1
|
Li ZY, Cui YW, Liang HK, Yan HJ, Yang RC. Tetracycline degradation by a mixed culture of halotolerant fungi-bacteria under static magnetic field: Mechanism and antibiotic resistance genes transfer. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138181. [PMID: 40199074 DOI: 10.1016/j.jhazmat.2025.138181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/02/2025] [Accepted: 04/03/2025] [Indexed: 04/10/2025]
Abstract
Efficient antibiotics removal lowers the transmission risk of antibiotic resistance genes (ARGs). However, low efficiency limits the application of biological methods for antibiotics removal. Herein, a mixed culture of halotolerant fungi-bacteria was used for treatment of saline wastewater containing tetracycline (TC). Furthermore, static magnetic field (SMF) was used to increase TC removal. The study examined the effectiveness of SMF in removing antibiotics from saline wastewater and the associated risk of ARGs transmission. The results demonstrated that the application of a 40 mT SMF significantly improved the TC removal efficiency by 37.09 %, compared to the control (SMF=0) The TC was mainly removed through biodegradation and adsorption. In biodegradation, SMF enhanced electron transport system activity, and activities of lignin-degrading enzymes which led to higher TC biodegradation. The activity of lactate dehydrogenase and malondialdehyde decreased, lowering the damage of microbial cell membranes by TC. During the adsorption process, higher generation of extracellular polymeric substances was observed under SMF, which caused an increase in TC removal via adsorption. Microbial community analysis revealed that SMF facilitated the enrichment of TC-degrading microorganisms. Under SMF, vertical gene transfer of ARGs increased, while horizontal gene transfer risk decreased due to a reduction in mobile genetic elements (intl1) abundance. This study demonstrates that SMF is a promising strategy for enhancing TC removal efficiency, providing a basis for improved antibiotic wastewater management.
Collapse
Affiliation(s)
- Zhen-Ying Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - You-Wei Cui
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China.
| | - Hui-Kai Liang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Hui-Juan Yan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| | - Rui-Chun Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
2
|
Jing K, Li Y, Li Y, Meng Q, Guan Q. The treated wastewater enhances the biodegradation of sulfonamide antibiotics in biofilm-sediment downstream of the receiving river outlet. ENVIRONMENTAL RESEARCH 2025; 277:121600. [PMID: 40222473 DOI: 10.1016/j.envres.2025.121600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2025] [Revised: 03/20/2025] [Accepted: 04/10/2025] [Indexed: 04/15/2025]
Abstract
Although the treated wastewater meets the discharge standards, it can still become a potential transmitted stressor that affects aquatic organisms in receiving rivers. Biofilms and sediments as the main solid-phase substances in natural aquatic environments can biodegrade micropollutants. However, most of the current studies have selected a single solid-phase material, and there are relatively few studies that comprehensively consider the effect of treated wastewater on the dissipation of micropollutants in a composite biofilm-sediment system. Therefore, this study investigated the dissipation pathways of six sulfonamide antibiotics (SAs) in biofilm-sediment and the effect of treated wastewater on SAs dissipation. The results showed that biodegradation was the main pathway for SAs dissipation in biofilm-sediment. The input of treated wastewater increased the abundance of dominant degradation bacteria Burkholderiales and Pseudomonadale, thereby improving the biodegradation rate of SAs (approximately 1.5 times higher than upstream degradation rate). These genera could also be further integrated into downstream communities to continuously mediate the biodegradation of SAs. Through mass spectrometry and metagenomic sequencing analysis, it was found that the common degradation pathways of SAs in biofilm-sediment affected by treated wastewater are acetylation, formylation, hydroxylation, and bond cleavage. Acetyltransferase played an important role in the biodegradation of SAs. In addition, the enrichment of antibiotic resistant genes during biodegradation increased the risk of their spread in the aquatic environment. These findings provide new insights into the fate of antibiotics in aquatic environments and the impact of treated wastewater on downstream bacterial communities.
Collapse
Affiliation(s)
- Ke Jing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Yinghao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qinglong Meng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| | - Qingyu Guan
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China
| |
Collapse
|
3
|
Sun Y, Guo Q, Sun F, Rao W, Zhang J, Song L, Liang S. Anaerobic dynamic membrane bioreactor treating swine wastewater: Fate of sulfonamide antibiotics and heavy metals with their effect on filtration performance. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137718. [PMID: 40010222 DOI: 10.1016/j.jhazmat.2025.137718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 01/20/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Sulfonamide antibiotics (SMs) and heavy metals, simultaneously existing in swine wastewater, threat ecological security and public health. Anaerobic dynamic membrane bioreactor (AnDMBR) technology has shown great potential for excellent and cost-effective treatment of various types of industrial wastewaters. Herein, it was for the first time applied for treating the swine wastewater containing both SMs and heavy metals, with particular efforts devoted to understanding the fate of SMs and heavy metals with their effect on dynamic membrane (DM) fouling. The AnDMBR exhibited effective removal efficiency of COD (91.2 %), sulfamethoxazole (SMX) (94.2 %), sulfadiazine (SDZ) (51.2 %), sulfamethazine (SMZ) (52.8 %), Cu2 + (88.5 %) and Zn2+ (73.3 %). Biodegradation and bioadsorption was found to be the major mechanism for the removal of SMs and heavy metals, respectively, with DM playing considerable roles. Furthermore, EPS adsorption turned out to be another key mechanism for removing SMs and heavy metals, particularly in DM. The exposure to SMs and heavy metals significantly increased the specific resistance of DM, and consequently expedited DM fouling. This was mainly due to the increased content of small particles, EPS content (mainly hydrophobic proteins) and relative abundance of biofouling-related bacteria (i.e., Firmicutes, Chloroflexi and Clostridia), resulting in a denser DM structure with lower porosity.
Collapse
Affiliation(s)
- Yuqi Sun
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingyang Guo
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Fengkai Sun
- School of Municipal and Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China
| | - Wenkai Rao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China; College of Chemistry, Chemical Engineering and Materials Science, Shandong Normal University, 88 Wenhua East Road, Jinan, Shandong 250014, China
| | - Lianfa Song
- Department of Civil, Environmental, and Construction Engineering, Texas Tech University, Lubbock, TX 79409-1023, USA
| | - Shuang Liang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
4
|
Wang W, Wei J, He J, Sun R, Ge L, Yang D, Lu J, Hong P, Li Y, Li Y, Xie C, Wu Z, Li M, Kong L. Regulation of surface-bound radicals enhanced Fenton-like activities via radicals confined on Fe 3O 4/MXenes. J Colloid Interface Sci 2025; 687:677-690. [PMID: 39983394 DOI: 10.1016/j.jcis.2025.02.118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 02/14/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
The low yield and efficiency of surface-bound radicals seriously affect the Fenton-like activity of the catalyst. In this study, novel Fe3O4/MXenes (V2C and Ti3C2) composites are designed for structural domain regulation of surface-bound radicals. The MXenes with multilayer structure enhance the adsorption energy and electron transfer of the Fe3O4/peroxodisulfate (PDS) system. In the Fe3O4/V2C and Fe3O4/Ti3C2 systems, the adsorption energies of PDS at Fe sites are 8.27 and 4.36 eV, the electron transfer amounts are 0.303 and 0.115 e, and the lengths of the OO bond on PDS adsorbed are 2.965 and 1.503 Å, respectively. The enhanced adsorption and electron transfer properties make PDS more easily to be adsorbed on Fe3O4/V2C and broken to generate free radicals. The generated free radicals are confined to the structure of Fe3O4/V2C to form more surface-bound radicals, resulting in higher degradation efficiency. The contribution of surface-bound radicals to tetracycline (TC) degradation in Fe3O4/V2C/PDS reaches 45 %, while that of Fe3O4/Ti3C2/PDS is less than 15 %. The removal efficiency of Fe3O4/V2C-mediated surface-bound hydroxyl radical on TC reaches 93.3 % in 30 min, which is higher than that of Fe3O4/Ti3C2-mediated hydroxyl radical (•OH) and sulfate radical (SO4•-) (79.5 %). Fe3O4/V2C has excellent stability and reusability, and the surface-bound radicals produced by Fe3O4/V2C can degrade TC into non-toxic products. This study provides a new strategy for structural domain regulation of surface-bound radicals to enhance Fenton-like activities.
Collapse
Affiliation(s)
- Wenlong Wang
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China; Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Jian Wei
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, China
| | - Junyong He
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; Anhui Institute of Strategic Study on Carbon Dioxide Emissions Peak and Carbon Neutrality in Urban-Rural Development, China.
| | - Rui Sun
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China; University of Science and Technology of China, Hefei 230026, China
| | - Liang Ge
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Dandan Yang
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Jiandong Lu
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Peidong Hong
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Yulian Li
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Yahui Li
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Chao Xie
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Zijian Wu
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Minqiang Li
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, People's Republic of China; Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China
| | - Lingtao Kong
- Environmental Materials and Pollution Control Laboratory, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031, People's Republic of China.
| |
Collapse
|
5
|
Zhou T, Yan C, Zhang L, Zhang G, Fang H. Remediation of sulfonamide antibiotic-containing wastewater by constructed wetlands: Importance and action mechanism of plants. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 383:125520. [PMID: 40294486 DOI: 10.1016/j.jenvman.2025.125520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/13/2025] [Accepted: 04/21/2025] [Indexed: 04/30/2025]
Abstract
Constructed wetlands (CWs) have been proved to be effective in treating sulfonamide antibiotics (SAs) wastewater. Nevertheless, as an essential element in CWs, the significance of plants, continues to be a topic of controversy. In this study, CWs with two different plant species were taken as the research object to investigate their treatment performance, in order to understand the impact of plants on the treatment of SAs wastewater in CWs and to discover the underlying action mechanisms. Experiment results showed that plants played an important role in the CWs, and significantly improved the efficiency of wastewater treatment, with average removal rates for conventional nutrients (COD, NH4+-N, NO3--N and TP) ranging from 73.69 % to 98.92 %, surpassing the non-plant control group (52.16 %-80.70 %). Similarly, for SAs, the removal efficiency in the plant-treated group was 74.15 %-83.67 %, higher than that in the non-plant control group (65.42 %-70.14 %). Although, as time passed, the efficacy of CWs had slightly decreased, but the rate of pollutant removal remained consistently over 60 %. Further analysis showed that plants promoted the removal of SAs through various mechanisms such as plant uptake, microbial degradation and substrate adsorption. Plants had the ability to absorb SAs from wastewater and eliminated them through metabolism or accumulation. Additionally, plants can improve soil enzyme activity to facilitate microbial degradation, indirectly promoting SAs removal. It's worth noting that most SAs can be degraded through plant metabolism after being absorbed by plants, while only a minority of SAs accumulated in plants in the form of parent compounds. Furthermore, the efficacy of CWs in treating wastewater differed between selected plant species. Specifically, Iris pseudacorus showed a higher purifing potential than Scirpus validus. These results revealed the effect of plants on the treatment of SAs wastewater in CWs, and provided a reference for the practical application of antibiotic wastewater removal by CWs.
Collapse
Affiliation(s)
- Tong Zhou
- State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China
| | - Changzhou Yan
- State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China.
| | - Ling Zhang
- College of Materials Sciences and Engineering, Henan Institute of Technology, Xinxiang, 453003, China
| | - Guohui Zhang
- State Key Laboratory of Advanced Environmental Technology, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, China; College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Hongda Fang
- College of Harbour and Environmental Engineering, Jimei University, Xiamen, 361021, China.
| |
Collapse
|
6
|
Thakur S, Bharti S. Recent progress in metal-organic frameworks based nanocomposites for antibiotic removal from water: An in-depth review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025:10.1007/s11356-025-36155-3. [PMID: 40029468 DOI: 10.1007/s11356-025-36155-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/18/2025] [Indexed: 03/05/2025]
Abstract
Antibiotic pollution has emerged as a critical concern due to the widespread use of antibiotics, their persistence in the environment, and their detrimental effects on aquatic ecosystems and human health. Therefore, developing and implementing effective strategies to eliminate these contaminants is essential. Metal-organic frameworks (MOFs) have garnered substantial interest in water purification due to their remarkable potential. This paper provides a comprehensive review of MOFs and related nanocomposites, with a particular emphasis on their effectiveness in removing antibiotics from water sources. MOFs stand out due to their unique characteristics, including high porosity, adjustable structures, and crystalline nature, making them exceptional in adsorbing contaminants and functioning as photocatalysts. The paper delves into the mechanisms of adsorption, which include electrostatic interactions, π-π bonding, van der Waals forces, hydrogen bonding, and surface complexation. It also examines the factors influencing adsorption and photodegradation, comparing these techniques to conventional adsorbents, and highlights the superior performance and cost-effectiveness of MOFs. Additionally, the study discusses the challenges, current trends, and future prospects in the field, offering insights that may inspire new researchers to further explore antibiotic removal using MOFs and develop innovative solutions to existing challenges.
Collapse
Affiliation(s)
- Suman Thakur
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India
| | - Sharda Bharti
- Department of Biotechnology, National Institute of Technology Raipur, Raipur, Chhattisgarh, 492010, India.
| |
Collapse
|
7
|
Carpanez TG, Carvalho de Lima E Silva N, Amaral MCS, Moreira VR. Reuse of wastewater and biosolids in soil conditioning: Potentialities, contamination, technologies for wastewater pre-treatment and opportunities for land restoration. CHEMOSPHERE 2025; 373:144185. [PMID: 39908843 DOI: 10.1016/j.chemosphere.2025.144185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 01/27/2025] [Accepted: 01/30/2025] [Indexed: 02/07/2025]
Abstract
This study reviews the potential use of various wastewaters-vinasse, swine, food industry, paper and pulp, municipal wastewaters, and biosolids-as soil conditioners for restoring degraded areas, focusing on the circular economy concept. Over 90 articles from 2013 to 2024 were analyzed to address current scientific concerns, including these effluents' resistance genes, hormones, and macro/micronutrients. The presence of contaminants was critically examined alongside the necessary treatment methods to prevent soil degradation and ensure soil quality improvement. These included contaminants of emerging concern (CECs), antibiotic resistance genes (AGRs), and pathogens. These contaminants can either be assimilated and degraded by the soil ecosystem or leach into groundwater, translocate to plants, or accumulate in surface soil, necessitating careful monitoring. Furthermore, the study critically evaluates the potential of various physical and biological treatment technologies, such as anaerobic digestion, composting, dewatering, stabilization ponds, biological reactors, membrane processes, rotating disks, and pelletizers, highlighting their effectiveness in mitigating contamination and enhancing soil quality. The long-term effects of wastewater reuse as soil conditioner depend on both wastewater characteristics and soil properties. The benefits of using wastewater as soil conditioners are found to be influenced by characteristics of both the soil and the wastewater, with improvements in soil physical properties (increased porosity and permeability) and chemical properties (increased soil organic carbon and nutrients). Overall, the literature suggests that while wastewaters hold promise as soil conditioners, their successful application depends on effective wastewater management strategies to optimize benefits and mitigate risks.
Collapse
Affiliation(s)
- Thais Girardi Carpanez
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| | - Nayara Carvalho de Lima E Silva
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| | - Míriam Cristina Santos Amaral
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| | - Victor Rezende Moreira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, 6627 Antônio Carlos Avenue, Campus Pampulha, MG, Brazil.
| |
Collapse
|
8
|
Oro CED, Puton BMS, Venquiaruto LD, Dallago RM, Arend GD, Tres MV. The Role of Membranes in Modern Winemaking: From Clarification to Dealcoholization. MEMBRANES 2025; 15:14. [PMID: 39852255 PMCID: PMC11766575 DOI: 10.3390/membranes15010014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 12/30/2024] [Accepted: 01/07/2025] [Indexed: 01/26/2025]
Abstract
The utilization of membrane technologies in winemaking has revolutionized various stages of production, offering precise and efficient alternatives to traditional methods. Membranes, characterized by their selective permeability, play a pivotal role in enhancing wine quality across multiple processes. In clarification, microfiltration and ultrafiltration membranes, such as ceramic or polymeric membranes (e.g., polyethersulfone or PVDF), effectively remove suspended solids and colloids, resulting in a clearer wine without the need for chemical agents. During stabilization, membranes such as nanofiltration and reverse osmosis membranes, often made from polyamide composite materials, enable the selective removal of proteins, polysaccharides, and microorganisms, thereby improving the wine's stability and extending its shelf life. Additionally, in dealcoholization, membranes like reverse osmosis and pervaporation membranes, typically constructed from polydimethylsiloxane (PDMS) or other specialized polymers, facilitate the selective removal of ethanol while preserving the wine's flavor and aroma profile, addressing the increasing consumer demand for low-alcohol and alcohol-free wines. This article provides a comprehensive analysis of the advancements and applications of membrane technologies in winemaking.
Collapse
Affiliation(s)
- Carolina E. Demaman Oro
- Department of Food and Chemical Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), 1621 Sete de Setembro Av., Centro, Erechim 99709-910, RS, Brazil; (C.E.D.O.); (B.M.S.P.); (L.D.V.); (R.M.D.)
| | - Bruna M. Saorin Puton
- Department of Food and Chemical Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), 1621 Sete de Setembro Av., Centro, Erechim 99709-910, RS, Brazil; (C.E.D.O.); (B.M.S.P.); (L.D.V.); (R.M.D.)
| | - Luciana D. Venquiaruto
- Department of Food and Chemical Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), 1621 Sete de Setembro Av., Centro, Erechim 99709-910, RS, Brazil; (C.E.D.O.); (B.M.S.P.); (L.D.V.); (R.M.D.)
| | - Rogério Marcos Dallago
- Department of Food and Chemical Engineering, Universidade Regional Integrada do Alto Uruguai e das Missões (URI), 1621 Sete de Setembro Av., Centro, Erechim 99709-910, RS, Brazil; (C.E.D.O.); (B.M.S.P.); (L.D.V.); (R.M.D.)
| | - Giordana Demaman Arend
- Department of Food and Chemical Engineering, Federal University of Santa Catarina, Florianópolis 88040-900, SC, Brazil
| | - Marcus V. Tres
- Laboratory of Agroindustrial Processes Engineering (LAPE), Federal University of Santa Maria (UFSM), 3013 Taufik Germano Rd., University II DC, Cachoeira do Sul 96503-205, RS, Brazil
| |
Collapse
|
9
|
Pradhan SS, Mahanty A, Pattanaik KP, Adak T, Mohapatra PK. Entry, fate and impact of antibiotics in rice agroecosystem: a comprehensive review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:1120-1138. [PMID: 39739186 DOI: 10.1007/s11356-024-35765-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 12/07/2024] [Indexed: 01/02/2025]
Abstract
Antibiotics are extensively used to manage human, animal and plant ailments caused by microbial infections. However, rampant use of antibiotics has led to the development of antibiotic resistance, which is a public health concern. The development of antibiotic resistance is significantly influenced by agro-ecosystems. Rice agroecosystem receives high levels of antibiotics from direct applications, and sources like manure and irrigation water. Consequently, uptake of antibiotic residues by rice (Oryza sativa L.) is resulting in accumulation of antibiotics in plant parts. Accumulation of these antibiotics can be toxic to plant, and can be partitioned to rice grain and straw, and reach the human and animal food chain leading to the development of antibiotic resistance. Moreover, the antibiotics can alter soil microbes, which would result in loss of production. This study compiles information from existing literature on global antibiotic usage and explores how antibiotics enter the rice ecosystem through contaminated wastewater, manure, sewage sludge, and through direct application. A detailed discussion on the persistence and movement of antibiotics in different environment compartments is provided. The review also highlights the impacts of antibiotics on plants and natural microbiota, as well as issues pertaining to antimicrobial resistance in public health sectors. For sustainable mitigation of the issues of antibiotic residues in rice ecosystem, we suggest application of decontaminated manure, microbial bioremediation, optimization of the use of plant-based alternatives, enhancing regulations, and fostering global collaboration. We advocate integrated disease management approaches which can significantly reduce the antibiotic use in rice agroecosystem.
Collapse
Affiliation(s)
- Sophia Subhadarsini Pradhan
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
- Department of Botany, Ravenshaw University, Cuttack, 751003, Odisha, India
| | - Arabinda Mahanty
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | | - Totan Adak
- ICAR-National Rice Research Institute, Cuttack, Odisha, 753006, India
| | | |
Collapse
|
10
|
Xiang S, Qiu X, Yan X, Ruan R, Cheng P. Salicylic Acid Improved the Growth of Dunaliella salina and Increased the Proportion of 9-cis-β-Carotene Isomers. Mar Drugs 2025; 23:18. [PMID: 39852520 PMCID: PMC11766574 DOI: 10.3390/md23010018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/26/2024] [Accepted: 12/30/2024] [Indexed: 01/26/2025] Open
Abstract
Dunaliella salina is an important source of natural β-carotene (containing 9-cis and all trans isomers) for industrial production. The phytohormone salicylic acid (SA) has been proven to have impacts on the stress resistance of higher plants, but research on microalgae is currently unclear. In this study, the effects of SA on the growth, biochemical composition, antioxidant enzyme activity, key enzymes of β-carotene synthesis, and cis-and trans-isomers of β-carotene in D. salina under different salt concentrations were investigated. The results were shown that at concentrations of 1.5, 2, and 2.5 M NaCl, the antioxidant enzyme activity and key enzymes for β-carotene synthesis in algal cells were significantly increased, but the content and proportion of 9-cis isomer in β-carotene isomers decreased. The addition of SA significantly increased the growth and antioxidant enzyme (SOD, MDA) activity, as well as the synthesis of key enzyme phytoene synthase (PSY), phytoene desaturase (PDS), and lycopene β cyclase (LCYB) of D. salina under high-salinity conditions. It is worth noting that under the treatment of SA, the proportion of 9-cis isomer in the three salt concentrations (1.5, 2, 2.5 M NaCl) significantly increased by 32.09%, 20.30%, and 11.32%, respectively. Moreover, SA can not only improve the salt tolerance of D. salina, but also increase the proportion of 9-cis isomer, with higher physiological activity in β-carotene, thereby enhancing the application value of D. salina.
Collapse
Affiliation(s)
- Shuaicheng Xiang
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (S.X.); (X.Q.)
| | - Xiaoting Qiu
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (S.X.); (X.Q.)
| | - Xiaojun Yan
- School of Marine Sciences, Ningbo University, Ningbo 315211, China;
| | - Roger Ruan
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Pengfei Cheng
- College of Food Science and Engineering, Ningbo University, Ningbo 315211, China; (S.X.); (X.Q.)
- Center for Biorefining, Department of Bioproducts and Biosystems Engineering, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
11
|
Jing K, Li Y, Li J, Jiang C, Li Y, Yao C. Antibiotic biotransformation potential of biofilms in streams receiving treated wastewater effluent: Biodegradation mechanism and bacterial community structure. CHEMOSPHERE 2024; 367:143636. [PMID: 39490761 DOI: 10.1016/j.chemosphere.2024.143636] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/22/2024] [Accepted: 10/24/2024] [Indexed: 11/05/2024]
Abstract
Antibiotics are a widely distributed and effective antibacterial agents. Human medical treatment and livestock aquaculture are major sources of antibiotics in aquatic ecosystems, potentially damaging the biofilms that are the foundation of stream food webs. In this study, we conducted antibiotic biotransformation experiments using biofilms cultured in streams upstream and downstream of a wastewater treatment plant outlet to distinguish different fate processes of antibiotics in biofilms. It was found that stream biofilms have biotransformation potential mainly for specific sulfonamide antibiotics. Flavobacterium and Dyadobacter were identified to be associated with biofilm biotransformation of antibiotics by 16S rDNA sequencing. Besides, microorganisms released from treated wastewater integrated into downstream biofilm communities, thereby enhancing the biotransformation potential of downstream biofilm communities compared to upstream biofilm. These findings enriched the understanding of the biotransformation of micropollutants by stream biofilms, and to thus promote the development of biofilm-based monitoring technologies.
Collapse
Affiliation(s)
- Ke Jing
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Ying Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China.
| | - Jing Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Chenxue Jiang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Yinghao Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| | - Chi Yao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, HoHai University, Nanjing, 210098, China
| |
Collapse
|
12
|
Wang Z, Li Y, Wang J, Li S. Tetracycline antibiotics in agricultural soil: Dissipation kinetics, transformation pathways, and structure-related toxicity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175126. [PMID: 39084385 DOI: 10.1016/j.scitotenv.2024.175126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/26/2024] [Accepted: 07/27/2024] [Indexed: 08/02/2024]
Abstract
Tetracyclines (TCs) are the most common antibiotics in agricultural soil, due to their widespread usage and strong persistence. Biotic and abiotic degradation of TCs may generate toxic transformation products (TPs), further threatening soil ecological safety. Despite the increasing attention on the environmental behavior of TCs, a systematic review on the dissipation of TCs, evolution of TPs, and structure-toxicity relationship of TCs in agricultural soil remains lacking. This review aimed to provide a comprehensive overview of the environmental fate of TCs in agricultural soil. We first introduced the development history and structural features of different generations of TCs. Then, we comparatively evaluated the dissipation kinetics, transportation pathways, and ecological impacts of three representative TCs, namely tetracycline (TC), oxytetracycline (OTC), and chlortetracycline (CTC), in agricultural soil. The results showed that the dissipation kinetics of TCs generally followed the first-order kinetic model, with the median dissipation half-lives ranging from 20.0 to 38.8 days. Among the three TCs, OTC displayed the lowest dissipation rates due to its structural stability. The typical degradation pathways of TCs in soil included epimerization/isomerization, demethylation, and dehydration. Isomerization and dehydration reactions may lead to the formation of more toxic TPs, while demethylation was accompanied by the alteration of the minimal pharmacophore of TCs thus potentially reducing the toxicity. Toxicological experiments are urgently needed in future to comprehensively evaluate the ecological risks of TCs in agricultural soil.
Collapse
Affiliation(s)
- Zhu Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Ying Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Jie Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China
| | - Si Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
13
|
Wang X, Wang Y, Zhang Z, Tian L, Zhu T, Zhao Y, Tong Y, Yang Y, Sun P, Liu Y. Effect, Fate and Remediation of Pharmaceuticals and Personal Care Products (PPCPs) during Anaerobic Sludge Treatment: A Review. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:19095-19114. [PMID: 39428634 DOI: 10.1021/acs.est.4c06760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Biomass energy recovery from sewage sludge through anaerobic treatment is vital for environmental sustainability and a circular economy. However, large amounts of pharmaceutical and personal care products (PPCPs) remain in sludge, and their interactions with microbes and enzymes would affect resource recovery. This article reviews the effects and mechanisms of PPCPs on anaerobic sludge treatment. Most PPCPs posed adverse impacts on methane production, while certain low-toxicity PPCPs could stimulate volatile fatty acids and biohydrogen accumulation. Changes in the microbial community structure and functional enzyme bioactivities were also summarized with PPCPs exposure. Notably, PPCPs such as carbamazepine could bind with the active sites of the enzyme and induce microbial stress responses. The fate of various PPCPs during anaerobic sludge treatment indicated that PPCPs featuring electron-donating groups (e.g., ·-NH2 and ·-OH), hydrophilicity, and low molecular weight were more susceptible to microbial utilization. Key biodegrading enzymes (e.g., cytochrome P450 and amidase) were crucial for PPCP degradation, although several PPCPs remain refractory to biotransformation. Therefore, remediation technologies including physical pretreatment, chemicals, bioaugmentation, and their combinations for enhancing PPCPs degradation were outlined. Among these strategies, advanced oxidation processes and combined strategies effectively removed complex and refractory PPCPs mainly by generating free radicals, providing recommendations for improving sludge detoxification.
Collapse
Affiliation(s)
- Xiaomin Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Zixin Zhang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Lixin Tian
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yingxin Zhao
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yindong Tong
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yongkui Yang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Peizhe Sun
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
14
|
Li MY, Zhang RD, Liu SS, Pei CL, He LY, Zhao JL, Liu YS, Shi YJ, Ying GG. Aerobic granular sludge for swine wastewater treatment: Implications for antibiotic and antibiotic resistance gene elimination. BIORESOURCE TECHNOLOGY 2024; 410:131297. [PMID: 39153702 DOI: 10.1016/j.biortech.2024.131297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/10/2024] [Accepted: 08/14/2024] [Indexed: 08/19/2024]
Abstract
Swine wastewater (SW) contains high levels of traditional pollutants, antibiotics, and antibiotic resistance genes (ARGs), necessitating effective elimination. Two parallel aerobic granular sludge (AGS) reactors, R1 and R2, were constructed and optimized for treating SW from two pig farms, identified as SW1 and SW2. R2 showed higher antibiotic removal efficiency, particularly in the removal of sulfonamides, while fluoroquinolones tended to adsorb onto the sludge. Process optimization by introducing an additional anoxic phase enhanced denitrification and reduced effluent ARG levels, also aiding in the improved removal of fluoroquinolones. The nitrite-oxidizing bacteria (NOB) Nitrospira accumulated after the treatment process, reaching 12.8 % in R1 and 14.1 % in R2, respectively. Mantel's test revealed that pH, NH4+-N, and Mg significantly affected ARGs and microbial community. Sulfadiazine and sulfamethazine were found to significantly impact ARGs and the microbial communities. This study provides innovative insights into the application of AGS for the treatment of real SW.
Collapse
Affiliation(s)
- Meng-Yuan Li
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Run-Dong Zhang
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Shuang-Shuang Liu
- Guangdong Provincial Key Laboratory of Fishery Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Cheng-Lei Pei
- Guangzhou Sub-branch of Guangdong Ecological and Environmental Monitoring Center, Guangzhou 510006, China
| | - Liang-Ying He
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Jian-Liang Zhao
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - You-Sheng Liu
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| | - Yi-Jing Shi
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China.
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, School of Environment, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
15
|
Lu Z, Liu G, Xie H, Zhai Y, Li X. Advances and solutions in biological treatment for antibiotic wastewater with resistance genes: A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122115. [PMID: 39121628 DOI: 10.1016/j.jenvman.2024.122115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 07/16/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
Biological treatment represents a fundamental component of wastewater treatment plants (WWTPs). The transmission of antibiotic resistance bacteria (ARB) and resistance genes (ARGs) occurred through the continuous migration and transformation, attributed to the residual presence of antibiotics in WWTPs effluent, posing a significant threat to the entire ecosystem. It is necessary to propose novel biological strategies to address the challenge of refractory contaminants, such as antibiotics, ARGs and ARB. This review summarizes the occurrence of antibiotics in wastewater, categorized by high and low concentrations. Additionally, current biological treatments used in WWTPs, such as aerobic activated sludge, anaerobic digestion, sequencing batch reactor (SBR), constructed wetland, membrane-related bioreactors and biological aerated filter (BAF) are introduced. In particular, because microorganisms are the key to those biological treatments, the effect of high and low concentration of antibiotics on microorganisms are thoroughly discussed. Finally, solutions involving functional bacteria, partial nitrification (PN)-Anammox and lysozyme embedding are suggested from the perspective of the entire biological treatment process. Overall, this review provides valuable insights for the simultaneous removal of antibiotics and ARGs in antibiotics wastewater.
Collapse
Affiliation(s)
- Ziyi Lu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Gaige Liu
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Hongwei Xie
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China
| | - Yining Zhai
- School of Civil Engineering, Heilongjiang University, Harbin 150080, China
| | - Xiangkun Li
- School of Civil and Transportation Engineering, Hebei University of Technology, Tianjin 300401, China.
| |
Collapse
|
16
|
Han J, Xie N, Ju J, Zhang Y, Wang Y, Kang W. Developments of electrospinning technology in membrane bioreactor: A review. CHEMOSPHERE 2024; 364:143091. [PMID: 39151583 DOI: 10.1016/j.chemosphere.2024.143091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/30/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
The necessity for effective wastewater treatment and purification has grown as a result of the increasing pollution issues brought on by industrial and municipal wastewater. Membrane bioreactor (MBR) technology stands out when compared to other treatment methods because of its high efficiency, environmental friendliness, small footprint, and ease of maintenance. However, the development and application of membrane bioreactors has been severely constrained by the higher cost and shorter service life of these devices brought on by membrane biofouling issues resulting from contaminants and bacteria in the water. The nanoscale size of the electrospinning products provides unique microstructure, and the technology facilitates the production of structurally different membranes, or the modification and functionalization of membranes, which makes it possible to solve the membrane fouling problem. Therefore, many current studies have attempted to use electrospinning in MBRs to address membrane fouling and ultimately improve treatment efficacy. Meanwhile, in addition to solving the problem of membrane fouling, the fabrication technology of electrospinning also shows great advantages in constructing thin porous fiber membrane materials with controllable surface wettability and layered structure, which is helpful for the performance enhancement of MBR and expanding innovation. This paper systematically reviews the application and research progress of electrospinning in MBRs. Firstly, the current status of the application of electrospinning technology in various MBRs is introduced, and the relevant measures to solve the membrane fouling based on electrospinning technology are analyzed. Subsequently, some new types of MBRs and new application areas developed with the help of electrospinning technology are introduced. Finally, the limitations and challenges of merging the two technologies are presented, and pertinent recommendations are provided for future research on the use of electrospinning technology in membrane bioreactors.
Collapse
Affiliation(s)
- Jiacheng Han
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Nan Xie
- ChinaTianjin Research Institute of Construction Machinery, No.91 Huashi Road, Beichen Technology Park, Tianjin, 300409, PR China
| | - Jingge Ju
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| | - Yan Zhang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Yongcheng Wang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China
| | - Weimin Kang
- State Key Laboratory of Separation Membranes and Membrane Processes, National Center for International Joint Research on Separation Membranes, School of Textile Science and Engineering, Key Laboratory of Advanced Textile Composite, Ministry of Education, Tiangong University, No. 399 BinShuiXi Road, XiQing District, Tianjin, 300387, PR China.
| |
Collapse
|
17
|
Manzar MS, Palaniandy P, Georgin J, Franco DSP, Zubair M, Muazu ND, Faisal W, El Messaoudi N. Synthesis of LDH-MgAl and LDH-MgFe composites for the efficient removal of the antibiotic from water. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:55577-55596. [PMID: 39240434 DOI: 10.1007/s11356-024-34837-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 08/24/2024] [Indexed: 09/07/2024]
Abstract
In this study, novel lamellar double hydroxide composites (LDH-MgAl and LDH-MgFe) were synthesized at different metal salt ratios (1:1 to 3:1) and fully characterized using various techniques such as XRD, FTIR, SEM, EDS, and TGA. The resulting LDHs demonstrated a high affinity for efficiently removing tetracycline (TC) antibiotic from water, particularly at a moderate molar ratio of 3:1. This ratio exhibited improved structural characteristics, resulting in better TC uptake from water. The improved performance was supported by the increased abundance of surface functional groups (OH, NO3, CO32-, C-O-C, Fe-O, and Al-O-Al). The TGA analysis established the high stability of the LDHs when subjected to high temperatures. The kinetics of TC adsorption onto LDH fitted with the PSO (R2 = 0.935-0.994) and Avrami (R2 = 0.9528-0.9824) models, while the equilibrium data fitted the Liu and Langmuir isotherm models, with maximum monolayer adsorption capacities of 101.1 mg g-1 and 70.83 mg g-1, respectively-significantly higher than many reported values in the literature. The positive values of ΔH0 and ΔS0 indicate an endothermic process, with TC removal mechanisms influenced by physical interactions, such as hydrogen bonding, electrostatic interaction, and π-cation with the surface functional groups of the LDH adsorbents. These results suggest that LDH-MgAl and LDH-MgFe are promising adsorbents for the removal of TC from water.
Collapse
Affiliation(s)
- Mohammad Saood Manzar
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | | | - Jordana Georgin
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Dison Stracke Pfingsten Franco
- Department of Civil and Environmental, Universidad de La Costa, CUC, Calle 58 # 55-66, Barranquilla, Atlántico, Colombia
| | - Mukarram Zubair
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Nuhu Dalhat Muazu
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Wamda Faisal
- Department of Environmental Engineering, College of Engineering, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Noureddine El Messaoudi
- Laboratory of Applied Chemistry and Environment, Faculty of Sciences, Ibn Zohr, University, 80000, Agadir, Morocco.
| |
Collapse
|
18
|
Song Z, Zhang L, Yang J, Ni SQ, Peng Y. Achieving high nitrogen and antibiotics removal efficiency by nZVI-C in partial nitritation/anammox system with a single-stage membrane-aerated biofilm reactor. JOURNAL OF HAZARDOUS MATERIALS 2024; 473:134626. [PMID: 38759403 DOI: 10.1016/j.jhazmat.2024.134626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/26/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
This study innovated constructed an activated carbon-loaded nano-zero-valent iron (nZVI-C) enhanced membrane aerated biofilm reactor (MABR) coupled partial nitritation/anammox (PN/A) system for optimizing nitrogen and antibiotics removal. Results showed that nitrogen and antibiotic removal efficiencies of 88.45 ± 0.14% and 89.90 ± 3.07% were obtained by nZVI-C, respectively. nZVI-C hastened Nitrosomonas enrichment (relative abundance raised from 2.85% to 12.28%) by increasing tryptophan content in EPS. Furthermore, nZVI-C proliferated amo gene by 3.92 times and directly generated electrons, stimulating Ammonia monooxygenase (AMO) co-metabolism activity. Concurrently, via antibiotic resistance genes (ARGs) horizontal transfer, Nitrosomonas synergized with Arenimonas and Comamonadaceae for efficient antibiotic removal. Moreover, nZVI-C mitigated antibiotics inhibition of electron transfer by proliferating genes for PN and anammox electron production (hao, hdh) and utilization (amo, hzs, nir). That facilitated electron transfer and synergistic substrate conversion between ammonia oxidizing bacteria (AOB) and anaerobic ammonia oxidizing bacteria (AnAOB). Finally, the high nitrogen removal efficiency of the MABR-PN/A system was achieved.
Collapse
Affiliation(s)
- Zixuan Song
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| | - Li Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China.
| | - Jiachun Yang
- China Coal Technology & Engineering Group Co. Ltd., Tokyo 100-0011, Japan
| | - Shou-Qing Ni
- School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing 100124, China
| |
Collapse
|
19
|
Bao T, Damtie MM, Wang CY, Li CL, Chen Z, Cho K, Wei W, Yuan P, Frost RL, Ni BJ. Iron-containing nanominerals for sustainable phosphate management: A comprehensive review and future perspectives. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172025. [PMID: 38554954 DOI: 10.1016/j.scitotenv.2024.172025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/25/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
Adsorption, which is a quick and effective method for phosphate management, can effectively address the crisis of phosphorus mineral resources and control eutrophication. Phosphate management systems typically use iron-containing nanominerals (ICNs) with large surface areas and high activity, as well as modified ICNs (mICNs). This paper comprehensively reviews phosphate management by ICNs and mICNs in different water environments. mICNs have a higher affinity for phosphates than ICNs. Phosphate adsorption on ICNs and mICNs occurs through mechanisms such as surface complexation, surface precipitation, electrostatic ligand exchange, and electrostatic attraction. Ionic strength influences phosphate adsorption by changing the surface potential and isoelectric point of ICNs and mICNs. Anions exhibit inhibitory effects on ICNs and mICNs in phosphate adsorption, while cations display a promoting effect. More importantly, high concentrations and molecular weights of natural organic matter can inhibit phosphate adsorption by ICNs and mICNs. Sodium hydroxide has high regeneration capability for ICNs and mICNs. Compared to ICNs with high crystallinity, those with low crystallinity are less likely to desorb. ICNs and mICNs can effectively manage municipal wastewater, eutrophic seawater, and eutrophic lakes. Adsorption of ICNs and mICNs saturated with phosphate can be used as fertilizers in agricultural production. Notably, mICNs and ICNs have positive and negative effects on microorganisms and aquatic organisms in soil. Finally, this study introduces the following: trends and prospects of machine learning-guided mICN design, novel methods for modified ICNs, mICN regeneration, development of mICNs with high adsorption capacity and selectivity for phosphate, investigation of competing ions in different water environments by mICNs, and trends and prospects of in-depth research on the adsorption mechanism of phosphate by weakly crystalline ferrihydrite. This comprehensive review can provide novel insights into the research on high-performance mICNs for phosphate management in the future.
Collapse
Affiliation(s)
- Teng Bao
- School of Biology, Food and Environment Engineering, Hefei University, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Department of Environmental Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea; Nanotechnology and Molecular Science Discipline, Faculty of Science and Engineering, Queensland University of Technology (QUT), 2 George Street, GPO Box 2434, Brisbane, QLD 4000, Australia
| | - Mekdimu Mezemir Damtie
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; Water Resources Engineering Department, Adama Science and Technology University, Adama, P.O. Box 1888, Ethiopia
| | - Chu Yan Wang
- School of Biology, Food and Environment Engineering, Hefei University, China
| | - Cheng Long Li
- School of Biology, Food and Environment Engineering, Hefei University, China
| | - Zhijie Chen
- School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Kuk Cho
- Department of Environmental Engineering, College of Engineering, Pusan National University, 2 Busandaehak-ro 63beon-gil, Geumjeong-gu, Busan 46241, South Korea
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Peng Yuan
- KAUST Catalysis Center (KCC), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Ray L Frost
- Nanotechnology and Molecular Science Discipline, Faculty of Science and Engineering, Queensland University of Technology (QUT), 2 George Street, GPO Box 2434, Brisbane, QLD 4000, Australia
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia; School of Civil and Environmental Engineering, The University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
20
|
Li X, Chen T, Ren Q, Lu J, Cao S, Liu C, Li Y. Phages in sludge from the A/O wastewater treatment process play an important role in the transmission of ARGs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:172111. [PMID: 38565354 DOI: 10.1016/j.scitotenv.2024.172111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 02/24/2024] [Accepted: 03/28/2024] [Indexed: 04/04/2024]
Abstract
Phages can influence the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs) through transduction, but their profiles and effects on the transmission of ARGs are unclear, especially in complex swine sludge. In this study, we investigated the characterization of phage and ARG profiles in sludge generated from anoxic/oxic (A/O) wastewater treatment processes on swine farms using metagenomes and viromes. The results demonstrated that 205-221 subtypes of ARGs could be identified in swine sludge, among which sul1, tet(M), and floR were the dominant ARGs, indicating that sludge is an important reservoir of ARGs, especially in sludge (S) tanks. The greater abundance of mobile genetic elements (MGEs) in the S tank could significantly contribute to the greater abundance of ARGs there compared to the anoxic (A) and oxic (O) tanks (P < 0.05). However, when we compared the abundances of ARGs and MGEs in the A and O tanks, we observed opposite significant differences (P < 0.05), suggesting that MGEs are not the only factor influencing the abundance of ARGs. The high proportion of lysogenic phages in sludge from the S tank can also have a major impact on the ARG profile. Siphoviridae, Myoviridae, and Podoviridae were the dominant phage families in sludge, and a network diagram of bacteria-ARG-phages revealed that dominant phages and bacteria acted simultaneously as potential hosts for ARGs, which may have led to phage-mediated HGT of ARGs. Therefore, the risk of phage-mediated HGT of ARGs cannot be overlooked.
Collapse
Affiliation(s)
- Xiaoting Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Tao Chen
- College of Animal Science, South China Agricultural University, Guangzhou 510642, China.
| | - Qinghai Ren
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Jianbiao Lu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Shengliang Cao
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Cheng Liu
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China
| | - Yubao Li
- Phage Research Center, Liaocheng University, Liaocheng, Shandong 252000, China.
| |
Collapse
|
21
|
Wang X, Zhang D, Ma K, Bu C, Wang Y, Tang Y, Xu J, Xu Y. Biochar and zero-valent iron alleviated sulfamethoxazole and tetracycline co-stress on the long-term system performance of bioretention cells: Insights into microbial community, antibiotic resistance genes and functional genes. ENVIRONMENTAL RESEARCH 2024; 248:118271. [PMID: 38262515 DOI: 10.1016/j.envres.2024.118271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/11/2024] [Accepted: 01/18/2024] [Indexed: 01/25/2024]
Abstract
Antibiotics and antibiotic resistance genes (ARGs), known as emerging contaminants, have raised widespread concern due to their potential environmental and human health risks. In this study, a conventional bioretention cell (C-BRC) and three modified bioretention cells with biochar (BC-BRC), microbial fuel cell coupled/biochar (EBC-BRC) and zero-valent iron/biochar (Fe/BC-BRC) were established and two antibiotics, namely sulfamethoxazole (SMX) and tetracycline (TC), were introduced into the systems in order to thoroughly investigate the co-stress associated with the long-term removal of pollutants, dynamics of microbial community, ARGs and functional genes in wastewater treatment. The results demonstrated that the SMX and TC co-stress significantly inhibited the removal of total nitrogen (TN) (C-BRC: 37.46%; BC-BRC: 41.64%; EBC-BRC: 55.60%) and total phosphorous (TP) (C-BRC: 53.11%; BC-BRC: 55.36%; EBC-BRC: 62.87%) in C-BRC, BC-BRC and EBC-BRC, respectively, while Fe/BC-BRC exhibited profoundly stable and high removal efficiencies (TN: 89.33%; TP: 98.36%). Remarkably, greater than 99% removals of SMX and TC were achieved in three modified BRCs compared with C-BRC (SMX: 30.86 %; TC: 59.29%). The decreasing absolute abundances of denitrifying bacteria and the low denitrification functional genes (nirK: 2.80 × 105-5.97 × 105 copies/g; nirS: 7.22 × 105-1.69 × 106 copies/g) were responsible for the lower TN removals in C-BRC, BC-BRC and EBC-BRC. The amendment of Fe/BC successfully detoxified SMX and TC to functional bacteria. Furthermore, the co-stress of antibiotics stimulated the propagation of ARGs (sulI, sulII, tetA and tetC) in substrates of all BRCs and only Fe/BC-BRC effectively reduced all the ARGs in effluent by an order of magnitude. The findings contribute to developing robust ecological wastewater treatment technologies to simultaneously remove nutrients and multiple antibiotics.
Collapse
Affiliation(s)
- Xue Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Danyi Zhang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Kexin Ma
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Chibin Bu
- Department of Gastroenterology, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Ying Wang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yanqiang Tang
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Jianing Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| | - Yan Xu
- Department of Municipal Engineering, School of Civil Engineering, Southeast University, Nanjing, Jiangsu, 210096, China.
| |
Collapse
|
22
|
Hasan R, Kasera N, Beck AE, Hall SG. Potential of Synechococcus elongatus UTEX 2973 as a feedstock for sugar production during mixed aquaculture and swine wastewater bioremediation. Heliyon 2024; 10:e24646. [PMID: 38314264 PMCID: PMC10837500 DOI: 10.1016/j.heliyon.2024.e24646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 12/14/2023] [Accepted: 01/11/2024] [Indexed: 02/06/2024] Open
Abstract
The demand for protein is increasing with an expanding world population and is influencing the rapid growth of fish and animal agriculture. These sectors are becoming a significant source of water pollution and need to develop environmentally sustainable techniques that are cost-effective, ideally with potential for downstream value-added production. This study investigated the potential of one of the fastest-growing cyanobacterial species, Synechococcus elongatus UTEX 2973, for bioremediation of mixed wastewater (combination of sturgeon and swine wastewater). Three different mixing ratios (25:75, 50:50, and 75:25 sturgeon:swine) were compared to find a suitable combination for the growth of S. elongatus as well as carbohydrate accumulation in biomass. The final biomass production was found to be 0.65 ± 0.03 g Dry cell Weight (DW)/L for 75%-25 %, 0.90 ± 0.004 g DW/L for 50%-50 %, and 0.71 ± 0.04 g DW/L for 25%-75 % sturgeon-swine wastewater combination. Cyanobacteria cultivated in 50%-50 % sturgeon-swine wastewater also accumulated 70 % total carbohydrate of DW, whereas 75%-25 % sturgeon-swine and 25%-75 % sturgeon-swine accumulated 53 % and 45 %, respectively. Subsequently, the S. elongatus cells were grown in a separate batch of 50%-50 % sturgeon-swine wastewater and compared with cells grown in BG11 synthetic growth media. Cultivation in BG11 resulted in higher biomass production but lower carbohydrate accumulation than 50%-50 % mixed wastewater. Final biomass production was 0.85 ± 0.08 g DW/L for BG11 and 0.65 ± 0.04 g DW/L for 50%-50 % sturgeon-swine wastewater. Total carbohydrate accumulated was 75 % and 64 % of DW for 50%-50 % sturgeon-swine mixed wastewater and BG11 growth media, respectively, where glycogen was the main carbohydrate component (90 %). The nutrient removal efficiencies of S. elongatus were 67.15 % for orthophosphate, 93.39 % for nitrate-nitrite, and 97.98 % for ammonia. This study suggested that S. elongatus is a promising candidate for enabling simultaneous bioremediation of mixed wastewater and the production of value-added biochemicals.
Collapse
Affiliation(s)
- Rifat Hasan
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, USA
| | - Nitesh Kasera
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, USA
| | - Ashley E. Beck
- Department of Biological and Environmental Sciences, Carroll College, Helena, MT, USA
| | - Steven G. Hall
- Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC, USA
| |
Collapse
|
23
|
Ospina-Montoya V, Pérez S, Muñoz-Saldaña J, Forgionny A, Flórez E, Acelas N. Performance of novel Ca-biocomposites produced from banana peel and eggshell for highly efficient removal and recovery of phosphate from domestic wastewater. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 352:120029. [PMID: 38184877 DOI: 10.1016/j.jenvman.2024.120029] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Revised: 12/05/2023] [Accepted: 01/02/2024] [Indexed: 01/09/2024]
Abstract
Using biowaste-based adsorbents to remove phosphorus (P) from wastewater offers significant benefits concerning eutrophication mitigation and addressing waste management challenges. In this work, Ca-biocomposites were prepared by pyrolysis (700 °C) of a mixture of banana peel (BP) and eggshell (ES). The mass ratio of BP to ES was varied in 2:1, 1:1, and 1:2 ratios. Among the tested mixtures, the BPES-1:2 sample exhibited excellent P removal performance, reaching a maximum P adsorption capacity (Qmax) of 214 ± 5 mg P/g. The adsorption process fitted well with the Avrami order kinetic model (R2 > 0.996) and the Liu isotherms model (R2 > 0.997). The excellent fit of the experimental data to the Avrami model suggests that chemisorption is the dominant interaction mechanism, leading to precipitation through the formation of calcium phosphates. Additionally, the Liu model anticipates that the energetic characteristics of the adsorbent's active sites cannot be identical. This is in agreement with the presence of Ca(OH)2 and CaCO3 in the adsorbent material, where the Ca(OH)2 active sites are preferred by the adsorbate molecules (PO43-) for occupation. Furthermore, thermodynamic analysis revealed that P adsorption is a spontaneous process of exothermic nature (ΔH° < 0). The calculated activation energy for the process (72.81 kJ/mol) suggests the P adsorption mechanism involves strong chemical bonding between the adsorbent and P species. In addition, precipitation of apatite (Ca5(PO4)3OH), a vital component in fertilizer production, was observed during the adsorption process. In tertiary treated wastewater applications, the BPES-1:2 biocomposite demonstrated a P removal efficiency of 90%. The solubility of P in a 2% formic acid solution was 100%, while the water-soluble P content was measured at 5.6%. These findings highlight the product's sustainable and environmentally beneficial nature by demonstrating its potential as a slow-release fertilizer, contributing to the application of the 3R slogan: Reduce, Reuse, Recycle. This value-added product is promising in supplying nutrients to plants over an extended period while minimizing the risk of nutrients leaching into the environment.
Collapse
Affiliation(s)
- Valentina Ospina-Montoya
- Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín 050026, Colombia
| | - Sebastián Pérez
- Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados del IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, 76230 Querétaro, Mexico
| | - Juan Muñoz-Saldaña
- Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados del IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, 76230 Querétaro, Mexico
| | - Angélica Forgionny
- Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín 050026, Colombia
| | - Elizabeth Flórez
- Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín 050026, Colombia
| | - Nancy Acelas
- Grupo de investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín 050026, Colombia.
| |
Collapse
|
24
|
Tang T, Wang Y, Zhao X. New insights into antibiotic stimulation of methane production during anaerobic digestion. CHEMOSPHERE 2024; 349:140785. [PMID: 38016524 DOI: 10.1016/j.chemosphere.2023.140785] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 11/09/2023] [Accepted: 11/21/2023] [Indexed: 11/30/2023]
Abstract
Residual antibiotics in swine wastewater pose a critical challenge for stable anaerobic digestion (AD). This study offers fresh insights into the anaerobic treatment of swine wastewater. The results showed that the presence of three typical antibiotics (sulfamethoxazole (SMX), oxytetracycline (OTC) and ciprofloxacin (CIP)) in swine wastewater could promote methane production by stimulating the production and conversion of ethanol. Among them, SMX exhibited the strongest methane promotion effect, with the cumulative methane production increasing from 138.47 to 2204.19 mL/g VS. According to the microbial community structure, antibiotics could promote the growth of Corynebacterium, Lutispora and hydrogenotrophic methanogens (Methanosassiliicoccus, Methanobrevibacter, and Methanobacterium), but inhibit the enrichment of acetoclastic methanogen (Methanosaeta). The relative abundance of Methanosaeta decreased from 2.93-19.80% to 0.52-2.58% under antibiotic stress. Furthermore, there were significant differences in the influence of different antibiotic types on methanogenic pathways. Specifically, OTC and CIP promoted the acetoclastic and hydrogenotrophic pathways, respectively, to enhance methane production. However, SMX could promote both acetoclastic and hydrogenotrophic pathways.
Collapse
Affiliation(s)
- Taotao Tang
- Southwest Municipal Engineering Design & Research Institute of China Co. Ltd., Chengdu, 610084, China
| | - Yin Wang
- Southwest Municipal Engineering Design & Research Institute of China Co. Ltd., Chengdu, 610084, China.
| | - Xiaolong Zhao
- Southwest Municipal Engineering Design & Research Institute of China Co. Ltd., Chengdu, 610084, China
| |
Collapse
|
25
|
Liu J, Wang Z, Zhao C, Lu B, Zhao Y. Phytohormone gibberellins treatment enhances multiple antibiotics removal efficiency of different bacteria-microalgae-fungi symbionts. BIORESOURCE TECHNOLOGY 2024; 394:130182. [PMID: 38081467 DOI: 10.1016/j.biortech.2023.130182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 02/04/2024]
Abstract
To develop and characterize novel antibiotics removal biomaterial technology, we constructed three different bacteria-microalgae-fungi consortiums containing Chlorella vulgaris (C. vulgaris), endophytic bacterium, Clonostachys rosea (C. rosea), Ganoderma lucidum, and Pleurotus pulmonarius. The results showed that under treatment with 50 mg/L of gibberellins (GAs), the three bacteria-microalgae-fungi symbionts had maximal growth rates (0.317 ± 0.030 d-1) and the highest removal efficiency for seven different antibiotics. Among them, C. vulgaris-endophytic bacterium-C. rosea symbiont had the best performance, with antibiotics removal efficiencies of 96.0 ± 1.4 %, 91.1 ± 7.9 %, 48.7 ± 5.1 %, 34.6 ± 2.9 %, 61.0 ± 5.5 %, 63.7 ± 5.6 %, and 54.3 ± 4.9 % for tetracycline hydrochloride, oxytetracycline hydrochloride, ciprofloxacin, norfloxacin, sulfadiazine, sulfamethazine, and sulfamethoxazole, respectively. Overall, the present study demonstrates that 50 mg/L GAs enhances biomass production and antibiotics removal efficiency of bacteria-microalgae-fungi symbionts, providing a framework for future antibiotics-containing wastewater treatment using three-phase symbionts.
Collapse
Affiliation(s)
- Jun Liu
- School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Zhengfang Wang
- Suzhou Institute of Trade & Commerce, Suzhou 215009, China
| | - Chunzhi Zhao
- School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201400, China
| | - Bei Lu
- School of Ecological Technology & Engineering, Shanghai Institute of Technology, Shanghai 201400, China
| | - Yongjun Zhao
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
26
|
Cui W, Meng J, Wang S, Hu Z, Liu G, Zhan X. 17β-estradiol (E2) removal in anode-electrodialysis (anode-ED) during nutrient recovery from pig manure digestate. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132754. [PMID: 37839370 DOI: 10.1016/j.jhazmat.2023.132754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/21/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Nutrient recovery from anaerobic digestate through electrodialysis technology (ED) has been investigated and shown high promise, but the removal of 17β-estradiol (E2), which is a natural estrogen and widely found in manure digestate, is not clear. This study examined the mechanism of membrane adsorption and anodic oxidation of E2 during recovering nutrient from manure digestate, and further investigated the performance of Anode-ED in E2 removal. The results showed that the removal of E2 in conventional ED was primarily attributed to membrane adsorption, resulting in no detectable E2 in the product solution. The adsorption capacity of the anion exchange membrane for E2 was significantly higher compared to that of the cation exchange membrane. During Anode-ED operation, E2 was efficiently removed by electrochemical oxidation, in which the chlorination played a primary role. Moreover, the oxidation intermediates of E2 were further removed after 40 min. Even though the carbonate, volatile fatty acid (VFA), and humic acid in the real wastewater have a negative impact on E2 oxidation, the E2 was completely removed from digestate during nutrient recovery in the anode-ED. This study indicates that anode-ED is a promising technology for the removal of E2 during nutrient recovery from digestate.
Collapse
Affiliation(s)
- Wanjun Cui
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, China
| | - Jizhong Meng
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; SFI MaREI Research Centre, University of Galway, Ireland.
| | - Shun Wang
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; SFI MaREI Research Centre, University of Galway, Ireland
| | - Zhenhu Hu
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, China
| | - Guangli Liu
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, School of Environmental Science and Engineering, Sun Yat-sen University, China
| | - Xinmin Zhan
- Civil Engineering, College of Science and Engineering, University of Galway, Ireland; Ryan Institute, University of Galway, Ireland; SFI MaREI Research Centre, University of Galway, Ireland.
| |
Collapse
|
27
|
Chu G, Qi W, Chen W, Zhang Y, Gao S, Wang Q, Gao C, Gao M. Metagenomic insights into the nitrogen metabolism, antioxidant pathway, and antibiotic resistance genes of activated sludge from a sequencing batch reactor under tetracycline stress. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132788. [PMID: 37856954 DOI: 10.1016/j.jhazmat.2023.132788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 10/13/2023] [Indexed: 10/21/2023]
Abstract
Tetracycline is prevalent in wastewater treatment plants and poses a potential threat to biological nitrogen removal under long-term exposure. In the present study, the influence of different tetracycline concentrations on the nitrogen removal, bioactivity response, and the spread of antibiotic resistance genes (ARGs) was assessed in sequencing batch reactor (SBR). The nitrogen removal efficiency, nitrification rate, and denitrification rate and their corresponding enzymatic activities gradually decreased with an increase in tetracycline concentration from 0.5 to 15 mg/L. The remarkable toxicity induced by tetracycline led to a significant increase in the peroxidation and the response of antioxidant system, as evidenced by strengthened antioxidant enzymatic activity and abundant genes (SOD12, katG, PXDN, gpx, and apx). Tetracycline addition significantly inhibited the ammonia-oxidizing bacterium Nitrosomonas and functional genes (amoA, amoB, and amoC). The presence of tetracycline decreased the abundance of citrate synthase and genes (CS, IDH3, and acnA) and interfered with carbon source metabolism, leading to impaired bioactivity and treatment performance. In addition, the presence of tetracycline induces diversity and differences in ARGs. The results provide reliable basic data for a deeper understanding of the effects of tetracycline on the nitrogen removal performance of bioreactors and provide a theoretical basis to build a promising strategy for relieving antibiotic-caused process fluctuations.
Collapse
Affiliation(s)
- Guangyu Chu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China
| | - Weiyi Qi
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wenzheng Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Yuqiao Zhang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Shijiang Gao
- Logistics Support Division, Ocean University of China, Qingdao 266100, China.
| | - Qianzhi Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Chang Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
28
|
Yang L, Xia C, Jiang J, Chen X, Zhou Y, Yuan C, Bai L, Meng S, Cao G. Removal of antibiotics and estrogens by nanofiltration and reverse osmosis membranes. JOURNAL OF HAZARDOUS MATERIALS 2024; 461:132628. [PMID: 37783143 DOI: 10.1016/j.jhazmat.2023.132628] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 09/07/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
The separation behavior of a variety of emerging contaminants, including nine antibiotics and six estrogens commonly reported in natural environment, by four commercial nanofiltration and reverse osmosis (NF/RO) membranes at various water conditions (pH, concentration) was investigated. The contaminant rejection at pH 6.0 followed a decreasing trend of XLE (94%-100%) ≈ NF90 (88%-100%) > NF270 (25%-85%) > DL (16%-75%). The dense structures of NF90 and XLE reflected by their small effective pore radii (0.30-0.31 nm) contributed mainly to their high rejection, demonstrating the important role of size exclusion. For the negatively charged loose NF270 and DL membranes (0.40-0.45 nm), charge repulsion made additional contribution, which is markedly reflected by their greater rejection to charged antibiotics than neutral estrogens (45%-85% vs. 25%-60% by NF270). The correlation between rejection data and normalized molecular sizes at pH 4.0 and 9.0 intuitively demonstrated the individual role of size exclusion and charge repulsion. The adsorption by membranes was mainly responsible for the initial compound reduction in feedwater by 6%-25% within 3 h, while only 0.3%-5.6% was attributed to self-degradation. The adsorption capacity was determined, which might be mainly governed by hydrophobic interaction. The resolved controlling factors and mechanisms will contribute to the accurate prediction and membrane selection for trace contaminant removal by membrane process.
Collapse
Affiliation(s)
- Linyan Yang
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China.
| | - Caiping Xia
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Jielun Jiang
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Xueming Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment and Resources, Fuzhou University, Fuzhou, Fujian 350116, PR China
| | - Yanbo Zhou
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Cheng Yuan
- School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| | - Lichun Bai
- Key Laboratory of Traffic Safety on Track, Ministry of Education, School of Traffic & Transportation Engineering, Central South University, Changsha 410075, PR China
| | - Shujuan Meng
- School of Space and Environment, Beihang University, Beijing 100191, PR China
| | - Guomin Cao
- National Engineering Research Center of Industrial Wastewater Detoxication and Resource Recovery, East China University of Science and Technology, Shanghai 200237, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China; School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, PR China
| |
Collapse
|
29
|
Saidulu D, Agrawal S, Bhatnagar A, Gupta AK. Sulfamethoxazole removal from wastewater via anoxic/oxic moving bed biofilm reactor: Degradation pathways and toxicity assessment. BIORESOURCE TECHNOLOGY 2024; 392:129998. [PMID: 37956948 DOI: 10.1016/j.biortech.2023.129998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 11/07/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
The effects of sulfamethoxazole (SMZ), an antibiotic commonly detected in the water environment, on the performance of a single staged anoxic/oxic moving bed biofilm reactor (A/O MBBR), was investigated. The anoxic zone played a key role in the removal of SMZ with a percentage of contribution accounting for around 85% in the overall removal. Denitrifying heterotrophic microbes present in the anoxic zone showed relatively more resistance to higher SMZ loads. It was found that in extracellular polymeric substances, protein content was increased consistently with the increase in SMZ concentration. Based on the detected biotransformation products, four degradation pathways were proposed and the toxicity was evaluated. Metagenomic analysis revealed that at higher SMZ load the activity of genera, such as Proteobacteria and Actinobacteria was significantly affected. In summary, proper design and operation of staged A/O MBBR can offer a resilient and robust treatment towards SMZ removal from wastewater.
Collapse
Affiliation(s)
- Duduku Saidulu
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Shivangi Agrawal
- Department of Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, Mikkeli FI-50130, Finland
| | - Ashok Kumar Gupta
- Environmental Engineering Division, Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India.
| |
Collapse
|
30
|
Hanamoto S, Minami Y, Hnin SST, Yao D. Localized pollution of veterinary antibiotics in watersheds receiving treated effluents from swine farms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166211. [PMID: 37567304 DOI: 10.1016/j.scitotenv.2023.166211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/13/2023]
Abstract
Swine excrement is discharged into surface waters mainly as effluent in Asian countries. As swine production consumes more antibiotics and less water than humans, a mismatch of the size of swine farms and that of the rivers receiving their effluent could create severe pollution by antibiotics. However, little is known about the occurrence of antibiotics in such rivers. We therefore monitored seven veterinary drugs, six human drugs (including a metabolite), three drugs for both use (including a metabolite), and major water qualities at 30 sites in Japanese watersheds where swine outnumber humans and where their excrement is largely treated on-site by aerobic biological wastewater processes. The compositions of veterinary drugs differed substantially among sites, unlike human drugs, indicating various patterns of use among swine farms. Median concentrations at the 30 sites were <1 ng/L for seven out of the ten drugs used in livestock, whereas maximum concentrations were >1000 ng/L for three and 100-1000 ng/L for four of them, giving median-maximum among the sites of >3 log for two and 2-3 log for six of them. The spatial distribution ranges of concentrations of veterinary drugs were wider than those of human drugs (mostly <1.5 log) and other analytes (mostly <1 log), despite the correlation between those of total veterinary drugs and nitrogen, attributable to fewer swine farms than households, the intensive animal husbandry, and the various drug-use patterns among the farms. The range of maximum concentrations of veterinary drugs in the watersheds was comparable to those reported in other Asian watersheds with less strict management of swine excrement, attributable to their slow decay in conventional wastewater treatment on swine farms. Thus, attention should be paid to hot-spot pollution of antibiotics on large Asian swine farms adjacent to streams with limited dilution capacity.
Collapse
Affiliation(s)
- Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Yuki Minami
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Su Su Thet Hnin
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Dingwen Yao
- Graduate School of Natural Science and Technology, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| |
Collapse
|
31
|
Geng C, Chen Q, Li Z, Liu M, Chen Z, Tao H, Yang Q, Zhu B, Feng L. Degradation of enrofloxacin by a novel Fe-N-C@ZnO material in freshwater and seawater: Performance and mechanism. ENVIRONMENTAL RESEARCH 2023; 237:116960. [PMID: 37619630 DOI: 10.1016/j.envres.2023.116960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/17/2023] [Accepted: 08/21/2023] [Indexed: 08/26/2023]
Abstract
In this study, we investigated the doping of Fe-N-C with ZnO (Fe-N-C@ZnO) to enhance its performance in the reduction of biological toxicity and degradation of enrofloxacin (ENR) in seawater. The steady-state/transient fluorescence analysis and free radical quenching test indicated an extremely low electron-hole recombination rate and the generation of reactive oxygen species in Fe-N-C@ZnO, leading to an improvement in the energy efficiency. We compared the ENR degradation efficiencies of Fe-N-C@ZnO and ZnO using both freshwater and seawater. In freshwater, Fe-N-C@ZnO exhibited a slightly higher degradation efficiency (95.00%) than ZnO (90.30%). However, the performance of Fe-N-C@ZnO was significantly improved in seawater compared to that of ZnO. The ENR degradation efficiency of Fe-N-C@ZnO (58.87%) in seawater was 68.39% higher than that of ZnO (34.96%). Furthermore, the reaction rate constant for ENR degradation by Fe-N-C@ZnO in seawater (7.31 × 10-3 min-1) was more than twice that of ZnO (3.58 × 10-3 min-1). Response surface analysis showed that the optimal reaction conditions were a pH of 7.42, a photocatalyst amount of 1.26 g L-1, and an initial ENR concentration of 6.56 mg L-1. Fe-N-C@ZnO prepared at a hydrothermal temperature of 128 °C and heating temperature of 300 °C exhibited the optimal performance for the photocatalytic degradation of ENR. Based on liquid chromatography-mass spectrometry analysis, the degradation processes of ENR were proposed as three pathways: two piperazine routes and one quinolone route.
Collapse
Affiliation(s)
- Chuanhui Geng
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China; School of Naval Architecture and Maritime, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Qingguo Chen
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China.
| | - Zhenzhen Li
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Mei Liu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering & Computer Sciences, Concordia University, Montreal, Quebec, H3G1M8, Canada
| | - Hengcong Tao
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Qiao Yang
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Baikang Zhu
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China; National & Local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan, 316022, PR China
| | - Lijuan Feng
- Zhejiang Key Laboratory of Petrochemical Environmental Pollution, Zhejiang Ocean University, Zhoushan, 316022, PR China
| |
Collapse
|
32
|
Larson VJ, Rico JL, Wolfe LM, Sharvelle S, Prenni J, De Long SK. Composting post-anaerobic digestion for emerging contaminant biodegradation: Impacts of operating conditions. JOURNAL OF ENVIRONMENTAL QUALITY 2023; 52:1152-1165. [PMID: 37729590 DOI: 10.1002/jeq2.20515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 09/11/2023] [Indexed: 09/22/2023]
Abstract
Sustainable manure management technologies are needed, and combining anaerobic digestion (AD) for energy generation and aerobic composting (AC) to stabilize digestate and remove emerging contaminants (ECs), including veterinary pharmaceuticals and steroid hormones, is promising. This study identified post-AD, AC operating conditions that maximized degradation of study ECs, expected to be present in cattle manure digested using treated municipal wastewater as the water source. Study ECs included sulfamethoxazole (SMX), chlortetracycline (CTC), oxytetracycline (OTC), estrone (E1), and naproxen (NPX). Composting conditions were simulated in bench-scale reactors, with microorganisms from digestate produced in an AD system (25L scale), by varying temperatures, pH, and carbon source compositions (representing food waste/manure co-digestion with different residence times). Results indicate maximum SMX biodegradation occurred at 35°C, pH 7, and with high levels of easily degradable carbon (≥99%, 99%, and 98%), and maximum E1 biodegradation occurred at 35°C, and with low levels of easily degradable carbon (≥97% and 99%). Abiotic degradation was responsible for the nearly complete removal of tetracyclines under all conditions and for partial degradation of NPX (between 20% and 48%). Microorganisms originating from the AD system putatively capable of SMX and E1 biodegradation, or of contributing to biodegradation during the AC phase, were identified, including phylotypes previously shown to biodegrade SMX (Brevundimonas and Alcaligenes).
Collapse
Affiliation(s)
- Victoria J Larson
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Jorge L Rico
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Lisa M Wolfe
- Proteomics and Metabolomics Core Facility, Colorado State University, Fort Collins, Colorado, USA
| | - Sybil Sharvelle
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
| | - Jessica Prenni
- Proteomics and Metabolomics Core Facility, Colorado State University, Fort Collins, Colorado, USA
| | - Susan K De Long
- Department of Civil and Environmental Engineering, Colorado State University, Fort Collins, Colorado, USA
| |
Collapse
|
33
|
Song H, Li J, Zhou M, Li H, Fan L, Xu P, Shao S, Li J, Xu C, Zhou W, Qian J. Improving algal growth in an anaerobic digestion piggery effluent by fungal pretreatment: Process optimization, the underlying mechanism of fungal decolorization, and nitrogen removal. CHEMOSPHERE 2023; 337:139416. [PMID: 37414296 DOI: 10.1016/j.chemosphere.2023.139416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/26/2023] [Accepted: 07/02/2023] [Indexed: 07/08/2023]
Abstract
Anaerobic digestion piggery effluent (ADPE) shows high chromaticity and ammonium levels, severely inhibiting algal growth. Fungal pretreatment has great potential for decolorization and nutrient removal from wastewater, which coupled with microalgal cultivation may be a reliable strategy for sustainable ADPE resource utilization. In this study, we selected and identified two locally isolated eco-friendly fungal strains for ADPE pretreatment, and fungal culture conditions were optimized for decolorization and ammonium nitrogen (NH4+-N) removal. Subsequently, the underlying mechanisms of fungal decolorization and nitrogen removal were investigated, and the feasibility of using pretreated ADPE for algal cultivation was explored. The results showed that two fungal strains were identified as Trichoderma harzianum and Trichoderma afroharzianum, respectively, presenting good growth and decolorization performance for ADPE pretreatment. The optimized culture conditions were as follows: 20% ADPE, 8 g L-1 glucose, initial pH 6, 160 rpm, 25-30 °C, and 0.15 g L-1 initial dry-weight. ADPE decolorization was mainly caused by fungal biodegradation of color-related humic substances through manganese peroxidase secretion. The removed nitrogen was completely converted into fungal biomass as nitrogen assimilated, ca. 90% of which was attributed to NH4+-N removal. The pretreated ADPE significantly improved algal growth and nutrient removal, demonstrating the feasibility of developing an eco-friendly fungi-based pretreatment technology.
Collapse
Affiliation(s)
- Hanwu Song
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Jun Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Mi Zhou
- Xinjiang Rao River Hydrological and Water Resources Monitoring Center, Shangrao, 334000, China
| | - Hongwu Li
- Faculty of Science and Engineering, Soka University, Tokyo, 1928577, Japan
| | - Liangliang Fan
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Peilun Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Shengxi Shao
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Jingjing Li
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Chengyu Xu
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China
| | - Wenguang Zhou
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China.
| | - Jun Qian
- Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, and School of Resources & Environment, Nanchang University, Nanchang, 330031, China.
| |
Collapse
|
34
|
Hernández-Navarro C, Pérez S, Flórez E, Acelas N, Muñoz-Saldaña J. Sargassum macroalgae from Quintana Roo as raw material for the preparation of high-performance phosphate adsorbent from aqueous solutions. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 342:118312. [PMID: 37270982 DOI: 10.1016/j.jenvman.2023.118312] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/06/2023]
Abstract
Currently, the large volumes of Sargassum biomass (Sgs) arriving on Caribbean coasts are a problem that must be solved quickly. One alternative is to obtain value-added products from Sgs. In this work, Sgs is demonstrated to be a high-performance Ca - bioadsorbent for phosphate removal by a heat pretreatment at 800 °C that produces biochar. According to XRD analysis, calcined Sgs (CSgs) have a composition of 43.68%, 40.51%, and 8.69% of Ca(OH)2, CaCO3, and CaO, making CSgs a promising material for phosphate removal and recovery. Results demonstrated that CSgs have a high capacity to adsorb P over a wide range of concentrations (25-1000 mg P/L). After P removal, at low P concentration, the adsorbent material is rich in apatite (Ca5(PO4)3OH), and at high P concentration, brushite (CaHPO4•2H2O) was the main P compound. The CSg reached a Qmax of 224.58 mg P/g, which is higher than other high-performance adsorbents reported in the literature. The phosphate adsorption mechanism was dominated by chemisorption, followed by precipitation according to the pseudo-second-order kinetic model. The solubility of P (74.5 wt%) in formic acid solution and the water-soluble P (24.8 wt%) for CSgs after P adsorption indicated that the final product presents the potential to be used as fertilizer for acid soils. This biomass's processability and high phosphate adsorption performance for P removal make CSgs a potential material for wastewater treatment, and subsequent use of these residues as fertilizer offers a circular economy solution to this problem.
Collapse
Affiliation(s)
- Carolina Hernández-Navarro
- Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados Del IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, 76230, Querétaro, Mexico; Tecnológico Nacional de México CRODE-Celaya, Centro de Vinculación para la Innovación y Desarrollo Empresarial (CEVIDE), Departamento de Diseño y Desarrollo de Equipo, Manuel Orozco I. Berra 92, Col. Residencial Tecnológico, 38010, Celaya, Guanajuato, Mexico
| | - Sebastián Pérez
- Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados Del IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, 76230, Querétaro, Mexico
| | - Elizabeth Flórez
- Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia
| | - Nancy Acelas
- Grupo de Investigación Materiales con Impacto (Mat&mpac), Facultad de Ciencias Básicas, Universidad de Medellín, Carrera 87 No. 30-65, Medellín, 050026, Colombia.
| | - Juan Muñoz-Saldaña
- Laboratorio Nacional de Proyección Térmica (CENAPROT), Centro de Investigación y de Estudios Avanzados Del IPN, Libramiento Norponiente 2000 Fracc. Real de Juriquilla, 76230, Querétaro, Mexico.
| |
Collapse
|
35
|
Huang Z, Niu Q, Nie W, Lin Y, Wu S, Li X, Cheng JJ, Yang C. Combined effects of oxytetracycline concentration and organic loading rate on semi-continuous anaerobic digestion of swine wastewater. BIORESOURCE TECHNOLOGY 2023; 382:129179. [PMID: 37196746 DOI: 10.1016/j.biortech.2023.129179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/08/2023] [Accepted: 05/13/2023] [Indexed: 05/19/2023]
Abstract
High concentrations of antibiotics in swine wastewater raises concerns about the potential adverse effects of anaerobic digestion (AD). Current studies mainly focused on the effects of various antibiotic concentrations. However, these studies didn't take into account the fluctuation of swine wastewater quality and the change of reactor operating conditions in practical engineering applications. In this study, it was found that in the operating systems with COD of 3300 mg/L and hydraulic retention time (HRT) of 4.4 days, the continuous addition of oxytetracycline for 30 days had no effect on the AD performance. Nevertheless, when COD and HRT were changed to 4950 mg/L and 1.5 days respectively, oxytetracycline at 2 and 8 mg/L increased the cumulative methane yield by 27% and 38% at the cost of destroying cell membrane, respectively, while oxytetracycline at 0.3 mg/L improved the performance and stability of AD. These results could be referred for practical engineering applications.
Collapse
Affiliation(s)
- Zhiwei Huang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Qiuya Niu
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China.
| | - Wenkai Nie
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Yan Lin
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China
| | - Shaohua Wu
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Xiang Li
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China
| | - Jay J Cheng
- Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; Department of Biological and Agricultural Engineering, North Carolina State University, Raleigh, NC 27695, USA
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University and Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha, Hunan 410082, China; Academy of Environmental and Resource Sciences, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, China; School of Environmental and Chemical Engineering, Nanchang Hangkong University, Nanchang, Jiangxi 330063, China.
| |
Collapse
|
36
|
Pereira AR, de Ávila Barbosa Fonseca L, Paranhos AGDO, da Cunha CCRF, de Aquino SF, de Queiroz Silva S. Role of a typical swine liquid manure treatment plant in reducing elements of antibiotic resistance. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:91803-91817. [PMID: 37477815 DOI: 10.1007/s11356-023-28823-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 07/12/2023] [Indexed: 07/22/2023]
Abstract
Biological treatment of swine liquid manure may be a favorable environment for the enrichment of bacteria carrying antibiotic resistance genes (ARGs), raising the alert about this public health problem. The present work sought to investigate the performance of a swine wastewater treatment plant (SWWTP), composed of a covered lagoon biodigester (CLB) followed by three facultative ponds, in the removal of usual pollutants, antibiotics, ARGs (blaTEM, ermB, qnrB, sul1, and tetA), and intI1. The SWWTP promoted a 70% of organic matter removal, mainly by the digester unit. The facultative ponds stood out in the solids' retention carried from the anaerobic stage and contributed to ammonia volatilization. The detected antibiotic in the raw wastewater was norfloxacin (< 0.79 to 60.55 μg L-1), and the SWWTP seems to equalize peaks of norfloxacin variation probably due to sludge adsorption. CLB reduced the absolute abundance of ARGs by up to 2.5 log, while the facultative stage does not seem to improve the quality of the final effluent in terms of resistance elements. Considering the relative abundances, the reduction rates of total and ARG-carrying bacteria appear to be similar. Finally, correlation tests also revealed that organic matter and solids control in liquid manure treatment systems could help reduce the spread of ARGs after the waste final disposal.
Collapse
Affiliation(s)
- Andressa Rezende Pereira
- Graduate Program in Environmental Engineering, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil
| | | | | | | | | | - Silvana de Queiroz Silva
- Department of Biological Sciences, Federal University of Ouro Preto, Ouro Preto, Minas Gerais, 35400-000, Brazil.
| |
Collapse
|
37
|
Wu H, Li A, Zhang H, Gao S, Li S, Cai J, Yan R, Xing Z. The potential and sustainable strategy for swine wastewater treatment: Resource recovery. CHEMOSPHERE 2023; 336:139235. [PMID: 37343397 DOI: 10.1016/j.chemosphere.2023.139235] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 05/30/2023] [Accepted: 06/14/2023] [Indexed: 06/23/2023]
Abstract
Swine wastewater is highly polluted with complex and harmful substances that require effective treatment to minimize environmental damage. There are three commonly used biological technologies for treating swine wastewater: conventional biological technology (CBT), microbial electrochemical technology (MET), and microalgae technology (MT). However, there is a lack of comparison among these technologies and a lack of understanding of their unique advantages and efficient operation strategies. This review aims to compare and contrast the characteristics, influencing factors, improvement methods, and microbial mechanisms of each technology. CBT is cost-effective but has low resource recovery efficiency, while MET and MT have the highest potential for resource recovery. However, all three technologies are affected by various factors and toxic substances such as heavy metals and antibiotics. Improved methods include exogenous/endogenous enhancement, series reactor operation, algal-bacterial symbiosis system construction, etc. Though MET is limited by construction costs, CBT and MT have practical applications. While swine wastewater treatment processes have developed automatic control systems, the application need further promotion. Furthermore, key functional microorganisms involved in CBT's pollutant removal or transformation have been detected, as have related genes. The unique electroactive microbial cooperation mode and symbiotic mode of MET and MT were also revealed, respectively. Importantly, the future research should focus on broadening the scope and scale of engineering applications, preventing and controlling emerging pollutants, improving automated management level, focusing on microbial synergistic metabolism, enhancing resource recovery performance, and building a circular economy based on low-cost and resource utilization.
Collapse
Affiliation(s)
- Heng Wu
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China.
| | - Anjie Li
- College of Grassland Agriculture, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Huaiwen Zhang
- College of Mechanical and Electronic Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Sicong Gao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Suqi Li
- College of Life and Sciences, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Jindou Cai
- School of Culture and Tourism, Chongqing City Management College, Chongqing, 402160, PR China
| | - Ruixiao Yan
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi, 712100, PR China
| | - Zhilin Xing
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing, 400054, PR China.
| |
Collapse
|
38
|
Chen CH, Chiou YC, Yang CL, Wang JH, Chen WR, Whang LM. Biosorption and biotransformation behaviours of veterinary antibiotics under aerobic livestock wastewater treatment processes. CHEMOSPHERE 2023:139034. [PMID: 37277000 DOI: 10.1016/j.chemosphere.2023.139034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
To study the fate of veterinary antibiotics released from swine wastewater treatment plants (SWTP), 10 antibiotics were investigated in each unit of a local SWTP periodically. Over a 14-month period of field investigation into target antibiotics, it was confirmed that tetracycline, chlortetracycline, sulfathiazole, and lincomycin were used in this SWTP, with their presence observed in raw manure. Most of these antibiotics could be effectively treated by aerobic activated sludge, except for lincomycin, which was still detected in the effluent, with a maximum concentration of 1506 μg/L. In addition, the potential for removing antibiotics was evaluated using lab-scale aerobic sequencing batch reactors (SBRs) that were dosed with high concentrations of antibiotics. The SBR results, however, showed that both sulfonamides and macrolides, as well as lincomycin, can achieve 100% removal in lab-scale aerobic SBRs within 7 days. This reveals that the potential removal of those antibiotics in field aeration tanks can be facilitated by providing suitable conditions, such as adequate dissolved oxygen, pH, and retention time. Furthermore, the biosorption of target antibiotics was also confirmed in the abiotic sorption batch tests. Biotransformation and hydrolysis were identified as the dominant mechanism for removing negatively charged sulfonamides and positively charged antibiotics (macrolides and lincomycin) in SBRs. This is due to their relatively low sorption affinity (resulting in negligible to 20% removal) onto activated sludge in abiotic sorption tests. On the other hand, tetracyclines exhibited significant sorption behavior both onto activated sludge and onto soluble organic matters in swine wastewater supernatant, accounting for 70%-91% and 21%-94% of removal within 24 h, respectively. S-shape sorption isotherms with saturation were observed when high amounts of tetracyclines were spiked into sludge, with equilibrium concentrations ranging from 0.4 to 65 mg/L. Therefore, the sorption of tetracyclines onto activated sludge was governed by electrostatic interaction rather than hydrophobic partition. This resulted in a saturated sorption capacity (Qmax) of 17,263 mg/g, 1637 mg/g, and 641.7 mg/g for OTC, TC, and CTC, respectively.
Collapse
Affiliation(s)
- Chih-Hung Chen
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan; Tainan Hydraulics Laboratory (THL), National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan
| | - Yi-Chu Chiou
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan
| | - Chao-Lung Yang
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan
| | - Jen-Hung Wang
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan
| | - Wan-Ru Chen
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan
| | - Liang-Ming Whang
- Department of Environmental Engineering, National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan; Sustainable Environment Research Laboratory (SERL), National Cheng Kung University (NCKU), No. 1, University Road, Tainan 701, Taiwan.
| |
Collapse
|
39
|
Liu W, Wang Y, Xia R, Ding X, Xu Z, Li G, Nghiem LD, Luo W. Occurrence and fate of antibiotics in swine waste treatment: An industrial case. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023:121945. [PMID: 37268217 DOI: 10.1016/j.envpol.2023.121945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 05/11/2023] [Accepted: 05/30/2023] [Indexed: 06/04/2023]
Abstract
This study mapped the fate of antibiotics in a swine farm with integrated waste treatment including anoxic stabilization, fixed-film anaerobic digestion, anoxic-oxic (A/O), and composting. Results show the prevalent and consistent occurrence of 12 antibiotics in swine waste. Mass balance of these antibiotics was calculated to track their flow and evaluate their removal by different treatment units. The integrated treatment train could effectively reduce antibiotic loading to the environment by 90% (measured as combined mass of all antibiotic residues). Within the treatment train, anoxic stabilization as the initial treatment step, accounted for the highest contribution (43%) to overall antibiotic elimination. Results also show that aerobic was more effective than anaerobic regarding antibiotic degradation. Composting accounted for an additional of 31% removal of antibiotics while anaerobic digestion contributed to 15%. After treatment, antibiotic residues in the treated effluent and composted materials were 2 and 8% of the initial antibiotic loading in raw swine waste, respectively. Ecological risk assessment showed negligible or low risk quotient associated with most individual antibiotics released into the aquatic environment or soil from swine farming. Nevertheless, antibiotic residues in treated water and composted materials together showed significant ecological risk to water and soil organisms. Thus, further work to improve treatment performance or develop new technologies is necessary to reduce the impact of antibiotics from swine farming.
Collapse
Affiliation(s)
- Wancen Liu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Yongfang Wang
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Ruohan Xia
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Xiangrui Ding
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China
| | - Zhicheng Xu
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China
| | - Guoxue Li
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Sanya Institute of China Agricultural University, Sanya, 572025, China
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Wenhai Luo
- Beijing Key Laboratory of Farmland Soil Pollution Prevention and Remediation, College of Resources and Environmental Sciences, China Agricultural University, Beijing, 100193, China; Key Laboratory of Low-carbon Green Agriculture, Ministry of Agriculture and Rural Affairs, China Agricultural University, Beijing, 100193, China.
| |
Collapse
|
40
|
Zubair M, Li Z, Zhu R, Wang J, Liu X, Liu X. The Antibiotics Degradation and Its Mechanisms during the Livestock Manure Anaerobic Digestion. Molecules 2023; 28:molecules28104090. [PMID: 37241831 DOI: 10.3390/molecules28104090] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/04/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
Antibiotics are administered to livestock at subtherapeutic levels to promote growth, and their degradation in manure is slow. High antibiotic concentrations can inhibit bacterial activity. Livestock excretes antibiotics via feces and urine, leading to their accumulation in manure. This can result in the propagation of antibiotic-resistant bacteria and antibiotic resistance genes (ARGs). Anaerobic digestion (AD) manure treatment technologies are gaining popularity due to their ability to mitigate organic matter pollution and pathogens, and produce methane-rich biogas as renewable energy. AD is influenced by multiple factors, including temperature, pH, total solids (TS), substrate type, organic loading rate (OLR), hydraulic retention time (HRT), intermediate substrates, and pre-treatments. Temperature plays a critical role, and thermophilic AD has been found to be more effective in reducing ARGs in manure compared to mesophilic AD, as evidenced by numerous studies. This review paper investigates the fundamental principles of process parameters affecting the degradation of ARGs in anaerobic digestion. The management of waste to mitigate antibiotic resistance in microorganisms presents a significant challenge, highlighting the need for effective waste management technologies. As the prevalence of antibiotic resistance continues to rise, urgent implementation of effective treatment strategies is necessary.
Collapse
Affiliation(s)
- Muhammad Zubair
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 202 Industry North Road, Jinan 250100, China
- Beijing Key Lab for Source Control Technology of Water Pollution, Beijing Forestry University, Beijing 100083, China
| | - Zhaojun Li
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 202 Industry North Road, Jinan 250100, China
| | - Rongsheng Zhu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 202 Industry North Road, Jinan 250100, China
| | - Jiancai Wang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 202 Industry North Road, Jinan 250100, China
| | - Xinghua Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 202 Industry North Road, Jinan 250100, China
| | - Xiayan Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, No. 202 Industry North Road, Jinan 250100, China
| |
Collapse
|
41
|
Hanamoto S, Yamamoto-Ikemoto R, Tanaka H. Spatiotemporal distribution of veterinary and human drugs and its predictability in Japanese catchments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 867:161514. [PMID: 36634780 DOI: 10.1016/j.scitotenv.2023.161514] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
Little is known about the predictability of mass flows of veterinary drugs in Asian catchments, where effluent from livestock farms is a major source. We therefore conducted this study to understand the applicability and limitations of a population-based emission model, which assumed usage of veterinary and human drugs to be evenly distributed over the national livestock or human population throughout the year, and sources to be effluent discharges at livestock farms, households, and sewage treatment plants in Japanese catchments. We monitored five veterinary drugs (lincomycin, sulfamonomethoxine, tiamulin, tylosin, and tilmicosin), two human and livestock drugs (sulfamethoxazole and trimethoprim), two human drugs (carbamazepine and clarithromycin), and a metabolite (sulfapyridine) of a human drug once a month over 2 years in eight Japanese rivers which have active livestock farming in their catchments. Mass flows of carbamazepine and sulfapyridine were stable, while those of veterinary drugs fluctuated widely, especially sulfamonomethoxine and tilmicosin, whose 25 %-100 % ranges averaged 1.5 and 1.2 log units, respectively, attributable mainly to their usage patterns. The model accurately predicted mean mass flows of carbamazepine in the rivers with errors of <±0.3 log unit. Although it slightly to moderately overestimated those of the other four human-related compounds, the incorporation of an empirical correction factor, determined to minimize mean absolute error (MAE) among the rivers, substantially lowered their MAEs to <0.23 log units. However, the MAEs of the five veterinary drugs were as high as 0.42 (sulfamonomethoxine) to 0.60 (tiamulin) log units even with the coefficient, likely due mainly to the spatial distribution of their usage per capita. So as not to overlook spatiotemporal elevation of risks of veterinary drugs, a stochastic method should be applied in their management. This is the first study to assess the use of spatiotemporal homogeneity in usage per capita of veterinary drugs in Asian catchments.
Collapse
Affiliation(s)
- Seiya Hanamoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan.
| | - Ryoko Yamamoto-Ikemoto
- Environment Preservation Center, Kanazawa University, Kakumamachi, Kanazawa, Ishikawa 920-1192, Japan
| | - Hiroaki Tanaka
- Research Center for Environmental Quality Management, Graduate School of Engineering, Kyoto University, 1-2 Yumihama, Otsu, Shiga 520-0811, Japan
| |
Collapse
|
42
|
Fang Y, Liu Y, Zhang J. Mechanisms for the increase in lipid production in cyanobacteria during the degradation of antibiotics. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 322:121171. [PMID: 36736559 DOI: 10.1016/j.envpol.2023.121171] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/27/2023] [Accepted: 01/28/2023] [Indexed: 06/18/2023]
Abstract
This study evaluated the responses of cell density, photosynthesis activity, dry cell weight, lipid productivity, proteome and metabolome in two non-toxic cyanobacterial species (Synechococcus sp. and Chroococcus sp.) exposed to two frequently detected antibiotics (sulfamethoxazole and ofloxacin) at test concentrations of 0.2-20.0 μg L-1 in a 4-day culture period. Upregulated antioxidant enzymes and oxidoreductases contributed to antibiotic biodegradation in Synechococcus sp.; whereas, upregulated carotenoid protein contributed to antibiotic biodegradation in Chroococcus sp. The 4-day removal efficiencies of sulfamethoxazole and ofloxacin by cyanobacteria were 35.98-66.23% and 33.01-61.92%, respectively. In cyanobacteria, each antibiotic induced hormetic responses, such as increase in cell density, dry cell weight, and photosynthetic activity; upregulation of photosynthesis-related proteins; and elevation of lipid expression by up to 2.05-fold. Under antibiotic stress, the two cyanobacterial species preferred to store energy in the form of lipids rather than ATP, with fructose-bisphosphate aldolase playing an essential role in lipid synthesis. The downregulation of lipid transporters also facilitated lipid accumulation in Synechococcus sp. In general, the two non-toxic cyanobacterial species achieved a good combination of lipid deposition and antibiotic treatment performance, especially in Chroococcus sp. exposed to sulfamethoxazole.
Collapse
Affiliation(s)
- Youshuai Fang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Ying Liu
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China.
| | - Jian Zhang
- School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
43
|
Liu W, Song X, Ding X, Xia R, Lin X, Li G, Nghiem LD, Luo W. Antibiotic removal from swine farming wastewater by anaerobic membrane bioreactor: Role of hydraulic retention time. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2023]
|
44
|
Watanabe M, Guruge KS, Uegaki R, Kure K, Yamane I, Kobayashi S, Akiba M. Occurrence and the potential ecological risk of veterinary antimicrobials in swine farm wastewaters in Japan: Seasonal changes, relation to purchased quantity and after termination of oxytetracycline usage. ENVIRONMENT INTERNATIONAL 2023; 173:107812. [PMID: 36805159 DOI: 10.1016/j.envint.2023.107812] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/07/2023] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
This study provides the first comprehensive investigation of the residual concentrations of eight classes of antimicrobial agents (AMs, 20 compounds) in 13 swine wastewater treatment facilities in Japan. These facilities implemented the aerobic activated sludge (AS) or its alternative methods. The maximum concentrations before treatment were found at the level of 7100, 6900, 6000, 3600, 3400, and 1400 µg/L for tilmicosin, oxytetracycline (OTC), chlortetracycline, lincomycin , sulfamethoxazole, and trimethoprim, respectively. The highest detection rate (96.3%) in influents was noted for the morantel, which was a feed additive. The seasonal difference in residual concentration was much greater for tetracyclines (TCs) and macrolides (MLs) when their residual concentrations were high, especially in the cold season. There was a positive correlation between the purchased quantity of TCs and fluoroquinolones (FQs) and their residue levels detected in the effluents (p < 0.01). The estimated removal rate of AMs was greater than 80%. In contrast, on a few occasions, it was diminished due to failing operating conditions, such as water temperature and AS rate in the aeration tank. The estimated ecological risks of AMs in effluents based on risk quotients (RQs) considered to enhance the selection pressure for drug resistance (RQs-AMR) were high for TCs and FQs, whereas ecotoxicological effects (RQs-ENV) to aquatic organisms were higher for sulfonamides and MLs. When OTC usage ceased, its concentration in wastewater decreased rapidly; however, it remained longer period in the effluents, probably due to OTC desorption from the AS. The concentrations (and respective RQs) of TCs were decreased by >99.8% and >92% in the influents and effluents, respectively. This data suggested that it is essential to reduce the amount used and introduce more efficient methods and operating conditions to constantly remove AMs during the treatment to reduce the risk of AM discharge from swine farms.
Collapse
Affiliation(s)
- Mafumi Watanabe
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Keerthi S Guruge
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan; Graduate School of Veterinary Science, Osaka Metropolitan University, 1-58 Rinku-oraikita, Izumisano, Osaka 598-8531, Japan.
| | - Ryuichi Uegaki
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Katsumasa Kure
- The Japanese Association of Swine Veterinarians (JASV), 1704-3 Nishi-Ooi, Tsukuba, Ibaraki 300-1260, Japan
| | - Itsuro Yamane
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Sota Kobayashi
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| | - Masato Akiba
- National Institute of Animal Health (NIAH), National Agriculture and Food Research Organization (NARO), 3-1-5 Kannondai, Tsukuba, Ibaraki 305-0856, Japan
| |
Collapse
|
45
|
Li G, Huang Z, Li H, Zhang Z, Cui L. Synergistic removal of sulfamethoxazole and dimethyl phthalate by five constructed wetland substrates. CHEMOSPHERE 2023; 318:137936. [PMID: 36702409 DOI: 10.1016/j.chemosphere.2023.137936] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Revised: 01/09/2023] [Accepted: 01/21/2023] [Indexed: 06/18/2023]
Abstract
Frequent detection and joint toxicity of sulfonamides (SAs) and phthalate acid esters (PAEs) in water environment have caused serious health and safety problems that can be reduced by vertical flow constructed wetland (VFCW). However, it remains unclear what kind of substrate used in VFCW can synergistically remove SAs and PAEs. In this study, it was determined if biochar, zeolite, vermiculite, peat and sand synergistically removed sulfamethoxazole (SMX) and dimethyl phthalate (DMP) as representatives of SAs and PAEs by using batch and column experiments. The batch experiments showed that pseudo-second-order and intraparticle diffusion kinetics and Freundlich isotherm could better describe the synergistic adsorption of SMX and DMP on each substrate. SMX promoted hydrophobic interaction between DMP and each substrate so that low concentration DMP almost was adsorbed completely at neutral pH. Both neutral and alkaline pH conditions were favorable for synergistic adsorption of SMX and DMP on each substrate. The column experiments showed that removal of SMX or DMP in VFCW by substrate adsorption alone was limited with run time increasing, but SMX and DMP were effectively removed with run time increasing when loaded with simulated wastewater, SMX and DMP. The VFCW not only removed 94.7% SMX and 91.8% DMP after running 50 d, but also improved total nitrogen removal. In conclusion, these results strongly suggest that biochar, zeolite, vermiculite, peat and sand filled in VFCW can synergistically remove SMX and DMP.
Collapse
Affiliation(s)
- Guowan Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China; Postdoctoral Workstation, Shenzhen BLY Landscape & Architecture Planning & Design Institute Ltd., Shenzhen, 518055, PR China
| | - Zhujian Huang
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Huashou Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China
| | - Zhenyao Zhang
- Postdoctoral Workstation, Shenzhen BLY Landscape & Architecture Planning & Design Institute Ltd., Shenzhen, 518055, PR China
| | - Lihua Cui
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, 510642, PR China.
| |
Collapse
|
46
|
Chen Z, Lin B, Huang Y, Liu Y, Wu Y, Qu R, Tang C. Pyrolysis temperature affects the physiochemical characteristics of lanthanum-modified biochar derived from orange peels: Insights into the mechanisms of tetracycline adsorption by spectroscopic analysis and theoretical calculations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160860. [PMID: 36521614 DOI: 10.1016/j.scitotenv.2022.160860] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/13/2022] [Accepted: 12/07/2022] [Indexed: 06/17/2023]
Abstract
Biochar (BC) derived from orange peels was modified using LaCl3 to enhance its tetracycline (TC) adsorption capacity. SEM-EDS, FT-IR, XRD, and BET were used to characterize the physiochemical characteristics of La-modified biochar (La-BC). Batch experiments were conducted to investigate the effects of several variables like pyrolysis temperature, adsorbent dosage, initial pH, and coexisting ions on the adsorption of TC by La-BC. XPS and density functional theory (DFT) were used to elucidate the TC adsorption mechanism of La-BC. The results demonstrated that La was uniformly coated on the surface of the La-BC. The physiochemical characteristics of La-BC highly depended on pyrolysis temperature. Higher temperature increased the specific surface area and functional groups of La-BC, thus enhancing its TC adsorption capacity. La-BC prepared at 700 °C (BC@La-700) achieved the maximum adsorption capacity of 143.20 mg/g, which was 6.8 and 4.6 times higher than that of BC@La-500 and BC@La-600, respectively. The mechanisms of TC adsorption by La-BC were most accurately described by the pseudo-second-order kinetic model. Furthermore, the adsorption isotherm of La-BC was consistent with the Freundlich model. BC@La-700 achieved good TC adsorption efficiencies even at a wide pH range (pH 4-10). Humic acid significantly inhibited TC adsorption by La-BC. The presence of coexisting ions (NH4+, Ca2+, NO3-) did not significantly affect the adsorption capacity of La-BC, particularly BC@La-700. Moreover, BC@La-700 also exhibited the best recycling performance, which achieved relative high adsorption capacity even after 5 cycles. The XPS results showed that π-π bonds, oxygen-containing functional groups, and La played a major role in the adsorption of TC on La-BC. The result of DFT showed that the adsorption energy of La-BC was the greatest than that of other functional groups on biochar. Collectively, our findings provide a theoretical basis for the development of La-BC based materials to remove TC from wastewater.
Collapse
Affiliation(s)
- Zhihao Chen
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Bingfeng Lin
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China
| | - Yingping Huang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, China Three Gorges University, Yichang 443002, Hubei, China.
| | - Yanbiao Liu
- Donghua University, College of Environmental Science & Engineering, Text Pollution Controlling Engineering Center, Ministry of Environmental Protection, Shanghai 201620, China
| | - Yonghong Wu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, Nanjing 210008, China.
| | - Rui Qu
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, China Three Gorges University, Yichang 443002, Hubei, China
| | - Cilai Tang
- College of Hydraulic & Environmental Engineering, China Three Gorges University, Yichang 443002, China; Engineering Research Center of Eco-Environment in Three Gorges Reservoir Region, China Three Gorges University, Yichang 443002, Hubei, China.
| |
Collapse
|
47
|
Tang T, Liu M, Du Y, Chen Y. Mechanism of action of single and mixed antibiotics during anaerobic digestion of swine wastewater: Microbial functional diversity and gene expression analysis. ENVIRONMENTAL RESEARCH 2023; 219:115119. [PMID: 36549483 DOI: 10.1016/j.envres.2022.115119] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 12/04/2022] [Accepted: 12/18/2022] [Indexed: 06/17/2023]
Abstract
The mechanism by which antibiotics in swine wastewater affect anaerobic digestion (AD) remains unclear. Herein, we investigated how single and mixed antibiotics affect AD in swine wastewater. Both single and mixed antibiotics stimulated methane production at actual concentrations of 0.5-2 mg/L. Low-dose antibiotics (0.5 mg/L) exerted the most significant stimulatory effect on methane production, which increased by 211.63% (single) and 60.93% (mixed), respectively. However, an increased dose decreased the stimulatory effect on methane production. Overall, single antibiotics were more beneficial for methane production than mixed antibiotics since single antibiotics could promote the conversion of propionic and butyric acid, while mixed antibiotics inhibited the process. Microbial community analysis showed that single and mixed antibiotics could also lead to large changes in functional acidogens, ultimately leading to changes in methanogenic pathways.
Collapse
Affiliation(s)
- Taotao Tang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, PR China.
| |
Collapse
|
48
|
Bao H, Liu M, Li X, Ren N, Li J. Removal of nutrients and veterinary antibiotics from manure-free piggery wastewater in a packed-bed A/O process at normal atmospheric temperature. ENVIRONMENTAL TECHNOLOGY 2023; 44:579-590. [PMID: 34503402 DOI: 10.1080/09593330.2021.1979107] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 08/27/2021] [Indexed: 06/13/2023]
Abstract
A packed-bed anaerobic-aerobic reactor (PBAOR) with two anaerobic and two aerobic compartments was constructed to treat manure-free piggery wastewater which was characterized by high ammonium (NH4+-N) and low ratio of chemical oxygen demand (COD) to total nitrogen (TN). Performed for 60 days at the normal atmospheric temperature of 25 °C with a constant hydraulic retention time of 32 h and reflux ratio of 2.0, a stable state in pollutants removal was obtained in the PBAOR. Within the next routine operation process, the removal of COD, NH4+-N and TN was above 85.7%, 98.2% and 85.8%, with a residual less than 81.7, 7.2 and 39.9 mg L-1 in effluent, respectively. Twelve veterinary antibiotics classified into tetracyclines (TCs), sulphonamides (SAs) and fluoroquinolones (FQs) were detected from the piggery wastewater. The PBAOR was effective in removing TCs and SAs with an average removal of 74.8% and 93.3%, respectively, but presented a negative removal for FQs. Most COD in the piggery wastewater was mainly removed in the first two anaerobic compartments along with an obvious removal of TCs and SAs, while the TN were mainly removed in the last two aerobic compartments with the negative removal of FQs.
Collapse
Affiliation(s)
- Hongxu Bao
- School of Environment, Liaoning University, Shenyang, People's Republic of China
| | - Min Liu
- School of Environment, Liaoning University, Shenyang, People's Republic of China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Xianhui Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| | - Jianzheng Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, People's Republic of China
| |
Collapse
|
49
|
Tang T, Chen Y, Du Y, Yao B, Liu M. Effects of functional modules and bacterial clusters response on transmission performance of antibiotic resistance genes under antibiotic stress during anaerobic digestion of livestock wastewater. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129870. [PMID: 36063716 DOI: 10.1016/j.jhazmat.2022.129870] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 08/06/2022] [Accepted: 08/26/2022] [Indexed: 06/15/2023]
Abstract
The formation and transmission of antibiotic resistance genes (ARGs) have attracted increasing attention. It is unclear whether the internal mechanisms by which antibiotics affect horizontal gene transfer (HGT) of ARGs during anaerobic digestion (AD) were influenced by dose and type. We investigated the effects of two major antibiotics (oxytetracycline, OTC, and sulfamethoxazole, SMX) on ARGs during AD according to antibiotic concentration in livestock wastewater influent. The low-dose antibiotic (0.5 mg/L) increased ROS and SOS responses, promoting the formation of ARGs. Meanwhile, low-dose antibiotics could also promote the spread of ARGs by promoting pili, communication responses, and the type IV secretion system (T4SS). However, different types and doses of antibiotics would lead to changes in the above functional modules and then affect the enrichment of ARGs. With the increasing dose of SMX, the advantages of pili and communication responses would gradually change. In the OTC system, low-dose has the strongest promoting ability in both pili and communication responses. Similarly, an increase in the dose of SMX would change T4SS from facilitation to inhibition, while OTC completely inhibits T4SS. Microbial and network analysis also revealed that low-dose antibiotics were more favorable for the growth of host bacteria.
Collapse
Affiliation(s)
- Taotao Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ying Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Ye Du
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Bing Yao
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China
| | - Min Liu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, PR China.
| |
Collapse
|
50
|
Zhao K, Kang P, Zhang T, Ma Y, Guo X, Wan J, Wang Y. Effect of minute amounts of arsenic on the sulfamethoxazole removal and microbial community structure via the SBR system. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2023; 87:423-435. [PMID: 36706291 DOI: 10.2166/wst.2023.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
In this study, the effect of arsenic on the sulfamethoxazole (SMX) removal efficiency and microbial community structure was investigated over 60 days using the SBR process. The results showed that the presence of arsenic had no significant impact on the system performance, the removal efficiencies of two reactors, R1 (the control test) and R2 (with the addition of arsenic), were 13.36 ± 5.71 and 14.20 ± 5.27%, which were attributed to the adsorption of SMX by fulvic acid-like substances and tryptophan-like proteins of extracellular polymeric substances. Compared to the seed sludge, the species number indicated that R2 possessed the richer diversity, while R1 possessed the lower diversity on day 60, which might be relative to the transferring of antibiotic resistance genes (ARGs) in sludge bacterial communities; the minute amounts of arsenic could make the relative levels of Sul1 and Sul2 genes which encode ARGs of sulfonamides in R2 (2.07 and 2.47%) be higher than that in R1 (1.65 and 1.27%), which made the bacterial community of the R2 system more adaptable to SMX stress. Therefore, the minute amounts of arsenic weakened the effect of SMX on the system and enhanced the stability of the microbial community structure.
Collapse
Affiliation(s)
- Kaige Zhao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China E-mail: ; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou 450001, PR China; These authors contributed equally to this paper and should be considered as co-first author
| | - Pengfei Kang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China E-mail: ; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou 450001, PR China; These authors contributed equally to this paper and should be considered as co-first author
| | - Tianyi Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China E-mail: ; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yifei Ma
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China E-mail: ; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou 450001, PR China
| | - Xiaoying Guo
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China E-mail: ; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou 450001, PR China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China E-mail: ; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou 450001, PR China
| | - Yan Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou 450001, PR China E-mail: ; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou 450001, PR China
| |
Collapse
|