1
|
Ding Y, Wang M, Du X, He X, Xu T, Liu X, Song F. The impact of elevated CO 2 on methanogen abundance and methane emissions in terrestrial ecosystems: A meta-analysis. iScience 2024; 27:111504. [PMID: 39759016 PMCID: PMC11697713 DOI: 10.1016/j.isci.2024.111504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/29/2024] [Accepted: 11/27/2024] [Indexed: 01/07/2025] Open
Abstract
Methane (CH4), one of the major greenhouse gases, plays a pivotal role in global climate change. Elevated CO2 concentration (eCO2) increases soil carbon storage, which may provide a valuable material base for soil methanogenic microorganisms and stimulating their growth, thereby ultimately affecting CH4 emissions. Therefore, to comprehend the effect of eCO2 on CH4 emissions, we conducted a meta-analysis encompassing 398 datasets from 59 publications (total of 50 sample sites). The results show that eCO2 promotes both the abundance of the functional methanogenic gene mcrA and CH4 emissions. However, this enhancement is modulated by a range of factors, such as the eCO2 duration, land use types and soil texture, and there are significant interactions. This study offers new insights into the effects of eCO2 on CH4 emissions across diverse ecosystems and the underlying driving forces, vital for predicting the response of global terrestrial ecosystems in the face of future climate change.
Collapse
Affiliation(s)
- Yiwen Ding
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Mingyu Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xiaojuan Du
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xue He
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Tianle Xu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Xinyu Liu
- Heilongjiang Academic of Forestry Qiqihar Branch, Qiqihar 161005, China
| | - Fuqiang Song
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
2
|
Yang Y, Shen L, Agathokleous E, Wang S, Jin Y, Bai Y, Yang W, Ren B, Jin J, Zhao X. The interplay of soil physicochemical properties, methanogenic diversity, and abundance governs methane production potential in paddy soil subjected to multi-decadal straw incorporation. ENVIRONMENTAL RESEARCH 2024; 256:119246. [PMID: 38810824 DOI: 10.1016/j.envres.2024.119246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 05/20/2024] [Accepted: 05/26/2024] [Indexed: 05/31/2024]
Abstract
Straw incorporation holds significant promise for enhancing soil fertility and mitigating air pollution stemming from straw burning. However, this practice concurrently elevates the production and emission of methane (CH4) from paddy ecosystems. Despite its environmental impact, the precise mechanisms behind the heightened CH4 production resulting from long-term straw incorporation remain elusive. In a 32-year field experiment featuring three fertilization treatments (CFS-chemical fertilizer with wheat straw, CF-chemical fertilizer, and CK-unamended), we investigated the impact of abiotic (soil physicochemical properties) and biotic (methanogenic abundance, diversity, and community composition) factors on CH4 production in paddy fields. Results revealed a significantly higher CH4 production potential under CFS treatment compared to CF and CK treatments. The partial least squares path model revealed that soil physicochemical properties (path coefficient = 0.61), methanogenic diversity (path coefficient = -0.43), and methanogenic abundance (path coefficient = 0.29) collectively determined CH4 production potential, explaining 77% of the variance. Enhanced soil organic carbon content and water content, resulting from straw incorporation, emerged as pivotal factors positively correlated with CH4 production potential. Under CFS treatment, lower Shannon index of methanogens, compared to CF and CK treatments, was attributed to increased Methanosarcina. Notably, the Shannon index and relative abundance of Methanosarcina exhibited negative and positive correlations with CH4 production potential, respectively. Methanogenic abundance, bolstered by straw incorporation, significantly amplified overall potential. This comprehensive analysis underscores the joint influence of abiotic and biotic factors in regulating CH4 production potential during multi-decadal straw incorporation.
Collapse
Affiliation(s)
- Yuling Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Lidong Shen
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Evgenios Agathokleous
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Shuwei Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Yuhan Jin
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yanan Bai
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wangting Yang
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bingjie Ren
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jinghao Jin
- Key Laboratory of Ecosystem Carbon Source and Sink, China Meteorological Administration (ECSS-CMA), School of Ecology and Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xu Zhao
- State Key Laboratory of Soil and Sustainable Agriculture, Changshu National Agro-Ecosystem Observation and Research Station, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China.
| |
Collapse
|
3
|
Li X, Gong Q, Li Z. Response characteristics of soil microorganisms under strong disturbance conditions in the riparian zone of the three Gorges reservoir Area. Sci Rep 2024; 14:18394. [PMID: 39117855 PMCID: PMC11310319 DOI: 10.1038/s41598-024-69533-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Accepted: 08/06/2024] [Indexed: 08/10/2024] Open
Abstract
The normal operation of the Three Gorges Reservoir, which involves periodic water storage and discharge, has led to strong disturbances in environmental conditions that alter soil microbial habitats in the riparian zones. Riparian zones are an important part of controlling pollution in the Three Gorges Reservoir area, since they act as a final ecological barrier that intercepts pollutants. Meanwhile, monitoring the health of microbial communities in the riparian zone is crucial for maintaining the ecological security of the reservoir area. We specifically investigate the Daning River, which are tributaries of the Three Gorges Reservoir and have typical riparian zones. Soil samples from these areas were subjected to high-throughput sequencing of 16S rRNA genes and 18S rRNA genes, in order to obtain the characteristics of the present microbial communities under strong disturbances in the riparian zones. We studied the characteristics and distribution patterns of microbial communities and their relationship with soil physicochemical properties. The study results indicate that microbial communities exhibit high diversity and evenness, and spatial heterogeneity is present. The ASV dataset contains many sequences not assigned to known genera, suggesting the presence of new fungal genera in the riparian zone. Redundancy analysis (RDA) revealed that pH andNH 4 + -N were the primary environmental factors driving bacterial community variation in the riparian zone, while pH, total carbon (TC) content, andNO 3 - -N were identified as the main drivers of soil archaeal community variation.
Collapse
Affiliation(s)
- Xiaolong Li
- Ocean College, Zhejiang University, Zhoushan, 316021, China
- Ministry of Water Resources of the People's Republic of China, Beijing, 100054, China
| | - Qianhui Gong
- School of Environmental Studies, China University of Geosciences (Wuhan), Wuhan, 430000, China
| | - Zilong Li
- Ocean College, Zhejiang University, Zhoushan, 316021, China.
| |
Collapse
|
4
|
Pereira-Mora L, Guerrero LD, Erijman L, Fernández-Scavino A. Tartrate fermentation with H 2 production by a new member of Sporomusaceae enriched from rice paddy soil. Appl Environ Microbiol 2024; 90:e0235123. [PMID: 38517167 PMCID: PMC11026083 DOI: 10.1128/aem.02351-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 03/03/2024] [Indexed: 03/23/2024] Open
Abstract
In rice paddies, soil and plant-derived organic matter are degraded anaerobically to methane (CH4), a powerful greenhouse gas. The highest rate of methane emission occurs during the reproductive stage of the plant when mostly dicarboxylic acids are exudated by the roots. The emission of methane at this stage depends largely on the cooperative interaction between dicarboxylic acid-fermenting bacteria and methanogenic archaea in the rhizosphere. The fermentation of tartrate, one of the major acids exudated, has been scarcely explored in rice paddy soils. In this work, we characterized an anaerobic consortium from rice paddy soil composed of four bacterial strains, whose principal member (LT8) can ferment tartrate, producing H2 and acetate. Tartrate fermentation was accelerated by co-inoculation with a hydrogenotrophic methanogen. The assembled genome of LT8 possesses a Na+-dependent oxaloacetate decarboxylase and shows that this bacterium likely invests part of the H2 produced to reduce NAD(P)+ to assimilate C from tartrate. The phylogenetic analysis of the 16S rRNA gene, the genome-based classification as well as the average amino acid identity (AAI) indicated that LT8 belongs to a new genus within the Sporomusaceae family. LT8 shares a few common features with its closest relatives, for which tartrate degradation has not been described. LT8 is limited to a few environments but is more common in rice paddy soils, where it might contribute to methane emissions from root exudates.IMPORTANCEThis is the first report of the metabolic characterization of a new anaerobic bacterium able to degrade tartrate, a compound frequently associated with plants, but rare as a microbial metabolite. Tartrate fermentation by this bacterium can be coupled to methanogenesis in the rice rhizosphere where tartrate is mainly produced at the reproductive stage of the plant, when the maximum methane rate emission occurs. The interaction between secondary fermentative bacteria, such as LT8, and methanogens could represent a fundamental step in exploring mitigation strategies for methane emissions from rice fields. Possible strategies could include controlling the activity of these secondary fermentative bacteria or selecting plants whose exudates are more difficult to ferment.
Collapse
Affiliation(s)
- Luciana Pereira-Mora
- Laboratorio de Ecología Microbiana y Microbiología Ambiental, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Graduate Program in Chemistry, Facultad de Química, Universidad de la República, Montevideo, Uruguay
- Unidad Asociada de Microbiología del Instituto de Química Biológica, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| | - Leandro D. Guerrero
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires, Argentina
| | - Leonardo Erijman
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular “Dr. Héctor N. Torres” (INGEBI-CONICET), Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Ana Fernández-Scavino
- Laboratorio de Ecología Microbiana y Microbiología Ambiental, Departamento de Biociencias, Facultad de Química, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
5
|
Bhardwaj L, Kumar D, Singh UP, Joshi CG, Dubey SK. Herbicide application impacted soil microbial community composition and biochemical properties in a flooded rice field. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169911. [PMID: 38185156 DOI: 10.1016/j.scitotenv.2024.169911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/30/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Herbicide application is a common practice in intensive agriculture. However, accumulating herbicide residues in the ecosystem affects important soil attributes. The effect of two herbicides, pendimethalin and pretilachlor, on soil biochemical properties and microbial community composition was studied in a transplanted paddy field. Results reveal a gradual decline in herbicide residue up to 60 days after application. Changes in soil microbiological and biochemical properties (microbial biomass, enzymes, respiration, etc.) showed an inconsistent pattern across the treatments. Quantitative polymerase chain reaction analysis showed the archaeal, bacterial and fungal populations to be of higher order in control soil compared to the treated one. Amplicon sequencing (16S rRNA and ITS genes) exhibited that besides the unclassified genera, ammonia-oxidizing Crenarchaeota and the group represented by Candidatus Nitrososphaera were dominant in both the control and treated samples. Other archaeal genera viz. Methanosarcina and Bathyarchaeia showed a slight decrease in relative abundance of control (0.5 %) compared to the treated soil (0.7 %). Irrespective of treatments, the majority of bacterial genera comprised unclassified and uncultured species, accounting for >64-75 % in the control group and over 78.29 % in the treated samples. Members of Vicinamibacteraceae, Bacillus and Bryobacter were dominant in control samples. Dominant fungal genera belonging to unclassified groups comprised Curvularia, Aspergillus, and Emericellopsis in the control group, whereas Paraphysoderma and Emericellopsis in the herbicide-treated groups. Inconsistent response of soil properties and microbial community composition is evident from the present study, suggesting that the recommended dose of herbicides might not result in any significant change in microbial community composition. The findings of this investigation will help in the formulation of a framework for risk assessment and maintaining sustainable rice cultivation in herbicide- amended soils.
Collapse
Affiliation(s)
- Laliteshwari Bhardwaj
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Dinesh Kumar
- Gujarat Biotechnology Research Centre, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Udai P Singh
- Department of Agronomy, Institute of Agriculture Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Chaitanya G Joshi
- Gujarat Biotechnology Research Centre, Government of Gujarat, Gandhinagar, Gujarat 382011, India
| | - Suresh Kumar Dubey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
6
|
Balasjin NM, Maki JS, Schläppi MR. Pseudomonas mosselii improves cold tolerance of Asian rice ( Oryza sativa L.) in a genotype-dependent manner by increasing proline in japonica and reduced glutathione in indica varieties. Can J Microbiol 2024; 70:15-31. [PMID: 37699259 DOI: 10.1139/cjm-2023-0030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Cold stress is an important factor limiting rice production and distribution. Identifying factors that contribute to cold tolerance in rice is of primary importance. While some plant specific genetic factors involved in cold tolerance have been identified, the role of the rice microbiome remains unexplored. In this study, we evaluated the influence of plant growth promoting bacteria (PGPB) with the ability of phosphate solubilization on rice cold tolerance and survival. To reach this goal, inoculated and uninoculated 2-week-old seedlings were cold stressed and evaluated for survival and other phenotypes such as electrolyte leakage (EL) and necessary elements for cold tolerance. The results of this study showed that of the five bacteria, Pseudomonas mosselii, improved both indica and japonica varietal plants' survival and decreased EL, indicating increased membrane integrity. We observed different possible cold tolerance mechanisms in japonica and indica plants such as increases in proline and reduced glutathione levels, respectively. This bacterium also improved the shoot growth of cold exposed indica plants during the recovery period. This study confirmed the host genotype dependent activity of P. mosselii and indicated that there is an interaction between specific plant genes and bacterial genes that causes different plant responses to cold stress.
Collapse
Affiliation(s)
| | - James S Maki
- Marquette University, Biological Sciences Department, Milwaukee, WI, USA
| | - Michael R Schläppi
- Marquette University, Biological Sciences Department, Milwaukee, WI, USA
| |
Collapse
|
7
|
Zhang S, Wang F, Wang Y, Chen X, Xu P, Miao H. Shifts of soil archaeal nitrification and methanogenesis with elevation in water level fluctuation zone of the three Gorges Reservoir, China. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 339:117871. [PMID: 37030237 DOI: 10.1016/j.jenvman.2023.117871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 03/27/2023] [Accepted: 04/02/2023] [Indexed: 05/03/2023]
Abstract
The water level fluctuation zone is a unique ecological zone exposed to long-term drying and flooding and plays a critical role in the transport and transformation of carbon and nitrogen materials in reservoir-river systems. Archaea are a vital component of soil ecosystems in the water level fluctuation zones, however, the distribution and function of archaeal communities in responde to long-term wet and dry alternations are still unclear. The community structure of archaea in the drawdown areas at various elevations of the Three Gorges Reservoir was investigated by selecting surface soils (0-5 cm) of different inundation durations at three sites from upstream to downstream according to the flooding pattern. The results revealed that prolonged flooding and drying increased the community diversity of soil archaea, with ammonia-oxidizing archaea being the dominant species in non-flooded regions, while methanogenic archaea were abundant in soils that had been flooded for an extended period of time. Long-term alternation of wetting and drying increases methanogenesis but decreases nitrification. It was determined that soil pH, NO3--N, TOC and TN are significant environmental factors affecting the composition of soil archaeal communities (P = 0.02). Long-term flooding and drying changed the community composition of soil archaea by altering environmental factors, which in turn influenced nitrification and methanogenesis in soils at different elevations. These findings contribute to our understanding of soil carbon and nitrogen transport transformation processes in the water level fluctuation zone as well as the effects of long-term wet and dry alternation on soil carbon and nitrogen cycles. The results of this study can provide a basis for ecological management, environmental management, and long-term operation of reservoirs in water level fluctuation zones.
Collapse
Affiliation(s)
- Shengman Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Fushun Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Yuchun Wang
- China Institute of Water Resources and Hydropower Research, Beijing, 100038, China.
| | - Xueping Chen
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Peifan Xu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| | - Haocheng Miao
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
8
|
Hu J, Bettembourg M, Moreno S, Zhang A, Schnürer A, Sun C, Sundström J, Jin Y. Characterisation of a low methane emission rice cultivar suitable for cultivation in high latitude light and temperature conditions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:92950-92962. [PMID: 37501024 PMCID: PMC10447601 DOI: 10.1007/s11356-023-28985-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 07/21/2023] [Indexed: 07/29/2023]
Abstract
Rice cultivation on paddy soil is commonly associated with emissions of methane, a greenhouse gas, but rice varieties may differ in their actual level of emissions. This study analysed methane emissions associated with 22 distinct rice genotypes, using gas chromatography, and identified the cultivar Heijing 5 from northern China as a potential low-methane rice variety. To confirm this and to examine whether Heijing 5 can perform similarly at higher latitudes, Heijing 5 was cultivated in field trials in China (lat. 32° N) and Sweden (lat. 59° N) where (i) methane emissions were measured, (ii) methanogen abundance in the rhizosphere was determined using quantitative PCR, and (iii) the concentrations of nutrients in water and of heavy metals in rice grain and paddy soil were analysed. The results demonstrated that the low-methane rice cultivar Heijing 5 can successfully complete an entire growth period at high-latitude locations such as central Sweden. Massively parallel sequencing of mRNAs identified candidate genes involved in day length and cold acclimatisation. Cultivation of Heijing 5 in central Sweden was also associated with relatively low heavy metal accumulation in rice grains and lowered nutrient losses to neighbouring water bodies.
Collapse
Affiliation(s)
- Jia Hu
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007, Uppsala, Sweden
| | - Mathilde Bettembourg
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007, Uppsala, Sweden
| | - Silvana Moreno
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007, Uppsala, Sweden
| | - Ai Zhang
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007, Uppsala, Sweden
| | - Anna Schnürer
- Department of Molecular Sciences, Swedish University of Agricultural Sciences, Box 7015, SE-750 07, Uppsala, Sweden
| | - Chuanxin Sun
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007, Uppsala, Sweden
| | - Jens Sundström
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007, Uppsala, Sweden
| | - Yunkai Jin
- Department of Plant Biology, Sweden University of Agricultural Science, The Linnean Centre for Plant Biology, Box 7080, SE-75007, Uppsala, Sweden.
| |
Collapse
|
9
|
Wang S, Sun P, Liu J, Xu Y, Dolfing J, Wu Y. Distribution of methanogenic and methanotrophic consortia at soil-water interfaces in rice paddies across climate zones. iScience 2022; 26:105851. [PMID: 36636345 PMCID: PMC9829807 DOI: 10.1016/j.isci.2022.105851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 11/15/2022] [Accepted: 12/19/2022] [Indexed: 12/24/2022] Open
Abstract
Periphytic biofilms (PB) at the soil-water interface contributes 7-38% of the methane emission from rice paddies, yet the biogeographical mechanism underlying and affecting the process remain elusive. In this study, rice fields along an edapho-vclimatic gradient were sampled, and the environmental drivers affecting distribution of methanogenic and methanotrophic communities were evaluated. The methanogenic and methanotrophic communities at soil-water interface showed less complex inter/intra-generic interactions than those in soil, and their relative abundances were weakly driven by spatial distance, soil organic carbon, soil total nitrogen and pH. The nutrient supply and buffering capacity of extracellular polymeric substance released by PB reduced their interaction and enhanced the resilience on edaphic environment changes. Climate affected soil metal content, extracellular polymeric substance content, and thus the methane-related communities, and caused geographical variation in the impacts of PB on methane emissions from rice paddies. This study facilitates our understanding of geographical differences in the contribution of PB to methane emission.
Collapse
Affiliation(s)
- Sichu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China,Institute of Agricultural Resources and Environment, Jiangsu Academy of Agriculture Sciences (JAAS), 50 Zhongling Road, Nanjing 210014, China,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Junzhuo Liu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Ying Xu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, UK
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People’s Republic of China, Shuitianba Zigui, Yichang 443605, China,Corresponding author
| |
Collapse
|
10
|
Aoki W, Kogawa M, Matsuda S, Matsubara K, Hirata S, Nishikawa Y, Hosokawa M, Takeyama H, Matoh T, Ueda M. Massively parallel single-cell genomics of microbiomes in rice paddies. Front Microbiol 2022; 13:1024640. [PMID: 36406415 PMCID: PMC9669790 DOI: 10.3389/fmicb.2022.1024640] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Plant growth-promoting microbes (PGPMs) have attracted increasing attention because they may be useful in increasing crop yield in a low-input and sustainable manner to ensure food security. Previous studies have attempted to understand the principles underlying the rhizosphere ecology and interactions between plants and PGPMs using ribosomal RNA sequencing, metagenomic sequencing, and genome-resolved metagenomics; however, these approaches do not provide comprehensive genomic information for individual species and do not facilitate detailed analyses of plant-microbe interactions. In the present study, we developed a pipeline to analyze the genomic diversity of the rice rhizosphere microbiome at single-cell resolution. We isolated microbial cells from paddy soil and determined their genomic sequences by using massively parallel whole-genome amplification in microfluidic-generated gel capsules. We successfully obtained 3,237 single-amplified genomes in a single experiment, and these genomic sequences provided insights into microbial functions in the paddy ecosystem. Our approach offers a promising platform for gaining novel insights into the roles of microbes in the rice rhizomicrobiome and to develop microbial technologies for improved and sustainable rice production.
Collapse
Affiliation(s)
- Wataru Aoki
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Masato Kogawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
| | | | | | | | - Yohei Nishikawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
| | - Masahito Hosokawa
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Tokyo, Japan
| | - Haruko Takeyama
- Research Organization for Nano and Life Innovation, Waseda University, Tokyo, Japan
- Computational Bio Big-Data Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology, Tokyo, Japan
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
- Institute for Advanced Research of Biosystem Dynamics, Waseda Research Institute for Science and Engineering, Tokyo, Japan
| | - Toru Matoh
- Kyoto Agriculture Research Institute KARI, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| |
Collapse
|
11
|
Chen J, Xing Y, Wang Y, Zhang W, Guo Z, Su W. Application of iron and steel slags in mitigating greenhouse gas emissions: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 844:157041. [PMID: 35803422 DOI: 10.1016/j.scitotenv.2022.157041] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
The comprehensive consideration of climate warming and by-product management in the iron and steel industry, has a significant impact on the realization of environmental protection and green production. Blast furnace slag (BFS) and steel slag (SS), collectively called iron and steel slags, are the main by-products of steelmaking. The economical and efficient use of iron and steel slags to reduce greenhouse gas (GHG) emissions is an urgent problem to be solved. This paper reviewed the carbonization and waste heat recovery of iron and steel slags, and the utilization of iron and steel slags as soil amendments, discussed their application status and limitations in GHG reduction. Iron and steel slags are rich in CaO, which can be used as CO2 adsorbents to achieve a maximum concentration of 0.4-0.5 kg CO2/kg SS. Blast furnace molten slag contains a considerable amount of waste heat, and thermal methods can recover more than 60 % of the heat energy. Chemical methods can use waste heat in the reaction to generate gas fuel, and iron in slags can be used as a catalytic component to promote chemical reaction. Waste heat recovery saves fuel and reduces the CO2 emissions caused by combustion. When iron and steel slags are used as soil amendments, the iron oxides, alkaline substances, and SiO2 in iron and steel slags can affect the emission of CH4, N2O, and CO2 from soil, microorganisms, and crops, and achieve a maximum reduction of more than 60 % of the overall GHG of paddy fields. Finally, This paper provided valuable suggestions for future GHG reduction studies of iron and steel slags in energy, industry, and agriculture.
Collapse
Affiliation(s)
- Jing Chen
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yi Xing
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Yan Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Wenbo Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Zefeng Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China
| | - Wei Su
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing 100083, PR China; Guangdong Province Engineering Laboratory for Air Pollution Control, Guangzhou, 510530, PR China.
| |
Collapse
|
12
|
Wang S, Sun P, Zhang G, Gray N, Dolfing J, Esquivel-Elizondo S, Peñuelas J, Wu Y. Contribution of periphytic biofilm of paddy soils to carbon dioxide fixation and methane emissions. Innovation (N Y) 2022; 3:100192. [PMID: 34950915 PMCID: PMC8672048 DOI: 10.1016/j.xinn.2021.100192] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/23/2021] [Indexed: 10/26/2022] Open
Abstract
Rice paddies are major contributors to anthropogenic greenhouse gas emissions via methane (CH4) flux. The accurate quantification of CH4 emissions from rice paddies remains problematic, in part due to uncertainties and omissions in the contribution of microbial aggregates on the soil surface to carbon fluxes. Herein, we comprehensively evaluated the contribution of one form of microbial aggregates, periphytic biofilm (PB), to carbon dioxide (CO2) and CH4 emissions from paddies distributed across three climatic zones, and quantified the pathways that drive net CH4 production as well as CO2 fixation. We found that PB accounted for 7.1%-38.5% of CH4 emissions and 7.2%-12.7% of CO2 fixation in the rice paddies. During their growth phase, PB fixed CO2 and increased the redox potential, which promoted aerobic CH4 oxidation. During the decay phase, PB degradation reduced redox potential and increased soil organic carbon availability, which promoted methanogenic microbial community growth and metabolism and increased CH4 emissions. Overall, PB acted as a biotic converter of atmospheric CO2 to CH4, and aggravated carbon emissions by up to 2,318 kg CO2 equiv ha-1 season-1. Our results provide proof-of-concept evidence for the discrimination of the contributions of surface microbial aggregates (i.e., PB) from soil microbes, and a profound foundation for the estimation and simulation of carbon fluxes in a potential novel approach to the mitigation of CH4 emissions by manipulating PB growth.
Collapse
Affiliation(s)
- Sichu Wang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China.,College of Advanced Agricultural Science, University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Pengfei Sun
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China
| | - Guangbin Zhang
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China
| | - Neil Gray
- School of Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK
| | - Jan Dolfing
- Faculty of Energy and Environment, Northumbria University, Newcastle upon Tyne NE1 8QH, UK
| | - Sofia Esquivel-Elizondo
- Department of Microbiome Science, Max Planck Institute for Developmental Biology, Max-Planck-Ring 5, 72076 Tübingen, Germany
| | - Josep Peñuelas
- Consejo Superior de Investigaciones Científicas (CSIC), Global Ecology Unit, Centre for Ecological Research and Forestry Applications (CREAF)-CSIC-Universitat Autonoma de Barcelona (UAB), Bellaterra, 08193 Barcelona, Catalonia, Spain
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing 210008, China.,Zigui Three Gorges Reservoir Ecosystem, Observation and Research Station of Ministry of Water Resources of the People's Republic of China, Shuitianba Zigui, Yichang 443605, China
| |
Collapse
|
13
|
Wang Y, Hu Z, Shen L, Liu C, Islam ARMT, Wu Z, Dang H, Chen S. The process of methanogenesis in paddy fields under different elevated CO 2 concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 773:145629. [PMID: 33940739 DOI: 10.1016/j.scitotenv.2021.145629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/25/2021] [Accepted: 01/31/2021] [Indexed: 06/12/2023]
Abstract
Understanding the process of methanogenesis in paddy fields under the scenarios of future climate change is of great significance for reducing greenhouse gas emissions and regulating the soil carbon cycle. Methyl Coenzyme M Reductase subunit A (mcrA) of methanogens is a rate-limiting enzyme that catalyzes the final step of CH4 production. However, the mechanism of methanogenesis change in the paddy fields under different elevated CO2 concentrations (e[CO2]) is rarely explored in earlier studies. In this research, we explored how the methanogens affect CH4 flux in paddy fields under various (e[CO2]). CH4 flux and CH4 production potential (MPP), and mcrA gene abundance were quantitatively analyzed under C (ambient CO2 concentration), C1 (C + 160 ppm CO2), and C2 (C + 200 ppm CO2) treatments. Additionally, the community composition and structure of methanogens were also compared with Illumina MiSeq sequencing. The results showed that C2 treatment significantly increased CH4 flux and MPP at the tillering stage. E[CO2] had a positive effect on the abundance of methanogens, but the effect was insignificant. We detected four known dominant orders of methanogenesis in this study, such as Methanosarcinales, Methanobacteriales, Methanocellales, and Methanomicrobiales. Although e[CO2] did not significantly change the overall community structure and diversity of methanogens, C2 treatment significantly reduced the relative abundance of two uncultured genera compared to C treatment. A linear regression model of DOC, methanogenic abundance, and MPP can explain 67.2% of the variation of CH4 flux under e[CO2]. Overall, our results demonstrated that CH4 flux in paddy fields under e[CO2] was mainly controlled by soil unstable C substrate and the abundance and activity of methanogens in rhizosphere soil.
Collapse
Affiliation(s)
- Yuanyuan Wang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Zhenghua Hu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Lidong Shen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China.
| | - Chao Liu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - A R M Towfiqul Islam
- Department of Disaster Management, Disaster Management E-Learning Centre, Begum Rokeya University, Rangpur 5400, Bangladesh
| | - Zhurong Wu
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Huihui Dang
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| | - Shutao Chen
- Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters, Jiangsu Key Laboratory of Agricultural Meteorology, School of Applied Meteorology, Nanjing University of Information Science & Technology, Nanjing 210044, China
| |
Collapse
|
14
|
Wang ZH, Wang LH, Liang H, Peng T, Xia GP, Zhang J, Zhao QZ. Methane and nitrous oxide emission characteristics of high-yielding rice field. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:15021-15031. [PMID: 33221993 DOI: 10.1007/s11356-020-11641-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 11/11/2020] [Indexed: 06/11/2023]
Abstract
As representative varieties of the four phases of the super rice breeding project in China, Lianyoupei 9 (LYP9), Y Liangyou 1 (YLY1), Y Liangyou 2 (YLY2), and Y Liangyou 900 (YLY900) achieved higher yield under optimal cultivation techniques. However, the impact of these high-yield rice varieties on greenhouse gas (GHG) emissions under high-yield cultivation management practices remains poorly understood. In this study, we conducted field experiments to investigate CH4 and N2O emissions from paddies containing four elite rice varieties, managed with field drying at the ineffective tillering stage and alternate wet/dry irrigation at the grain-filling stage. The plants were fertilised with nitrogen (N) at three different rates. The results showed that CH4 emission was highest at the tillering stage. N2O emission flux was dramatically increased by field drying at the ineffective tillering stage, and with the rate of N application. Rice variety was among the most important factors affecting CH4 emission and global warming potential (GWP). N2O emission was mainly related to N application rate rather than rice variety. YLY2 achieved higher yield than LYP9, YLY1, and YLY900, and lower GHG emission than YLY900. Our results indicate that rice variety should be considered as a key factor to reduce GHG emissions from rice paddies under high-yield cultivation practices. Based on its high yield and low GHG emission at the study site, YLY2 may be an optimal rice variety.
Collapse
Affiliation(s)
- Zi-Hao Wang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Liu-Hang Wang
- College of Resources and Environment, Henan Agricultural University, Zhengzhou, 450002, People's Republic of China
| | - He Liang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Ting Peng
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China
| | - Gui-Ping Xia
- Anhui Shennong Agricultural Technology Development Limited Company, Hefei, 230031, People's Republic of China
| | - Jing Zhang
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China.
| | - Quan-Zhi Zhao
- College of Agronomy, Henan Agricultural University, Zhengzhou, 450046, People's Republic of China.
| |
Collapse
|
15
|
Kumar SS, Kumar A, Singh S, Malyan SK, Baram S, Sharma J, Singh R, Pugazhendhi A. Industrial wastes: Fly ash, steel slag and phosphogypsum- potential candidates to mitigate greenhouse gas emissions from paddy fields. CHEMOSPHERE 2020; 241:124824. [PMID: 31590026 DOI: 10.1016/j.chemosphere.2019.124824] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Revised: 09/03/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Waste management and global warming are the two challenging issues of the present global scenario. Increased human population has set the platform for rapid industrialization and modern agriculture. The industries such as energy, steel, and fertilizers play a significant role in improving the social, and economic status of human beings. The industrial production of energy (that involves combustion of coal), production of steel items and diammonium ammonium fertilizer generate a huge amount of wastes such as fly ash (FA), steel slag (SS) and phosphogypsum (PG), respectively. Inappropriate dumping of any kind of waste poses a threat to the environment, therefore, scientific management of waste is required to reduce associated environmental risks. These wastes i.e. SS, FA, and PG being rich sources of oxides of calcium (CaO), silicon (SiO2), iron (FeO), and aluminum (Al2O3), etc. may affect the release of greenhouse gases from the soil. The information associated with the application of FA, SS, and PG onto the paddy fields and their impacts on methane and nitrous oxide emissions are highly fragmented and scarce. The present review extensively and critically explores the available information with respect to the effective utilization of FA, SS, and PG in paddy cultivation, their potential to mitigate greenhouse gases emission and their associated mechanisms. The fine grid assessment of these waste management provides new insight into the next level research and future policy options for industries and farmers.
Collapse
Affiliation(s)
- Smita S Kumar
- Center for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Amit Kumar
- Department of Botany, Dayalbagh Educational Institute (Dayalbagh Educational Institute Deemed University), Agra, 282005, Uttar Pradesh, India
| | - Swati Singh
- Department of Environmental Science, Chaudhary Charan Singh University, Meerut, 250001, Uttar Pradesh, India
| | - Sandeep K Malyan
- Institute for Soil, Water, and Environmental Sciences, The Volcani Center, Agricultural Research Organization (ARO), Rishon LeZion, 7505101, Israel
| | - Shahar Baram
- Institute for Soil, Water, and Environmental Sciences, The Volcani Center, Agricultural Research Organization (ARO), Rishon LeZion, 7505101, Israel
| | - Jyoti Sharma
- Center for Rural Development & Technology, Indian Institute of Technology Delhi, Hauz Khas, New Delhi, 110016, India
| | - Rajesh Singh
- Environmental Hydrology Division, National Institute of Hydrology, Roorkee, 247667, Uttarakhand, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
16
|
Three-Source Partitioning of Methane Emissions from Paddy Soil: Linkage to Methanogenic Community Structure. Int J Mol Sci 2019; 20:ijms20071586. [PMID: 30934889 PMCID: PMC6479939 DOI: 10.3390/ijms20071586] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 03/21/2019] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
Identification of the carbon (C) sources of methane (CH4) and methanogenic community structures after organic fertilization may provide a better understanding of the mechanism that regulate CH4 emissions from paddy soils. Based on our previous field study, a pot experiment with isotopic 13C labelling was designed in this study. The objective was to investigate the main C sources for CH4 emissions and the key environmental factor with the application of organic fertilizer in paddies. Results indicated that 28.6%, 64.5%, 0.4%, and 6.5% of 13C was respectively distributed in CO2, the plants, soil, and CH4 at the rice tillering stage. In total, organically fertilized paddy soil emitted 3.51 kg·CH4 ha−1 vs. 2.00 kg·CH4 ha−1 for the no fertilizer treatment. Maximum CH4 fluxes from organically fertilized (0.46 mg·m−2·h−1) and non-fertilized (0.16 mg·m−2·h−1) soils occurred on day 30 (tillering stage). The total percentage of CH4 emissions derived from rice photosynthesis C was 49%, organic fertilizer C < 0.34%, and native soil C > 51%. Therefore, the increased CH4 emissions from paddy soil after organic fertilization were mainly derived from native soil and photosynthesis. The 16S rRNA sequencing showed Methanosarcina (64%) was the dominant methanogen in paddy soil. Organic fertilization increased the relative abundance of Methanosarcina, especially in rhizosphere. Additionally, Methanosarcina sp. 795 and Methanosarcina sp. 1H1 co-occurred with Methanobrevibacter sp. AbM23, Methanoculleus sp. 25XMc2, Methanosaeta sp. HA, and Methanobacterium sp. MB1. The increased CH4 fluxes and labile methanogenic community structure in organically fertilized rice soil were primarily due to the increased soil C, nitrogen, potassium, phosphate, and acetate. These results highlight the contributions of native soil- and photosynthesis-derived C in paddy soil CH4 emissions, and provide basis for more complex investigations of the pathways involved in ecosystem CH4 processes.
Collapse
|
17
|
Wu SS, Hernández M, Deng YC, Han C, Hong X, Xu J, Zhong WH, Deng H. The voltage signals of microbial fuel cell-based sensors positively correlated with methane emission flux in paddy fields of China. FEMS Microbiol Ecol 2019; 95:5304610. [DOI: 10.1093/femsec/fiz018] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Accepted: 01/29/2019] [Indexed: 01/29/2023] Open
Affiliation(s)
- Shao-Song Wu
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- School of Geography Science, Nanjing Normal University, Nanjing 210023, China
| | - Marcela Hernández
- Centre for Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK
| | - Yong-Cui Deng
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Cheng Han
- School of Geography Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Xin Hong
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- School of Geography Science, Nanjing Normal University, Nanjing 210023, China
| | - Jie Xu
- School of Geography Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
| | - Wen-Hui Zhong
- School of Geography Science, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Provincial Key Laboratory of Materials Cycling and Pollution Control, Nanjing 210023, China
- Jiangsu Center for Collaborative Innovation in Geographical Information Resource Development and Application, Nanjing 210023, China
| | - Huan Deng
- School of Environment, Nanjing Normal University, Nanjing 210023, China
- School of Geography Science, Nanjing Normal University, Nanjing 210023, China
| |
Collapse
|
18
|
Wu Z, Zhang X, Dong Y, Xu X, Xiong Z. Microbial explanations for field-aged biochar mitigating greenhouse gas emissions during a rice-growing season. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:31307-31317. [PMID: 30194577 DOI: 10.1007/s11356-018-3112-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Knowledge about the impacts of fresh and field-aged biochar amendments on greenhouse gas (CH4, N2O) emissions is limited. A field experiment was initiated in 2012 to study the effects of fresh and field-aged biochar additions on CH4 and N2O emissions and the associated microbial activity during the entire rice-growing season in typical rice-wheat rotation system in Southeast China. CH4 and N2O fluxes were monitored, and the abundance of methanogen (mcrA), methanotrophy (pmoA), ammonia-oxidizing archaea (AOA), ammonia-oxidizing bacteria (AOB), nitrite reductase (nirS, nirK), N2O reductase (nosZ), and potential soil enzyme activities related to CH4 and N2O were simultaneously measured throughout different rice developmental stages. There were three treatments: control (urea without biochar), fresh BC (urea with fresh biochar added in 2015), and aged BC (urea with 3-year field-aged biochar added in 2012). Results showed that field-aged biochar significantly decreased seasonal CH4 emissions by 16.8% in relation to the fresh biochar, though no significant differences were detected between biochars and control treatment. The structural equation model indicated that soil pH, microbial biomass carbon (MBC), pmoA, and mcrA were the main factors directly influenced by fresh and aged biochar amendments; aged biochar showed a negative effect while fresh biochar showed positive effects on CH4 fluxes. Both fresh and field-aged biochar obviously increased AOA and AOB abundances and reduced the (nirS+nirK)/nosZ ratio during the entire rice-growing season, although no significant effects were observed on seasonal N2O emissions. Therefore, biochar amendment produced long-term effects on total CH4 and N2O emissions through observed influences of soil pH and functional gene abundance. The figure shows how fresh and field-aged biochar differentially affected CH4 production and oxidation and N2O production and reduction through related functional gene abundances. Blue arrows indicate suppressing while pink arrows indicate promoting effect.
Collapse
Affiliation(s)
- Zhen Wu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xi Zhang
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yubing Dong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xin Xu
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China
| | - Zhengqin Xiong
- Jiangsu Key Laboratory of Low Carbon Agriculture and GHGs Mitigation, College of Resources and Environmental Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
19
|
Lu L, Wang G, Yeung M, Xi J, Hu HY. Response of microbial community structure and metabolic profile to shifts of inlet VOCs in a gas-phase biofilter. AMB Express 2018; 8:160. [PMID: 30284060 PMCID: PMC6170518 DOI: 10.1186/s13568-018-0687-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 09/25/2018] [Indexed: 12/31/2022] Open
Abstract
The effects of inlet VOCs (Volatile Organic Compounds) shifts on microbial community structure in a biofiltration system were investigated. A lab-scale biofilter was set up to treat eight VOCs sequentially. Short declines in removal efficiency appeared after VOCs shifts and then later recovered. The number of OTUs in the biofilter declined from 690 to 312 over time. At the phylum level, Actinobacteria and Proteobacteria remained dominant throughout the operation for all VOCs, with their combined abundance ranging from 60 to 90%. The abundances of Planctomycetes and Thermi increased significantly to 20% and 5%, respectively, with the intake of non-aromatic hydrocarbons. At the genus level, Rhodococcus was present in the highest abundance (≥ 10%) throughout the experiment, indicating its wide degradability. Some potential degraders were also found; namely, Thauera and Pseudomonas, which increased in abundance to 19% and 12% during treatment with ethyl acetate and toluene, respectively. Moreover, the microbial metabolic activity declined gradually with time, and the metabolic profile of the toluene-treating community differed significantly from those of other communities.
Collapse
|
20
|
Yuan J, Yuan Y, Zhu Y, Cao L. Effects of different fertilizers on methane emissions and methanogenic community structures in paddy rhizosphere soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 627:770-781. [PMID: 29426201 DOI: 10.1016/j.scitotenv.2018.01.233] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2017] [Revised: 01/23/2018] [Accepted: 01/23/2018] [Indexed: 06/08/2023]
Abstract
Paddy soil accounts for 10% of global atmospheric methane (CH4) emissions. Many types of fertilizers may enhance CH4 emissions, especially organic fertilizer. The aim of this study was to explore the effects of different fertilizers on CH4 and methanogen patterns in paddy soil. This experiment involved four treatments: chemical fertilizer (CT), organic fertilizer (OT), mixed with chemical and organic fertilizer (MT), and no fertilizer (ctrl). The three fertilization treatments were applied with total nitrogen at the same rate of 300 kg N ha-1. Paddy CH4, soil physicochemical variables and methanogen communities were quantitatively analyzed. Rhizosphere soil mcrA and pmoA gene copy numbers were determined by qPCR. Methanogenic 16S rRNA genes were identified by MiSeq sequencing. The results indicated CH4 emissions were significantly higher in OT (145.31 kg ha-1) than MT (84.62 kg ha-1), CT (77.88 kg ha-1) or ctrl (32.19 kg ha-1). Soil organic acids were also increased by organic fertilization. CH4 effluxes were significantly and negatively related to mcrA and pmoA gene copy numbers, and positively related to mcrA/pmoA. Above all, hydrogenotrophic Methanocella and acetoclastic Methanosaeta were the predominant methanogenic communities; these communities were strictly associated with soil potassium, oxalate, acetate, and succinate. Application of organic fertilizer promoted the dominant acetoclastic methanogens, but suppressed the dominant hydrogenotrophic methanogens. The transformation in methanogenic community structure and enhanced availability of C substrates may explain the increased CH4 production in OT compared to other treatments. Compared to OT, MT may partially mitigate CH4 emissions while guaranteeing a high rice yield. On this basis, we recommend the local fertilization pattern should change from 300 N kg ha-1 of organic manure to the same level of mixed fertilization. Moreover, we suggest multiple combinations of mixed fertilization merit more investigation in the future.
Collapse
Affiliation(s)
- Jing Yuan
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yongkun Yuan
- Irrigation Technology Extension Station of Qingpu, 2 Yuan Road, Shanghai 201707, China
| | - Yihang Zhu
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Linkui Cao
- School of Agriculture and Biology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
21
|
Luo C, Deng Y, Inubushi K, Liang J, Zhu S, Wei Z, Guo X, Luo X. Sludge Biochar Amendment and Alfalfa Revegetation Improve Soil Physicochemical Properties and Increase Diversity of Soil Microbes in Soils from a Rare Earth Element Mining Wasteland. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2018; 15:ijerph15050965. [PMID: 29751652 PMCID: PMC5982004 DOI: 10.3390/ijerph15050965] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/27/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
Long-term unregulated mining of ion-adsorption clays (IAC) in China has resulted in severe ecological destruction and created large areas of wasteland in dire need of rehabilitation. Soil amendment and revegetation are two important means of rehabilitation of IAC mining wasteland. In this study, we used sludge biochar prepared by pyrolysis of municipal sewage sludge as a soil ameliorant, selected alfalfa as a revegetation plant, and conducted pot trials in a climate-controlled chamber. We investigated the effects of alfalfa revegetation, sludge biochar amendment, and their combined amendment on soil physicochemical properties in soil from an IAC mining wasteland as well as the impact of sludge biochar on plant growth. At the same time, we also assessed the impacts of these amendments on the soil microbial community by means of the Illumina Miseq sequences method. Results showed that alfalfa revegetation and sludge biochar both improved soil physicochemical properties and microbial community structure. When alfalfa revegetation and sludge biochar amendment were combined, we detected additive effects on the improvement of soil physicochemical properties as well as increases in the richness and diversity of bacterial and fungal communities. Redundancy analyses suggested that alfalfa revegetation and sludge biochar amendment significantly affected soil microbial community structure. Critical environmental factors consisted of soil available K, pH, organic matter, carbon⁻nitrogen ratio, bulk density, and total porosity. Sludge biochar amendment significantly promoted the growth of alfalfa and changed its root morphology. Combining alfalfa the revegetation with sludge biochar amendment may serve to not only achieve the revegetation of IAC mining wasteland, but also address the challenge of municipal sludge disposal by making the waste profitable.
Collapse
Affiliation(s)
- Caigui Luo
- Faculty of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
- National Engineering Research Center for Ionic Rare Earth, Ganzhou 341000, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou 341000, China.
| | - Yangwu Deng
- Faculty of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
- National Engineering Research Center for Ionic Rare Earth, Ganzhou 341000, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou 341000, China.
| | - Kazuyuki Inubushi
- Graduate School of Horticulture, Chiba University, Matsudo, Chiba 2718510, Japan.
| | - Jian Liang
- Faculty of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou 341000, China.
| | - Sipin Zhu
- Faculty of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou 341000, China.
| | - Zhenya Wei
- Faculty of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou 341000, China.
| | - Xiaobin Guo
- National Engineering Research Center for Ionic Rare Earth, Ganzhou 341000, China.
| | - Xianping Luo
- Faculty of Resources and Environmental Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China.
- National Engineering Research Center for Ionic Rare Earth, Ganzhou 341000, China.
- Jiangxi Key Laboratory of Mining & Metallurgy Environmental Pollution Control, Ganzhou 341000, China.
| |
Collapse
|