1
|
Vaishnav A, Rozmoš M, Kotianová M, Hršelová H, Bukovská P, Jansa J. Protists are key players in the utilization of protein nitrogen in the arbuscular mycorrhizal hyphosphere. THE NEW PHYTOLOGIST 2025; 246:2753-2764. [PMID: 40259857 DOI: 10.1111/nph.70153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/27/2025] [Indexed: 04/23/2025]
Abstract
While largely depending on other microorganisms for nitrogen (N) mineralization, arbuscular mycorrhizal fungi (AMF) can transfer N from organic sources to their host plants. Here, we compared N acquisition by the AMF hyphae from chitin and protein sources and assessed the effects of microbial interactions in the hyphosphere. We employed in vitro compartmented microcosms, each containing three distinct hyphosphere compartments amended with different N sources (protein, chitin, or ammonium chloride), one of which was enriched with 15N isotope. All hyphosphere compartments were supplied with Paenibacillus bacteria, with or without the protist Polysphondylium pallidum. We measured the effect of these model microbiomes on the efficiency of 15N transfer to roots via the AMF hyphae. We found that the hyphae efficiently took up N from ammonium chloride, competing strongly with bacteria and protists. Mobilization of 15N from chitin and protein was facilitated by bacteria and protists, respectively. Notably, AMF priming significantly affected the abundance of bacteria and protists in hyphosphere compartments and promoted mineralization of protein N by protists. Subsequently, this N was transferred into roots. Our results provide the first unequivocal evidence that roots can acquire N from proteins present in the AMF hyphosphere and that protists may play a crucial role in protein N mineralization.
Collapse
Affiliation(s)
- Anukool Vaishnav
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic
| | - Martin Rozmoš
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic
| | - Michala Kotianová
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic
| | - Hana Hršelová
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic
| | - Petra Bukovská
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic
| | - Jan Jansa
- Laboratory of Fungal Biology, Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 14200, Prague 4, Czech Republic
| |
Collapse
|
2
|
Zhong S, Wang W, Tang W, Zhou X, Bu T, Tang Z, Li Q. Serendipita indica-dominated synthetic microbial consortia enhanced tartary buckwheat growth and improved its tolerance to drought stress. Front Microbiol 2025; 16:1562341. [PMID: 40177481 PMCID: PMC11961947 DOI: 10.3389/fmicb.2025.1562341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 03/07/2025] [Indexed: 04/05/2025] Open
Abstract
The cultivation of tartary buckwheat serves dual roles, offering health benefits and nutritional advantages. Nonetheless, its cultivation is challenged by issues such as soil degradation and climatic drought. Plant growth-promoting (PGP) microorganisms hold promise for addressing these challenges. In this study, we investigated the effects of Serendipita indica inoculation on the root-associated microbial communities of tartary buckwheat. Additionally, we used S. indica to construct synthetic microbial consortia, and their role in promoting the growth and enhancing the drought resistance of tartary buckwheat was evaluated. This study found that the colonization of S. indica in tartary buckwheat promoted the enrichment of beneficial microorganisms such as Actinobacteriota, Sphingomonas, and Mortierella, while reducing the relative abundance of pathogenic genera including Cladosporium, Alternaria, and Acremonium. In addition, the inoculation of the microbial consortia significantly promoted the photosynthesis and biomass accumulation of tartary buckwheat, while also improving soil structure and fertility. Under drought conditions, introducing microbial groups markedly boosted root development, lowered the density of stomata and rate of transpiration in tartary buckwheat leaves, and decreased H2O2 and Malondialdehyde (MDA) levels, thus greatly enhancing tartary buckwheat's resistance to drought. In conclusion, our findings demonstrated that the microbial consortia constructed with S. indica can significantly promote the growth of tartary buckwheat and enhance its drought resistance. However, the specific molecular mechanisms underlying these effects require further investigation in future studies. These findings will provide important theoretical support for the development of novel microbial fertilizers.
Collapse
Affiliation(s)
| | | | | | | | | | - Zizhong Tang
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| | - Qingfeng Li
- College of Life Sciences, Sichuan Agricultural University, Ya’an, China
| |
Collapse
|
3
|
Sun H, Ma X, Van Zwieten L, Luo Y, Brown RW, Guggenberger G, Tang S, Kuzyakov Y, Jeewani PH. Iron oxides promote physicochemical stabilization of carbon despite enhancing microbial activity in the rice rhizosphere. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 958:178019. [PMID: 39674155 DOI: 10.1016/j.scitotenv.2024.178019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 09/12/2024] [Accepted: 12/07/2024] [Indexed: 12/16/2024]
Abstract
Rice rhizosphere soil is a hotspot of microbial activity and a complex interplay between soil abiotic properties, microbial community and organic carbon (C). The iron (Fe) plaque formation in the rice rhizosphere promotes Fe-bound organic C formation and increases microbial activity. Yet, the overall impact of Fe on C storage via physicochemical stabilization and microbial mineralization of rhizodeposits (rhizo-C) and soil organic C (SOC) in the rice rhizosphere remain unclear. We conducted a microcosm experiment using 13C-CO2 pulse labeling to grow rice (Oryza sativa L.) with four levels of α-FeOOH addition (Control, Fe-10 %, Fe-20 %, Fe-40 % w/w of α-FeOOH per total Fe in soil). This study aimed to evaluate the impact of Fe oxides on rhizo-C mineralization, the rhizosphere priming effect, and Fe-OM formation. Microbial community composition and localization of enzyme activities were also quantified through 16S rRNA sequencing and zymography. The hotspot area, as being indicated by zymography, increased by 20-50% in the presence of Fe compared to the soil without Fe addition. Despite being a hotspot, strong coprecipitation of Fe-OM in the rhizosphere promoted C immobilisation. Fe-20 % and Fe-40 % resulted in a 41 % and 33 % decrease of rhizodeposits derived 13C-CO2 emission and increased 13C stabilization mainly in 0.25-2 mm soil aggregates due to coprecipitation and aggregate formation with α-FeOOH. Moreover, Fe addition led to a dominance of Fe-oxidizing bacteria genera such as Pseudomonas, which fostered coprecipitation of Fe-OM formation. We highlight larger physicochemical stabilization of organic C by α-FeOOH addition despite raised hotspot area of microbial activity in the rice rhizosphere.
Collapse
Affiliation(s)
- Han Sun
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Xiaomin Ma
- Zhejiang Agricultural and Forest University, Linan Shi, Hang Zhou Shi, Zhe Jiang Sheng, China
| | - Lukas Van Zwieten
- NSW Department of Primary Industries, Wollongbar Primary Industries Institute, Wollongbar, NSW 2477, Australia
| | - Yu Luo
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Robert W Brown
- School of Environmental and Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK
| | - Georg Guggenberger
- Institute of Soil Science, Leibniz Universität Hannover, Hannover 30419, Germany
| | - Sheng Tang
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China
| | - Yakov Kuzyakov
- Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Gottingen, 37077 Gottingen, Germany; Peoples Friendship University of Russia (RUDN University), 117198 Moscow, Russia
| | - Peduruhewa H Jeewani
- Institute of Soil and Water Resources and Environmental Science, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, Zhejiang University, Hangzhou 310058, China; School of Environmental and Natural Sciences, Bangor University, Gwynedd LL57 2UW, UK.
| |
Collapse
|
4
|
Kakouridis A, Yuan M, Nuccio EE, Hagen JA, Fossum CA, Moore ML, Estera-Molina KY, Nico PS, Weber PK, Pett-Ridge J, Firestone MK. Arbuscular mycorrhiza convey significant plant carbon to a diverse hyphosphere microbial food web and mineral-associated organic matter. THE NEW PHYTOLOGIST 2024; 242:1661-1675. [PMID: 38358052 DOI: 10.1111/nph.19560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Accepted: 12/04/2023] [Indexed: 02/16/2024]
Abstract
Arbuscular mycorrhizal fungi (AMF) transport substantial plant carbon (C) that serves as a substrate for soil organisms, a precursor of soil organic matter (SOM), and a driver of soil microbial dynamics. Using two-chamber microcosms where an air gap isolated AMF from roots, we 13CO2-labeled Avena barbata for 6 wk and measured the C Rhizophagus intraradices transferred to SOM and hyphosphere microorganisms. NanoSIMS imaging revealed hyphae and roots had similar 13C enrichment. SOM density fractionation, 13C NMR, and IRMS showed AMF transferred 0.77 mg C g-1 of soil (increasing total C by 2% relative to non-mycorrhizal controls); 33% was found in occluded or mineral-associated pools. In the AMF hyphosphere, there was no overall change in community diversity but 36 bacterial ASVs significantly changed in relative abundance. With stable isotope probing (SIP)-enabled shotgun sequencing, we found taxa from the Solibacterales, Sphingobacteriales, Myxococcales, and Nitrososphaerales (ammonium oxidizing archaea) were highly enriched in AMF-imported 13C (> 20 atom%). Mapping sequences from 13C-SIP metagenomes to total ASVs showed at least 92 bacteria and archaea were significantly 13C-enriched. Our results illustrate the quantitative and ecological impact of hyphal C transport on the formation of potentially protective SOM pools and microbial roles in the AMF hyphosphere soil food web.
Collapse
Affiliation(s)
- Anne Kakouridis
- University of California Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Mengting Yuan
- University of California Berkeley, Berkeley, CA, 94720, USA
| | - Erin E Nuccio
- Lawrence Livermore National Laboratory, Livermore, 94550, CA, USA
| | - John A Hagen
- University of California Berkeley, Berkeley, CA, 94720, USA
| | | | - Madeline L Moore
- University of California Berkeley, Berkeley, CA, 94720, USA
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Katerina Y Estera-Molina
- University of California Berkeley, Berkeley, CA, 94720, USA
- Lawrence Livermore National Laboratory, Livermore, 94550, CA, USA
| | - Peter S Nico
- Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
| | - Peter K Weber
- Lawrence Livermore National Laboratory, Livermore, 94550, CA, USA
| | - Jennifer Pett-Ridge
- Lawrence Livermore National Laboratory, Livermore, 94550, CA, USA
- University of California Merced, Merced, 95343, CA, USA
| | | |
Collapse
|
5
|
Xing Y, Zhang P, Zhang W, Yu C, Luo Z. Continuous cropping of potato changed the metabolic pathway of root exudates to drive rhizosphere microflora. Front Microbiol 2024; 14:1318586. [PMID: 38249485 PMCID: PMC10797025 DOI: 10.3389/fmicb.2023.1318586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 12/04/2023] [Indexed: 01/23/2024] Open
Abstract
For potato production, continuous cropping (CC) could lead to autotoxicity buildup and microflora imbalance in the field soil, which may result in failure of crops and reduction in yield. In this study, non-targeted metabolomics (via liquid chromatography with tandem mass spectrometry (LC-MS/MS)) combined with metagenomic profiling (via high-throughput amplicon sequencing) were used to evaluate correlations between metabolomics of potato root exudates and communities of bacteria and fungi around potato plants to illustrate the impacts of CC. Potato plants were grown in soil collected from fields with various CC years (0, 1, 4, and 7 years). Metabolomic analysis showed that the contents and types of potential autotoxins in potato root exudates increased significantly in CC4 and CC7 plants (i.e., grown in soils with 4 and 7 years of CC). The differentially expressed metabolites were mainly produced via alpha-linolenic acid metabolism in plant groups CC0 and CC1 (i.e., no CC or 1 year CC). The metabolomics of the groups CC4 and CC7 became dominated by styrene degradation, biosynthesis of siderophore group non-ribosomal peptides, phenylpropanoid biosynthesis, and biosynthesis of various plant secondary metabolites. Continuous cropping beyond 4 years significantly changed the bacterial and fungal communities in the soil around the potato crops, with significant reduction of beneficial bacteria and accumulation of harmful fungi. Correlations between DEMs and microflora biomarkers were established with strong significances. These results suggested that continuous cropping of potato crops changed their metabolism as reflected in the plant root exudates and drove rhizosphere microflora to directions less favorable to plant growth, and it needs to be well managed to assure potato yield.
Collapse
Affiliation(s)
- Yanhong Xing
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Pingliang Zhang
- Dryland Agriculture Institute, Gansu Academy of Agricultural Sciences, Lanzhou, China
| | - Wenming Zhang
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| | - Chenxu Yu
- Department of Agriculture and Biosystem Engineering, Iowa State University, Ames, IA, United States
| | - Zhuzhu Luo
- College of Resources and Environmental Sciences, Gansu Agricultural University, Lanzhou, China
| |
Collapse
|
6
|
Siles JA, García-Romera I, Cajthaml T, Belloc J, Silva-Castro G, Szaková J, Tlustos P, Garcia-Sanchez M. Application of dry olive residue-based biochar in combination with arbuscular mycorrhizal fungi enhances the microbial status of metal contaminated soils. Sci Rep 2022; 12:12690. [PMID: 35879523 PMCID: PMC9314387 DOI: 10.1038/s41598-022-17075-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 07/20/2022] [Indexed: 11/09/2022] Open
Abstract
Biochar made-up of dry olive residue (DOR), a biomass resulting from the olive oil extraction industry, has been proposed to be used as a reclamation agent for the recovery of metal contaminated soils. The aim of the present study was to investigate whether the soil application of DOR-based biochar alone or in combination with arbuscular mycorrhizal fungi (AMF) leads to an enhancement in the functionality and abundance of microbial communities inhabiting metal contaminated soils. To study that, a greenhouse microcosm experiment was carried out, where the effect of the factors (i) soil application of DOR-based biochar, (ii) biochar pyrolysis temperature (considering the variants 350 and 500 °C), (iii) soil application dose of biochar (2 and 5%), (iv) soil contamination level (slightly, moderately and highly polluted), (v) soil treatment time (30, 60 and 90 days) and (vi) soil inoculation with Funneliformis mosseae (AM fungus) on β-glucosidase and dehydrogenase activities, FA (fatty acid)-based abundance of soil microbial communities, soil glomalin content and AMF root colonization rates of the wheat plants growing in each microcosm were evaluated. Biochar soil amendment did not stimulate enzyme activities but increased microbial abundances. Dehydrogenase activity and microbial abundances were found to be higher in less contaminated soils and at shorter treatment times. Biochar pyrolysis temperature and application dose differently affected enzyme activities, but while the first factor did not have a significant effect on glucosidase and dehydrogenase, a higher biochar dose resulted in boosted microbial abundances. Soil inoculation with F. mosseae favored the proliferation of soil AMF community and increased soil glomalin content as well as rates of AMF root colonization. This factor also interacted with many of the others evaluated to significantly affect soil enzyme activities, microbial abundances and AMF community. Our results indicate that the application of DOR-based biochar along with AMF fungi is an appropriate approach to improve the status of microbial communities in soils with a moderate metal contamination at short-term.
Collapse
Affiliation(s)
- José A Siles
- Department of Plant & Microbial Biology, University of California at Berkeley, Berkeley, CA, USA
| | - Inmaculada García-Romera
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científica (EEZ-CSIC), Granada, Spain
| | - Tomas Cajthaml
- Institute of Microbiology of the Academy of Sciences, Prague, Czech Republic.,Faculty of Science, Institute for Environmental Studies, Charles University, Prague, Czech Republic
| | - Jorge Belloc
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científica (EEZ-CSIC), Granada, Spain
| | - Gloria Silva-Castro
- Department of Soil Microbiology and Symbiotic Systems, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científica (EEZ-CSIC), Granada, Spain
| | - Jirina Szaková
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Pavel Tlustos
- Department of Agro-Environmental Chemistry and Plant Nutrition, Faculty of Agrobiology, Food and Natural Resources, Prague, Czech Republic
| | - Mercedes Garcia-Sanchez
- Eco&Sols, CIRAD, INRAE, IRD, Institut Agro Montpellier, Université Montpellier, Montpellier, France.
| |
Collapse
|
7
|
Hidri R, Mahmoud OMB, Zorrig W, Mahmoudi H, Smaoui A, Abdelly C, Azcon R, Debez A. Plant Growth-Promoting Rhizobacteria Alleviate High Salinity Impact on the Halophyte Suaeda fruticosa by Modulating Antioxidant Defense and Soil Biological Activity. FRONTIERS IN PLANT SCIENCE 2022; 13:821475. [PMID: 35720566 PMCID: PMC9199488 DOI: 10.3389/fpls.2022.821475] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/28/2022] [Indexed: 06/12/2023]
Abstract
Plant growth-promoting rhizobacteria (PGPR) are considered as bio-ameliorators that confer better salt resistance to host plants while improving soil biological activity. Despite their importance, data about the likely synergisms between PGPR and halophytes in their native environments are scarce. The objective of this study was to assess the effect of PGPR (Glutamicibacter sp. and Pseudomonas sp.) inoculation on biomass, nutrient uptake, and antioxidant enzymes of Suaeda fruticosa, an obligate halophyte native in salt marshes and arid areas in Tunisia. Besides, the activity of rhizospheric soil enzyme activities upon plant inoculation was determined. Plants were grown in pots filled with soil and irrigated with 600 mM NaCl for 1 month. Inoculation (either with Pseudomonas sp. or Glutamicibacter sp.) resulted in significantly higher shoot dry weight and less accumulation of Na+ and Cl- in shoots of salt-treated plants. Glutamicibacter sp. inoculation significantly reduced malondialdehyde (MDA) concentration, while increasing the activity of antioxidant enzymes (superoxide dismutase; catalase; ascorbate peroxidase; and glutathione reductase) by up to 100%. This provides strong arguments in favor of a boosting effect of this strain on S. fruticosa challenged with high salinity. Pseudomonas sp. inoculation increased shoot K+ and Ca2+ content and lowered shoot MDA concentration. Regarding the soil biological activity, Pseudomonas sp. significantly enhanced the activities of three rhizospheric soil enzymes (urease, ß-glucosidase, and dehydrogenase) as compared to their respective non-inoculated saline treatment. Hence, Pseudomonas sp. could have a great potential to be used as bio-inoculants in order to improve plant growth and soil nutrient uptake under salt stress. Indole-3-acetic acid concentration in the soil increased in both bacterial treatments under saline conditions, especially with Glutamicibacter sp. (up to +214%). As a whole, Glutamicibacter sp. and Pseudomonas sp. strains are promising candidates as part of biological solutions aiming at the phytoremediation and reclamation of saline-degraded areas.
Collapse
Affiliation(s)
- Rabaa Hidri
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | | | - Walid Zorrig
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Henda Mahmoudi
- International Center for Biosaline Agriculture, Academic City, United Arab Emirates
| | - Abderrazak Smaoui
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Chedly Abdelly
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| | - Rosario Azcon
- Departamento de Microbiología del Suelo y Sistemas Simbióticos, Estación Experimental del Zaidín, Consejo Superior de Investigaciones Científicas, Granada, Spain
| | - Ahmed Debez
- Laboratory of Extremophile Plants, Centre of Biotechnology of Borj Cedria, Hammam-Lif, Tunisia
| |
Collapse
|
8
|
Shabaan M, Asghar HN, Zahir ZA, Zhang X, Sardar MF, Li H. Salt-Tolerant PGPR Confer Salt Tolerance to Maize Through Enhanced Soil Biological Health, Enzymatic Activities, Nutrient Uptake and Antioxidant Defense. Front Microbiol 2022; 13:901865. [PMID: 35633670 PMCID: PMC9136238 DOI: 10.3389/fmicb.2022.901865] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/14/2022] [Indexed: 01/24/2023] Open
Abstract
Salt-tolerant plant growth-promoting rhizobacteria (PGPR) can improve soil enzyme activities, which are indicators of the biological health of the soil, and can overcome the nutritional imbalance in plants. A pot trial was executed to evaluate the effect of inoculation of different salt-tolerant PGPR strains in improving soil enzyme activities. Three different salinity levels (original, 5, and 10 dS m-1) were used and maize seeds were coated with the freshly prepared inocula of ten different PGPR strains. Among different strains, inoculation of SUA-14 (Acinetobacter johnsonii) caused a maximum increment in urease (1.58-fold), acid (1.38-fold), and alkaline phosphatase (3.04-fold) and dehydrogenase (72%) activities as compared to their respective uninoculated control. Acid phosphatase activities were found to be positively correlated with P contents in maize straw (r = 0.96) and grains (r = 0.94). Similarly, a positive correlation was found between alkaline phosphatase activities and P contents in straw (r = 0.77) and grains (r = 0.75). In addition, urease activities also exhibited positive correlation with N contents in maize straw (r = 0.92) and grains (r = 0.91). Moreover, inoculation of Acinetobacter johnsonii caused a significant decline in catalase (39%), superoxide dismutase (26%) activities, and malondialdehyde contents (27%). The PGPR inoculation improved the soil's biological health and increased the uptake of essential nutrients and conferred salinity tolerance in maize. We conclude that the inoculation of salt-tolerant PGPR improves soil enzyme activities and soil biological health, overcomes nutritional imbalance, and thereby improves nutrient acquisition by the plant under salt stress.
Collapse
Affiliation(s)
- Muhammad Shabaan
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz Naeem Asghar
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Zahir Ahmad Zahir
- Institute of Soil and Environmental Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Xiu Zhang
- Ningxia Key Laboratory for the Development and Application of Microbial Resources in Extreme Environments, North Minzu University, Yinchuan, China
| | - Muhammad Fahad Sardar
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Hongna Li
- Agricultural Clean Watershed Research Group, Institute of Environment and Sustainable Development in Agriculture, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
9
|
Zheng F, Mou X, Zhang J, Zhang T, Xia L, Yin S, Wu L, Leng X, An S, Zhao D. Gradual Enhancement of the Assemblage Stability of the Reed Rhizosphere Microbiome with Recovery Time. Microorganisms 2022; 10:microorganisms10050937. [PMID: 35630381 PMCID: PMC9146439 DOI: 10.3390/microorganisms10050937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/21/2022] [Accepted: 04/27/2022] [Indexed: 12/04/2022] Open
Abstract
Rhizoplane microbes are considered proxies for evaluating the assemblage stability of the rhizosphere in wetland ecosystems due to their roles in plant growth and ecosystem health. However, our knowledge of how microbial assemblage stability is promoted in the reed rhizosphere of wetlands undergoing recovery is limited. We investigated the assemblage stability, diversity, abundance, co-occurrence patterns, and functional characteristics of reed rhizosphere microbes in restored wetlands. The results indicated that assemblage stability significantly increased with recovery time and that the microbial assemblages were capable of resisting seasonal fluctuations after more than 20 years of restoration. The number of bacterial indicators was greater in the restoration groups with longer restoration periods. Most bacterial indicators appeared in the 30-year restoration group. However, the core taxa and keystone species of module 2 exhibited greater abundance within longer recovery periods and were well organized, with rich and diverse functions that enhanced microbial assemblage stability. Our study provides insight into the connection between the rhizosphere microbiome and recovery period and presents a useful theoretical basis for the empirical management of wetland ecosystems.
Collapse
Affiliation(s)
- Fuchao Zheng
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
| | - Xiaoming Mou
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
| | - Jinghua Zhang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
| | - Tiange Zhang
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
| | - Lu Xia
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
| | - Shenglai Yin
- College of Life Sciences, Nanjing Normal University, Nanjing 210023, China;
| | - Lingye Wu
- Changshu Wetland Conservation and Management Station, Changshu 215500, China;
| | - Xin Leng
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
| | - Shuqing An
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
- Nanjing University Ecology Research Institute of Changshu, Changshu 215500, China
- Correspondence: (S.A.); (D.Z.)
| | - Dehua Zhao
- Institute of Wetland Ecology, School of Life Science, Nanjing University, Nanjing 210023, China; (F.Z.); (X.M.); (J.Z.); (T.Z.); (L.X.); (X.L.)
- Correspondence: (S.A.); (D.Z.)
| |
Collapse
|
10
|
Utilization of Legume-Nodule Bacterial Symbiosis in Phytoremediation of Heavy Metal-Contaminated Soils. BIOLOGY 2022; 11:biology11050676. [PMID: 35625404 PMCID: PMC9138774 DOI: 10.3390/biology11050676] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 04/24/2022] [Accepted: 04/25/2022] [Indexed: 02/04/2023]
Abstract
Simple Summary The legume–rhizobium symbiosis is one of the most beneficial interactions with high importance in agriculture, as it delivers nitrogen to plants and soil, thereby enhancing plant growth. Currently, this symbiosis is increasingly being exploited in phytoremediation of metal contaminated soil to improve soil fertility and simultaneously metal extraction or stabilization. Rhizobia increase phytoremediation directly by nitrogen fixation, protection of plants from pathogens, and production of plant growth-promoting factors and phytohormones. Abstract With the increasing industrial activity of the growing human population, the accumulation of various contaminants in soil, including heavy metals, has increased rapidly. Heavy metals as non-biodegradable elements persist in the soil environment and may pollute crop plants, further accumulating in the human body causing serious conditions. Hence, phytoremediation of land contamination as an environmental restoration technology is desirable for both human health and broad-sense ecology. Legumes (Fabaceae), which play a special role in nitrogen cycling, are dominant plants in contaminated areas. Therefore, the use of legumes and associated nitrogen-fixing rhizobia to reduce the concentrations or toxic effects of contaminants in the soil is environmentally friendly and becomes a promising strategy for phytoremediation and phytostabilization. Rhizobia, which have such plant growth-promoting (PGP) features as phosphorus solubilization, phytohormone synthesis, siderophore release, production of beneficial compounds for plants, and most of all nitrogen fixation, may promote legume growth while diminishing metal toxicity. The aim of the present review is to provide a comprehensive description of the main effects of metal contaminants in nitrogen-fixing leguminous plants and the benefits of using the legume–rhizobium symbiosis with both wild-type and genetically modified plants and bacteria to enhance an efficient recovery of contaminated lands.
Collapse
|
11
|
Arbuscular mycorrhizae: natural modulators of plant–nutrient relation and growth in stressful environments. Arch Microbiol 2022; 204:264. [DOI: 10.1007/s00203-022-02882-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/02/2022]
|
12
|
Oleńska E, Małek W, Sujkowska-Rybkowska M, Szopa S, Włostowski T, Aleksandrowicz O, Swiecicka I, Wójcik M, Thijs S, Vangronsveld J. An Alliance of Trifolium repens—Rhizobium leguminosarum bv. trifolii—Mycorrhizal Fungi From an Old Zn-Pb-Cd Rich Waste Heap as a Promising Tripartite System for Phytostabilization of Metal Polluted Soils. Front Microbiol 2022; 13:853407. [PMID: 35495712 PMCID: PMC9051510 DOI: 10.3389/fmicb.2022.853407] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 03/15/2022] [Indexed: 11/21/2022] Open
Abstract
The Bolesław waste heap in South Poland, with total soil Zn concentrations higher than 50,000 mg kg–1, 5,000 mg Pb kg–1, and 500 mg Cd kg–1, is a unique habitat for metallicolous plants, such as Trifolium repens L. The purpose of this study was to characterize the association between T. repens and its microbial symbionts, i.e., Rhizobium leguminosarum bv. trifolii and mycorrhizal fungi and to evaluate its applicability for phytostabilization of metal-polluted soils. Rhizobia originating from the nutrient-poor waste heap area showed to be efficient in plant nodulation and nitrogen fixation. They demonstrated not only potential plant growth promotion traits in vitro, but they also improved the growth of T. repens plants to a similar extent as strains from a non-polluted reference area. Our results revealed that the adaptations of T. repens to high Zn-Pb-Cd concentrations are related to the storage of metals predominantly in the roots (excluder strategy) due to nodule apoplast modifications (i.e., thickening and suberization of cell walls, vacuolar storage), and symbiosis with arbuscular mycorrhizal fungi of a substantial genetic diversity. As a result, the rhizobia-mycorrhizal fungi-T. repens association appears to be a promising tool for phytostabilization of Zn-Pb-Cd-polluted soils.
Collapse
Affiliation(s)
- Ewa Oleńska
- Faculty of Biology, University of Bialystok, Bialystok, Poland
- *Correspondence: Ewa Oleńska,
| | - Wanda Małek
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | | | | | | | | | - Izabela Swiecicka
- Faculty of Biology, University of Bialystok, Bialystok, Poland
- Laboratory of Applied Microbiology, University of Bialystok, Bialystok, Poland
| | - Małgorzata Wójcik
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
| | - Sofie Thijs
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| | - Jaco Vangronsveld
- Faculty of Biology and Biotechnology, Institute of Biological Sciences, Maria Curie-Skłodowska University, Lublin, Poland
- Environmental Biology, Centre for Environmental Sciences, Hasselt University, Diepenbeek, Belgium
| |
Collapse
|
13
|
Dong C, Zhang Z, Shao Q, Yao T, Liang Z, Han Y. Mycobiota of Eucommia ulmoides bark: Diversity, rare biosphere and core taxa. FUNGAL ECOL 2021. [DOI: 10.1016/j.funeco.2021.101090] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
You Y, Aho K, Lohse KA, Schwabedissen SG, Ledbetter RN, Magnuson TS. Biological Soil Crust Bacterial Communities Vary Along Climatic and Shrub Cover Gradients Within a Sagebrush Steppe Ecosystem. Front Microbiol 2021; 12:569791. [PMID: 34025590 PMCID: PMC8134670 DOI: 10.3389/fmicb.2021.569791] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 04/13/2021] [Indexed: 11/19/2022] Open
Abstract
Numerous studies have examined bacterial communities in biological soil crusts (BSCs) associated with warm arid to semiarid ecosystems. Few, however, have examined bacterial communities in BSCs associated with cold steppe ecosystems, which often span a wide range of climate conditions and are sensitive to trends predicted by relevant climate models. Here, we utilized Illumina sequencing to examine BSC bacterial communities with respect to climatic gradients (elevation), land management practices (grazing vs. non-grazing), and shrub/intershrub patches in a cold sagebrush steppe ecosystem in southwestern Idaho, United States. Particular attention was paid to shifts in bacterial community structure and composition. BSC bacterial communities, including keystone N-fixing taxa, shifted dramatically with both elevation and shrub-canopy microclimates within elevational zones. BSC cover and BSC cyanobacteria abundance were much higher at lower elevation (warmer and drier) sites and in intershrub areas. Shrub-understory BSCs were significantly associated with several non-cyanobacteria diazotrophic genera, including Mesorhizobium and Allorhizobium-Neorhizobium-Pararhizobium-Rhizobium. High elevation (wetter and colder) sites had distinct, highly diverse, but low-cover BSC communities that were significantly indicated by non-cyanobacterial diazotrophic taxa including families in the order Rhizobiales and the family Frankiaceae. Abiotic soil characteristics, especially pH and ammonium, varied with both elevation and shrub/intershrub level, and were strongly associated with BSC community composition. Functional inference using the PICRUSt pipeline identified shifts in putative N-fixing taxa with respect to both the elevational gradient and the presence/absence of shrub canopy cover. These results add to current understanding of biocrust microbial ecology in cold steppe, serving as a baseline for future mechanistic research.
Collapse
|
15
|
Berg G, Kusstatscher P, Abdelfattah A, Cernava T, Smalla K. Microbiome Modulation-Toward a Better Understanding of Plant Microbiome Response to Microbial Inoculants. Front Microbiol 2021; 12:650610. [PMID: 33897663 PMCID: PMC8060476 DOI: 10.3389/fmicb.2021.650610] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/19/2021] [Indexed: 12/31/2022] Open
Abstract
Plant-associated microorganisms are involved in important functions related to growth, performance and health of their hosts. Understanding their modes of action is important for the design of promising microbial inoculants for sustainable agriculture. Plant-associated microorganisms are able to interact with their hosts and often exert specific functions toward potential pathogens; the underlying in vitro interactions are well studied. In contrast, in situ effects of inoculants, and especially their impact on the plant indigenous microbiome was mostly neglected so far. Recently, microbiome research has revolutionized our understanding of plants as coevolved holobionts but also of indigenous microbiome-inoculant interactions. Here we disentangle the effects of microbial inoculants on the indigenous plant microbiome and point out the following types of plant microbiome modulations: (i) transient microbiome shifts, (ii) stabilization or increase of microbial diversity, (iii) stabilization or increase of plant microbiome evenness, (iv) restoration of a dysbiosis/compensation or reduction of a pathogen-induced shift, (v) targeted shifts toward plant beneficial members of the indigenous microbiota, and (vi) suppression of potential pathogens. Therefore, we suggest microbiome modulations as novel and efficient mode of action for microbial inoculants that can also be mediated via the plant.
Collapse
Affiliation(s)
- Gabriele Berg
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Peter Kusstatscher
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Ahmed Abdelfattah
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Tomislav Cernava
- Institute of Environmental Biotechnology, Graz University of Technology, Graz, Austria
| | - Kornelia Smalla
- Julius Kühn Institute (JKI) Federal Research Centre for Cultivated Plants, Institute for Epidemiology and Pathogen Diagnostics, Braunschweig, Germany
| |
Collapse
|
16
|
Bonkowski M, Tarkka M, Razavi BS, Schmidt H, Blagodatskaya E, Koller R, Yu P, Knief C, Hochholdinger F, Vetterlein D. Spatiotemporal Dynamics of Maize ( Zea mays L.) Root Growth and Its Potential Consequences for the Assembly of the Rhizosphere Microbiota. Front Microbiol 2021; 12:619499. [PMID: 33815308 PMCID: PMC8010349 DOI: 10.3389/fmicb.2021.619499] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 02/16/2021] [Indexed: 12/20/2022] Open
Abstract
Numerous studies have shown that plants selectively recruit microbes from the soil to establish a complex, yet stable and quite predictable microbial community on their roots – their “microbiome.” Microbiome assembly is considered as a key process in the self-organization of root systems. A fundamental question for understanding plant-microbe relationships is where a predictable microbiome is formed along the root axis and through which microbial dynamics the stable formation of a microbiome is challenged. Using maize as a model species for which numerous data on dynamic root traits are available, this mini-review aims to give an integrative overview on the dynamic nature of root growth and its consequences for microbiome assembly based on theoretical considerations from microbial community ecology.
Collapse
Affiliation(s)
- Michael Bonkowski
- Terrestrial Ecology, Institute of Zoology, University of Cologne, Cologne, Germany
| | - Mika Tarkka
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany.,German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Leipzig, Germany
| | - Bahar S Razavi
- Department of Soil and Plant Microbiome, Christian-Albrecht University of Kiel, Kiel, Germany
| | - Hannes Schmidt
- Centre for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Evgenia Blagodatskaya
- Department of Soil Ecology, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany
| | - Robert Koller
- Institute of Bio- and Geosciences, IBG-2: Plant Sciences, Forschungszentrum Jülich GmbH, Jülich, Germany
| | - Peng Yu
- Emmy Noether Group Root Functional Biology, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Claudia Knief
- Institute of Crop Science and Resource Conservation - Molecular Biology of the Rhizosphere, University of Bonn, Bonn, Germany
| | - Frank Hochholdinger
- Crop Functional Genomics, Institute of Crop Science and Resource Conservation (INRES), University of Bonn, Bonn, Germany
| | - Doris Vetterlein
- Department of Soil System Science, Helmholtz Centre for Environmental Research - UFZ, Halle, Germany.,Soil Science, Martin-Luther-University Halle-Wittenberg, Halle, Germany
| |
Collapse
|
17
|
Raveau R, Fontaine J, Hijri M, Lounès-Hadj Sahraoui A. The Aromatic Plant Clary Sage Shaped Bacterial Communities in the Roots and in the Trace Element-Contaminated Soil More Than Mycorrhizal Inoculation - A Two-Year Monitoring Field Trial. Front Microbiol 2020; 11:586050. [PMID: 33424786 PMCID: PMC7794003 DOI: 10.3389/fmicb.2020.586050] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 10/14/2020] [Indexed: 01/04/2023] Open
Abstract
To cope with soil contamination by trace elements (TE), phytomanagement has attracted much attention as being an eco-friendly and cost-effective green approach. In this context, aromatic plants could represent a good option not only to immobilize TE, but also to use their biomass to extract essential oils, resulting in high added-value products suitable for non-food valorization. However, the influence of aromatic plants cultivation on the bacterial community structure and functioning in the rhizosphere microbiota remains unknown. Thus, the present study aims at determining in TE-aged contaminated soil (Pb - 394 ppm, Zn - 443 ppm, and Cd - 7ppm, respectively, 11, 6, and 17 times higher than the ordinary amounts in regional agricultural soils) the effects of perennial clary sage (Salvia sclarea L.) cultivation, during two successive years of growth and inoculated with arbuscular mycorrhizal fungi, on rhizosphere bacterial diversity and community structure. Illumina MiSeq amplicon sequencing targeting bacterial 16S rRNA gene was used to assess bacterial diversity and community structure changes. Bioinformatic analysis of sequencing datasets resulted in 4691 and 2728 bacterial Amplicon Sequence Variants (ASVs) in soil and root biotopes, respectively. Our findings have shown that the cultivation of clary sage displayed a significant year-to-year effect, on both bacterial richness and community structures. We found that the abundance of plant-growth promoting rhizobacteria significantly increased in roots during the second growing season. However, we didn't observe any significant effect of mycorrhizal inoculation neither on bacterial diversity nor on community structure. Our study brings new evidence in TE-contaminated areas of the effect of a vegetation cover with clary sage cultivation on the microbial soil functioning.
Collapse
Affiliation(s)
- Robin Raveau
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Calais, France
| | - Joël Fontaine
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Calais, France
| | - Mohamed Hijri
- Institut de Recherche en Biologie Végétale (IRBV) de l’Université de Montréal, Montreal, QC, Canada
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P), Ben Guerir, Morocco
| | - Anissa Lounès-Hadj Sahraoui
- Université du Littoral Côte d’Opale, Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Calais, France
| |
Collapse
|
18
|
Hernández EG, Baraza E, Smit C, Berg MP, Falcão Salles J. Salt Marsh Elevation Drives Root Microbial Composition of the Native Invasive Grass Elytrigia atherica. Microorganisms 2020; 8:microorganisms8101619. [PMID: 33096699 PMCID: PMC7589393 DOI: 10.3390/microorganisms8101619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/13/2020] [Accepted: 10/19/2020] [Indexed: 02/07/2023] Open
Abstract
Elytrigia atherica is a native invasive plant species whose expansion on salt marshes is attributed to genotypic and phenotypic adaptations to non-ideal environmental conditions, forming two ecotypes. It is unknown how E. atherica–microbiome interactions are contributing to its adaptation. Here we investigated the effect of sea-water flooding frequency and associated soil (a)biotic conditions on plant traits and root-associated microbial community composition and potential functions of two E. atherica ecotypes. We observed higher endomycorrhizal colonization in high-elevation ecotypes (HE, low inundation frequency), whereas low-elevation ecotypes (LE, high inundation frequency) had higher specific leaf area. Similarly, rhizosphere and endosphere bacterial communities grouped according to ecotypes. Soil ammonium content and elevation explained rhizosphere bacterial composition. Around 60% the endosphere amplicon sequence variants (ASVs) were also found in soil and around 30% of the ASVs were ecotype-specific. The endosphere of HE-ecotype harbored more unique sequences than the LE-ecotype, the latter being abundant in halophylic bacterial species. The composition of the endosphere may explain salinity and drought tolerance in relation to the local environmental needs of each ecotype. Overall, these results suggest that E. atherica is flexible in its association with soil bacteria and ecotype-specific dissimilar, which may enhance its competitive strength in salt marshes.
Collapse
Affiliation(s)
- Edisa García Hernández
- Microbial Community Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
- Correspondence: (E.G.H.); (J.F.S.); Tel.: +31-50-3632236 (E.G.H.); +31-50-36-32162 (J.F.S.)
| | - Elena Baraza
- Departamento de Biologia, Universitat de les Illes Balears-INAGEA, 07122 Mallorca, Spain;
| | - Christian Smit
- Community and Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands; (C.S.); (M.P.B.)
| | - Matty P. Berg
- Community and Conservation Ecology Group, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands; (C.S.); (M.P.B.)
- Department of Ecological Science, Section Animal Ecology, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Joana Falcão Salles
- Microbial Community Ecology, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9747 AG Groningen, The Netherlands
- Correspondence: (E.G.H.); (J.F.S.); Tel.: +31-50-3632236 (E.G.H.); +31-50-36-32162 (J.F.S.)
| |
Collapse
|
19
|
Fan X, Chang W, Sui X, Liu Y, Song G, Song F, Feng F. Changes in rhizobacterial community mediating atrazine dissipation by arbuscular mycorrhiza. CHEMOSPHERE 2020; 256:127046. [PMID: 32438129 DOI: 10.1016/j.chemosphere.2020.127046] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/25/2020] [Accepted: 05/09/2020] [Indexed: 06/11/2023]
Abstract
Although it was well known that arbuscular mycorrhizal fungus (AMF) inoculation significantly increased atrazine dissipation in the soil, the effect of AMF on bacterial community, especially potential atrazine-degrading bacteria mediating atrazine dissipation has been overlooked. In the present study, there were four different treatments: Funnelliformis mosseae inoculation with or without atrazine; and non-AMF inoculation with or without atrazine. F. mosseae significantly increased atrazine dissipation rate from 28.7% to 53.3%. Then 16S rRNA gene sequencing results indicated that bacteria community differed significantly by F. mosseae inoculation and atrazine addition. The Shannon index decreased significantly with AMF and atrazine at phylum and family level, and significant inhibition of atrazine on evenness was also observed. LEFSe analysis revealed that Terrimonas and Arthrobacter were significantly associated with F. mosseae, as well as unidentified_Nitrospiraceae associated with atrazine addition. There are several bacterial taxa associated with both F. mosseae inoculation and atrazine addition. Totally, twelve atrazine-degrading bacterial genera (>0.10%) were identified. When atrazine was added, the abundance of Arthrobacter, Burkholderia, Mycobacterium and Streptomyces increased in F. mosseae inoculation treatment, but Nocardioides, Pseudomonas, Bradyrhizobium, Rhizobium, Rhodobacter, Methylobacterium, Bosea and Shinella decreased. In the presence of atrazine, activities of dehydrogenase, urease, acid and alkaline phosphatase in F. mosseae inoculation treatment were significantly higher than those in non-inoculation. However, there was no significant relationship between bacterial community and any soil enzyme activity in four treatments. Our findings reveal the potential relationship between soil bacterial community and AMF inoculation during atrazine dissipation.
Collapse
Affiliation(s)
- Xiaoxu Fan
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China; Northeast Forestry University, Harbin, 150040, China
| | - Wei Chang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Yufei Liu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Ge Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin, 150500, China; Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin, 150080, China.
| | - Fujuan Feng
- Northeast Forestry University, Harbin, 150040, China.
| |
Collapse
|
20
|
Zhang Y, Bi Y, Shen H, Zhang L. Arbuscular Mycorrhizal Fungi Enhance Sea Buckthorn Growth in Coal Mining Subsidence Areas in Northwest China. J Microbiol Biotechnol 2020; 30:848-855. [PMID: 32238763 PMCID: PMC9728247 DOI: 10.4014/jmb.1907.07007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022]
Abstract
Land subsidence induced by underground coal mining leads to severe ecological and environmental problems. Arbuscular mycorrhizal fungi (AMF) have the potential to improve plant growth and soil properties. We aimed to assess the effects of AMF on the growth and soil properties of sea buckthorn under field conditions at different reclamation times. Inoculation with AMF significantly promoted the survival rate of sea buckthorn over a 50-month period, while also increasing plant height after 14, 26, and 50 months. Crown width after 14 months and ground diameter after 50 months of inoculation treatment were significantly higher than in the uninoculated treatment. AMF inoculation significantly improved plant mycorrhizal colonization rate and promoted an increase in mycelial density in the rhizosphere soil. The pH and electrical conductivity of rhizosphere soil also increased after inoculation. Moreover, after 26 and 50 months the soil organic matter in the inoculation treatment was significantly higher than in the control. The number of inoculated soil rhizosphere microorganisms, as well as acid phosphatase activity, also increased. AMF inoculation may play an active role in promoting plant growth and improving soil quality in the long term and is conducive to the rapid ecological restoration of damaged mining areas.
Collapse
Affiliation(s)
- Yanxu Zhang
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 00083, P.R. China,College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, P.R. China
| | - Yinli Bi
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 00083, P.R. China,College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, P.R. China,Corresponding author Phone: +86-10-62339048 Fax: +86-10-62339048 E-mail:
| | - Huihui Shen
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 00083, P.R. China,College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, P.R. China
| | - Longjie Zhang
- State Key Laboratory of Coal Resources and Safe Mining, China University of Mining and Technology (Beijing), Beijing 00083, P.R. China,College of Geoscience and Surveying Engineering, China University of Mining and Technology (Beijing), Beijing 100083, P.R. China
| |
Collapse
|
21
|
Cao J, Feng Y, Lin X, Wang J. A beneficial role of arbuscular mycorrhizal fungi in influencing the effects of silver nanoparticles on plant-microbe systems in a soil matrix. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:11782-11796. [PMID: 31975001 DOI: 10.1007/s11356-020-07781-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 01/17/2020] [Indexed: 06/10/2023]
Abstract
Silver nanoparticles (AgNPs) are considered to be emerging contaminant for plant-soil systems. AM arbuscular mycorrhizal (AM) fungi can alleviate the negative effects of a variety of pollutants on their hosts, but its potential roles in influencing the toxicity of AgNPs and the underlying mechanisms are still an open question. This study investigated the responses of maize (Zea mays L.) inoculated with or without AM fungi and soil microorganisms to different concentrations of AgNPs (0, 0.025, 0.25, and 2.5 mg kg-1). The inoculation of AM fungi helps to alleviate the AgNP-induced phytotoxicity. Compared to the non-AM fungal inoculated treatments, AM fungal inoculation significantly increased the mycorrhizal colonization, biomass and phosphorus (P) acquisitions of maize, with an upregulation of P transporter gene expression under AgNP treatments. AM fungal inoculation decreased Ag content in plant shoots and roots, downregulated expression levels of genes involved in Ag transport and gene encoding a metallothionein involved in metal homeostasis. The beneficial role of AM fungi extended to soil microbes. Compared to the non-AM fungal inoculated treatments, AM fungal inoculation decreased the toxicity of AgNPs to soil microbial activities and bacterial abundance. AM fungal inoculation increased the bacterial diversity and induced changes in the soil bacterial community composition. Altogether, the present study revealed that AM fungal symbiosis can play beneficial roles in mediating the negative effects exposed by AgNPs on plants probably through changing the expressions of potential Ag transporters and cooperating with soil bacterial community.
Collapse
Affiliation(s)
- Jiling Cao
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Youzhi Feng
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Xiangui Lin
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, People's Republic of China.
| | - Junhua Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, Jiangsu, People's Republic of China
| |
Collapse
|
22
|
Huang XF, Li SQ, Li SY, Ye GY, Lu LJ, Zhang L, Yang LY, Qian X, Liu J. The effects of biochar and dredged sediments on soil structure and fertility promote the growth, photosynthetic and rhizosphere microbial diversity of Phragmites communis (Cav.) Trin. ex Steud. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 697:134073. [PMID: 31473547 DOI: 10.1016/j.scitotenv.2019.134073] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 08/05/2019] [Accepted: 08/22/2019] [Indexed: 06/10/2023]
Abstract
The improvement of urban river revetment soil is conducive to promote the growth of pioneer plants which can accelerate the restoration of ecosystems. How to effectively amend soil structure and composition to provide a suitable soil rhizosphere for rapid plant expansion is essential to be solved in the study. Biochar and lake dredged sediments were used to amend an urban river bank soil, where compaction and lack of mineral nutrition hindered the growth of Phragmites. The study found that the addition of 50% mass of dredged sediments combined with 5% mass of straw biochar increased the plant height maximum growth rate, tiller number per unit area, and root biomass by 32.93%, 29.62%, and 41.39%, respectively. The reason for these positive effects on plant growth mainly involved the improvement of rhizosphere soil properties. Addition of biochar increased porosity and available phosphorus content while dredged sediments increased soil organic carbon, thereby increasing the underground unit total phosphorus content of Phragmites by 18.18%. An increase of the Alpha diversity index of rhizosphere microorganisms (8.18%) and the decrease in infection rate of arbuscular mycorrhizal fungi (23.61%) also proved that the rapid expansion of Phragmites was improved owing to changes of the soil physicochemical properties. The combination of biochar and dredged sediments realized synergistic improvement of soil physical structure and increase of nutrient content, which helped promote the growth and expansion of the underground part of Phragmites. This cost-effective method can be feasible used for improvement of urban river revetment ecosystem.
Collapse
Affiliation(s)
- Xiang-Feng Huang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Shuang-Qiang Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Shi-Yang Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Guang-Yu Ye
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Li-Jun Lu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Lin Zhang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China
| | - Liu-Yan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xin Qian
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Jia Liu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Ministry of Education Key Laboratory of Yangtze River Water Environment, Shanghai Institute of Pollution Control and Ecological Security, Tongji University, Shanghai 200092, China.
| |
Collapse
|
23
|
Uroz S, Courty PE, Oger P. Plant Symbionts Are Engineers of the Plant-Associated Microbiome. TRENDS IN PLANT SCIENCE 2019; 24:905-916. [PMID: 31288964 DOI: 10.1016/j.tplants.2019.06.008] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 06/03/2019] [Accepted: 06/07/2019] [Indexed: 05/09/2023]
Abstract
Plants interact throughout their lives with environmental microorganisms. These interactions determine plant development, nutrition, and fitness in a dynamic and stressful environment, forming the basis for the holobiont concept in which plants and plant-associated microbes are not considered as independent entities but as a single evolutionary unit. A primary open question concerns whether holobiont structure is shaped by its microbial members or solely by the plant. Current knowledge of plant-microbe interactions argues that the establishment of symbiosis directly and indirectly conditions the plant-associated microbiome. We propose to define the impact of the symbiont on the plant microbiome as the 'symbiosis cascade effect', in which the symbionts and their plant host jointly shape the plant microbiome.
Collapse
Affiliation(s)
- Stephane Uroz
- Institut National de la Recherche Agronomique (INRA) Unité Mixte de Recherche (UMR) 1136, Interactions Arbres-Microorganismes, F-54280, Champenoux, France; Université de Lorraine, UMR 1136, Interactions Arbres-Microorganismes, F-54500 Vandoeuvre-lès-, Nancy, France; INRA Unité de Recherche (UR) 1138, Biogéochimie des Écosystèmes Forestiers, F-54280, Champenoux, France.
| | - Pierre Emmanuel Courty
- Agroécologie, Institut National de la Recherche, Agronomique (INRA), AgroSup Dijon, Centre, National de la Recherche Scientifique (CNRS), Université de Bourgogne, INRA, Université de Bourgogne Franche-Comté, F-21000 Dijon, France
| | - Phil Oger
- Université de Lyon, Institut National des Sciences Appliquées (INSA) de Lyon, CNRS UMR, 5240, Villeurbanne, France
| |
Collapse
|
24
|
Xiao D, Tan Y, Liu X, Yang R, Zhang W, He X, Wang K. Effects of different legume species and densities on arbuscular mycorrhizal fungal communities in a karst grassland ecosystem. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 678:551-558. [PMID: 31078845 DOI: 10.1016/j.scitotenv.2019.04.293] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2019] [Revised: 04/19/2019] [Accepted: 04/19/2019] [Indexed: 06/09/2023]
Abstract
Legumes can increase nitrogen (N) input to soil via N2 fixation, and arbuscular mycorrhizal fungi (AMF) can colonize legumes, which further promotes the acquisition of nutrients such as phosphorus (P). Nevertheless, little is known about how different legume species or planting densities affect soil AMF communities. We measured soil AMF abundance, diversity, and community composition in two legume species that had been planted at two densities in a karst grassland. Five treatments were used: control (CK), Amorpha fruticosa at 1.5 × 2 m density (AFD1), A. fruticosa at 1 × 1 m density (AFD2), Indigofera atropurpurea at 1.5 × 2 m density (IAD1), and I. atropurpurea at 1 × 1 m density (IAD2). The results showed that A. fruticosa plots were significantly richer in Redeckera spp., while I. atropurpurea plots were richer in Septoglomus. AMF abundance in AFD1, AFD2, and IAD1 was significantly higher than in CK, but AMF abundance in IAD2 was significantly lower than that in the other treatments. AMF richness and Chao1 estimator in AFD1 were significantly higher than in CK. Funneliformis, Septoglomus, and Acaulospora were significantly more abundant in IAD2 than in the other treatments. The interaction between legume species and density had a significant effect on AMF abundance and community composition. AMF abundance and diversity were significantly negatively and positively correlated with available P and microbial biomass N, respectively. These results suggest that different species and densities of legumes may increase available N, which could improve AMF abundance and alleviate soil P deficiencies. Planting A. fruticosa or I. atropurpurea at a low density may be an effective method to increase AMF colonization of roots, and thus, nutrient transport in karst grasslands.
Collapse
Affiliation(s)
- Dan Xiao
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Yongjun Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Xin Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Rong Yang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Zhang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China.
| | - Xunyang He
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China
| | - Kelin Wang
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha 410125, China; Huanjiang Observation and Research Station for Karst Ecosystems, Chinese Academy of Sciences, Huanjiang 547100, China.
| |
Collapse
|
25
|
Akyol TY, Niwa R, Hirakawa H, Maruyama H, Sato T, Suzuki T, Fukunaga A, Sato T, Yoshida S, Tawaraya K, Saito M, Ezawa T, Sato S. Impact of Introduction of Arbuscular Mycorrhizal Fungi on the Root Microbial Community in Agricultural Fields. Microbes Environ 2019; 34:23-32. [PMID: 30584188 PMCID: PMC6440726 DOI: 10.1264/jsme2.me18109] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Accepted: 10/22/2018] [Indexed: 12/22/2022] Open
Abstract
Arbuscular mycorrhizal (AM) fungi are important members of the root microbiome and may be used as biofertilizers for sustainable agriculture. To elucidate the impact of AM fungal inoculation on indigenous root microbial communities, we used high-throughput sequencing and an analytical pipeline providing fixed operational taxonomic units (OTUs) as an output to investigate the bacterial and fungal communities of roots treated with a commercial AM fungal inoculum in six agricultural fields. AM fungal inoculation significantly influenced the root microbial community structure in all fields. Inoculation changed the abundance of indigenous AM fungi and other fungal members in a field-dependent manner. Inoculation consistently enriched several bacterial OTUs by changing the abundance of indigenous bacteria and introducing new bacteria. Some inoculum-associated bacteria closely interacted with the introduced AM fungi, some of which belonged to the genera Burkholderia, Cellulomonas, Microbacterium, Sphingomonas, and Streptomyces and may be candidate mycorrhizospheric bacteria that contribute to the establishment and/or function of the introduced AM fungi. Inoculated AM fungi also co-occurred with several indigenous bacteria with putative beneficial traits, suggesting that inoculated AM fungi may recruit specific taxa to confer better plant performance. The bacterial families Methylobacteriaceae, Acetobacteraceae, Armatimonadaceae, and Alicyclobacillaceae were consistently reduced by the inoculation, possibly due to changes in the host plant status caused by the inoculum. To the best of our knowledge, this is the first large-scale study to investigate interactions between AM fungal inoculation and indigenous root microbial communities in agricultural fields.
Collapse
Affiliation(s)
| | - Rieko Niwa
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO)2–1–18 Kannondai, Tsukuba 305–8666Japan
| | | | - Hayato Maruyama
- Graduate School of Agriculture, Hokkaido UniversitySapporo 060–8589Japan
| | - Takumi Sato
- Faculty of Agriculture, Yamagata UniversityTsuruoka 997–8555Japan
| | - Takae Suzuki
- Field Science Center, Graduate School of Agriculture, Tohoku UniversityOsaki 989–6711Japan
| | - Ayako Fukunaga
- Western Region Agricultural Research Center, NAROAyabe 623–0035Japan
| | - Takashi Sato
- Faculty of Bioresource Sciences, Akita Prefectural UniversityAkita 010–0195Japan
| | - Shigenobu Yoshida
- Central Region Agricultural Research Center, National Agriculture and Food Research Organization (NARO)2–1–18 Kannondai, Tsukuba 305–8666Japan
| | - Keitaro Tawaraya
- Faculty of Agriculture, Yamagata UniversityTsuruoka 997–8555Japan
| | - Masanori Saito
- Field Science Center, Graduate School of Agriculture, Tohoku UniversityOsaki 989–6711Japan
- Department of Innovation Research, Japan Science and Technology AgencyTokyo, 102–0076Japan
| | - Tatsuhiro Ezawa
- Graduate School of Agriculture, Hokkaido UniversitySapporo 060–8589Japan
| | - Shusei Sato
- Graduate School of Life Sciences, Tohoku UniversitySendai 980–8577Japan
| |
Collapse
|
26
|
Meglouli H, Lounès-Hadj Sahraoui A, Magnin-Robert M, Tisserant B, Hijri M, Fontaine J. Arbuscular mycorrhizal inoculum sources influence bacterial, archaeal, and fungal communities' structures of historically dioxin/furan-contaminated soil but not the pollutant dissipation rate. MYCORRHIZA 2018; 28:635-650. [PMID: 29987429 DOI: 10.1007/s00572-018-0852-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/27/2018] [Indexed: 05/18/2023]
Abstract
Little is known about the influence of arbuscular mycorrhizal fungi (AMF) inoculum sources on phytoremediation efficiency. Therefore, the aim of this study was to compare the effects of two mycorrhizal inocula (indigenous and commercial inocula) in association with alfalfa and tall fescue on the plant growth, the bacterial, fungal, and archaeal communities, and on the removal of dioxin/furan (PCDD/F) from a historically polluted soil after 24 weeks of culture in microcosms. Our results showed that both mycorrhizal indigenous and commercial inocula were able to colonize plant roots, and the growth response depends on the AMF inoculum. Nevertheless, the improvement of root dry weight in inoculated alfalfa with indigenous inoculum and in inoculated tall fescue with commercial inoculum was clearly correlated with the highest mycorrhizal colonization of the roots in both plant species. The highest shoot dry weight was obtained in inoculated alfalfa and tall fescue with the commercial inoculum. AMF inoculation differently affected the number of bacterial and archaeal OTUs and bacterial diversity, with elevated bacterial and archaeal OTUs and bacterial diversity observed with indigenous inoculum. Mycorrhizal inoculation increases the abundance of bacterial OTUs (in particular with indigenous inoculum) and microbial richness but it does not improve PCDD/F dissipation. Vegetation had no effect on the abundance of microbial OTUs nor on richness but stimulated specific communities (Planctomycetia and Gammaproteobacteria) likely to be involved in the dissipation of PCDD/F. The reduction of toxic equivalency PCDD/F concentration also could be explained by the stimulation of soil microbial activities estimated with dehydrogenase and fluorescein diacetate hydrolase.
Collapse
Affiliation(s)
- H Meglouli
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais, France
| | - A Lounès-Hadj Sahraoui
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais, France
| | - M Magnin-Robert
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais, France
| | - B Tisserant
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais, France
| | - M Hijri
- Institut de Recherche en Biologie Végétale, Département de Sciences Biologiques, Université de Montréal, Montréal, QC, Canada
| | - J Fontaine
- Unité de Chimie Environnementale et Interactions sur le Vivant (UCEIV), Université du Littoral Côte d'Opale, SFR Condorcet FR CNRS 3417, 50, Rue Ferdinand Buisson, 62228, Calais, France.
| |
Collapse
|
27
|
Wang J, Li Q, Xu S, Zhao W, Lei Y, Song C, Huang Z. Traits-Based Integration of Multi-Species Inoculants Facilitates Shifts of Indigenous Soil Bacterial Community. Front Microbiol 2018; 9:1692. [PMID: 30093896 PMCID: PMC6071577 DOI: 10.3389/fmicb.2018.01692] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Accepted: 07/06/2018] [Indexed: 12/02/2022] Open
Abstract
Microbial co-inoculation is considered to be an innovative approach and had been applied worldwide. However, the underlying mechanisms of microbial co-inoculants constructions, especially the trait-based combination of distinctly different microbial species remains poorly understood. In this study, we constructed two microbial co-inoculants with the same three strains with emphasis on the microbial, soil and plant traits. Microbial co-inoculants 1 (M1) were constructed according to soil fertility, microbial activity and cucumber nutrient requirement with a 2:1:2 ratio (Ensifer sp. NYM3, Acinetobacter sp. P16 and Flavobacterium sp. KYM3), while microbial co-inoculants 2 (M2) were constructed according to soil fertility and cucumber nutrient requirement with a 1:10:1 ratio without considering the difference in the nutrient supply capability of microbial species. The results showed that M1 and M2 both obviously increased cucumber yields. The M1 had significant highest pH value, total nitrogen (TN) and invertase activity (IA). The M2 had significant highest available phosphate (AP), NO3-N, urea activity (UA), and alkaline phosphatase activity (APA). Gammaproteobacteria, Acidobacteria, Nitrospirae, and Armatimonadetes were significantly increased, while Actinobacteria and Firmicutes were significantly decreased by microbial co-inoculations (M1 and M2). The bacterial lineages enriched in M1 were Gammaproteobacteria and TM7. Acidobacteria, Bacteroidetes, and Deltaproteobacteria were enriched in M2. Principal coordinate analysis (PCoA) analysis showed that the bacterial communities were strongly separated by the different microbial inoculation treatments. The functional groups of intracellular_parasites were highest in M1. The functional groups of phototrophy, photoautotrophy, nitrification, fermentation, cyanobacteria, oxygenic_photoautotrophy, chitinolysis and animal_parasites_or_symbionts were highest in M2. Based on correlation analysis, it inferred that the M1 and M2 might promote cucumber yields by mediating bacterial community structure and function about nitrogen fixing and urea-N hydrolysis, respectively. Collectively, these results revealed that microbial co-inoculants had positive effects on cucumber yields. Trait-based integration of different microbial species had significant effects on soil properties and bacterial communities. It indicated that microbial activity should be considered in the construction of microbial co-inoculants. This will expand our knowledge in bacteria interaction, deepen understanding of microbial inoculants in improving plant performance, and will guide microbial fertilizer formulation and application in future.
Collapse
Affiliation(s)
- Jingjing Wang
- Tianjin Key Laboratory for Industrial Biosystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Qingqing Li
- Tianjin Key Laboratory for Industrial Biosystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Song Xu
- Tianjin Key Laboratory for Industrial Biosystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Wei Zhao
- Tianjin Key Laboratory for Industrial Biosystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Yu Lei
- Core Facility, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Chunhui Song
- Key Laboratory of Western China's Mineral Resources of Gansu Province, School of Earth Sciences, University of Lanzhou, Lanzhou, China
| | - Zhiyong Huang
- Key Laboratory of Western China's Mineral Resources of Gansu Province, School of Earth Sciences, University of Lanzhou, Lanzhou, China.,Tianjin Key Laboratory for Industrial Biosystems and Bioprocessing Engineering, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| |
Collapse
|