1
|
Pereira A, Cunha M, Cuccaro A, Vieira HC, He Y, Soares AMVM, Freitas R. The ecotoxicological effects of diclofenac and gentamicin on Mytilus galloprovincialis: What does in vivo reveal that in vitro fails to show? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 372:126045. [PMID: 40081458 DOI: 10.1016/j.envpol.2025.126045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 02/18/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
This study investigated the toxicological effects of diclofenac (DIC) and gentamicin (GEN) on the gills (G) and digestive gland (DG) of Mytilus galloprovincialis through in vitro and in vivo assays. Biochemical markers related to oxidative stress, metabolic capacity, and neurotoxicity were evaluated at the end of each assay. For both assays, principal coordinates analysis (PCO) highlighted distinct biochemical profiles between G and DG, mostly related to higher basal values for several biomarkers in DG.The Integrated Biomarker Response (IBR) index revealed the highest scores in G for the in vitro assay, especially after exposure to GEN. In the in vivo assay, instead, the highest scores were recorded in DG, particularly in response to DIC. The distinct responses of G and DG underscore their respective roles in respiration and detoxification, with G being more sensitive to acute stress and DG exhibiting greater adaptive capacity over time. Furthermore, GEN appeared to cause the greatest impact on G in the in vitro assay, while DIC had the most significant effect on DG following the in vivo experiment. In vitro assays demonstrated limited oxidative stress and cellular damage, while in vivo results highlighted substantial metabolic depression and biomarker variability under prolonged exposure. When analyzed individually, the in vitro assay showed a clearer distinction between the two contaminants, particularly in DG. The findings underscore the differential vulnerability and adaptive capacities of G and DG, attributed to their distinct physiological functions. These results emphasize the complementary nature of in vitro and in vivo approaches, with the former providing mechanistic insights and the latter reflecting systemic organismal responses. This study highlights the importance of a multi-dimensional approach, combining both in vitro and in vivo methodologies, to better understand tissue-specific toxicity and the broader ecological consequences of pharmaceutical contamination.
Collapse
Affiliation(s)
- Afonso Pereira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Marta Cunha
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Alessia Cuccaro
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal; Department of Veterinary Sciences, University of Pisa, San Piero a Grado, 56122, Pisa, Italy
| | - Hugo C Vieira
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Yide He
- School of Environmental Science and Engineering, Nanjing Tech University, Jiangsu, 211816, PR China; Sino-portuguese Joint International Laboratory of Aquatic Toxicology, Nanjing Tech University, 30 South Puzhu Road, Nanjing, 211816, Jiangsu Province, PR China
| | - Amadeu M V M Soares
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Department of Biology & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
2
|
Iuffrida L, Franzellitti S. Transcriptional responses of Mediterranean mussels (Mytilus galloprovincialis) under the 2022 Marine Heatwave: a trade-off of physiological regulation between metabolism, stress response, and shell biomineralization in a mixed exposure scenario. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 375:126328. [PMID: 40306402 DOI: 10.1016/j.envpol.2025.126328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/23/2025] [Accepted: 04/27/2025] [Indexed: 05/02/2025]
Abstract
There has been a notable increase in occurrence and intensity of marine heatwaves (MHWs) over the past decades, with a consequent remarkable risk to vulnerable species as marine bivalves. This study examines the responses of farmed Mytilus galloprovincialis to the 2022 MHW that impacted the Northwestern (NW) Adriatic Sea. Expression of key transcripts involved in functions of digestive glands and mantles were investigated to explore the putative acclimatory processes contributing to mussel fitness. The 2022 MHW was characterized by persistent sea temperature anomalies, elevated salinity, and dramatically low chlorophyll-a levels. Despite the temporal trends of pH and the extreme seawater temperatures reached in July and August, the carbonate system never reached the undersaturation state, being favourable for bivalve biomineralization. Transcriptional profiles in digestive glands and mantles displayed a two-step temporal response. In digestive glands, metabolism and lysosomal response functional categories showed an initial decrease (late May), and a recovery in late August. Antioxidant and cytoprotective related gene products showed a February to August increased expression, with strong up-regulations in August. In mantles, transcripts involved in shell biomineralization were prompted in the initial stage of the MHW, likely to withstand the abrupt changes of seawater parameters and to maintain bivalve growth. At high MHW intensities, energy was diverted towards the strong stress response activation in digestive glands, with a relative decrease of mRNA levels for shell biomineralization transcripts. Results showed that a trade-off between core physiological processes may contribute to the acclimatory response of mussels to cope with the adverse conditions of the 2022 MHW in the NW Adriatic Sea.
Collapse
Affiliation(s)
- Letizia Iuffrida
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy; Inter-Departmental Research Centre for Environmental Science (CIRSA), University of Bologna, Ravenna, Italy.
| |
Collapse
|
3
|
Passignat C, Flayac J, Lerebourg R, Minguez L. Differential bioconcentration and sensitivity of Dreissena polymorpha and Dreissena rostriformis bugensis to the antidepressant sertraline. JOURNAL OF HAZARDOUS MATERIALS 2025; 482:136628. [PMID: 39581030 DOI: 10.1016/j.jhazmat.2024.136628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 11/08/2024] [Accepted: 11/21/2024] [Indexed: 11/26/2024]
Abstract
Sertraline is one of the most widely prescribed antidepressants, worldwide detected in rivers, thus raising concern about its ecotoxicology. However, there is knowledge gap on its pharmacokinetics and pharmacodynamics in freshwater bivalves. Comparative biology can help to gain in understanding and improve our ability to assess ecotoxicological risks in a wide range of species. This study investigated the kinetic-based bioconcentration and depuration of sertraline by two freshwater bivalve species, Dreissena polymorpha (zebra mussel, ZM) and Dreissena rostriformis bugensis (quagga mussel, QM), and (2) its biological effects depending on the exposure duration and frequency. Several biomarkers related to known sertraline side effects in human were followed. Results document a higher body burden in QM than in ZM. The steady-stage was not reached after 5 days of exposure. Bivalves were unable to depurate sertraline in 5 days in clean water. Findings provide evidence that environmentally relevant concentration of sertraline can disturb the physiology of Dreissena species, but not in the same way. QM was found to be more sensitive to sertraline than ZM, experiencing oxidative stress and lipid disorder. Intermittent exposure also led to biochemical changes in the two species, requiring further study.
Collapse
Affiliation(s)
- Céline Passignat
- LABÉO Manche, 1352 avenue de Paris - CS 33608, F-50008 Saint-Lô Cédex, France
| | - Justine Flayac
- Université de Lorraine, CNRS, LIEC, F-57000 Metz, France; Pôle de compétences en biologie environnementale, Université de Lorraine, CNRS, LIEC, F-57000 Metz, France
| | - Romane Lerebourg
- LABÉO Manche, 1352 avenue de Paris - CS 33608, F-50008 Saint-Lô Cédex, France
| | | |
Collapse
|
4
|
Iuffrida L, Wathsala RHGR, Musella M, Palladino G, Candela M, Franzellitti S. Stability and expression patterns of housekeeping genes in Mediterranean mussels (Mytilus galloprovincialis) under field investigations. Comp Biochem Physiol C Toxicol Pharmacol 2025; 287:110047. [PMID: 39313016 DOI: 10.1016/j.cbpc.2024.110047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/15/2024] [Accepted: 09/19/2024] [Indexed: 09/25/2024]
Abstract
The use of marine mussels as biological models encompasses a broad range of research fields, in which the application of RNA analyses disclosed novel biomarkers of environmental stress and investigated biochemical mechanisms of action. Quantitative real-time PCR (qPCR) is the gold standard for these studies, and despite its wide use and available protocols, it may be affected by technical flaws requiring reference gene data normalization. In this study, stability of housekeeping genes commonly employed as reference genes in qPCR analyses with Mytilus galloprovincialis was explored under field conditions. Mussels were collected from farms in the Northwestern Adriatic Sea. The sampling strategy considered latitudinal gradients of environmental parameters (proxied by location), gender, and their interactions with seasonality. Analyses of gene stability were performed using different algorithms. BestKeeper and geNorm agreed that combination of the ribosomal genes 18S ribosomal RNA (18S) and 28S ribosomal RNA (28S) was the best normalization strategy in the conditions tested, which agrees with available evidence. NormFinder provided different normalization strategies, involving combinations of tubulin (TUB)/28S (Gender/Season effect) or TUB/helicase (HEL) (Location/Season effect). Since NormFinder considers data grouping and computes both intra- and inter-group stability variations, it should work better with complex experimental designs and dataset structuring. Under the selected normalization strategies, expressions of the variable housekeeping genes actin (ACT) and elongation factor-1α (EF1) correlated with seasonal and latitudinal changes of abiotic environmental factors and mussel physiological status. Results point to consider ACT and EF1 expressions as molecular biomarkers of mussel general physiological status in field studies.
Collapse
Affiliation(s)
- Letizia Iuffrida
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy
| | | | - Margherita Musella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Ravenna, Italy.
| |
Collapse
|
5
|
Iuffrida L, Spezzano R, Trapella G, Cinti N, Parma L, De Marco A, Palladino G, Bonaldo A, Candela M, Franzellitti S. Physiological plasticity and life history traits affect Chamelea gallina acclimatory responses during a marine heatwave. ENVIRONMENTAL RESEARCH 2024; 263:120287. [PMID: 39491606 DOI: 10.1016/j.envres.2024.120287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/16/2024] [Accepted: 11/01/2024] [Indexed: 11/05/2024]
Abstract
The striped venus clam (Chamelea gallina) is a relevant economic resource in the Adriatic Sea. This study explored the physiological status of C. gallina at four sites selected along a gradient from high to low incidence of recorded historical mortality events and low to high productivity in the Northwestern Adriatic Sea. Investigations were performed during the marine heatwave in 2022 (from July to November). The optimal temperature range for C. gallina was exceeded in July and September, exacerbating stress conditions and a poor nutritional status, particularly at the low productivity sites. Transcriptional profiles assessed in digestive glands showed that clams from the low productivity sites up-regulated transcripts related to feeding/digestive functions as a possible compensatory mechanism to withstand adverse environmental conditions. Clams from the high productivity sites, that in a previous study showed enrichment of health-promoting microbiome components, displayed a healthier metabolic makeup (IDH up-regulation) and induction of protective antioxidant and immune responses. These features are hallmarks of putative enhanced resilience of the species towards environmental stress. Despite the well-known high sensitivity of C. gallina to environmental variations and its narrow window of acclimatory potential, results highlight that local conditions may influence physiological plasticity of this clam species and shape either positively or negatively its response capabilities to environmental changes. The identification of health-promoting endogenous mechanisms both from the animal (this study) and from its associated microbiome may provide the foundation for developing novel tools and strategies to improve clam health and production in low productivity areas or under adverse environmental conditions.
Collapse
Affiliation(s)
- Letizia Iuffrida
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, 48123, Ravenna, Italy
| | - Rachele Spezzano
- Ocean EcoSystems Biology Unit, Marine Biological Laboratory, Woods Hole, 02543, Massachussets, United States
| | - Giulia Trapella
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126, Bologna, Italy
| | - Nicolo Cinti
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126, Bologna, Italy
| | - Luca Parma
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano Emilia, Italy
| | - Antonina De Marco
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano Emilia, Italy
| | - Giorgia Palladino
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126, Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy
| | - Alessio Bonaldo
- Department of Veterinary Medical Sciences, University of Bologna, 40064, Ozzano Emilia, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy
| | - Marco Candela
- Unit of Microbiome Science and Biotechnology, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, 40126, Bologna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, 48123, Ravenna, Italy; Fano Marine Center, The Inter-Institute Center for Research on Marine Biodiversity, Resources and Biotechnologies, 61032, Fano, Italy.
| |
Collapse
|
6
|
Crayol E, Huneau F, Garel E, Zuffianò LE, Limoni PP, Romanazzi A, Mattei A, Re V, Knoeller K, Polemio M. Investigating pollution input to coastal groundwater-dependent ecosystems in dry Mediterranean agricultural regions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176015. [PMID: 39241882 DOI: 10.1016/j.scitotenv.2024.176015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/13/2024] [Accepted: 09/02/2024] [Indexed: 09/09/2024]
Abstract
The insufficient taking into account of groundwater as a basis for implementing protection measures for coastal wetlands can be related to the damage they are increasingly exposed to. The aim of this study is to demonstrate the pertinence of combining hydrogeological tools with assessment of pollutant fluxes and stable isotopes of O, H and N, as well as groundwater time-tracers to identify past and present pollution sources resulting from human activities and threatening shallow groundwater-dependent ecosystems. A survey combining physico-chemical parameters, major ions, environmental isotopes (18O, 2H, 15N and 3H), with emerging organic contaminants including pesticides and trace elements, associated with a land use analysis, was carried out in southern Italy, including groundwater, surface water and lagoon water samples. Results show pollution of the shallow groundwater and the connected lagoon from both agricultural and domestic sources. The N-isotopes highlight nitrate sources as coming from the soil and associated with the use of manure-type fertilizers related to the historical agricultural context of the area involving high-productivity olive groves. Analysis of EOCs has revealed the presence of 8 pesticides, half of which have been banned for two decades and two considered as pollutant legacies (atrazine and simazine), as well as 15 molecules, including pharmaceuticals and stimulants, identified in areas with human regular presence, including rapidly degradable compounds (caffeine and ibuprofen). Results show that agricultural pollution in the area is associated with the legacy of intensive olive growing in the past, highlighting the storage capacity of the aquifer, while domestic pollution is sporadic and associated with regular human presence without efficient modern sanitation systems. Moreover, results demonstrate the urgent need to consider groundwater as a vector of pollution to coastal ecosystems and the impact of pollutant legacies in planning management measures and policies, with the aim of achieving 'good ecological status' for waterbodies.
Collapse
Affiliation(s)
- E Crayol
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP 52, 20250 Corte, France; CNRS, UMR 6134, SPE, BP 52, 20250 Corte, France
| | - F Huneau
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP 52, 20250 Corte, France; CNRS, UMR 6134, SPE, BP 52, 20250 Corte, France.
| | - E Garel
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP 52, 20250 Corte, France; CNRS, UMR 6134, SPE, BP 52, 20250 Corte, France
| | - L E Zuffianò
- CNR-IRPI, National Research Council-Research Institute for Hydrogeological Protection, 70126 Bari, Italy
| | - P P Limoni
- CNR-IRPI, National Research Council-Research Institute for Hydrogeological Protection, 70126 Bari, Italy
| | - A Romanazzi
- CNR-IRPI, National Research Council-Research Institute for Hydrogeological Protection, 70126 Bari, Italy
| | - A Mattei
- Université de Corse Pascal Paoli, Département d'Hydrogéologie, Campus Grimaldi, BP 52, 20250 Corte, France; CNRS, UMR 6134, SPE, BP 52, 20250 Corte, France
| | - V Re
- Università di Pisa, Dipartimento di Scienze della Terra, Via Santa Maria 53, 56126 Pisa, Italy
| | - K Knoeller
- UFZ-Helmholtz Centre for Environmental Research, Isotope Tracer Group, Theodor-Lieser-Str. 4, 06120 Halle, Germany; Technical University of Darmstadt, Institute of Applied Geosciences, Schnittspahnstr. 9, 64287 Darmstadt, Germany
| | - M Polemio
- CNR-IRPI, National Research Council-Research Institute for Hydrogeological Protection, 70126 Bari, Italy
| |
Collapse
|
7
|
Žurga P, Dubrović I, Kapetanović D, Orlić K, Bolotin J, Kožul V, Nerlović V, Bobanović-Ćolić S, Burić P, Pohl K, Marinac-Pupavac S, Linšak Ž, Antunović S, Barišić J, Perić L. Performance of mussel Mytilus galloprovincialis under variable environmental conditions and anthropogenic pressure: A survey of two distinct farming sites in the Adriatic Sea. CHEMOSPHERE 2024; 364:143156. [PMID: 39178968 DOI: 10.1016/j.chemosphere.2024.143156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Changes in natural conditions and anthropogenic pollutants, alone or in combination, pose a significant challenge to coastal bivalve populations. The susceptibility of economically important bivalves to potential stressors in their farming environment has not been sufficiently investigated, despite the increase in anthropogenic pressure along the coast and the remarkable warming of seawater in recent years. Thus, the aim of this study was to evaluate the performance of mussel (Mytilus galloprovincialis) from two important farming sites in the eastern Adriatic, namely Mali Ston Bay (MSB) and Lim Bay (LB), in relation to variations of seawater parameters, reproductive cycle dynamics and tissue content of potentially harmful pollutants. The complex seasonal and site-specific patterns of chemical pollutants were determined, with tissue levels of metals, As, PAHs and PCBs largely comparable to those previously reported for the Mediterranean region. Concentrations of organochlorinated pesticides were below the level of detection. Significantly higher Cd, As and Hg concentrations were detected in the tissues of the MSB mussels. The reproductive cycle was clearly associated with the bioaccumulation of pollutants. All biochemical response parameters varied to some extent across seasons and/or between farming sites. A very pronounced seasonality was recorded for acetylcholinesterase and glutathione S-transferase activity at both sites. Metallothionein concentration and superoxide dismutase activity were generally steady throughout the study period. The most striking difference between the two sites was recorded for lipid peroxides concentrations which were predominantly significantly higher in the MSB mussels, indicating expressed pro-oxidant conditions at this site. In particular, significant correlations were found between lipid peroxides and the potentially toxic metals (Cd, As, Hg) accumulated in the mussel tissue. Data reported here are valuable as baseline information for further studies related to stress in farmed bivalves caused by oscillations of environmental factors and increasing anthropogenic pressure along the coastline.
Collapse
Affiliation(s)
- Paula Žurga
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia; Department of Environmental Health, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Igor Dubrović
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia; Department of Environmental Health, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000, Rijeka, Croatia
| | | | - Karla Orlić
- Ruđer Bošković Institute, 10000, Zagreb, Croatia
| | - Jakša Bolotin
- Institute for Marine and Coastal Research, University of Dubrovnik, 20000, Dubrovnik, Croatia
| | - Valter Kožul
- Institute for Marine and Coastal Research, University of Dubrovnik, 20000, Dubrovnik, Croatia
| | - Vedrana Nerlović
- University Department of Marine Studies, University of Split, 21000, Split, Croatia
| | | | - Petra Burić
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100, Pula, Croatia
| | - Kalista Pohl
- Faculty of Natural Sciences, Juraj Dobrila University of Pula, 52100, Pula, Croatia
| | | | - Željko Linšak
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia; Department of Environmental Health, University of Rijeka, Faculty of Medicine, Braće Branchetta 20, 51000, Rijeka, Croatia
| | - Sanda Antunović
- Teaching Institute of Public Heath of Primorsko-Goranska County, 51000, Rijeka, Croatia
| | - Josip Barišić
- University of the West of Scotland, Paisley, PA1 2BE, Scotland, UK
| | - Lorena Perić
- Ruđer Bošković Institute, 10000, Zagreb, Croatia.
| |
Collapse
|
8
|
Rafiq A, Capolupo M, Addesse G, Valbonesi P, Fabbri E. Antidepressants and their metabolites primarily affect lysosomal functions in the marine mussel, Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166078. [PMID: 37574064 DOI: 10.1016/j.scitotenv.2023.166078] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/19/2023] [Accepted: 08/03/2023] [Indexed: 08/15/2023]
Abstract
Antidepressants widely occur as emerging contaminants in marine coastal waters, with concentrations reported in the low ng/L range. Although at relatively lower levels with respect to other pharmaceuticals, antidepressants - fluoxetine (FLX) in particular - have attracted attention because of their striking effects exerted at low doses on marine invertebrates. In this study, the effects of four antidepressants including FLX, sertraline (SER), and citalopram, as members of the selective serotonin reuptake inhibitor (SSRI) class, and venlafaxine (VEN) as a member of the serotonin and norepinephrine reuptake inhibitor (SNRI) class, were evaluated in the mussel Mytilus galloprovincialis. In addition, the effects of two main metabolites of FLX and VEN, i.e., norfluoxetine (NFL) and O-desmethylvenlafaxine (ODV) respectively, were compared to those of the parent compounds. Eight concentrations of each drug (0.5-500 ng/L range) were tested on the early life stage endpoints of gamete fertilization and larval development at 48 h post fertilization (hpf). Egg fertilization was reduced by all compounds, except for VEN. Larval development at 48 hpf was affected by all SSRIs, but not by SNRIs. The above effects were significant but never exceeded 20 % of control values. Adult mussels were exposed in vivo for 7 days to environmental concentrations of the drugs (0.5, 5, and 10 ng/L) and a battery of eight biomarkers was assessed. Antidepressants primarily targeted lysosomal functions, decreasing haemocyte lysosome membrane stability (up to 70 % reduction) and increasing of the lysosome/cytosol ratio (up to 220 %), neutral lipid (up to 230 %), and lipofuscin (up to 440 %) accumulation in digestive gland. Only SER and NFL significantly affected catalase and glutathione-S-transferase activities in gills and digestive gland. NFL and ODV, were effective and sometimes more active than the parent compounds. All compounds impaired mussel health status, as indicated by the low to high stress levels assigned using the Mussel Expert System.
Collapse
Affiliation(s)
- Ayesha Rafiq
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Marco Capolupo
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Giulia Addesse
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Paola Valbonesi
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy; National Future Biodiversity Center (NFBC), Palermo, Italy.
| |
Collapse
|
9
|
Correa CMA, da Silva KC, de Oliveira PLM, Salomão RP. The conversion of native savannah into pasturelands does not affect exclusively species diversity: Effects on physiological condition of a highly abundant dung beetle species. Ecol Evol 2023; 13:e10752. [PMID: 38020699 PMCID: PMC10659944 DOI: 10.1002/ece3.10752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/27/2023] [Accepted: 11/07/2023] [Indexed: 12/01/2023] Open
Abstract
Dung beetles are efficient indicators to obtain responses regarding the effects of land use change on biodiversity. Although the biological consequences of Cerrado conversion into pasture have been observed at the assemblage scale, there are no cues regarding the effects of tropical savanna conversion into pasture on physiological condition of dung beetle individuals. In this study, we evaluated whether native and non-native habitats in Cerrado affect the physiological condition and body traits of males and females of Phanaeus palaeno. The individuals were collected from a Cerrado fragment (sensu stricto) and an exotic pasture (Urochloa spp.). Physiological condition was assessed through the estimation of individuals' dry body mass, fat mass, and muscle mass. Body traits were estimated through individual body size and males' horn length. We did not find differences between dung beetle morphological traits between Cerrado and pastures. However, individuals collected in exotic pastures had lower dry mass and fat mass, but higher muscle mass, than in conserved Cerrado. Understanding how the land use change affects individuals' body condition is essential to maintain abundant and healthy populations of dung beetles in human-modified landscapes. Although the estimation of physiological condition is logistically more complex than species body traits, future studies aiming to present complex and finer ecological responses of dung beetles should incorporate physiological data to their approaches.
Collapse
Affiliation(s)
- César M. A. Correa
- Laboratório de Bioecologia de Scarabaeoidea (Scaralab)Universidade Estadual de Mato Grosso do SulAquidauanaBrazil
| | - Kalel Caetano da Silva
- Laboratório de Bioecologia de Scarabaeoidea (Scaralab)Universidade Estadual de Mato Grosso do SulAquidauanaBrazil
- Universidade Federal de Mato Grosso do SulAquidauanaBrazil
| | - Pedro Lucas Moreira de Oliveira
- Laboratório de Bioecologia de Scarabaeoidea (Scaralab)Universidade Estadual de Mato Grosso do SulAquidauanaBrazil
- Universidade Federal de Mato Grosso do SulAquidauanaBrazil
| | - Renato Portela Salomão
- Facultad de Estudios Superiores IztacalaUniversidad Nacional Autónoma de MéxicoTlalnepantlaMexico
- Pós‐graduação em EcologiaInstituto Nacional de Pesquisas da AmazôniaManausBrazil
| |
Collapse
|
10
|
Capolupo M, Rafiq A, Coralli I, Alessandro T, Valbonesi P, Fabbri D, Fabbri E. Bioplastic leachates characterization and impacts on early larval stages and adult mussel cellular, biochemical and physiological responses. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 319:120951. [PMID: 36581238 DOI: 10.1016/j.envpol.2022.120951] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
Bioplastics are promoted as safer alternatives to tackle the long-term persistence of conventional plastics. However, information on the potential release of additives and non-intentionally added substances (NIAS) in the surrounding environment is limited, and biological effects of the leachates have been little studied. Leachates produced from three bioplastics, i.e. compostable bags (CB), bio-polyethylene terephthalate bottles (bioPET) and polylactic acid cups (PLA), and a control polymeric material, i.e. rubber tire (TR), were examined. The chemical nature of bioplastic polyesters PET, PLA and poly (butylene adipate-co-terephthalate) (PBAT) in CB, was confirmed by analytical pyrolysis. Fragments were incubated in artificial sea water for 14 days at 20 °C in darkness and leachate contents examined by GC-MS and HPLC-MS/MS. Catalysts and stabilizers represented the majority of chemicals in TR, while NIAS (e.g. 1,6-dioxacyclododecane-7,12-dione) were the main components of CB. Bisphenol A occurred in all leachates at a concentration range 0.3-4.8 μg/L. Trace metals at concentrations higher than control water were found in all leachates, albeit more represented in leachates from CB and TR. A dose response to 11 dilutions of leachates (in the range 0.6-100%) was tested for biological effects on early embryo stages of Mytilus galloprovincialis. Embryotoxicity was observed in the whole range of tested concentrations, the magnitude of effect depending on the polymers. The highest concentrations caused reduction of egg fertilization (CB, bioPET, TR) and of larvae motility (CB, PLA, TR). TR leachates also provoked larvae mortality in the range 10-100%. Effects on adult mussel physiology were evaluated after a 7-day in vivo exposure to the different leachates at 0.6% concentration. Nine biomarkers concerning lysosomal functionality, neurotransmission, antioxidant and immune responses were assessed. All lysosomal parameters were affected, and serum lysozyme activity inhibited. Harmonized chemical and biological approaches are recommended to assess bioplastic safety and support production of sustainable bioplastics.
Collapse
Affiliation(s)
- Marco Capolupo
- Italian Institute for Environmental Protection and Research (ISPRA), Rome, Italy
| | - Ayesha Rafiq
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna
| | - Irene Coralli
- Department of Chemistry "Giacomo Ciamician", Technopole of Rimini, University of Bologna, Italy
| | - Tanya Alessandro
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna
| | - Paola Valbonesi
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna
| | - Daniele Fabbri
- Department of Chemistry "Giacomo Ciamician", Technopole of Rimini, University of Bologna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences University of Bologna, Campus of Ravenna via S. Alberto 163, 48123, Ravenna.
| |
Collapse
|
11
|
Ojemaye CY, Pampanin DM, Sydnes MO, Green L, Petrik L. The burden of emerging contaminants upon an Atlantic Ocean marine protected reserve adjacent to Camps Bay, Cape Town, South Africa. Heliyon 2022; 8:e12625. [PMID: 36619409 PMCID: PMC9816787 DOI: 10.1016/j.heliyon.2022.e12625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/19/2022] [Indexed: 12/25/2022] Open
Abstract
The presence and levels of fifteen chemicals of emerging concerns, including five perfluorinated compounds (PFCs), two industrial chemicals, seven pharmaceuticals and one personal care product, were evaluated in biota, seawater and sediments obtained from near-shore coastal zone in Camps Bay, Cape Town, South Africa. Eight compounds were found in seawater, and between nine to twelve compounds were quantified in marine invertebrates, sediment and seaweed. Diclofenac was the prevalent pharmaceutical with a maximum concentration of 2.86 ng/L in seawater, ≥110.9 ng/g dry weight (dw) in sediments and ≥67.47 ng/g dw in marine biotas. Among PFCs, perfluoroheptanoic acid was predominant in seawater (0.21-0.46 ng/L). Accumulation of perfluorodecanoic acid (764 ng/g dw) as well as perfluorononanoic acid and perfluorooctanoic acid (504.52 and 597.04 ng/g dw, respectively) was highest in samples of seaweed. The environmental risk assessment carried out in this study showed that although individual pollutants pose a low acute and chronic risk, yet individual compounds each had a high bioaccumulation factor in diverse marine species, and their combination as a complex mixture in marine organisms might have adverse effects upon aquatic organisms. Data revealed that this Atlantic Ocean marine protected environment is affected by the presence of numerous and diverse emerging contaminants that could only have originated from sewage discharges. The complex mixture of persistent chemicals found bioaccumulating in marine organisms could bode ill for the propagation and survival of marine protected species, since many of these compounds are known toxicants.
Collapse
Affiliation(s)
- Cecilia Y. Ojemaye
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa,Corresponding author.
| | - Daniela M. Pampanin
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, N. O. 4036 Stavanger, Norway
| | - Magne O. Sydnes
- Department of Chemistry, Bioscience and Environmental Technology, University of Stavanger, N. O. 4036 Stavanger, Norway
| | - Lesley Green
- Environmental Humanities South and Department of Anthropology, University of Cape Town, Cape Town, South Africa
| | - Leslie Petrik
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
12
|
Świacka K, Maculewicz J, Świeżak J, Caban M, Smolarz K. A multi-biomarker approach to assess toxicity of diclofenac and 4-OH diclofenac in Mytilus trossulus mussels - First evidence of diclofenac metabolite impact on molluscs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120384. [PMID: 36223851 DOI: 10.1016/j.envpol.2022.120384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/20/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Although the presence of pharmaceuticals in the environment is an issue widely addressed in research over the past two decades, still little is known about their transformation products. However, there are indications that some of these chemicals may be equally or even more harmful than parent compounds. Diclofenac (DCF) is among the most commonly detected pharmaceuticals in the aquatic environment, but the potential effects of its metabolites on organisms are poorly understood. Therefore, the present study aimed to evaluate and compare the toxicity of DCF and its metabolite, 4-hydroxy diclofenac (4-OH DCF), in mussels using a multi-biomarker approach. Mytilus trossulus mussels were exposed to DCF and 4-OH DCF at 68.22 and 20.85 μg/L (measured concentrations at day 0), respectively, for 7 days. In our work, we showed that both tested compounds have no effect on most of the enzymatic biomarkers tested. However, it has been shown that their action can affect the protein content in gills and also be reflected through histological markers. ENVIRONMENTAL IMPLICATION: Studies in recent years clearly prove that pharmaceuticals can negatively affect aquatic organisms. In addition to parent compounds, metabolites of pharmaceuticals can also be a significant environmental problem. In the present work, the effects of diclofenac and its main metabolite, 4-hydroxy diclofenac, on marine mussels were evaluated. Both compounds showed negative effects on mussels, which was primarily observed through histological changes. The present study therefore confirms that not only diclofenac, but also its main metabolite can have negative effects on aquatic organisms.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland.
| | - Justyna Świeżak
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308, Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378, Gdynia, Poland
| |
Collapse
|
13
|
De Marco G, Afsa S, Galati M, Billè B, Parrino V, Ben Mansour H, Cappello T. Comparison of cellular mechanisms induced by pharmaceutical exposure to caffeine and its combination with salicylic acid in mussel Mytilus galloprovincialis. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2022; 93:103888. [PMID: 35598756 DOI: 10.1016/j.etap.2022.103888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/14/2022] [Accepted: 05/16/2022] [Indexed: 06/15/2023]
Abstract
Urban and hospital-sourced pharmaceuticals are continuously discharged into aquatic environments, threatening biota. To date, their impact as single compounds has been widely investigated, whereas few information exists on their effects as mixtures. We assessed the time-dependent biological impact induced by environmental concentrations of caffeine alone (CAF; 5 ng/L to 10 µg/L) and its combination with salicylic acid (CAF+SA; 5 ng/L+0.05 µg/L to 10 µg/L+100 µg/L) on gills of mussel Mytilus galloprovincialis during a 12-day exposure. Although no histological alteration was observed in mussel gills, haemocyte infiltration was noticed at T12 following CAF+SA exposure, as confirmed by flow cytometry with increased hyalinocytes. Both the treatments induced lipid peroxidation and cholinergic neurotoxicity, which the antioxidant system was unable to counteract. We have highlighted the biological risks posed by pharmaceuticals on biota under environmental scenarios, contributing to the enhancement of ecopharmacovigilance programmes and amelioration of the efficacy of wastewater treatment plants.
Collapse
Affiliation(s)
- Giuseppe De Marco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Sabrine Afsa
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Mariachiara Galati
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Barbara Billè
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Vincenzo Parrino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy
| | - Hedi Ben Mansour
- Research Unit of Analysis and Process Applied to The Environment - APAE (UR17ES32) Higher Institute of Applied Sciences and Technology of Mahdia, University of Monastir, 5000 Monastir, Tunisia
| | - Tiziana Cappello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy.
| |
Collapse
|
14
|
Ojemaye CY, Petrik L. Pharmaceuticals and Personal Care Products in the Marine Environment Around False Bay, Cape Town, South Africa: Occurrence and Risk-Assessment Study. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:614-634. [PMID: 33783837 DOI: 10.1002/etc.5053] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Revised: 10/15/2020] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Pollution of the marine environment has been increasing as a result of anthropogenic activities. The preservation of marine ecosystems as well as the safety of harvested seafood are nowadays a global concern. In the present study, levels of pharmaceuticals and personal care products were assessed in different environmental compartments in the near-shore marine environment of False Bay, Cape Town, South Africa. The study revealed the presence of these persistent chemical compounds in different environmental samples from this location. Diclofenac was the most dominant compound detected, with higher concentration than the other pharmaceutical compounds, as well as being present in almost all the samples from the different sites (seawater, 3.70-4.18 ng/L; sediment, 92.08-171.89 ng/g dry wt; marine invertebrates, 67.67-780.26 ng/g dry wt; seaweed, 101.50-309.11 ng/g dry wt). The accumulation of pharmaceuticals and personal care products in the different species of organisms reflects the increasing anthropogenic pressure taking place at the sampling sites along the bay, as a result of population growth, resident lifestyle as well as poorly treated sewage effluent discharge from several associated wastewater-treatment plants. The concentration of these contaminants is in the order marine biota > sediments > seawater. The contaminants pose a low acute and chronic risk to the selected trophic levels. A public awareness campaign is needed to reduce the pollution at the source, as well as wastewater discharge limits need to be more stringent. Environ Toxicol Chem 2022;41:614-634. © 2021 SETAC.
Collapse
Affiliation(s)
- Cecilia Y Ojemaye
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| | - Leslie Petrik
- Environmental and Nano Science Group, Department of Chemistry, University of the Western Cape, Cape Town, South Africa
| |
Collapse
|
15
|
Almeida Â, Calisto V, Esteves VI, Schneider RJ, Soares AMVM, Freitas R. Salinity-dependent impacts on the effects of antiepileptic and antihistaminic drugs in Ruditapes philippinarum. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150369. [PMID: 34571231 DOI: 10.1016/j.scitotenv.2021.150369] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 09/06/2021] [Accepted: 09/12/2021] [Indexed: 06/13/2023]
Abstract
In coastal systems, pollutants as pharmaceutical drugs exert changes from the molecular to the organism level in marine bivalves. Besides pollutants, coastal systems are prone to changes in environmental parameters, as the alteration of salinity values because of Climate Change. Together, these stressors (pharmaceutical drugs and salinity changes) can exert different threats than each stressor acting individually; for example, salinity can change the physical-chemical properties of the drugs and/or the sensitivity of the organisms to them. However, limited information is available on this subject, with variable results, and for this reason, this study aimed to evaluate the impacts of salinity changes (15, 25 and 35) on the effects of the antiepileptic carbamazepine (CBZ, 1 μg/L) and the antihistamine cetirizine (CTZ, 0.6 μg/L), when acting individually and combined (CBZ + CTZ), in the edible clam Ruditapes philippinarum. After 28 days of exposure, drugs concentrations, bioconcentration factors and biochemical parameters, related to clam's metabolic capacity and oxidative stress were evaluated. The results showed that clams under low salinity suffered more changes in metabolic, antioxidant and biotransformation activities, in comparison with the remaining salinities under study. However, limited impacts were observed when comparing drug effects at low salinity. Indeed, it seemed that CTZ and CBZ + CTZ, under high salinity (salinity 35) were the worst exposure conditions for the clams, since they caused higher levels of cellular damage. It stands out that salinity changes altered the impact of pharmaceutical drugs on marine bivalves.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Vânia Calisto
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Valdemar I Esteves
- Chemistry Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rudolf J Schneider
- BAM Federal Institute for Materials Research and Testing, Richard-Willstaetter -Str. 11, D-12489 Berlin, Germany
| | | | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193 Aveiro, Portugal.
| |
Collapse
|
16
|
Figueiredo C, Oliveira R, Lopes C, Brito P, Caetano M, Raimundo J. Rare earth elements biomonitoring using the mussel Mytilus galloprovincialis in the Portuguese coast: Seasonal variations. MARINE POLLUTION BULLETIN 2022; 175:113335. [PMID: 35093785 DOI: 10.1016/j.marpolbul.2022.113335] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 12/21/2021] [Accepted: 01/06/2022] [Indexed: 06/14/2023]
Abstract
Increased Rare earth elements (REE) usage culminates in discharges into the environment. Mussels have been chosen as models in biomonitoring, hence, REE concentrations in Mytilus galloprovincialis from six locations on the Portuguese coast were accessed to determine natural concentrations and possible linkage to local ecosystem characteristics and temporal variations, by determining them in distinct seasons (autumn and spring). Samples from Porto Brandão (located on the south bank of the Tagus estuary) exhibited the highest REE concentrations, while mussels from Aljezur (the southernmost point on the Portuguese coast) exhibited the lowest, in both seasons. Overall, ∑REE concentration was greater in the spring. LREE enrichment relative to HREE occurs and a negative Ce and Eu anomaly was observed. This study constitutes the first assessment of REE composition on this model species in the Portuguese coast, in two distinct seasons and contributes to a better understanding of REE uptake for future biomonitoring studies.
Collapse
Affiliation(s)
- Cátia Figueiredo
- MARE - Marine and Environmental Sciences Centre, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal; IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; UCIBIO, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal.
| | - Rui Oliveira
- IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal
| | - Clara Lopes
- IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Pedro Brito
- IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Miguel Caetano
- IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| | - Joana Raimundo
- IPMA - Portuguese Institute for Sea and Atmosphere, Av. Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, Avenida General Norton de Matos S/N, 4450-208 Matosinhos, Portugal
| |
Collapse
|
17
|
Mezzelani M, Regoli F. The Biological Effects of Pharmaceuticals in the Marine Environment. ANNUAL REVIEW OF MARINE SCIENCE 2022; 14:105-128. [PMID: 34425054 DOI: 10.1146/annurev-marine-040821-075606] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Environmental pharmaceuticals represent a threat of emerging concern for marine ecosystems. Widely distributed and bioaccumulated, these contaminants could provoke adverse effects on aquatic organisms through modes of action like those reported for target species. In contrast to pharmacological uses, organisms in field conditions are exposed to complex mixtures of compounds with similar, different, or even opposing therapeutic effects. This review summarizes current knowledge of the main cellular pathways modulated by the most common classes of environmental pharmaceuticals occurring in marine ecosystems and accumulated by nontarget species-including nonsteroidal anti-inflammatory drugs, psychiatric drugs, cardiovascular and lipid regulator agents, steroidal hormones, and antibiotics-and describes an intricate network of possible interactions with both synergistic and antagonistic effects on the same cellular targets and metabolic pathways. This complexity reveals the intrinsic limits of the single-chemical approach to predict the long-term consequences and future impact of pharmaceuticals at organismal, population, and community levels.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; ,
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente, Università Politecnica delle Marche, 60131 Ancona, Italy; ,
- Fano Marine Center, 61032 Fano, Italy
| |
Collapse
|
18
|
Świacka K, Smolarz K, Maculewicz J, Michnowska A, Caban M. Exposure of Mytilus trossulus to diclofenac and 4'-hydroxydiclofenac: Uptake, bioconcentration and mass balance for the evaluation of their environmental fate. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 791:148172. [PMID: 34412396 DOI: 10.1016/j.scitotenv.2021.148172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
Diclofenac (DIC) is one of the most widely consumed drugs in the world, and its presence in the environment as well as potential effects on organisms are the subject of numerous recent scientific works. However, it is becoming clear that the risk posed by pharmaceuticals in the environment needs to be viewed more broadly and their numerous derivatives should also be considered. In fact, already published results confirm that the transformation products of NSAIDs including DIC may cause a variety of potentially negative effects on marine organisms, sometimes showing increased biological activity. To date, however, little is known about bioconcentration of DIC and DIC metabolites and the role of sex in this process. Therefore, the present study for the first time evaluates sex-related differences in DIC bioconcentration and estimates bioconcentration potential of DIC metabolite, 4-OH DIC, in the Mytilus trossulus tissues. In the experiment lasting 7 days, mussels were exposed to DIC and 4-OH DIC at concentrations 68.22 and 20.85 μg/L, respectively. Our study confirms that DIC can be taken up by organisms not only in its native form, but also as a metabolite, and metabolised further. Furthermore, in the present work, mass balance was performed and the stability of both studied compounds under experimental conditions was analysed. Obtained results suggest that DIC is more stable than its derivative under the tested conditions, but further analyses of the environmental fate of these compounds are necessary.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| | - Alicja Michnowska
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Piłsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
19
|
Assessing the Impact of Chrysene-Sorbed Polystyrene Microplastics on Different Life Stages of the Mediterranean Mussel Mytilus galloprovincialis. APPLIED SCIENCES-BASEL 2021. [DOI: 10.3390/app11198924] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The sorption of organic pollutants to marine plastic litter may pose risks to marine organisms, notably for what concerns their intake and transfer through microplastic (MP) ingestion. This study investigated the effects of polystyrene MP loaded with chrysene (CHR) on early-stage and physiological endpoints measured in the Mediterranean mussel Mytilus galloprovincialis. The same concentrations of virgin microplastics (MP) and MP loaded with 10.8 µg CHR/mg (CHR-MP) were administered to mussel gametes/embryos (25 × 103 items/mL) and adults (5⋅× 103 items/L); further treatments included 0.1 mg/L of freely dissolved CHR and a second CHR concentration corresponding to that vehiculated by CHR-MP during exposure (3.78 µg/L and 0.73 ng/L for gamete/embryos and adults, respectively). None of the treatments affected gamete fertilization, while 0.1 mg/L CHR induced embryotoxicity. In adults, CHR-MP and MP similarly affected lysosomal membrane stability and neutral lipids and induced slight effects on oxidative stress endpoints. CHR affected tested endpoints only at 0.1 mg/L, with lysosomal, oxidative stress and neurotoxicity biomarkers generally showing greater alterations than those induced by CHR-MP and MP. This study shows that the CHR sorption on MP does not alter the impact of virgin MP on mussels and may pose limited risks compared to other routes of exposure.
Collapse
|
20
|
Capolupo M, Gunaalan K, Booth AM, Sørensen L, Valbonesi P, Fabbri E. The sub-lethal impact of plastic and tire rubber leachates on the Mediterranean mussel Mytilus galloprovincialis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117081. [PMID: 33848903 DOI: 10.1016/j.envpol.2021.117081] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 03/25/2021] [Accepted: 04/01/2021] [Indexed: 06/12/2023]
Abstract
Ocean contamination by synthetic polymers can represent a risk for the fitness of marine species due to the leaching of chemical additives. This study evaluated the sub-lethal effects of plastic and rubber leachates on the mussel Mytilus galloprovincialis through a battery of biomarkers encompassing lysosomal endpoints, oxidative stress/detoxification parameters, and specific responses to metals/neurotoxicants. Mussels were exposed for 7 days to leachates from car tire rubber (CTR), polypropylene (PP), polyethylene terephthalate (PET), polystyrene (PS) and polyvinyl chloride (PVC), containing organic additives and metals in the ng-μg/L range. The leachate exposure affected general stress parameters, including the neutral lipid content (all leachates), the lysosomal membrane stability (PS, PP, PVC and CTR leachates) and lysosomal volume (PP, PVC and TR leachates). An increased content of the lipid peroxidation products malondialdehyde and lipofuscin was observed in mussels exposed to PET, PS and PP leachates, and PP, PVC and CTR leachates, respectively. PET and PP leachates increased the activity of the phase-II metabolism enzyme glutathione S-transferase, while a decreased acetylcholinesterase activity was induced by PVC leachates. Data were integrated in the mussel expert system (MES), which categorizes the organisms' health status based on biomarker responses. The MES assigned healthy status to mussels exposed to PET leachates, low stress to PS leachates, and moderate stress to PP, CTR and PVC leachates. This study shows that additives leached from selected plastic/rubber polymers cause sub-lethal effects in mussels and that the magnitude of these effects may be higher for CTR, PVC and PP due to a higher content and release of metals and organic compounds.
Collapse
Affiliation(s)
- Marco Capolupo
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Kuddithamby Gunaalan
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Andy M Booth
- SINTEF Ocean, Environment and New Resources, Trondheim, Norway
| | - Lisbet Sørensen
- SINTEF Ocean, Environment and New Resources, Trondheim, Norway
| | - Paola Valbonesi
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy
| | - Elena Fabbri
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Via Sant'Alberto 163, 48123, Ravenna, Italy.
| |
Collapse
|
21
|
Gao Y, Qiao Y, Xu Y, Zhu L, Feng J. Assessment of the transfer of heavy metals in seawater, sediment, biota samples and determination the baseline tissue concentrations of metals in marine organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:28764-28776. [PMID: 33550550 DOI: 10.1007/s11356-021-12650-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 01/20/2021] [Indexed: 06/12/2023]
Abstract
The majority of tissue-specific environmental quality standards (EQSs) considering metal tolerance are prior to the chemical-specific EQSs in aquatic organisms. However, metal baseline levels in marine organisms were very scarce. We explored the correlation between Hg, Cd, Pb, Cu, and Zn concentrations in water or sediments and those metal concentrations in marine organisms (crustacean, mollusc, and fish) by generalized additive models (GAMs) and executed a meta-analysis of Hg, Cd, Pb, Cu, and Zn contents in those three organisms by implementing cumulative frequency distribution analysis of individual metal distribution in a heavy metal-contaminated semi-enclosed Bay, China. Results showed that the average contents of Hg, Cd, Pb, Cu, and Zn were 0.042±0.01, 0.38±0.22, 1.72±0.65, 3.61±1.01, and 16.08±6.33 μg/L in water; 0.064±0.02, 0.42±0.04, 20.54±7.76, 28.97±3.90, and 96.74±35.11 μg/g dw in sediment; and 0.0049±0.0028, 0.52±0.28, 0.24±0.15, 11.05±6.95, and 21.12±4.47 μg/g dw in crustacean, 0.015±0.0087, 0.24±0.17, 0.08±0.02, 0.37±0.35, and 10.62±6.79 μg/g dw in mollusc; and 0.0038±0.0028, 0.065±0.05, 0.32±0.19, 2.01±0.59, and 16.04±4.97 μg/g dw in fish. The mercury content in mollusc presented a negative correlation with mercury content in sediment, while the content of other metals (Cd, Pb, Cu, and Zn) in organisms showed positive correlations with the content of those metals in water or sediment. We further obtained tissue-baseline-C5% in crustacean, mollusc, and fish which were 1.191, 3.341, and 0.014 μg/g dw for Cu; 0.013, 0.072, and 0.033 μg/g dw for Cd, 0.015, 0.027, and 0.052 μg/g dw for Pb; 9.515, 14.422, and 0.056 μg/g dw for Zn; and 0.0009, 0.004, and 0.0035 μg/g dw for Hg, respectively. However, there were no obvious relationships of the 4d-NOEC in laboratory toxicity tests with C5%, as well as C50% and 4d-LC50 or tolerance index a for Cu, Cd, Pb, Zn, and Hg in organisms. Our results pointed out the controversy of laboratory sensitive species toxicity results for deriving chemical-specific EQSs with field studies. We advocated to set up the metal concentration baselines in aquatic organisms and further served the tissue-specific EQSs, which are essential basis for geochemical recordings, bio-monitoring, and semi-enclosed bay management in the world.
Collapse
Affiliation(s)
- Yongfei Gao
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China
| | - Yanlong Qiao
- College of Science Engineering, Tianjin University, Tianjin, 300350, China
- Tianjin Natural Resources Ecological Restoration and Renovation Center, Tianjin, 300040, China
| | - Yushan Xu
- Tianjin Marine Environmental Monitoring Central Station, Tianjin Marine Environmental Monitoring and Forecasting Center, Tianjin, 300457, China
| | - Lin Zhu
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| | - Jianfeng Feng
- Key laboratory of Pollution process and Environmental Criteria of Ministry of Education and Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300071, China.
| |
Collapse
|
22
|
Esposito G, Mudadu AG, Abete MC, Pederiva S, Griglione A, Stella C, Ortu S, Bazzoni AM, Meloni D, Squadrone S. Seasonal accumulation of trace elements in native Mediterranean mussels (Mytilus galloprovincialis Lamarck, 1819) collected in the Calich Lagoon (Sardinia, Italy). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:25770-25781. [PMID: 33471307 DOI: 10.1007/s11356-021-12380-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
The occurrence of 21 trace elements in native Mediterranean mussel (Mytilus galloprovincialis) from the Calich Lagoon, a typical brackish area of the northwest of Sardinia (Italy), was investigated. The seasonal variation of metals in bivalves was considered, and the highest values were found in spring and summer; in particular, a high significant (P < 0.001) temporal variation was reported for silver (Ag) and mercury (Hg). The highest and similar concentrations were registered for aluminium (Al, mean 32 mg kg-1wet weight), iron (Fe, mean 32 mg kg-1 w. w.), and zinc (Zn, mean 25 mg kg-1 w. w.). The maximum limits set by European Regulations for cadmium (Cd), mercury (Hg), and lead (Pb) were never exceeded. Speciation analysis revealed negligible risk related to inorganic arsenic (iAs). Therefore, M. galloprovincialis confirmed its role as suitable bioindicator to monitor the contamination of coastal environments. Although the recommended tolerable weekly intake (TWI) was not exceeded, the levels of aluminium should be carefully evaluated in monitoring plans in the studied lagoon. Graphical abstract.
Collapse
Affiliation(s)
- Giuseppe Esposito
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | | | - Maria Cesarina Abete
- Istituto Zooprofilattico del Piemonte, e Valle d'Aosta, Via Bologna 148, 10154, Torino, Liguria, Italy
| | - Sabina Pederiva
- Istituto Zooprofilattico del Piemonte, e Valle d'Aosta, Via Bologna 148, 10154, Torino, Liguria, Italy
| | - Alessandra Griglione
- Istituto Zooprofilattico del Piemonte, e Valle d'Aosta, Via Bologna 148, 10154, Torino, Liguria, Italy
| | - Caterina Stella
- Istituto Zooprofilattico del Piemonte, e Valle d'Aosta, Via Bologna 148, 10154, Torino, Liguria, Italy
| | - Sergio Ortu
- Regional Natural Park of Porto Conte, SP. 55 N. 44, 07041, Alghero, Italy
| | - Anna Maria Bazzoni
- Regional Agency for the Protection of Sardinian Environment, Via Rockefeller 58/60, 07100, Sassari, Italy
| | - Domenico Meloni
- Department of Veterinary Medicine, University of Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Stefania Squadrone
- Istituto Zooprofilattico del Piemonte, e Valle d'Aosta, Via Bologna 148, 10154, Torino, Liguria, Italy.
| |
Collapse
|
23
|
A Comparative Assessment of the Chronic Effects of Micro- and Nano-Plastics on the Physiology of the Mediterranean Mussel Mytilus galloprovincialis. NANOMATERIALS 2021; 11:nano11030649. [PMID: 33800064 PMCID: PMC8001054 DOI: 10.3390/nano11030649] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 12/25/2022]
Abstract
The ocean contamination caused by micro- and nano-sized plastics is a matter of increasing concern regarding their potential effects on marine organisms. This study compared the effects of a 21-day exposure to 1.5, 15, and 150 ng/L of polystyrene microplastics (PS-MP, 3-µm) and nanoplastics (PS-NP, 50-nm) on a suite of biomarkers measured in the Mediterranean mussel Mytilus galloprovincialis. Endpoints encompassed immunological/lysosomal responses, oxidative stress/detoxification parameters, and neurotoxicological markers. Compared to PS-MP, PS-NP induced higher effects on lysosomal parameters of general stress. Exposures to both particle sizes increased lipid peroxidation and catalase activity in gills; PS-NP elicited greater effects on the phase-II metabolism enzyme glutathione S-transferase and on lysozyme activity, while only PS-MP inhibited the hemocyte phagocytosis, suggesting a major role of PS particle size in modulating immunological/detoxification pathways. A decreased acetylcholinesterase activity was induced by PS-NP, indicating their potential to impair neurological functions in mussels. Biomarker data integration in the Mussel Expert System identified an overall greater health status alteration in mussels exposed to PS-NP compared to PS-MP. This study shows that increasing concentrations of nanoplastics may induce higher effects than microplastics on the mussel’s lysosomal, metabolic, and neurological functions, eventually resulting in a greater impact on their overall fitness.
Collapse
|
24
|
Greggio N, Capolupo M, Donnini F, Birke M, Fabbri E, Dinelli E. Integration of physical, geochemical and biological analyses as a strategy for coastal lagoon biomonitoring. MARINE POLLUTION BULLETIN 2021; 164:112005. [PMID: 33517082 DOI: 10.1016/j.marpolbul.2021.112005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 12/28/2020] [Accepted: 12/29/2020] [Indexed: 06/12/2023]
Abstract
Coastal lagoons are complex environments threatened by natural and anthropogenic stressors. Here, we tested the effectiveness of combining physical, geochemical and chemical measurements with biomarker data obtained in field-exposed marine mussels (Mytilus galloprovincialis) as a biomonitoring strategy for a highly pressured lagoon (Pialassa Baiona, Ravenna, Italy). Data showed a spatial trend of sediment contamination by Hg, Pt, Au, Ag, Mo, Re, Cd, Pd and Zn. Local conditions of high water temperature/low conductivity were detected among selected sites. After a 30-day in situ exposure, Ag and Hg were the most bioaccumulated elements (10 and 5 folds, respectively) in mussels followed by Sb, Al, Ti and Fe. Decreased survival, lysosomal dysfunctions, increased metallothionein content and peroxisome proliferation were observed in mussels in relation to metal spatial distribution and physico-chemical fluctuations. Overall, this study provides a further confirmation of the role of biomonitoring to reliably assess the environmental quality of highly pressured lagoons.
Collapse
Affiliation(s)
- Nicolas Greggio
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, Piazza S. Donato 1, 40100 Bologna, Italy.
| | - Marco Capolupo
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, Piazza S. Donato 1, 40100 Bologna, Italy
| | - Filippo Donnini
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy
| | - Manfred Birke
- Federal Institute for Geosciences and Natural Resources, Stilleweg 2, 30655 Hannover, Germany
| | - Elena Fabbri
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, Piazza S. Donato 1, 40100 Bologna, Italy
| | - Enrico Dinelli
- University of Bologna, Inter-Departmental Research Centre for Environmental Science (CIRSA), Via S. Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Biological, Geological, and Environmental Sciences, Piazza S. Donato 1, 40100 Bologna, Italy
| |
Collapse
|
25
|
Mezzelani M, Fattorini D, Gorbi S, Nigro M, Regoli F. Human pharmaceuticals in marine mussels: Evidence of sneaky environmental hazard along Italian coasts. MARINE ENVIRONMENTAL RESEARCH 2020; 162:105137. [PMID: 33010617 DOI: 10.1016/j.marenvres.2020.105137] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/27/2020] [Accepted: 08/27/2020] [Indexed: 06/11/2023]
Abstract
Despite the increasing interest for pharmaceuticals in the marine environment, their accumulation in wild organisms and consequent environmental hazards are still poorly known. The Mediterranean Sea is highly challenged by the density of coastal populations, large consumption of pharmaceuticals and their often limited removal by Wastewater Treatment Plants (WWTPs). In this respect, the present study aims to provide the first large-scale survey on the distribution of such contaminants of emerging concern in native mussels, Mytilus galloprovincialis from Italian coasts. Organisms were collected from 14 sites representative of relatively unpolluted marine waters along the Adriatic and Tyrrhenian Sea and analysed for 9 common pharmaceuticals including Non-Steroidal Anti-Inflammatory Drugs (NSAIDs: Diclofenac DIC, Ibuprofen IBU, Ketoprofen KET and Nimesulide NIM), the analgesic Acetaminophen AMP, the antiepileptic Carbamazepine CBZ, the antihypertensive Valsartan VAL, the anxiolytic Lormetazepam LOR and the antidepressant Paroxetine PAR. Results indicated the widespread occurrence of the majority of pharmaceuticals in mussel tissues: CBZ was measured in >90% of analysed samples, followed by VAL (>50%), PAR (>40%), and DIC (>30%), while only AMP and KET were never detected. Heterogeneous tissue concentrations ranged from a few units up to hundreds of ng/g (d.w.), while seasonal and interannual variability, investigated over 4 years, did not highlight any clear temporal trend. Limited differences obtained between the Adriatic and Tyrrhenian Sea, as well as coastal versus off-shore sampling sites, suggest that analysed levels of pharmaceuticals in mussels tissues should be considered as baseline concentrations for organisms collected in unpolluted areas of the Mediterranean. This study provided the first unambiguous evidence of the widespread occurrence of pharmaceuticals in marine mussels from Italian coasts, giving novel insights on the potential ecotoxicological hazard from such compounds in marine species.
Collapse
Affiliation(s)
- Marica Mezzelani
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy
| | - Daniele Fattorini
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy; Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy
| | - Stefania Gorbi
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy; Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy
| | - Marco Nigro
- Dipartimento di Medicina Clinica e Sperimentale, Università di Pisa, Italy
| | - Francesco Regoli
- Dipartimento di Scienze della Vita e dell'Ambiente (DiSVA), Università Politecnica delle Marche, Ancona, Italy; Consorzio Interuniversitario per le Scienze del Mare, CoNISMa, ULR Ancona, Ancona, Italy.
| |
Collapse
|
26
|
Rola RC, Guerreiro AS, Gabe H, Geihs MA, da Rosa CE, Sandrini JZ. Antifouling biocide dichlofluanid modulates the antioxidant defense system of the brown mussel Perna perna. MARINE POLLUTION BULLETIN 2020; 157:111321. [PMID: 32658686 DOI: 10.1016/j.marpolbul.2020.111321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Revised: 05/04/2020] [Accepted: 05/26/2020] [Indexed: 06/11/2023]
Abstract
Dichlofluanid is a fungicide employed as a booster biocide in antifouling paints, but information its toxicity to aquatic organisms is scarce. This study aims to evaluate biomarker responses in the mussel Perna perna exposed to dichlofluanid. Mussels were exposed to 0 (control), 0.1 μg/L (environmental concentration), 10, and 100 μg/L of dichlofluanid for 24 and 96 h. Byssus formation, oxygen consumption, and oxidative stress response were evaluated in gills and digestive glands. The results demonstrated that even the lowest dichlofluanid concentration causes a reduction in byssus biomass and water content. The higher concentrations caused an acute increase in oxygen consumption, which only returned to control levels after 96 h of exposure. ACAP levels and antioxidant enzyme activities were affected in both tissues with a larger effect observed in gill tissues as demonstrated by the IBR index. The overall results demonstrated that environmentally relevant concentrations of dichlofluanid would be deleterious to aquatic organisms.
Collapse
Affiliation(s)
- Regina Coimbra Rola
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil.
| | - Amanda Silveira Guerreiro
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Heloísa Gabe
- Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | - Marcio Alberto Geihs
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Carlos Eduardo da Rosa
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| | - Juliana Zomer Sandrini
- Instituto de Ciências Biológicas (ICB), Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Programa de Pós-Graduação em Ciências Fisiológicas - FURG, Brazil
| |
Collapse
|
27
|
Almeida Â, Solé M, Soares AMVM, Freitas R. Anti-inflammatory drugs in the marine environment: Bioconcentration, metabolism and sub-lethal effects in marine bivalves. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114442. [PMID: 32259738 DOI: 10.1016/j.envpol.2020.114442] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/03/2020] [Accepted: 03/22/2020] [Indexed: 06/11/2023]
Abstract
Pharmaceuticals such as non-steroidal anti-inflammatory drugs (NSAIDs) have been found in the marine environment. Although there is a large body of evidence that pharmaceutical drugs exert negative impacts on aquatic organisms, especially in the freshwater compartment, only limited studies are available on bioconcentration and the effects of NSAIDs on marine organisms. Bivalves have a high ecological and socio-economic value and are considered good bioindicator species in ecotoxicology and risk assessment programs. Therefore, this review summarizes current knowledge on the bioconcentration and the effects of three widely used NSAIDs, diclofenac, ibuprofen and paracetamol, in marine bivalves exposed under laboratory conditions. These pharmaceutical drugs were chosen based on their environmental occurrence both in frequency and concentration that may warrant their inclusion in the European Union Watch List. It has been highlighted that ambient concentrations may result in negative effects on wild bivalves after long-term exposures. Also, higher trophic level organisms may be more impacted due to food-chain transfer (e.g., humans are shellfish consumers). Overall, the three selected NSAIDs were reported to bioconcentrate in marine bivalves, with recognized effects at different life-stages. Immune responses were the main target of a long-term exposure to the drugs. The studies selected support the inclusion of diclofenac on the European Union Watch List and highlight the importance of extending research for ibuprofen and paracetamol due to their demonstrated negative effects on marine bivalves exposed to environmental realistic concentrations, under laboratory conditions.
Collapse
Affiliation(s)
- Ângela Almeida
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Montserrat Solé
- Instituto de Ciencias del Mar ICM-CSIC, E-08003, Barcelona, Spain
| | - Amadeu M V M Soares
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal
| | - Rosa Freitas
- Biology Department & CESAM, University of Aveiro, 3810-193, Aveiro, Portugal.
| |
Collapse
|
28
|
Musella M, Wathsala R, Tavella T, Rampelli S, Barone M, Palladino G, Biagi E, Brigidi P, Turroni S, Franzellitti S, Candela M. Tissue-scale microbiota of the Mediterranean mussel (Mytilus galloprovincialis) and its relationship with the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137209. [PMID: 32084687 DOI: 10.1016/j.scitotenv.2020.137209] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/07/2020] [Accepted: 02/07/2020] [Indexed: 06/10/2023]
Abstract
In this study, we characterize the structural variation of the microbiota of Mytilus galloprovincialis at the tissue scale, also exploring the connection with the microbial ecosystem of the surrounding water. Mussels were sampled within a farm located in the North-Western Adriatic Sea and microbiota composition was analyzed in gills, hemolymph, digestive glands, stomach and foot by Next Generation Sequencing marker gene approach. Mussels showed a distinctive microbiota structure, with specific declinations at the tissue level. Indeed, each tissue is characterized by a distinct pattern of dominant families, reflecting a peculiar adaptation to the respective tissue niche. For instance, the microbiota of the digestive gland is characterized by Ruminococcaceae and Lachnospiraceae, being shaped to ferment complex polysaccharides of dietary origin into short-chain fatty acids, well matching the general asset of the animal gut microbiota. Conversely, the gill and hemolymph ecosystems are dominated by marine microorganisms with aerobic oxidative metabolism, consistent with the role played by these tissues as an interface with the external environment. Our findings highlight the putative importance of mussel microbiota for different aspects of host physiology, with ultimate repercussions on mussel health and productivity.
Collapse
Affiliation(s)
- Margherita Musella
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Rasika Wathsala
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy
| | - Teresa Tavella
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Simone Rampelli
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Monica Barone
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Giorgia Palladino
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Elena Biagi
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Patrizia Brigidi
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Silvia Turroni
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy
| | - Silvia Franzellitti
- Animal and Environmental Physiology Laboratory, Department of Biological, Geological and Environmental Sciences (BiGeA), University of Bologna, Via S. Alberto 163, 48123 Ravenna, Italy.
| | - Marco Candela
- HolobioME, Unit of Holobiont Microbiome and Microbiome Engineering, Department of Pharmacy and Biotechnology (FaBiT), University of Bologna, Via Belmeloro 6, 40126 Bologna, Italy.
| |
Collapse
|
29
|
Aslam S, Chan MWH, Siddiqui G, Boczkaj G, Kazmi SJH, Kazmi MR. A comprehensive assessment of environmental pollution by means of heavy metal analysis for oysters' reefs at Hab River Delta, Balochistan, Pakistan. MARINE POLLUTION BULLETIN 2020; 153:110970. [PMID: 32275528 DOI: 10.1016/j.marpolbul.2020.110970] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 02/04/2020] [Accepted: 02/10/2020] [Indexed: 06/11/2023]
Abstract
The heavy metal pollution status of oyster reefs has been assessed with respect to ten metals pollutants in seawater, sediments, and tissues of above two oysters (soft tissues and shells) for assessing the pollution status in a short food chain in Hab River Delta. The results showed that heavy metals accumulated in M. bilineata were higher than those in M. cuttackensis. Simultaneously, the population of M. bilineata species has been ironically decreasing as a results of high pollution. The determined concentrations revealed a significant differences in their profiles among sediments, seawater and bioaccumulation in tissues and shells of two native oysters. The present study also compared these metal concentrations with national and international database by applying different pollution indices. Heavy metals in all samples were above the national environmental quality standards (NEQS-Pakistan). High level of pollution with an alarming condition of Hab River Delta need more attention for coastal management.
Collapse
Affiliation(s)
- Sadar Aslam
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan.
| | | | - Ghazala Siddiqui
- Centre of Excellence in Marine Biology, University of Karachi, Karachi 75270, Pakistan
| | - Grzegorz Boczkaj
- Department of Process Engineering and Chemical Technology, Faculty of Chemistry, Gdansk University of Technology, Gdańsk, Poland
| | - Syed Jamil Hasan Kazmi
- Department of Geography, University of Karachi, University Road, Karachi 75270, Pakistan
| | - Mohib Reza Kazmi
- Department of Applied Chemistry, Faculty of Science, University of Karachi, Karachi 75270, Pakistan
| |
Collapse
|
30
|
Kloukinioti M, Politi A, Kalamaras G, Dailianis S. Feeding regimes modulate biomarkers responsiveness in mussels treated with diclofenac. MARINE ENVIRONMENTAL RESEARCH 2020; 156:104919. [PMID: 32056798 DOI: 10.1016/j.marenvres.2020.104919] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 06/10/2023]
Abstract
This study investigated the role of the feeding regime on cellular (lysosomal membrane impairment), oxidative (superoxides and nitric oxides generation, as well as lipid peroxidation) and genotoxic (nuclear abnormalities) biomarkers measured in hemocytes of mussels Mytilus galloprovincialis treated with diclofenac (DCF). Specifically, unfed mussels, or mussels fed ad libitum with algal species Tisochrysis lutea or Tetraselmis suecica (Tiso/DCF- and Tetra/DCF- treated mussels, respectively) were exposed to DCF (20 μgL-1) for 4 days. The results showed that biomarkers' responsiveness against DCF, were more pronounced in unfed and Tetra/DCF-, rather than Tiso/DCF- treated mussel hemocytes, thus revealing food deprivation, changes in mussel feeding/filtration rate and digestion processes, as potent factors of mussels' immune efficiency and response against DCF. Those findings could provide valuable data for the optimization of mussels' feeding regime during laboratory studies, in order to assess reliably the effects of emerging contaminants on non-target sentinel organisms, such as mussels.
Collapse
Affiliation(s)
- Maria Kloukinioti
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Patras, Greece
| | - Alexandra Politi
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Patras, Greece
| | - Georgios Kalamaras
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Patras, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, GR-26500, Patras, Greece.
| |
Collapse
|
31
|
Chalghmi H, Bourdineaud JP, Chbani I, Haouas Z, Bouzid S, Er-Raioui H, Saidane-Mosbahi D. Occurrence, sources and effects of polycyclic aromatic hydrocarbons in the Tunis lagoon, Tunisia: an integrated approach using multi-level biological responses in Ruditapes decussatus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:3661-3674. [PMID: 30675713 DOI: 10.1007/s11356-019-04220-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Accepted: 01/10/2019] [Indexed: 06/09/2023]
Abstract
Coastal lagoons are critical ecosystems presenting a strategic economic importance, but they are subjected to potential anthropogenic impact. As part of the Tunis lagoon (Tunisia) biomonitoring study, levels, composition pattern and sources of polycyclic aromatic hydrocarbons (PAHs) in surface sediments along with their bioavailability in clam Ruditapes decussatus were investigated in polluted (S2-S4) and reference (S1) sites. In order to investigate the contamination effects at different biological levels in clams, a wide set of biomarkers, including gene expression changes, enzymatic activities disruption and histopathological alterations, was analysed. Biomarkers were integrated in a biomarker index (IBR index) to allow a global assessment of the biological response. Principal component analysis (PCA) was used for chemical and biological data integration to rank the sampling sites according to their global environmental quality. Sediment PAHs levels ranged between 144.5 and 3887.0 ng g-1 dw in the Tunis lagoon sites versus 92.6 ng g-1 dw in the reference site. The high PAH concentrations are due to anthropogenic activities around the lagoon. PAH composition profiles and diagnostic isomer ratios analysis indicated that PAHs were of both pyrolitic and petrogenic origins. Clams sampled from S2 and S3 exhibited the highest PAH contents with 2192.6 ng g-1 dw and 2371.4 ng g-1 dw, respectively. Elevated levels of tissue PAHs were associated to an increase in biotransformation and antioxidant activities, and lipid peroxidation levels along with an overexpression of different genes encoding for general stress response, mitochondrial metabolism and antioxidant defence, in addition to the emergence of severe and diverse histopathological alterations in the clams' digestive glands. IBR index was suitable for sampling sites ranking (S1 = 0 < S4 = 0.4 < S3 = 1.15 < S2 = 1.27) based on the level of PAH-induced stress in clams. PCA approach produced two components (PC1, 83.8% and PC2, 12.2%) that describe 96% of the variance in the data and thus highlighted the importance of integrating contaminants in sediments, their bioaccumulation and a battery of biomarkers of different dimensions for the assessment of global health status of coastal and lagoon areas.
Collapse
Affiliation(s)
- Houssem Chalghmi
- UMR CNRS 5805 EPOC, University of Bordeaux, Arcachon Marine Station, Place du Dr Peyneau, 33120, Arcachon, France.
- Laboratory of Analysis Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, 5000, Monastir, Tunisia.
| | - Jean-Paul Bourdineaud
- UMR CNRS 5805 EPOC, University of Bordeaux, Arcachon Marine Station, Place du Dr Peyneau, 33120, Arcachon, France
| | - Ikram Chbani
- Laboratory of Environment, Oceanology and Natural Resources, Faculty of Sciences and Technology, University of Abdelmalek Essaâdi, B.P. 416, Tangier, Morocco
| | - Zohra Haouas
- Laboratory of Histology Cytology and Genetics, Faculty of Medicine, University of Monastir, 5019, Monastir, Tunisia
| | - Saida Bouzid
- Laboratory of Environment, Oceanology and Natural Resources, Faculty of Sciences and Technology, University of Abdelmalek Essaâdi, B.P. 416, Tangier, Morocco
| | - Hassan Er-Raioui
- Laboratory of Environment, Oceanology and Natural Resources, Faculty of Sciences and Technology, University of Abdelmalek Essaâdi, B.P. 416, Tangier, Morocco
| | - Dalila Saidane-Mosbahi
- Laboratory of Analysis Treatment and Valorization of Environmental Pollutants and Products, Faculty of Pharmacy, University of Monastir, 5000, Monastir, Tunisia
| |
Collapse
|
32
|
A Multibiomarker Approach to Assess the Health State of Coastal Ecosystem Receiving Desalination Plants in Agadir Bay, Morocco. ScientificWorldJournal 2020; 2019:5875027. [PMID: 31949427 PMCID: PMC6942907 DOI: 10.1155/2019/5875027] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 09/17/2019] [Accepted: 11/19/2019] [Indexed: 01/24/2023] Open
Abstract
The present study aims to evaluate the initial health status of two stations receiving seawater desalination plants in Agadir Bay (Tifnit-Douira and Cap Ghir) and to assess their potential environmental impact on the marine ecosystem health. Six pairs of mussels (Mytilus galloprovincialis) were collected at six sampling sites on a monthly basis over two years. Each pair was homogenized to obtain the postmitochondrial fractions (S9). Toxicological effects were measured using a multibiomarker approach based on either acetylcholinesterase (AChE), glutathione S-transferase (GST), catalase (CAT), and malondialdehyde (MDA) rate. The results show a seasonal variation of the biomarkers: their activities increase in summer and decrease in spring and winter. High activities were recorded during summer in Cap Ghir (17.94 ± 0.88; 5.91 ± 052 nmol/min/mg of protein) for CAT and MDA, respectively. In Tifnit-Douira, low activities were recorded during winter for GST (3.74 ± 0.52 nmol/min/mg of protein) and during spring for the CAT (3.52 ± 0.45 nmol/min/mg of protein). The fluctuations in the activities of measured biomarkers could be attributed to different factors including the changes in environmental parameters, the influence of seasonal variation, and the contamination of the aquatic ecosystem. The data obtained in this study should be taken into account in the monitoring and management of the health of the ecosystems when the desalination plants are established.
Collapse
|
33
|
Sathishkumar P, Meena RAA, Palanisami T, Ashokkumar V, Palvannan T, Gu FL. Occurrence, interactive effects and ecological risk of diclofenac in environmental compartments and biota - a review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 698:134057. [PMID: 31783460 DOI: 10.1016/j.scitotenv.2019.134057] [Citation(s) in RCA: 194] [Impact Index Per Article: 38.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 08/17/2019] [Accepted: 08/21/2019] [Indexed: 05/17/2023]
Abstract
Diclofenac, a nonsteroidal anti-inflammatory drug has turned into a contaminant of emerging concern; hence, it was included in the previous Watch List of the EU Water Framework Directive. This review paper aims to highlight the metabolism of diclofenac at different trophic levels, its occurrence, ecological risks, and interactive effects in the water cycle and biota over the past two decades. Increased exposure to diclofenac not only raises health concerns for vultures, aquatic organisms, and higher plants but also causes serious threats to mammals. The ubiquitous nature of diclofenac in surface water (river, lake canal, estuary, and sea) is compared with drinking water, groundwater, and wastewater effluent in the environment. This comprehensive survey from previous studies suggests the fate of diclofenac in wastewater treatment plants (WWTPs) and may predict its persistence in the environment. This review offers evidence of fragmentary available data for the water environment, soil, sediment, and biota worldwide and supports the need for further data to address the risks associated with the presence of diclofenac in the environment. Finally, we suggest that the presence of diclofenac and its metabolites in the environment may represent a high risk because of their synergistic interactions with existing contaminants, leading to the development of drug-resistant strains and the formation of newly emerging pollutants.
Collapse
Affiliation(s)
- Palanivel Sathishkumar
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China
| | | | - Thavamani Palanisami
- Global Centre for Environmental Remediation (GCER), University of Newcastle, Callaghan, NSW 2308, Australia
| | - Veeramuthu Ashokkumar
- Center of Excellence in Catalysis for Bioenergy and Renewable Chemicals (CBRC), Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Thayumanavan Palvannan
- Laboratory of Bioprocess and Engineering, Department of Biochemistry, Periyar University, Salem 636 011, Tamil Nadu, India
| | - Feng Long Gu
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education; School of Chemistry and Environment, South China Normal University, Guangzhou 510006, PR China.
| |
Collapse
|
34
|
Świacka K, Maculewicz J, Smolarz K, Szaniawska A, Caban M. Mytilidae as model organisms in the marine ecotoxicology of pharmaceuticals - A review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 254:113082. [PMID: 31472454 DOI: 10.1016/j.envpol.2019.113082] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 08/17/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Growing production and consumption of pharmaceuticals is a global problem. Due to insufficient data on the concentration and distribution of pharmaceuticals in the marine environment, there are no appropriate legal regulations concerning their emission. In order to understand all aspects of the fate of pharmaceuticals in the marine environment and their effect on marine biota, it is necessary to find the most appropriate model organism for this purpose. This paper presents an overview of the ecotoxicological studies of pharmaceuticals, regarding the assessment of Mytilidae as suitable organisms for biomonitoring programs and toxicity tests. The use of mussels in the monitoring of pharmaceuticals allows the observation of changes in the concentration and distribution of these compounds. This in turn gives valuable information on the amount of pharmaceutical pollutants released into the environment in different areas. In this context, information necessary for the assessment of risks related to pharmaceuticals in the marine environment are provided based on what effective management procedures can be developed. However, the accumulation capacity of individual Mytilidae species, the bioavailability of pharmaceuticals and their biological effects should be further scrutinized.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland.
| | - Jakub Maculewicz
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| | - Katarzyna Smolarz
- Department of Marine Ecosystems Functioning, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Szaniawska
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdansk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland
| |
Collapse
|
35
|
Ferreira CP, Lima D, Paiva R, Vilke JM, Mattos JJ, Almeida EA, Grott SC, Alves TC, Corrêa JN, Jorge MB, Uczay M, Vogel CIG, Gomes CHAM, Bainy ACD, Lüchmann KH. Metal bioaccumulation, oxidative stress and antioxidant responses in oysters Crassostrea gasar transplanted to an estuary in southern Brazil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 685:332-344. [PMID: 31176220 DOI: 10.1016/j.scitotenv.2019.05.384] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 05/07/2019] [Accepted: 05/24/2019] [Indexed: 06/09/2023]
Abstract
The present study assessed the spatial and temporal variations on metal bioaccumulation and biochemical biomarker responses in oysters Crassostrea gasar transplanted to two different sites (S1 and S2) at the Laguna Estuarine System (LES), southern Brazil, over a 45-days period. A multi-biomarker approach was used, including the evaluation of lipid peroxidation (MDA) levels, and antioxidant defense enzymes (CAT, GPx, GR and G6PDH) and phase II biotransformation enzyme (GST) in the gills and digestive gland of oysters in combination with the quantification of Al, Cd, Cu, Pb, Fe, Ni and Zn in both tissues. The exposed oysters bioaccumulated metals, especially Al, Cd and Zn in gills and digestive gland, with most prominent biomarker responses in the gills. Results showed that GPx, GR and G6PDH enzymes offered an increased and coordinated response possibly against metal (Zn, Ni, Cd and Cu) contamination in gills. GST was inversely correlated to Cd levels, being its activity significantly lowered over the 45-d exposure periods at S2. On contrary, in digestive gland GST was slightly positively correlated to Cd, revealing a compensatory mechanism between tissues to protect oysters' cells against oxidative damages, since MDA levels also decreased. CAT also appeared to be involved in the cellular protection against oxidative stress, being increased in gills. However, CAT was negatively correlated to Al levels, which might suggest a possible inhibitory effect of this metal in the gills of C. gasar. Differences between tissues were evident by the Integrative Biomarker Responses version 2 (IBRv2) indexes, which showed different pattern between tissues when studying the sites and exposure periods separately. This study provided evidence for the effectiveness of using a multi-biomarker approach in oyster C. gasar to monitor estuarine metal pollution.
Collapse
Affiliation(s)
- Clarissa P Ferreira
- Fishery Engineering Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Daína Lima
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Raphaella Paiva
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Juliano M Vilke
- Fishery Engineering Department, Santa Catarina State University, Laguna 88790-000, Brazil
| | - Jacó J Mattos
- Aquaculture Pathology Research Center, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Eduardo A Almeida
- Department of Natural Sciences, Regional University of Blumenau, Blumenau 89012-170, Brazil
| | - Suelen C Grott
- Department of Natural Sciences, Regional University of Blumenau, Blumenau 89012-170, Brazil
| | - Thiago C Alves
- Department of Natural Sciences, Regional University of Blumenau, Blumenau 89012-170, Brazil
| | - Jacyara N Corrêa
- Oceanography and Limnology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Marianna B Jorge
- Oceanography and Limnology Department, Federal University of Maranhão, São Luís 65080-805, Brazil
| | - Mariana Uczay
- Animal and Food Production Department, Santa Catarina State University, Lages 88520-000, Brazil
| | - Carla I G Vogel
- Animal and Food Production Department, Santa Catarina State University, Lages 88520-000, Brazil
| | - Carlos H A M Gomes
- Laboratory of Marine Mollusks, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Afonso C D Bainy
- Laboratory of Biomarkers of Aquatic Contamination and Immunochemistry, Federal University of Santa Catarina, Florianópolis 88034-257, Brazil
| | - Karim H Lüchmann
- Department of Scientific and Technological Education, Santa Catarina State University, Florianópolis 88035-001, Brazil.
| |
Collapse
|
36
|
Świacka K, Szaniawska A, Caban M. Evaluation of bioconcentration and metabolism of diclofenac in mussels Mytilus trossulus - laboratory study. MARINE POLLUTION BULLETIN 2019; 141:249-255. [PMID: 30955733 DOI: 10.1016/j.marpolbul.2019.02.050] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Revised: 02/12/2019] [Accepted: 02/23/2019] [Indexed: 06/09/2023]
Abstract
Interest in the presence of pharmaceutically active compounds in the aquatic environment has been growing for over 20 years, yet very few studies deal with the metabolism of pharmaceuticals in marine organisms. In this study, the bioaccumulation under short-term conditions and metabolism of diclofenac were investigated. Mytilus trossulus was used as a representative of the Baltic benthic fauna. The mussels were exposed to diclofenac at a concentration of 133.33 μg/L for five days, following a five-day depuration phase. The highest concentration of diclofenac (7.79 μg/g dw) in tissues was determined on day 3. Subsequently, the concentration of diclofenac in tissues decreased rapidly to 0.86 μg/g dw on day 5. After five days of depuration, the concentration of diclofenac was 0.21 μg/g dw. Hydroxylated diclofenac metabolites were found both in tissues of mussels and water. This study shows that M. trossulus has the potential to accumulate diclofenac and metabolize it to 4-OH and 5-OH diclofenac.
Collapse
Affiliation(s)
- Klaudia Świacka
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Anna Szaniawska
- Department of Experimental Ecology of Marine Organisms, Institute of Oceanography, University of Gdańsk, Av. Pilsudskiego 46, 81-378 Gdynia, Poland
| | - Magda Caban
- Department of Environmental Analysis, Faculty of Chemistry, University of Gdańsk, Wita Stwosza 63, 80-308 Gdańsk, Poland.
| |
Collapse
|
37
|
Arienzo M, Toscanesi M, Trifuoggi M, Ferrara L, Stanislao C, Donadio C, Grazia V, Gionata DV, Carella F. Contaminants bioaccumulation and pathological assessment in Mytilus galloprovincialis in coastal waters facing the brownfield site of Bagnoli, Italy. MARINE POLLUTION BULLETIN 2019; 140:341-352. [PMID: 30803653 DOI: 10.1016/j.marpolbul.2019.01.064] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
We studied the bioaccumulation of metals and PAHs, the pathological conditions, regressive phenomena and pathogens in wild Mytilus galloprovincialis taken along the North Pier facing the former second Italian largest steelworks of Bagnoli. There was no Cd and Pb bioaccumulation with respect to the EU role 221/2002. Metal shell index decreased as follows: Pb > Ni > Zn > Cu and correlates with the pollution state. The level of BaP was up to thirtysixfold higher the EU rule 835/2011. The sum of 4 hydrocarbons, PAH4, were up to seventeen-fold the rule. PAH levels increased toward the coast. Prevalence values of tissue necrosis and inflammatory lesions were between 50 and 100%. In May animals showed lesion like granulocytomas and inflammatory capsules. Signs of atresia, necrotic oocytes and diffused cases of hermaphroditism were detected. An appropriate localization of farming to avoid contamination from sediment turbulence and risks for consumer health is needed.
Collapse
Affiliation(s)
- Michele Arienzo
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Largo San Marcellino 10, 80138 Naples, Italy.
| | - Maria Toscanesi
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia 26, 80126 Naples, Italy
| | - Marco Trifuoggi
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia 26, 80126 Naples, Italy
| | - Luciano Ferrara
- Dipartimento di Scienze Chimiche, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, via Cintia 26, 80126 Naples, Italy
| | - Corrado Stanislao
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Largo San Marcellino 10, 80138 Naples, Italy
| | - Carlo Donadio
- Dipartimento di Scienze della Terra, dell'Ambiente e delle Risorse, Università degli Studi di Napoli Federico II, Largo San Marcellino 10, 80138 Naples, Italy
| | - Villari Grazia
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 26, 80126 Naples, Italy
| | - De Vico Gionata
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 26, 80126 Naples, Italy
| | - Francesca Carella
- Dipartimento di Biologia, Università degli Studi di Napoli Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cintia 26, 80126 Naples, Italy
| |
Collapse
|
38
|
Frapiccini E, Annibaldi A, Betti M, Polidori P, Truzzi C, Marini M. Polycyclic aromatic hydrocarbon (PAH) accumulation in different common sole (Solea solea) tissues from the North Adriatic Sea peculiar impacted area. MARINE POLLUTION BULLETIN 2018; 137:61-68. [PMID: 30503474 DOI: 10.1016/j.marpolbul.2018.10.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/28/2018] [Accepted: 10/02/2018] [Indexed: 05/16/2023]
Abstract
This study extends our knowledge of the bioaccumulation of polycyclic aromatic hydrocarbons (PAHs) in marine organisms and investigates its possible determinants. PAH levels were measured in Solea solea tissue and in marine sediments collected from three areas of the northern Adriatic Sea characterized by different anthropic impacts (Venetian Lagoon, Po Delta, and fishing grounds off Chioggia). The possibility of differential PAH bioaccumulation in different tissues (muscle, liver and gills) was investigated by seeking relationships between mean individual and total PAH concentrations in tissue and sediment samples, the physicochemical properties of PAHs (rings and Kow), and some key biological variables (lipid content of tissues, body size, habitat). The present study demonstrated that the lipid content might not be the only determinant of PAH bioaccumulation in common sole tissues. The habitat characteristics, the tissue types and some physicochemical properties of compounds were closely related to PAH bioaccumulation.
Collapse
Affiliation(s)
- Emanuela Frapiccini
- National Research Council, CNR-IRBIM, L.go Fiera della Pesca, 2, Ancona, Italy
| | - Anna Annibaldi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Mattia Betti
- National Research Council, CNR-IRBIM, L.go Fiera della Pesca, 2, Ancona, Italy
| | - Piero Polidori
- National Research Council, CNR-IRBIM, L.go Fiera della Pesca, 2, Ancona, Italy
| | - Cristina Truzzi
- Department of Life and Environmental Sciences, Università Politecnica delle Marche, Via Brecce Bianche, Ancona, Italy
| | - Mauro Marini
- National Research Council, CNR-IRBIM, L.go Fiera della Pesca, 2, Ancona, Italy.
| |
Collapse
|
39
|
Balbi T, Montagna M, Fabbri R, Carbone C, Franzellitti S, Fabbri E, Canesi L. Diclofenac affects early embryo development in the marine bivalve Mytilus galloprovincialis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 642:601-609. [PMID: 29909327 DOI: 10.1016/j.scitotenv.2018.06.125] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/29/2018] [Accepted: 06/10/2018] [Indexed: 06/08/2023]
Abstract
Diclofenac-DCF, one of the most widely prescribed non-steroidal anti-inflammatory drug, is globally detected in environmental compartments. Due to its occurrence in freshwater and potential impact on aquatic organisms, it has been added to the watch list of chemicals in the EU Water Directive; consequently, research on the impact of DCF in model aquatic organisms has great regulatory implications towards ecosystem health. DCF is also detected in coastal waters at concentrations from ng/L to 1 μg/L, as well as in marine organisms, such as the mussel Mytilus. Increasing evidence indicates that environmental concentrations of DCF have multiple impacts in adult mussels. Moreover, in M. galloprovincialis, DCF has been shown to affect early embryo development. The developmental effects of DCF in mussels were further investigated. DFC (1 and 10 μg/L) was added at different times post-fertilization (30 min and 24 hpf) and the effects were compared in the 48 hpf embryotoxicity assay. Shell mineralization and morphology were investigated by polarized light microscopy, X-Ray Spectrometry-XRD and Scanning Electron Microscopy-SEM. Transcriptional profiles of 12 selected genes physiologically regulated across early embryo development were assessed at 24 and 48 hpf. DCF induced shell malformations, irrespectively of concentration and time of exposure. DCF phenotypes were characterized by convex hinges, undulated edges, fractured shells. However, no changes in biomineralization were observed. DCF affected gene transcription at both times pf, in particular at 1 μg/L. The most affected genes were those involved in early shell formation (CS, CA, EP) and biotransformation (ABCB, GST). The results confirm that Mytilus early development represents a significant target for environmental concentrations of DCF. These data underline how the standard embryotoxicity assay, in combination with a structural and transcriptomic approach, represents a powerful tool for evaluating the early impact of pharmaceuticals on mussel embryos, and identification of the possible underlying mechanisms of action.
Collapse
Affiliation(s)
- Teresa Balbi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Michele Montagna
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Rita Fabbri
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Cristina Carbone
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy
| | - Silvia Franzellitti
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Elena Fabbri
- Department of Biological, Geological and Environmental Sciences, University of Bologna, Campus of Ravenna, via S. Alberto 163, 48123 Ravenna, Italy
| | - Laura Canesi
- Department of Earth, Environment and Life Sciences (DISTAV), University of Genoa, Corso Europa 26, 16132 Genova, Italy.
| |
Collapse
|
40
|
Bonnail E, Cunha Lima R, Bautista-Chamizo E, Salamanca MJ, Cruz-Hernández P. Biomarker responses of the freshwater clam Corbicula fluminea in acid mine drainage polluted systems. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2018; 242:1659-1668. [PMID: 30064871 DOI: 10.1016/j.envpol.2018.07.111] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 06/08/2023]
Abstract
The environmental quality of an acid mine drainage polluted river (Odiel River) in the Iberian Pyrite Belt (SW Spain) was assessed by combining analyses of biomarkers (DNA strand breaks, LPO, EROD, GST, GR, GPx) in freshwater clams (Corbicula fluminea) exposed during 14 days and correlated with metal(loid) environmental concentrations. Results pointed that enzymatic systems are activated to combat oxidative stress in just 24 h. Along exposure, there were homeostatic regulations with the glutathione activity that influenced in lipid peroxidation oscillations, provoking significant DNA strand damage after 14 exposure days. EROD activity showed no changes throughout the exposure period. The Asian clam displayed balance biomarkers of exposure-antioxidant activity under non-stressfully environments; meanwhile, when was introduced into acid polymetallic environments, such as the acid mine drainage, its enzymatic activity was displaced towards biomarkers of effect and the corresponding antioxidant activity.
Collapse
Affiliation(s)
- Estefanía Bonnail
- Centro de Investigaciones Costeras- Universidad de Atacama (CIC-UDA), Avenida Copayapu 485, Copiapó, Región Atacama, Chile.
| | - Ricardo Cunha Lima
- Centro de Investigaciones Costeras- Universidad de Atacama (CIC-UDA), Avenida Copayapu 485, Copiapó, Región Atacama, Chile
| | | | - María José Salamanca
- Departamento de Química-Física, Universidad de Cádiz, CP 11510, Puerto Real, Cádiz, Spain
| | - Pablo Cruz-Hernández
- Department of Earth Sciences, University of Huelva, Campus 'El Carmen', Huelva, E-21071, Spain; Department of Mining Egineering, University of Chile, FCFM, Santiago, Chile
| |
Collapse
|
41
|
Faggio C, Tsarpali V, Dailianis S. Mussel digestive gland as a model tissue for assessing xenobiotics: An overview. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 636:220-229. [PMID: 29704717 DOI: 10.1016/j.scitotenv.2018.04.264] [Citation(s) in RCA: 193] [Impact Index Per Article: 27.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 04/19/2018] [Accepted: 04/20/2018] [Indexed: 05/19/2023]
Abstract
Control strategies and routine biomonitoring programs are commonly performed worldwide using sentinel marine invertebrates, such as mussels of the genus Mytilus, for assessing the "health status" of the aquatic environment. Those species can accumulate and tolerate xenobiotics at levels higher than those being present into the aquatic environment, thus providing accurate and reliable biological endpoints (e.g. physiological, behavioral, cellular, biochemical and molecular indices) that can be measured in their tissues. Taking under consideration the significance of bivalves for assessing the environmental hazard of xenobiotics being present into the water medium, as well as the key role of digestive gland as a target-tissue for the compounds ingested in the organism, the present study aimed to summarize available data on the effects of different categories of xenobiotic compounds, previously characterized as a potential threat for the marine ecosystems. In this context, different types of pharmaceuticals and personal care products (PPCPs), biocides, microplastics (MPs) and nanoparticles (NPs), currently investigated in mussels' digestive gland, using a battery of experimental approaches and analytical methods, as well as stress indices evaluation, are briefly described and further discussed in order to elucidate not only the presence and the toxic mode of action of xenobiotics, but also the important role of the digestive gland as a reliable target-tissue for investigating the effects of xenobiotics at cellular, biochemical, and molecular levels.
Collapse
Affiliation(s)
- Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Viale Ferdinando Stagno d'Alcontres, 31 98166 S. Agata-Messina, Italy.
| | - Vasiliki Tsarpali
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Patras 26 500, Greece
| | - Stefanos Dailianis
- Section of Animal Biology, Department of Biology, Faculty of Sciences, University of Patras, Patras 26 500, Greece
| |
Collapse
|
42
|
Lu GY, Wang WX. Trace metals and macroelements in mussels from Chinese coastal waters: National spatial patterns and normalization. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 626:307-318. [PMID: 29353779 DOI: 10.1016/j.scitotenv.2018.01.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2017] [Revised: 01/01/2018] [Accepted: 01/03/2018] [Indexed: 06/07/2023]
Abstract
Metal contamination is one of the most ubiquitous and complex problems in the Chinese coastal environment. To explore the large-scale spatial patterns of bioavailable metals, we sampled three major mussels, including 784 blue mussels (Mytilus edulis Linnaeus, 1758) of 14 sites, 224 hard-shelled mussels (Mytilus unguiculatus Valenciennes, 1858) of 4 sites, and 392 green mussels (Perna viridis (Linnaeus, 1758)) of 7 sites, ranging from temperate to tropical coastlines of China, during August and September 2015. The concentrations of macroelements (Na, K, Ca, Mg, and P) and toxic trace metals (Ag, Cd, Cr, Cu, Ni, Pb, Ti, and Zn) in the mussel's whole soft tissues were determined. Among the four Chinese coastal basins, Cd, Ti and Cr in the mussel tissues were the highest at Bohai Sea (BS) and Yellow Sea (YS), and Cu, Ni, Pb and Ag in the mussel tissues were the highest at East China Sea (ECS) and South China Sea (SCS). Zinc concentrations in mussels from YS were significantly higher than those from the other regions. Given the variability of environmental conditions such as salinity and nutrients, we further normalized the measured tissue metal concentrations with tissue Na and P levels. After Na normalization as the salinity proxy, the variability of Cd, Cu, Zn, Ag, and Ni was reduced. Trace elements accumulation in the mussel tissues was significantly related to both macroelements (Na or P) and body dry weight. The present study demonstrated that nonlinear optimization of different elements was necessary in assessing metal bioaccumulation patterns in marine mussels at a large spatial scale.
Collapse
Affiliation(s)
- Guang-Yuan Lu
- Marine Environmental Laboratory, Shenzhen Research Institute, The Hong Kong University of Science and Technology (HKUST), Shenzhen 518000 Shenzhen, China; Division of Life Science, HKUST, Clearwater Bay, Kowloon, Hong Kong, China
| | - Wen-Xiong Wang
- Marine Environmental Laboratory, Shenzhen Research Institute, The Hong Kong University of Science and Technology (HKUST), Shenzhen 518000 Shenzhen, China; Division of Life Science, HKUST, Clearwater Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
43
|
Bonnefille B, Gomez E, Courant F, Escande A, Fenet H. Diclofenac in the marine environment: A review of its occurrence and effects. MARINE POLLUTION BULLETIN 2018; 131:496-506. [PMID: 29886975 DOI: 10.1016/j.marpolbul.2018.04.053] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 04/20/2018] [Accepted: 04/21/2018] [Indexed: 05/14/2023]
Abstract
Interest in the presence and effects of diclofenac (DCF) and other pharmaceutical products (PPs) in the aquatic environment has been growing over the last 20 years. DCF has been included in the First Watch List of the EU Water Framework Directive in order to gather monitoring data in surface waters. Despite PP input in water bodies, few studies have been conducted to determine the extent of DCF occurrence and effects on marine ecosystems, which is usually the final recipient of surface waters. The present article reviews available published data on DCF occurrence in marine water, sediment and organisms, and its effects on marine organisms. The findings highlight the scarcity of available data on the occurrence and effects of DCF in marine ecosystems, and the need for further data acquisition to assess the risks associated with the presence of this compound in the environment.
Collapse
Affiliation(s)
- Bénilde Bonnefille
- UMR HydroSciences Montpellier, Université de Montpellier, Montpellier, France
| | - Elena Gomez
- UMR HydroSciences Montpellier, Université de Montpellier, Montpellier, France
| | - Frédérique Courant
- UMR HydroSciences Montpellier, Université de Montpellier, Montpellier, France.
| | - Aurélie Escande
- UMR HydroSciences Montpellier, Université de Montpellier, Montpellier, France
| | - Hélène Fenet
- UMR HydroSciences Montpellier, Université de Montpellier, Montpellier, France
| |
Collapse
|
44
|
Abdou M, Dutruch L, Schäfer J, Zaldibar B, Medrano R, Izagirre U, Gil-Díaz T, Bossy C, Catrouillet C, Hu R, Coynel A, Lerat A, Cobelo-García A, Blanc G, Soto M. Tracing platinum accumulation kinetics in oyster Crassostrea gigas, a sentinel species in coastal marine environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 615:652-663. [PMID: 28992492 DOI: 10.1016/j.scitotenv.2017.09.078] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/08/2017] [Accepted: 09/08/2017] [Indexed: 06/07/2023]
Abstract
Platinum Group Elements (PGEs) are extremely scarce in the Earth's Crust and of strong interest for high-end technologies due to their specific properties. They belong to the Technology Critical Elements (TCEs) for which use is forecast to increase, implying growing emissions into the environment in the following years. In particular, with the intensive use of platinum (Pt) in car catalytic converters, the anthropogenic geochemical cycle of this element has surpassed the natural cycle. Yet, environmental Pt levels are still in the sub picomolar range, making its analytical detection a challenge. Few studies cover the behavior of Pt in marine waters in terms of speciation, reactivity and possible transfer to the biota. In this study, oysters (Crassostrea gigas) from an unpolluted estuary were exposed to the stable isotope 194Pt in seawater at a range of concentrations during 35days. Seawater was renewed daily and spiked to three nominal Pt concentrations (50, 100, and 10,000ng·L-1) for two replicate series. In addition, control conditions were monitored. Five oysters from each tank were dissected after 3, 7, 14, 21, 28, 35days of Pt exposure, and analyzed by ICP-MS. Accuracy of this analytical method applied to biological matrix was checked by an inter-method comparison with a voltammetrical technique. A concentration-dependent accumulation of Pt in oysters increasing with exposure time occurred. After 28days, oyster Pt accumulation from low and intermediate exposure conditions reached a plateau. This was not the case of the highest exposure condition for which oyster tissues showed increasing concentrations until the last day of the experiment. A linear correlation exists between seawater concentrations and Pt content in oysters for low and intermediate exposure concentrations i.e. closer to environmental concentrations. By showing high Pt accumulation potential, oysters may serve as sentinels, ensuring biomonitoring of Pt concentrations in marine coastal waters.
Collapse
Affiliation(s)
- Melina Abdou
- Université de Bordeaux, UMR CNRS 5805 EPOC, 33615 Pessac cedex, France.
| | - Lionel Dutruch
- Université de Bordeaux, UMR CNRS 5805 EPOC, 33615 Pessac cedex, France
| | - Jörg Schäfer
- Université de Bordeaux, UMR CNRS 5805 EPOC, 33615 Pessac cedex, France
| | | | | | | | - Teba Gil-Díaz
- Université de Bordeaux, UMR CNRS 5805 EPOC, 33615 Pessac cedex, France
| | - Cécile Bossy
- Université de Bordeaux, UMR CNRS 5805 EPOC, 33615 Pessac cedex, France
| | | | - Ruoyu Hu
- Université de Bordeaux, UMR CNRS 5805 EPOC, 33615 Pessac cedex, France
| | - Alexandra Coynel
- Université de Bordeaux, UMR CNRS 5805 EPOC, 33615 Pessac cedex, France
| | - Antoine Lerat
- Université de Bordeaux, UMR CNRS 5805 EPOC, 33615 Pessac cedex, France
| | | | - Gérard Blanc
- Université de Bordeaux, UMR CNRS 5805 EPOC, 33615 Pessac cedex, France
| | - Manu Soto
- CBET, PIE-UPV/EHU, 48080 Plentzia, Spain
| |
Collapse
|
45
|
Bonnefille B, Gomez E, Alali M, Rosain D, Fenet H, Courant F. Metabolomics assessment of the effects of diclofenac exposure on Mytilus galloprovincialis: Potential effects on osmoregulation and reproduction. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 613-614:611-618. [PMID: 28930695 DOI: 10.1016/j.scitotenv.2017.09.146] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/14/2017] [Accepted: 09/14/2017] [Indexed: 06/07/2023]
Abstract
The presence of pharmaceutically active compounds in aquatic environments has become a major concern over the past 20years. Elucidation of their mode of action and effects in non-target organisms is thus now a major ecotoxicological challenge. Diclofenac (DCF) is among the pharmaceutical compounds of interest based on its inclusion in the European Union Water Framework Directive Watch List. In this study, our goal was to investigate the potential of a metabolomic approach to acquire information without any a priori hypothesis about diclofenac effects on marine mussels. For this purpose, mussel's profiles were generated by liquid chromatography combined with high resolution mass spectrometry. Two main metabolic pathways were found to be impacted by diclofenac exposure. The tyrosine metabolism was mostly down-modulated and the tryptophan metabolism was mostly up-modulated following exposure. To our knowledge, such DCF effects on mussels have never been described despite being of concern for these organisms: catecholamines and serotonin may be involved in osmoregulation, and in gamete release in mollusks. Our results suggest potential impairment of mussel osmoregulation and reproduction following a DCF exposure.
Collapse
Affiliation(s)
- Bénilde Bonnefille
- UMR HydroSciences Montpellier, Université Montpellier, Montpellier, France
| | - Elena Gomez
- UMR HydroSciences Montpellier, Université Montpellier, Montpellier, France
| | - Mellis Alali
- UMR HydroSciences Montpellier, Université Montpellier, Montpellier, France
| | - David Rosain
- UMR HydroSciences Montpellier, Université Montpellier, Montpellier, France
| | - Hélène Fenet
- UMR HydroSciences Montpellier, Université Montpellier, Montpellier, France
| | - Frédérique Courant
- UMR HydroSciences Montpellier, Université Montpellier, Montpellier, France.
| |
Collapse
|