1
|
Zhang J, Yuan M, Liu Y, Zhong X, Wu J, Chen W. Bisphenol A exposure and neurodevelopmental disorders and problems in children under 12 years of age: A systematic review and meta-analysis. JOURNAL OF HAZARDOUS MATERIALS 2025; 490:137731. [PMID: 40054188 DOI: 10.1016/j.jhazmat.2025.137731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 02/12/2025] [Accepted: 02/22/2025] [Indexed: 04/16/2025]
Abstract
BACKGROUND Bisphenol A (BPA) exposure may lead to neurodevelopmental disorders and problems (NDPs) in children under 12 years old. In recent years, the number of relevant studies has increased, but the evidence is inconsistent. Therefore, we conducted a comprehensive systematic review and meta-analysis to determine the association between BPA exposure and NDPs and potential gender differences. METHODS A literature search was conducted in eight bibliographic databases for peer-reviewed research articles published from database inception to October 11, 2024. Eligible studies were epidemiological, observational studies in children under 12 years old, which evaluated the associations between BPA of biosamples and NDPs. The converted effect sizes were synthesized using multilevel random effects meta-analysis models. Meta-regression analysis, sensitivity analysis, unmeasured confounding bias, and publication bias tests were examined to substantiate the results. RESULTS The search identified 1090 unique studies, 32 of which involving 15,669 participants were finally included in the meta-analysis. The meta-analysis showed that BPA exposure was associated with intellectual disability (Cohen's d = 0.14, 95 %CI = 0.06-0.22), autism spectrum disorder (ASD, Cohen's d = 0.10, 95 %CI = 0.02-0.17), attention deficit and hyperactivity disorder (ADHD, Cohen's d = 0.28, 95 %CI = 0.10-0.47), and communication disorders (Cohen's d = 0.12, 95 %CI = 0.01-0.23) in all children. Gender differences exist while BPA was associated with intellectual disability, ASD, ADHD, and motor disorders in boys, and with intellectual disability and ADHD in girls. CONCLUSION This study indicated that BPA exposure was associated with an increased risk of NDPs in children, particularly in boys, underscoring the importance of considering BPA exposure as a potential risk factor for children's brain health.
Collapse
Affiliation(s)
- Jianghui Zhang
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, #74 Zhongshan Road 2, Guangzhou 510080, China; Center for Migrant Health Policy, Sun Yat-sen University, #74 Zhongshan Road 2, Guangzhou 510080, China
| | - Minglu Yuan
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, #74 Zhongshan Road 2, Guangzhou 510080, China; Center for Migrant Health Policy, Sun Yat-sen University, #74 Zhongshan Road 2, Guangzhou 510080, China
| | - Ying Liu
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, #74 Zhongshan Road 2, Guangzhou 510080, China; Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou 511400, China
| | - Xinyuan Zhong
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, #74 Zhongshan Road 2, Guangzhou 510080, China; Center for Migrant Health Policy, Sun Yat-sen University, #74 Zhongshan Road 2, Guangzhou 510080, China
| | - Jieling Wu
- Department of Children's Health Care, Guangdong Women and Children Hospital, Guangzhou Medical University, Guangzhou 511400, China
| | - Wen Chen
- Department of Medical Statistics, School of Public Health, Sun Yat-sen University, #74 Zhongshan Road 2, Guangzhou 510080, China; Center for Migrant Health Policy, Sun Yat-sen University, #74 Zhongshan Road 2, Guangzhou 510080, China.
| |
Collapse
|
2
|
Wang X, Chen J, Hu H, Gong M, Wu M, Ye B, Hu H, Du Z, Liu A, Huang S, Jing T, Liu Z. The resveratrol attenuates reactive oxygen species mediated DNA damage in cardiac malformations caused by 4-tert-octylphenol. Toxicol Appl Pharmacol 2025; 498:117284. [PMID: 40023230 DOI: 10.1016/j.taap.2025.117284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 02/13/2025] [Accepted: 02/25/2025] [Indexed: 03/04/2025]
Abstract
4-tert-octylphenol (4-t-OP) is an alkylphenolic environmental endocrine disruptor extensively distributed in the environment, posing potential hazards to living organisms. Research has demonstrated that 4-t-OP induces cardiac injury and abnormalities in embryonic development, which can adversely affect heart development. The excessive production of reactive oxygen species (ROS) triggered by 4-t-OP may result in DNA damage. Hence, we hypothesized that ROS-mediated DNA damage plays a crucial role in abnormal cardiac development in zebrafish embryos exposed to 4-t-OP, while resveratrol (RSV), a common antioxidant found in natural foods, may provide protection. In this study, we exposed zebrafish embryos at 2 h post-fertilization (hpf) to various doses of 4-t-OP in combination with relevant inhibitor/agonist therapies. Using microscopy, we observed morphological alterations in the cardiac structure of zebrafish embryos at 72 hpf. The underlying molecular mechanisms were assessed through immunofluorescence, DCFH-DA probe, MitoSOX™ staining, Quantitative polymerase chain reaction, and other methods. Our findings revealed that 4-t-OP caused dose-dependent cardiac defects in zebrafish embryos. The overexpression of ROS/mitochondrial ROS (mtROS) induced by 4-t-OP was significantly reduced by the addition of RSV or the ROS inhibitor N-acetyl-L-cysteine (NAC). Furthermore, the inclusion of RSV or NAC significantly mitigated cardiac deformities, cardiac apoptosis, and DNA damage. Additionally, the apoptosis inhibitor Ac-DEVD-CHO and the Wnt/β-catenin agonist CHIR99021 decreased 4-t-OP-induced cardiac abnormalities. Moreover, the naturally occurring small molecule chemical RSV provided protection against 4-t-OP-induced heart developmental injury. This study elucidates the molecular mechanisms by which 4-t-OP induces oxidative stress, DNA damage, and cardiac defects in the heart of zebrafish larvae through the ROS/Wnt/β-catenin signaling pathway. These findings present novel molecular targets for the prevention and therapy of congenital heart disease, as well as enhance our understanding of the cardiotoxic effects of 4-t-OP.
Collapse
Affiliation(s)
- Xin Wang
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Jin Chen
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Hanwen Hu
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Mingxue Gong
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Mengqin Wu
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Bofu Ye
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Han Hu
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Zuo Du
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Anfei Liu
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China
| | - Shaoxin Huang
- Jiangxi Provincial Key Laboratory of Cell Precision Therapy, School of Basic Medical Sciences, Jiujiang University, Jiujiang 332005, Jiangxi, China
| | - Tao Jing
- School of Public Health, Huazhong University of Science and Technology, Wuhan 430000, Hubei, China
| | - Zhenzhong Liu
- School of Public Health, North Sichuan Medical College, Nanchong 637100, Sichuan, China.
| |
Collapse
|
3
|
Cragoe N, Sprowles J, Woodbury ML, Musaad S, Enright E, Aguiar A, Schantz SL. Associations of prenatal maternal urinary concentrations of triclosan and benzophenone-3 with cognition in 7.5-month-old infants. ENVIRONMENTAL RESEARCH 2024; 263:119975. [PMID: 39265761 DOI: 10.1016/j.envres.2024.119975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/06/2024] [Accepted: 09/09/2024] [Indexed: 09/14/2024]
Abstract
BACKGROUND Endocrine-disrupting chemicals (EDCs) have been linked to adverse health outcomes and prenatal exposure is known to impact infant and child development. However, few studies have assessed early developmental consequences of prenatal exposure to two common phenolic compounds, benzophenone-3 (BP-3) and triclosan (TCS). OBJECTIVE We evaluated the relationship of prenatal exposure to BP-3 and TCS with infant cognition at 7.5 months via performance on a visual recognition memory (VRM) task. METHODS Drawing from the Illinois Kids Development Study (IKIDS) cohort, prenatal exposure to BP-3 and TCS was assessed in pools of five urine samples collected from each woman across pregnancy. Cognition was measured in 310 infants using a VRM task assessing information processing speed, attention, and recognition memory through infrared eye-tracking. Generalized linear regression estimated exposure-outcome associations, followed by stratification to investigate modification of associations by infant sex and stimulus set. RESULTS Sampled mothers were more likely to be white, college educated, and middle or high income relative to the US population. Mean chemical exposures were significantly higher than those of adult women in the NHANES cohort. In models adjusted for income, gestational age at birth, and testing age, prenatal BP-3 exposure was associated with an increase in run duration (average time spent looking at the stimuli before looking away) (β = 0.0011, CI -0.0001:0.0022), indicating slower information processing speed, while TCS was associated with significantly longer time to familiarization (time to accrue a total of 20 s of looking time to the stimuli) (β = 0.0686, CI 0.0203:0.1168, p < 0.01), indicating poorer attention. Stratum-specific analyses isolated both effects to male infants who viewed the second of two stimulus sets. CONCLUSION Higher prenatal exposure to triclosan was associated with poorer attention in infancy, while benzophenone-3 may be associated with slower information processing speed, particularly among males.
Collapse
Affiliation(s)
- Nicholas Cragoe
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, 405 N. Mathews Ave., Urbana, IL, 61821, USA.
| | | | - Megan L Woodbury
- 400 SN, Northeastern University, 360 Huntington Ave, Boston, MA, 02115, USA.
| | - Salma Musaad
- USDA/ARS Children's Nutrition Research Center, Baylor College of Medicine, 1100 Bates Ave., Houston, TX, 77030, USA.
| | - Elizabeth Enright
- Bold Insight, 125 S. Wacker Dr., Suite 3020, Chicago, IL, 60606, USA.
| | - Andréa Aguiar
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, 405 N. Mathews Ave., Urbana, IL, 61821, USA.
| | - Susan L Schantz
- University of Illinois Urbana-Champaign, Beckman Institute for Advanced Science and Technology, 405 N. Mathews Ave., Urbana, IL, 61821, USA.
| |
Collapse
|
4
|
Lin CY, Lee HL, Wang C, Sung FC, Su TC. Positive Association Between Serum Concentration of 4-Tertiary-octylphenol and Oxidation of DNA and Lipid in Adolescents and Young Adults. EXPOSURE AND HEALTH 2024; 16:1311-1320. [DOI: 10.1007/s12403-024-00628-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/14/2023] [Accepted: 01/08/2024] [Indexed: 01/04/2025]
|
5
|
Guo Y, Wang Y, Li Q, Liu Q, Zhang X, Ren J, Wang C. Bisphenol A disrupts the neuronal F-actin cytoskeleton by activating the RhoA/ROCK/LIMK pathway in Neuro-2a cells. Toxicology 2024; 509:153994. [PMID: 39527977 DOI: 10.1016/j.tox.2024.153994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/30/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Bisphenol A (BPA) is an environmental endocrine disruptor that is widely present in the environment and has been reported to affect neuronal cytoskeleton and neural function. However, the exact molecular mechanisms remain unclear. In the present study, the effects of BPA on cytoskeleton rearrangement were examined, and the associated signaling pathways, which were influenced by the RhoA/ROCK/LIMK pathway in Neuro-2a cells in vitro, were identified. Specifically, Neuro-2a cells were exposed to BPA, and the effects of BPA exposure on the cytoskeleton of neuronal cells and on the activation or nonactivation of the RhoA/ROCK signaling pathway were evaluated using Cell Counting Kit-8 (CCK8), phalloidin staining, western blot, and real-time PCR. A RhoA inhibitor (Rhosin hydrochloride) and a ROCK inhibitor (Y-27632) were then used to elucidate the precise function of the pathway. The results demonstrated that 50-100 μM BPA exposure inhibited Neuro-2a cell viability and caused the formation of aberrantly polymerized F-actin and stress fibers. In addition, the RhoA/ROCK pathway was activated, and the expression levels of the pathway-related molecules-RhoA, ROCK2, LIMK1, Cofilin, Profilin, p-MLC2, and F-actin were dramatically elevated. The addition of Rhosin and Y-27632 resulted in a decrease in F-actin polymerization in the Neuro-2a cells, the disassembly of stress fibers, and a noteworthy drop in the levels of molecular proteins related to the RhoA/ROCK pathway affected by BPA. Together, these new findings indicated that BPA exposure thus activated the RhoA/ROCK signaling pathway and caused an abnormal accumulation of F-actin in the Neuro-2a cells, in turn altering the microfilament cytoskeleton. F-actin was restored when the RhoA/ROCK pathway was inhibited, suggesting that the process of BPA-induced neuronal cytoskeletal degradation is linked to the RhoA/ROCK signaling cascade.
Collapse
Affiliation(s)
- Yi Guo
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Yuxin Wang
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Qian Li
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Qiling Liu
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China; Key Laboratory of Environment-related Diseases and TCM Prevention and Control in Universities of Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Xuyuan Zhang
- Department of Respiratory and Intensive Care, Xian Gaoxin Hospital, Xian, Shaanxi 710000, China
| | - Jiajia Ren
- College of Health Public, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China
| | - Chong Wang
- Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China; Key Laboratory of Environment-related Diseases and TCM Prevention and Control in Universities of Shaanxi Province, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, China.
| |
Collapse
|
6
|
Zoppé H, Xavier J, Dupuis A, Migeot V, Bioulac S, Hary R, Bonnet-Brilhault F, Albouy M. Is exposure to Bisphenol A associated with Attention-deficit hyperactivity disorder (ADHD) and associated executive or behavioral problems in children? A comprehensive systematic review. Neurosci Biobehav Rev 2024; 167:105938. [PMID: 39551456 DOI: 10.1016/j.neubiorev.2024.105938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 10/29/2024] [Accepted: 11/02/2024] [Indexed: 11/19/2024]
Abstract
Numerous studies have investigated environmental risk factors in ADHD, and Bisphenol A (BPA), an endocrine disruptor, is suspected by several reviews. However, the quality of the studies has never been carefully assessed, leading us to rigorously examine associations between BPA exposure and ADHD and associated symptoms in children. Using PRISMA criteria, we conducted a systematic review on the MEDLINE/PubMed, Web of Science, EBSCOhost, PsycINFO, PsycARTICLES and Cochrane databases. We used the ROBINS-E tool to assess the quality, and the GRADE Approach. This study was registered with PROSPERO, CRD42023377150. Out of 10446 screened articles, 46 were included. Unlike pre-existing reviews, most studies failed to find clear links with ADHD or associated symptoms, with a high risk of bias and a very low level of certainty. Our systematic review reveals insufficient evidence regarding the impact of BPA on ADHD, despite some behavioral results that cannot be generalized. Future studies will require improved consideration of confounding factors and more precise sampling methods. This study did not receive specific funding.
Collapse
Affiliation(s)
- Hugo Zoppé
- UMR1253, iBrain, University of Tours, INSERM, Tours 37000, France; Excellence Center in Autism and Neurodevelopmental Disorders, Regional University Hospital Centre, Tours 37000, France.
| | - Jean Xavier
- Department of Child and Adolescent Psychiatry, Henri Laborit Hospital Centre, Poitiers 86000, France; CNRS UMR 7295, Cognition and Learning Research Center, Poitiers, France
| | - Antoine Dupuis
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, Poitiers 86000, France; Ecology and Biology of Interaction, CNRS UMR 7267, Poitiers Cedex 86073, France; INSERM-CIC 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France; BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France
| | - Virginie Migeot
- Public Health Department, CHU Rennes, University of Rennes 1, Rennes 35000, France; INSERM UMR-S 1085, EHESP, Irset, F-35000 Rennes, France
| | - Stéphanie Bioulac
- Service de psychiatrie de l'enfant et l'adolescent, CHU Grenoble Alpes, Grenoble 38000, France; LPNC, UMR 5105 CNRS, Université Grenoble Alpes, France
| | - Richard Hary
- Department of Child and Adolescent Psychiatry, Henri Laborit Hospital Centre, Poitiers 86000, France
| | - Frédérique Bonnet-Brilhault
- UMR1253, iBrain, University of Tours, INSERM, Tours 37000, France; Excellence Center in Autism and Neurodevelopmental Disorders, Regional University Hospital Centre, Tours 37000, France
| | - Marion Albouy
- Faculty of Medicine and Pharmacy, University of Poitiers, 6 Rue de la Milétrie, Poitiers 86000, France; Ecology and Biology of Interaction, CNRS UMR 7267, Poitiers Cedex 86073, France; INSERM-CIC 1402, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France; BioSPharm Pole, University Hospital of Poitiers, 2 Rue de la Milétrie, Poitiers Cedex 86021, France
| |
Collapse
|
7
|
Nayan NM, Husin A, Siran R. The risk of prenatal bisphenol A exposure in early life neurodevelopment: Insights from epigenetic regulation. Early Hum Dev 2024; 198:106120. [PMID: 39293157 DOI: 10.1016/j.earlhumdev.2024.106120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/09/2024] [Accepted: 09/10/2024] [Indexed: 09/20/2024]
Abstract
Bisphenols are mainly used as protective coatings for plastics and resin-based materials in various consumer products. Industrial producers have a high demand for bisphenol A (BPA) among all bisphenol substitutes for various consumer products. However, according to reports, prolonged exposure to BPA can cause multiple health issues, including neurodevelopmental disorders in young children. BPA exposure during pregnancy has been considered as the primary cause of increasing the risk of neurological disorders in children as their neural systems are designed to respond to any environmental changes during prenatal life. Recently, there has been an increased focus on the effects of prenatal exposure to BPA, as it has been found to alter gene expression related to epigenetic mechanisms like DNA methylation, histone modification, and microRNA expression. Based on the evidence, frequent interactions can lead to inherited changes in an individual's neural profile. In this review, we delve into the current knowledge regarding the toxicity mechanism of BPA for expecting mothers. Next, we will discuss the possible action of BPA on the epigenetic mechanism during brain development. This is especially important to portray an overview on the role of epigenetic modification caused by prenatal BPA exposure and next, give future directions for improving human health risk assessment caused by BPA exposure.
Collapse
Affiliation(s)
- Norazirah Mat Nayan
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Malaysia; Institute of Medical Molecular and Biotechnology (IMMB) Faculty of Medicine, Universiti Teknologi MARA, 47000 Sungai Buloh, Selangor, Malaysia
| | - Andrean Husin
- Faculty of Dentistry, Universiti Teknologi MARA, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, Malaysia
| | - Rosfaiizah Siran
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, Malaysia.
| |
Collapse
|
8
|
Barrea C, Dufour P, Catherine P, Charlier C, Brevers F, Rousselle L, Parent AS. Impact of antenatal exposure to a mixture of persistent organic pollutants on intellectual development. Int J Hyg Environ Health 2024; 261:114422. [PMID: 38981323 DOI: 10.1016/j.ijheh.2024.114422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 06/07/2024] [Accepted: 07/05/2024] [Indexed: 07/11/2024]
Abstract
OBJECTIVE Strong experimental evidence exists that several endocrine disrupting chemicals (EDCs) have neurobehavioral toxicity. However, evidence of associations between prenatal exposure and child's cognitive development is inconsistent. Moreover, toxicants are generally analyzed one by one without considering aggregate effects. We examined here the impact of a prenatal exposure to a mixture of persistent organic pollutants (POPs) on intellectual abilities in preschool children, and compared their effects to those described in the literature. METHODS Sixty-two children were included in a longitudinal cohort. Four organochlorine pesticides, four polychlorinated biphenyls (PCBs) and seven perfluorinated compounds (PFCs) were measured in cord blood. Intellectual abilities were assessed at 6 years of age using the Wechsler Preschool and Primary Scale of Intelligence 4th ed. (WPPSI-IV). We examined the associations between a mixture of POPs and cognitive performances using principal components approach (PCA) and weighted quantile sum (WQS) regression taking sex difference into account. RESULTS No negative correlation was found when analyses were performed on boys and girls together. In sex-stratified analyses, lower scores in full scale intelligence quotient (FSIQ) and fluid reasoning index (FRI) were observed in boys most exposed to a mixture of POPs. Increase of the WQS index was also associated with lower verbal comprehension index (VCI) scores in girls only. No other negative correlation was found using both WQS and PCA models. CONCLUSION Our study suggests deleterious associations between antenatal exposure to a mixture of POPs and sex-specific cognitive level, clarifying some trends described in the literature.
Collapse
Affiliation(s)
- Christophe Barrea
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium.
| | - Patrice Dufour
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Pirard Catherine
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Corinne Charlier
- Laboratory of Clinical, Forensic and Environmental Toxicology, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Fanny Brevers
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Laurence Rousselle
- Research Unit for a life-Course perspective on Health and Education, University of Liege (ULg), CHU, 4000, Liege, Belgium
| | - Anne-Simone Parent
- Department of Paediatrics, University of Liege (ULg), CHU, 4000, Liege, Belgium; GIGA Neurosciences, Neuroendocrinology Unit, University of Liege (ULg), CHU, 4000, Liege, Belgium
| |
Collapse
|
9
|
Singh DP, Kumar A, Prajapati J, Bijalwan V, Kumar J, Amin P, Kandoriya D, Vidhani H, Patil GP, Bishnoi M, Rawal R, Das S. Sexual dimorphism in neurobehavioural phenotype and gut microbial composition upon long-term exposure to structural analogues of bisphenol-A. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135178. [PMID: 39002480 DOI: 10.1016/j.jhazmat.2024.135178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 07/08/2024] [Accepted: 07/09/2024] [Indexed: 07/15/2024]
Abstract
Bisphenol S (BPS) and Bisphenol F (BPF), the analogues of the legacy endocrine disrupting chemical, Bisphenol A (BPA) are ubiquitous in the environment and present in various consumer goods, and potentially neurotoxic. Here, we studied sex-specific responses of bisphenols on behavioural phenotypes, including their association with pro-inflammatory biomarkers and altered neurotransmitters levels, and the key gut microbial abundances. Neurobehavioural changes, using standard test battery, biochemical and molecular estimations for inflammatory cytokines, neurotransmitters, and oxido-nitrosative stress markers, gene expression analysis using qRT-PCR, H&E based histological investigations, gut permeability assays and Oxford Nanopore-based 16S-rRNA metagenomics sequencing for the gut microbial abundance estimations were performed. Bisphenol(s) exposure induces anxiety and depression-like behaviours, particularly in the male mice, with heightened pro-inflammatory cytokines levels and systemic endotoxemia, altered monoamine neurotransmitters levels/turnovers and hippocampal neuronal degeneration and inflammatory responses in the brain. They also increased gut permeability and altered microbial diversity, particularly in males. Present study provides evidence for sex-specific discrepancies in neurobehavioural phenotypes and gut microbiota, which necessitate a nuanced understanding of sex-dependent responses to bisphenols. The study contributes to ongoing discussions on the multifaceted implications of bisphenols exposure and underscores the need for tailored regulatory measures to mitigate potential health risks associated with them.
Collapse
Affiliation(s)
- Dhirendra Pratap Singh
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India.
| | - Aasish Kumar
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Jignesh Prajapati
- Department of Biochemistry and Forensic Science, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Vandana Bijalwan
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Jitesh Kumar
- Department of Plant and Microbial Biology, University of Minnesota, Saint Paul, MN 55108, United States
| | - Pranjal Amin
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India; Department of Biotechnology and Bioengineering, Institute of Advanced Research, Koba Institutional Area, Gandhinagar, Gujarat 382426, India
| | - Devat Kandoriya
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Heena Vidhani
- Department of Biochemistry and Forensic Science, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Gajanan Pratap Patil
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India
| | - Mahendra Bishnoi
- Department of Food and Nutritional Biotechnology, National Agri-food Biotechnology Institute, Knowledge City-Sector 81, SAS Nagar, Punjab 140603, India
| | - Rakesh Rawal
- Department of Biochemistry and Forensic Science, Gujarat University, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Santasabuj Das
- ICMR-National Institute of Occupational Health (NIOH), Meghani Nagar, Ahmedabad, Gujarat 380016, India.
| |
Collapse
|
10
|
Nayan NM, Kadir SHSA, Husin A, Siran R. Neurodevelopmental effects of prenatal Bisphenol A exposure on the role of microRNA regulating NMDA receptor subunits in the male rat hippocampus. Physiol Behav 2024; 280:114546. [PMID: 38583549 DOI: 10.1016/j.physbeh.2024.114546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/22/2024] [Accepted: 04/05/2024] [Indexed: 04/09/2024]
Abstract
Maternal bisphenol A (BPA) exposure has been reported to cause learning and memory deficits in born offspring. However, little is known that this impairment is potentially caused by epigenetic modulation on the development of NMDA receptor subunits. This study investigates the effect of prenatal BPA exposure on the hippocampal miR-19a and miR-539, which are responsible for regulating NMDA receptor subunits as well as learning and memory functions. Pregnant Sprague Dawley rats were orally administered with 5 mg/kg/day of BPA from pregnancy day 1 (PD1) until gestation day 21 (GD21), while control mothers received no BPA. The mothers were observed daily until GD21 for either a cesarean section or spontaneous delivery. The male offspring were sacrificed when reaching GD21 (fetus), postnatal days 7, 14, 21 (PND7, 14, 21) and adolescent age 35 (AD35) where their hippocampi were dissected from the brain. The expression of targeted miR-19a, miR-539, GRIN2A, and GRIN2B were determined by qRT-PCR while the level of GluN2A and GluN2B were estimated by western blot. At AD35, the rats were assessed with neurobehavioral tests to evaluate their learning and memory function. The findings showed that prenatal BPA exposure at 5 mg/kg/day significantly reduces the expression of miR-19a, miR-539, GRIN2A, and GRIN2B genes in the male rat hippocampus at all ages. The level of GluN2A and GluN2B proteins is also significantly reduced when reaching adolescent age. Consequently, the rats showed spatial and fear memory impairments when reaching AD35. In conclusion, prenatal BPA exposure disrupts the role of miR-19a and miR-539 in regulating the NMDA receptor subunit in the hippocampus which may be one of the causes of memory and learning impairment in adolescent rats.
Collapse
Affiliation(s)
- Norazirah Mat Nayan
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Laboratory Animal Care Unit (LACU), Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Institute for Molecular Medicine and Biotechnology (IMMB) Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia
| | - Siti Hamimah Sheikh Abd Kadir
- Institute for Molecular Medicine and Biotechnology (IMMB) Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia
| | - Andrean Husin
- Faculty of Dentistry, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia
| | - Rosfaiizah Siran
- Centre for Neuroscience Research (NeuRon), Faculty of Medicine, Universiti Teknologi MARA 47000, Sungai Buloh, Selangor, Malaysia; Neuroscience Research Group (NRG), Faculty of Medicine, Universiti Teknologi MARA, 47000, Sungai Buloh, Selangor, Malaysia..
| |
Collapse
|
11
|
Jamka M, Kurek S, Makarewicz-Bukowska A, Miśkiewicz-Chotnicka A, Wasiewicz-Gajdzis M, Walkowiak J. No Differences in Urine Bisphenol A Concentrations between Subjects Categorized with Normal Cognitive Function and Mild Cognitive Impairment Based on Montreal Cognitive Assessment Scores. Metabolites 2024; 14:271. [PMID: 38786748 PMCID: PMC11123393 DOI: 10.3390/metabo14050271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 05/02/2024] [Accepted: 05/04/2024] [Indexed: 05/25/2024] Open
Abstract
A link between bisphenol A (BPA) exposure and cognitive disorders has been suggested. However, the differences in BPA concentrations between subjects with and without cognitive impairment have not been analysed. Therefore, this observational study aimed to compare urine BPA levels in subjects with normal cognitive function (NCF) and mild cognitive impairment (MCI). A total of 89 MCI subjects and 89 well-matched NCF individuals were included in this study. Cognitive functions were assessed using the Montreal Cognitive Assessment (MOCA) scale. Urine BPA concentrations were evaluated by gas chromatography-mass spectrometry and adjusted for creatinine levels. Moreover, anthropometric parameters, body composition, sociodemographic factors, and physical activity were also assessed. Creatinine-adjusted urine BPA levels did not differ between the NCF and MCI groups (1.8 (1.4-2.7) vs. 2.2 (1.4-3.6) µg/g creatinine, p = 0.1528). However, there were significant differences in MOCA results between groups when the study population was divided into tertiles according to BPA concentrations (p = 0.0325). Nevertheless, multivariate logistic regression demonstrated that only education levels were independently associated with MCI. In conclusion, urine BPA levels are not significantly different between subjects with MCI and NCF, but these findings need to be confirmed in further studies.
Collapse
Affiliation(s)
| | | | | | | | | | - Jarosław Walkowiak
- Department of Pediatric Gastroenterology and Metabolic Diseases, Poznan University of Medical Sciences, Szpitalna Str. 27/33, 60-572 Poznan, Poland; (M.J.); (S.K.); (A.M.-B.); (A.M.-C.); (M.W.-G.)
| |
Collapse
|
12
|
Oskar S, Balalian AA, Stingone JA. Identifying critical windows of prenatal phenol, paraben, and pesticide exposure and child neurodevelopment: Findings from a prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170754. [PMID: 38369152 PMCID: PMC10960968 DOI: 10.1016/j.scitotenv.2024.170754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND This study aimed to investigate how exposure to a mixture of endocrine disrupting chemicals (EDCs) during two points in pregnancy affects early childhood neurodevelopment. METHODS We analyzed publicly-available data from a high-risk cohort of mothers and their children (2007-2014) that measured six EDCs including methyl-, ethyl- and propyl parabens (MEPB, ETPB, PRPB), Bisphenol-A (BPA), 3,5,6-trichloro-2-pyridinol (TCPy), 3-phenoxybenzoic acid (3-PBA) in prenatal urine samples during the second and third trimesters. Neurodevelopmental scores were assessed using Mullen Scales of Early Learning (MSEL) at age 3. We used mean field variational Bayes for lagged kernel machine regression (MFVB-LKMR) to investigate the association between trimester-specific co-exposure to the six EDCs and MSEL scores at age 3, stratified by sex. RESULTS The analysis included 130 children. For females, the relationship between BPA and 3PBA with MSEL score varied between the two trimesters. In the second trimester, effect estimates for BPA were null but inversely correlated with MSEL score in the third trimester. 3PBA had a negative relationship with MSEL in the second trimester and positive correlation in the third trimester. For males, effect estimates for all EDCs were in opposing directions across trimesters. MFVB-LKMR analysis identified significant two-way interaction between EDCs for MSEL scores in both trimesters. For example, in females, the MSEL scores associated with increased exposure to TCPy were 1.75 units (95%credible interval -0.04, -3.47) lower in the 2nd trimester and 4.61 (95%CI -3.39, -5.84) lower in the third trimester when PRPB was fixed at the 75th percentile compared to when PRPB was fixed at the 25th percentile. CONCLUSION Our study provides evidence that timing of EDC exposure within the prenatal period may impact neurodevelopmental outcomes in children. More of these varying effects were identified among females. Future research is needed to explore EDC mixtures and the timing of exposure during pregnancy to enhance our understanding of how these chemicals impact child health.
Collapse
Affiliation(s)
- Sabine Oskar
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Arin A Balalian
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Jeanette A Stingone
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
13
|
Long J, Liang J, Liu T, Huang H, Chen J, Liao Q, Pang L, Yang K, Chen M, Chen Q, Huang X, Zhu Q, Zeng X, Huang D, Qiu X. Association between prenatal exposure to alkylphenols and intelligence quotient among preschool children: sex-specific effects. Environ Health 2024; 23:21. [PMID: 38365736 PMCID: PMC10870542 DOI: 10.1186/s12940-024-01047-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 01/05/2024] [Indexed: 02/18/2024]
Abstract
BACKGROUND While prenatal exposure to alkylphenols (APs) has been demonstrated to be associated with neurodevelopmental impairments in animals, the evidence from epidemiological studies remains limited and inconclusive. This study aimed to explore the link between AP exposure during pregnancy and the intelligence quotient (IQ) of preschool children. METHODS A total of 221 mother-child pairs from the Guangxi Zhuang Birth Cohort were recruited. Nonylphenol (NP), 4-tert-octylphenol (4-T-OP), 4-n-nonylphenol (4-N-NP), and 4-n-octylphenol were measured in maternal serum in early pregnancy. Childhood IQ was evaluated by the Fourth Edition of Wechsler Preschool and Primary Scale of the Intelligence at 3 to 6 years of age. The impact of APs on childhood IQ were evaluated by generalized linear models (GLMs), restricted cubic spline (RCS), and Bayesian kernel machine regression (BKMR). RESULTS In GLMs, prenatal exposure to NP and the second tertile of 4-T-OP exhibited an inverse association with full-scale IQ (FSIQ) (β = -2.38; 95% CI: -4.59, -0.16) and working memory index (WMI) (β = -5.24; 95% CI: -9.58, -0.89), respectively. Prenatal exposure to the third tertile of 4-N-NP showed a positive association with the fluid reasoning index (β = 4.95; 95% CI: 1.14, 8.77) in total children, as well as in girls when stratified by sex. A U-shaped relationship between maternal 4-T-OP and WMI was noted in total children and girls by RCS (all P nonlinear < 0.05). The combined effect primarily driven by NP, of maternal AP mixtures at concentrations above the 50th percentile exhibited an inverse trend on FSIQ in total children and girls in BKMR. CONCLUSIONS Prenatal exposure to various APs affects IQ in preschool children, and there may be nonmonotonic and sex-specific effects. Further investigation across the population is required to elucidate the potential neurotoxic effects of APs.
Collapse
Affiliation(s)
- Jinghua Long
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
- The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Jun Liang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Tao Liu
- Huaihua Center for Disease Control and Prevention, Huaihua, 418000, Hunan, China
| | - Huishen Huang
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Jiehua Chen
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Liao
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Lixiang Pang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Kaiqi Yang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Manlin Chen
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qian Chen
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaorong Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Qihua Zhu
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Xiaoyun Zeng
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China
| | - Dongping Huang
- Department of Sanitary Chemistry, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| | - Xiaoqiang Qiu
- Department of Epidemiology and Health Statistics, School of Public Health, Guangxi Medical University, No. 22 Shuangyong Road, Nanning, 530021, Guangxi, China.
| |
Collapse
|
14
|
Yin P, Wang Q, Li S, Hao L, Wang C, Wang Z, Wu Q. One-step preparation of carboxyl-functionalized porous organic polymer as sorbent for enrichment of phenols in bottled water, juice and honey samples. J Chromatogr A 2024; 1714:464568. [PMID: 38086188 DOI: 10.1016/j.chroma.2023.464568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/04/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024]
Abstract
Herein, a novel carboxyl-functionalized porous organic polymer (COOH-POP) was prepared as sorbent. Due to multiple hydrogen bonds and π-π interactions between COOH-POP and phenols, COOH-POP shows good enrichment ability and very fast adsorption rate for phenols. Then, an analytical method was developed for determination of five phenols (2-chlorophenol, bisphenol A, 2,6-dichlorophenol, 2,4-dichlorophenol and p-tert-butylphenol) in bottled water, lemon juice, peach juice and honey samples using COOH-POP as solid phase extraction sorbent in combination with high performance liquid chromatography. Under optimal conditions, the COOH-POP based method gave the detection limits (S/N = 3) of 0.02-0.10 ng mL-1 for bottled water, 0.03-0.12 ng mL-1 for lemon juice, 0.03-0.25 ng mL-1 for peach juice and 0.7-1.5 ng g-1 for honey samples. The recoveries for spiked samples ranged from 84.0 % to 119.0 % with relative standard deviation less than 7.6 %. This study provides a new yet effective method for enrichment of phenols by designing carboxyl-functionalized porous organic polymer as sorbent.
Collapse
Affiliation(s)
- Peiying Yin
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Qianqian Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Shuofeng Li
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Lin Hao
- College of Science, Hebei Agricultural University, Baoding 071001, China.
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China
| | - Zhi Wang
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China
| | - Qiuhua Wu
- College of Science, Hebei Agricultural University, Baoding 071001, China; College of Food Science and Technology, Hebei Agricultural University, Baoding 071001, China.
| |
Collapse
|
15
|
Costa HE, Cairrao E. Effect of bisphenol A on the neurological system: a review update. Arch Toxicol 2024; 98:1-73. [PMID: 37855918 PMCID: PMC10761478 DOI: 10.1007/s00204-023-03614-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 09/27/2023] [Indexed: 10/20/2023]
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical (EDC) and one of the most produced synthetic compounds worldwide. BPA can be found in epoxy resins and polycarbonate plastics, which are frequently used in food storage and baby bottles. However, BPA can bind mainly to estrogen receptors, interfering with various neurologic functions, its use is a topic of significant concern. Nonetheless, the neurotoxicity of BPA has not been fully understood despite numerous investigations on its disruptive effects. Therefore, this review aims to highlight the most recent studies on the implications of BPA on the neurologic system. Our findings suggest that BPA exposure impairs various structural and molecular brain changes, promoting oxidative stress, changing expression levels of several crucial genes and proteins, destructive effects on neurotransmitters, excitotoxicity and neuroinflammation, damaged blood-brain barrier function, neuronal damage, apoptosis effects, disruption of intracellular Ca2+ homeostasis, increase in reactive oxygen species, promoted apoptosis and intracellular lactate dehydrogenase release, a decrease of axon length, microglial DNA damage, astrogliosis, and significantly reduced myelination. Moreover, BPA exposure increases the risk of developing neurologic diseases, including neurovascular (e.g. stroke) and neurodegenerative (e.g. Alzheimer's and Parkinson's) diseases. Furthermore, epidemiological studies showed that the adverse effects of BPA on neurodevelopment in children contributed to the emergence of serious neurological diseases like attention-deficit/hyperactivity disorder (ADHD), autism spectrum disorder (ASD), depression, emotional problems, anxiety, and cognitive disorders. In summary, BPA exposure compromises human health, promoting the development and progression of neurologic disorders. More research is required to fully understand how BPA-induced neurotoxicity affects human health.
Collapse
Affiliation(s)
- Henrique Eloi Costa
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal
| | - Elisa Cairrao
- CICS-UBI, Health Sciences Research Centre, University of Beira Interior, Av. Infante D. Henrique, 6200-506, Covilhã, Portugal.
- FCS-UBI, Faculty of Health Sciences, University of Beira Interior, 6200-506, Covilhã, Portugal.
| |
Collapse
|
16
|
Degirmencioglu Gok D, Tuygar Okutucu F, Ozturk N, Ceyhun HA. Association of bisphenol A with cognitive functions and functionality in adult attention deficit hyperactivity disorder. J Psychiatr Res 2024; 169:64-72. [PMID: 38000186 DOI: 10.1016/j.jpsychires.2023.11.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 10/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
BACKGROUND Bisphenol A (BPA) has been linked to attention-deficit/hyperactivity disorder (ADHD) symptoms, but the effects on cognitive functions and functionality in adult ADHD have not been investigated. We investigated the associations between serum BPA with cognitive functions and functionality in adult ADHD patients. METHODS The levels of BPA were measured in 45 adult ADHD patients and 45 well-matched healty controls. The relationship between plastic exposure and BPA was also evaluated. Stroop test and Wisconsin Card Sorting Test were applied for neurocognitive evaluation and participants were compared in basic cognitive functions including planning, organization, abstraction, problem solving, strategy development, set shifting, cognitive flexibility, variants of attention, information processing speed, the ability to change perceptual setup and response under interference. Sheehan disability scale was applied for functionality. The association of BPA with test scores was analyzed statistically. RESULTS Serum BPA levels in adult ADHD patients were found to be significantly higher than in healthy controls. There was no relationship between plastic exposure and BPA levels. BPA levels showed a significant effect on functionality in terms of work field. There were significant differences between the groups in terms of cognitive functions. However, no significant correlation was found between BPA levels and cognitive functions. CONCLUSIONS BPA is associated with ADHD and affects functionality in the field of work, but larger-scale further studies are needed for its effect on cognitive functions.
Collapse
Affiliation(s)
| | | | - Nurinnisa Ozturk
- Department of Biochemistry, Ataturk University Medical Faculty, Erzurum, Turkey.
| | - Hacer Akgul Ceyhun
- Department of Psychiatry, Ataturk University Medical Faculty, Erzurum, Turkey.
| |
Collapse
|
17
|
Wang PW, Huang YF, Wang CH, Fang LJ, Chen ML. Prenatal to preschool exposure of nonylphenol and bisphenol A exposure and neurodevelopment in young children. Pediatr Neonatol 2024; 65:76-84. [PMID: 37679260 DOI: 10.1016/j.pedneo.2023.04.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 09/09/2023] Open
Abstract
BACKGROUND Nonylphenol (NP) and bisphenol A (BPA) are produced in large quantities worldwide as multipurpose agents. However, studies on relations between NP and BPA exposure and childhood neurodevelopment are few, and the results are inconsistent. This study aimed to investigate associations between prenatal and early childhood NP and BPA exposure and neurodevelopment in mother-child pairs. METHODS Pregnant women at 27-38 weeks' gestation were recruited, as were children 2-3 years of age (n = 94) and 4-6 years of age (n = 56) years. Urine was collected to assess NP and BPA exposure. Bayley Scales of Infant and Toddler Development (3rd edition; Bayley-III), Wechsler Preschool and Primary Scale of Intelligence (4th edition), and the Full Scale Intelligence Quotient (WPPSI-IV-FSIQ) were used to assess the neurodevelopment of the children. RESULTS The detection rate and concentration of NP and BPA in the urine of children 4-6 years old were higher than in those 2-3 years old. Children were divided into a high concentration group (3rd tertile) and a reference group (1st and 2nd tertiles) based on natural log-transformed urine concentration of NP and BPA. Girls' Bayley-III motor scores in the high concentration group were higher than those of the BPA reference group of urine of mothers (β = 6.85, 95% confidence interval [CI]: 1.58-12.13). Boys' FSIQ in the higher concentration group were significantly lower than those in children 2-3 years old in the NP reference group (β = -11.29, 95% CI: -18.62 to -3.96) (all, p < 0.05). CONCLUSIONS Prenatal and childhood exposure to NP and BPA may have different effects on the neurodevelopment of young children, and there are no consistent effects between boys and girls.
Collapse
Affiliation(s)
- Pei-Wei Wang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, Yangming Campus, National Yang Ming Chiao Tung University, Taipei, Taiwan; Department of Pediatrics, Heping Fuyou Branch, Taipei City Hospital, Taipei, Taiwan
| | - Yu-Fang Huang
- Institute of Environmental and Occupational Health Sciences, School of Medicine, Yangming Campus, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| | - Chung-Hao Wang
- Department of Pediatrics, Heping Fuyou Branch, Taipei City Hospital, Taipei, Taiwan
| | - Li-Jung Fang
- Department of Pediatrics, Heping Fuyou Branch, Taipei City Hospital, Taipei, Taiwan
| | - Mei-Lien Chen
- Institute of Environmental and Occupational Health Sciences, School of Medicine, Yangming Campus, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
18
|
Zhu Y, Wu Y, Shi L, Yang Y, Wang Y, Pan D, He S, Wang L, Li J. Association of Plastic Exposure with Cognitive Function Among Chinese Older Adults. J Alzheimers Dis 2024; 101:1015-1025. [PMID: 39240644 DOI: 10.3233/jad-240746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/07/2024]
Abstract
Background The widespread exposure to plastic products and the increasing number of individuals with cognitive impairments have imposed a heavy burden on society. Objective This study aims to investigate the relationship between plastic product exposure in daily life and cognitive function in older Chinese individuals. Methods Data were obtained from the 2023 Ningxia Older Psychological Health Cohort, comprising 4045 participants aged 60 and above. Cognitive function was assessed using the Mini-Mental State Examination scale. A population-based plastic exposure questionnaire was used to calculate plastic exposure scores (PES). Binary logistic regression was employed to analyze the relationship between PES and cognitive function, while restricted cubic splines were used to examine the dose-response relationship between PES and cognitive function. Latent profile analysis (LPA) was employed to explore the potential patterns of plastic exposure, and logistic regression was used to investigate the relationship between different exposure patterns and cognitive function. A linear regression model was utilized to investigate the relationship between PES and different dimensions of cognitive function. Results Among the 4045 participants, 1915 individuals were assessed with mild cognitive impairment (MCI). After adjusting for all covariates, PES (OR = 1.04, 95% CI 1.02-1.06) was significantly associated with the risk of MCI and exhibited a dose-response relationship. LPA identified two potential categories of plastic exposure, with a higher risk of MCI observed in the group using plastic utensils. Conclusions This study indicates a positive correlation between plastic exposure levels and MCI risk, particularly among individuals who frequently use plastic tableware.
Collapse
Affiliation(s)
- Yongbin Zhu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yueping Wu
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Liping Shi
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yue Yang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Yanrong Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Degong Pan
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Shulan He
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Liqun Wang
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| | - Jiangping Li
- Department of Epidemiology and Health Statistics, School of Public Health, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
- Key Laboratory of Environmental Factors and Chronic Disease Control, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region, China
| |
Collapse
|
19
|
Cao Y, Hu D, Cai C, Zhou M, Dai P, Lai Q, Zhang L, Fan Y, Gao Z. Modeling early human cortical development and evaluating neurotoxicity with a forebrain organoid system. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 337:122624. [PMID: 37757934 DOI: 10.1016/j.envpol.2023.122624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/05/2023] [Accepted: 09/25/2023] [Indexed: 09/29/2023]
Abstract
The complexity and subtlety of brain development renders it challenging to examine effects of environmental toxicants on human fetal brain development. Advances in pluripotent cell-derived organoid systems open up novel avenues for human development, disease and toxicity modeling. Here, we have established a forebrain organoid system and recapitulated early human cortical development spatiotemporally including neuroepithelium induction, apical-basal axis formation, neural progenitor proliferation and maintenance, neuronal differentiation and layer/region patterning. To explore whether this forebrain organoid system is suitable for neurotoxicity modeling, we subjected the organoids to bisphenol A (BPA), a common environmental toxicant of global presence and high epidemic significance. BPA exposure caused substantial abnormalities in key cortical developmental events, inhibited progenitor cell proliferation and promoted precocious neuronal differentiation, leading premature progenitor cell depletion and aberrant cortical layer patterning and structural organization. Consistent with an antagonistic mechanism between thyroid hormone and BPA, T3 supplementation attenuated BPA-mediated cortical developmental abnormalities. Altogether, our in vitro recapitulation of cortical development with forebrain organoids provides a paradigm for efficient neural development and toxicity modeling and related remedy testing/screening.
Collapse
Affiliation(s)
- Yuanqing Cao
- Fudamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200065, China; Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 201613, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Daiyu Hu
- Fudamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200065, China; Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 201613, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Chenglin Cai
- Fudamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200065, China; Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 201613, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Min Zhou
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 201613, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Peibing Dai
- Fudamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200065, China
| | - Qiong Lai
- Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 201613, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Ling Zhang
- Fudamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200065, China
| | - Yantao Fan
- Fudamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200065, China; Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 201613, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhengliang Gao
- Fudamental Research Center, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), School of Medicine, Tongji University, Shanghai, 200065, China; Institute of Geriatrics (Shanghai University), Affiliated Nantong Hospital of Shanghai University (The Sixth People's Hospital of Nantong), School of Medicine, Shanghai University, Nantong, 201613, China; Shanghai Engineering Research Center of Organ Repair, School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
20
|
Wang X, Luo ZC, Du O, Zhang HJ, Fan P, Ma R, Chen Y, Wang W, Zhang J, Ouyang F. The association between maternal urinary Bisphenol A levels and neurodevelopment at age 2 years in Chinese boys and girls: A prospective cohort study. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 264:115413. [PMID: 37651794 DOI: 10.1016/j.ecoenv.2023.115413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/22/2023] [Accepted: 08/25/2023] [Indexed: 09/02/2023]
Abstract
The impact of maternal exposure to Bisphenol A on child cognitive development as well as its sex dimorphism remains uncertain. This study used data of 215 mothers and their children from a birth cohort in Shanghai. Urinary BPA were measured in spot urine samples of mothers at late pregnancy and children at age 2 years. Cognitive development was evaluated by Ages & Stages Questionnaires, Third Edition (ASQ-3) at age 2 years. Urinary BPA was detectable in 98.9% of mothers (geometric mean, GM: 2.6 μg/g. creatinine) and 99.8% children (GM: 3.4 μg/g. creatinine). Relative to the low and medium BPA tertiles, high tertile of maternal urinary BPA concentrations were associated with 4.8 points lower (95% CI: -8.3, -1.2) in gross motor and 3.7 points lower (95% CI: -7.4, -0.1) in problem-solving domain in girls only, with adjustment for maternal age, maternal education, pre-pregnancy BMI, passive smoking during pregnancy, parity, delivery mode, birth-weight for gestational age, child age at ASQ-3 test. This negative association remained with additional adjustment for child urinary BPA concentrations at age 2 years. No association was observed in boys. These results suggested the sex-dimorphism on the associations of maternal BPA exposure with gross motor and problem-solving domains in children at age 2 years. This study also indicated that optimal early child development should start with a healthy BPA-free "in utero" environment.
Collapse
Affiliation(s)
- Xia Wang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Neonatology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhong-Cheng Luo
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Obstetrics and Gynecology, Prosserman Centre for Population Health Research, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Institute of Health Policy, Management and Evaluation, Temerty Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - Ouyang Du
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Department of Electrical and Systems Engineering, McKelvey School of Engineering at Washington University in St. Louis, USA
| | - Hui-Juan Zhang
- Department of Pathology, The International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University, Shanghai, China
| | - Pianpian Fan
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Ma
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanzhi Chen
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiye Wang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Zhang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fengxiu Ouyang
- Ministry of Education and Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Lin CY, Chen CW, Wang C, Sung FC, Su TC. The Association between 4-Tertiary-Octylphenol, Apoptotic Microparticles, and Carotid Intima-Media Thickness in a Young Taiwanese Population. TOXICS 2023; 11:757. [PMID: 37755767 PMCID: PMC10537624 DOI: 10.3390/toxics11090757] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/28/2023]
Abstract
As one of the most common alkylphenols, 4-tertiary-octylphenol (4-tOP) is commonly used in many consumer products. Our previous epidemiological study revealed a negative correlation between serum 4-tOP levels and carotid intima-media thickness (CIMT), which serves as a biomarker of arteriosclerosis. We aimed to explore the role of apoptotic microparticles, markers of vascular endothelial cell function, in the 4-tOP and CIMT connection. To investigate this, we enrolled 886 Taiwanese adolescents and young adults (aged 12-30 years) and examined the relationships among serum 4-tOP levels, apoptotic microparticles (CD31+/CD42a-, CD31+/CD42a+), and CIMT. Our results showed negative associations among serum 4-tOP levels, both apoptotic microparticles, and CIMT in multiple linear regression analysis. The odds ratios for CIMT (≥75th percentile) and the natural logarithm of 4-tOP were highest when both CD31+/CD42a- and CD31+/CD42a+ were greater than the 50th percentile. Conversely, the odds ratios were lowest when both CD31+/CD42a- and CD31+/CD42a+ were less than the 50th percentile. In the structural equation model, we demonstrated that serum 4-tOP levels were negatively correlated with CIMT and indirectly and negatively correlated with CIMT through both apoptotic microparticles. In conclusion, our study reported the inverse association between 4-tOP apoptotic microparticles and CIMT in a young Taiwanese population. Further experimental studies are needed to clarify these associations.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City 237, Taiwan;
- School of Medicine, Fu Jen Catholic University, New Taipei City 242, Taiwan
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Ching-Way Chen
- Department of Cardiology, National Taiwan University Hospital Yunlin Branch, Yunlin 640, Taiwan;
| | - Chikang Wang
- Department of Environmental Engineering and Health, Yuanpei University of Medical Technology, Hsinchu 300, Taiwan;
| | - Fung-Chang Sung
- Department of Health Services Administration, China Medical University College of Public Health, Taichung 404, Taiwan;
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 413, Taiwan
| | - Ta-Chen Su
- Department of Environmental and Occupational Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Division of Cardiology, Department of Internal Medicine, National Taiwan University Hospital, Taipei 100, Taiwan
- Institute of Environmental and Occupational Health Sciences, College of Public Health, National Taiwan University, Taipei 100, Taiwan
| |
Collapse
|
22
|
Gao CJ, Yang F, Wu B, Liang Y, Qin YY, Guo Y. A pilot study of several environmental endocrine disrupting chemicals in children with autism spectrum disorder in south China. ENVIRONMENTAL MONITORING AND ASSESSMENT 2023; 195:964. [PMID: 37462787 DOI: 10.1007/s10661-023-11570-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/28/2023] [Indexed: 07/21/2023]
Abstract
Autism spectrum disorders (ASD) is a group of heterogeneous neurodevelopmental disorders. Evidence has implied that environmental pollutants are important factors related to ASD. In this study, several environmental endocrine-disrupting chemicals, including parabens, benzophenone-type ultraviolet filters, hydroxyl polycyclic aromatic hydrocarbons, triclosan and tetrabromobisphenol A were analyzed in blood plasma in ASD children (n = 34) and the control children (n = 28). The results showed that parabens were the most concentrated chemicals (2.18 ng/mL, median value), followed by hydroxyl polycyclic aromatic hydrocarbons (0.73 ng/mL), benzophenone-type ultraviolet filters (0.14 ng/mL), triclosan (0.13 ng/mL) and tetrabromobisphenol A (0.03 ng/mL). ASD children accumulated significantly lower 2-hydroxy-4-methoxybenzophenone, 2,4-dihydroxybenzophenone, 4-hydroxybenzophenone and triclosan but higher 2-hydroxyphenanthrene and tetrabromobisphenol A than the control children (0.02/0.09 ng/mL of 2-hydroxy-4-methoxybenzophenone, p < 0.05; 0.04/0.07 ng/mL of 2,4-dihydroxybenzophenone, p < 0.05; 0.03/0.04 ng/mL of 4-hydroxybenzophenone, p < 0.05; 0.13/1.22 ng/mL of triclosan, p < 0.01; 0.03 ng/mL/not detected of 2-hydroxyphenanthrene, p < 0.05; 0.03/0.004 ng/mL of tetrabromobisphenol A, p < 0.05). Gender differences in certain environmental endocrine-disrupting chemicals were evident, and the differences were more inclined toward boys. Positive associations between 2-hydroxy-4-methoxybenzophenone and triclosan, and tetrabromobisphenol A and 2-hydroxyphenanthrene were found in ASD boys. Binary logistic regression analysis showed that the adjusted odds ratio value of 2-hydroxyphenanthrene in ASD boys was 11.0 (1.45-84.0, p < 0.05). This is the first pilot study on multiple environmental endocrine-disrupting chemicals in children with ASD in China.
Collapse
Affiliation(s)
- Chong-Jing Gao
- College of Biological and Environmental Science, Zhejiang Wanli University, Ningbo, 315100, China.
- School of Environment, Jinan University, Guangzhou, 510632, China.
| | - Feng Yang
- Speech Therapy Department, Shenzhen Children's Hospital, Shenzhen, 518055, China
| | - Binbin Wu
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Yan Liang
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- School of Resources and Environment, University of Electronic Science and Technology of China, Chengdu, 611731, China
| | - Yan-Yan Qin
- School of Medical Technology and Nursing, Shenzhen Polytechnic, Shenzhen, 518055, China.
| | - Ying Guo
- School of Environment, Jinan University, Guangzhou, 510632, China
| |
Collapse
|
23
|
Lupu DI, Cediel Ulloa A, Rüegg J. Endocrine-Disrupting Chemicals and Hippocampal Development: The Role of Estrogen and Androgen Signaling. Neuroendocrinology 2023; 113:1193-1214. [PMID: 37356425 DOI: 10.1159/000531669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 06/06/2023] [Indexed: 06/27/2023]
Abstract
Hormones are important regulators of key processes during fetal brain development. Thus, the developing brain is vulnerable to the action of chemicals that can interfere with endocrine signals. Epidemiological studies have pointed toward sexually dimorphic associations between neurodevelopmental outcomes, such as cognitive abilities, in children and prenatal exposure to endocrine-disrupting chemicals (EDCs). This points toward disruption of sex steroid signaling in the development of neural structures underlying cognitive functions, such as the hippocampus, an essential mediator of learning and memory processes. Indeed, during development, the hippocampus is subjected to the organizational effects of estrogens and androgens, which influence hippocampal cell proliferation, differentiation, dendritic growth, and synaptogenesis in the hippocampal fields of Cornu Ammonis and the dentate gyrus. These early organizational effects correlate with a sexual dimorphism in spatial cognition and are subject to exogenous chemical perturbations. This review summarizes the current knowledge about the organizational effects of estrogens and androgens on the developing hippocampus and the evidence for hippocampal-dependent learning and memory perturbations induced by developmental exposure to EDCs. We conclude that, while it is clear that sex hormone signaling plays a significant role during hippocampal development, a complete picture at the molecular and cellular levels would be needed to establish causative links between the endocrine modes of action exerted by EDCs and the adverse outcomes these chemicals can induce at the organism level.
Collapse
Affiliation(s)
- Diana-Ioana Lupu
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| | | | - Joëlle Rüegg
- Department of Organismal Biology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
24
|
Vitku J, Horackova L, Kolatorova L, Duskova M, Skodova T, Simkova M. Derivatized versus non-derivatized LC-MS/MS techniques for the analysis of estrogens and estrogen-like endocrine disruptors in human plasma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 260:115083. [PMID: 37269613 DOI: 10.1016/j.ecoenv.2023.115083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 05/25/2023] [Accepted: 05/27/2023] [Indexed: 06/05/2023]
Abstract
Bisphenols, parabens, alkylphenols and triclosan are anthropogenic substances with a phenolic group that have been introduced to the environment in recent decades. As they possess hormone-like effects, they have been termed endocrine disruptors (EDs), and can interfere with steroid pathways in organisms. To evaluate the potential impact of EDs on steroid biosynthesis and metabolism, sensitive and robust methods enabling the concurrent measurement of EDs and steroids in plasma are needed. Of crucial importance is the analysis of unconjugated EDs, which possess biological activity. The aim of the study was to develop and validate LC-MS/MS methods with and without a derivatization step for the analysis of unconjugated steroids (estrone-E1, estradiol-E2, estriol-E3, aldosterone-ALDO) and different groups of EDs (bisphenols, parabens, nonylphenol-NP and triclosan-TCS), and compare these methods on a set of 24 human plasma samples using Passing-Bablok regression analysis. Both methods were validated according to FDA and EMA guidelines. The method with dansyl chloride derivatization allowed 17 compounds to be measured: estrogens (E1, E2, E3), bisphenols (bisphenol A-BPA, BPS, BPF, BPAF, BPAP, BPZ, BPP), parabens (methylparaben-MP, ethylparaben-EP, propylparaben-PP, butylparaben-BP, benzylparaben-BenzylP), TCS and NP, with lower limits of quantification (LLOQs) between 4 and 125 pg/mL. The method without derivatization enabled 15 compounds to be analyzed: estrogens (E1, E2, E3), ALDO, bisphenols (BPA, BPS, BPF, BPAF, BPAP, BPZ), parabens (MP, EP, PP, BP, BenzylP) with LLOQs between 2 and 63 pg/mL, and NP and BPP in semiquantitative mode. Adding 6 mM ammonium fluoride post column into mobile phases in the method without derivatization achieved similar or even better LLOQs than the method with the derivatization step. The uniqueness of the methods lies in the simultaneous determination of different classes of unconjugated (bioactive) fraction of EDs together with selected steroids (estrogens + ALDO in the method without derivatization), which provides a useful tool for evaluating the relationships between EDs and steroid metabolism.
Collapse
Affiliation(s)
- J Vitku
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic.
| | - L Horackova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic; University of Chemistry and Technology, Department of Natural Compounds, Prague, Czech Republic
| | - L Kolatorova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - M Duskova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - T Skodova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic
| | - M Simkova
- Institute of Endocrinology, Department of Steroids and Proteofactors, Narodni 8, 116 94 Prague, Czech Republic; University of Chemistry and Technology, Department of Natural Compounds, Prague, Czech Republic
| |
Collapse
|
25
|
González-Casanova JE, Bermúdez V, Caro Fuentes NJ, Angarita LC, Caicedo NH, Rivas Muñoz J, Rojas-Gómez DM. New Evidence on BPA's Role in Adipose Tissue Development of Proinflammatory Processes and Its Relationship with Obesity. Int J Mol Sci 2023; 24:ijms24098231. [PMID: 37175934 PMCID: PMC10179730 DOI: 10.3390/ijms24098231] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/19/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Bisphenol A (BPA) is a xenobiotic with endocrine disruptor properties which interacts with various receptors, eliciting a cellular response. In the plastic industry, BPA is widely used in the production of polycarbonate and epoxy-phenolic resins to provide elastic properties. It can be found in the lining of canned foods, certain plastic containers, thermal printing papers, composite dental fillings, and medical devices, among other things. Therefore, it is a compound that, directly or indirectly, is in daily contact with the human organism. BPA is postulated to be a factor responsible for the global epidemic of obesity and non-communicable chronic diseases, belonging to the obesogenic and diabetogenic group of compounds. Hence, this endocrine disruptor may be responsible for the development of metabolic disorders, promoting in fat cells an increase in proinflammatory pathways and upregulating the expression and release of certain cytokines, such as IL6, IL1β, and TNFα. These, in turn, at a systemic and local level, are associated with a chronic low-grade inflammatory state, which allows the perpetuation of the typical physiological complications of obesity.
Collapse
Affiliation(s)
| | - Valmore Bermúdez
- Centro de Investigaciones en Ciencias de la Vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia
| | - Nelson Javier Caro Fuentes
- Centro de Investigación Austral Biotech, Facultad de Ciencias, Universidad Santo Tomás, Avda. Ejército 146, Santiago 8320000, Chile
| | - Lissé Chiquinquirá Angarita
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Sede Concepción, Talcahuano 4260000, Chile
| | - Nelson Hernando Caicedo
- Departamento de Ciencias Biológicas, Bioprocesos y Biotecnología, Facultad de Ingeniería, Diseño y Ciencias Aplicadas, Universidad Icesi, Calle 18 No. 122-135 Pance, Cali 760031, Colombia
| | - Jocelyn Rivas Muñoz
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile
| | - Diana Marcela Rojas-Gómez
- Escuela de Nutrición y Dietética, Facultad de Medicina, Universidad Andres Bello, Santiago 8370321, Chile
| |
Collapse
|
26
|
Lambré C, Barat Baviera JM, Bolognesi C, Chesson A, Cocconcelli PS, Crebelli R, Gott DM, Grob K, Lampi E, Mengelers M, Mortensen A, Rivière G, Silano (until 21 December 2020†) V, Steffensen I, Tlustos C, Vernis L, Zorn H, Batke M, Bignami M, Corsini E, FitzGerald R, Gundert‐Remy U, Halldorsson T, Hart A, Ntzani E, Scanziani E, Schroeder H, Ulbrich B, Waalkens‐Berendsen D, Woelfle D, Al Harraq Z, Baert K, Carfì M, Castoldi AF, Croera C, Van Loveren H. Re-evaluation of the risks to public health related to the presence of bisphenol A (BPA) in foodstuffs. EFSA J 2023; 21:e06857. [PMID: 37089179 PMCID: PMC10113887 DOI: 10.2903/j.efsa.2023.6857] [Citation(s) in RCA: 64] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2023] Open
Abstract
In 2015, EFSA established a temporary tolerable daily intake (t-TDI) for BPA of 4 μg/kg body weight (bw) per day. In 2016, the European Commission mandated EFSA to re-evaluate the risks to public health from the presence of BPA in foodstuffs and to establish a tolerable daily intake (TDI). For this re-evaluation, a pre-established protocol was used that had undergone public consultation. The CEP Panel concluded that it is Unlikely to Very Unlikely that BPA presents a genotoxic hazard through a direct mechanism. Taking into consideration the evidence from animal data and support from human observational studies, the immune system was identified as most sensitive to BPA exposure. An effect on Th17 cells in mice was identified as the critical effect; these cells are pivotal in cellular immune mechanisms and involved in the development of inflammatory conditions, including autoimmunity and lung inflammation. A reference point (RP) of 8.2 ng/kg bw per day, expressed as human equivalent dose, was identified for the critical effect. Uncertainty analysis assessed a probability of 57-73% that the lowest estimated Benchmark Dose (BMD) for other health effects was below the RP based on Th17 cells. In view of this, the CEP Panel judged that an additional uncertainty factor (UF) of 2 was needed for establishing the TDI. Applying an overall UF of 50 to the RP, a TDI of 0.2 ng BPA/kg bw per day was established. Comparison of this TDI with the dietary exposure estimates from the 2015 EFSA opinion showed that both the mean and the 95th percentile dietary exposures in all age groups exceeded the TDI by two to three orders of magnitude. Even considering the uncertainty in the exposure assessment, the exceedance being so large, the CEP Panel concluded that there is a health concern from dietary BPA exposure.
Collapse
|
27
|
Xu L, Bai T, Yi X, Zhao K, Shi W, Dai F, Wei J, Wang J, Shi C. Polypropylene fiber grafted calcium alginate with mesoporous silica for adsorption of Bisphenol A and Pb 2. Int J Biol Macromol 2023; 238:124131. [PMID: 36958444 DOI: 10.1016/j.ijbiomac.2023.124131] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/28/2023] [Accepted: 03/18/2023] [Indexed: 03/25/2023]
Abstract
Polypropylene grafted calcium alginate with mesoporous silica (PP-g-CaAlg@SiO2) for adsorbing Bisphenol A (BPA) and Pb2+ was prepared by calcium chloride (CaCl2) crosslinking and hydrochloric acid solution treatment. The PP-g-CaAlg@SiO2 was characterized by SEM, TEM, BET, XRD, FTIR and TG. PP-g-CaAlg@SiO2 exhibited excellent adsorption capacity for BPA and Pb2+, because the formation of reticulated nanorod structure increased its specific surface area. Subsequently, the adsorption behaviours of BPA and Pb2+, including adsorption isotherms and adsorption kinetics, were investigated. Afterward, isothermal titration calorimetry (ITC) and molecular dynamics (MD) simulation were performed to explore the adsorption mechanism. The results indicated that hydrogen bonding played the leading role in the adsorption of BPA, while the bonding of Pb2+ to carboxyl group binding sites was the focus of Pb2+ adsorption. In addition, the adsorption capacity of PP-g-CaAlg@SiO2 was stable over 10 cycles.
Collapse
Affiliation(s)
- Lijing Xu
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Tian Bai
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Xinzhun Yi
- School of Material Science and Engineering, Tiangong University, Tianjin 300387, China
| | - Kongyin Zhao
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China; School of Material Science and Engineering, Tiangong University, Tianjin 300387, China.
| | - Wenxiong Shi
- Institute for New Energy Materials and Low-Carbon Technologies, Tianjin University of Technology, Tianjin, 300387, China
| | - Fengying Dai
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Junfu Wei
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Jie Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Ce Shi
- State Key Laboratory of Polymer Physics and Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 300387, China
| |
Collapse
|
28
|
Ish J, Symanski E, Gimeno Ruiz de Porras D, Casas M, Delclos GL, Guxens M, Ibarluzea JM, Iñiguez C, Lertxundi A, Rebagliato M, Swartz MD, Whitworth KW. Maternal occupational exposure to chemicals and child cognitive function. Pediatr Res 2022; 92:1153-1160. [PMID: 35578010 PMCID: PMC9887679 DOI: 10.1038/s41390-022-02089-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 04/01/2022] [Accepted: 04/10/2022] [Indexed: 02/02/2023]
Abstract
BACKGROUND Limited data exist regarding child neurodevelopment in relation to maternal occupational exposure to endocrine-disrupting chemicals (EDCs). METHODS We included 1058 mother-child pairs from the INfancia y Medio Ambiente (INMA) project (2003-2008). Using a job-exposure matrix, exposure probability scores for ten EDC groups were assigned to each mother based on her longest held job during pregnancy. At the child's 5-year visit, the McCarthy Scales of Children's Abilities was administered, yielding the general cognitive index and scales for specific cognitive domains. We analyzed region-specific associations between EDC exposures and each outcome separately using adjusted linear regression and combined region-specific effect estimates using random-effects meta-analyses. RESULTS Approximately 24% of women were exposed to at least one EDC group, but exposure to most individual EDC groups was low (<5%). Maternal organic solvent exposure was associated with lower quantitative scores among children (-5.8 points, 95% confidence interval: -11.0, -0.5). Though statistically non-significant, exposures to polycyclic aromatic hydrocarbons, phthalates, alkylphenolic compounds, and miscellaneous chemicals were associated with poorer offspring performance for most or all cognitive domains. CONCLUSIONS This study found limited evidence for a role of maternal occupational EDC exposures on child cognition. Further research is needed to better characterize exposures among pregnant workers. IMPACT Using data from a prospective birth cohort, we help fill an important research gap regarding the potential consequences of work-related exposure to endocrine-disrupting chemicals (EDCs) among pregnant women on child neurodevelopment. We expand on existing literature-largely limited to pesticide and organic solvent exposures-by using a job-exposure matrix to estimate exposure to several EDC groups. We found limited evidence of an association between maternal occupational EDC exposure and children's overall cognition. We did observe specific associations between exposure to organic solvents and lower quantitative reasoning scores.
Collapse
Affiliation(s)
- Jennifer Ish
- Southwest Center for Occupational and Environmental Health (SWCOEH), Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health in San Antonio, San Antonio, TX, USA
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
| | - Elaine Symanski
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA
| | - David Gimeno Ruiz de Porras
- Southwest Center for Occupational and Environmental Health (SWCOEH), Department of Epidemiology, Human Genetics, and Environmental Sciences, The University of Texas Health Science Center at Houston (UTHealth) School of Public Health in San Antonio, San Antonio, TX, USA
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Center for Research in Occupational Health (CiSAL), Universitat Pompeu Fabra, Barcelona, Spain
| | - Maribel Casas
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
| | - George L Delclos
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Center for Research in Occupational Health (CiSAL), Universitat Pompeu Fabra, Barcelona, Spain
- Southwest Center for Occupational and Environmental Health (SWCOEH), Department of Epidemiology, Human Genetics, and Environmental Sciences, UTHealth School of Public Health, Houston, TX, USA
| | - Mònica Guxens
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- ISGlobal, Barcelona, Spain
- Universitat Pompeu Fabra, Barcelona, Spain
- Department of Child and Adolescent Psychiatry, Erasmus MC, University Medical Centre, Rotterdam, The Netherlands
| | - Jesús M Ibarluzea
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Biodonostia, Environmental Epidemiology and Child Development Group, San Sebastian, Spain
- Health Department of the Basque Government, Sub-directorate of Public Health of Gipuzkoa, San Sebastian, Spain
| | - Carmen Iñiguez
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Department of Statistics and Operational Research, Universitat de València, València, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I Universitat de València, València, Spain
| | - Aitana Lertxundi
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Biodonostia, Environmental Epidemiology and Child Development Group, San Sebastian, Spain
- Department of Preventive Medicine and Public Health, University of the Basque Country (UPV-EHU), Leioa, Spain
| | - Marisa Rebagliato
- CIBER Epidemiología y Salud Pública, Madrid, Spain
- Epidemiology and Environmental Health Joint Research Unit, FISABIO-Universitat Jaume I Universitat de València, València, Spain
- Unit of Medicine, Universitat Jaume I, Castellón de la Plana, Spain
| | - Michael D Swartz
- Department of Biostatistics and Data Science, UTHealth School of Public Health, Houston, TX, USA
| | - Kristina W Whitworth
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA.
- Center for Precision Environmental Health, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
29
|
Huang C, Yang J, Ma J, Tan W, Wu L, Shan B, Wang S, Chen J, Li Y. An efficient mixed-mode strong anion-exchange adsorbent based on functionalized polyethyleneimine for simultaneous solid phase extraction and purification of bisphenol analogues and monoalkyl phthalate esters in human urine. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
30
|
Zhang C, Zhou L, Wu XC, Guan TY, Zou XM, Chen C, Yuan MY, Li YH, Wang S, Tao FB, Hao JH, Su PY. Association of serum bisphenol AF concentration with depressive symptoms in adolescents: A nested case-control study in China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113734. [PMID: 35679728 DOI: 10.1016/j.ecoenv.2022.113734] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 05/28/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND As an important alternative to bisphenol A (BPA), bisphenol AF (BPAF) is widely used and can be detected in multiple human biological samples. However, there are few studies on neurotoxicity of BPAF at present. In particular, no epidemiological studies have investigated BPAF in relation to depressive symptoms in adolescents. Here, our study aimed to evaluate the associations between serum BPAF concentrations and depressive symptoms in adolescents. METHODS A nested case-control study within an ongoing longitudinal prospective adolescent cohort that was established in Huaibei, China was conducted. A total of 175 participants who had new-onset depressive symptoms (cases) and 175 participants without depressive symptoms (controls) were included. Serum BPAF concentrations was measured using ultra-high-performance liquid chromatography-tandem mass spectrometry. The associations between BPAF exposure and the risk of depressive symptoms in adolescents were assessed using conditional logistic regression. The dose-response relationship between BPAF level and depressive symptoms was estimated using restricted cubic spline analyses. RESULTS In this study, the detection rate of serum BPAF was 100%, and the median (interquartile range, IQR) serum BPAF concentration was 5.24 (4.41-6.11) pg/mL in the case group and 4.86 (4.02-5.77) pg/mL in the control group (P = 0.009). Serum BPAF exposure was a risk factor for depressive symptoms (odds ratio (OR)= 1.132, 95% confidence interval (CI):1.013-1.264). After adjustment for all for confounders, compared with the low-exposure group, the high-exposure group had a 2.806-fold increased risk of depressive symptoms (OR=2.806, 95% CI: 1.188-6.626). Stratified analysis by sex revealed that males were more vulnerable to BPAF exposure than females. After adjustment for all confounders, compared with the low-exposure group, the relative risk of depressive symptoms in the high-exposure group was 3.858 (95% CI: 1.118-12.535) for males, however, no significant association between BPAF exposure and depressive symptoms was found in females. In addition, there was a marked linear association between BPAF exposure and the risk of depressive symptoms in the total population and in males. CONCLUSIONS The adolescents in this study were widely exposed to low levels of BPAF. A significant positive association was found between serum BPAF levels and the risk of depressive symptoms. The association was significantly modified by sex, and males were more vulnerable to BPAF exposure than females.
Collapse
Affiliation(s)
- Chao Zhang
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Li Zhou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xiao-Chang Wu
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Tian-Yue Guan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Xuan-Min Zou
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Chen Chen
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Meng-Yuan Yuan
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Yong-Han Li
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Sheng Wang
- Center for Scientific Research of Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Fang-Biao Tao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China
| | - Jia-Hu Hao
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| | - Pu-Yu Su
- Department of Maternal, Child and Adolescent Health, School of Public Health, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Key Laboratory of Population Health and Aristogenics, Anhui Medical University, No. 81 Meishan Road, Hefei 230032, Anhui, China.
| |
Collapse
|
31
|
Guignard D, Canlet C, Tremblay-Franco M, Chaillou E, Gautier R, Gayrard V, Picard-Hagen N, Schroeder H, Jourdan F, Zalko D, Viguié C, Cabaton NJ. Gestational exposure to bisphenol A induces region-specific changes in brain metabolomic fingerprints in sheep. ENVIRONMENT INTERNATIONAL 2022; 165:107336. [PMID: 35700571 DOI: 10.1016/j.envint.2022.107336] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 06/02/2022] [Accepted: 06/02/2022] [Indexed: 06/15/2023]
Abstract
Fetal brain development depends on maternofetal thyroid function. In rodents and sheep, perinatal BPA exposure is associated with maternal and/or fetal thyroid disruption and alterations in central nervous system development as demonstrated by metabolic modulations in the encephala of mice. We hypothesized that a gestational exposure to a low dose of BPA affects maternofetal thyroid function and fetal brain development in a region-specific manner. Pregnant ewes, a relevant model for human thyroid and brain development, were exposed to BPA (5 µg/kg bw/d, sc). The thyroid status of ewes during gestation and term fetuses at delivery was monitored. Fetal brain development was assessed by metabolic fingerprints at birth in 10 areas followed by metabolic network-based analysis. BPA treatment was associated with a significant time-dependent decrease in maternal TT4 serum concentrations. For 8 fetal brain regions, statistical models allowed discriminating BPA-treated from control lambs. Metabolic network computational analysis revealed that prenatal exposure to BPA modulated several metabolic pathways, in particular excitatory and inhibitory amino-acid, cholinergic, energy and lipid homeostasis pathways. These pathways might contribute to BPA-related neurobehavioral and cognitive disorders. Discrimination was particularly clear for the dorsal hippocampus, the cerebellar vermis, the dorsal hypothalamus, the caudate nucleus and the lateral part of the frontal cortex. Compared with previous results in rodents, the use of a larger animal model allowed to examine specific brain areas, and generate evidence of the distinct region-specific effects of fetal BPA exposure on the brain metabolome. These modifications occur concomitantly to subtle maternal thyroid function alteration. The functional link between such moderate thyroid changes and fetal brain metabolomic fingerprints remains to be determined as well as the potential implication of other modes of action triggered by BPA such as estrogenic ones. Our results pave the ways for new scientific strategies aiming at linking environmental endocrine disruption and altered neurodevelopment.
Collapse
Affiliation(s)
- Davy Guignard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Cécile Canlet
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Marie Tremblay-Franco
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Elodie Chaillou
- CNRS, IFCE, INRAE, Université de Tours, PRC, Nouzilly, France
| | - Roselyne Gautier
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France; Metatoul-AXIOM Platform, National Infrastructure for Metabolomics and Fluxomics: MetaboHUB, Toxalim, INRAE, Toulouse, France
| | - Véronique Gayrard
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Nicole Picard-Hagen
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Henri Schroeder
- Université de Lorraine, INSERM U1256, NGERE, Nutrition Génétique et Exposition aux Risques Environnementaux, 54000 Nancy, France
| | - Fabien Jourdan
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Daniel Zalko
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| | - Catherine Viguié
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France.
| | - Nicolas J Cabaton
- Toxalim (Research Centre in Food Toxicology), Université de Toulouse, INRAE, ENVT, INP-Purpan, UPS, Toulouse, France
| |
Collapse
|
32
|
Welch C, Mulligan K. Does Bisphenol A Confer Risk of Neurodevelopmental Disorders? What We Have Learned from Developmental Neurotoxicity Studies in Animal Models. Int J Mol Sci 2022; 23:2894. [PMID: 35270035 PMCID: PMC8910940 DOI: 10.3390/ijms23052894] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/02/2022] [Accepted: 03/05/2022] [Indexed: 02/01/2023] Open
Abstract
Substantial evidence indicates that bisphenol A (BPA), a ubiquitous environmental chemical used in the synthesis of polycarbonate plastics and epoxy resins, can impair brain development. Clinical and epidemiological studies exploring potential connections between BPA and neurodevelopmental disorders in humans have repeatedly identified correlations between early BPA exposure and developmental disorders, such as attention deficit/hyperactivity disorder and autism spectrum disorder. Investigations using invertebrate and vertebrate animal models have revealed that developmental exposure to BPA can impair multiple aspects of neuronal development, including neural stem cell proliferation and differentiation, synapse formation, and synaptic plasticity-neuronal phenotypes that are thought to underpin the fundamental changes in behavior-associated neurodevelopmental disorders. Consistent with neuronal phenotypes caused by BPA, behavioral analyses of BPA-treated animals have shown significant impacts on behavioral endophenotypes related to neurodevelopmental disorders, including altered locomotor activity, learning and memory deficits, and anxiety-like behavior. To contextualize the correlations between BPA and neurodevelopmental disorders in humans, this review summarizes the current literature on the developmental neurotoxicity of BPA in laboratory animals with an emphasis on neuronal phenotypes, molecular mechanisms, and behavioral outcomes. The collective works described here predominantly support the notion that gestational exposure to BPA should be regarded as a risk factor for neurodevelopmental disorders.
Collapse
Affiliation(s)
- Chloe Welch
- Division of Biological Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA;
| | - Kimberly Mulligan
- Department of Biological Sciences, California State University, Sacramento, 6000 J Street, Sacramento, CA 95819, USA
| |
Collapse
|
33
|
Kim JI, Lee YA, Shin CH, Hong YC, Kim BN, Lim YH. Association of bisphenol A, bisphenol F, and bisphenol S with ADHD symptoms in children. ENVIRONMENT INTERNATIONAL 2022; 161:107093. [PMID: 35077929 DOI: 10.1016/j.envint.2022.107093] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/17/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Bisphenol A (BPA) has been linked to attention-deficit/hyperactivity disorder (ADHD) symptoms, but the neurotoxic effects of bisphenol substitutes such as bisphenol F (BPF) and S (BPS) have not been well investigated. We investigated the associations between BPA, BPF, and BPS with ADHD symptoms at multiple time points in children. METHODS The levels of BPA (at ages 4, 6, and 8), BPF (at ages 6 and 8), and BPS (at ages 6 and 8) were measured in 619 children. Because of the low detection frequency of BPF and BPS levels, participants were divided into categories (<or ≥ limit of detection (LOD) for BPF; < LOD, ≥ LOD and < median, or ≥ median for BPS). ADHD symptoms were assessed using the ADHD Rating Scale IV (ARS). The relationship between bisphenols and ARS scores was analyzed using Poisson regression models, and generalized additive models and piecewise regression models were further explored for BPA. RESULTS BPA was detected in most participants (>97%), whereas BPF and BPS were less frequently detected (age 6: 17.5% for BPF and 42.0% for BPS; age 8: 51.6% for BPF and 73.3% for BPS). Doubling in BPA levels was associated with increased ARS scores by 4.7% (95% confidence intervals [CI]: 0.5, 9.2) at age 6. The association was greater with BPA levels higher than 3.0 μg/g creatinine (24.2% [95% CI: 15.5, 33.6] increase). The BPF ≥ LOD group had 10.8% (95% CI: 1.2, 21.4) higher ARS scores than the BPF < LOD group. The BPS ≥ median group had 11.4% (95% CI: 2.0, 21.7) higher ARS scores than the BPS < LOD group. CONCLUSION All bisphenols, in particular those at or above the LOD or median levels, were associated with ADHD symptoms at age 6. Further prospective studies are warranted to determine causal inference.
Collapse
Affiliation(s)
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, South Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Korea.
| | - Youn-Hee Lim
- Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, South Korea; Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
34
|
Huang Z, Fu W, Dou L, Bao H, Wu W, Su P, Huang K, Zhu P, Sheng J, Xu Y, Tao F, Hao J. Prenatal Bisphenol A Exposure and Early Childhood Behavior and Cognitive Function: A Chinese Birth Cohort Study. Neuroendocrinology 2022; 112:311-323. [PMID: 33910209 DOI: 10.1159/000516881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Accepted: 04/28/2021] [Indexed: 11/19/2022]
Abstract
INTRODUCTION Biomonitoring of bisphenol A (BPA) in human blood is still scarce, although already noticeable. We aimed to examine the associations between prenatal serum BPA concentrations and behavior and cognitive function in preschool children. METHODS A total of 1,782 mother-child pairs with complete demographic information, blood samples, and psychological measurements were included from the China-Anhui Birth Cohort (C-ABCS). We detected serum BPA concentrations and assessed children's neurodevelopment using a set of psychometric scales. RESULTS The median prenatal maternal serum BPA concentration was 0.23 (P25, P75: 0.07, 0.52) ng/mL, with a detection frequency of 85.19%. Compared with the girls with the lowest concentrations, those with highest BPA concentrations had increased risks of inhibitory self-control impairment [relative risk (RR) = 3.66, 95% confidence interval (CI): 1.53, 7.58], emergent metacognition impairment (RR = 1.70, 95% CI: 1.07, 2.78), conduct problem (RR = 1.68, 95% CI: 1.12, 2.39), peer relationship problem (RR = 2.57, 95% CI: 1.33, 4.47), higher total difficulties score (RR = 1.76, 95% CI: 1.12, 2.67), and higher impact factor score (RR = 1.52, 95% CI: 1.11, 2.05), while the boys with the highest prenatal BPA concentrations had an increased risk of conduct problem compared with those with the lowest concentrations (RR = 1.59, 95% CI: 1.09, 2.24) (P-interaction = 0.011). After stratification by age, high prenatal BPA concentrations were associated with increased ADHD (RR = 4.44, 95% CI: 1.54, 10.85) among children aged 3 years, not among children aged 4 years. CONCLUSION Our study revealed the sex-specific and age-specific impacts of prenatal BPA exposure on preschool children's cognitive and behavioral development.
Collapse
Affiliation(s)
- Zhaohui Huang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
- Anhui Provincial Center for Women and Child Health, Hefei, China
| | - Weinan Fu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
| | - Lianjie Dou
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
| | - Huihui Bao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Wanke Wu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Puyu Su
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Kun Huang
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Peng Zhu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jie Sheng
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Yuanyuan Xu
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Fangbiao Tao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| | - Jiahu Hao
- Department of Maternal, Child & Adolescent Health, School of Public Health, Anhui Medical University, Hefei, China
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, Hefei, China
- NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract, Hefei, China
- Anhui Provincial Key Laboratory of Population Health and Aristogenics/Key Laboratory of Environmental Toxicology of Anhui Higher Education Institutes, Anhui Medical University, Hefei, China
| |
Collapse
|
35
|
Bornehag CG, Engdahl E, Unenge Hallerbäck M, Wikström S, Lindh C, Rüegg J, Tanner E, Gennings C. Prenatal exposure to bisphenols and cognitive function in children at 7 years of age in the Swedish SELMA study. ENVIRONMENT INTERNATIONAL 2021; 150:106433. [PMID: 33637302 DOI: 10.1016/j.envint.2021.106433] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 01/29/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Experimental evidence demonstrates that exposure to bisphenol A (BPA), and the recently introduced alternatives bisphenol S (BPS) and bisphenol F (BPF) alter normal neurodevelopment. More research is needed to evaluate the associations between exposure to individual BPA alternatives and neurodevelopmental outcomes in humans. OBJECTIVE The present study aimed at examining the individual associations between prenatal BPA, BPS and BPF exposure and cognitive outcomes in children at age 7 years. METHOD Women were enrolled in the Swedish Environmental Longitudinal Mother and Child, Asthma and Allergy (SELMA) study, at gestational median week 10.0, and their children were examined for cognitive function at 7 years of age (N = 803). Maternal urinary BPA, BPS, and BPF concentrations were measured at enrollment and childreńs cognitive function at the age of 7 years was measured using the Wechsler Intelligence Scale for Children IV (WISC-IV). RESULTS All three bisphenols were detected in over 90% of the women, where BPA had the highest geometric mean concentrations (1.55 ng/mL), followed by BPF (0.16 ng/mL) and BPS (0.07 ng/mL). Prenatal BPF exposure was associated with decreased full scale IQ (β = -1.96, 95%CI; -3.12; -0.80), as well as with a decrease in all four sub scales covering verbal comprehension, perceptual reasoning, working memory and processing speed. This association corresponded to a 1.6-point lower IQ score for an inter-quartile-range (IQR) change in prenatal BPF exposure (IQR = 0.054-0.350 ng/mL). In sex-stratified analyses, significant associations with full scale IQ were found for boys (β = -2.86, 95%CI; -4.54; -1.18), while the associations for girls did not reach significance (β = -1.38, 95%CI; -2.97; 0.22). No significant associations between BPA nor BPS and cognition were found. DISCUSSION Prenatal exposure to BPF was significantly associated with childreńs cognitive function at 7 years. Since BPF is replacing BPA in numerous consumer products globally, this finding urgently call for further studies.
Collapse
Affiliation(s)
- Carl-Gustaf Bornehag
- Karlstad University, Karlstad, Sweden; Icahn School of Medicine at Mount Sinai, New York City, USA.
| | | | | | | | | | - Joëlle Rüegg
- Karlstad University, Karlstad, Sweden; Uppsala University, Uppsala, Sweden
| | - Eva Tanner
- Icahn School of Medicine at Mount Sinai, New York City, USA
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York City, USA
| |
Collapse
|
36
|
Minatoya M, Kishi R. A Review of Recent Studies on Bisphenol A and Phthalate Exposures and Child Neurodevelopment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073585. [PMID: 33808331 PMCID: PMC8036555 DOI: 10.3390/ijerph18073585] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 01/17/2023]
Abstract
Purpose of Review: Bisphenol A and phthalate have been found in the environment, as well as in humans. In this narrative review pre- and postnatal bisphenol A and phthalate exposures, their relationship to neurodevelopment, and the behavioral outcomes of children are elucidated, focusing in particular on the recent case-control, cross-sectional, and longitudinal studies. This review also introduces some of the possible mechanisms behind the observed associations between exposures and outcomes. Recent Findings: Although bisphenol A and phthalate exposure have been reported to influence neurobehavioral development in children, there are various kinds of test batteries for child neurodevelopmental assessment at different ages whose findings have been inconsistent among studies. In addition, the timing and number of exposure assessments have varied. Summary: Overall, this review suggests that prenatal exposure to bisphenol A and phthalates may contribute to neurobehavioral outcomes in children. The evidence is still limited; however, Attention Deficit Hyperactivity Disorder (ADHD) symptoms, especially among boys, constantly suggested association with both prenatal and concurrent exposure to bisphenol A. Although there is limited evidence on the adverse effects of prenatal and postnatal bisphenol A and phthalate exposures provided, pregnant women and young children should be protected from exposure based on a precautionary approach.
Collapse
|
37
|
Association of placental concentrations of phenolic endocrine disrupting chemicals with cognitive functioning in preschool children from the Environment and Childhood (INMA) Project. Int J Hyg Environ Health 2020; 230:113597. [PMID: 32795877 DOI: 10.1016/j.ijheh.2020.113597] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 11/23/2022]
Abstract
Developmental exposure to bisphenol A (BPA) and other phenolic endocrine disrupting chemicals (EDCs) may affect child neurodevelopment, but data on the effects of prenatal exposure to phenols on cognitive function remain sparse. Our aim was to examine the association of placental concentrations of several phenolic EDCs, including BPA, parabens (PBs), and benzophenones (BzPs), with cognitive development in preschool children from the Environment and Childhood (INMA) Project in Spain. Concentrations of BPA, four PBs (methylparaben [MePB], ethylparaben [EtPB], propylparaben [PrPB], and butylparaben [BuPB]), and six BzPs (BzP-1, BzP-2, BzP-3, BzP-6, BzP-8, and 4-hydroxybenzophenone [4-OH-BzP]) were measured in 490 placenta samples randomly selected from five INMA cohorts collected between 2000 and 2008. Neuropsychological assessment of cognitive and motor function was performed with the McCarthy Scales of Children's Abilities (MSCA) at the age of 4-5 years. Associations were assessed in a sub-sample of 191 mother-child pairs using linear and logistic regression models adjusted for confounding factors. PB compounds were detected in more than 71% of placentas, BPA in 62%, 4-OH-BzP in 50%, and the remaining BzPs in <9% of the samples. Because of the low detection frequency of BzP compounds, only 4-OH-BzP was included in the exposure-outcome analyses. After adjustment for confounders, BPA was associated with greater odds of scoring lower (below the 20th percentile) in the verbal (third vs. first exposure tertile: odds ratio [OR] = 2.78, 95% confidence interval [CI] = 1.00; 5.81, p-trend = 0.05) and gross motor (detected vs. undetected: OR = 1.75, 95%CI = 1.06; 9.29) areas, and these associations were only significant for boys. Regarding PB compounds, PrPB was associated with lower scores in memory (detected vs. undetected: β = -4.96, 95%CI = -9.54; -0.31), span memory (OR = 2.50, 95%CI = 0.95; 6.92 and 2.71, 95%CI = 0.97; 6.64, respectively for second and third tertiles, p-trend = 0.03), and motor function (β = -5.15, 95%CI = -9.26; -0.01 for third vs. first exposure tertile, p-trend = 0.04). EtPB and total PBs concentrations in the second tertile were also associated with poorer visual function of posterior cortex and worse quantitative performance, respectively, but linear trends were not statistically significant. The associations of BPA and PrPB with poorer verbal, memory, and motor skills are novel observations that warrant further attention. Larger prospective studies are required to confirm whether prenatal exposure to BPA and other phenolic EDCs is associated with impaired cognitive development.
Collapse
|
38
|
van den Dries MA, Guxens M, Spaan S, Ferguson KK, Philips E, Santos S, Jaddoe VW, Ghassabian A, Trasande L, Tiemeier H, Pronk A. Phthalate and Bisphenol Exposure during Pregnancy and Offspring Nonverbal IQ. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:77009. [PMID: 32716663 PMCID: PMC7384796 DOI: 10.1289/ehp6047] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 05/22/2020] [Accepted: 06/10/2020] [Indexed: 05/07/2023]
Abstract
BACKGROUND Prenatal exposures to phthalates and bisphenols are associated with impaired brain development in animals. However, epidemiological studies investigating the association between prenatal phthalate or bisphenol exposure and cognition have produced mixed findings and mostly had modest sample sizes and measured the exposure during the third trimester. OBJECTIVE We examined the association between pregnancy maternal urinary biomarkers of phthalate or bisphenol exposure and nonverbal intelligence quotient (IQ) in children 6 years of age. METHOD The study sample consisted of 1,282 mother-child pairs participating in the Generation R Study, a population-based birth cohort in Rotterdam, Netherlands (enrollment 2002-2006). We measured maternal urinary concentrations of 18 phthalate metabolites and 8 bisphenols at < 18 , 18-25, and > 25 wks of gestation. Child nonverbal IQ was measured at 6 years of age using the Snijders-Oomen Nonverbal Intelligence Test-Revised. Linear regression models were fit for each of the three collection phases separately, the three collection phases jointly, and for the averaged prenatal exposure across pregnancy. RESULTS Higher urinary concentrations of phthalate metabolites during early pregnancy were associated with lower child nonverbal IQ score [e.g., B per 10-fold increase in summed low-molecular weight phthalates = - 1.7 (95% CI: - 3.1 , - 0.3 )]. This association remained unchanged when adjusted for mid and late pregnancy exposures. We also observed an inverse association between late pregnancy di-n-octyl phthalate (DNOP) exposure and nonverbal IQ. Maternal urinary concentrations of bisphenols were not associated with child nonverbal IQ. There was no effect estimate modification by sex. CONCLUSIONS We did not observe that maternal biomarkers of bisphenol exposure are associated with nonverbal IQ. We found that phthalate exposure in early pregnancy and DNOP exposure in late pregnancy are associated with lower nonverbal IQ scores in children. Our results might suggest that particularly early pregnancy is a sensitive window of phthalate exposure, but future studies are needed to replicate our findings. https://doi.org/10.1289/EHP6047.
Collapse
Affiliation(s)
- Michiel A. van den Dries
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
- Generation R Study Group, Erasmus Medical Center, Rotterdam, Netherlands
| | - Mònica Guxens
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
- Barcelona Institute for Global Health, Barcelona, Spain
- Pompeu Fabra University, Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health, Instituto de Salud Carlos III, Spain
| | - Suzanne Spaan
- Department of Risk Analysis for Products in Development, TNO, Utrecht, Netherlands
| | - Kelly K. Ferguson
- Epidemiology Branch, National Institute of Environmental Health Sciences, National Institutes of Health, Department of Health and Human Services, Durham, North Carolina, USA
| | - Elise Philips
- Generation R Study Group, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
| | - Susana Santos
- Generation R Study Group, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
| | - Vincent W.V. Jaddoe
- Generation R Study Group, Erasmus Medical Center, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
| | - Akhgar Ghassabian
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
- Department of Population Health, New York University School of Medicine, New York, New York, USA
| | - Leonardo Trasande
- Department of Pediatrics, New York University School of Medicine, New York, New York, USA
- Department of Environmental Medicine, New York University School of Medicine, New York, New York, USA
- Department of Population Health, New York University School of Medicine, New York, New York, USA
- New York University Wagner School of Public Service, New York, New York, USA
- New York University College of Global Public Health, New York, New York, USA
| | - Henning Tiemeier
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, Rotterdam, Netherlands
- Department of Social and Behavioral Sciences, Harvard T.H. Chan School of Public Health, Boston, USA
| | - Anjoeka Pronk
- Department of Risk Analysis for Products in Development, TNO, Utrecht, Netherlands
| |
Collapse
|
39
|
Guo J, Wu C, Zhang J, Qi X, Lv S, Jiang S, Zhou T, Lu D, Feng C, Chang X, Zhang Y, Cao Y, Wang G, Zhou Z. Prenatal exposure to mixture of heavy metals, pesticides and phenols and IQ in children at 7 years of age: The SMBCS study. ENVIRONMENT INTERNATIONAL 2020; 139:105692. [PMID: 32251899 DOI: 10.1016/j.envint.2020.105692] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/24/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Prenatal exposure to heavy metals, pesticides and phenols has been suggested to interfere with neurodevelopment, but the neurotoxicity of their mixtures is still unclear. We aimed to elucidate the associations of maternal urinary concentrations of selected chemical mixtures with intelligence quotient (IQ) in children. METHODS Maternal urinary concentrations of selected heavy metals, pesticide metabolites, and phenols were quantified in pregnant women who participated in the Sheyang Mini Birth Cohort Study (SMBCS) from June 2009 to January 2010. At age 7 years, child's IQ score was assessed using the Chinese version of Wechsler Intelligence Scale for Children (C-WISC) by trained pediatricians. Generalized linear regression models (GLM), Bayesian kernel machine regression (BKMR) models and elastic net regression (ENR) models were used to assess the associations of urinary concentrations individual chemicals and their mixtures with IQ scores of the 7-year-old children. RESULTS Of 326 mother-child pairs, single-chemical models indicated that prenatal urinary concentrations of lead (Pb) and bisphenol A (BPA) were significantly negatively associated with full intelligence quotient (FIQ) among children aged 7 years [β = -2.31, 95% confidence interval (CI): -4.13, -0.48; p = 0.013, sex interaction p-value = 0.076; β = -1.18, 95% CI: -2.21, -0.15; p = 0.025; sex interaction p-value = 0.296, for Pb and BPA, respectively]. Stratified analysis by sex indicated that the associations were only statistically significant in boys. In multi-chemical BKMR and ENR models, statistically significant inverse association was found between prenatal urinary Pb level and boy's FIQ scores at 7 years. Furthermore, BKMR analysis indicated that the overall mixture was associated with decreases in boy's IQ when all the chemicals' concentrations were at their 75th percentiles or higher, compared to at their 50th percentiles. ENR models revealed that maternal urinary Pb levels were statistically significantly associated with lower FIQ scores (β = -2.20, 95% CI: -4.20, -0.20; p = 0.031). CONCLUSIONS Prenatal exposure to selected chemical mixtures may affect intellectual performance at 7 years of age, particularly in boys. Pb and BPA were suspected as primary chemicals associated with child neurodevelopment.
Collapse
Affiliation(s)
- Jianqiu Guo
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Chunhua Wu
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China.
| | - Jiming Zhang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Xiaojuan Qi
- Zhejiang Provincial Center for Disease Control and Prevention, No. 3399 Binsheng Road, Hangzhou 310051, China
| | - Shenliang Lv
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Shuai Jiang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Tong Zhou
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Dasheng Lu
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai 200336, China
| | - Chao Feng
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai 200336, China
| | - Xiuli Chang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Yubin Zhang
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China
| | - Yang Cao
- Clinical Epidemiology and Biostatistics, School of Medical Sciences, Örebro University, Örebro 70182, Sweden
| | - Guoquan Wang
- Shanghai Municipal Center for Disease Control and Prevention, No. 1380 Zhongshan West Road, Shanghai 200336, China
| | - Zhijun Zhou
- School of Public Health/Key Laboratory of Public Health Safety of Ministry of Education/Key Lab of Health Technology Assessment, National Health Commission of the People's Republic of China, Fudan University, No. 130 Dong'an Road, Shanghai 200032, China.
| |
Collapse
|
40
|
Tanner EM, Hallerbäck MU, Wikström S, Lindh C, Kiviranta H, Gennings C, Bornehag CG. Early prenatal exposure to suspected endocrine disruptor mixtures is associated with lower IQ at age seven. ENVIRONMENT INTERNATIONAL 2020; 134:105185. [PMID: 31668669 DOI: 10.1016/j.envint.2019.105185] [Citation(s) in RCA: 130] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 08/16/2019] [Accepted: 09/12/2019] [Indexed: 05/23/2023]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) are xenobiotics with the ability to interfere with hormone action, even at low levels. Prior environmental epidemiology studies link numerous suspected EDCs, including phthalates and bisphenol A (BPA), to adverse neurodevelopmental outcomes. However, results for some chemicals were inconsistent and most assessed one chemical at a time. OBJECTIVES To evaluate the overall impact of prenatal exposure to an EDC mixture on neurodevelopment in school-aged children, and identify chemicals of concern while accounting for co-exposures. METHODS Among 718 mother-child pairs from the Swedish Environmental Longitudinal, Mother and child, Asthma and allergy study (SELMA) study, we used Weighted Quantile Sum (WQS) regression to assess the association between 26 EDCs measured in 1st trimester urine or blood, with Wechsler Intelligence Scale for Children (IV) Intelligence Quotient (IQ) scores at age 7 years. Models were adjusted for child sex, gestational age, mother's education, mother's IQ (RAVEN), weight, and smoking status. To evaluate generalizability, we conducted repeated holdout validation, a machine learning technique. RESULTS Using repeated holdout validation, IQ scores were 1.9-points (CI = -3.6, -0.2) lower among boys for an inter-quartile-range (IQR) change in the WQS index. BPF made the largest contribution to the index with a weight of 14%. Other chemicals of concern and their weights included PBA (9%), TCP (9%), MEP (6%), MBzP (4%), PFOA (6%), PFOS (5%), PFHxS (4%), Triclosan (5%), and BPA (4%). While we did observe an inverse association between EDCs and IQ among all children when training and testing the WQS index estimate on the full dataset, these results were not robust to repeated holdout validation. CONCLUSION Among boys, early prenatal exposure to EDCs was associated with lower intellectual functioning at age 7. We identified bisphenol F as the primary chemical of concern, suggesting that the BPA replacement compound may not be any safer for children. Future studies are needed to confirm the potential neurotoxicity of replacement analogues.
Collapse
Affiliation(s)
- Eva M Tanner
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Sverre Wikström
- Karlstad University, Karlstad, Sweden; School of Medical Sciences, Örebro University, Örebro, Sweden
| | - Christian Lindh
- Occupational and Environmental Medicine, Lund University, Lund, Sweden
| | - Hannu Kiviranta
- National Institute for Health and Welfare, Helsinki, Finland
| | - Chris Gennings
- Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Carl-Gustaf Bornehag
- Icahn School of Medicine at Mount Sinai, New York, NY, United States; Karlstad University, Karlstad, Sweden.
| |
Collapse
|
41
|
Mordaunt CE, Park BY, Bakulski KM, Feinberg JI, Croen LA, Ladd-Acosta C, Newschaffer CJ, Volk HE, Ozonoff S, Hertz-Picciotto I, LaSalle JM, Schmidt RJ, Fallin MD. A meta-analysis of two high-risk prospective cohort studies reveals autism-specific transcriptional changes to chromatin, autoimmune, and environmental response genes in umbilical cord blood. Mol Autism 2019; 10:36. [PMID: 31673306 PMCID: PMC6814108 DOI: 10.1186/s13229-019-0287-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 09/08/2019] [Indexed: 12/17/2022] Open
Abstract
Background Autism spectrum disorder (ASD) is a neurodevelopmental disorder that affects more than 1% of children in the USA. ASD risk is thought to arise from both genetic and environmental factors, with the perinatal period as a critical window. Understanding early transcriptional changes in ASD would assist in clarifying disease pathogenesis and identifying biomarkers. However, little is known about umbilical cord blood gene expression profiles in babies later diagnosed with ASD compared to non-typically developing and non-ASD (Non-TD) or typically developing (TD) children. Methods Genome-wide transcript levels were measured by Affymetrix Human Gene 2.0 array in RNA from cord blood samples from both the Markers of Autism Risk in Babies-Learning Early Signs (MARBLES) and the Early Autism Risk Longitudinal Investigation (EARLI) high-risk pregnancy cohorts that enroll younger siblings of a child previously diagnosed with ASD. Younger siblings were diagnosed based on assessments at 36 months, and 59 ASD, 92 Non-TD, and 120 TD subjects were included. Using both differential expression analysis and weighted gene correlation network analysis, gene expression between ASD and TD, and between Non-TD and TD, was compared within each study and via meta-analysis. Results While cord blood gene expression differences comparing either ASD or Non-TD to TD did not reach genome-wide significance, 172 genes were nominally differentially expressed between ASD and TD cord blood (log2(fold change) > 0.1, p < 0.01). These genes were significantly enriched for functions in xenobiotic metabolism, chromatin regulation, and systemic lupus erythematosus (FDR q < 0.05). In contrast, 66 genes were nominally differentially expressed between Non-TD and TD, including 8 genes that were also differentially expressed in ASD. Gene coexpression modules were significantly correlated with demographic factors and cell type proportions. Limitations ASD-associated gene expression differences identified in this study are subtle, as cord blood is not the main affected tissue, it is composed of many cell types, and ASD is a heterogeneous disorder. Conclusions This is the first study to identify gene expression differences in cord blood specific to ASD through a meta-analysis across two prospective pregnancy cohorts. The enriched gene pathways support involvement of environmental, immune, and epigenetic mechanisms in ASD etiology.
Collapse
Affiliation(s)
- Charles E Mordaunt
- 1Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Bo Y Park
- 2Department of Public Health, California State University, Fullerton, CA USA
| | - Kelly M Bakulski
- 3Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI USA
| | - Jason I Feinberg
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Lisa A Croen
- 5Division of Research and Autism Research Program, Kaiser Permanente Northern California, Oakland, CA USA
| | | | - Craig J Newschaffer
- 6Department of Biobehavioral Health, College of Health and Human Development, Pennsylvania State University, University Park, PA USA
| | - Heather E Volk
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| | - Sally Ozonoff
- 7Psychiatry and Behavioral Sciences and MIND Institute, University of California, Davis, CA USA
| | - Irva Hertz-Picciotto
- 8Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - Janine M LaSalle
- 1Department of Medical Microbiology and Immunology, Genome Center, and MIND Institute, University of California, Davis, CA USA
| | - Rebecca J Schmidt
- 8Department of Public Health Sciences and MIND Institute, University of California, Davis, CA USA
| | - M Daniele Fallin
- 4Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD USA
| |
Collapse
|
42
|
Lin CY, Hwang YT, Chen PC, Sung FC, Su TC. Association of serum levels of 4-tertiary-octylphenol with cardiovascular risk factors and carotid intima-media thickness in adolescents and young adults. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2019; 246:107-113. [PMID: 30529934 DOI: 10.1016/j.envpol.2018.11.110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2018] [Revised: 11/26/2018] [Accepted: 11/30/2018] [Indexed: 06/09/2023]
Abstract
In the family of alkylphenolic compounds, 4-tertiary-Octylphenol (4-t-OP) is extensively used in many products. In animal and in vitro studies, 4-t-OP exposure has been linked to cardiovascular disease (CVD) risk factors; however, there are no previous human epidemiological studies. In this study, 886 subjects were recruited from a cohort of Taiwanese adolescents and young adults to study the relationship between serum levels of 4-t-OP, CVD risk factors, and common carotid artery intima-media thickness (CIMT). The geometric mean (SD) 4-t-OP concentration was 32.52 (1.71) ng/mL. We found that serum levels of 4-t-OP were negatively associated with markers of glucose homeostasis (insulin, homeostasis model assessment of insulin resistance (HOMA-IR) and homeostasis model assessment of β-cell function (HOMA-β)), z score of body mass index (BMI z score) and CIMT but were positively associated with lipid profiles (high density lipoprotein cholesterol (HDL-C), Apolipoprotein A1). A one-unit elevation in natural log-transformed 4-t-OP (ng/mL) was negatively correlated with CIMT (mm) (β = -0.029, SE = 0.003, P < 0.001) in multiple linear regression analyses. The relationship between 4-t-OP and CIMT remained the same in all subgroups or if bisphenol A (BPA) was considered a covariate. In this study, we observed that higher levels of 4-t-OP levels were negatively correlated with markers of glucose homeostasis, BMI z score, and CIMT; positively correlated with lipid profiles (HDL-C and apolipoprotein A) in this cohort. Future research on exposure to 4-t-OP and CVD risk factors is warranted.
Collapse
Affiliation(s)
- Chien-Yu Lin
- Department of Internal Medicine, En Chu Kong Hospital, New Taipei City, 237, Taiwan; School of Medicine, Fu Jen Catholic University, New Taipei City, 242, Taiwan
| | - Yi-Ting Hwang
- Department of Statistics, National Taipei University, New Taipei City, 237, Taiwan
| | - Pau-Chung Chen
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, 10020, Taiwan; Department of Public Health, College of Public Health, National Taiwan University, Taipei, 10020, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, 10002, Taiwan
| | - Fung-Chang Sung
- Department of Health Services Administration, College of Public Health, China Medical University, Taichung, 404, Taiwan
| | - Ta-Chen Su
- Institute of Occupational Medicine and Industrial Hygiene, College of Public Health, National Taiwan University, Taipei, 10020, Taiwan; Department of Environmental and Occupational Medicine, National Taiwan University College of Medicine and National Taiwan University Hospital, Taipei, 10002, Taiwan; Department of Internal Medicine and Cardiovascular Center, National Taiwan University Hospital, Taipei, 10002, Taiwan.
| |
Collapse
|
43
|
Duan P, Liu B, Morais CLM, Zhao J, Li X, Tu J, Yang W, Chen C, Long M, Feng X, Martin FL, Xiong C. 4-Nonylphenol effects on rat testis and sertoli cells determined by spectrochemical techniques coupled with chemometric analysis. CHEMOSPHERE 2019; 218:64-75. [PMID: 30469005 DOI: 10.1016/j.chemosphere.2018.11.086] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 11/11/2018] [Accepted: 11/12/2018] [Indexed: 06/09/2023]
Abstract
Herein, vibrational spectroscopy has been applied for qualitative identification of biomolecular alterations that occur in cells and tissues following chemical treatment. Towards this end, we combined attenuated total reflection Fourier-transform infrared (ATR-FTIR) and Raman spectroscopy to assess testicular toxicology after 4-nonylphenol (NP) exposure, an estrogenic endocrine disruptor affecting testicular function in rats and other species. Rats aged 21, 35 or 50 days received NP at intra-peritoneal doses of 0, 25, 50 or 100 mg/kg for 20 consecutive days. Primary Sertoli cells (SCs) were treated with NP at various concentrations (0, 2.5, 5, 10 or 20 μM) for 12 h. Post-exposure, testicular cells, interstitial tissue and SCs were interrogated respectively using spectrochemical techniques coupled with multivariate analysis. Distinct biomolecular segregation between the NP-exposed samples vs. control were observed based on infrared (IR) spectral regions of 3200-2800 cm-1 and 1800-900 cm-1, and the Raman spectral region of 1800-900 cm-1. For in vivo experiments, the main wavenumbers responsible for segregation varied significantly among the three age classes. The main IR and Raman band differences between NP-exposed and control groups were observed for Amide (proteins), lipids and DNA/RNA. An interesting finding was that the peptide aggregation level, Amide Ӏ-to-Amide II ratio, and phosphate-to-carbohydrate ratio were considerably reduced in ex vivo NP-exposed testicular cells or SCs in vitro. This study demonstrates that ATR-FTIR and Raman spectroscopy techniques can be applied towards analysing NP-induced testicular biomolecular alterations.
Collapse
Affiliation(s)
- Peng Duan
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Center for Reproductive Medicine, Xiangyang No. 1 People's Hospital, Hubei University of Medicine, Xiangyang, 441000, China
| | - Bisen Liu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Camilo L M Morais
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK
| | - Jing Zhao
- Department of Epidemiology and Health Statistics, School of Public Health, Medical College, Wuhan University of Science and Technology, Wuhan, 430030, China
| | - Xiandong Li
- Department of Clinical Laboratory, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Jian Tu
- Reproductive Medicine Center, Maternal and Child Health Care Hospital of Yueyang City, Yueyang, 414000, China
| | - Weiyingxue Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chunling Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Manman Long
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xiaobing Feng
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Francis L Martin
- School of Pharmacy and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK.
| | - Chengliang Xiong
- Family Planning Research Institute, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China; Center for Reproductive Medicine, Wuhan Tongji Reproductive Medicine Hospital, 128 Sanyang Road, Wuhan, 430013, China.
| |
Collapse
|
44
|
Janicki T, Długoński J, Krupiński M. Detoxification and simultaneous removal of phenolic xenobiotics and heavy metals with endocrine-disrupting activity by the non-ligninolytic fungus Umbelopsis isabellina. JOURNAL OF HAZARDOUS MATERIALS 2018; 360:661-669. [PMID: 30219529 DOI: 10.1016/j.jhazmat.2018.08.047] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 07/21/2018] [Accepted: 08/14/2018] [Indexed: 06/08/2023]
Abstract
Organic and inorganic pollutants well known to interfere with the major functions of the endocrine system co-occur widely in contaminated ecosystems. The aim of the study was to evaluate the ability of Umbelopsis isabellina fungus to simultaneously remove and detoxify multiple environmentally significant endocrine disruptors: the heavy metals Cd(II), Zn(II), Mn(II), Pb(II) and Ni(II) and the phenolic xenobiotics nonylphenol (t-NP), 4-cumylphenol (CP) and 4-tert-octylphenol (4-t-OP). The effects of the metals on fungal growth and efficiency of single-metal uptake were also investigated. U. isabellina exhibited considerable tolerance to Zn(II), Mn(II), Pb(II) and Ni(II), with IC50/24 values ranging from 5.08 for Ni(II) to 13.1 mM for Zn(II). In the presence of CP, the maximum efficiency of Pb(II) removal increased 25% relative to that of the control. Supplementation with Mn(II) or Zn(II) enhanced the 4-t-OP degradation by 18 or 9%, respectively, after 6 h of cultivation. Ecotoxicological assays monitoring bioindicators from different aquatic ecosystems revealed detoxification coinciding with the removal of metals and organic xenobiotics from binary mixtures. This work indicates the potential of a single microorganism, U. isabellina, to remove both heavy metals and organic xenobiotics from co-contaminated sites, making it a suitable candidate for the development of bioremediation strategies.
Collapse
Affiliation(s)
- Tomasz Janicki
- Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Jerzy Długoński
- Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Mariusz Krupiński
- Department of Industrial Microbiology and Biotechnology, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland.
| |
Collapse
|
45
|
Kim S, Eom S, Kim HJ, Lee JJ, Choi G, Choi S, Kim S, Kim SY, Cho G, Kim YD, Suh E, Kim SK, Kim S, Kim GH, Moon HB, Park J, Kim S, Choi K, Eun SH. Association between maternal exposure to major phthalates, heavy metals, and persistent organic pollutants, and the neurodevelopmental performances of their children at 1 to 2years of age- CHECK cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 624:377-384. [PMID: 29258038 DOI: 10.1016/j.scitotenv.2017.12.058] [Citation(s) in RCA: 127] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 12/05/2017] [Accepted: 12/05/2017] [Indexed: 05/25/2023]
Abstract
Exposure of the developing fetus and infants to toxic substances can cause serious lifelong health consequences. Several chemicals have been associated with adverse neurodevelopmental disorders in the early life stages of humans. However, most epidemiological studies have focused on a limited number of chemicals, and hence may exclude important chemicals from consideration or result in conclusions built on associations by chance. In the present study, we investigated the chemical exposure profile of the women, and associated these with the early neurodevelopmental performance of their offspring at 13-24months of age. The chemicals assessed include four phthalates, bisphenol A, three heavy metals, 19 polychlorinated biphenyls (PCBs), 19 organochlorine pesticides, and 19 polybrominated diphenyl ethers, which were measured from urine, whole blood, serum, and/or breastmilk of the pregnant or lactating women. For neurodevelopmental performance, the Bayley Scales of Infant Development-II (BSID-II), Social Maturity Scale (SMS), and Child Behavior Checklist (CBCL) were measured from a total of 140 toddlers. Among the measured chemicals, monoethyl phthalate (MEP) in maternal urine was significantly associated with early mental, psychomotor, and social development. In addition, breast milk di-ethylhexyl phthalate (DEHP) metabolite and blood lead concentrations were inversely associated with mental and psychomotor development indices, respectively. Maternal blood PCB153, heavy metals, and urinary MEP levels were also higher among the children with behavioral problems, as indicated by the CBCL range. Taken together, maternal exposure to several EDCs such as PCBs and DEHP was associated with adverse neurodevelopmental performances among the children aged 1-2years. Confirmation of these association in larger populations, as well as longer-term consequences of such exposure warrant further investigation.
Collapse
Affiliation(s)
- Sunmi Kim
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Soyong Eom
- College of Medicine, Yonsei University, Seoul 26493, Republic of Korea
| | - Hai-Joong Kim
- College of Medicine, Korea University, Ansan 15355, Republic of Korea
| | - Jeong Jae Lee
- College of Medicine, Soonchunhyang University, Seoul 04401, Republic of Korea
| | - Gyuyeon Choi
- College of Medicine, Soonchunhyang University, Seoul 04401, Republic of Korea
| | - Sooran Choi
- College of Medicine, Inha University, Incheon 22332, Republic of Korea
| | - Sungjoo Kim
- College of Medicine, Hallym University, Seoul 07226, Republic of Korea
| | - Su Young Kim
- College of Medicine, Jeju National University, Jeju 63241, Republic of Korea
| | - Geumjoon Cho
- College of Medicine, Korea University, Ansan 15355, Republic of Korea
| | - Young Don Kim
- Sungkyunkwan University School of Medicine, Changwon 51353, Republic of Korea
| | - Eunsook Suh
- College of Medicine, Soonchunhyang University, Seoul 04401, Republic of Korea
| | - Sung Koo Kim
- College of Medicine, Hallym University, Seoul 07226, Republic of Korea
| | - Seunghyo Kim
- College of Medicine, Jeju National University, Jeju 63241, Republic of Korea
| | - Gun-Ha Kim
- College of Medicine, Korea University, Ansan 15355, Republic of Korea
| | - Hyo-Bang Moon
- Department of Marine Sciences and Convergent Technology, Hanyang University, Ansan 15588, Republic of Korea
| | - Jeongim Park
- College of Natural Sciences, Soonchunhyang University, Asan 31538, Republic of Korea
| | - Sungkyoon Kim
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - Kyungho Choi
- School of Public Health, Seoul National University, Seoul 08826, Republic of Korea
| | - So-Hee Eun
- College of Medicine, Korea University, Ansan 15355, Republic of Korea.
| |
Collapse
|
46
|
Vorhees CV, Sprowles JN, Regan SL, Williams MT. A better approach to in vivo developmental neurotoxicity assessment: Alignment of rodent testing with effects seen in children after neurotoxic exposures. Toxicol Appl Pharmacol 2018; 354:176-190. [PMID: 29544898 DOI: 10.1016/j.taap.2018.03.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2017] [Revised: 02/27/2018] [Accepted: 03/11/2018] [Indexed: 10/17/2022]
Abstract
High throughput screens for developmental neurotoxicity (DN) will facilitate evaluation of chemicals and can be used to prioritize those designated for follow-up. DN is evaluated under different guidelines. Those for drugs generally include peri- and postnatal studies and juvenile toxicity studies. For pesticides and commercial chemicals, when triggered, include developmental neurotoxicity studies (DNT) and extended one-generation reproductive toxicity studies. Raffaele et al. (2010) reviewed 69 pesticide DNT studies and found two of the four behavioral tests underperformed. There are now many epidemiological studies on children showing adverse neurocognitive effects, yet guideline DN studies fail to assess most of the functions affected in children; nor do DN guidelines reflect the advances in brain structure-function relationships from neuroscience. By reducing the number of test ages, removing underperforming tests and replacing them with tests that assess cognitive abilities relevant to children, the value of DN protocols can be improved. Testing for the brain networks that mediate higher cognitive functions need to include assessments of working memory, attention, long-term memory (explicit, implicit, and emotional), and executive functions such as cognitive flexibility. The current DNT focus on what can be measured should be replaced with what should be measured. With the wealth of data available from human studies and neuroscience, the recommendation is made for changes to make DN studies better focused on human-relevant functions using tests of proven validity that assess comparable functions to tests used in children. Such changes will provide regulatory authorities with more relevant data.
Collapse
Affiliation(s)
- Charles V Vorhees
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA.
| | - Jenna N Sprowles
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Samantha L Regan
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| | - Michael T Williams
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA; Division of Neurology, Cincinnati Children's Research Foundation, Cincinnati, OH 45229, USA
| |
Collapse
|
47
|
Nakiwala D, Peyre H, Heude B, Bernard JY, Béranger R, Slama R, Philippat C. In-utero exposure to phenols and phthalates and the intelligence quotient of boys at 5 years. Environ Health 2018; 17:17. [PMID: 29458359 PMCID: PMC5819230 DOI: 10.1186/s12940-018-0359-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2017] [Accepted: 01/29/2018] [Indexed: 05/23/2023]
Abstract
BACKGROUND There are concerns that developmental exposure to endocrine disrupting chemicals such as phenolic compounds and phthalates could affect child cognitive function. Epidemiological studies tackling this question have mainly focused on phthalate metabolites and bisphenol A, but not on the other phenolic compounds. Our study aimed to assess the relationship between in-utero exposure to phthalates, bisphenol A and other phenolic compounds (parabens, triclosan, dichlorophenols and benzophenone-3) and the Intelligence Quotient (IQ) of boys at 5-6 years. METHODS In 452 mother-son dyads from the French EDEN cohort, we measured 11 phthalate metabolites and 9 phenolic compounds (4 parabens, benzophenone-3, bisphenol A, 2 dichlorophenols and triclosan) in spot urine samples collected between 22 and 29 gestational weeks. Verbal and performance IQ of children were assessed at 5-6 years by a psychologist using the Wechsler Preschool and Primary Scale of Intelligence (WPPSI). We used adjusted Structural Equation Models (SEM) combined with Benjamini and Hochberg false discovery rate correction to assess the associations between maternal urine phenol and phthalate metabolite concentrations considered simultaneously and the boys' IQ. RESULTS No phenol or phthalate metabolite concentration was negatively associated with the boys' verbal or performance IQ (uncorrected p-values ≥0.09). Mono(3-carboxypropyl) phthalate tended to be associated with increased verbal IQ (β = 0.136, 95% confidence interval, 0.01; 0.27). This association disappeared after correction for multiple comparison (corrected p-value, 0.71). CONCLUSION Our results did not provide evidence of an inverse association between in-utero exposure to phenols or phthalates and verbal and performance IQ among boys. Since phenols and phthalates may have sex-specific effects, these null findings cannot be generalized to girls. Limitations included use of a single spot urine sample to assess exposures and lack of consideration of postnatal exposures.
Collapse
Affiliation(s)
- Dorothy Nakiwala
- Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Hugo Peyre
- Assistance Publique-Hôpitaux de Paris, Robert Debré Hospital, Child and Adolescent Psychiatry Department, Paris, France
- Cognitive Sciences and Psycholinguistic Laboratory, Ecole Normale Supérieure, Paris, France
| | - Barbara Heude
- U1153 Epidemiology and Biostatistics Sorbonne Paris Cité Research Centre (CRESS), Early Origin of the Child’s Health and Development (ORCHAD) Team, Inserm, Villejuif, France
- Université Paris Descartes, Villejuif, France
| | - Jonathan Y. Bernard
- U1153 Epidemiology and Biostatistics Sorbonne Paris Cité Research Centre (CRESS), Early Origin of the Child’s Health and Development (ORCHAD) Team, Inserm, Villejuif, France
- Université Paris Descartes, Villejuif, France
- Singapore Institute for Clinical Sciences (SICS), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Rémi Béranger
- Inserm U1085–IRSET, Université Rennes 1, Rennes, France
| | - Rémy Slama
- Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | - Claire Philippat
- Institute for Advanced Biosciences (IAB), INSERM U1209, CNRS UMR 5309, Université Grenoble Alpes, 38000 Grenoble, France
| | | |
Collapse
|