1
|
Carter LJ, Adams B, Berman T, Cohen N, Cytryn E, Elder FCT, Garduño-Jiménez AL, Greenwald D, Kasprzyk-Hordern B, Korach-Rechtman H, Lahive E, Martin I, Ben Mordechay E, Murray AK, Murray LM, Nightingale J, Radian A, Rubin AE, Sallach B, Sela-Donenfeld D, Skilbeck O, Sleight H, Stanton T, Zucker I, Chefetz B. Co-contaminant risks in water reuse and biosolids application for agriculture. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126219. [PMID: 40210163 DOI: 10.1016/j.envpol.2025.126219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 03/19/2025] [Accepted: 04/07/2025] [Indexed: 04/12/2025]
Abstract
Agriculture made the shift toward resource reuse years ago, incorporating materials such as treated wastewater and biosolids. Since then, research has documented the widespread presence of contaminants of emerging concern in agricultural systems. Chemicals such as pesticides, pharmaceuticals and poly- and -perfluoroalkyl substances (PFASs); particulate matter such as nanomaterials and microplastics; and biological agents such as antibiotic resistance genes (ARGs) and bacteria (ARB) are inadvertently introduced into arable soils where they can be taken up by crops and introduced to the food-web. Thus, concern about the presence of contaminants in agricultural environments has grown in recent years with evidence emerging linking agricultural exposure and accumulation in crops to ecosystem and human health effects. Our current assessment of risk is siloed by working within disciplines (i.e., chemistry and microbiology) and mostly focused on individual chemical classes. By not acknowledging the fact that contaminants are mostly introduced as a mixture, with the potential for interactions, with each other and with environmental factors, we are limiting our current approach to evaluate the real potential for ecosystem and human health effects. By uniting expertise across disciplines to integrate recent understanding regarding the risks posed by a range of chemically diverse contaminants in resources destined for reuse, this review provides a holistic perspective on the current regulatory challenges to ensure safe and sustainable reuse of wastewater and biosolids to support a sanitation-agriculture circular economy.
Collapse
Affiliation(s)
- Laura J Carter
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK.
| | - Beth Adams
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK; Fera Science Ltd, York Biotech Campus, Sand Hutton, York, YO41 1LZ, UK
| | - Tamar Berman
- Department of Environmental Health, Ministry of Health, Israel
| | - Nririt Cohen
- Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
| | - Eddie Cytryn
- Agriculture Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel
| | - F C T Elder
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK
| | | | - Danny Greenwald
- The Israeli Water and Sewerage Authority, Jerusalem, 9195021, Israel
| | | | | | - Elma Lahive
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Crowmarsh, Gifford, OX10 8BB, UK
| | - Ian Martin
- Environment Agency, Aqua House, 20 Lionel Street, Birmingham, B3 1AQ, UK
| | - Evyatar Ben Mordechay
- Agriculture Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel; Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Aimee K Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment and Sustainability Institute, Cornwall, Penryn, TR10 9EZ, UK
| | - Laura M Murray
- European Centre for Environment and Human Health, University of Exeter Medical School, Faculty of Health and Life Sciences, Environment and Sustainability Institute, Cornwall, Penryn, TR10 9EZ, UK
| | - John Nightingale
- School of Geography, Faculty of Environment, University of Leeds, LS2 9JT, UK
| | - Adi Radian
- Faculty of Civil and Environmental Engineering, Technion, Haifa, Israel
| | - Andrey Ethan Rubin
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Brett Sallach
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
| | - Dalit Sela-Donenfeld
- Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| | - Olivia Skilbeck
- School of Design, Faculty of Arts, Humanities and Cultures, University of Leeds, LS2 9JT, UK
| | - Harriet Sleight
- Department of Environment and Geography, University of York, York, YO10 5NG, UK
| | - Thomas Stanton
- Department of Geography and Environment, Loughborough University, LE11 3TU, UK
| | - Ines Zucker
- Porter School of Earth and Environmental Studies, Faculty of Exact Sciences, Tel Aviv University, Tel Aviv, 69978, Israel; School of Mechanical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, 69978, Israel
| | - Benny Chefetz
- Agriculture Research Organization - Volcani Institute, Rishon LeZion, 7505101, Israel; Robert H. Smith Faculty of Agricultural, Food and Environmental Sciences, The Hebrew University of Jerusalem, Rehovot, 76100, Israel
| |
Collapse
|
2
|
Urrea V, Páez-Triana L, Velásquez-Ortiz N, Camargo M, Patiño LH, Vega L, Ballesteros N, Hidalgo-Troya A, Galeano LA, Ramírez JD, Muñoz M. Metagenomic Analysis of Surface Waters and Wastewater in the Colombian Andean Highlands: Implications for Health and Disease. Curr Microbiol 2025; 82:162. [PMID: 40021498 PMCID: PMC11870934 DOI: 10.1007/s00284-024-04019-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Accepted: 12/02/2024] [Indexed: 03/03/2025]
Abstract
Urban water bodies serve as critical reservoirs of microbial diversity, with major implications for public health and environmental quality. This study aimed to characterize the microbial diversity of surface waters and wastewater from the Pasto River in the Colombian Andean Highlands, offering insights that may support water quality monitoring efforts. Sampling was conducted at three river sites and one wastewater location. Standard physicochemical and microbiological analyses were performed, including real-time PCR to detect protozoan pathogens Giardia spp. and Cryptosporidium spp. Metagenomic sequencing provided an in-depth taxonomic and functional profile of microbial communities through two complementary approaches: (i) read-based analysis to identify abundant families and species, both pathogenic and beneficial, and (ii) detection of health-related molecular markers, including antimicrobial resistance markers and virulence factors. Physicochemical analyses showed distinct profiles between wastewater and surface water, with wastewater exhibiting elevated levels of suspended solids (113.6 mg/L), biochemical oxygen demand (BOD, 311.2 mg/L), and chemical oxygen demand (COD, 426.7 mg/L). Real-time PCR detected Giardia spp. DNA in 75% (76/102) of the samples and Cryptosporidium spp. DNA in 94% (96/102) of samples. The metagenomic read-based profiling identified Aeromonas media as a prevalent pathogen and Polaromonas naphthalenivorans as a potential biodegradative agent. The metagenomic assembly produced 270 high-quality genomes, revealing 16 bacterial species (e. g., Acinetobacter johnsonii and Megamonas funiformis) that provided insights into fecal contaminants and native aquatic microbes. Functional profiling further revealed a high prevalence of antimicrobial resistance markers, particularly for tetracyclines, aminoglycosides, and macrolides, with the highest abundance found in wastewater samples. Additionally, virulence factors were notably present in Zoogloea ramigera. The findings underscore the value of metagenomic profiling as a comprehensive tool for water quality monitoring, facilitating the detection of pathogens, beneficial species, and molecular markers indicative of potential health risks. This approach supports continuous monitoring efforts, offering actionable data for water management strategies to safeguard public health and maintain ecological integrity.
Collapse
Affiliation(s)
- Vanessa Urrea
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Luisa Páez-Triana
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Natalia Velásquez-Ortiz
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Milena Camargo
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
- Centro de Tecnología en Salud (CETESA), Innovaseq SAS, 250027, Funza, Cundinamarca, Colombia
| | - Luz H Patiño
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Laura Vega
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Nathalia Ballesteros
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
| | - Arsenio Hidalgo-Troya
- Grupo de Investigación Salud Pública, Departamento de Matemáticas y Estadística, Universidad de Nariño, 520002, Pasto, Colombia
| | - Luis-Alejandro Galeano
- Grupo de Investigación en Materiales Funcionales y Catálisis (GIMFC), Departamento de Química, Universidad de Nariño, 520002, Pasto, Colombia
| | - Juan David Ramírez
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia
- Molecular Microbiology Laboratory, Department of Pathology, Molecular and Cell-Based Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Marina Muñoz
- Centro de Investigaciones en Microbiología y Biotecnología -UR (CIMBIUR), Facultad de Ciencias Naturales, Universidad del Rosario, 110221, Bogotá, Colombia.
- Instituto de Biotecnología-UN (IBUN), Universidad Nacional de Colombia, 111321, Bogotá, Colombia.
| |
Collapse
|
3
|
Baz-González E, Foronda P. Genetic characterization of Cryptosporidium spp. in the North African hedgehog (Atelerix algirus) in the Canary Islands, Spain. Parasitol Res 2024; 123:274. [PMID: 39017738 DOI: 10.1007/s00436-024-08290-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 07/06/2024] [Indexed: 07/18/2024]
Abstract
The North African hedgehog (Atelerix algirus) is an introduced species from Northwest Africa and is currently distributed in the Canary Islands. This species of hedgehog has been studied as a reservoir of enteropathogens, including Cryptosporidium spp. However, there are no data at species level. Therefore, the aim of the present study was to identify the Cryptosporidium species present in a population of hedgehogs (n = 36) in the Canary Islands. Molecular screening was performed using conventional polymerase chain reaction (PCR) targeting the small subunit ribosomal RNA (18S rRNA) gene of Cryptosporidium spp. Seven of the 36 fecal samples (19.45%) were positive and confirmed by nested PCR targeting the 18S rRNA gene and Sanger sequencing. Cryptosporidium parvum and Cryptosporidium muris were identified in 11.1% (4/36) and 5.6% (2/36) of the samples, respectively, while one sample could only be identified at the genus level. The zoonotic subtypes IIdA15G1 (n = 1), IIdA16G1b (n = 1), and IIdA22G1 (n = 1) of C. parvum were identified by nested PCR followed by analysis of the 60 kDa glycoprotein (gp60) gene sequence. This study is the first genetic characterization of Cryptosporidium spp. in A. algirus, identifying zoonotic species and subtypes of the parasite.
Collapse
Affiliation(s)
- Edgar Baz-González
- Departamento Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez S/N, 38203, San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico F. Sánchez S/N, 38203, San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
- Programa de Doctorado en Ciencias Médicas y Farmacéuticas, Desarrollo y Calidad de Vida, Universidad de La Laguna, San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Pilar Foronda
- Departamento Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, Avda. Astrofísico F. Sánchez S/N, 38203, San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain.
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, Avda. Astrofísico F. Sánchez S/N, 38203, San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain.
| |
Collapse
|
4
|
Hachimi O, Falender R, Davis G, Wafula RV, Sutton M, Bancroft J, Cieslak P, Kelly C, Kaya D, Radniecki T. Evaluation of molecular-based methods for the detection and quantification of Cryptosporidium spp. in wastewater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174219. [PMID: 38917908 DOI: 10.1016/j.scitotenv.2024.174219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/27/2024]
Abstract
Cryptosporidium poses significant public health risks as a cause of waterborne disease worldwide. Clinical surveillance of cryptosporidiosis is largely underreported due to the asymptomatic and mildly symptomatic infections, clinical misdiagnoses, and barriers to access testing. Wastewater surveillance overcomes these limitations and could serve as an effective tool for identifying cryptosporidiosis at the population level. Despite its potential, the lack of standardized wastewater surveillance methods for Cryptosporidium spp. challenges implementation design and the comparability between studies. Thus, this study compared and contrasted Cryptosporidium wastewater surveillance methods for concentrating wastewater oocysts, extracting oocyst DNA, and detecting Cryptosporidium genetic markers. The evaluated concentration methods included electronegative membrane filtration, Envirocheck HV capsule filtration, centrifugation, and Nanotrap Microbiome Particles, with and without additional immunomagnetic separation purification (except for the Nanotrap Microbiome Particles). Oocyst DNA extraction by either the DNeasy Powersoil Pro kit and the QIAamp DNA Mini kit were evaluated and the impact of bead beating and freeze-thaw pretreatments on DNA recoveries was assessed. Genetic detection via qPCR assays targeting either the Cryptosporidium 18S rRNA gene or the Cryptosporidium oocyst wall protein gene were tested. Oocyst recovery percentages were highest for centrifugation (39-77 %), followed by the Nanotrap Microbiome Particles (24 %), electronegative filtration with a PBST elution (22 %), and Envirocheck HV capsule filtration (13 %). Immunomagnetic separation purification was found to be unsuitable due to interference from the wastewater matrix. Bead-beating pretreatment enhanced DNA recoveries from both the DNeasy Powersoil Pro kit (314 gc/μL DNA) and the QIAamp DNA Mini kit (238 gc/μL DNA). In contrast, freeze-thaw pretreatment reduced DNA recoveries to under 92 gc/μL DNA, likely through DNA degradation. Finally, while both qPCR assays were specific to Cryptosporidium spp., the 18S rRNA assay had a 5-fold lower detection limit and could detect a wider range of Cryptosporidium spp. than the Cryptosporidium oocyst wall protein assay.
Collapse
Affiliation(s)
- Oumaima Hachimi
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Rebecca Falender
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - Gabriel Davis
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Rispa Vranka Wafula
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Melissa Sutton
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - June Bancroft
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - Paul Cieslak
- Oregon Health Authority, 800 NE Oregon St, Portland, OR 97232, USA
| | - Christine Kelly
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Devrim Kaya
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA
| | - Tyler Radniecki
- School of Chemical, Biological, and Environmental Engineering, Oregon State University, 116 Johnson Hall, Corvallis, OR 97331, USA.
| |
Collapse
|
5
|
Jingyi J, Ping Y, Jian X, Jia C, Xujian M, Qiong L, Bowen T, Fengming W. Efficacy of a membrane concentration method combined with real-time PCR for detection of Giardia and Cryptosporidium in drinking water. Lett Appl Microbiol 2023; 76:ovad121. [PMID: 37833237 DOI: 10.1093/lambio/ovad121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 10/06/2023] [Accepted: 10/12/2023] [Indexed: 10/15/2023]
Abstract
The occurrence of Giardia and Cryptosporidium (oo)cysts in drinking source water poses a serious public health risk. Here, we established a method that combines membrane concentration and real-time polymerase chain reaction (PCR) to quantify Giardia and Cryptosporidium in drinking water. The water samples were filtered through a cellulose membrane to collect Giardia and Cryptosporidium, and then nucleic acids were extracted. Specific primers and probes were designed and synthesized according to the gph gene sequence of Giardia and 18S rRNA gene sequence of Cryptosporidium. The concentrations of the two targets were determined using real-time PCR technology. The sensitivity, specificity, and stability of the method were evaluated. Our findings revealed that the detection limits of real-time PCR method for detecting Giardia and Cryptosporidium were 0.926 and 0.65 copy/µL, respectively; the spiked recovery rates were above 60% and 38%, respectively, and relative standard deviations were under 0.95% and 2.26%, respectively. Therefore, this effective procedure based on the membrane concentration method and real-time PCR will be useful for detecting Giardia and Cryptosporidium in drinking water for purpose of continuous environmental monitoring.
Collapse
Affiliation(s)
- Jiang Jingyi
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| | - Yao Ping
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| | - Xu Jian
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| | - Chen Jia
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| | - Mao Xujian
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| | - Li Qiong
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| | - Tu Bowen
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| | - Wang Fengming
- Pathogen Inspection Center, Changzhou Center for Disease Prevention and Control, 203 TaiShan Road, Changzhou 213022, Jiangsu, China
| |
Collapse
|
6
|
Bhatt A, Dada AC, Prajapati SK, Arora P. Integrating life cycle assessment with quantitative microbial risk assessment for a holistic evaluation of sewage treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160842. [PMID: 36509266 DOI: 10.1016/j.scitotenv.2022.160842] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 11/12/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
An integrated approach was employed in the present study to combine life cycle assessment (LCA) with quantitative microbial risk assessment (QMRA) to assess an existing sewage treatment plant (STP) at Roorkee, India. The midpoint LCA modeling revealed that high electricity consumption (≈ 576 kWh.day-1) contributed to the maximum environmental burdens. The LCA endpoint result of 0.01 disability-adjusted life years per person per year (DALYs pppy) was obtained in terms of the impacts on human health. Further, a QMRA model was developed based on representative sewage pathogens, including E. coli O157:H7, Giardia sp., adenovirus, norovirus, and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The public health risk associated with intake of pathogen-laden aerosols during treated water reuse in sprinkler irrigation was determined. A cumulative health risk of 0.07 DALYs pppy was obtained, where QMRA risks contributed 86 % of the total health impacts. The annual probability of illness per person was highest for adenovirus and norovirus, followed by SARS-CoV-2, E. coli O157:H7 and Giardia sp. Overall, the study provides a methodological framework for an integrated LCA-QMRA assessment which can be applied across any treatment process to identify the hotspots contributing maximum environmental burdens and microbial health risks. Furthermore, the integrated LCA-QMRA approach could support stakeholders in the water industry to select the most suitable wastewater treatment system and establish regulations regarding the safe reuse of treated water.
Collapse
Affiliation(s)
- Ankita Bhatt
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India
| | | | - Sanjeev Kumar Prajapati
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India
| | - Pratham Arora
- Department of Hydro and Renewable Energy, Indian Institute of Technology Roorkee, Uttarakhand, India.
| |
Collapse
|
7
|
Ríos-Castro R, Cabo A, Teira E, Cameselle C, Gouveia S, Payo P, Novoa B, Figueras A. High-throughput sequencing as a tool for monitoring prokaryote communities in a wastewater treatment plant. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160531. [PMID: 36470389 DOI: 10.1016/j.scitotenv.2022.160531] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 06/17/2023]
Abstract
In this study, the DNA metabarcoding technique was used to explore the prokaryote diversity and community structure in wastewater collected in spring and winter 2020-2021 as well as the efficiency of the treatment in a wastewater treatment plant (WWTP) in Ría de Vigo (NW Spain). The samplings included raw wastewater from the inlet stream (M1), the discharge water after the disinfection treatment (M3) and mussels used as bioindicators of possible contamination of the marine environment. Significant differences were discovered in the microbiome of each type of sample (M1, M3 and mussels), with 92 %, 45 % and 44 % of exclusive OTUs found in mussel, M3 and M1 samples respectively. Seasonal differences were also detected in wastewater samples, with which abiotic parameters (temperature, pH) could be strongly involved. Bacteria present in raw wastewater (M1) were associated with the human gut microbiome, and therefore, potential pathogens that could be circulating in the population in specific periods were detected (e.g., Arcobacter sp. and Clostridium sp.). A considerable decrease in putative pathogenic organisms from the M1 to M3 wastewater fractions and the scarce presence in mussels (<0.5 % total reads) confirmed the effectiveness of pathogen removal in the wastewater treatment plant. Our results showed the potential of the DNA metabarcoding technique for monitoring studies and confirmed its application in wastewater-based epidemiology (WBE) and environmental contamination studies. Although this technique cannot determine if the infective pathogens are present, it can characterize the microbial communities and the putative pathogens that are circulating through the population (microbiome of M1) and also confirm the efficacy of depuration treatment, which can directly affect the aquaculture sector and even human and veterinary health.
Collapse
Affiliation(s)
- Raquel Ríos-Castro
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Adrián Cabo
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain.
| | - Eva Teira
- University of Vigo, Departamento de Ecología y Biología Animal, Centro de Investigación Marina (CIM), Universidad de Vigo, Facultad de Ciencias do Mar, 36310 Vigo, Spain.
| | - Claudio Cameselle
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain
| | - Susana Gouveia
- University of Vigo, BiotecnIA Group, Department of Chemical Engineering, 36310 Vigo, Spain
| | - Pedro Payo
- GESECO Aguas S.A., Teixugueiras 13, 36212 Vigo, Spain.
| | - Beatriz Novoa
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| | - Antonio Figueras
- Marine Research Institute IIM-CSIC, Spanish National Research Council, Eduardo Cabello 6, 36208 Vigo, Spain.
| |
Collapse
|
8
|
Nemati S, Shalileh F, Mirjalali H, Omidfar K. Toward waterborne protozoa detection using sensing technologies. Front Microbiol 2023; 14:1118164. [PMID: 36910193 PMCID: PMC9999019 DOI: 10.3389/fmicb.2023.1118164] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
Drought and limited sufficient water resources will be the main challenges for humankind during the coming years. The lack of water resources for washing, bathing, and drinking increases the use of contaminated water and the risk of waterborne diseases. A considerable number of waterborne outbreaks are due to protozoan parasites that may remain active/alive in harsh environmental conditions. Therefore, a regular monitoring program of water resources using sensitive techniques is needed to decrease the risk of waterborne outbreaks. Wellorganized point-of-care (POC) systems with enough sensitivity and specificity is the holy grail of research for monitoring platforms. In this review, we comprehensively gathered and discussed rapid, selective, and easy-to-use biosensor and nanobiosensor technologies, developed for the early detection of common waterborne protozoa.
Collapse
Affiliation(s)
- Sara Nemati
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Farzaneh Shalileh
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kobra Omidfar
- Biosensor Research Center, Endocrinology and Metabolism Molecular–Cellular Sciences Institute, Tehran University of Medical Sciences, Tehran, Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Research Institute, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
9
|
Onursal A, Icgen B. Wastewater treatment plants discharges disseminated more Giardia than Cryptosporidium. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2023; 95:e10839. [PMID: 36751137 DOI: 10.1002/wer.10839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 01/16/2023] [Accepted: 01/19/2023] [Indexed: 06/18/2023]
Abstract
Parasitic protozoa Giardia intestinalis and Cryptosporidium parvum are causative agents for giardiasis and cryptosporidiosis, respectively. These infections are mostly associated with waterborne diseases. The discharges from wastewater treatment plants (WWTPs) that reach surface waters cause waterborne transmission because there are no regulations for monitoring these protozoa. This emphasizes how crucial the removal capacities of WWTPs to prevent the spread of infectious parasitic pathogens. For this reason, in this study, five different types of WWTPs including conventional activated sludge (CAS), biological nutrient removal (BNR), sequencing batch reactor (SBR), membrane bioreactor (MBR), and WWTP with coagulation-flocculation and UV disinfection (CoFlUV) units were investigated over a year, seasonally in terms of their G. intestinalis and C. parvum removal capacities. The seasonal abundances of these protozoa-specific genes in both the influents and effluents of each WWTP were determined by qPCR. The reduction of protozoan rDNA copies in the effluent wastewater samples compared with the influent wastewater samples was assessed as log10 reduction values (LRVs). LRVs >3 were reachable for C. parvum in all types of WWTPs tested. However, only LRVs 1-2 were reachable for G. intestinalis in CAS, SBR, CoFlUV, and MBR. Significant seasonal variations were just observed in SBR and CAS for G. intestinalis and C. parvum (p < 0.05), respectively. The findings depicted that WWTPs tested disseminated more giardiasis causative agents than cryptosporidiosis. Therefore, G. intestinalis needs to be monitored in WWTPs' discharges to reduce any potential damage of this parasite to public health. PRACTITIONER POINTS: Removal of G. intestinalis and C. parvum in WWTPs was affected by the process. LRV 2.92 was the highest LRV achieved for G. intestinalis. LRV >3 was reachable for C. parvum. WWTPs discharges disseminated more G. intestinalis than C. parvum. WWTPs effluents should be monitored in terms of G. intestinalis.
Collapse
Affiliation(s)
- Asli Onursal
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| | - Bulent Icgen
- Department of Environmental Engineering, Middle East Technical University, Ankara, Turkey
| |
Collapse
|
10
|
Suarez P, Alonso JL, Gómez G, Vidal G. Performance of sewage treatment technologies for the removal of Cryptosporidium sp. and Giardia sp.: Toward water circularity. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116320. [PMID: 36183529 DOI: 10.1016/j.jenvman.2022.116320] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/31/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Cryptosporidium sp. and Giardia sp. are parasites that cause diseases in the population. Most of parasite diseases regarding the consumption of drinking water polluted with sewage are caused by Cryptosporidium sp. or Giardia sp. it is because of the incomplete disinfection of the wastewater treatment. Therefore, in this work the removal or inactivation efficiency of different treatment technologies presented by around 40 scientific studies was evaluated, with a view to water circularity. For Cryptosporidium sp., we conclude that the most efficient secondary technologies are aerobic technologies, which remove between 0.00 and 2.17 log units (Ulog), with activated sludge presenting the greatest efficiency, and that the tertiary technologies with the greatest removal are those that use ultrasound, which reach removal values of 3.17 Ulog. In the case of Giardia sp., the secondary technologies with the greatest removal are anaerobic technologies, with values between 0.00 and 3.80 Ulog, and the tertiary technologies with the greatest removal are those that combine filtration with UV or a chemical disinfection agent. Despite the removal values obtained, the greatest concern remains detecting and quantifying the infectious forms of both parasites in effluents; therefore, although the technologies perform adequately, discharge effluents must be monitored with more sensitive techniques, above all aiming for circularity of the treated water in a context of the water scarcity that affects some parts of the world.
Collapse
Affiliation(s)
- Pilar Suarez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile
| | - José Luis Alonso
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera 14, P.O. Box 46022, Valencia, Spain
| | - Gloria Gómez
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile
| | - Gladys Vidal
- Environmental Engineering & Biotechnology Group (GIBA-UDEC), Environmental Science Faculty, Universidad de Concepción, Concepción, 4070386, Chile.
| |
Collapse
|
11
|
Ugarte P, Ramo A, Quílez J, Bordes MDC, Mestre S, Sánchez E, Peña JÁ, Menéndez M. Low-cost ceramic membrane bioreactor: Effect of backwashing, relaxation and aeration on fouling. Protozoa and bacteria removal. CHEMOSPHERE 2022; 306:135587. [PMID: 35798148 DOI: 10.1016/j.chemosphere.2022.135587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 06/20/2022] [Accepted: 06/30/2022] [Indexed: 06/15/2023]
Abstract
Membrane biological reactors (MBR) constitute an alternative to conventional wastewater treatments for improved recovery, reuse, and recycling of water. MBRs have a smaller footprint, provide better biotreatment and achieve a high-quality effluent. This work analyses the use of MBRs innovative low-cost ceramic membranes for wastewater treatment. We propose low-cost ceramic membranes as an alternative to the more expensive commercial ceramic membranes. Low-cost membranes were made of clay, calcium carbonate, potato starch, almond shell and chamotte. We synthesized two different selective layers, from clay and/or TiO2. We characterized the membranes (pore diameter and water permeance) and their performance in a laboratory scale MBR. To mitigate membrane fouling and preserve the continued operation along time, the effect of different operating cycles was measured, considering two physical cleaning strategies: relaxation and backwashing. Cycles of 9 min of operation, 30 s of relaxation and 1 min of backwashing provided the lowest fouling rate. We investigated the effect of air scouring on fouling by operating with different air flow rates. Once experimental conditions were optimized, the overall performance of the different ceramic membranes was tested. The membrane with a TiO2 thin layer provided the best resistance to fouling, as well as a good retention capacity of E. coli, Cryptosporidium oocysts and Giardia cysts.
Collapse
Affiliation(s)
- Patricia Ugarte
- Catalysis, Molecular Separations and Reactor Engineering Group (CREG), Aragon Institute of Engineering Research (I3A), Universidad Zaragoza, 50018, Zaragoza, Spain
| | - Ana Ramo
- Catalysis, Molecular Separations and Reactor Engineering Group (CREG), Aragon Institute of Engineering Research (I3A), Universidad Zaragoza, 50018, Zaragoza, Spain
| | - Joaquín Quílez
- Department of Animal Pathology, Faculty of Veterinary Sciences, University of Zaragoza, 50013, Zaragoza, Spain
| | | | - Sergio Mestre
- University Institute of Ceramic Technology, University Jaume I, 12006, Castellon, Spain
| | - Enrique Sánchez
- University Institute of Ceramic Technology, University Jaume I, 12006, Castellon, Spain
| | - José Ángel Peña
- Catalysis, Molecular Separations and Reactor Engineering Group (CREG), Aragon Institute of Engineering Research (I3A), Universidad Zaragoza, 50018, Zaragoza, Spain
| | - Miguel Menéndez
- Catalysis, Molecular Separations and Reactor Engineering Group (CREG), Aragon Institute of Engineering Research (I3A), Universidad Zaragoza, 50018, Zaragoza, Spain.
| |
Collapse
|
12
|
Ladeia WA, Martins FDC, Nino BDSL, Silvério ADC, da Silva AC, Ossada R, da Silva DA, Garcia JL, Freire RL. High occurrence of viable forms of Cryptosporidium and Giardia in domestic sewage from an agricultural region of Brazil. JOURNAL OF WATER AND HEALTH 2022; 20:1405-1415. [PMID: 36170194 DOI: 10.2166/wh.2022.127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cryptosporidium and Giardia are the main etiologies of waterborne outbreaks caused by protozoa. These parasites are commonly detected in wastewater; however, there is little knowledge about the concentration of viable forms in treated sewage, mainly in small communities. To understand more about the presence of viable oocysts and cysts in domestic sewage, we monitored the affluent and effluent of a wastewater treatment plant (WWTP) in inner-city Brazil. Ten samplings and seven follow-ups were performed in 2020. Samples were concentrated by centrifugation, filtration and purified by fluctuation. Viability was accessed by propidium-monoazide (PMA) associated with nPCR and qPCR. Both viable protozoa were detected in all raw sewage samples (average: 438.5 viable oocysts/L). Regarding treated sewage, Cryptosporidium was detected in all of the samples (average: 92.8 viable oocysts/L) and Giardia was detected in 70% with viable cysts in 30%. Considering the follow-ups, 31.17% of Cryptosporidium viable oocysts remained in the effluent after the treatment. High amounts of Cryptosporidium and a high frequency of Giardia were detected, therefore both arrived at WWTP and were discharged into the river. These alert the presence of agro-industrial effluents into domestic sewage and demonstrated the effectiveness of the concentration technique for monitoring protozoa in wastewater.
Collapse
Affiliation(s)
- Winni Alves Ladeia
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Felippe Danyel Cardoso Martins
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Beatriz de Souza Lima Nino
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Arielle da Cunha Silvério
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Ana Clécia da Silva
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Raul Ossada
- Preventive Veterinary Medicine and Animal Health Department, Veterinary Medicine and Zootechnics College, São Paulo University, Professor Orlando M de Paiva Avenue, 87, São Paulo 05508-270, Brazil
| | - Douglas Aparecido da Silva
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - João Luis Garcia
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| | - Roberta Lemos Freire
- Preventive Veterinary Medicine Department, State University of Londrina, Celso Garcia Cid, PR 445 Highway km 388, University Campus, Londrina, Paraná 86057-970, Brazil E-mail:
| |
Collapse
|
13
|
Moreno-Mesonero L, Amorós I, Moreno Y, Alonso JL. Simultaneous detection of less frequent waterborne parasitic protozoa in reused wastewater using amplicon sequencing and qPCR techniques. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115029. [PMID: 35430514 DOI: 10.1016/j.jenvman.2022.115029] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 04/01/2022] [Accepted: 04/04/2022] [Indexed: 06/14/2023]
Abstract
Waterborne parasitic protozoa (WPP) infections have a worldwide distribution and are a source for epidemic and endemic human diseases. Although a variety of protozoa are commonly detected in wastewater and cited as causative agents of outbreaks, effluents from wastewater treatment plants (WWTPs) used for irrigation can contain other pathogenic protozoa that are not currently being controlled. The lack of control on a routine basis using rapid and sensitive methods to detect these parasites in water may keep them under-recognized. This study focused on using molecular tools, 18 S rRNA amplicon-based sequencing and qPCR, to characterize WPP distribution in wastewater samples from urban WWTPs used for irrigation. A total of eight wastewater samples (from secondary and tertiary disinfection treatment effluents) were collected. Potentially pathogenic protozoa identified by 18 S rRNA sequencing and/or qPCR in the analyzed samples included Acanthamoeba spp., Blastocystis sp., Entamoeba coli, Entamoeba dispar, Entamoeba hartmanni, Giardia intestinalis assemblage A and Toxoplasma gondii Positive results by qPCR were in non-quantifiable levels. Blastocystis sp. was the most represented protozoa among the sequences retrieved from the amplicon sequencing. Blastocystis ST1 and ST2 were the most abundant subtypes among the obtained OTUs. Moreover, Blastocystis sp. ST3, ST4, ST6 and ST8 were also detected, although in lower abundances. Results of this study showed that WWTP effluents used for irrigation can provide a source of WPP.
Collapse
Affiliation(s)
- L Moreno-Mesonero
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain.
| | - I Amorós
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain.
| | - Y Moreno
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain.
| | - J L Alonso
- Research Institute of Water and Environmental Engineering (IIAMA), Universitat Politècnica de València, Camino de Vera S/n, 46022, Valencia, Spain.
| |
Collapse
|
14
|
Fradette MS, Culley AI, Charette SJ. Detection of Cryptosporidium spp. and Giardia spp. in Environmental Water Samples: A Journey into the Past and New Perspectives. Microorganisms 2022; 10:microorganisms10061175. [PMID: 35744692 PMCID: PMC9228427 DOI: 10.3390/microorganisms10061175] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 06/03/2022] [Accepted: 06/04/2022] [Indexed: 01/27/2023] Open
Abstract
Among the major issues linked with producing safe water for consumption is the presence of the parasitic protozoa Cryptosporidium spp. and Giardia spp. Since they are both responsible for gastrointestinal illnesses that can be waterborne, their monitoring is crucial, especially in water sources feeding treatment plants. Although their discovery was made in the early 1900s and even before, it was only in 1999 that the U.S. Environmental Protection Agency (EPA) published a standardized protocol for the detection of these parasites, modified and named today the U.S. EPA 1623.1 Method. It involves the flow-through filtration of a large volume of the water of interest, the elution of the biological material retained on the filter, the purification of the (oo)cysts, and the detection by immunofluorescence of the target parasites. Since the 1990s, several molecular-biology-based techniques were also developed to detect Cryptosporidium and Giardia cells from environmental or clinical samples. The application of U.S. EPA 1623.1 as well as numerous biomolecular methods are reviewed in this article, and their advantages and disadvantages are discussed guiding the readers, such as graduate students, researchers, drinking water managers, epidemiologists, and public health specialists, through the ever-expanding number of techniques available in the literature for the detection of Cryptosporidium spp. and Giardia spp. in water.
Collapse
Affiliation(s)
- Marie-Stéphanie Fradette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche en Aménagement et Développement du Territoire (CRAD), Université Laval, Québec City, QC G1V 0A6, Canada
- Correspondence:
| | - Alexander I. Culley
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Groupe de Recherche en Écologie Buccale (GREB), Faculté de Médecine Dentaire, Université Laval, Québec City, QC G1V 0A6, Canada
| | - Steve J. Charette
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec City, QC G1V 0A6, Canada; (A.I.C.); (S.J.C.)
- Département de Biochimie, de Microbiologie et de Bio-Informatique, Faculté des Sciences et Génie, Université Laval, Québec City, QC G1V 0A6, Canada
- Centre de Recherche de l’Institut Universitaire de Cardiologie et de Pneumologie de Québec, Québec City, QC G1V 0A6, Canada
| |
Collapse
|
15
|
Valdez FQ, Leite LDS, Zanetoni Filho JA, Tango MD, Daniel LA. Detection and removal of Giardia spp. cysts and Cryptosporidium spp. oocysts by anaerobic reactors in Brazil. ENVIRONMENTAL TECHNOLOGY 2022; 43:2059-2068. [PMID: 33334260 DOI: 10.1080/09593330.2020.1866083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The discharge of raw wastewater into the environment can be a contamination source of Giardia spp. cysts and Cryptosporidium spp. oocysts. The UASB (Upflow Anaerobic Sludge Blanket) reactor is the most popular technology applied for wastewater treatment in Brazil, nevertheless there is little information concerning its capacity for (oo)cyst removal. In this context, this study investigated the occurrence and removal of Giardia spp. cysts and Cryptosporidium spp. oocysts by three different UASB reactors (i.e. Reactor A, B, and C) treating different wastewater types. In the wastewater influent, the concentration varied from 493.3 to 14,000 cysts·L-1 for Giardia spp. and from 'not detected' to 53.3 oocysts·L-1 for Cryptosporidium spp.. The (oo)cyst concentration increased after the anaerobic treatment in Reactors A and B, while Giardia spp. log-removal of 0.5 ± 0.2 was found in Reactor C. The increment in (oo)cyst concentration may happened due to the inefficacy for (oo)cyst removal by the specific UASB reactor and/or due to the reduction of matrix interference for reactor effluent samples in the detection method. The results suggest that hydraulic retention time (HRT) may be the key parameter for Giardia spp. removal by the UASB reactor. Furthermore, no parameter analysed (physical-chemical and indicator microorganisms) showed a common correlation with the (oo)cyst concentration in the three UASB reactors. Considering that official data of cryptosporidiosis and giardiasis cases are rarely reported in Brazil, monitoring Giardia spp. cysts and Cryptosporidium spp. oocysts in wastewater could be an alternative to estimate the occurrence of diseases in the served population.
Collapse
Affiliation(s)
- Fernanda Queiroz Valdez
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Luan de Souza Leite
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - José Antônio Zanetoni Filho
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Mariana Daniel Tango
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| | - Luiz Antonio Daniel
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Carlos, Brazil
| |
Collapse
|
16
|
Investigation of Toxoplasma gondii in wastewater and surface water in the Qinghai-Tibet Plateau, China using real-time PCR and multilocus genotyping. Sci Rep 2022; 12:5428. [PMID: 35361820 PMCID: PMC8971506 DOI: 10.1038/s41598-022-09166-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 12/30/2021] [Indexed: 01/08/2023] Open
Abstract
Toxoplasma gondii is a protozoan parasite, causing one of the most prevalent parasitic infections in the world. In the present study water sources of the Qinghai-Tibet Plateau (QTP), China, where the hygienic infrastructure is still developing, were investigated. A total of 214 water samples of 10 L volume, were collected from wastewater treatment plants (WWTPs), a slaughterhouse and rivers. The samples were filtered and then analysed using real-time PCR and multilocus genotyping. T. gondii DNA was found in four (1.9%) samples representing T. gondii type I; in one of them T. gondii-like oocysts were also confirmed microscopically. The approximate level of contamination of positive samples ranged between 30 and 2300 T. gondii sporozoites. The results of this study confirmed that T. gondii is present in wastewater in the greater metropolitan area of Xining and a neighbouring county. Contamination of wastewater at this level constitutes rather a moderate source of Toxoplasma infections in humans and animals. It suggests, however, a link between environmental exposure of animals, meat processing facilities and WWTPs. To our knowledge, this is the first investigation describing T. gondii detection in wastewater and environmental water samples collected from the territory of P.R. China using sensitive molecular tools.
Collapse
|
17
|
Medeiros RC, Sammarro Silva KJ, Daniel LA. Wastewater treatment performance in microbiological removal and (oo)cyst viability assessed comparatively to fluorescence decay. ENVIRONMENTAL TECHNOLOGY 2022; 43:962-970. [PMID: 32799634 DOI: 10.1080/09593330.2020.1811396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
Municipal wastewater is a source of pathogenic protozoan (oo)cysts and may play a significant role in spreading waterborne diseases. This scenario becomes more critical as treated sewage from municipal wastewater treatment plants (WWTP) is discharged into springs, which are often used for water supply, irrigation, recreation and, further downstream, indirect potable reuse, quite common in Brazil. This study aimed to elucidate, regarding microbiological quality, the performance of a full-scale WWTP, consisting of preliminary treatment, upflow anaerobic sludge blanket (UASB) reactor, activated sludge system and ultraviolet (UV) radiation disinfection. Pathogenic protozoa (Giardia spp. cysts and Cryptosporidium spp. oocysts), as well as microbiological indicators (Escherichia coli and Clostridium perfringens), were evaluated in terms of their removal. In addition, (oo)cyst viability and fluorescence reduction were assessed. By using the data obtained from this research, the prevalence of infection estimated for the population served by the WWTP was between 7.4% and 14.8% for giardiasis, and between 0.055% and 0.11% for cryptosporidiosis.
Collapse
Affiliation(s)
- Raphael Corrêa Medeiros
- Department of Engineering and Environmental Technology, Federal University of Santa Maria - campus Frederico Westphalen, Rio Grande do Sul, Brazil
| | - Kamila Jessie Sammarro Silva
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| | - Luiz Antonio Daniel
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
18
|
Baz-González E, Martín-Carrillo N, García-Livia K, Foronda P. Molecular Detection of Cryptosporidium cuniculus in Rabbits (Oryctolagus cuniculus) from Tenerife, Canary Islands, Spain. Vet Sci 2022; 9:vetsci9020091. [PMID: 35202344 PMCID: PMC8877424 DOI: 10.3390/vetsci9020091] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 02/11/2022] [Accepted: 02/16/2022] [Indexed: 10/27/2022] Open
Abstract
Cryptosporidium cuniculus is a zoonotic parasite responsible for cryptosporidiosis cases and outbreaks in both humans and rabbits. Since there are no molecular Cryptosporidium spp. infection data in rabbits (Oryctolagus cuniculus) from Spain, our aim was to gather information about this parasite in wild European rabbits from Tenerife, Canary Islands (Spain). A total of 100 faecal samples were collected from rabbits from eight municipalities of Tenerife. Microscopic analysis showed that 4.0% of the samples presented structures compatible with Cryptosporidium oocyst. A nested polymerase chain reaction (PCR) targeting 18S ribosomal RNA (rRNA) gene fragments was carried out, and sequencing confirmed the identity of C. cuniculus in one sample (1.0%). The sample was successfully subtyped using nested PCR analysis of the 60-kDa glycoprotein (gp60) gene as the subtype VbA26R3. This study confirms the presence of C. cuniculus in wild rabbits from Tenerife, providing new information on the occurrence of this zoonotic parasite. Further studies are required to better understand the epidemiology of Cryptosporidium spp. in wild rabbits in Spain and their possible public health repercussions.
Collapse
Affiliation(s)
- Edgar Baz-González
- Department Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain; (E.B.-G.); (N.M.-C.); (K.G.-L.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Natalia Martín-Carrillo
- Department Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain; (E.B.-G.); (N.M.-C.); (K.G.-L.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Katherine García-Livia
- Department Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain; (E.B.-G.); (N.M.-C.); (K.G.-L.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
| | - Pilar Foronda
- Department Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain; (E.B.-G.); (N.M.-C.); (K.G.-L.)
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, 38200 San Cristóbal de La Laguna, Tenerife, Canary Islands, Spain
- Correspondence:
| |
Collapse
|
19
|
Zahedi A, Monis P, Deere D, Ryan U. Wastewater-based epidemiology-surveillance and early detection of waterborne pathogens with a focus on SARS-CoV-2, Cryptosporidium and Giardia. Parasitol Res 2021; 120:4167-4188. [PMID: 33409629 PMCID: PMC7787619 DOI: 10.1007/s00436-020-07023-5] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 12/14/2020] [Indexed: 12/21/2022]
Abstract
Waterborne diseases are a major global problem, resulting in high morbidity and mortality, and massive economic costs. The ability to rapidly and reliably detect and monitor the spread of waterborne diseases is vital for early intervention and preventing more widespread disease outbreaks. Pathogens are, however, difficult to detect in water and are not practicably detectable at acceptable concentrations that need to be achieved in treated drinking water (which are of the order one per million litre). Furthermore, current clinical-based surveillance methods have many limitations such as the invasive nature of the testing and the challenges in testing large numbers of people. Wastewater-based epidemiology (WBE), which is based on the analysis of wastewater to monitor the emergence and spread of infectious disease at a population level, has received renewed attention in light of the current coronavirus disease 2019 (COVID-19) pandemic. The present review will focus on the application of WBE for the detection and surveillance of pathogens with a focus on severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and the waterborne protozoan parasites Cryptosporidium and Giardia. The review highlights the benefits and challenges of WBE and the future of this tool for community-wide infectious disease surveillance.
Collapse
Affiliation(s)
- Alireza Zahedi
- Harry Butler Institute, Murdoch University, Perth, Australia
| | - Paul Monis
- South Australian Water Corporation, Adelaide, Australia
| | - Daniel Deere
- Water Futures and Water Research Australia, Sydney, Australia
| | - Una Ryan
- Harry Butler Institute, Murdoch University, Perth, Australia.
| |
Collapse
|
20
|
Bahramdoost Z, Mirjalali H, Yavari P, Haghighi A. Development of HRM real-time PCR for assemblage characterization of Giardia lamblia. Acta Trop 2021; 224:106109. [PMID: 34450062 DOI: 10.1016/j.actatropica.2021.106109] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 08/14/2021] [Accepted: 08/18/2021] [Indexed: 12/23/2022]
Abstract
A total of 90 stool samples were collected from dogs, referred to a dog shelter and a veterinary clinic. In addition, 395 stool samples obtained from pet dog owners and shelter keepers, as well as individuals referred to a medical laboratory as controls, were collected in Shahryar district, Tehran, Iran. Stool samples were parasitologically examined and the positive G. lamblia isolates were tested with Nested-PCR/sequencing for the tpi, gdh, and bg genes, and HRM real-time PCR. Microscopical examination revealed 20 (22.2%) and 34 (8.6%) Giardia-positive samples from dogs and humans, respectively. Regarding HRM real-time PCR, the prevalence of assemblages A and B in humans was 55.8% and 14.7%, respectively. In addition, 14.7% of samples were mix assemblages. HRM real-time PCR detected most of microscopically-positive samples in comparison to PCR/sequencing in both humans and dogs. The high prevalence of assemblages A and B in dogs signified the importance of a same source for infection between dogs and humans.
Collapse
|
21
|
Abstract
As the most important resource for life, water has been a central issue on the international agenda for several decades. Yet, the world’s supply of clean freshwater is steadily decreasing due to extensive agricultural demand for irrigated lands. Therefore, water resources should be used with greater efficiency, and the use of non-traditional water resources, such as Treated Wastewater (TW), should be increased. Reusing TW could be an alternative option to increase water resources. Thus, many countries have decided to turn wastewater into an irrigation resource to help meet urban demand and address water shortages. However, because of the nature of that water, there are potential problems associated with its use in irrigation. Some of the major concerns are health hazards, salinity build-up, and toxicity hazards. The objectives of this comprehensive literature review are to illuminate the importance of using TW in irrigation as an alternative freshwater source and to assess the effects of its use on soil fertility and other soil properties, plants, and public health. The literature review reveals that TW reuse has become part of the extension program for boosting water resource utilization. However, the uncontrolled application of such waters has many unfavorable effects on both soils and plants, especially in the long-term. To reduce these unfavorable effects when using TW in irrigation, proper guidelines for wastewater reuse and management should be followed to limit negative effects significantly.
Collapse
|
22
|
Sammarro Silva KJ, Sabogal-Paz LP. Cryptosporidium spp. and Giardia spp. (oo)cysts as target-organisms in sanitation and environmental monitoring: A review in microscopy-based viability assays. WATER RESEARCH 2021; 189:116590. [PMID: 33166919 DOI: 10.1016/j.watres.2020.116590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/22/2020] [Accepted: 10/31/2020] [Indexed: 06/11/2023]
Abstract
Cysts and (oo)cysts are the infective forms of parasitic protozoa, as Giardia and Cryptosporidium, which are widespread and associated to worldwide waterborne diseases outbreaks. These microorganisms pose a challenge to public health, as they are resistant to conventional disinfection methods, which make them important parameters when evaluating inactivation efficiency. However, when (oo)cysts are targets, it is challenging to infer inactivation efficacy, as it may require infectivity tests that are not often an option for laboratory routine analysis. In this scene, (oo)cyst viability based on induced excystation, membrane integrity and enzyme activity evaluated by dye inclusion and/or exclusion, as well as fluorescence reduction consist on microscopy-based techniques that may be options to estimate inactivation in the environmental context. This scoping review presents applications, advantages and limitations of these methodologies for viability assessment, in order to shed light on the (oo)cyst viability topic and provide insight strategies for choosing protocols in the environmental and sanitation field, in laboratory applications and novel research.
Collapse
Affiliation(s)
- Kamila Jessie Sammarro Silva
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-carlense 400, São Carlos, São Paulo, 13566-590, Brazil
| | - Lyda Patricia Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, Avenida Trabalhador São-carlense 400, São Carlos, São Paulo, 13566-590, Brazil.
| |
Collapse
|
23
|
Géba E, Rioult D, Palluel O, Dedourge-Geffard O, Betoulle S, Aubert D, Bigot-Clivot A. Resilience of Dreissena polymorpha in wastewater effluent: Use as a bioremediation tool? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111513. [PMID: 33113398 DOI: 10.1016/j.jenvman.2020.111513] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 10/09/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Nowadays, it is necessary to improve the efficiency of wastewater treatment plant treatments. In this context the use of biofilter species, like Dreissena polymorpha, as a bioremediation tool in wastewater is increasingly highlighted. The innovative aim of this study is to evaluate the zebra mussel survival in the outlet channel of a conventional WWTP to use them as bioremediation tool. For this, mussels were transplanted in the outlet channel for 28 days and different biomarkers were monitored. D. polymorpha is able to maintain itself in good physiological conditions until 21 days, yet at 28 days a high mortality rate (24%), a decrease in filtration efficiency (8/15 mussels filtered and 17.0% of filtration rate) and antioxidant system activation (CAT activity et gpx gene expression increase) suggest an exhaustion. Some biomarkers suggested a hypoxic stress. Despite the unfavourable conditions, bivalves have bioaccumulated pathogenic protozoa (Toxoplasma gondii and Giardia duodenalis) during the exposure. Zebra mussel seems to be a promising tool for bioremediation in wastewater.
Collapse
Affiliation(s)
- Elodie Géba
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des Milieux Aquatiques), UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex, 2, France; Université de Reims Champagne Ardenne, EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements) Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096, Reims, France
| | - Damien Rioult
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des Milieux Aquatiques), UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex, 2, France; Université de Reims Champagne Ardenne, Plateau Technique Mobile de cytométrie Environnementale MOBICYTE, Campus Moulin de la Housse, 51687, Reims, France
| | - Olivier Palluel
- Institut National de l'Environnement Industriel et des Risques (INERIS), UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des Milieux Aquatiques), Unité d'Ecotoxicologie in Vitro et in Vivo, Verneuil-en-Halatte, France
| | - Odile Dedourge-Geffard
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des Milieux Aquatiques), UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex, 2, France
| | - Stéphane Betoulle
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des Milieux Aquatiques), UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex, 2, France
| | - Dominique Aubert
- Université de Reims Champagne Ardenne, EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements) Université de Reims Champagne Ardenne, Faculté de Médecine, SFR Cap Santé Fed 4231, 51 Rue Cognacq Jay, 51096, Reims, France
| | - Aurélie Bigot-Clivot
- Université de Reims Champagne Ardenne, UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des Milieux Aquatiques), UFR Sciences Exactes et Naturelles, Campus Moulin de Housse, BP 1039, 51687, Reims cedex, 2, France.
| |
Collapse
|
24
|
Javanmard E, Mirsamadi ES, Olfatifar M, Ghasemi E, Saki F, Mirjalali H, Zali MR, Karanis P. Prevalence of Cryptosporidium and Giardia in vegetables in Iran: a nineteen-years meta-analysis review. JOURNAL OF ENVIRONMENTAL HEALTH SCIENCE & ENGINEERING 2020; 18:1629-1641. [PMID: 33312667 PMCID: PMC7721826 DOI: 10.1007/s40201-020-00493-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Accepted: 06/08/2020] [Indexed: 06/12/2023]
Abstract
Cryptosporidium and Giardia are two major protozoa reported from vegetables and environment. The prevalence of these parasites supposes to be different regarding the climate zones. This review aimed to evaluate the prevalence of Cryptosporidium and Giardia in vegetables according to the major climate zones in Iran. The results showed pooled prevalence 7% (95% CI: 2%, 14%) and 4% (95% CI: 3%, 6%) for Cryptosporidium spp., and Giardia spp., respectively. The prevalence of Giardia spp. in mountain, desert and semi-desert, and Mediterranean regions was 4% (95% CI: 2%, 6%), 5% (95% CI: 3%, 8%) and 7% (95% CI: 1%, 18%), respectively. Cryptosporidium spp. was reported 8% (95% CI: 0%, 65%), 6% (95% CI: 0%, 18%) and 4% (95% CI: 0%, 77%) from mountain, desert and semi-desert, and Mediterranean climate zones, respectively. This review suggests the higher prevalence of Giardia and Cryptosporidium in Mediterranean and mountain regions, respectively.
Collapse
Affiliation(s)
- Ehsan Javanmard
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Sadat Mirsamadi
- Department of Microbiology, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Meysam Olfatifar
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Erfan Ghasemi
- Department of Biostatistics, Faculty of Paramedical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Saki
- Department of Geography, Faculty of Teacher Education, Farhangian University, Alborz, Iran
| | - Hamed Mirjalali
- Foodborne and Waterborne Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Zali
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Panagiotis Karanis
- Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Department of Basic and Clinical Sciences, Nicosia University Medical School, 2408 Nicosia, Cyprus
| |
Collapse
|
25
|
Maloney JG, Molokin A, Santin M. Assessment of next generation amplicon sequencing of the beta-giardin gene for the detection of Giardia duodenalis assemblages and mixed infections. Food Waterborne Parasitol 2020; 21:e00098. [PMID: 33294649 PMCID: PMC7691155 DOI: 10.1016/j.fawpar.2020.e00098] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 12/19/2022] Open
Abstract
Giardia duodenalis is an enteric protozoan parasite commonly found in humans and many other animals around the world. The parasite is grouped into genetically related strains called assemblages which display differing degrees of host specificity. Although mixed assemblage infections have been documented the full extent of the occurrence and importance of mixed infections remains to be characterized as current sequencing technologies lack the sensitivity to readily detect mixed infections. Here we have developed a next generation amplicon sequencing (NGS) protocol and analysis pipeline for detecting Giardia assemblages using the beta-giardin gene. NGS was validated using 37 isolates that included Giardia muris and six assemblages (A-F) of Giardia duodenalis obtained from seven different hosts. NGS was compared to traditional PCR and direct Sanger sequencing for its ability to detect Giardia species, assemblages, and mixed assemblage infections. We demonstrate that NGS works as well as PCR and Sanger sequencing for assemblage detection as the same assemblage was observed in all samples by both methods. NGS has the further benefit of detecting mixed assemblage infections, low abundance assemblages, and intra-assemblage variation in samples which would have been missed using direct Sanger sequencing alone. NGS represents a powerful new tool for exploring Giardia infections not only in infected hosts but also in environmental specimens which may aide in understanding Giardia epidemiology. Developed a next generation sequencing (NGS) protocol to detect Giardia Comparison of NGS to Sanger sequencing for sensitivity and accuracy NGS improved detection of mixed assemblages and detects low abundance assemblages NGS allowed detection of intra-assemblage variabilities Mixed assemblages may be far more common than previously thought
Collapse
Affiliation(s)
- Jenny G Maloney
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Ave, Beltsville, MD 20705, United States
| | - Aleksey Molokin
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Ave, Beltsville, MD 20705, United States
| | - Monica Santin
- Environmental Microbial and Food Safety Laboratory, Agricultural Research Service, United States Department of Agriculture, 10300 Baltimore Ave, Beltsville, MD 20705, United States
| |
Collapse
|
26
|
Andreoli FC, Sabogal-Paz LP. Household slow sand filter to treat groundwater with microbiological risks in rural communities. WATER RESEARCH 2020; 186:116352. [PMID: 32916617 DOI: 10.1016/j.watres.2020.116352] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 08/26/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Household slow sand filters (HSSFs) improve the quality of life in rural communities as they provide safe water. However, HSSFs require time for the growth of the biological layer (schmutzdecke) to achieve maximum performance, especially when groundwater is used as it normally has few nutrients. In this ripening period, pathogenic microorganisms can pass through the filter. In this context, this study reports the performance of two HSSF settings, intermittent (I-HSSF) and continuous (C-HSSF) flows followed by disinfection with sodium hypochlorite to treat groundwater with Escherichia coli, Giardia muris cysts and Cryptosporidium parvum oocysts. The weekly introduction of river water was tested as a filter-ripening agent and this procedure reduced the ripening time in approximately 80 days. Filtered water disinfection improved the water quality and inactivated protozoa. The costs and operational challenges addressed in this study can provide support to HSSF technology transfer in rural communities worldwide.
Collapse
Affiliation(s)
- F C Andreoli
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador São-carlense Avenue, Zip code: 13566-590, São Carlos, São Paulo, Brazil
| | - L P Sabogal-Paz
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo, 400 Trabalhador São-carlense Avenue, Zip code: 13566-590, São Carlos, São Paulo, Brazil.
| |
Collapse
|
27
|
García-Livia K, Martín-Alonso A, Foronda P. Diversity of Cryptosporidium spp. in wild rodents from the Canary Islands, Spain. Parasit Vectors 2020; 13:445. [PMID: 32887646 PMCID: PMC7472698 DOI: 10.1186/s13071-020-04330-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Accepted: 08/30/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Cryptosporidium spp. are worldwide protozoan parasites which include species that can lead to cryptosporidiosis in humans. Different animal species can serve as reservoirs and sources of dissemination of the disease, such as rodent species due their potential in transmitting zoonotic pathogens to humans and other animals. In the Canary Islands (Spain), Cryptosporidium parvum and Cryptosporidium hominis have been identified in patients with diarrhea. However, the occurrence of Cryptosporidium spp. in possible reservoirs in this archipelago remains unclear. Considering the zoonotic potential of these protozoans, the aim of the present study was to determine the presence of Cryptosporidium spp. in peridomestic wild rodents and the possible role of these mammals as a source of transmission of these protozoans in Canary Islands. METHODS A total of 179 rodents belonging to Rattus rattus and Mus musculus domesticus from four Canary Islands, La Palma, El Hierro, Tenerife and Lanzarote, were analyzed. Feces were screened for Cryptosporidium spp. by nested PCR of the 18S ribosomal RNA fragment and the sequences used for phylogenetic analyses. RESULTS Cryptosporidium spp. were found widely distributed with an overall prevalence of 12.30% in rodents (13.86% for R. rattus and 10.25% for M. m. domesticus). The overall prevalence by island was 19.60% for Tenerife, 7.14% for La Palma, 5.71% for El Hierro and 0% for Lanzarote. Cryptosporidium tyzzeri, Cryptosporidium meleagridis, Cryptosporidium muris and Cryptosporidium sp. rat genotype I and II/III were successfully identified, in addition to two unidentified Cryptosporidium genotypes. CONCLUSIONS This study contributes to the knowledge of the biodiversity and distribution of Cryptosporidium spp. in wild rodents from the Canary Islands, highlighting the presence of three zoonotic species, C. tyzzeri, C. meleagridis and C. muris, being the first detection of these three species in wild rodents in the Canary Islands and the first report of C. meleagridis in R. rattus. Given the results obtained in our study, future studies in non-sampled areas are required to better understand the epidemiology of these protozoans in wild rodents in the archipelago.
Collapse
Affiliation(s)
- Katherine García-Livia
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristobal de La Laguna, Canary Islands Spain
- Departament Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, San Cristobal de La Laguna, Canary Islands Spain
| | - Aarón Martín-Alonso
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristobal de La Laguna, Canary Islands Spain
| | - Pilar Foronda
- Instituto Universitario de Enfermedades Tropicales y Salud Pública de Canarias, Universidad de La Laguna, San Cristobal de La Laguna, Canary Islands Spain
- Departament Obstetricia y Ginecología, Pediatría, Medicina Preventiva y Salud Pública, Toxicología, Medicina Legal y Forense y Parasitología, Universidad de La Laguna, San Cristobal de La Laguna, Canary Islands Spain
| |
Collapse
|
28
|
Rivero MR, Feliziani C, De Angelo C, Tiranti K, Salomon OD, Touz MC. Giardia spp., the most ubiquitous protozoan parasite in Argentina: human, animal and environmental surveys reported in the last 40 years. Parasitol Res 2020; 119:3181-3201. [DOI: 10.1007/s00436-020-06853-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Accepted: 08/10/2020] [Indexed: 12/13/2022]
|
29
|
Géba E, Rousseau A, Le Guernic A, Escotte-Binet S, Favennec L, La Carbona S, Gargala G, Dubey JP, Villena I, Betoulle S, Aubert D, Bigot-Clivot A. Survival and infectivity of Toxoplasma gondii and Cryptosporidium parvum oocysts bioaccumulated by Dreissena polymorpha. J Appl Microbiol 2020; 130:504-515. [PMID: 32737913 DOI: 10.1111/jam.14802] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 07/20/2020] [Accepted: 07/23/2020] [Indexed: 01/04/2023]
Abstract
AIMS The study was aimed to understand the depuration process of Cryptosporidium parvum and Toxoplasma gondii oocysts by zebra mussel (Dreissena polymorpha), to consider the use of the zebra mussel as a bioremediation tool. MATERIALS AND METHODS Two experiments were performed: (i) individual exposure of mussel to investigate oocyst transfers between bivalves and water and (ii) in vivo exposure to assess the ability of the zebra mussel to degrade oocysts. RESULTS (i) Our results highlighted a transfer of oocysts from the mussels to the water after 3 and 7 days of depuration; however, some oocysts were still bioaccumulated in mussel tissue. (ii) Between 7 days of exposure at 1000 or 10 000 oocysts/mussel/day and 7 days of depuration, the number of bioaccumulated oocysts did not vary but the number of infectious oocysts decreased. CONCLUSION Results show that D. polymorpha can release oocysts in water via (pseudo)faeces in depuration period. Oocysts remain bioaccumulated and infectious oocyst number decreases during the depuration period in zebra mussel tissues. Results suggest a degradation of bioaccumulated C. parvum and T. gondii oocysts. SIGNIFICANCE AND IMPACT OF THE STUDY This study highlighted the potential use of D. polymorpha as a bioremediation tool to mitigate of protozoan contamination in water resources.
Collapse
Affiliation(s)
- E Géba
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims Cedex 2, France.,EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Faculté de Médecine, Université de Reims Champagne Ardenne, Reims, France
| | - A Rousseau
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Faculté de Médecine, Université de Reims Champagne Ardenne, Reims, France.,ACTALIA Food Safety Department, Saint-Lô, France
| | - A Le Guernic
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims Cedex 2, France
| | - S Escotte-Binet
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Faculté de Médecine, Université de Reims Champagne Ardenne, Reims, France
| | - L Favennec
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Université de Rouen, Rouen Cedex, France
| | - S La Carbona
- ACTALIA Food Safety Department, Saint-Lô, France
| | - G Gargala
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Université de Rouen, Rouen Cedex, France
| | - J P Dubey
- United States Department Agriculture, Agricultural Research Service, Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA
| | - I Villena
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Faculté de Médecine, Université de Reims Champagne Ardenne, Reims, France
| | - S Betoulle
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims Cedex 2, France
| | - D Aubert
- EA7510, ESCAPE (EpidémioSurveillance et CirculAtion des Parasites dans les Environnements), Faculté de Médecine, Université de Reims Champagne Ardenne, Reims, France
| | - A Bigot-Clivot
- UMR-I 02 SEBIO (Stress Environnementaux et BIOsurveillance des milieux aquatiques), Université de Reims Champagne Ardenne, UFR Sciences Exactes et Naturelles, Reims Cedex 2, France
| |
Collapse
|
30
|
De Vrieze J, De Mulder T, Matassa S, Zhou J, Angenent LT, Boon N, Verstraete W. Stochasticity in microbiology: managing unpredictability to reach the Sustainable Development Goals. Microb Biotechnol 2020; 13:829-843. [PMID: 32311222 PMCID: PMC7264747 DOI: 10.1111/1751-7915.13575] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 03/04/2020] [Accepted: 03/25/2020] [Indexed: 01/06/2023] Open
Abstract
Pure (single) cultures of microorganisms and mixed microbial communities (microbiomes) have been important for centuries in providing renewable energy, clean water and food products to human society and will continue to play a crucial role to pursue the Sustainable Development Goals. To use microorganisms effectively, microbial engineered processes require adequate control. Microbial communities are shaped by manageable deterministic processes, but also by stochastic processes, which can promote unforeseeable variations and adaptations. Here, we highlight the impact of stochasticity in single culture and microbiome engineering. First, we discuss the concepts and mechanisms of stochasticity in relation to microbial ecology of single cultures and microbiomes. Second, we discuss the consequences of stochasticity in relation to process performance and human health, which are reflected in key disadvantages and important opportunities. Third, we propose a suitable decision tool to deal with stochasticity in which monitoring of stochasticity and setting the boundaries of stochasticity by regulators are central aspects. Stochasticity may give rise to some risks, such as the presence of pathogens in microbiomes. We argue here that by taking the necessary precautions and through clever monitoring and interpretation, these risks can be mitigated.
Collapse
Affiliation(s)
- Jo De Vrieze
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | | | - Silvio Matassa
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, via Claudio 21, 80125, Naples, Italy
| | - Jizhong Zhou
- Institute for Environmental Genomics, Department of Microbiology and Plant Biology, University of Oklahoma, Norman, OK, 73019, USA
| | - Largus T Angenent
- Center for Applied Geosciences, University of Tübingen, Tübingen, Germany
| | - Nico Boon
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
| | - Willy Verstraete
- Center for Microbial Ecology and Technology (CMET), Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, B-9000, Gent, Belgium
- Avecom NV, Industrieweg 122P, Wondelgem, 9032, Belgium
| |
Collapse
|
31
|
Benito M, Menacho C, Chueca P, Ormad MP, Goñi P. Seeking the reuse of effluents and sludge from conventional wastewater treatment plants: Analysis of the presence of intestinal protozoa and nematode eggs. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 261:110268. [PMID: 32148324 DOI: 10.1016/j.jenvman.2020.110268] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 01/25/2020] [Accepted: 02/10/2020] [Indexed: 05/15/2023]
Abstract
Some of the microorganisms present in urban wastewater, which include intestinal protozoa and nematodes, can be pathogenic. Their (oo)cyst and egg transmissible stages are very resistant to environmental stresses and disinfectants and they are therefore difficult to remove. Thus, they can constitute a health risk if water or sludge obtained in the purification of wastewater is reused for agricultural purposes. In this context, the presence of intestinal protozoa and nematodes were studied in influents, effluents and sludge from five wastewater treatment plants (WWTPs) in the north of Spain by optical microscopy and PCR techniques. The removal efficiency of different wastewater treatments was also compared. The presence of protozoa has increased among the population discharging waste to WWTPs in recent years. Cryptosporidium spp., Giardia duodenalis, Entamoeba spp. and nematodes were detected in all of the WWTPs. Indeed, this is the first report of Entamoeba histolytica and Entamoeba moshkovskii in Spanish WWTPs. The water treatments studied showed different removal efficiencies for each species of intestinal protozoa, with the aerated lagoons providing the best results. (Oo)cysts were also detected in sludge even after aerobic digestion and dehydration. To avoid risks, (oo)cyst viability should be analysed whenever the sludge is to be used as a fertilizer. This study reinforces the necessity of establishing legal limits on the presence of protozoa in WWTP effluents and sludges, especially if reuse is planned. Further studies are necessary for a better understanding of the presence and behaviour of intestinal parasites.
Collapse
Affiliation(s)
- María Benito
- Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, C/María de Luna 3, 50018, Zaragoza, Spain; Area of Parasitology, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain.
| | - Carmen Menacho
- Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, C/María de Luna 3, 50018, Zaragoza, Spain; Area of Parasitology, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain; Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.
| | - Patricia Chueca
- Area of Parasitology, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain.
| | - María P Ormad
- Department of Chemical Engineering and Environmental Technologies, EINA, University of Zaragoza, C/María de Luna 3, 50018, Zaragoza, Spain; Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.
| | - Pilar Goñi
- Area of Parasitology, Department of Microbiology, Preventive Medicine and Public Health, Faculty of Medicine, University of Zaragoza, C/Domingo Miral s/n, 50009, Zaragoza, Spain; Water and Environmental Health Research Group, Environmental Sciences Institute (IUCA), University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
32
|
Occurrence and molecular characterization of Giardia duodenalis in child population from Colombia. INFECTION GENETICS AND EVOLUTION 2019; 76:104034. [PMID: 31521787 DOI: 10.1016/j.meegid.2019.104034] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 08/13/2019] [Accepted: 09/05/2019] [Indexed: 11/24/2022]
Abstract
Giardia duodenalis is one of the most prevalent human intestinal parasite, with children living in developing countries being particularly at risk of infection. The occurrence and molecular diversity of G. duodenalis was investigated in stools specimens from 307 individuals aged one to nineteen years in Colombia. Samples were collected in three educational establishments (n: 163) and two hospital laboratories (n: 144) from urban and rural areas. Feces were concentrated using a biphasic sedimentation method and wet mounts of the sediment were examined by light microscopy. G. duodenalis assemblages and sub-assemblages were determined on positive samples by PCR of the triose phosphate isomerase (tpi), β-giardin (bg) and small-subunit (ssu) rRNA genes. G. duodenalis infection was detected by microscopy in 23 individuals (7.5%). The protozoan was more prevalent among specimens collected in educational establishments (11.6%) than in those obtained from hospital laboratories (2.8%). Infection was most common in individuals from urban areas and children aged 1-5 years. No significant association between diarrhea and infection could be demonstrated. Twenty Giardia-positive samples were successfully allocated to assemblage B (n: 11), sub-assemblage AII (n: 7), and assemblage A (n: 2). Results indicate the potential for transmission of G. duodenalis infection in children attending educational establishments and individuals from urban areas, where transmission seems to be primarily anthroponotic.
Collapse
|
33
|
Yamashiro S, Foco MLR, Pineda CO, José J, Nour EAA, Siqueira-Castro ICV, Franco RMB. Giardia spp. and Cryptosporidium spp. removal efficiency of a combined fixed-film system treating domestic wastewater receiving hospital effluent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:22756-22771. [PMID: 31172433 DOI: 10.1007/s11356-019-05500-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 05/16/2019] [Indexed: 06/09/2023]
Abstract
Giardia and Cryptosporidium have caused numerous outbreaks of diarrhea as a result of the ingestion of water contaminated with sewage. In Brazil, the efficiency of Giardia and Cryptosporidium removal by combined fixed-film systems has rarely been studied. The aims of the present study were therefore to verify the removal efficiency of Giardia and Cryptosporidium by a combined system (anaerobic/anoxic filter and aerated submerged biofilter) and to perform the genetic characterization of these parasites. The (oo)cysts were detected by centrifuge concentration and membrane filtration from raw sewage, effluents, adhered biomass, and sludge samples. Immunofluorescence assay and differential interference contrast microscopy were used for the visualization of the (oo)cysts. Nested PCR was applied to confirm Giardia and Cryptosporidium. Giardia and Cryptosporidium were detected in 27% and 5.5% of the 144 analyzed samples of raw sewage and effluents, respectively. A total of 33,000 cysts/L were recovered in the adhered biomass samples (n = 25) from different points of the aerated submerged biofilter, while 6000 oocysts/L were registered in a single point. An average of 11,800 cysts/L were found in the sludge samples (n = 5). The combined system exhibited a removal efficiency of Giardia cysts of 1.8 ± 1.0 log removal. The C and BIV assemblages of Giardia were identified in the raw sewage while AII was found in the treated effluent sample. It was not possible to calculate the removal efficiency of Cryptosporidium oocysts by the combined system. The combined system exhibited some potential as a suitable treatment for the removal of parasites from sewage.
Collapse
Affiliation(s)
- Sandra Yamashiro
- Laboratory of Protozoology, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Monteiro Lobato Street, n°255, Campinas, São Paulo State, Brazil
| | - Mário Luiz Rodrigues Foco
- Department of Sanitation and Environment, School of Civil Engineering, Architecture and Urban Design, University of Campinas (UNICAMP), Campinas, São Paulo State, Brazil
| | - Carolina Ortiz Pineda
- Laboratory of Protozoology, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Monteiro Lobato Street, n°255, Campinas, São Paulo State, Brazil
| | - Juliana José
- Department of Genetic and Evolution, Institute of Biology, University of Campinas (UNICAMP), Campinas, São Paulo State, Brazil
| | - Edson Aparecido Abdul Nour
- Department of Sanitation and Environment, School of Civil Engineering, Architecture and Urban Design, University of Campinas (UNICAMP), Campinas, São Paulo State, Brazil
| | - Isabel Cristina Vidal Siqueira-Castro
- Laboratory of Protozoology, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Monteiro Lobato Street, n°255, Campinas, São Paulo State, Brazil
| | - Regina Maura Bueno Franco
- Laboratory of Protozoology, Department of Animal Biology, Institute of Biology, University of Campinas (UNICAMP), Monteiro Lobato Street, n°255, Campinas, São Paulo State, Brazil.
| |
Collapse
|
34
|
Propagation of Giardia duodenalis cysts in immunosuppressed CF-1 mice. Vet Parasitol 2019; 268:32-35. [PMID: 30981303 DOI: 10.1016/j.vetpar.2019.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Revised: 02/13/2019] [Accepted: 02/23/2019] [Indexed: 11/22/2022]
Abstract
This study developed and evaluated Giardia duodenalis cyst propagation using a dexamethasone immunosuppressed CF-1 mouse model as an alternative to a previously described Mongolian gerbil model. The CF-1 mouse model shed significantly more cysts per animal during a 16-18 h collection period compared to the gerbil (averages: 7.8 × 106 cysts/CF-1 mouse and 2.5 × 106 cysts/gerbil). In addition, the patency period for this model differed from both G. muris in mice and G. duodenalis in gerbils in that cysts were shed continuously for over 20 days. Results further showed that the β-giardin gene sequences from gerbil derived and mouse derived G. duodenalis were identical, after 34 serial passages through the CF-1 mouse model. Overall, the CF-1 mouse model produced higher concentrations of cysts per animal, and were genetically and phenotypically stable based on β-giardin gene sequences.
Collapse
|
35
|
Zahedi A, Gofton AW, Greay T, Monis P, Oskam C, Ball A, Bath A, Watkinson A, Robertson I, Ryan U. Profiling the diversity of Cryptosporidium species and genotypes in wastewater treatment plants in Australia using next generation sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 644:635-648. [PMID: 30743878 DOI: 10.1016/j.scitotenv.2018.07.024] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 07/02/2018] [Accepted: 07/02/2018] [Indexed: 06/09/2023]
Abstract
Wastewater recycling is an increasingly popular option in worldwide to reduce pressure on water supplies due to population growth and climate change. Cryptosporidium spp. are among the most common parasites found in wastewater and understanding the prevalence of human-infectious species is essential for accurate quantitative microbial risk assessment (QMRA) and cost-effective management of wastewater. The present study conducted next generation sequencing (NGS) to determine the prevalence and diversity of Cryptosporidium species in 730 raw influent samples from 25 Australian wastewater treatment plants (WWTPs) across three states: New South Wales (NSW), Queensland (QLD) and Western Australia (WA), between 2014 and 2015. All samples were screened for the presence of Cryptosporidium at the 18S rRNA (18S) locus using quantitative PCR (qPCR), oocyst numbers were determined directly from the qPCR data using DNA standards calibrated by droplet digital PCR, and positives were characterized using NGS of 18S amplicons. Positives were also screened using C. parvum and C. hominis specific qPCRs. The overall Cryptosporidium prevalence was 11.4% (83/730): 14.3% (3/21) in NSW; 10.8% (51/470) in QLD; and 12.1% (29/239) in WA. A total of 17 Cryptosporidium species and six genotypes were detected by NGS. In NSW, C. hominis and Cryptosporidium rat genotype III were the most prevalent species (9.5% each). In QLD, C. galli, C. muris and C. parvum were the three most prevalent species (7.7%, 5.7%, and 4.5%, respectively), while in WA, C. meleagridis was the most prevalent species (6.3%). The oocyst load/Litre ranged from 70 to 18,055 oocysts/L (overall mean of 3426 oocysts/L: 4746 oocysts/L in NSW; 3578 oocysts/L in QLD; and 3292 oocysts/L in WA). NGS-based profiling demonstrated that Cryptosporidium is prevalent in the raw influent across Australia and revealed a large diversity of Cryptosporidium species and genotypes, which indicates the potential contribution of livestock, wildlife and birds to wastewater contamination.
Collapse
Affiliation(s)
- Alireza Zahedi
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Alexander W Gofton
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Telleasha Greay
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | - Paul Monis
- Australian Water Quality Centre, South Australian Water Corporation, Adelaide, Australia
| | - Charlotte Oskam
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia
| | | | | | - Andrew Watkinson
- Seqwater, Ipswich, Queensland, Australia; University of Queensland, St Lucia, Queensland, Australia
| | - Ian Robertson
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia; China-Australia Joint Research and Training Centre for Veterinary Epidemiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Una Ryan
- School of Veterinary and Life Sciences, Murdoch University, Perth, Australia.
| |
Collapse
|
36
|
Kong FE, Deighton MA, Thurbon NA, Smith SR, Rouch DA. Cryptosporidium parvum decay during air drying and stockpiling of mesophilic anaerobically digested sewage sludge in a simulation experiment and oocyst counts in sludge collected from operational treatment lagoons in Victoria, Australia. JOURNAL OF WATER AND HEALTH 2018; 16:435-448. [PMID: 29952332 DOI: 10.2166/wh.2018.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The inactivation of Cryptosporidium species oocysts during sewage sludge treatment is important to protect human health when the residual biosolids are applied to agricultural land. Quantifying the decay of Cryptosporidium species during sludge treatment for microbiological assurance purposes is difficult if low numbers are present in wastewater. The rate of decay of Cryptosporidium parvum oocysts during solar/air drying treatment and in sludge stockpiles in temperate environment conditions was simulated in laboratory inoculation experiments using sludge sampled from a mesophilic anaerobic digester. Oocyst numbers were also determined in settled lagoon sludge samples collected from three operational rural wastewater treatment plants (WWTPs). C. parvum oocysts were enumerated by immunomagnetic separation followed by staining with vital dyes and examination by confocal laser scanning microscopy. An air-drying/storage period equivalent to 11 weeks was required for a 1 log10 reduction of viable oocysts inoculated into digested sludge. Oocyst viability in air-dried and stored digested sludge decreased with time, but was independent of sludge desiccation and dry solids (DS) content. No oocysts were detected in sludge samples collected from the anaerobic digester, and the average concentration of oocysts found in settled lagoon sludge from the rural WWTP was 4.6 × 102 oocysts/g DS.
Collapse
Affiliation(s)
- Frederic E Kong
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora, VIC 3083, Australia E-mail: ;
| | - Margaret A Deighton
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora, VIC 3083, Australia E-mail: ;
| | - Nerida A Thurbon
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora, VIC 3083, Australia E-mail: ;
| | - Stephen R Smith
- Department of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Duncan A Rouch
- Biotechnology and Environmental Biology, School of Applied Sciences, RMIT University, Bundoora West Campus, Plenty Road, Bundoora, VIC 3083, Australia E-mail: ;
| |
Collapse
|
37
|
Bautista M, Bonatti TR, Fiuza VRDS, Terashima A, Canales-Ramos M, José J, Franco RMB. Occurrence and molecular characterization of Giardia duodenalis cysts and Cryptosporidium oocysts in raw water samples from the Rímac River, Peru. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:11454-11467. [PMID: 29423699 DOI: 10.1007/s11356-018-1423-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 01/29/2018] [Indexed: 06/08/2023]
Abstract
Giardia and Cryptosporidium are potentially pathogenic protozoa which are ubiquitous in ambient surface water. The present study included 60 samples of surface water from three sampling sites from the Rímac River, Lima and Callao, Peru, to detect the occurrence of Giardia spp. and Cryptosporidium spp. and to perform molecular characterization of specimens found. Water samples were concentrated using the membrane filtration technique, and following elution, cysts and oocysts were visualized by direct immunofluorescence assay (IFA). For molecular characterization, tpi and bg gene fragments and 18S rRNA were amplified by nested PCR for Giardia and Cryptosporidium, respectively, followed by sequencing and phylogenetic analysis. Giardia cysts were found in 93.3% of the analyzed samples, whereas Cryptosporidium oocysts were detected in 15%. The positivity of the Giardia cysts was 86.6% (n = 26) in 2014, while Cryptosporidium oocysts were not detected. In 2015, both protozoa were found in raw water samples, with all 30 samples collected positive for Giardia cysts (100.0%) and 9 positive for Cryptosporidium oocysts (30.0%). Oocysts were detected in 20.0% of water samples from sites 1 (mean 5.25 oocysts/L) and 2 (mean 52.3 oocysts/L), while at site 3, oocysts were detected in 50.0% of raw water samples (mean 193.6 oocysts/L). The presence of Giardia duodenalis assemblage A was confirmed in several samples by the phylogenetic positioning of the bg and tpi genes, and the sub-assemblage AII was predominant (8/9). Sequencing for Cryptosporidium resulted in profiles compatible with Cryptosporidium hominis, Cryptosporidium meleagridis, and Cryptosporidium baileyi. This is the first time that the presence of G. duodenalis assemblage A/sub-assemblage AII and Cryptosporidium species has been reported in surface water samples in Peru. These Cryptosporidium species and the Giardia duodenalis assemblage are associated with human disease which highlights the potential risk to public health and the need to increase environmental monitoring measures to protect this water body.
Collapse
Affiliation(s)
- Meylin Bautista
- Post-Graduate Program in Animal Biology, Biology Institute, UNICAMP, Campinas, SP, Brazil
| | - Taís Rondello Bonatti
- Post-Graduate Program in Animal Biology, Biology Institute, UNICAMP, Campinas, SP, Brazil
| | - Vagner Ricardo da S Fiuza
- Oxidative Processes Laboratory, School of Civil Engineering, Architecture and Urban Design, UNICAMP, Campinas, SP, Brazil
| | - Angelica Terashima
- Parasitology Laboratory, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Marco Canales-Ramos
- Parasitology Laboratory, Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Juliana José
- Laboratory of Genomics and Expression (LGE), Genetics, Evolution, Microbiology and Immunology Department, Biology Institute, UNICAMP, Campinas, SP, Brazil
| | - Regina Maura Bueno Franco
- Protozoology Laboratory, Animal Biology Department, Biology Institute, Universidade Estadual de Campinas, UNICAMP, Rua Monteiro Lobato, n° 255, Campinas, SP, Brazil.
| |
Collapse
|
38
|
Domenech E, Amorós I, Moreno Y, Alonso JL. Cryptosporidium and Giardia safety margin increase in leafy green vegetables irrigated with treated wastewater. Int J Hyg Environ Health 2018; 221:112-119. [PMID: 29066286 DOI: 10.1016/j.ijheh.2017.10.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Revised: 09/22/2017] [Accepted: 10/18/2017] [Indexed: 11/21/2022]
Abstract
The presence of Cryptosporidium and Giardia in waste water is a main concern because water reuse for irrigation can jeopardize human health. Spanish Legislation for water reuse does not oblige to analyze the presence of both pathogens Cryptosporidium and Giardia in reused water for irrigation. Therefore, the objective of this paper is to determine the influence of wastewater treatment in the increase of the consumer safety margin in relation to the presence of Cryptosporidium and Giardia in leafy green vegetables. With this aim in mind, a total of 108 samples from raw (influent) and treated wastewater (effluent) from three wastewater treatment plants in Spain were analysed according to USEPA Method 1623. Effluent results show that Cryptosporidium oocysts average counts ranged from 1.38 to 2.6/L oocysts and Giardia cysts ranged from 0.6 to 1.7/L cysts, which means a removal values of 2.7 log, 2.5 log and 1.8 log for Cryptosporidium oocysts and 1 log, 2 log and 2.2 log for Giardia cysts in the three wastewater treatment plants analysed. In relation to safety margin the highest probability that exposure exceed the dose response was observed for Giardia. In addition, the sensitivity analysis showed that (oo)cysts concentration present in the leafy green vegetables and the human dose-response were the most influential inputs in the safety margin obtained.
Collapse
Affiliation(s)
- Eva Domenech
- Institute of Food Engineering for Development (IUIAD), Food Technology Department (DTA), Universitat Politècnica de València, Camino de Vera 14, P.O. Box 46022, Valencia, Spain.
| | - Inmaculada Amorós
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera 14, P.O. Box 46022, Valencia, Spain.
| | - Yolanda Moreno
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera 14, P.O. Box 46022, Valencia, Spain.
| | - José L Alonso
- Instituto de Ingeniería del Agua y Medio Ambiente, Universitat Politècnica de València, Camino de Vera 14, P.O. Box 46022, Valencia, Spain.
| |
Collapse
|
39
|
Gassie LW, Englehardt JD. Advanced oxidation and disinfection processes for onsite net-zero greywater reuse: A review. WATER RESEARCH 2017; 125:384-399. [PMID: 28892768 DOI: 10.1016/j.watres.2017.08.062] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 08/16/2017] [Accepted: 08/28/2017] [Indexed: 05/05/2023]
Abstract
Net-zero greywater (NZGW) reuse, or nearly closed-loop recycle of greywater for all original uses, can recover both water and its attendant hot-water thermal energy, while avoiding the installation and maintenance of a separate greywater sewer in residential areas. Such a system, if portable, could also provide wash water for remote emergency health care units. However, such greywater reuse engenders human contact with the recycled water, and hence superior treatment. The purpose of this paper is to review processes applicable to the mineralization of organics, including control of oxidative byproducts such as bromate, and maintenance of disinfection consistent with potable reuse guidelines, in NZGW systems. Specifically, TiO2-UV, UV-hydrogen peroxide, hydrogen peroxide-ozone, ozone-UV advanced oxidation processes, and UV, ozone, hydrogen peroxide, filtration, and chlorine disinfection processes were reviewed for performance, energy demand, environmental impact, and operational simplicity. Based on the literature reviewed, peroxone is the most energy-efficient process for organics mineralization. However, in portable applications where delivery of chemicals to the site is a concern, the UV-ozone process appears promising, at higher energy demand. In either case, reverse osmosis, nanofiltration, or ED may be useful in controlling the bromide precursor in make-up water, and a minor side-stream of ozone may be used to prevent microbial regrowth in the treated water. Where energy is not paramount, UV-hydrogen peroxide and UV-TiO2 can be used to mineralize organics while avoiding bromate formation, but may require a secondary process to prevent microbial regrowth. Chlorine and ozone may be useful for maintenance of disinfection residual.
Collapse
Affiliation(s)
- Lucien W Gassie
- University of Miami, 1251 Memorial Drive, Coral Gables, FL 33146, USA.
| | | |
Collapse
|
40
|
Xiao L, Feng Y. Molecular epidemiologic tools for waterborne pathogens Cryptosporidium spp. and Giardia duodenalis. Food Waterborne Parasitol 2017; 8-9:14-32. [PMID: 32095639 PMCID: PMC7034008 DOI: 10.1016/j.fawpar.2017.09.002] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 09/19/2017] [Accepted: 09/19/2017] [Indexed: 01/26/2023] Open
Abstract
Molecular diagnostic tools have played an important role in improving our understanding of the transmission of Cryptosporidium spp. and Giardia duodenalis, which are two of the most important waterborne parasites in industrialized nations. Genotyping tools are frequently used in the identification of host-adapted Cryptosporidium species and G. duodenalis assemblages, allowing the assessment of infection sources in humans and public health potential of parasites found in animals and the environment. In contrast, subtyping tools are more often used in case linkages, advanced tracking of infections sources, and assessment of disease burdens attributable to anthroponotic and zoonotic transmission. More recently, multilocus typing tools have been developed for population genetic characterizations of transmission dynamics and delineation of mechanisms for the emergence of virulent subtypes. With the recent development in next generation sequencing techniques, whole genome sequencing and comparative genomic analysis are increasingly used in characterizing Cryptosporidium spp. and G. duodenalis. The use of these tools in epidemiologic studies has identified significant differences in the transmission of Cryptosporidium spp. in humans between developing countries and industrialized nations, especially the role of zoonotic transmission in human infection. Geographic differences are also present in the distribution of G. duodenalis assemblages A and B in humans. In contrast, there is little evidence for widespread zoonotic transmission of giardiasis in both developing and industrialized countries. Differences in virulence have been identified among Cryptosporidium species and subtypes, and possibly between G. duodenalis assemblages A and B, and genetic recombination has been identified as one mechanism for the emergence of virulent C. hominis subtypes. These recent advances are providing insight into the epidemiology of waterborne protozoan parasites in both developing and developed countries.
Collapse
Affiliation(s)
- Lihua Xiao
- Division of Foodborne, Waterborne, and Environmental Diseases, National Center for Emerging and Zoonotic Infectious Diseases, Centers for Disease Control and Prevention, Atlanta, GA 30329, USA
| | - Yaoyu Feng
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China
| |
Collapse
|