1
|
Chowdhury S, Karanfil T. Applications of artificial intelligence (AI) in drinking water treatment processes: Possibilities. CHEMOSPHERE 2024; 356:141958. [PMID: 38608775 DOI: 10.1016/j.chemosphere.2024.141958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Revised: 04/07/2024] [Accepted: 04/08/2024] [Indexed: 04/14/2024]
Abstract
In water treatment processes (WTPs), artificial intelligence (AI) based techniques, particularly machine learning (ML) models have been increasingly applied in decision-making activities, process control and optimization, and cost management. At least 91 peer-reviewed articles published since 1997 reported the application of AI techniques to coagulation/flocculation (41), membrane filtration (21), disinfection byproducts (DBPs) formation (13), adsorption (16) and other operational management in WTPs. In this paper, these publications were reviewed with the goal of assessing the development and applications of AI techniques in WTPs and determining their limitations and areas for improvement. The applications of the AI techniques have improved the predictive capabilities of coagulant dosages, membrane flux, rejection and fouling, disinfection byproducts (DBPs) formation and pollutants' removal for the WTPs. The deep learning (DL) technology showed excellent extraction capabilities for features and data mining ability, which can develop an image recognition-based DL framework to establish the relationship among the shapes of flocs and dosages of coagulant. Further, the hybrid techniques (e.g., combination of regression and AI; physical/kinetics and AI) have shown better predictive performances. The future research directions to achieve better control for WTPs through improving these techniques were also emphasized.
Collapse
Affiliation(s)
- Shakhawat Chowdhury
- Department of Civil and Environmental Engineering, King Fahd University of Petroleum & Minerals, Dhahran, 31261, Saudi Arabia; IRC for Concrete and Building Materials, King Fahd University of Petroleum & Minerals, Saudi Arabia.
| | - Tanju Karanfil
- Department of Environmental Engineering and Earth Sciences, Clemson University, South Carolina, USA
| |
Collapse
|
2
|
Gad M, Marouf MA, Abogabal A, Hu A, Nabet N. Commercial reverse osmosis point-of-use systems in Egypt failed to purify tap water. JOURNAL OF WATER AND HEALTH 2024; 22:905-922. [PMID: 38822469 DOI: 10.2166/wh.2024.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 04/10/2024] [Indexed: 06/03/2024]
Abstract
This study addresses the heightened global reliance on point-of-use (PoU) systems driven by water quality concerns, ageing infrastructure, and urbanization. While widely used in Egypt, there is a lack of comprehensive evaluation of these systems. We assessed 10 reverse osmosis point-of-use systems, examining physicochemical, bacteriological, and protozoological aspects of tap water (inlets) and filtered water (outlets), adhering to standard methods for the examination of water and wastewater. Results showed significant reductions in total dissolved solids across most systems, with a decrease from 210 ± 23.6 mg/L in tap water to 21 ± 2.8 mg/L in filtered water for PoU-10. Ammonia nitrogen levels in tap water decreased from 0.05 ± 0.04 to 2.28 ± 1.47 mg/L to 0.02 ± 0.04 to 0.69 ± 0.64 mg/L in filtered water. Despite this, bacterial indicators showed no significant changes, with some systems even increasing coliform levels. Protozoological analysis identified prevalent Acanthamoeba (42.5%), less frequent Naegleria (2.5%), Vermamoeba vermiformis (5%), and potentially pathogenic Acanthamoeba genotypes. Elevated bacterial indicators in filtered water of point-of-use systems, combined with essential mineral removal, indicate non-compliance with water quality standards, posing a public health concern. Further research on the long-term health implications of these filtration systems is essential.
Collapse
Affiliation(s)
- Mahmoud Gad
- Environmental Parasitology Laboratory, Water Pollution Research Department, National Research Centre, Giza 12622, Egypt E-mail:
| | - Mohamed A Marouf
- Environmental Parasitology Laboratory, Water Pollution Research Department, National Research Centre, Giza 12622, Egypt
| | - Amr Abogabal
- Reference Laboratory, Holding Company for Water and Wastewater, Cairo 12766, Egypt
| | - Anyi Hu
- CAS Key Laboratory of Urban Pollutant Conversion, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Noura Nabet
- Zoology Department, Faculty of Science, Menoufia University, Menofia, Egypt
| |
Collapse
|
3
|
Lin J, Yang L, Zhuang WE, Wang Y, Chen X, Niu J. Tracking the changes of dissolved organic matter throughout the city water supply system with optical indices. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 358:120911. [PMID: 38631164 DOI: 10.1016/j.jenvman.2024.120911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 04/19/2024]
Abstract
Dissolved organic matter (DOM) is important in determining the drinking water treatment and the supplied water quality. However, a comprehensive DOM study for the whole water supply system is lacking and the potential effects of secondary water supply are largely unknown. This was studied using dissolved organic carbon (DOC), absorption spectroscopy, and fluorescence excitation-emission matrices-parallel factor analysis (EEM-PARAFAC). Four fluorescent components were identified, including humic-like C1-C2, tryptophan-like C3, and tyrosine-like C4. In the drinking water treatment plants, the advanced treatment using ozone and biological activated carbon (O3-BAC) was more effective in removing DOC than the conventional process, with the removals of C1 and C3 improved by 17.7%-25.1% and 19.2%-27.0%. The absorption coefficient and C1-C4 correlated significantly with DOC in water treatments, suggesting that absorption and fluorescence could effectively track the changes in bulk DOM. DOM generally remained stable in each drinking water distribution system, suggesting the importance of the treated water quality in determining that of the corresponding network. The optical indices changed notably between distribution networks of different treatment plants, which enabled the identification of changing water sources. A comparison of DOM in the direct and secondary water supplies suggested limited impacts of secondary water supply, although the changes in organic carbon and absorption indices were detected in some locations. These results have implications for better understanding the changes of DOM in the whole water supply system to help ensure the supplied water quality.
Collapse
Affiliation(s)
- Jinjin Lin
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| | - Liyang Yang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China.
| | - Wan-E Zhuang
- College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, Fujian, PR China
| | - Yue Wang
- Fuzhou Water Group Company, Ltd, Fuzhou, Fujian, PR China
| | - Xiaochen Chen
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, Fujian, PR China
| | - Jia Niu
- Fujian Engineering Research Center of Water Pollution Control and System Intelligence Technology, School of Ecological Environment and Urban Construction, Fujian University of Technology, Fuzhou, Fujian, PR China.
| |
Collapse
|
4
|
Xin C, Khu ST, Wang T, Zuo X, Zhang Y. Effect of flow fluctuation on water pollution in drinking water distribution systems. ENVIRONMENTAL RESEARCH 2024; 246:118142. [PMID: 38218524 DOI: 10.1016/j.envres.2024.118142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 01/04/2024] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
The detachment of biofilm caused by changes in hydraulic conditions is an essential reason for the pollution of water in the drinking water distribution system (DWDS). In this research, the effect of flow fluctuation on bulk water quality was studied. The turbidity, iron concentration, manganese concentration, the total number of bacteria, biodegradable dissolved organic carbon (BDOC), bacterial community structure, and pathogenic genes in bacteria of bulk water were analyzed. The results indicate that the detachment of biofilm caused by fluctuant flow and reverse flow (especially instant reverse flow) can lead to the pollution of water. Throughout the entire experimental period, the turbidity under fluctuant flow velocity is 4.92%∼49.44% higher than that under other flow velocities. BDOC concentration is 5.68%∼53.99% higher than that under low and high flow velocities. The flow fluctuation increases bacterial regrowth potential (BRP) and reduces the biological stability of the bulk water. Low flow velocity is more conducive to the expression of pathogenic functional genes. In the short term, the water quality under low flow velocity is the best. Nevertheless, in a long-term operation (about seven days later), the water quality under high flow velocity is better than that under other flow velocities. This research brings new knowledge about the fluctuant hydraulic conditions on the bulk water quality within the DWDS and provides data support for stable drinking water distribution.
Collapse
Affiliation(s)
- Changchun Xin
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Soon-Thiam Khu
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China; Engineering Research Center of City Intelligence and Digital Governance, Ministry of Education of the People's Republic of China, Tianjin 300350, China
| | - Tianzhi Wang
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Xin Zuo
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China
| | - Ying Zhang
- School of Environmental Science & Engineering, Tianjin University, Tianjin 300350, China.
| |
Collapse
|
5
|
Sarkar K, Wei G, Rosadi MY, Murata N, Li F. Characterization of DOM released from bacteria in response to chlorine in water based on indicator bacteria E. coli. ENVIRONMENTAL TECHNOLOGY 2024; 45:193-207. [PMID: 35852481 DOI: 10.1080/09593330.2022.2102939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
ABSTRACTIn this study, Escherichia coli (E. coli) was used as an indicator bacterium treated with five different concentrations of chlorine (0.1; 0.5; 1.0; 2.0, and 5.0 mg/L) and without chlorine (0.0 mg/L) to evaluate the changes in the DOM characteristics. The dissolved organic carbon (DOC) concentration initially increased along with the chlorine concentrations and decreased after 24 h (0.0 and 0.1 mg/L) and 168 h (0.5; 1.0; 2.0 and 5.0 mg/L). Ultra-violet absorbance at 260 nm (UV260) showed that the absorbance decreased for control without chlorine (0.0 mg/L) and 0.1 mg/L chlorine, while increased for other concentrations of chlorine within 120 h. The DOC and UV260 results indicated that the high concentrations of chlorine initiated high contents of DOM which contained more humic-like molecules than the DOM released from E. coli without chlorine. Fluorescence excitation-emission matrix (EEM) analysis suggested that the DOM released from E. coli without chlorine enriched with protein-like substances, whereas the fulvic-like and humic-like substances more intensified in the DOM for the high concentrations of chlorine (>1.0 mg/L). The molecular weight distribution of DOM showed that the intensity of high molecular weight substances and polydispersity increased along with chlorine concentration and contact time, whereas the low molecular weight substances were relatively higher in the DOM for control without chlorine. The obtained results of this study would be useful for a better understanding of the variation of DOM during treatment and could be used as an important reference for optimizing the operation condition of the water treatment plants.
Collapse
Affiliation(s)
- Kanika Sarkar
- Graduate School of Engineering, Gifu University, Gifu, Japan
| | - Gengrui Wei
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | | | | | - Fusheng Li
- Graduate School of Engineering, Gifu University, Gifu, Japan
- River Basin Research Centre, Gifu University, Gifu, Japan
| |
Collapse
|
6
|
Gunawardhana T, Hong JG, Choi Y, Siddiqui SI, Nguyen HT, Oh S. Water quality characteristics and reuse potential using adsorption as a post-treatment option for a full-scale hydrocyclone, coagulation, flocculation, and dissolved air flotation system. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:8585-8598. [PMID: 37661232 DOI: 10.1007/s10653-023-01738-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 08/16/2023] [Indexed: 09/05/2023]
Abstract
This study established a full-scale hybrid water treatment system combining a hydrocyclone, coagulation, flocculation, and dissolved air flotation unit (HCFD) and evaluated its performance in treating anthropogenically impacted lake water. The HCFD system offered the stable and efficient treatment of fluctuating influent loadings, meeting most of the highest water reclamation quality criteria except for that of organic matter. Adsorption was subsequently examined as a post-treatment process for the HCFD effluent, which has not been examined in many previous studies. As the adsorbent for the post-treatment, pine bark, a locally available agricultural waste feedstock, was modified using H2O2 to maximize its adsorption capacity. The surface modification increased its adsorption capacity for organic matter by 53-112%. The HCFD system in conjunction with the synthesized adsorbent thus demonstrated the ability to meet the highest standards for all water quality parameters, highlighting their synergistic potential for enhancement of water treatment. Liquid chromatography-organic carbon detection and Fourier transform infrared analysis were then employed to determine the mechanisms involved in the removal of specific contaminants using the HCFD system and post-adsorption unit. While the HCFD system successfully eliminated particulate and colloidal matter (e.g., phosphorous and biopolymers with a high molecular weight) using centrifugal and floating separation with the aid of two complementary polymers, the post-adsorption unit effectively adsorbed small-sized dissolved substances (e.g., low molecular weight acids and building blocks) via surface functional groups (-CH, -OH, -CH2, C=O, C=C, and C=O) using van der Waals forces, hydrogen bonding, and π-π or n-π interactions.
Collapse
Affiliation(s)
- Thilini Gunawardhana
- Department of Civil Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-Gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Jin Gi Hong
- Department of Civil Engineering and Construction Engineering Management, California State University, Long Beach, CA, USA
| | - Younghoa Choi
- BlueGreenLink Co., Ltd., 708, 709, Building B, Pangyo Global Biz Center, 43, Changeop-ro, Sujeong-gu, Seongnam-si, Gyeonggi-do, Republic of Korea
| | - Sharf Ilahi Siddiqui
- Department of Chemistry, Ramjas College, University of Delhi, Delhi, 110007, India
| | - Hiep T Nguyen
- Department of Civil Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-Gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea
| | - Seungdae Oh
- Department of Civil Engineering, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung-Gu, Yongin-si, Gyeonggi-do, 17104, Republic of Korea.
| |
Collapse
|
7
|
Keaonaborn D, Na-Phatthalung W, Keawchouy S, Jaichuedee J, Sinyoung S, Musikavong C. Emerging disinfection by-products formation of various molecular weight organic matter fractions in raw water contaminated with treated wastewater. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2023; 58:831-843. [PMID: 37501342 DOI: 10.1080/10934529.2023.2238588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 07/05/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
Combining dissolved organic matter (DOM) in raw water (RW) with DOM in treated wastewater (TWW) can react with chlorine and pose emerging disinfection by-products (DBPs). This study evaluated DOM based on the molecular weight (MW) size fractionation, trihalomethane, iodinated-trihalomethane, haloacetonitrile, and trichloronitromethane formation potential (THMFP, I-THMFP, HANFP, and TCNMFP) of the RW from the U-Tapao Canal, Songkhla, Thailand and the RW mixed with TWW (RW + TWW) samples. The RW and RW + TWW were treated by coagulation with poly aluminum chloride. The DOM of RW and RW + TWW and their treated water was distributed most in the MW below 1 kDa. The MWs of 3-10 kDa and 1-3 kDa were the active DOM involved in the specific THMFP for the RW + TWW. The MW of < 1 kDa in the RW + TWW resulted in a slightly high specific I-THMFP and HANFP. The MW of 1 - 3 kDa in the coagulated samples had a high specific I-THMFP. The MW of > 10 kDa in the coagulated RW + TWW was a precursor for a particular HANFP. Monitoring systems for measuring the level of TWW mixed with RW and an effective process to enhance the efficiency of traditional water treatment must be set up to produce a consumer-safe water supply.
Collapse
Affiliation(s)
- Dararat Keaonaborn
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Warangkana Na-Phatthalung
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suthiwan Keawchouy
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Juthamas Jaichuedee
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Suthatip Sinyoung
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
| | - Charongpun Musikavong
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Department of Civil and Environmental Engineering, Faculty of Engineering, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Center of Excellence on Hazardous Substance Management (HSM), Bangkok, Thailand
| |
Collapse
|
8
|
Yang X, Ding S, Xiao R, Wang P, Du Z, Zhang R, Chu W. Identification of key precursors contributing to the formation of CX 3R-type disinfection by-products along the typical full-scale drinking water treatment processes. J Environ Sci (China) 2023; 128:81-92. [PMID: 36801044 DOI: 10.1016/j.jes.2022.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 06/20/2022] [Accepted: 07/05/2022] [Indexed: 06/18/2023]
Abstract
Identification and characterization of disinfection by-product (DBP) precursors could help optimize drinking water treatment processes and improve the quality of finished water. This study comprehensively investigated the characteristics of dissolved organic matter (DOM), the hydrophilicity and molecule weight (MW) of DBP precursor and DBP-associated toxicity along the typical full-scale treatment processes. The results showed that dissolved organic carbon and dissolved organic nitrogen content, the fluorescence intensity and the SUVA254 value in raw water significantly decreased after the whole treatment processes. Conventional treatment processes were in favor of the removal of high-MW and hydrophobic DOM, which are important precursors of trihalomethane and haloacetic acid. Compared with conventional treatment processes, Ozone integrated with biological activated carbon (O3-BAC) processes enhanced the removal efficiencies of DOM with different MW and hydrophobic fractions, leading to a further decrease in almost all DBP formation potential and DBP-associated toxicity. However, almost 50% of the detected DBP precursors in raw water has not been removed after the coagulation-sedimentation-filtration integrated with O3-BAC advanced treatment processes. These remaining precursors were found to be mainly hydrophilic and low-MW (< 1.0 kDa) organics. Moreover, they would largely contribute to the formation of haloacetaldehydes and haloacetonitriles, which dominated the calculated cytotoxicity. Since current drinking water treatment process could not effectively control the highly toxic DBPs, the removal of hydrophilic and low-MW organics in drinking water treatment plants should be focused on in the future.
Collapse
Affiliation(s)
- Xu Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Shunke Ding
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Rong Xiao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Pin Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Zhenqi Du
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Ruihua Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China
| | - Wenhai Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Ministry of Education Key Laboratory of Yangtze River Water Environment, Tongji University, Shanghai 200092, China.
| |
Collapse
|
9
|
Zheng S, Li J, Ye C, Xian X, Feng M, Yu X. Microbiological risks increased by ammonia-oxidizing bacteria under global warming: The neglected issue in chloraminated drinking water distribution system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162353. [PMID: 36822432 DOI: 10.1016/j.scitotenv.2023.162353] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/14/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
A rising outbreak of waterborne diseases caused by global warming requires higher microbial stability in the drinking water distribution system (DWDS). Chloramine disinfection is gaining popularity in this context due to its good persistent stability and fewer disinfection byproducts. However, the microbiological risks may be significantly magnified by ammonia-oxidizing bacteria (AOB) in distribution systems during global warming, which is rarely noticed. Hence, this work mainly focuses on AOB to explore its impact on water quality biosafety in the context of global warming. Research indicates that global warming-induced high temperatures can directly or indirectly promote the growth of AOB, thus leading to nitrification. Further, its metabolites or cellular residues can be used as substrates for the growth of heterotrophic bacteria (e.g., waterborne pathogens). Thus, biofilm may be more persistent in the pipelines due to the presence of AOB. Breakpoint chlorination is usually applied to control such situations. However, switching between this strategy and chloramine disinfection would result in even more severe nitrification and other adverse effects. Based on the elevated microbiological risks in DWDS, the following aspects should be paid attention to in future research: (1) to understand the response of nitrifying bacteria to high temperatures and the possible association between AOB and pathogenic growth, (2) to reveal the mechanisms of AOB-mediated biofilm formation under high-temperature stress, and (3) to develop new technologies to prevent and control the occurrence of nitrification in drinking water distribution system.
Collapse
Affiliation(s)
- Shikan Zheng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Jianguo Li
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Chengsong Ye
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xuanxuan Xian
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Mingbao Feng
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China
| | - Xin Yu
- College of the Environment and Ecology, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
10
|
Blackburn EA, Dickson-Anderson SE, Anderson WB, Emelko MB. Biological Filtration is Resilient to Wildfire Ash-Associated Organic Carbon Threats to Drinking Water Treatment. ACS ES&T WATER 2023; 3:639-649. [PMID: 36936520 PMCID: PMC10013178 DOI: 10.1021/acsestwater.2c00209] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 02/12/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Elevated/altered levels of dissolved organic matter (DOM) in water can be challenging to treat after wildfire. Biologically mediated treatment removes some DOM; here, its ability to remove elevated/altered postfire dissolved organic carbon (DOC) resulting from wildfire ash was investigated for the first time. Treatment of wildfire ash-amended (low, moderate, high) source waters by bench-scale biofilters was evaluated in duplicate. Turbidity and DOC were typically well-removed (effluent turbidity ≤0.3 NTU; average DOC removal ∼20%) in all biofilters during periods of stable source water quality. Daily DOC removal across all biofilters (ash-amended and controls) was generally consistent, suggesting that (i) the biofilter DOC biodegradation capacity was not deleteriously impacted by the ash and (ii) the biofilters buffered the ash-associated increases in water extractable organic matter. DOM fractionation indicates this was because the biodegradable low molecular weight neutral fractions of DOM, which increased with ash addition, were reduced by biofiltration while humic substances were largely recalcitrant. Thus, biological filtration was resilient to wildfire ash-associated DOM threats to drinking water treatment, but operational resilience may be compromised if the balance between readily removed and recalcitrant fractions of DOM change, as was observed during brief periods herein.
Collapse
Affiliation(s)
- Emma A.
J. Blackburn
- Water
Science, Technology & Policy Group, Department of Civil and Environmental
Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | | | - William B. Anderson
- Water
Science, Technology & Policy Group, Department of Civil and Environmental
Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| | - Monica B. Emelko
- Water
Science, Technology & Policy Group, Department of Civil and Environmental
Engineering, University of Waterloo, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
11
|
Mojela H, Gericke G, Madhav H, Malinga SP. Seasonal variations of natural organic matter (NOM) in surface water supplied to two coal-fired power stations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:15454-15463. [PMID: 36169834 DOI: 10.1007/s11356-022-23239-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 09/20/2022] [Indexed: 06/16/2023]
Abstract
Global issues such as pollution and global warming have resulted in changes in water characteristics over the past 20 years. Natural organic matter (NOM) which is a major component in water systems has shown an increase globally. This increase in NOM concentration has negatively affected both water treatment processes and drinking water quality. It is subsequently critical to understand the seasonal variations and composition of NOM to be able to address issues related to NOM. In this study, techniques such as ultraviolet-visible spectroscopy, total organic carbon and liquid chromatography-organic carbon detection (LC-OCD) were used for characterisation and quantification of NOM. Two coal-fired power stations were selected for this study with each power station receiving water from a different source, i.e. power station A receives water from the Vaal River and power station B from the Nkomati River. Results from this study demonstrated that composition and concentration of NOM from these two water sources varied seasonally. Characterisation of NOM using the LC-OCD indicated that the different fractions of NOM, i.e. low molecular weight neutrals, low molecular weight acids, building blocks, humic substances and biopolymers, varied seasonally. The dissolved organic carbon concentration and specific ultraviolet absorbance values of the raw water at both power stations showed an increment amid the wet seasons and a decrease amid the dry seasons.
Collapse
Affiliation(s)
- Happiness Mojela
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa
- Eskom RT&D, Private Bag X40175, Cleveland, Johannesburg, 2022, South Africa
| | - Gerhard Gericke
- Eskom RT&D, Private Bag X40175, Cleveland, Johannesburg, 2022, South Africa
| | - Heena Madhav
- Eskom RT&D, Private Bag X40175, Cleveland, Johannesburg, 2022, South Africa
| | - Soraya Phumzile Malinga
- Department of Chemical Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein Campus, Johannesburg, 2028, South Africa.
| |
Collapse
|
12
|
Shahi NK, Dockko S. Low-energy high-rate flotation technology for reduction of organic matter and disinfection by-products formation potential: A pilot-scale study. CHEMOSPHERE 2022; 303:135147. [PMID: 35636602 DOI: 10.1016/j.chemosphere.2022.135147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/21/2022] [Accepted: 05/25/2022] [Indexed: 06/15/2023]
Abstract
Despite operating complexity and high energy costs associated with its operation and maintenance, dissolved air flotation (DAF) is widely used in drinking water treatment processes. Recently, the focus has shifted to designing and developing DAF with high surface loading rates. This research compares the performance of pilot-scale high-rate DAF and low-energy high-rate flash-pressurized flotation (FPF) based on the removal behavior of natural organic matter, different molecular weight size fractions, and the formation potential of disinfection by-products. For a surface-loading rate of 30 m/h, the residual dissolved organic matter (DOC) concentrations in treated samples from high-rate DAF and FPF were 1.35 ± 0.02 (30.25 ± 0.15% removal) mg/L and 1.37 ± 0.03 (29.12 ± 1.72% removal) mg/L, respectively. In contrast, the removal of high-molecular-weight fractions, i.e., biopolymers and humic substances, showed similar removal performance for both treatment processes but not for building blocks. The removal rates were 27.10% and 6.64% for high-rate DAF and FPF, respectively. The formation potential of trihalomethanes/DOC for high-rate DAF with reaction times of 1, 3, 6, and 9 days 14.12 ± 0.18, 17.84 ± 0.22, 23.04 ± 0.29, and 29.73 ± 0.37 μg/mg C, respectively, and 16.83 ± 0.34, 22.69 ± 0.46, 27.08 ± 0.55, and 28.54 ± 0.58 for high-rate FPF. In the case of haloacetonitriles/dissolved organic nitrogen-humic substances and chloral hydrate/DOC, there were no significant differences. Thus, low-energy high-rate FPF with a reduction of energy of 55% provides an alternative to high-rate DAF.
Collapse
Affiliation(s)
- Nirmal Kumar Shahi
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea
| | - Seok Dockko
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, Republic of Korea.
| |
Collapse
|
13
|
Shen H, Fan H, Wu N, Hu J. A comparison of removal efficiencies of conventional drinking water treatment and advanced treatment equipped with ozone-biological activated carbon process. ENVIRONMENTAL TECHNOLOGY 2021; 42:4079-4089. [PMID: 32192412 DOI: 10.1080/09593330.2020.1745290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
ABSTRACTUsing raw water from a shallow water supply reservoir located in the lower Yangtze River region, the removal efficiencies of conventional treatment on dissolved organic matter (DOM) and disinfection by-products formation potential (DBPFP) were compared with an advanced treatment that equipped with ozone-biological activated carbon (O3-BAC) process. The results showed that the advanced treatment was more efficient than the conventional treatment at removing dissolved organic carbon (DOC; 40-67% removal), UV254 (61-81% removal), the trihalomethane formation potential (THMFP; 37-70% removal) and the haloacetic acid formation potential (HAAFP; 35-89% removal). The sand filter in the conventional treatment process was identified as the main contributor to decreasing DOC, UV254 and DBPFP. The O3-BAC in advanced treatment was found to decrease THMFP and HAAFP, with removal rates of 17-40% and 22-59%, respectively. To improve the water quality of effluents, advanced treatment with O3-BAC should be used to treat raw water from the shallow water supply reservoir in lower Yangtze River. However, the increased DBPFP yield, which is proportional to the potential health risks, should not be ignored.
Collapse
Affiliation(s)
- Hong Shen
- College of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China
- Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Hongliang Fan
- College of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China
- Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Nanxiang Wu
- College of Public Health, Hangzhou Medical College, Hangzhou, People's Republic of China
- Institute of Hygiene, Zhejiang Academy of Medical Sciences, Hangzhou, People's Republic of China
| | - Jun Hu
- College of Environment, Zhejiang University of Technology, Hangzhou, People's Republic of China
| |
Collapse
|
14
|
Bogunović M, Marjanović T, Ivančev-Tumbas I. Fate of Benzophenone, Benzophenone-3 and Caffeine in Lab-Scale Direct River Water Treatment by Hybrid Processes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:8691. [PMID: 34444439 PMCID: PMC8393867 DOI: 10.3390/ijerph18168691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/17/2022]
Abstract
Emerging microcontaminants benzophenone (BP), benzophenone-3 (BP-3) and caffeine (CF) are widely used anthropogenic markers from a group of pharmaceuticals and personal care products. They have different logD values and charges at neutral pH (2.96 neutral for BP; 3.65 negative and neutral for BP-3; 0.28 and neutral for CF). The goal of this study was to assess the efficacy of coagulation/flocculation/sedimentation (C/F/S), adsorption onto two types of powdered activated carbon (PAC)/sedimentation (PAC/S) and the combination of these two processes in different dosing sequences (PAC/C/F/S) and with/without ultrafiltration (powdered activated carbon/ultrafiltration-PAC/UF, coagulation/UF-CoA/UF) for the removal of selected micropollutants from river water. It was shown that the removal efficiency of benzophenones by coagulation depends on the season, while CF was moderately removed (40-70%). The removal of neutral BP by two PACs unexpectedly differed (near 40% and ˃93%), while the removal of BP-3 was excellent (>95%). PACs were not efficient for the removal of hydrophilic CF. Combined PAC/C/F/S yielded excellent removal for BP and BP-3 regardless of PAC type only when the PAC addition was followed by C/F/S, while C/F/S efficiency for CF diminished. The combination of UF with PAC or coagulant showed also high efficacy for benzophenones, but was negligible for CF removal.
Collapse
Affiliation(s)
- Minja Bogunović
- Department of Chemistry, Faculty of Sciences, Biochemistry and Environmental Protection, University of Novi Sad, Trg. Dositeja Obradovića 3, 21000 Novi Sad, Serbia; (T.M.); (I.I.-T.)
| | | | | |
Collapse
|
15
|
Shahi NK, Maeng M, Kim D, Lee T, Dockko S. Assessing the efficacy of dissolved air and flash-pressurized flotations using low energy for the removal of organic precursors and disinfection byproducts: a pilot-scale study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:40598-40607. [PMID: 32583120 DOI: 10.1007/s11356-020-09820-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 06/19/2020] [Indexed: 06/11/2023]
Abstract
Dissolved air flotation (DAF) is a widely used treatment process in drinking water and wastewater treatment plants despite high energy cost associated with operation and maintenance (accounts 50% of the total annual operation cost). In recent years, the focus has been diverted to optimizing or reducing energy, and a microbubble generation without a saturator was developed and used in small treatment facilities because of its simple structure. Thus, in this study, DAF and low-energy flash-pressurized flotation (FPF) efficacies were investigated in a pilot plant based on organic precursors, different molecular weight (MW) fractions, and disinfection byproduct reduction. The organic fractions with different MW was analyzed by liquid chromatography-organic carbon detector. Both DAF (550 kPa) and FPF (300 kPa) showed similar removal of dissolved organic carbon (DOC) and chromatographic DOC; however, the removal tendency of different MW fractions found was different. There was no significant difference in the removal of biopolymers, building blocks, and low molecular weight (LMW) neutrals for both DAF and FPF. Interestingly, the removal of LMW acids was found to be higher (93.8%) for DAF, whereas only 35.8% removal was observed for FPF. The total trihalomethanes concentration in a DAF-treated water sample was found to be 10% lower than that of FPF. Also, the reduction in haloacetonitriles was found to be slightly higher for a water sample treated by using DAF than by using FPF (1.5 and 1.8 μg L-1, respectively). Moreover, the formation of chloral hydrate was observed to be the same (1.9 μg L-1) for DAF- and FPF-treated water, with a total reduction of 40.6%. FPF with low pressure enabled a reduction in energy of around 55% when compared with DAF. Thus, FPF with low-pressure energy provides an alternative to DAF by reducing the annual operation cost and carbon footprint.
Collapse
Affiliation(s)
- Nirmal Kumar Shahi
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea
| | - Minsoo Maeng
- Department of Environmental and Safety Engineering, Ajou University, 206, World cup-ro, Yeongtong-gu, Suji-gu, Yongin-si, Gyeonggi-do, 16499,, Republic of Korea
| | - Donghyun Kim
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea
| | - Taehoon Lee
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea
| | - Seok Dockko
- Department of Civil and Environmental Engineering, Dankook University, 152, Jukjeon-ro, Suji-gu, Yongin-si, Gyeonggi-do, 16890, Republic of Korea.
| |
Collapse
|
16
|
Maqbool T, Li C, Qin Y, Zhang J, Asif MB, Zhang Z. A year-long cyclic pattern of dissolved organic matter in the tap water of a metropolitan city revealed by fluorescence spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:144850. [PMID: 33548702 DOI: 10.1016/j.scitotenv.2020.144850] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Delivering drinking water with stable quality in metropolitan cities is a big challenge. This study investigated the year-long dynamics of dissolved organic matter (DOM) in the tap water and source water of a metropolitan city in southern China using fluorescence spectroscopy. The DOM detected in the tap water, and source water of Shenzhen city was season and location-dependent. A year-long cyclic trend of DOM was found with predominate protein-like fluorescence in the dry season compared to the humic-like enriched DOM in the wet season. A general DOM pattern was estimated by measuring the shift in dominant fluorescence regions on the excitation-emission matrix (EEM). The difference in fluorescent DOM (FDOM) composition (in terms of the ratio of protein-like to humic-like fluorescence) was above 200% between wet and dry seasons. The taps associated with reservoirs receiving water from the eastern tributary of Dongjiang River showed significant changes in protein-like contents than the taps with source water originating from the western part of the river. This study highlights the importance of optimizing drinking water treatment plants' operational conditions after considering seasonal changes and source water characteristics.
Collapse
Affiliation(s)
- Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Chengyue Li
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Yanling Qin
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiaxing Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
17
|
Chen W, Yu HQ. Advances in the characterization and monitoring of natural organic matter using spectroscopic approaches. WATER RESEARCH 2021; 190:116759. [PMID: 33360618 DOI: 10.1016/j.watres.2020.116759] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 12/16/2020] [Accepted: 12/16/2020] [Indexed: 06/12/2023]
Abstract
Natural organic matter (NOM) is ubiquitous in environment and plays a fundamental role in the geochemical cycling of elements. It is involved in a wide range of environmental processes and can significantly affect the environmental fates of exogenous contaminants. Understanding the properties and environmental behaviors of NOM is critical to advance water treatment technologies and environmental remediation strategies. NOM is composed of characteristic light-absorbing/emitting functional groups, which are the "identification card" of NOM and susceptive to ambient physiochemical changes. These groups and their variations can be captured through optical sensing. Therefore, spectroscopic techniques are elegant tools to track the sources, features, and environmental behaviors of NOM. In this work, the most recent advances in molecular spectroscopic techniques, including UV-Vis, fluorescence, infrared, and Raman spectroscopy, for the characterization, measurement, and monitoring of NOM are reviewed, and the state-of-the-art innovations are highlighted. Furthermore, the limitations of current spectroscopic approaches for the exploration of NOM-related environmental processesand how these weaknesses/drawbacks can be addressed are explored. Finally, suggestions and directions are proposed to advance the development of spectroscopic methods in analyzing and elucidating the properties and behaviors of NOM in natural and engineered environments.
Collapse
Affiliation(s)
- Wei Chen
- School of Metallurgy and Environment, Central South University, Changsha410083, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei230026, China.
| |
Collapse
|
18
|
Maqbool T, Zhang J, Qin Y, Ly QV, Asif MB, Zhang X, Zhang Z. Seasonal occurrence of N-nitrosamines and their association with dissolved organic matter in full-scale drinking water systems: Determination by LC-MS and EEM-PARAFAC. WATER RESEARCH 2020; 183:116096. [PMID: 32717651 DOI: 10.1016/j.watres.2020.116096] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/23/2020] [Accepted: 06/20/2020] [Indexed: 06/11/2023]
Abstract
N-nitrosamines have been identified as emerging contaminants with tremendous carcinogenic potential for human beings. This study examined the seasonal changes in the occurrence of N-nitrosamines and N-nitrosodimethylamine formation potential (NDMA-FP) in drinking water resources and potable water from 10 drinking water treatment plants in a southern city of China. The changes in N-nitrosamines are well correlated with dissolved organic matter (DOM), particularly fluorophores, which were measured and compared between traditional fluorescence indices and excitation-emission matrix coupled with parallel factor analysis (EEM-PARAFAC). Four of N-nitrosamine species including N-nitrosodimethylamine (NDMA), N-Nitrosodibutylamine (NDBA), N-Nitrosopyrrolidine (NPYR), and N-Nitrosodiphenylamine (NDPhA) are found to be abundant compounds with an average of 29.5% (26.7%), 20.0% (25.2%), 18.9% (16.0%), and 9.0% (9.9%) in the source (and treated) water, respectively. The sum of N-nitrosamines concentration is recorded to be low in the wet season (July-September), whereas the dry season (October-December) provided opposite impacts. EEM-PARAFAC modeling indicated the predominance of humic-like component (C1) in the wet season while in the dry season the water was dominant in protein-like component (C2). All the N-nitrosamines excluding NDPhA and N-Nitrosomorpholine (NMOR) showed a strong association with protein-like component (C2). In contrast, humic-like C1, which was directly influenced by rainfall, was found to be a suitable proxy for NMOR and NDPhA. The results of this study are valuable to understand the correlation between different N-nitrosamines and DOM through adopting fluorescence signatures.
Collapse
Affiliation(s)
- Tahir Maqbool
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Jiaxing Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Yanling Qin
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Quang Viet Ly
- Institute of Research and Development, Duy Tan University, Danang, 550000, Viet Nam
| | - Muhammad Bilal Asif
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Xihui Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zhenghua Zhang
- Institute of Environmental Engineering & Nano-Technology, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; Guangdong Provincial Engineering Research Centre for Urban Water Recycling and Environmental Safety, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, Guangdong, China; School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
19
|
Maeng M, Shahi NK, Shin G, Son H, Kwak D, Dockko S. Formation characteristics of carbonaceous and nitrogenous disinfection by-products depending on residual organic compounds by CGS and DAF. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:34008-34017. [PMID: 30209770 DOI: 10.1007/s11356-018-2919-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 08/06/2018] [Indexed: 06/08/2023]
Abstract
Allogenic organic matter (AOM) composed of extracellular and intracellular organic matter (EOM and IOM) is a major precursor of halogenated carbonaceous and nitrogenous disinfection by-products (C-DBPs and N-DBPs) upon chlorination. The EOM and IOM extracted from Microcystis aeruginosa were analyzed based on bulk parameters and organic fractions with different molecular weight by liquid chromatography with organic carbon detection (LC-OCD). It investigated the efficiency of a conventional gravity system (CGS) and dissolved air flotation (DAF) in the removal of organic precursors, together with measurement of the formation of four major trihalomethanes (THMs) and haloacetonitriles (HANs) in treated water upon chlorination. The results showed that EOM accounted for 59% of building blocks and humic substances, whereas for IOM, 54% were low molecular weight (LMW) neutrals. Both CGS and DAF showed 57-59% removal of dissolved organic carbon (DOC) from EOM and IOM. Regarding DON removal, DAF was found to be more effective, i.e., 8% higher than CGS for EOM. Moreover, the removal of LMW acids and neutrals (not easy to remove and are major precursors of DBPs) from EOM and IOM by DAF was higher than from CGS. The amounts of DBPs measured in all the samples treated for interchlorination were much lower than in the samples for prechlorination. Although the precursors of EOM had a higher concentration than in IOM, THMs and HANs were detected for IOM at a higher concentration, which might be attributed to higher amounts of aromatic, aliphatic moisture and protein compounds in the IOM. Comparatively, DAF showed lower THM and HAN values than CGS water, particularly for IOM. Also, DAF showed a sharp decrease in THMs and an insignificant increase in HANs according to time.
Collapse
Affiliation(s)
- Minsoo Maeng
- Department of Civil and Environmental Engineering, Dankook University, Yongin-si, Gyeonggi-do, 448-701, Republic of Korea
| | - Nirmal Kumar Shahi
- Department of Civil and Environmental Engineering, Dankook University, Yongin-si, Gyeonggi-do, 448-701, Republic of Korea
| | - Gwyam Shin
- Department of Environmental Engineering, Ajou University, 206 world-cup-ro, Yeongtong-gu, Suwon-si, 443-749, Republic of Korea
| | - Heejong Son
- Water Quality Institute, Water Authority, Busan, 614-854, Republic of Korea
| | - Dongheui Kwak
- Jeongeup Industry-Academic Cooperation Support Center, Chonbuk National University, 9 Cheomdan Rd, Jeongeup, Jeonbuk, 56212, Republic of Korea
| | - Seok Dockko
- Department of Civil and Environmental Engineering, Dankook University, Yongin-si, Gyeonggi-do, 448-701, Republic of Korea.
| |
Collapse
|
20
|
Derrien M, Brogi SR, Gonçalves-Araujo R. Characterization of aquatic organic matter: Assessment, perspectives and research priorities. WATER RESEARCH 2019; 163:114908. [PMID: 31362212 DOI: 10.1016/j.watres.2019.114908] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/10/2019] [Accepted: 07/22/2019] [Indexed: 06/10/2023]
Abstract
Organic matter (OM) refers to the largest reactive reservoir of carbon-based compounds on Earth. Aside of its role as a source of carbon, OM is also actively involved in a wide range of ecological functions. It also plays an important role in the solubility, toxicity, bioavailability, mobility and distribution of pollutants. Therefore, OM is a key component in the local and global carbon cycle. About 12,000 articles containing organic matter in the title were published during the past decade, with a continuous increasing number each year (ISI Web of Science). Although this topic was widely explored and its interest has significantly increased, some limitations remain. These limitations can be technical (e.g., pre-treatment processes, low-resolution instrument, data handling) and can be related to the current approach. In this review, we first present the current strategies and tools to characterize the organic matter in the aquatic environment, then we tackle several aspects of current characterization limitations. Finally, we suggest new perspectives and priorities of research to improve the current limitations. From our point of view, simultaneous studies of particulate and dissolved OM fractions should be prioritized and multi-disciplinary approach, creation of databases, controlled experiments and collaborative works should be the next targets for future OM research priorities.
Collapse
Affiliation(s)
- Morgane Derrien
- Department of Environment and Energy, Sejong University, Seoul, 143-747, South Korea.
| | - Simona Retelletti Brogi
- Department of Environment and Energy, Sejong University, Seoul, 143-747, South Korea; Biophysics Institute, Italian National Research Council, Pisa, Italy
| | | |
Collapse
|
21
|
Dong L, Liu W, Yu Y, Hou L, Gu P, Chen G. Preparation, characterization, and application of macroporous activated carbon (MAC) suitable for the BAC water treatment process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:1359-1367. [PMID: 30180343 DOI: 10.1016/j.scitotenv.2018.07.280] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 07/18/2018] [Accepted: 07/19/2018] [Indexed: 05/24/2023]
Abstract
To address the sharp decrease in efficiency of the biological activated carbon (BAC) process at low temperatures, a new type of activated carbon (AC), macroporous activated carbon (MAC), was developed from bamboo waste scraps via a special compression, carbonation and activation process without the introduction of chemicals. MAC contains not only the micron-level macropores (Vmaco > 0.71 ml/g) sufficient for bacteria to access and multiply, but ensures the developed smaller pores (particularly micropores, Vmicro > 0.41 ml/g) and a higher hardness (>90%). In addition, the desired volume of macropores with an adiabatic function, which will provide livable space environment for bacteria, can be obtained by adjusting the compression ratio (1:5-1:10). Because of the maximum macropore volume (Vmaco = 0.805 ml/g) and the most abundant macropore distribution (particularly diameters>10,000 nm), MAC (1:6) was selected for the parallel experiment in the laboratory, taking three representative commercial ACs (PICABIOL® 2, raw coal AC-1 and briquetting AC-2) as controls, in which the filtration effluent of a water treatment plant was used as the influent and glucose was added to accelerate bacterial growth. The results showed that MAC (1:6) exhibited the highest DOC removal and biological activity at room/low temperatures (4 °C), indicating that the abundant macropores distribution with adiabatic function in MAC (1:6) is conducive to the growth and breeding of microorganisms. It is equivalent to artificially increasing the surface suitable for bacteria attachment. This is coupled with the higher adsorption capacity for pollutants supplied by the developed micropores in MAC, which provided the substrate for bacteria growth, thus forming a benign circle for water treatment by the BAC process. The results provide significant technical support for BAC's application, particularly at cold temperatures.
Collapse
Affiliation(s)
- Lihua Dong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; School of Environment, Tsinghua University, Beijing 100084, China.
| | - Wenjun Liu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Yu
- School of Environment, Tsinghua University, Beijing 100084, China
| | - Li'an Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Xi'an High-tech Institute, Xi'an 710025, China
| | - Ping Gu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| | - Guanyi Chen
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China
| |
Collapse
|
22
|
The Fate of Dissolved Organic Matter (DOM) During Bank Filtration under Different Environmental Conditions: Batch and Column Studies. WATER 2018. [DOI: 10.3390/w10121730] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Dissolved organic matter (DOM) in source water highly influences the removal of different contaminants and the dissolution of aquifer materials during bank filtration (BF). The fate of DOM during BF processes under arid climate conditions was analysed by conducting laboratory—scale batch and column studies under different environmental conditions with varying temperature (20–30 °C), redox, and feed water organic matter composition. The behaviour of the DOM fractions was monitored using various analytical techniques: fluorescence excitation-emission matrix spectroscopy coupled with parallel factor analysis (PARAFAC-EEM), and size exclusion liquid chromatography with organic carbon detection (LC-OCD). The results revealed that DOM attenuation is highly dependent (p < 0.05) on redox conditions and temperature, with higher removal at lower temperatures and oxic conditions. Biopolymers were the fraction most amenable to removal by biodegradation (>80%) in oxic environments irrespective of temperature and feed water organic composition. This removal was 20–24% lower under sub-oxic conditions. In contrast, the removal of humic compounds exhibited a higher dependency on temperature. PARAFAC-EEM revealed that terrestrial humic components are the most temperature critical fractions during the BF processes as their sorption characteristics are negatively correlated with temperature. In general, it can be concluded that BF is capable of removing labile compounds under oxic conditions at all water temperatures; however, its efficiency is lower for humic compounds at higher temperatures.
Collapse
|
23
|
Production and performance of activated carbon from rice husks for removal of natural organic matter from water: A review. Chem Eng Res Des 2018. [DOI: 10.1016/j.cherd.2017.11.008] [Citation(s) in RCA: 146] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|