
- Department of Biomedical, Surgical and Dental Sciences, Università degli Studi di Milano, 20122 Milan, Italy
| | - Luca Elli
- Center for Prevention and Diagnosis of Celiac Disease, Gastroenterology and Endoscopy Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, 20122 Milan, Italy
| | - Magdalena Araya
- Institute of Nutrition and Food Technology, University of Chile, Santiago 7830490, Chile
| |
Collapse
|
26
|
He X, Xiao W, Zeng J, Tang J, Wang L. Detoxification and removal of arsenite by Pseudomonas sp. SMS11: Oxidation, biosorption and bioaccumulation. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 336:117641. [PMID: 36868151 DOI: 10.1016/j.jenvman.2023.117641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/30/2023] [Accepted: 02/27/2023] [Indexed: 06/18/2023]
Abstract
Arsenite [As(III)] oxidizing bacteria have been widely studied for their detoxification ability through transforming As(III) into arsenate [As(V)]. However, few was focused on removal capacity of arsenic (As). In the current study, As(III) oxidation accompanied with removal of total As was observed in Pseudomonas sp. SMS11. The biosorption (unbinding and surface binding) and bioaccumulation (intracellular uptake) of As by the cells were investigated. Biosorption isotherm was defined adequately by Langmuir and Freundlich models. Biosorption kinetics was recommended by pseudo second-order model. For comparison, the bacteria were inoculated in pure water or culture media amended with different concentrations of As(III) to evaluate the remediation capacity without or with bacterial growth. After removing unbound As, surface bound and intracellular As were sequentially separated using EDTA elution and acidic extraction from bacterial cells. Without bacterial growth, oxidation of As(III) was retarded and the maximum values of surface bound and intracellular As were 4.8 and 10.5 mg/g, respectively. Efficient oxidation and high adsorption capacity were observed after bacterial growth. The surface bound and intracellular As achieved up to 555.0 and 2421.5 mg/g, respectively. Strain SMS11 exhibited great accumulation capacity of As in aqueous solutions, indicating potential application in detoxification and removal of As(III) contamination. The results also suggested that bioremediation via bacteria should be based on living cells and bacterial growth rate.
Collapse
Affiliation(s)
- Xiaoman He
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Weiwei Xiao
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jiayuan Zeng
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| | - Jie Tang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Lin Wang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China.
| |
Collapse
|
27
|
Etesami H, Jeong BR, Raheb A. Arsenic (As) resistant bacteria with multiple plant growth-promoting traits: Potential to alleviate As toxicity and accumulation in rice. Microbiol Res 2023; 272:127391. [PMID: 37121023 DOI: 10.1016/j.micres.2023.127391] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/14/2023] [Accepted: 04/20/2023] [Indexed: 05/02/2023]
Abstract
A currently serious agronomic concern for paddy soils is arsenic (As) contamination. Paddy soils are mostly utilized for rice cultivation. Arsenite (As(III)) is prevalent in paddy soils, and its high mobility and toxicity make As uptake by rice substantially greater than that by other food crops. Globally, interest has increased towards using As-resistant plant growth-promoting bacteria (PGPB) to improve plant metal tolerance, promote plant growth, and immobilize As to prevent its uptake and accumulation in the edible parts of rice as much as possible. This review focuses on the As-resistant PGPB characteristics influencing rice growth and the mechanisms by which they function to alleviate As toxicity stress in rice plants. Several recent examples of mechanisms responsible for decreasing the availability of As to rice and coping with As stresses facilitated by the PGPB with multiple PGP traits (e.g., phosphate and silicate solubilization, the production of 1-aminocyclopropane-1-carboxylate deaminase, phytohormones, and siderophore, N2 fixation, sulfate reduction, the biosorption, bioaccumulation, methylation, and volatilization of As, and arsenite oxidation) are also reviewed. In addition, future research needs about the application of As-resistant PGPB with PGP traits to mitigate As accumulation in rice plants are described.
Collapse
Affiliation(s)
- Hassan Etesami
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran.
| | - Byoung Ryong Jeong
- Department of Horticulture, College of Agriculture & Life Sciences, Gyeongsang National University (GNU), Jinju 52828, South Korea
| | - Alireza Raheb
- Department of Soil Science, College of Agriculture and Natural Resources, University of Tehran, Tehran, Iran
| |
Collapse
|
28
|
Peng YJ, Hu CY, Li W, Dai ZH, Liu CJ, Ma LQ. Arsenic induced plant growth by increasing its nutrient uptake in As-hyperaccumulator Pteris vittata: Comparison of arsenate and arsenite. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121168. [PMID: 36740166 DOI: 10.1016/j.envpol.2023.121168] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/04/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
Arsenic-hyperaccumulator Pteris vittata is efficient in taking up arsenate (AsV) and arsenite (AsIII), however, their impacts on P. vittata growth and nutrient uptake remain unclear. The uptake of AsV and AsIII, their influences on nutrient uptake and plant biomass, and As speciation were investigated in P. vittata after exposing to 5 or 50 μM AsV or AsIII for 12 d under hydroponics. The results show that AsV uptake in P. vittata was 1.2 times more efficient than AsIII, corresponding to 1.7-2.1 fold greater biomass than the control at 50 μM As. While AsV was dominant in the roots at ∼60%, AsIII was more dominant in the fronds at ∼70% in all treatments. Macronutrients P, K, Ca, and S were increased by 118-185% at 50 μM As, with greater uptake of micronutrients Fe, Mn, Cu, and Zn at 5 μM As. Further, positive correlations between P. vittata biomass and its As contents (r = 0.97), and P. vittata biomass and its S, Mg, P, or Ca contents (r = 0.70-0.98) were observed. Our results suggest that its increased nutrient uptake probably enhanced P. vittata growth under As exposure.
Collapse
Affiliation(s)
- You-Jing Peng
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Chun-Yan Hu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Wei Li
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Hua Dai
- School of Ecology and Environment, Anhui Normal University, Wuhu, Anhui, 241000, China
| | - Chen-Jing Liu
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China
| | - Lena Q Ma
- Institute of Soil and Water Resources and Environmental Science, College of Environmental and Resource Sciences, and Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
29
|
Mandal J, Jain V, Sengupta S, Rahman MA, Bhattacharyya K, Rahman MM, Golui D, Wood MD, Mondal D. Determination of bioavailable arsenic threshold and validation of modeled permissible total arsenic in paddy soil using machine learning. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:315-327. [PMID: 36652262 DOI: 10.1002/jeq2.20452] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
Minimizing arsenic intake from food consumption is a key aspect of the public health response in arsenic (As)-contaminated regions. In many of these regions, rice is the predominant staple food. Here, we present a validated maximum allowable concentration of total As in paddy soil and provide the first derivation of a maximum allowable soil concentration for bioavailable As. We have previously used meta-analysis to predict the maximum allowable total As in soil based on decision tree (DT) and logistic regression (LR) models. The models were defined using the maximum tolerable concentration (MTC) of As in rice grains as per the codex recommendation. In the present study, we validated these models using three test data sets derived from purposely collected field data. The DT model performed better than the LR in terms of accuracy and Matthews correlation coefficient (MCC). Therefore, the DT estimated maximum allowable total As in paddy soil of 14 mg kg-1 could confidently be used as an appropriate guideline value. We further used the purposely collected field data to predict the concentration of bioavailable As in the paddy soil with the help of random forest (RF), gradient boosting machine (GBM), and LR models. The category of grain As (<MTC and >MTC) was considered as the dependent variable; bioavailable As (BAs), total As (TAs), pH, organic carbon (OC), available phosphorus (AvP), and available iron (AvFe) were the predictor variables. LR performed better than RF and GBM in terms of accuracy, sensitivity, specificity, kappa, precision, log loss, F1score, and MCC. From the better-performing LR model, bioavailable As (BAs), TAs, AvFe, and OC were significant variables for grain As. From the partial dependence plots (PDP) and individual conditional expectation (ICE) of the LR model, 5.70 mg kg-1 was estimated to be the limit for BAs in soil.
Collapse
Affiliation(s)
- Jajati Mandal
- School of Science, Engineering and Environment, University of Salford, Salford, UK
- CSIRO, Land and Water, Waite Campus, Urrbrae, SA, Australia
| | - Vinay Jain
- Centre of Excellence, Agilent Technologies (International) Pvt. Ltd, Manesar, Haryana, India
| | - Sudip Sengupta
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Nadia, West Bengal, India
- School of Agriculture, Swami Vivekananda University, Barrackpore, West Bengal, India
| | - Md Aminur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Department of Public Health Engineering (DPHE), Zonal Laboratory, Jashore, Khulna, Bangladesh
| | - Kallol Bhattacharyya
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Nadia, West Bengal, India
| | - Mohammad Mahmudur Rahman
- Global Centre for Environmental Remediation (GCER), College of Engineering, Science and Environment, The University of Newcastle, Callaghan, New South Wales, Australia
- Department of General Educational Development, Faculty of Science & Information Technology, Daffodil International University, Savar, Dhaka, Bangladesh
| | - Debasis Golui
- Department of Civil, Construction and Environmental Engineering, North Dakota State University, Fargo, North Dakota, USA
- Division of Soil Science and Agricultural Chemistry, ICAR-Indian Agricultural Research Institute, New Delhi, India
| | - Michael D Wood
- School of Science, Engineering and Environment, University of Salford, Salford, UK
| | - Debapriya Mondal
- Department of Population Health, Faculty of Epidemiology and Population Health, School of Hygiene & Tropical Medicine, London, England, UK
| |
Collapse
|
30
|
Enhanced dissolution of arsenic in anaerobic soils upon organic amendment application: acid detergent-soluble organic matter as a potential indicator. Sci Rep 2023; 13:217. [PMID: 36604487 PMCID: PMC9816317 DOI: 10.1038/s41598-022-27325-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/30/2022] [Indexed: 01/06/2023] Open
Abstract
Application of organic amendments (OAMs) often enhances arsenic (As) dissolution in paddy soils. Therefore, understanding the properties of OAMs that determine the extent of As dissolution is essential for appropriate soil management. Since As dissolution increases with decrease in soil redox potential caused by microbial respiration, the decomposability of OAMs might be a critical factor controlling As dissolution in amended soils. We hypothesized that contents of acid detergent-soluble organic matter (ADSOM, mainly composed of non-fiber organic matter and hemicellulose) in OAMs can help estimate the potential of OAMs in accelerating As dissolution in soils with added OAMs. Therefore, two contrasting soil types, Andosol and Fluvisol, were mixed with 24 different OAMs and subjected to anaerobic incubation for 14 weeks. Changes in soil Eh and dissolved As contents were monitored throughout the incubation period, and As species in solid phases and ferrous iron (Fe(II)) contents in soils were measured after 2 and 6 weeks of incubation. The higher the ADSOM content in soils with OAMs, the higher the dissolved As contents in soils and the lower the Eh values. Dissolved As also positively correlated with the proportion of As(III) in solid phases and Fe(II) content after 2 and 6 weeks of incubation, indicating that decomposition of ADSOM led to reducing soil conditions, thereby promoting the reduction of As(V) and As-bearing Fe oxides and subsequent As dissolution. The results were consistent between the two types of soils, despite dissolved As content in the Andosol being two orders lower than that in Fluvisol. This is the first study to demonstrate that ADSOM can be a prominent indicator of the potential of OAMs, for promoting As dissolution, when applied to paddy soils.
Collapse
|
31
|
Li N, Hongwei J, Su Y. Phytoremediation of arsenic contaminated soil based on drip irrigation and intercropping. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 850:157970. [PMID: 35963406 DOI: 10.1016/j.scitotenv.2022.157970] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 08/06/2022] [Accepted: 08/07/2022] [Indexed: 06/15/2023]
Abstract
A directional leaching in drip irrigation along with intercropping was developed for enhanced phytoremediation of soils contaminated with arsenic (As). Spatiotemporal variations of As levels in soil and effects of irrigation eluents on As migration were analyzed in drip irrigation. Moreover, accumulated levels of As in Zea mays L. and Brassica rapa L. ssp. chinensis (the intercropping species) under drip irrigation and flood irrigation were compared to evaluate the enhancement on phytoremediation by drip irrigation. Results showed that As exhibited a directional migration in soil under drip irrigation, in which the solution of potassium dihydrogen phosphate (PDP) as the eluent significantly promoted As directional migration in soil. Compared to the flood-irrigated intercropping treatments, the As levels in crops (Brassica rapa L. ssp. chinensis) decreased significantly and that of remediating plants (Zea mays L. seedlings) increased significantly under the drip-irrigated intercropping condition. Drip irrigation coupled with intercropping dramatically reduced the risk of As contamination in crops and improved the phytoremediation of As-contaminated soil. PDP further enhanced the disparate effect of drip irrigation on As accumulation by crops and remediation plants.
Collapse
Affiliation(s)
- Ning Li
- College of Chemical Engineering, Xinjiang University, Urumqi 830046, PR China
| | - Jiaohar Hongwei
- College of Chemical Engineering, Xinjiang University, Urumqi 830046, PR China
| | - Yuhong Su
- College of Chemical Engineering, Xinjiang University, Urumqi 830046, PR China.
| |
Collapse
|
32
|
Thongnok S, Siripornadulsil W, Siripornadulsil S. Responses to arsenic stress of rice varieties coinoculated with the heavy metal-resistant and rice growth-promoting bacteria Pseudomonas stutzeri and Cupriavidus taiwanensis. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2022; 191:42-54. [PMID: 36182828 DOI: 10.1016/j.plaphy.2022.09.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 09/14/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Arsenic (As)-contaminated rice paddy fields are spreading globally, and thus, rice grains with low As accumulation at a safe level for consumption is profoundly needed. Rice is highly susceptible to As accumulation, and the responses to As vary among rice varieties. Here, combinations of the AsIII-oxidizing bacteria Pseudomonas stutzeri strains 4.25, 4.27, or 4.44 and Cupriavidus taiwanensis KKU2500-3 were investigated with respect to their responses to As toxicity and rice growth promotion during the early growth stage. All bacterial strains enhanced antioxidant enzyme activities, including SOD, CAT, APX, GPX, and GR, under As stress in vitro. Uninoculated and coinoculated rice seedlings of three rice varieties (KDML105, RD6, RD10) were cultivated in hydroponic solution without and with a combination of toxic AsIII and less toxic AsV for 30 days. Compared with uninoculated seedlings, the inoculated seedlings showed higher growth parameters and lower As contents in roots, shoots and throughout the plants. The bioconcentration factor (BCF) and translocation factor were reduced in inoculated seedlings. The effective response of rice to As toxicity influenced by bacteria was highest in KDML105, followed by RD6 and RD10. The root sulfide content was correlated with As accumulation in roots, shoots, and total seedlings and the BCFs. P. stutzeri 4.44 and C. taiwanensis KKU2500-3 were the most promising combinations for application in KDML105 cultivation under As-contaminated conditions. Understanding the basic response of rice coinoculated with effective bacteria at the early stage will provide guidelines for rice cultivation under As conditions at other scales.
Collapse
Affiliation(s)
- Sarun Thongnok
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Wilailak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Surasak Siripornadulsil
- Department of Microbiology, Faculty of Science, Khon Kaen University, Khon Kaen, 40002, Thailand; Research Center for Environmental and Hazardous Substance Management, Khon Kaen University, Khon Kaen, 40002, Thailand.
| |
Collapse
|
33
|
Liu J, Wang Y, Wang Y, Li Y, Li H, Xu J, Liu X. Novel insights into probabilistic health risk and source apportionment based on bioaccessible potentially toxic elements around an abandoned e-waste dismantling site. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156372. [PMID: 35654206 DOI: 10.1016/j.scitotenv.2022.156372] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 05/06/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The study of potentially toxic element (PTE) hazards around e-waste recycling areas has attracted increasing attention but does not consider elemental bioaccessibility. Here, the respiratory and oral bioaccessibilities were incorporated into probabilistic health risk evaluation and source contribution apportionment. The results showed that soil Cd yielded the highest respiratory and oral bioaccessibility, whereas Cr in soils and vegetables attained the lowest oral bioaccessibility. When incorporating metal bioaccessibility into health risk assessment, a 48.3%-55.7% overestimation of non-cancer and cancer risks can be avoided relative to the risk assessment based on the total concentrations of PTEs. More importantly, priority control metals were misidentified without consideration of bioaccessibility. Cadmium, As, and Cr were screened as the priority metal(loid)s for targeted risk control based on the total PTEs, whereas Cd, Zn, and Cu were the priority metal(loid)s based on the bioaccessible PTEs. Furthermore, source apportionment revealed that >50% of oral bioaccessible Cd, Cu, Ni, Pb, and Zn in farmland were contributed by e-waste dismantling activities, whereas bioaccessible As and Cr mainly originated from agrochemical applications and natural sources, respectively. This study emphasizes the refinement of risk estimation and source apportionment through metal bioaccessibility adjustment, which facilitates the realistic assessment of adverse health effects in humans and the precise identification of high-risk sources.
Collapse
Affiliation(s)
- Jian Liu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yiheng Wang
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yanni Wang
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yiren Li
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Hongbo Li
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jianming Xu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xingmei Liu
- College of Environmental and Resource Sciences, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
34
|
Cloning and functional characterization of arsenite oxidase (aoxB) gene associated with arsenic transformation in Pseudomonas sp. strain AK9. Gene X 2022; 850:146926. [DOI: 10.1016/j.gene.2022.146926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/22/2022] Open
|
35
|
Yuan J, Li Q, Zhao Y. The research trend on arsenic pollution in freshwater: a bibliometric review. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:602. [PMID: 35864315 DOI: 10.1007/s10661-022-10188-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 03/12/2022] [Indexed: 06/15/2023]
Abstract
We conducted a quantitative and qualitative bibliometric analysis based on 8740 research articles from the Web of Science Core Collection published in the last 20 years (2000-2020) for a better understanding of the research progress and development trend of arsenic pollution in freshwater (FAP). The results showed a significant increase in the number of publications from 2007 to 2020, especially after 2015. Four of the top 10 productive authors are from China. Two of the top three research institutions are from China, and the publications of Chinese Academy of Sciences accounted for 5.40% of the total. China is also the center of the national cooperation network, indicating a greater influence of China in this scientific research field. The top three journals included Science of the Total Environmental, Environmental Science Technology, and Journal of Hazardous Materials. Besides arsenic, the high-frequency keywords in this field included adsorption, contamination, groundwater, removal, detection, and geochemistry. The researchers mainly focused on the groundwater environment, as well as the pollution hazards of arsenic in water bodies, remediation techniques, detection, migration, and transformation. Studies should pay more attention to the application and development of phytoremediation technology in the field of FAP in the future.
Collapse
Affiliation(s)
- Jie Yuan
- Wuhan Library, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China
- Hubei Key Laboratory of Big Data in Science and Technology, Wuhan, 430074, People's Republic of China
| | - Qianxi Li
- Hubei Provincial Academy of Eco-Environmental Sciences, Wuhan, 430074, People's Republic of China
| | - Yanqiang Zhao
- Wuhan Library, Chinese Academy of Sciences, Wuhan, 430074, People's Republic of China.
- Hubei Key Laboratory of Big Data in Science and Technology, Wuhan, 430074, People's Republic of China.
| |
Collapse
|
36
|
Wang X, Jiang J, Dou F, Li X, Sun W, Ma X. Zinc Fertilizers Modified the Formation and Properties of Iron Plaque and Arsenic Accumulation in Rice ( Oryza sativa L.) in a Life Cycle Study. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8209-8220. [PMID: 35623092 DOI: 10.1021/acs.est.2c01767] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
This study examined the effect of three forms of zinc fertilizers on arsenic (As) accumulation and speciation in rice tissues over the life cycle of this cereal crop in a paddy soil. The formation and properties of iron plaque on rice roots at the maximum tillering stage and the mature stage were also determined. Elevated As at 5 mg/kg markedly lowered the rice yield by 86%; however, 100 mg/kg Zn fertilizers significantly increased the rice yield by 354-686%, regardless of the Zn form. Interestingly, only Zn2+ significantly lowered the total As in rice grains by 17% to 3.5 mg/kg and As(III) by 64% to around 0.5 mg/kg. Zinc amendments substantially hindered and, in the case of zinc oxide bulk particles (ZnOBPs), fully prevented the crystallization of iron oxides (Fe3O4 and Fe2O3) and silicon oxide (SiO2) and altered the composition of iron plaques on rice roots. SiO2 was first reported to be a significant component of iron plaque. Overall, ZnOBPs, ZnO nanoparticles, and Zn2+ displayed significant yet distinctive effects on the properties of iron plaque and As accumulation in rice grains, providing a fresh perspective on the potentially unintended consequences of different Zn fertilizers on food safety.
Collapse
Affiliation(s)
- Xiaoxuan Wang
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| | - Jiechao Jiang
- Department of Materials Science and Engineering, University of Texas Arlington, Arlington, Texas 76019, United States
| | - Fugen Dou
- Texas A&M AgriLife Research Center at Beaumont, Texas A&M University System, Beaumont, Texas 77713, United States
| | - Xiufen Li
- Texas A&M AgriLife Research Center at Beaumont, Texas A&M University System, Beaumont, Texas 77713, United States
| | - Wenjie Sun
- Department of Atmospheric and Hydrologic Science, St. Cloud State University, St. Cloud, Minnesota 56301, United States
| | - Xingmao Ma
- Zachry Department of Civil and Environmental Engineering, Texas A&M University, College Station, Texas 77843, United States
| |
Collapse
|
37
|
Abstract
Arsenic intoxication represents a worldwide health problem and occurs mainly through drinking water. Arsenic, a metalloid and naturally occurring element, is one of the most abundant elements in the earth’s crust, whose toxicity depends on the reduction state. The trivalent arsenicals are more toxic than the pentavalent arsenicals. In the trivalent state, inorganic and organic arsenic may react with thiol groups in proteins inhibiting their activity, whereas inorganic arsenic in the pentavalent state may replace phosphate ions in several reactions. Arsenic induces various epigenetic changes in mammalian cells, both in vivo and in vitro, often leading to the development of various types of cancers, including skin, lung, liver, urinary tract, prostate, and hematopoietic cancers. Potential mechanisms of arsenic toxicity in cancer include genotoxicity, altered DNA methylation and cell proliferation, co-carcinogenesis, tumor promotion, and oxidative stress. On the other hand, the FDA-certified drug arsenic trioxide provides solutions for various diseases, including several types of cancers. Detoxification from arsenic includes chelation therapy. Recently, investigations of the capability of some plants, such as Eucalyptus camadulensis L., Terminalia arjuna L. and Salix tetrasperma L., to remove arsenic from polluted soil and water have been studied. Moreover, nanophytoremediation is a green technology including the nanoscale materials used for absorption and degradation of organic and inorganic pollutants, such as arsenic compounds. This brief review represents an overview of arsenic uses, toxicity, epigenetics, and detoxification therapies.
Collapse
|
38
|
Singh S, Srivastava S. Recent advances in arsenic mitigation in rice through biotechnological approaches. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2022; 25:305-313. [PMID: 35654740 DOI: 10.1080/15226514.2022.2080803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Arsenic (As) is a major threat to the environment and human health due to its toxicity and carcinogenicity. Occurrence of alarming concentrations of As in water and soil leads to its bioaccumulation in crops which is a major health concern globally. Rice (Oryza sativa) is a staple food for a large population staying in As contaminated areas so, it is of utmost importance to reduce As levels in rice, especially grains. Amongst several strategies in practice, biotechnology may provide an effective option to reduce As accumulation in rice grains. Genetic engineering can be a viable approach to exploit potential genes playing roles in As metabolism pathway in plants. Besides, developing low As accumulating rice varieties through breeding is also an important area. Identifying genotypic variation in rice is a crucial step toward the development of a safe rice cultivar for growing in As-affected areas. Significant genotypic variation has been found in rice varieties for As accumulation in grains and that is attributable to differential expression of transporters, radial oxygen loss, and other regulators of As stress. This review provides recent updates on the research advances leading to transgenic and breeding approaches adopted to reduce As levels in rice, especially grains.
Collapse
Affiliation(s)
- Shraddha Singh
- Nuclear Agriculture & Biotechnology Division, Bhabha Atomic Research Centre, Mumbai, Maharashtra, India
- Homi Bhabha National Institute, Mumbai, Maharashtra, India
| | - Sudhakar Srivastava
- Plant Stress Biology Laboratory, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
39
|
González-Moscoso M, Juárez-Maldonado A, Cadenas-Pliego G, Meza-Figueroa D, SenGupta B, Martínez-Villegas N. Silicon nanoparticles decrease arsenic translocation and mitigate phytotoxicity in tomato plants. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:34147-34163. [PMID: 35034295 DOI: 10.1007/s11356-021-17665-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
In this study, we simulate the irrigation of tomato plants with arsenic (As)-contaminated water (from 0 to 3.2 mg L-1) and investigate the effect of the application of silicon nanoparticle (Si NPs) in the form of silicon dioxide (0, 250, and 1000 mg L-1) on As uptake and stress. Arsenic concentrations were determined in substrate and plant tissue at three different stratums. Phytotoxicity, As accumulation and translocation, photosynthetic pigments, and antioxidant activity of enzymatic and non-enzymatic compounds were also determined. Our results show that irrigation of tomato plants with As-contaminated water caused As substrate enrichment and As bioaccumulation (roots > leaves > steam), showing that the higher the concentration in irrigation water, the farther As translocated through the different tomato stratums. Additionally, phytotoxicity was observed at low concentrations of As, while tomato yield increased at high concentrations of As. We found that application of Si NPs decreased As translocation, tomato yield, and root biomass. Increased production of photosynthetic pigments and improved enzymatic activity (CAT and APX) suggested tomato plant adaptation at high As concentrations in the presence of Si NPs. Our results reveal likely impacts of As and nanoparticles on tomato production in places where As in groundwater is common and might represent a risk.
Collapse
Affiliation(s)
- Magín González-Moscoso
- Doctorado en Agricultura Protegida, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, Buenavista, 25315, Saltillo, Coahuila, México
| | - Antonio Juárez-Maldonado
- Departamento de Botánica, Universidad Autónoma Agraria Antonio Narro, Calzada Antonio Narro 1923, 25315, Saltillo, Coahuila, México
| | - Gregorio Cadenas-Pliego
- Centro de Investigación en Química Aplicada, Enrique Reyna H 140, 25294, Saltillo, Coahuila, México
| | - Diana Meza-Figueroa
- Departamento de Geología, Universidad de Sonora, Blvd. Luis Encinas J, Calle Av. Rosales &, Centro, 83000, Hermosillo, Sonora, México
| | - Bhaskar SenGupta
- School of Energy, Geoscience, Infrastructure & Society, Water Academy, Heriot-Watt University, EGIS 2.02A William Arrol Building, Scotland, EH14 4AS, UK
| | - Nadia Martínez-Villegas
- IPICyT, Instituto Potosino de Investigación Científica Y Tecnológica, Camino a La Presa San José No. 2055, Col. Lomas 4a Sec., 78216, San Luis Potosí, SLP, México.
| |
Collapse
|
40
|
Li T, Yang H, Yang X, Guo Z, Fu D, Liu C, Li S, Pan Y, Zhao Y, Xu F, Gao Y, Duan C. Community assembly during vegetation succession after metal mining is driven by multiple processes with temporal variation. Ecol Evol 2022; 12:e8882. [PMID: 35509610 PMCID: PMC9055294 DOI: 10.1002/ece3.8882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 04/13/2022] [Accepted: 04/14/2022] [Indexed: 02/02/2023] Open
Abstract
The mechanisms governing community assembly is fundamental to ecological restoration and clarification of the assembly processes associated with severe disturbances (characterized by no biological legacy and serious environmental problems) is essential. However, a systematic understanding of community assembly in the context of severe anthropogenic disturbance remains lacking. Here, we explored community assembly processes after metal mining, which is considered to be a highly destructive activity to provide insight into the assembly rules associated with severe anthropogenic disturbance. Using a chronosequence approach, we selected vegetation patches representing different successional stages and collected data on eight plant functional traits from each stage. The traits were classified as establishment and regenerative traits. Based on these traits, null models were constructed to identify the processes driving assembly at various successional stages. Comparison of our observations with the null models indicated that establishment and regenerative traits converged in the primary stage of succession. As succession progressed, establishment traits shifted to neutral assembly, whereas regeneration traits alternately converged and diverged. The observed establishment traits were equal to expected values, whereas regenerative traits diverged significantly after more than 20 years of succession. Furthermore, the available Cr content was linked strongly to species' ecological strategies. In the initial stages of vegetation succession in an abandoned metal mine, the plant community was mainly affected by the available metal content and dispersal limitation. It was probably further affected by strong interspecific interaction after the environmental conditions had improved, and stochastic processes became dominant during the stage with a successional age of more than 20 years.
Collapse
Affiliation(s)
- Ting Li
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Huaju Yang
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Xinting Yang
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Zhaolai Guo
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Denggao Fu
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Chang’e Liu
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Shiyu Li
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Ying Pan
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Yonggui Zhao
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| | - Fang Xu
- YICI Municipal Garden Engineering Co. Ltd Kunming China
| | - Yang Gao
- YICI Municipal Garden Engineering Co. Ltd Kunming China
| | - Changqun Duan
- School of Ecology and Environmental Sciences Yunnan University Kunming China
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments Yunnan University Kunming China
| |
Collapse
|
41
|
Jeong H, Ra K. Source apportionment and health risk assessment for potentially toxic elements in size-fractionated road dust in Busan Metropolitan City, Korea. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:350. [PMID: 35394204 DOI: 10.1007/s10661-022-10008-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Accepted: 03/28/2022] [Indexed: 05/22/2023]
Abstract
Potentially toxic elements' (PTEs; V, Cr, Co, Ni, Cu, Zn, As, Cd, Sb, Pb, and Hg) pollution level was investigated in size-fractionated road dust in Busan Metropolitan City. Health risks to humans (adult and children) were also evaluated in fine particle fraction (< 63 μm) of road dust. PTE concentrations in the fine particles (< 63 μm) were ranked as follows (unit: mg/kg): Zn (2511) > Cu (559) > Cr (531) > Pb (385) > Ni (139) > V (83.8) > Sb (31.6) > Co (21.6) > As (17.2) > Cd (4.1) > Hg (0.38). The PTE concentrations in fine particles (< 63 μm) were significantly higher than those in coarse particles except for V, Co, and As. The mean PTE loadings of fine particle fraction (< 63 μm; 233 mg/m2) in road dust were up to 4.5 times higher than other particle fractions. Igeo values of Sb were higher than 5 except for > 1000-μm fraction, indicating extremely polluted status. PCA results and elemental ratios indicated that most of the PTEs in road dust were derived from non-exhaust traffic-related sources such as brake pads and tires. Cr, Pb, and Sb had higher HI values than other metals for both adults and children. Sampling sites of heavy traffic and industrial areas showed that the carcinogenic risk exceeded the maximum threshold level (10 - 4). Especially in children, the mean carcinogenic risk (ingestion pathway) of As (6.8 × 10 - 4) Cd (2.0 × 10 - 4), and Ni (4.1 × 10 - 4) exceeded the maximum threshold level, indicating that continuous exposure to road dust may pose a high cancer risk to children. Therefore, continuous monitoring and management of these metals are needed to protect human health and the urban environment.
Collapse
Affiliation(s)
- Hyeryeong Jeong
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan, 49111, Republic of Korea
- Department of Ocean Science (Oceanography), KIOST School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea
| | - Kongtae Ra
- Marine Environmental Research Center, Korea Institute of Ocean Science and Technology (KIOST), Busan, 49111, Republic of Korea.
- Department of Ocean Science (Oceanography), KIOST School, University of Science and Technology (UST), Daejeon, 34113, Republic of Korea.
| |
Collapse
|
42
|
Moroishi Y, Signes-Pastor AJ, Li Z, Cottingham KL, Jackson BP, Punshon T, Madan J, Nadeau K, Gui J, Karagas MR. Infant infections, respiratory symptoms, and allergy in relation to timing of rice cereal introduction in a United States cohort. Sci Rep 2022; 12:4450. [PMID: 35292690 PMCID: PMC8924265 DOI: 10.1038/s41598-022-08354-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 02/28/2022] [Indexed: 01/03/2023] Open
Abstract
Rice products marketed in the USA, including baby rice cereal, contain inorganic arsenic, a putative immunotoxin. We sought to determine whether the timing of introduction of rice cereal in the first year of life influences occurrence of infections, respiratory symptoms, and allergy. Among 572 infants from the New Hampshire Birth Cohort Study, we used generalized estimating equation, adjusted for maternal smoking during pregnancy, marital status, education attainment, pre-pregnancy body mass index, maternal age at enrollment, infant birth weight, and breastfeeding history. Among 572 infants, each month earlier of introduction to rice cereal was associated with increased risks of subsequent upper respiratory tract infections (relative risk, RR = 1.04; 95% CI: 1.00-1.09); lower respiratory tract infections (RR = 1.19; 95% CI: 1.02-1.39); acute respiratory symptoms including wheeze, difficulty breathing, and cough (RR = 1.10; 95% CI: 1.00-1.22); fever requiring a prescription medicine (RR = 1.22; 95% CI: 1.02-1.45) and allergy diagnosed by a physician (RR = 1.20; 95% CI: 1.06-1.36). No clear associations were observed with gastrointestinal symptoms. Our findings suggest that introduction of rice cereal earlier may influence infants' susceptibility to respiratory infections and allergy.
Collapse
Affiliation(s)
- Yuka Moroishi
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | | | - Zhigang Li
- Department of Biostatistics, University of Florida, Gainesville, FL, USA
| | - Kathryn L Cottingham
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - Brian P Jackson
- Department of Earth Sciences, Dartmouth College, Hanover, NH, USA
| | - Tracy Punshon
- Department of Biological Sciences, Dartmouth College, Hanover, NH, USA
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
| | - Juliette Madan
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA
- Department of Pediatrics, Children's Hospital at Dartmouth, Lebanon, NH, USA
| | - Kari Nadeau
- Sean N. Parker Center for Allergy and Asthma Research, Stanford University School of Medicine, Stanford, CA, USA
| | - Jiang Gui
- Department of Biomedical Data Science, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - Margaret R Karagas
- Department of Epidemiology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA.
- Children's Environmental Health and Disease Prevention Research Center at Dartmouth, Hanover, NH, USA.
| |
Collapse
|
43
|
Ferreira DAP, Gaião LM, Kozovits AR, Messias MCTB. Evaluation of metal accumulation in the forage grass Brachiaria decumbens Stapf grown in contaminated soils with iron tailings. INTEGRATED ENVIRONMENTAL ASSESSMENT AND MANAGEMENT 2022; 18:528-538. [PMID: 34273133 DOI: 10.1002/ieam.4495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/05/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
The biggest world tailing dam rupture occurred in Brazil in 2015, releasing approximately 32 million m3 of iron tailings in the Doce River watershed, along its 660 km trajectory, reaching the Atlantic Ocean. This disaster significantly altered water and soil properties, increasing the soil metal contents, mainly iron concentration. Little is known about the concentration of toxic elements in plants grown in these areas. Brachiaria decumbens stands out as the most cultivated grass in the affected areas and is widely used for cattle grazing. This study verified the metal contents in soils and in samples of B. decumbens grown in the initial pathway of the debris flow. It was noted that the tailing deposition altered the substrate chemically, increasing Fe by 181% and reducing Zn soil contents by 188%. However, the metal contents in the forage grass were below the toxic limit for cattle feed. In addition, the results suggest that the natural geological characteristics of the region also influenced the metal contents in plants since those plants grown in nonaffected areas also showed high metal concentrations. The impacted area soils had a slightly basic pH, which can reduce the metal availability. Considering that, in the future, these soils would return to their natural acid state, the metal contents in plants grown in the affected regions could probably increase. Thus, long-term studies are needed to ensure the food safety of the forage production in these areas. Integr Environ Assess Manag 2022;18:528-538. © 2021 SETAC.
Collapse
Affiliation(s)
- Daniela A P Ferreira
- Department of Biodiversity, Evolution and Environment, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Lucas M Gaião
- Department of Biodiversity, Evolution and Environment, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Alessandra R Kozovits
- Department of Biodiversity, Evolution and Environment, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Maria C T B Messias
- Department of Biodiversity, Evolution and Environment, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| |
Collapse
|
44
|
Loukola-Ruskeeniemi K, Müller I, Reichel S, Jones C, Battaglia-Brunet F, Elert M, Le Guédard M, Hatakka T, Hellal J, Jordan I, Kaija J, Keiski RL, Pinka J, Tarvainen T, Turkki A, Turpeinen E, Valkama H. Risk management for arsenic in agricultural soil-water systems: lessons learned from case studies in Europe. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127677. [PMID: 34774350 DOI: 10.1016/j.jhazmat.2021.127677] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 10/29/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Chronic exposure to arsenic may be detrimental to health. We investigated the behaviour, remediation and risk management of arsenic in Freiberg, Germany, characterized by past mining activities, and near Verdun in France, where World War I ammunition was destroyed. The main results included: (1) pot experiments using a biologically synthesized adsorbent (sorpP) with spring barley reduced the mobility of arsenic, (2) the Omega-3 Index ecotoxicological tests verified that sorpP reduced the uptake and toxicity of arsenic in plants, (3) reverse osmosis membrane systems provided 99.5% removal efficiency of arsenic from surface water, (4) the sustainability assessment revealed that adsorption and coagulation-filtration processes were the most feasible options for the treatment of surface waters with significant arsenic concentrations, and (5) a model was developed for assessing health risk due to arsenic exposure. Risk management is the main option for extensive areas, while remediation options that directly treat the soil can only be considered in small areas subject to sensitive use. We recommend the risk management procedure developed in Germany for other parts of the world where both geogenic and anthropogenic arsenic is present in agricultural soil and water. Risk management measures have been successful both in Freiberg and in Verdun.
Collapse
Affiliation(s)
| | - Ingo Müller
- Saxon State Office for Environment, Agriculture and Geology, Dep. 42 Soil, Contaminated Sites, Halsbrückerstr. 31a, 09599 Freiberg, Germany
| | - Susan Reichel
- G.E.O.S. Ingenieur-gesellschaft mbH, Postfach 1162, 09581 Freiberg, Germany
| | - Celia Jones
- Kemakta Konsult AB, Box 126 55, 112 93 Stockholm, Sweden
| | | | - Mark Elert
- Kemakta Konsult AB, Box 126 55, 112 93 Stockholm, Sweden
| | - Marina Le Guédard
- LEB Aquitaine Transfert-ADERA, 71. Avenue Edouard Bourlaux, CS20032, 33140 Villenave d'Ornon, France
| | - Tarja Hatakka
- Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland
| | - Jennifer Hellal
- BRGM, 3 avenue Claude Guillemin, BP 36009, 45060 Orléans Cedex 2, France
| | - Isabel Jordan
- G.E.O.S. Ingenieur-gesellschaft mbH, Postfach 1162, 09581 Freiberg, Germany
| | - Juha Kaija
- Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland
| | - Riitta L Keiski
- University of Oulu, Environmental and Chemical Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Finland
| | - Jana Pinka
- G.E.O.S. Ingenieur-gesellschaft mbH, Postfach 1162, 09581 Freiberg, Germany
| | - Timo Tarvainen
- Geological Survey of Finland, P.O. Box 96, FI-02151 Espoo, Finland
| | - Auli Turkki
- University of Oulu, Environmental and Chemical Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Finland
| | - Esa Turpeinen
- University of Oulu, Environmental and Chemical Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Finland
| | - Hanna Valkama
- University of Oulu, Environmental and Chemical Engineering Research Unit, University of Oulu, P.O. Box 4300, FI-90014, Finland
| |
Collapse
|
45
|
Lu Y, Liao S, Ding Y, He Y, Gao Z, Song D, Tian W, Zhang X. Effect of Stevia rebaudiana Bertoni residue on the arsenic phytoextraction efficiency of Pteris vittata L. JOURNAL OF HAZARDOUS MATERIALS 2022; 421:126678. [PMID: 34333410 DOI: 10.1016/j.jhazmat.2021.126678] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 07/07/2021] [Accepted: 07/15/2021] [Indexed: 06/13/2023]
Abstract
Soil contamination by arsenic (As) presents a high risk to public health, necessitating urgent remediation. This study sought to develop an efficient strategy for the phytoremediation of As-contaminated soil. The effects of Stevia rebaudiana Bertoni residue (SR) on the available As (A-As) concentration of soil and As extraction from the soil by Pteris vittata L. were studied by soil simulation, pot, and field experiments. The A-As concentration in the soil simulation experiment increased significantly by 84.20% after 20 days. The biomass, As concentration, and total extracted As of SR-treated P. vittata L. in the pot experiment increased significantly by 50.66%, 120.2%, and 171.2%, respectively, compared to the untreated control. The SR-treated rhizosphere soil in the pot experiment displayed a significant 21.72% decrease in total As concentration. In the one-year field experiment, treatment with SR resulted in a significant 191.1% increase in As extraction by P. vittata L. and a significant 10.26% reduction in rhizosphere soil As concentration compared to the control. This study proposes a potential mechanism for SR-mediated enhancement of P. vittata L. As extraction ability and provides a new, economic, and environmentally friendly method for As-contaminated soil remediation.
Collapse
Affiliation(s)
- Yingying Lu
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Shuijiao Liao
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China.
| | - Yiran Ding
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ying He
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Ziyi Gao
- College of Resources and Environment, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Danna Song
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Wei Tian
- College of Science, Huazhong Agricultural University, Wuhan, Hubei 430070, China
| | - Xing Zhang
- Zhejiang shengshi biotechnology Co. LTD, Huzou, Zhejiang 313300, China
| |
Collapse
|
46
|
Nag R, O'Rourke SM, Cummins E. Risk factors and assessment strategies for the evaluation of human or environmental risk from metal(loid)s - A focus on Ireland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149839. [PMID: 34455276 DOI: 10.1016/j.scitotenv.2021.149839] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/18/2021] [Accepted: 08/18/2021] [Indexed: 06/13/2023]
Abstract
Elevated human exposure to metals and metalloids (metal(loid)s) may lead to acute sickness and pose a severe threat to human health. The human body is exposed to metal(loid)s principally through food, water, supplements, and (occasionally) air. There are inherent background levels of many metal(loid)s in regional soils as a consequence of geological sources. Baseline levels coupled with anthropogenic sources such as regional application of biosolids may lead to increased levels of certain metal(loid)s in soil, leading to potential transfer to water sources and potential uptake by plants. The latter could potentially transfer into the feed-to-food chain, viz. grazing animals, and bio-transfer to food products resulting in human exposure. This study addresses health concerns due to excessive intake of metal(loid)s by conducting a traditional review of peer-reviewed journals between 2015 and 2019, secondary references and relevant websites. The review identified the most researched metal(loid)s as Cu, Zn, Pb, Cd, Ni, Cr, As, Hg, Mn, Fe in the environment. The potential uptake of metal(loid)s by plants (phytoavailability) is a function of the mobility/retainability of metal(loid)s in the soil, influenced by soil geochemistry. The most critical parameters (including soil pH, soil organic matter, clay content, cation exchange capacity, the capability of decomposition of organic matter by microbes, redox potential, ionic strength) influencing metal(loid)s in soil are reviewed and used as a foundation to build a framework model for ranking metal(loid)s of concern. A robust quantitative risk assessment model is recommended for evaluating risk from individual metal(loid)s based on health-based indices (Daily Dietary Index (DDI), No Observed Adverse Effect Level (NOAEL), and Lowest Observed Adverse Effect Level (LOAEL)). This research proposes a risk assessment framework for potentially harmful metal(loid)s in the environment and highlights where regulation and intervention may be required.
Collapse
Affiliation(s)
- Rajat Nag
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Sharon Mary O'Rourke
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| | - Enda Cummins
- University College Dublin, School of Biosystems and Food Engineering, Belfield, Dublin 4, Ireland.
| |
Collapse
|
47
|
Wu J, Liang J, Björn LO, Li J, Shu W, Wang Y. Phosphorus-arsenic interaction in the 'soil-plant-microbe' system and its influence on arsenic pollution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 802:149796. [PMID: 34464787 DOI: 10.1016/j.scitotenv.2021.149796] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 07/08/2021] [Accepted: 08/16/2021] [Indexed: 06/13/2023]
Abstract
Elevated arsenic (As) in soil is of public concern due to the carcinogenicity. Phosphorus (P) strongly influences the adsorption, absorption, transport, and transformation of As in the soil and in organisms due to the similarity of the chemical properties of P and As. In soil, P, particularly inorganic P, can release soil-retained As (mostly arsenate) by competing for adsorption sites. In plant and microbial systems, P usually reduces As (mainly arsenate) uptake and affects As biotransformation by competing for As transporters. The intensity and pattern of PAs interaction are highly dependent on the forms of As and P, and strongly influenced by various biotic and abiotic factors. An understanding of the PAs interaction in 'soil-plant-microbe' systems is of great value to prevent soil As from entering the human food chain. Here, we review PAs interactions and the main influential factors in soil, plant, and microbial subsystems and their effects on the As release, absorption, transformation, and transport in the 'soil-plant-microbe' system. We also analyze the application potential of P fertilization as a control for As pollution and suggest the research directions that need to be followed in the future.
Collapse
Affiliation(s)
- Jingwen Wu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Jieliang Liang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Lars Olof Björn
- Department of Biology, Lund University, Lund SE-22362, Sweden
| | - Jintian Li
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Wensheng Shu
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China
| | - Yutao Wang
- Guangdong Provincial Key Laboratory of Biotechnology for Plant Development, Guangzhou Key Laboratory of Subtropical Biodiversity and Biomonitor, School of Life Sciences, South China Normal University, Guangzhou 510631, China.
| |
Collapse
|
48
|
Weber AM, Baxter BA, McClung A, Lamb MM, Becker-Dreps S, Vilchez S, Koita O, Wieringa F, Ryan EP. Arsenic speciation in rice bran: Agronomic practices, postharvest fermentation, and human health risk assessment across the lifespan. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:117962. [PMID: 34418860 PMCID: PMC8556161 DOI: 10.1016/j.envpol.2021.117962] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 07/29/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) exposure is a global public health concern affecting millions worldwide and stems from drinking water and foods containing As. Here, we assessed how agronomic practices and postharvest fermentation techniques influence As concentrations in rice bran, and calculated health risks from consumption. A global suite of 53 rice brans were tested for total As and speciation. Targeted quantification of inorganic As (iAs) concentrations in rice bran were used to calculate Target Hazard Quotient (THQ) and Lifetime Cancer Risk (LCR) across the lifespan. Mean iAs was highest in Thailand rice bran samples (0.619 mg kg-1) and lowest in Guatemala (0.017 mg kg-1) rice bran samples. When comparing monosodium-methanearsonate (MSMA) treated and the Native-soil counterpart under the irrigation technique Alternate Wetting and Drying (AWD) management, the MSMA treatment had significantly higher total As (p = 0.022), and iAs (p = 0.016). No significant differences in As concentrations were found between conventional and organic production, nor between fermented and non-fermented rice bran. Health risk assessment calculations for the highest iAs-rice bran dosage scenario for adults, children and infants exceeded THQ and LCR thresholds, and LCR was above threshold for median iAs-rice bran. This environmental exposure investigation into rice bran provides novel information with food safety guidance for an emerging global ingredient.
Collapse
Affiliation(s)
- Annika M Weber
- Department of Food Science and Human Nutrition, Colorado State University, Fort Collins, CO 80523, USA; Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Bridget A Baxter
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA
| | - Anna McClung
- USDA-Agricultural Research Service, Dale Bumpers National Rice Research Center, Stuttgart, AR 72160, USA
| | - Molly M Lamb
- Department of Epidemiology and Center for Global Health, University of Colorado School of Public Health, Aurora, CO 80045, USA
| | - Sylvia Becker-Dreps
- Departments of Family Medicine and Epidemiology, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7595, USA
| | - Samuel Vilchez
- Center of Infectious Diseases, Department of Microbiology and Parasitology, Faculty of Medical Sciences, National Autonomous University of Nicaragua, León (UNAN-León), León, Nicaragua
| | - Ousmane Koita
- Laboratoire de Biologie Moléculaire Appliquée, Campus de Badalabougou, Université des Sciences, des Techniques et des Technologies de Bamako, BP: 1805, Bamako, Mali
| | - Frank Wieringa
- Alimentation, Nutrition, Santé (E6), UMR95 QualiSud, University of Montpellier, Avignon Université, CIRAD, Institut Agro, Institut de Recherche pour le Développement (IRD), Université de La Reunion, Montpellier, France
| | - Elizabeth P Ryan
- Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, CO 80523, USA.
| |
Collapse
|
49
|
Nabi A, Naeem M, Aftab T, Khan MMA, Ahmad P. A comprehensive review of adaptations in plants under arsenic toxicity: Physiological, metabolic and molecular interventions. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 290:118029. [PMID: 34474375 DOI: 10.1016/j.envpol.2021.118029] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 08/18/2021] [Accepted: 08/20/2021] [Indexed: 06/13/2023]
Abstract
Arsenic (As) is recognized as a toxic metalloid and a severe threat to biodiversity due to its contamination. Soil and groundwater contamination with this metalloid has become a major concern. Large fractions of cultivable lands are becoming infertile gradually due to the irrigation of As contaminated water released from various sources. The toxicity of As causes the generation of free radicals, which are harmful to cellular metabolism and functions of plants. It alters the growth, metabolic, physiological, and molecular functions of the plants due to oxidative burst. Plants employ different signaling mechanisms to face the As toxicity like phosphate cascade, MAPK (Mitogen-Activated Protein Kinase), Ca-calmodulin, hormones, and ROS-signaling. The toxicity of As may significantly be reduced through various remediation techniques. Among them, the microbial-assisted remediation technique is cost-effective and eco-friendly. It breaks down the metalloid into less harmful species through various processes viz. biovolatilization, biomethylation, and transformation. Moreover, the adaptation strategies towards As toxicity are vacuolar sequestration, involvement of plant defense mechanism, and restricting its uptake from plant roots to above-ground parts. The speciation, uptake, transport, metabolism, ion dynamics, signaling pathways, crosstalk with phytohormones and gaseous molecules, as well as harmful impacts of the As on physiological processes, overall development of plants and remediation techniques are summarized in this review.
Collapse
Affiliation(s)
- Aarifa Nabi
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Naeem
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| | - Tariq Aftab
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - M Masroor A Khan
- Plant Physiology Section, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India
| | - Parvaiz Ahmad
- Botany and Microbiology Department, College of Science, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
50
|
Sun L, Zhu G, Liao X. Rhizosphere interactions between PAH-degrading bacteria and Pteris vittata L. on arsenic and phenanthrene dynamics and transformation. CHEMOSPHERE 2021; 285:131415. [PMID: 34265710 DOI: 10.1016/j.chemosphere.2021.131415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 06/15/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
The pot experiment was conducted to monitor the dynamics in soil solution chemistry in order to determine the main rhizosphere processes determining As and PAH bioavailability when utilizing P. vittata and PAH-degrading bacteria to remediate co-contaminated soils. The result showed that P. vittata was capable of depleting soil solution As and increasing phenanthrene solubilization, and thus facilitating plant As uptake and phenanthrene dissipation. Bacterial inoculation enhanced soil phenanthrene dissipation and concurrently modified As bioavailability though increasing soil pH, facilitating Fe and Ca minerals solubilization, and accelerating organic matter decomposition. However, the main factors that determine As bioavailability in the rhizosphere considerably varied with plant genotypes. Upon bacterial inoculation, P and Fe strongly influenced As(V) availability and its uptake by the Guangxi accession, and DOC, Fe, and pH were the main parameters correlated with As(V) availability in the rhizosphere of the Hunan accession. Bacterial inoculation tended to stimulate As(V) reduction in the rhizosphere of P. vittata. Microbial-induced changes in Ca, S, and C cycling and pH were indicators of As(V) reduction. Although bacterial inoculation increased soil As and phenanthrene availability, striking differences in As and nutrients uptake and phenanthrene dissipation were observed between P. vittata genotypes. It is suggested that apart from the microbial transformation, plant genotypes and bacterial mediated plant nutrition are also the critical factors in controlling the fates of As and phenanthrene. Our results uncovered the interactions between P. vittata and PAH-degrading bacteria on rhizosphere properties and nutrients cycling regulating As and PAH availability and remediation efficiency.
Collapse
Affiliation(s)
- Lu Sun
- China Geological Environmental Monitoring Institute, Beijing, 100081, PR China
| | - Ganghui Zhu
- Technical Centre for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing, 100012, PR China; School of Environmental Studies, China University of Geosciences, Wuhan, 430074, PR China
| | - Xiaoyong Liao
- Land Contamination Assessment and Remediation Laboratory, Institute of Geographical Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, 100101, PR China.
| |
Collapse
|