1
|
Keddy KH, Hoffmann S, Founou LL, Estrada-Garcia T, Gobena T, Havelaar AH, Jakobsen LS, Kubota K, Law C, Lake R, Minato Y, Al-Natour FNR, Pires SM, Rachmawati T, Sripa B, Torgerson P, Walter ES. Quantifying national burdens of foodborne disease-Four imperatives for global impact. PLOS GLOBAL PUBLIC HEALTH 2025; 5:e0004309. [PMID: 40202977 PMCID: PMC11981155 DOI: 10.1371/journal.pgph.0004309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Estimates of national burdens of the foodborne disease (FBD) inform country-level food safety policies, ranking infectious and non-infectious FBD hazards in terms of health and socioeconomic impact to mitigate FBD burdens. Using relevant publications on FBD burdens from scientific literature, this review contends that four major imperatives (health, economic, planetary boundaries, governance) argue for a sustainable programme to quantify national FBD burdens. FBD disproportionately affects children under five years of age, and low- and middle-income countries. The economic costs are significant and include medical care, child development, lost productivity and international trade losses. Climatic changes and environmental contamination cause socio-ecological disruptions, increasing risk factors for FBD. Good governance promotes food safety initiatives, addressing in part under-diagnosis and underreporting. Strengthening national policies on FBD surveillance and burden estimation can promote food safety policies and address the global and national imperatives for FBD control. Evidence-based educational and regulatory interventions for FBD can promote improvements in the health and socioeconomic circumstances of the most vulnerable.
Collapse
Affiliation(s)
- Karen H. Keddy
- Department of Veterinary Tropical Diseases, Faculty of Veterinary Science, University of Pretoria, Pretoria, South Africa
| | - Sandra Hoffmann
- US Department of Agriculture, Economic Research Service, Washington, DC, United States of America
| | - Luria Leslie Founou
- Reproductive, Maternal, Newborn, and Child Health (ReMARCH) Research Unit, Research Institute of the Centre of Expertise and Biological Diagnostic of Cameroon (CEDBCAM-RI), Yaoundé, Cameroon
- Antimicrobial Research Unit, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
- Infection and Global Health Division, School of Medicine, University of St Andrews, St Andrews, Scotland
| | - Teresa Estrada-Garcia
- Biomedicine Department of the Center for Research and Advanced Studies of the National Polytechnic Institute (CINVESTAV-IPN), Mexico City, Mexico
| | - Tesfaye Gobena
- College of Health and Medical Science, Haramaya University, Harar, Ethiopia
| | - Arie H. Havelaar
- Department of Animal Sciences, Global Food Systems Institute, and Emerging Pathogens Institute, University of Florida, Gainesville, Florida, United States of America
| | | | - Kunihiro Kubota
- Division of Food Safety information, National Institute of Health Sciences, Kawasaki, Japan
| | - Charlee Law
- Monitoring and Surveillance Nutrition and Food Safety Unit, Department of Nutrition and Food Safety, World Health Organization, Geneva, Switzerland
| | - Rob Lake
- Institute of Environmental, Science and Research, Auckland, New Zealand
| | - Yuki Minato
- Monitoring and Surveillance Nutrition and Food Safety Unit, Department of Nutrition and Food Safety, World Health Organization, Geneva, Switzerland
| | | | - Sara M. Pires
- National Food Institute, Technical University of Denmark, Kongens Lyngby, Denmark
| | - Tety Rachmawati
- Center of Research and Development for Humanities and Health Management, Jakarta, Indonesia
| | - Banchob Sripa
- Tropical Disease Research Center, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Paul Torgerson
- Veterinary Epidemiology, University of Zürich, Zürich, Switzerland
| | - Elaine Scallan Walter
- Department of Epidemiology, Colorado School of Public Health, Aurora, Colorado, United States of America
| |
Collapse
|
2
|
Folarin BT, Poma G, Yin S, Altamirano JC, Oluseyi T, Badru G, Covaci A. Assessment of legacy and alternative halogenated organic pollutants in outdoor dust and soil from e-waste sites in Nigeria: Concentrations, patterns, and implications for human exposure. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123032. [PMID: 38036088 DOI: 10.1016/j.envpol.2023.123032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/10/2023] [Accepted: 11/21/2023] [Indexed: 12/02/2023]
Abstract
E-waste is often processed informally, particularly in developing countries, resulting in the release of harmful chemicals into the environment. This study investigated the co-occurrence of selected persistent organic pollutants (POPs), including legacy and alternative halogenated flame retardants (10 polybrominated diphenyl ethers (PBDEs), decabromodiphenyl ethane (DBDPE), syn and anti-dechlorane plus (DP)), 32 polychlorinated biphenyls (PCBs) and 12 organochlorine pesticides (OCPs), in 20 outdoor dust and 49 soil samples from 7 e-waste sites in Nigeria. This study provides the first report on alternative flame retardants (DBDPE and DP) in Nigeria. The total concentration range of the selected classes of compounds was in the order: ∑10PBDEs (44-12300 ng/g) > DBDPE (4.9-3032 ng/g) > ∑2DP (0.7-278 ng/g) > ∑32PCBs (4.9-148 ng/g) > ∑12OCPs (1.9-25 ng/g) for dust, and DBDPE (4.9-9647 ng/g) > ∑10PBDEs (90.3-7548 ng/g) > ∑32PCBs (6.1-5025 ng/g) > ∑12OCPs (1.9-250 ng/g) > ∑2DP (2.1-142 ng/g) for soil. PBDEs were the major contributors to POP pollution at e-waste dismantling sites, while PCBs were the most significant contributors at e-waste dumpsites. DBDPE was found to be significantly associated with pollution at both e-waste dismantling and dumpsites. Estimated daily intake (EDI) via dust and soil ingestion and dermal adsorption routes ranged from 1.3 to 2.8 ng/kg bw/day and 0.2-2.9 ng/kg bw/day, respectively. In the worst-case scenario, EDI ranged from 2.9 to 10 ng/kg bw/day and 0.8-5.8 ng/kg bw/day for dust and soil, respectively. The obtained intake levels posed no non-carcinogenic risk, but could increase the incidence of cancer at some of the studied e-waste sites, with values exceeding the USEPA cancer risk lower limit (1.0 × 10-6). Overall, our results suggest that e-waste sites act as emission point sources of POPs.
Collapse
Affiliation(s)
- Bilikis T Folarin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Department of Chemistry, University of Lagos, Lagos State, Nigeria; Chemistry Department, Chrisland University, Ogun State, 23409, Nigeria
| | - Giulia Poma
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| | - Shanshan Yin
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy (IRA), Zhejiang Shuren University, Hangzhou, 310015, China.
| | - Jorgelina C Altamirano
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium; Instituto Argentino de Nivología, Glaciología y Ciencias Ambientales (IANIGLA), CONICET-UNCuyo-Government of Mendoza, P.O. Box. 331, (5500), Mendoza, Argentina; Universidad Nacional de Cuyo, Facultad de Ciencias Exactas y Naturales, (5500), Mendoza, Argentina
| | - Temilola Oluseyi
- Department of Chemistry, University of Lagos, Lagos State, Nigeria
| | - Gbolahan Badru
- Department of Geographical and Environmental Education, Lagos State University of Education, Oto-Ijanikin, Lagos State, Nigeria
| | - Adrian Covaci
- Toxicological Centre, University of Antwerp, Universiteitsplein 1, 2610, Wilrijk, Belgium
| |
Collapse
|
3
|
Liu C, Hou HS. Physical exercise and persistent organic pollutants. Heliyon 2023; 9:e19661. [PMID: 37809764 PMCID: PMC10558913 DOI: 10.1016/j.heliyon.2023.e19661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 08/29/2023] [Accepted: 08/29/2023] [Indexed: 10/10/2023] Open
Abstract
Exposure to the legacy and emerging persistent organic pollutants (POPs) incessantly has become an important threat to individual health, which is closely related to neurodevelopment, endocrine and cardiovascular homeostasis. Exercise, on the other hand, has been consistently shown to improve physical fitness. Whereas associations between traditional air pollutants, exercise and lung function have been thoroughly reviewed, reviews on associations between persistent organic pollutants and exercise are scarce. Hence, a literature review focused on exercise, exposure to POPs, and health risk assessment was performed for studies published from 2004 to 2022. The purpose of this review is to provide an overview of exposure pathways and levels of POPs during exercise, as well as the impact of exercise on health concerns attributable to the redistribution, metabolism, and excretion of POPs in vivo. Therein lies a broader array of exercise benefits, including insulin sensitizing, mitochondrial DNA repair, lipid metabolism and intestinal microecological balance. Physical exercise is conducive to reduce POPs body burden and resistant to health hazards of POPs generally. Besides, individual lipid metabolism condition is a critical factor in evaluating potential link in exercise, POPs and health effects.
Collapse
Affiliation(s)
- Chang Liu
- College of P.E, Minzu University of China, # 27, South Street Zhongguancun, Beijing, 100081, China
| | - Hui sheng Hou
- College of P.E, Minzu University of China, # 27, South Street Zhongguancun, Beijing, 100081, China
| |
Collapse
|
4
|
Shen M, Liu G, Zhou L, Yin H, Arif M. Comparison of pollution status and source apportionment for PCBs and OCPs of indoor dust from an industrial city. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:2473-2494. [PMID: 36006579 DOI: 10.1007/s10653-022-01360-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 08/08/2022] [Indexed: 06/15/2023]
Abstract
In this study, the pollution status of polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) was investigated in indoor and outdoor dust from three different functional areas of Hefei, China. The relationship between the concentrations of PCBs and OCPs and different influencing factors in dwellings was studied. The results showed that the concentrations of PCBs and OCPs were higher in samples from dwellings with higher smoking frequency, lower cleaning frequency, higher floors and smaller household size. The results of Spearman's correlation coefficient analysis indicated that PCBs and OCPs were not consistently associated with each other, while sources of low-chlorinated PCBs and high-chlorinated PCBs were different. Scanning electron microscopy (SEM) shows the shape of indoor dust was a mixture of blocky, flocculated, spherical structures, and irregular shapes. The results of principal component analysis (PCA) and positive matrix factorization model (PMF) showed that the PCBs and OCPs of indoor dust came from both indoor and outdoor sources between local and regional transport. Carbon (δ13C) and Nitrogen (δ15N) stable isotope results indicate or show that the indoor dust (δ13C: - 24.37‰, δ15N: 6.88‰) and outdoor dust (δ13C: - 12.65‰, δ15N: 2.558‰) is derived from fossil fuel, coal combustion, road dust, fly ash, C4 biomass and soil. Potential source contribution factor (PSCF) and concentration weighted-trajectory analysis suggest that sources of pollutants were local and regional transport from surrounding provinces and marine emissions. The average daily dose (adult: 8.20E-04, children: 2.37E-03) of pollutants and the carcinogenic risks (adult: 1.23E-02, children: 2.65E-02) were relatively greater for children than adults. This study demonstrates the utility of SEM to characterize indoor dust morphology while combining PMF, PSCF, and stable isotope methods in identifying indoor PCBs and OCPs sources and regions.
Collapse
Affiliation(s)
- Mengchen Shen
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China
- State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
- Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China
| | - Guijian Liu
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China.
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China.
| | - Li Zhou
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China
- State Key Laboratory of Marine Pollution (SKLMP), Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
- Suzhou Institute for Advanced Study, University of Science and Technology of China, Suzhou, 215123, Jiangsu, China
| | - Hao Yin
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- State Key Laboratory of Loess and Quaternary Geology, Institute of Earth Environment, The Chinese Academy of Sciences, Xi'an, 710075, Shaanxi, China
| | - Muhammad Arif
- CAS Key Laboratory of Crust-Mantle Materials and Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei, 230026, Anhui, China
- Department of Soil and Environmental Sciences, Muhammad Nawaz Shareef University of Agriculture, Multan, 66000, Pakistan
| |
Collapse
|
5
|
Ossai CJ, Iwegbue CMA, Tesi GO, Olisah C, Egobueze FE, Nwajei GE, Martincigh BS. Spatial characteristics, sources and exposure risk of polychlorinated biphenyls in dusts and soils from an urban environment in the Niger Delta of Nigeria. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 883:163513. [PMID: 37061053 DOI: 10.1016/j.scitotenv.2023.163513] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/21/2023] [Accepted: 04/11/2023] [Indexed: 05/03/2023]
Abstract
Chlorinated organic compounds, such as polychlorinated biphenyls (PCBs), are a threat to both humans and the environment because of their toxicity, persistence, and capacity for long-range atmospheric transport. The concentrations of 28 PCB congeners, including 12 dioxin-like and seven indicator PCBs, were investigated in soils, and indoor and outdoor dusts from Port Harcourt city, Nigeria, in order to evaluate the characteristic distribution patterns in these media, their sources, and possible risk. The PCB concentrations varied from 4.59 to 116 ng g-1 for soils, and from 1.80 to 23.0 ng g-1 and 2.73 to 57.4 ng g-1 for indoor and outdoor dusts respectively. The sequence of PCB concentrations in these matrices was soil > outdoor dust > indoor dust. The composition of PCBs in these matrices indicated the prevalence of lower chlorinated PCBs in indoor and outdoor dusts, while the higher chlorinated congeners were dominant in soils. Di-PCBs were the predominant homologues in indoor dusts, while deca-PCBs were the most prevalent homologues in outdoor dusts and soils. The TEQ values of dioxin-like PCBs in 60 % of the soils, 100 % of the indoor dust, and 30 % of the outdoor dust were above the indicative value of 4 pg TEQ g-1 established by the Canadian authority. The hazard index (HI) values for exposure of adults and children to PCBs in these media were mostly greater than one, while the total cancer risk (TCR) values exceeded the acceptable risk value of 10-6, which indicate probable non-carcinogenic and carcinogenic risks resulting from exposure to PCBs in these media. Source analysis for PCBs in these matrices shows that they originated from diverse sources.
Collapse
Affiliation(s)
- Chinedu J Ossai
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | | | - Godswill O Tesi
- Department of Chemical Sciences, University of Africa, Toru-Orua, Bayelsa State, Nigeria
| | - Chijioke Olisah
- Institute for Coastal and Marine Research, Department of Botany, Nelson Mandela University, Port Elizabeth 6031, South Africa
| | | | - Godwin E Nwajei
- Department of Chemistry, Delta State University, P.M.B. 1, Abraka, Nigeria
| | - Bice S Martincigh
- School of Chemistry and Physics, University of KwaZulu-Natal, Westville Campus, Private Bag X54001, Durban 4000, South Africa
| |
Collapse
|
6
|
Sohail M, Musstjab Akber Shah Eqani SA, Ilyas S, Bokhari H, Ali N, Podgorski JE, Muhammad S, Adelman D, Lohmann R. Gaseous and soil OCPs and PCBs along the Indus River, Pakistan: spatial patterns and air-soil gradients. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2023; 25:531-541. [PMID: 36661269 DOI: 10.1039/d2em00363e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
This study presents first-hand information on the occurrence of persistent organic pollutants (POPs) in the ambient air and surface soil along the Indus flood-plain, Pakistan. The sampling campaign was conducted at 15 site locations during 2014-15, along the Indus River (approximately 1300 km). Composite surface soil samples (N = 15) and passive air samples (N = 15) were collected for the estimation of gaseous POPs as well as air-soil exchange to evaluate the POP emission and distribution or dispersion patterns, source tracking, and contribution of the local and regional sources towards POP accumulation in the Indus River system. Among the studied POPs, levels of DDTs and PCBs were noticeably higher in ambient air (50-560 and 10-1100 pg m-3) and in soil (0.20-350 and 1.40-20 ng g-1), respectively. Regarding the spatial patterns, higher DDT concentrations (ng g-1) were detected in the air and soil samples collected from the wet mountain zone (WMZ) (p < 0.05), followed by the alluvial riverine zone (ARZ), low-lying mountain zone (LLZ), and frozen mountain zone (FMZ). The PCB data did not exhibit significant differences (p > 0.05) for the air samples, while PCB concentrations were significantly higher (p < 0.05) in soil from the LLZ, which may be associated with rapid urbanization and industrial activities in this area. The air-soil exchange of DDTs and PCBs showed net volatilization at most of the studied sites except for a few samples from the FMZ and WMZ. Results of this study about air-soil exchange gradients indicate the long range regional atmospheric transport (LRAT) of POPs to the colder areas (FMZ) of Pakistan, where these act as a secondary source of POPs in these areas.
Collapse
Affiliation(s)
- Muhammad Sohail
- Department of Biosciences, COMSATS University Islamabad, Pakistan.
- Department of Zoology, University of Central Punjab, Sargodha Campus, Lahore, Pakistan.
| | | | - Shazia Ilyas
- Department of Environmental Sciences, Forman Christian College (A Chartered University), Lahore, Pakistan
| | - Habib Bokhari
- Department of Microbiology, Kohsar University Murree, Punjab, Pakistan
| | - Nadeem Ali
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Joel E Podgorski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600 Dübendorf, Switzerland
| | - Shafi Muhammad
- Department of Biosciences, COMSATS University Islamabad, Pakistan.
| | - Dave Adelman
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, Rhode Island 02882, USA
| |
Collapse
|
7
|
Naseem S, Tabinda AB, Baqar M, Chohan K, Aslam I, Mahmood A, Yasar A, Zhao S, Zhang G. Organochlorines in the riverine ecosystem of Punjab province, Pakistan: contamination status, seasonal variation, source apportionment, and ecological risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:40340-40355. [PMID: 36609971 DOI: 10.1007/s11356-022-24528-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
The aim of the present study was to determine the occurrence, spatio-temporal variations, source apportioning, and ecological risk assessment of selected PCBs and OCPs in surface water and sediments collected riverine environment of Punjab province, Pakistan. The concentration of ΣOCPs (water: 64-455 ng/L; sediments: 117-616 ng/g) and ΣPCBs (water: 2-132 ng/L; sediments: 3.27-200 ng/g) was found comparatively higher than the levels reported from other parts of the world. The higher concentrations of DDTs and HCHs were detected in both studied matrices, whereas among PCBs, CB-28, 49 and CB-37, 82 were dominant in water and sediments, respectively. The isomeric ratios including α-HCH/γ-HCH, (DDE + DDD) / DDTs, and α /β-endosulfan reflected the recent use of lindane, technical DDT, and endosulfan in the study area. The WHO-TEQ values of DL-PCBs ranged from 3.6 × 10-6 to 0.115 ng/L and 8.7 × 10-6 to 0.157 ng/g in surface water and sediments in both seasons, respectively. The spatial variation analysis revealed that the sites in the industrial and agricultural zones were highly contaminated. The OCPs and PCBs fluxes to downstream areas were estimated to be 12.4 tons/year and 1.9 tons/year, respectively. The significant ecological risks were estimated to be posed by OCPs and PCBs, as their levels in 67% and 62% of surface water and sediment samples were exceeding the threshold limits, highlighting effects to ecological integrities.
Collapse
Affiliation(s)
- Samra Naseem
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Amtul Bari Tabinda
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan.
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, College of Environmental Science and Engineering, Nankai University, 300350, Tianjin, China.
| | - Khurram Chohan
- Department of Geography, Government College University, Lahore, 54000, Pakistan
| | - Iqra Aslam
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Adeel Mahmood
- Department of Environmental Sciences, Government College Women University, Sialkot, 51310, Pakistan
| | - Abdullah Yasar
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan
| | - Shizhen Zhao
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, 510640, China
| |
Collapse
|
8
|
Sana S, Qadir A, Evans NP, Mumtaz M, Javaid A, Khan A, Kashif SUR, Rehman HU, Hashmi MZ. Human health risk surveillance of polychlorinated biphenyls in bovine milk from alluvial plain of Punjab, Pakistan. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:12965-12978. [PMID: 36121631 DOI: 10.1007/s11356-022-22942-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Punjab is the leading province of Pakistan in the production of bovine milk and its consumption. Rapid industrialization, high energy demand, and the production of waste have increased the risk of polychlorinated biphenyls (PCBs) toxicity in the environment. This research work was designed to assess human dietary exposure of ∑PCBs17 congeners through ingestion of buffalo and cow's milk from eight main districts of Punjab, Pakistan. The average concentrations of ∑DL-PCBs (8.74 ng g-1 and 14.60 ng g-1) and ∑I-PCBs (11.54 ng g-1 and 18.68 ng g-1) in buffalo and cow milk samples were analyzed, respectively. The PCB-156 was predominantly high congener found in both buffalo (2.84 ng g-1) and cow milk (2.86 ng g-1). It was found that the highest PCBs in bovine milk samples were observed in close vicinities of urban and industrial areas. The estimated daily consumptions of DL-PCBs and I-PCBs, from buffalo and cow milk, were below the acceptable daily intake for both adults and children. Moreover, hazard quotients (HQ) of the ∑PCBs17 congener value were less than 1.0 in adults and greater in the case of children reflecting the high chances of cancer. Furthermore, comprehensive monitoring for childhood cancer is recommended to establish the relationship in future studies.
Collapse
Affiliation(s)
- Saman Sana
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
- Department of Environmental Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan.
| | - Neil P Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland
| | - Mehvish Mumtaz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Ambreena Javaid
- Department of Geography, Kinnaird College for Women University, Lahore, Pakistan
| | - Amjad Khan
- Lahore Garrison University, Lahore, Pakistan
| | - Saif-Ur-Rehman Kashif
- Department of Environmental Sciences, University of Veterinary & Animal Sciences, Lahore, Pakistan
| | - Habib Ur Rehman
- Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | | |
Collapse
|
9
|
Amen NE, Eqani SAMAS, Bilal K, Ali N, Rajeh N, Adelman D, Shen H, Lohmann R. Molecularly tracing of children exposure pathways to environmental organic pollutants and the Autism Spectrum Disorder Risk. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120381. [PMID: 36228862 DOI: 10.1016/j.envpol.2022.120381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 09/28/2022] [Accepted: 10/04/2022] [Indexed: 06/16/2023]
Abstract
Organic pollutants (OPs) including organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polybrominated diphenyl ethers (PBDEs) and polycyclic aromatic hydrocarbons (PAHs) have showed neuro-damaging effects, but studies concerning the autism spectrum disorder (ASD) risk are limited. A case-control study with ASD (n = 125) and healthy control (n = 125) children was conducted on the different land use settings across Punjab, Pakistan. Serum concentrations of 26 OCPs, 29 PCB congeners, 11 PBDEs and 32 PAHs were measured. Serum PCB77 (AOR = 2.00; 95% CI: 1.43, 2.18), PCB118 (AOR = 1.49; 95% CI: 1.00, 2.00), PCB128 (AOR = 1.65; 95% CI: 1.01, 1.91), PCB153 (AOR = 1.80; 95% CI: 1.55, 1.93) were significantly higher, but PCB187 (AOR = 0.37; 95% CI: 0.24, 0.49) was significantly lower in the ASD cases when compared to the controls. Serum BDE99 (AOR = 0.48; 95% CI: 0.26, 0.89) was significantly higher in the healthy controls than in the ASD cases. Among the analyzed OCPs, p,p'-DDE (AOR = 1.50; 95% CI: 1.00, 1.85) was significantly elevated in the ASD cases with comparison in the controls. For PAHs, serum dibenzothiophene (AOR = 7.30; 95% CI: 1.49, 35.85) was significantly higher in the ASD, while perylene (AOR = 0.25; 95% CI: 0.06, 1.10) and fluorene (AOR = 0.21; 95% CI: 0.06, 0.72) were significantly higher in the controls. In addition, many of the serum pollutants were significantly associated with GSTT1, GSTM1 (null/present polymorphism) and presented the genotypic variation to respond xenobiotics in children. The children living in proximity to urban and industrial areas had a greater exposure to most of the studied pollutants when compared to the rural children, however children residing in rural areas showed higher exposure to OCPs. This comprehensive study documents an association between environmental exposure risk of several organic pollutants (OPs) from some contaminated environmental settings with ASD risk in children from Pakistan.
Collapse
Affiliation(s)
- Nabgha-E Amen
- Department of Biosciences, COMSATS University Islamabad, Pakistan; Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, R.I., USA
| | - Syed Ali Musstjab Akber Shah Eqani
- Department of Biosciences, COMSATS University Islamabad, Pakistan; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China.
| | | | - Nadeem Ali
- Department of Environmental Sciences, King Abdul Aziz University, Saudi Arabia
| | - Nisreen Rajeh
- Department of Anatomy, Medical College, King Abdul Aziz University, Saudi Arabia
| | - David Adelman
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, R.I., USA
| | - Heqing Shen
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, PR China; State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health, Xiamen University, 361102, Xiamen, China
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, Narragansett Bay Campus, R.I., USA
| |
Collapse
|
10
|
Sohail M, Ali Musstjab Akber Shah Eqani S, Bokhari H, Zaffar Hashmi M, Ali N, Alamdar A, Podgorski JE, Adelman D, Lohmann R. Freely dissolved organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) along the Indus River Pakistan: spatial pattern and risk assessment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:65670-65683. [PMID: 35499728 DOI: 10.1007/s11356-022-20418-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 04/19/2022] [Indexed: 06/14/2023]
Abstract
Freely dissolved OCPs and PCBs were measured by using polyethylene passive samplers at 15 sites during 2014 throughout the stretch of the Indus River to investigate the spatial pattern and risk assess. Levels (pg/L) of dissolved ∑OCPs and ∑PCBs ranged from 34 to 1600 and from 3 to 230. Among the detected OCPs, dissolved DDTs (p,p'-DDE, followed by p,p'-DDT) predominated with levels of 0.48 to 220 pg/L. The order of occurrence for other studied OCPs was as follows: HCB, endosulfans, chlordanes, and HCHs. Spatially, dissolved (pg/L) ∑OCPs varied (p < 0.05) as the following: surface water of the alluvial riverine zone (ARZ) showed the highest levels (114) followed by the frozen mountain zone (FMZ) (52.9), low-lying zone (LLZ) (28.73), and wet mountain zone (WMZ) (14.43), respectively. However, our zone-wise PCB data did not exhibit significant differences (p > 0.05). Principal component analysis/multilinear regression results showed pesticide usage in the crop/orchard fields and health sector, electric and electronic materials, and widespread industrial activities as the main source of OCPs and PCBs along the Indus River. Our results showed that OCPs and PCBs contaminated water intake, playing an important role towards the considerable cancer/non-cancer risk (HI and CR values) along the Indus River Flood-Plain.
Collapse
Affiliation(s)
- Muhammad Sohail
- Ecohealth and Environmental Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan.
- Department of Zoology, University of Central Punjab, Sargodha Campus, Lahore, Pakistan.
| | | | - Habib Bokhari
- Ecohealth and Environmental Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Muhammad Zaffar Hashmi
- Ecohealth and Environmental Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Nadeem Ali
- Centre of Excellence in Environmental Studies, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ambreen Alamdar
- Ecohealth and Environmental Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Joel E Podgorski
- Eawag, Swiss Federal Institute of Aquatic Science and Technology, CH-8600, Dubendorf, Switzerland
| | - Dave Adelman
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, RI, 02882, USA
| | - Rainer Lohmann
- Graduate School of Oceanography, University of Rhode Island, 215 South Ferry Road, Narragansett, RI, 02882, USA
| |
Collapse
|
11
|
Rashid S, Rashid W, Tulcan RXS, Huang H. Use, exposure, and environmental impacts of pesticides in Pakistan: a critical review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:43675-43689. [PMID: 35435556 DOI: 10.1007/s11356-022-20164-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The excessive use of pesticides is posing major threats to humans and the environment. However, the environmental exposure and impact of pesticides in Pakistan have yet been systematically reviewed, despite the country's leading role in pesticide use. Therefore, this study identified and then reviewed 85 peer-reviewed scientific publications on the topic. It was found that, compared to the worldwide average, Pakistan had high consumptions of pesticides, with an alarming increase of 1169% in the last two decades. The quantities of pesticides used followed an order of pyrethroids > organophosphates > organochlorines > carbamates, but organochlorines were the most problematic due to their environmental occurrence, the ability to transport across the media, and identified human and ecological toxicities. Additionally, the misuse or overuse of pesticides by farmers is prevailing due to insufficient knowledge about the risks, which leads to high risks in occupational exposure. These issues are further aggravated by the illegal use or continuous impacts of banned organochlorine pesticides. For the future, we suggested the establishment of organized monitoring, assessment, and reporting program based on environmental laws to minimize contamination and exposure to pesticides in Pakistan. Remediation of the contaminated areas to mitigate the adverse environmental-cum-health impacts are recommended in the most affected regions.
Collapse
Affiliation(s)
- Sajid Rashid
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Wajid Rashid
- Department of Environmental and Conservation Sciences, University of Swat, 19130, Swat, Pakistan
| | - Roberto Xavier Supe Tulcan
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China
| | - Haiou Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Beijing Normal University, No. 19 Xinjiekouwai Street, Beijing, 100875, China.
- Department of Environmental Health and Engineering, The Johns Hopkins University, Baltimore, MD, 21205, USA.
| |
Collapse
|
12
|
Aslam I, Baqar M, Qadir A, Mumtaz M, Li J, Zhang G. Polychlorinated biphenyls in indoor dust from urban dwellings of Lahore, Pakistan: Congener profile, toxicity equivalency, and human health implications. INDOOR AIR 2021; 31:1417-1426. [PMID: 33459414 DOI: 10.1111/ina.12788] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
This study is the pioneer assessment of the PCBs in indoor dust particles (from air conditioners) of an urbanized megacity from South Asian. The ∑35 PCB concentration ranged from 0.27 to 152.9 ng/g (mean: 24.84 ± 22.10 ng/g). The tri- and tetra-PCBs were dominant homologues, contributing 57.36% of the total PCB concentrations. The mean levels of Σ8 -dioxin-like (DL), Σ6 -indicator PCBs and WHO2005 -TEQ for DL-PCBs were 2.22 ± 2.55 ng/g, 9.49 ± 8.04 ng/g and 4.77 ± 4.89 pg/g, respectively. The multiple linear regression indicated a significant correlation of dusting frequency (p = 1.06 × 10-04) and age of the house (p = 1.02 × 10-06) with PCB concentrations in indoor environment. The spatial variation of PCB profile revealed relatively higher concentrations from sites near to illegal waste burning spots, electrical locomotive workshops, and grid stations. Human health risk assessment of PCBs for adults and toddlers through all three exposure routes (ie, inhalation, ingestion, and dermal contact) demonstrated that toddlers were vulnerable to high cancer risk (4.32 × 10-04 ), while adults were susceptible from low to moderate levels of risk (3.16 × 10-05 ). Therefore, comprehensive investigations for PCBs in the indoor settings, focusing particularly on the sensitive populations with relationship to the electronic devices, transformers, and illegal waste burning sites, are recommended.
Collapse
Affiliation(s)
- Iqra Aslam
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Mehvish Mumtaz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Jun Li
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
13
|
Banerjee A, Shelver WL. Micro- and Nanoplastic-Mediated Pathophysiological Changes in Rodents, Rabbits, and Chickens: A Review. J Food Prot 2021; 84:1480-1495. [PMID: 34347096 DOI: 10.4315/jfp-21-117] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 04/18/2021] [Indexed: 12/14/2022]
Abstract
ABSTRACT Plastics provide tremendous societal benefits and are an indispensable part of our lives. However, fragmented plastics or those intentionally manufactured in small sizes (microplastics and nanoplastics) are of concern because they can infiltrate soils and enter the human food chain through trophic transfer. The pathophysiological impacts of micro- and nanoplastics in humans are not characterized, but their effects in terrestrial mammals may help elucidate their potential effects in humans. Rodent studies have demonstrated that micro- and nanoplastics can breach the intestinal barrier, accumulate in various organs, cause gut dysbosis, decrease mucus secretion, induce metabolic alterations, and cause neurotoxicity, among other pathophysiologic effects. Larger mammals such as rabbits can also absorb microplastics orally. In farm animals such as chickens, microplastics have been detected in the gut, thereby raising food safety concerns. This review mostly focuses on studies conducted to assess effects of micro- and nanoplastic exposure through food and water in terrestrial mammals and farm animals including rodents, rabbits, and chickens; identifies main knowledge gaps; and provides recommendations for further research to understand foodborne micro- and nanoplastic toxicity in humans. HIGHLIGHTS
Collapse
Affiliation(s)
- Amrita Banerjee
- U.S. Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1616 Albrecht Boulevard N, Fargo, North Dakota 58102, USA
| | - Weilin L Shelver
- U.S. Department of Agriculture, Agricultural Research Service, Edward T. Schafer Agricultural Research Center, Biosciences Research Laboratory, 1616 Albrecht Boulevard N, Fargo, North Dakota 58102, USA
| |
Collapse
|
14
|
Sana S, Qadir A, Mumtaz M, Evans NP, Ahmad SR. Spatial trends and human health risks of organochlorinated pesticides from bovine milk; a case study from a developing country, Pakistan. CHEMOSPHERE 2021; 276:130110. [PMID: 33725621 DOI: 10.1016/j.chemosphere.2021.130110] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 06/12/2023]
Abstract
Bovine milk is a nutritious food commodity extensively produced and consumed in Punjab, Pakistan. This study assesses the concentration profile of organochlorine pesticides (OCP; 18 compounds) in buffaloes and cow's milk in eight major districts of Punjab, Pakistan and the potential impacts of such exposure. The total OCPs in buffaloes and cow's milk samples ranged from 3.93 to 27.63 ng mL-1 and 14.64-77.93 ng mL-1 respectively. The overall pattern of mean OCPs concentration in buffaloes and cows milk showed that Hexachlorocyclohexanes (HCHs) are predominant followed by Heptachlors and Dichlorodiphenyltrichloroethane (DDTs). So far, the concentration profile depicted that ∑HCHs, ∑DDTs and ∑Heptachlors did not exceed the maximum residual limits set for buffaloes and cow's milk. The spatial trends in terms of cluster analysis depicted significant variation (p > 0.05) among the districts in one cluster probably owing to local conditions. Furthermore, recently used DDTs were also identified at some of the selected districts. The risk assessment suggests that the estimated daily intake for each OCP was in accordance with the acceptable daily intake, thus single compound exposure does not pose a significant carcinogenic risk. However, the hazard ratios indicated that the values for ∑DDTs posed risk in adults consuming cow's milk whereas children may face carcinogenic risk on the consumption of both buffalo and cow's milk. The risk may be altered where mixture is considered, furthermore, regarding carcinogenic risks a continuous monitoring based ecological analysis is recommended in the future.
Collapse
Affiliation(s)
- Saman Sana
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan; Department of Environmental Sciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan.
| | - Mehvish Mumtaz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan.
| | - Neil P Evans
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland, UK
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| |
Collapse
|
15
|
van der Schyff V, Kwet Yive NSC, Polder A, Cole NC, Tatayah V, Kylin H, Bouwman H. Persistent organic pollutants in sea bird eggs from the Indian Ocean's Mascarene Basin. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 771:145348. [PMID: 33540163 DOI: 10.1016/j.scitotenv.2021.145348] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 01/07/2021] [Accepted: 01/17/2021] [Indexed: 06/12/2023]
Abstract
We report the concentrations of persistent organic pollutants (POPs) in seabird eggs from St. Brandon's Atoll, a tropical island system in the western Indian Ocean. Ten eggs each of sooty terns (Onychoprion fuscatus), fairy terns (Gygis alba), and common noddies (Anous stolidus) were collected from the atoll. For a terrestrial reference, we analysed three feral chicken (Gallus gallus domesticus) eggs from the same location. Sooty tern eggs contained the highest mean concentrations of three chemical classes: ƩCHL3 (0.21 ng/g wm; wet mass), ƩPCB10 (1.5 ng/g wm), and ƩPBDE6 (1.1 ng/g wm). Fairy tern eggs contained the highest mean concentrations of HCB (0.68 ng/g wm) and ƩCHB5 (0.83 ng/g wm). The chicken eggs contained the highest mean concentrations of ƩDDT3 (2.6 ng/g wm), while common noddy eggs contained the highest mean concentrations of ƩHCH2 (0.5 ng/g wm). We surmise that the differences in chemical composition between species reflect different pollutant compositions in prey from the bird's different foraging ranges. The sooty terns foraging offshore contained higher POPs concentrations than the nearshore-foraging common noddies. Fairy tern eggs contained intermediate concentrations, commensurate with their intermediate foraging. Inter-island differences in contaminant concentrations were seen between eggs of the common noddies from St. Brandon's Atoll and Rodrigues Island, 520 km to the south-east. Concentrations of contaminants found in this study were lower than values quantified by other studies, making St. Brandon's Atoll an ideal reference site to monitor background concentrations of POPs in the tropical Indian Ocean.
Collapse
Affiliation(s)
- Veronica van der Schyff
- Research Unit, Environmental Sciences and Management, North-West University, Potchefstroom, South Africa.
| | | | - Anuschka Polder
- Research Unit, Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Faculty of Veterinary Medicine, Norwegian University of Life Sciences (NMBU), 0033 Oslo, Norway
| | - Nik C Cole
- Research Unit, Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity, Jersey Channel Islands, UK; Mauritian Wildlife Foundation, Grannum Road, Vacoas, Mauritius
| | - Vikash Tatayah
- Mauritian Wildlife Foundation, Grannum Road, Vacoas, Mauritius
| | - Henrik Kylin
- Research Unit, Environmental Sciences and Management, North-West University, Potchefstroom, South Africa; Department of Water and Environmental Studies, Linköping University, Linköping, Sweden
| | - Hindrik Bouwman
- Research Unit, Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| |
Collapse
|
16
|
Aslam I, Mumtaz M, Qadir A, Jamil N, Baqar M, Mahmood A, Ahmad SR, Zhang G. Organochlorine pesticides (OCPs) in air-conditioner filter dust of indoor urban setting: Implication for health risk in a developing country. INDOOR AIR 2021; 31:807-817. [PMID: 33247439 DOI: 10.1111/ina.12772] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
This preliminary investigation highlights the occurrence of organochlorine pesticides (OCPs) in the indoor environment of a megacity, Lahore, Pakistan using the dust ensnared by air-conditioner filters. The Σ16 OCPs concentration ranged from 7.53 to 1272.87 ng/g with the highest percent contribution by ΣDDT (dichlorodiphenyltrichloroethane; 87.21%) and aldrin (6.58%). The spatial variation of OCPs profile revealed relatively higher concentration from homes near to agricultural and abandoned DDT manufacturing sites. Calculated isomer ratios revealed historic sources of hexachlorocyclohexanes (HCHs) and the fresh input of technical DDT and chlordane by the dwellers. The air conditioner dust was helpful to better understand the health risk in the indoor environment. So far a high lifetime cancer risk (10-3 ) was predicted for toddlers via accidental ingestion, inhalation, and dermal exposure. Similarly, the non-carcinogenic risk-based hazard quotient was found to be high for toddlers (6.94) and within the permissible limit (<1) for adults.
Collapse
Affiliation(s)
- Iqra Aslam
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Mehvish Mumtaz
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Nadia Jamil
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore, Pakistan
| | - Adeel Mahmood
- Department of Environmental Sciences, Government College for Women University, Sialkot, Pakistan
| | - Sajid Rashid Ahmad
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, Pakistan
| | - Gan Zhang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
17
|
Amir S, Tzatzarakis M, Mamoulakis C, Bello JH, Eqani SAMAS, Vakonaki E, Karavitakis M, Sultan S, Tahir F, Shah STA, Tsatsakis A. Impact of organochlorine pollutants on semen parameters of infertile men in Pakistan. ENVIRONMENTAL RESEARCH 2021; 195:110832. [PMID: 33549619 DOI: 10.1016/j.envres.2021.110832] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Revised: 01/28/2021] [Accepted: 01/29/2021] [Indexed: 06/12/2023]
Abstract
Male infertility is a major problem with important socioeconomic consequences. It is associated with several pathological factors, including but not limited to endocrine disruption as a result of environmental pollution and the alarming decline in sperm count over the decades is indicative of involvement of many environmental and lifestyle changes around the globe. Organochlorine pollutants such as dichlorodiphenyltrichlorethanes (DDTs), polychlorinated biphenyls (PCBs) and hexachlorobenzene (HCB) disrupt male reproductive system but the exact effect of environmental exposure on semen parameters in human is still not clear. This study was designed to monitor PCBs, DDTs and HCB in hair, urine and serum samples of infertile and healthy fertile men. Solid-phase microextraction gas chromatography-mass spectrometry (SPME/GC-MS) was used to monitor analytes. All tested compounds were detected, indicating recent use/persistent accumulation. Hair samples revealed no significant association with serum/urine concentrations of the analytes, while serum/urine concentrations were significantly correlated positively. Concentrations were higher in serum compared to other samples. The levels of organochlorine pollutants were higher in infertile men compared to controls with few exceptions. Among PCBs, and DDTs, PCB-153 and pp'-DDT were detected in highest concentrations, respectively. op'-DDT and pp'-DDT levels were significantly higher in infertile men compared to controls. HCB was significantly correlated negatively with sperm motility in all samples. Serum concentrations of all compounds were higher in men with defective semen parameters compared to normospermics. Serum was the best biological sample for assessing health outcomes in relation to exposure levels.
Collapse
Affiliation(s)
- Saira Amir
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | - Manolis Tzatzarakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Charalampos Mamoulakis
- Department of Urology, University General Hospital of Heraklion, University of Crete Medical School, Heraklion, Crete, Greece
| | - Jaafar Haris Bello
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan
| | | | - Elena Vakonaki
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece
| | - Markos Karavitakis
- Department of Urology, University General Hospital of Heraklion, University of Crete Medical School, Heraklion, Crete, Greece
| | - Sikandar Sultan
- Public Health Laboratories Division, National Institute of Health (NIH), Islamabad, Pakistan
| | - Faheem Tahir
- Public Health Laboratories Division, National Institute of Health (NIH), Islamabad, Pakistan
| | - Syed Tahir Abbas Shah
- Department of Biosciences, COMSATS University Islamabad, Islamabad, 45550, Pakistan.
| | - Aristidis Tsatsakis
- Department of Forensic Sciences and Toxicology, Faculty of Medicine, University of Crete, 71003, Heraklion, Greece.
| |
Collapse
|
18
|
Liu S, Zhan C, Zhang J, Liu H, Xiao Y, Zhang L, Guo J, Liu X, Xing X, Cao J. Polycyclic aromatic hydrocarbons in railway stations dust of the mega traffic hub city, central China: Human health risk and relationship with black carbon. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 205:111155. [PMID: 32846298 DOI: 10.1016/j.ecoenv.2020.111155] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 07/27/2020] [Accepted: 08/09/2020] [Indexed: 06/11/2023]
Abstract
Twenty dust samples collected from Wuchang and Wuhan Railway Stations, the biggest transport stations in the mega traffic hub city in Central China, were analyzed for polycyclic aromatic hydrocarbons (PAHs) to investigate the concentration, sources apportionment, and relationship with black carbon (BC) and assess the health risk. The results suggested that the concentrations of PAHs, BC and TOC in Wuhan Railway Station (WHRS) (PAHs = 5940 ± 1920 ng g-1, BC = 53.2 ± 23.1 mg g-1 and TOC = 80.7 ± 44.4) were twice higher than those in Wuchang Railway Station (WCRS) (PAHs = 2580 ± 1630 ng g-1, BC = 20.4 ± 14.3 mg g-1 and TOC = 33.9 ± 20.1 mg g-1). Moreover, the 3 - and 4 - rings PAHs were major PAHs in railway station dust. The composition pattern of PAHs in these railway station dusts had a common characteristic with HMW-PAHs contribution. The results of source identification revealed that different local development features and energy consumption of trains would influence the sources of PAHs and BC. PAHs and BC were most likely related to industrial activities in WHRS. Coal and biomass combustion may influence the PAHs components and BC distribution in WCRS. Moreover, BC had played an important role in retaining PAHs in urban railway stations. Especially in WHRS, BC would more likely to absorb the high molecular weight PAHs, such as 4 -ring (p<0.05), 5 -ring (p<0.05) and 6 -ring (p<0.05) PAHs; while BC just played limited roles in the binding of volatile and semi-volatile organic pollutants, such as 2 -ring and 3 -ring PAHs. With the coexistence of BC and PAHs, passengers would face significant potential health risks by exposure to toxic dust in railway stations, especially for children. The cancer risk in WHRS was almost twice higher than that in WCRS, and it would tend to be stable by a semi-confined structure in the platform area.
Collapse
Affiliation(s)
- Shan Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Changlin Zhan
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Jiaquan Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China.
| | - Hongxia Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Yulun Xiao
- Faculty of science, Monash University, Clayton, VIC, 3800, Australia
| | - Li Zhang
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Jianlin Guo
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xianli Liu
- School of Environmental Science and Engineering, Hubei Polytechnic University, Huangshi, 435003, China; Hubei Key Laboratory of Mine Environmental Pollution Control and Remediation, Hubei Polytechnic University, Huangshi, 435003, China
| | - Xinli Xing
- School of Environmental Studies, China University of Geosciences, Wuhan, 430074, China
| | - Junji Cao
- Key Laboratory of Aerosol Chemistry & Physics (KLACP), Institute of Earth Environment, Chinese Academy of Sciences, Xi'an, 710061, China
| |
Collapse
|
19
|
Anh HQ, Watanabe I, Minh TB, Tue NM, Tuyen LH, Viet PH, Takahashi S. Polychlorinated biphenyls in settled dusts from an end-of-life vehicle processing area and normal house dusts in northern Vietnam: Occurrence, potential sources, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 728:138823. [PMID: 32570316 DOI: 10.1016/j.scitotenv.2020.138823] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
Concentrations and congener-specific profiles of total 209 polychlorinated biphenyls (PCBs) were investigated in settled dust samples collected from end-of-life vehicle (ELV) processing, urban, and rural areas in northern Vietnam. Concentrations of total 209 PCBs, seven indicator congeners, and twelve dioxin-like PCBs decreased in the order: ELV working > ELV living ≈ urban > rural dusts. Penta- and hexa-CBs dominated the homolog patterns in all the samples with higher proportions in the ELV dusts compared to the urban and rural house dusts. The abundance and pattern of PCBs in the ELV dusts suggest on-going emissions of these compounds related to processing of vehicular oils and lubricants containing PCBs, whereas the presence of PCBs in the urban and rural house dusts indicate long-time releases. However, levels of some PCBs identified as by-products of pigment manufacturing (e.g., PCB-11 and PCB-209) were higher in the urban house dusts than those from other locations, resulting from human activities utilizing paints and pigments. Daily intake doses (ID), non-carcinogenic hazard quotient (HQ), and lifetime cancer risk (CR) of PCBs through dust ingestion were estimated for ELV workers and residents in the studied areas. The workers and children in the ELV sites were estimated to be at higher risk of PCB exposure, however almost all of the HQ < 1 and CR < 10-4 indicate no serious risk related to dust-bound PCBs.
Collapse
Affiliation(s)
- Hoang Quoc Anh
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Tu Binh Minh
- Faculty of Chemistry, VNU University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi 100000, Viet Nam
| | - Nguyen Minh Tue
- Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan; Centre for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi 100000, Viet Nam
| | - Le Huu Tuyen
- Centre for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi 100000, Viet Nam
| | - Pham Hung Viet
- Centre for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, Hanoi, 334 Nguyen Trai, Hanoi 100000, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|
20
|
Ullah R, Asghar R, Baqar M, Mahmood A, Alamdar A, Qadir A, Sohail M, Schäfer RB, Musstjab Akber Shah Eqani SA. Assessment of polychlorinated biphenyls (PCBs) in the Himalayan Riverine Network of Azad Jammu and Kashmir. CHEMOSPHERE 2020; 240:124762. [PMID: 31568940 DOI: 10.1016/j.chemosphere.2019.124762] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Revised: 08/24/2019] [Accepted: 09/03/2019] [Indexed: 06/10/2023]
Abstract
The emission of polychlorinated biphenyls (PCBs) in South Asian countries is one of the great environmental concerns and has resulted in the contamination of surrounding high altitude regions such as Azad Jammu and Kashmir (AJK), Pakistan. This first investigation of Polychlorinated Biphenyl (PCBs) concentrations in the ambient air, water and surface soil was conducted along the extensive stream network in the AJK valley of the Himalayan Region. In 2014, surface soil samples were taken and passive air and water samplers were deployed along the four main rivers, namely Jhelum, Neelum, Poonch and Kunhar, and analysed for PCBs (33 congeners) using GC-MS/MS. The ∑33PCBs concentrations ranged from 31.17 to 175.2 (mean ± SD: 81 ± 46.4 pg/L), ND to 1908 (1054 ± 588.5 pg/g), and 29.8 to 94.4 (52.9 ± 22.7 pg/m3) in surface water, soil and air matrices, respectively. The levels of dioxin-like PCBs (∑8DL-PCBs) contributed considerably towards the total PCBs concentrations: 60.63% (water), 43.87% (air) and 13.76% (soil). The log transformed air-water fugacity (log fa/fw) ratios ranged from -9.37 to 2.58; with 86.3% of the sampling sites showing net volatilization of selected PCB congeners. Similarly, the fugacity fractions for air-soil exchange exhibited narrow variation (0.8 to < 1) indicating net volatilization of PCBs. The ecological risk assessment showed low potential ecological risks (Eri = 1.58-7.63) associated with PCB contamination. The present findings provide baseline data that suggest cold trapping of POPs in the remote mountainous areas of Pakistan and can support environmental management of POPs at the regional level. This pioneer investigation campaign to assess the PCBs concentrations in Himalayan Riverine Network of Azad Jammu and Kashmir, Pakistan helps to develop baseline data of PCBs from the strategically important riverine environment that would help in future regional as well as global ecological studies. However, the effects of temperature variations on the sampling rates of chemicals across a wide spectrum of volatility along the elevation gradient were not taken under consideration for PCBs atmospheric concentrations.
Collapse
Affiliation(s)
- Rizwan Ullah
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, AJK, Pakistan; Department of Zoology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, AJK, Pakistan
| | - Rehana Asghar
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, 10250, AJK, Pakistan
| | - Mujtaba Baqar
- Sustainable Development Study Centre, Government College University, Lahore, 54000, Pakistan.
| | - Adeel Mahmood
- Department of Environmental Sciences, Government College Women University, Sialkot, 51310, Pakistan
| | - Ambreen Alamdar
- Ecohealth and Environment Lab, Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan
| | - Abdul Qadir
- College of Earth and Environmental Sciences, University of the Punjab, Lahore, 54590, Pakistan
| | - Muhammad Sohail
- Ecohealth and Environment Lab, Department of Biosciences, COMSATS University, Islamabad 45550, Pakistan
| | - Ralf B Schäfer
- Institute for Environmental Sciences, University of Koblenz-Landau, Landau in der Pfalz 76829, Germany
| | | |
Collapse
|
21
|
Ahmad A, Shahid M, Khalid S, Zaffar H, Naqvi T, Pervez A, Bilal M, Ali MA, Abbas G, Nasim W. Residues of endosulfan in cotton growing area of Vehari, Pakistan: an assessment of knowledge and awareness of pesticide use and health risks. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:20079-20091. [PMID: 30229485 DOI: 10.1007/s11356-018-3169-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 09/06/2018] [Indexed: 04/16/2023]
Abstract
This study is based on self-reported information collected from selected farmers of Vehari District, Punjab, Pakistan, to determine their technical knowledge and awareness about pesticide use and associated environmental and health risks. Moreover, soil contamination by routinely used persistent organochlorine pesticide, endosulfan, was also evaluated. Survey data revealed very low literacy rate (on an average 9th grade education) and technical knowledge (almost missing) of the farmers in Vehari District. The farmers are unable to fully read and understand the instructions about the use of pesticide marked on the containers. They are not fully aware of pesticide persistence and toxicity (73%), unable to identify cotton pests and diseases (86%), and do not know which crop to grow in cotton adjacent fields (100%). Data also revealed that the farmers (100%) do not follow safety measure during pesticide application and are unaware of pesticide toxicity symptoms in human as well as the basic first-aid practices (89%).Poor literacy rate and lack of technical knowledge of farmers in Vehari regarding pesticide use and handling are posing serious environmental and health risks among the local inhabitants, particularly among farmers. Soil analysis results showed that concentration of α- and β-endosulfan ranged from 0-14 to 0-14.64 μg/mg, respectively. Principal component analysis showed that soil organic matter is the key soil parameter controlling the occurrence and fate of endosulfan under sandy loam soil conditions of Vehari District. There is a serious need of improving technical and environmental knowledge of farmer about pesticide risks on human health in the studied area, in particular, and the entire country in general. Findings are of great use for policymaking in Pakistan to minimize pesticide risks in Pakistan.
Collapse
Affiliation(s)
- Ashfaq Ahmad
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Muhammad Shahid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan.
| | - Sana Khalid
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Habiba Zaffar
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Tatheer Naqvi
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Arshid Pervez
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Muhammad Bilal
- Department of Environmental Sciences, COMSATS University Islamabad, Abbottabad Campus, Abbottabad, Pakistan
| | - Muhammad Arif Ali
- Department of Soil Science, Faculty of Agriculture Sciences and Technology, Bahauddin Zakariya University, Multan, Pakistan
| | - Ghulam Abbas
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| | - Wajid Nasim
- Department of Environmental Sciences, COMSATS University Islamabad, Vehari Campus, Vehari, 61100, Pakistan
| |
Collapse
|
22
|
Škrbić BD, Marinković V. Occurrence, seasonal variety of organochlorine compounds in street dust of Novi Sad, Serbia, and its implication for risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 662:895-902. [PMID: 30708304 DOI: 10.1016/j.scitotenv.2019.01.133] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 01/10/2019] [Accepted: 01/12/2019] [Indexed: 06/09/2023]
Abstract
The paper presents a study of organochlorine compounds in street dust, an often forgotten aspect of urban environmental pollution. Six different polychlorinated biphenyls (PCBs) and eighteen organochlorine pesticides (OCPs) were monitored in terms of levels, distribution, seasonal variation and health risks. Street dust samples were collected from fifteen urban locations in Novi Sad including schools, recreational areas, residential and industrial zones. Street dust concentration of PCBs ranged from less than the limit of detection (<LOD) to 12.1 ng g-1 (mean = 0.58 ng g-1) in summer and from <LOD to 3.82 ng g-1 (mean = 0.45 ng g-1) in winter. Among the investigated OCPs, only dichlorodiphenyltrichloroethanes (DDTs) were detected - their concentration varied from <LOD to 34.7 ng g-1 (mean = 6.2 ng g-1 and median = 1.4 ng g-1) in summer to <LOD to 50.5 ng g-1 (mean = 7.1 ng g-1 and median = 2.0 ng g-1) in winter. Principal component analysis indicated a positive correlation among PCB 101, PCB 153 and pH as well as between PCB 138 and organic matter. Regression analysis revealed that distribution trends of DDTs between the soil and street dust samples are significantly correlated in the recreational areas. The average level of total lifetime carcinogenic risk (TLCR) for PCBs (3.7 × 10-9) and DDTs (3.6 × 10-9) found in Novi Sad street dust samples were well below the unacceptable level of 10-6, indicating that the lifetime cancer risk was acceptable. It was also found that the seasonal variations were not significant.
Collapse
Affiliation(s)
- Biljana D Škrbić
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Vesna Marinković
- University of Novi Sad, Faculty of Technology Novi Sad, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia; Higher Education Technical School of Professional Studies, Školska 1, 21000 Novi Sad, Serbia
| |
Collapse
|
23
|
Anh HQ, Watanabe I, Tomioka K, Minh TB, Takahashi S. Characterization of 209 polychlorinated biphenyls in street dust from northern Vietnam: Contamination status, potential sources, and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 652:345-355. [PMID: 30366335 DOI: 10.1016/j.scitotenv.2018.10.240] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/11/2018] [Accepted: 10/17/2018] [Indexed: 06/08/2023]
Abstract
A full congener-specific determination of polychlorinated biphenyls (PCBs) was conducted for street dusts in some areas in northern Vietnam. Total 209 PCB concentrations (median and range) of 14 (2.2-120), 11 (6.6-32), and 0.25 (0.10-0.97) ng g-1 were measured in the street dusts from an industrial park, an urban area, and a rural commune, respectively, suggesting environmental loads of PCBs related to industrialization and urbanization in northern Vietnam. PCB patterns of street dusts from the industrial park were dominated by lightly chlorinated homologs (tri- and tetra-CBs), while more highly chlorinated homologs (penta- and hexa-CBs) were the major contributors to total PCBs in the urban samples, indicating different emission sources. Linear correlations of log-transformed sum of 7 indicator congeners with total PCBs and sum of dioxin-like PCBs were observed. PCB-11, an inadvertently produced congener of pigment manufacturing processes, was detected in all the samples with more elevated proportions in the urban and rural areas than industrial park. Our results have revealed complex emission sources of PCBs in the study areas, including both historical (e.g., the past usage of imported PCB-containing oils and old electric equipment) and current sources such as releases from industrial activities and increasing use of new consumer products. Occupationally exposed persons (e.g., street sweepers, street vendors, and traffic policemen) and children in the urban and industrial areas were estimated to receive much higher doses of dust-bound PCBs than general population, suggesting the need for appropriate protection conditions.
Collapse
Affiliation(s)
- Hoang Quoc Anh
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; The United Graduate School of Agricultural Sciences (UGAS-EU), Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Isao Watanabe
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Keidai Tomioka
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan
| | - Tu Binh Minh
- Faculty of Chemistry, VNU University of Science, Vietnam National University, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Shin Takahashi
- Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan.
| |
Collapse
|
24
|
Ti Q, Gu C, Liu C, Cai J, Bian Y, Yang X, Song Y, Wang F, Sun C, Jiang X. Comparative evaluation of influence of aging, soil properties and structural characteristics on bioaccessibility of polychlorinated biphenyls in soil. CHEMOSPHERE 2018; 210:941-948. [PMID: 30208554 DOI: 10.1016/j.chemosphere.2018.07.111] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 07/19/2018] [Accepted: 07/19/2018] [Indexed: 06/08/2023]
Abstract
Though bioaccessibility commonly recognized as a guideline for risk assessment is closely related with pollution occurrence and chemical species of compounds, the mechanistic links are barely evaluated particularly for widespread polychlorinated biphenyls (PCBs) in soil. With the biomimetic extraction of hydroxypropyl-β-cyclodextrin (β-HPCD), the temporal and spatial influences of soil properties, aging and structural characteristics, e.g. polarity of PCB congeners on bioaccessibility were investigated for PCBs. Sensitive variation of bioaccessibility with aging, soil organic matter (SOM), particle size and soil moisture were clearly evidenced for different PCB congeners. Due to aging, the bioaccessibility decreased in the long term after stabilization for 36 h. In concert with the first-order kinetics, the decay rates of bioaccessibility were shown with congener-specificity and were well correlated with dipoles of PCBs. The increment of SOM diminished the bioaccessibility for the strengthened adsorption while the increased particle size and soil moisture elevated it possibly due to the less adsorption on soil particles and more accommodation of PCBs in soil pore water. Except the positive correlations with particle size, soil moisture and dipole moment, the greater dependency on aging and SOM was highlighted for bioaccessibility by partial least squares (PLS) analysis. The mutual relationship with influential factors was quantitatively formulated for accelerative prediction of bioaccessibility, and the comparative evaluation and detailed insights into the mechanistic links would thus help enhance the precise determination of bioaccessibility and risk assessment of PCBs in soil.
Collapse
Affiliation(s)
- Qingqing Ti
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Chenggang Gu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China.
| | - Chang Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Jun Cai
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China
| | - Yongrong Bian
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Xinglun Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Yang Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Fang Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, 210023, PR China
| | - Xin Jiang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, PR China
| |
Collapse
|