1
|
Seo SJ, Shin SM, Yoon W, Byeon SH. A Health Risk Assessment of Workers Exposed to Organic Paint Solvents Used in the Korean Shipbuilding Industry. TOXICS 2024; 12:903. [PMID: 39771118 PMCID: PMC11728811 DOI: 10.3390/toxics12120903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 11/29/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
In the shipbuilding industry, during the painting process, workers are exposed to various substances in paint, including organic solvents that can adversely affect their health. Most workplace exposures to organic solvents involve mixtures of organic compounds. Therefore, in this study, the hazard quotient (HQ) and hazard index (HI) were derived using data from the Workplace Environmental Monitoring Program in Korea for six organic solvents (xylene, n-butanol, ethylbenzene, isobutyl alcohol, toluene, and methylisobutyl ketone [MIBK]) commonly used in the steel shipbuilding industry. The non-carcinogenic risk was assessed using Monte Carlo simulations, and sensitivity analysis was performed using the Spearman rank correlation coefficient with the R program. The HI for neurotoxicity and developmental toxicity exceeded 1 in the 25th and 75th percentile, respectively. According to the sensitivity analysis, the HI for neurotoxicity was correlated with the concentration of xylene and its exposure duration, whereas that for developmental toxicity was correlated with the concentration of ethylbenzene and MIBK and their exposure duration. This study investigated the health risks posed by organic solvents among workers involved in the painting process of shipbuilding. Additional research on percutaneous exposure to organic solvents and a detailed process analysis are needed.
Collapse
Affiliation(s)
- Sue-Ji Seo
- Health and Safety Convergence Science Introduction, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| | - Sae-Mi Shin
- Research Institute of Health Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Wonsuck Yoon
- Allergy and Immunology Center, Korea University, Seoul 02841, Republic of Korea
| | - Sang-Hoon Byeon
- Health and Safety Convergence Science Introduction, College of Health Science, Korea University, Seoul 02841, Republic of Korea
- Department of Health and Environmental Science, College of Health Science, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
2
|
Duan H, Wang Y, Shen H, Ren C, Li J, Li J, Wang Y, Su Y. Source-specific probabilistic health risk assessment of dust PAHs in urban parks based on positive matrix factorization and Monte Carlo simulation. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:451. [PMID: 39316207 DOI: 10.1007/s10653-024-02236-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 09/16/2024] [Indexed: 09/25/2024]
Abstract
Understanding the health risks of polycyclic aromatic hydrocarbons (PAHs) in dust from city parks and prioritizing sources for control are essential for public health and pollution management. The combination of Source-specific and Monte Carlo not only reduces management costs, but also improves the accuracy of assessments. To evaluate the sources of PAHs in urban park dust and the possible health risks caused by different sources, dust samples from 13 popular parks in Kaifeng City were analyzed for PAHs using gas chromatograph-mass spectrometer (GC-MS). The results showed that the surface dust PAH content in the study area ranged from 332.34 µg·kg-1 to 7823.03 µg·kg-1, with a mean value of 1756.59 µg·kg-1. Nemerow Composite Pollution Index in the study area ranged from 0.32 to 14.41, with a mean of 2.24, indicating that the overall pollution warrants attention. Four pollution sources were identified using the positive matrix factorization (PMF) model: transportation source, transportation-coal and biomass combustion source, coke oven emission source, and petroleum source, with contributions of 33.74%, 25.59%, 22.14%, and 18.54%, respectively. The Monte Carlo cancer risk simulation results indicated that park dust PAHs pose a potential cancer risk to all three populations (children, adult male and adult female). Additionally, the cancer risk for children was generally higher than that for adult males and females, with transportation sources being the main contributor to the carcinogenic risk. Lastly, sensitivity analyses results showed that the toxic equivalent concentration (CS) is the parameter contributing the most to carcinogenic risk, followed by Exposure duration (ED).
Collapse
Affiliation(s)
- Haijing Duan
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yanfeng Wang
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Haoxin Shen
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Chong Ren
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Jing Li
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Jiaheng Li
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yangyang Wang
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China
| | - Yanxia Su
- College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Key Laboratory of Geospatial Technology for the Middle and Lower Yellow River Regions, Ministry of Education, Henan University, Kaifeng, 475004, China.
- National Demonstration Center for Environmental and Planning, College of Geography and Environmental Science, Henan University, Kaifeng, 475004, China.
- Engineering Research Center for Control & Remediation of Soil Heavy Metal Pollution, Henan University, Kaifeng, 475004, China.
| |
Collapse
|
3
|
Fan YH, Qin SB, Mou XX, Li XS, Qi SH. Accurate prediction bioaccessibility of PAHs in soil-earthworm system by novel magnetic solid phase extraction technique. CHEMOSPHERE 2024; 355:141821. [PMID: 38548073 DOI: 10.1016/j.chemosphere.2024.141821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/13/2024] [Accepted: 03/25/2024] [Indexed: 04/18/2024]
Abstract
Conventional chemical extraction methods may lead to overestimate or underestimate bioaccessibility due to their inability to provide realistic kinetic information regarding PAHs in soils. In this study, we propose the use of magnetic solid phase extraction (MSPE) technique for assessing the bioaccessibility of PAHs in the soil-earthworm system. Firstly, a novel polydopamine-coated magnetic core-shell microspheres (Fe3O4-C16@PDA) was developed by a one-pot sol-gel and self-polymerization method. The PDA coatings not only enhance the hydrophilicity of material surfaces but also exhibit excellent biocompatibility. The maximum adsorption capacity of Fe3O4-C16@PDA for 16 PAHs was 52.72 mg g-1, indicating that the proposed material fulfills the assessment requirements for highly contaminated soil. To compare the measurement of PAHs and their uptake by earthworms (Eisenia fetida), experiments were conducted using four different soils with varying properties. The desorption kinetics data obtained from these experiments demonstrated that the capability of the MSPE in accurately predicting the bioavailable portions of PAHs. After a 28-day exposure, the best predictor of bioavailable PAHs in earthworms was MSPE method exhibited the highest correlation coefficient (R2 > 0.90), and its slopes in the four soils were 0.972, 0.961, 1.012, and 0.962, respectively, all close to 1. These results demonstrate that the MSPE method successfully mimics the conditions encountered in soil-earthworm systems and effectively assess bioaccessibility of PAHs in soils.
Collapse
Affiliation(s)
- Yu-Han Fan
- Key Laboratory of Reservoir Aquatic Environment, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, China; State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Shi-Bin Qin
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning, 530007, China
| | - Xiao-Xuan Mou
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| | - Xiao-Shui Li
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China.
| | - Shi-Hua Qi
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Wuhan, 430074, China
| |
Collapse
|
4
|
Yue X, Shan Y, Zhang Y, Jiao W, Shen K. Heat and mass transfer induced by alternating current during desorption of PAHs from soil using electrical resistance heating. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:135. [PMID: 38200165 DOI: 10.1007/s10661-023-12272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The transfer of heat and contaminants by alternating current (AC) and the removal mechanism of polycyclic aromatic hydrocarbons (PAHs) in electrical resistance heating (ERH) need further study. The main factors affecting heat transfer and water evaporation in the ERH experiment were studied, and the desorption efficiency, temporal and spatial distribution and kinetic behavior under various conditions were analyzed. The results suggested that moisture content was a necessary condition to ensure effective heating of soil, and soil moisture content above 30% was recommended. Higher voltage intensity and/or ion concentration meant stronger input power, resulting in the rapider heating process and the shorter the boiling time. At a low desorption temperature (about 100°C), the Phe desorption mainly depended on the volatilization of surface Phe and the co-boiling of Phe-water. In ERH, the participation of AC would accelerate the diffusion of pollutants from the internal pores of soil particles and their redistribution with water phase, thus improving the Phe removed by co-boiling. It was noteworthy that AC just greatly promoted solid-liquid mass transfer, but it hardly promoted desorption directly, and the removal still depended on Phe-water co-boiling. The Phe desorption efficiency could be significantly improved from 14.0~18.4% to 59.6~70.8% under the combined action of current strengthening Phe diffusion and co-boiling. Thermogravimetric and product analysis confirmed that no new organic matter was generated, but only Phe entered the gas phase through phase change.
Collapse
Affiliation(s)
- Xiupeng Yue
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Yongping Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yaping Zhang
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Kai Shen
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| |
Collapse
|
5
|
Kim PG, Tarafdar A, Lee KY, Kwon JH, Hong Y. The passive sampler assisted human exposure risk characterization for tetrachloroethene soil vapor intrusion scenario. ENVIRONMENTAL RESEARCH 2023; 238:117238. [PMID: 37783324 DOI: 10.1016/j.envres.2023.117238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 09/14/2023] [Accepted: 09/23/2023] [Indexed: 10/04/2023]
Abstract
The potential human health risks associated with soil vapor intrusion and volatile organic compounds (VOCs) exposure were characterized at an industrialized site by the quantification of gaseous VOCs in soil pores using a passive sampling technique. The gaseous tetrachloroethene (PCE) in soil pores varied between 12 and 5,400 μg m-3 showing 3 orders of magnitude variation with dependence on groundwater PCE concentrations. Though the PCE concentration in the air only varied between 0.45 and 1.5 μg m-3 showing negligible variations compared to the variation observed in soil pores. The PCE concentration in the air varied between 0.45 and 1.5 μg m-3. The calculation of fugacity suggested that the PCE in the test site originated from groundwater. Measured PCE in groundwater ranged from 14 to 2,400 times higher than PCE in soil gas. This indicates that conducting a vapor intrusion risk assessment using passive soil gas sampling is critical for accurate risk characterization and assessment. Estimated PCE inhalation cancer risks for street cleaners and indoor residents varied between 10-6 and 10-4 with a low plausible hazard, and between 10-3 and 10-2 with a high risk, respectively. The results of this study demonstrate that passive sampling offers a significantly lower cost and labor-intensive approach compared to traditional methods for assessing pollution distribution in contaminated sites and characterizing risks. This highlights the potential for wider application of passive sampling techniques in environmental studies.
Collapse
Affiliation(s)
- Pil-Gon Kim
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Abhrajyoti Tarafdar
- School of Biosystems and Food Engineering, University College Dublin, Belfield, Dublin 4, Ireland
| | - Keum Young Lee
- R&D Center, H-Plus Eco Ltd.,130-70, Jinsangmi-ro 813beon-gil, Seolseong-myeon, Icheon-si, 17412, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Yongseok Hong
- Department of Environmental Engineering, College of Science and Technology, Korea University Sejong Campus, Sejong City, 30019, Republic of Korea.
| |
Collapse
|
6
|
Qin Z, Zhao Z, Xia L, Yu G, Miao A, Yang Z. Vertical and seasonal dynamics of bacterial pathogenic communities at an aged organic contaminated site: Insights into microbial diversity, composition, interactions, and assembly processes. JOURNAL OF HAZARDOUS MATERIALS 2023; 460:132255. [PMID: 37703736 DOI: 10.1016/j.jhazmat.2023.132255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 07/26/2023] [Accepted: 08/07/2023] [Indexed: 09/15/2023]
Abstract
Under the background of the Coronavirus Disease 2019 (COVID-19) pandemic, research on pathogens deserves greater attention in the natural environment, especially in the widely distributed contaminated sites with complicated and severe organic pollution. In this study, the community composition and assembly of soil pathogens identified by the newly-developed 16S-based pipeline of multiple bacterial pathogen detection (MBPD) have been investigated on spatiotemporal scales in the selected organic polluted site. We demonstrated that the richness and diversity of the pathogenic communities were primarily controlled by soil depth, while the structure and composition of pathogenic communities varied pronouncedly with seasonal changes, which were driven by the alterations in both physiochemical parameters and organic contaminants over time. Network analysis revealed that the overwhelmingly positive interactions, identified multiple keystone species, and a well-organized modular structure maintained the stability and functionality of the pathogenic communities under environmental pressures. Additionally, the null-model analysis showed that deterministic processes dominated the pathogenic community assembly across soil profiles. In three seasons, stochasticity-dominated processes in spring and summer changed into determinism-dominated processes in winter. These findings extend our knowledge of the response of the bacterial pathogenic community to environmental disruptions brought on by organic contaminated sites.
Collapse
Affiliation(s)
- Zhirui Qin
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China.
| | - Liling Xia
- Nanjing Vocational University of Industry Technology, Nanjing 210016, China
| | - Guangwen Yu
- China National Chemical Civil Engineering Co., Ltd, Nanjing 210031, China
| | - Aihua Miao
- China National Chemical Civil Engineering Co., Ltd, Nanjing 210031, China
| | - Zijun Yang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
7
|
Upadhyay SK, Rani N, Kumar V, Mythili R, Jain D. A review on simultaneous heavy metal removal and organo-contaminants degradation by potential microbes: Current findings and future outlook. Microbiol Res 2023; 273:127419. [PMID: 37276759 DOI: 10.1016/j.micres.2023.127419] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 04/22/2023] [Accepted: 05/24/2023] [Indexed: 06/07/2023]
Abstract
Industrial processes result in the production of heavy metals, dyes, pesticides, polyaromatic hydrocarbons (PAHs), pharmaceuticals, micropollutants, and PFAS (per- and polyfluorinated substances). Heavy metals are currently a significant problem in drinking water and other natural water bodies, including soil, which has an adverse impact on the environment as a whole. The heavy metal is highly poisonous, carcinogenic, mutagenic, and teratogenic to humans as well as other animals. Multiple polluted sites, including terrestrial and aquatic ecosystems, have been observed to co-occur with heavy metals and organo-pollutants. Pesticides and heavy metals can be degraded and removed concurrently from various metals and pesticide-contaminated matrixes due to microbial processes that include a variety of bacteria, both aerobic and anaerobic, as well as fungi. Numerous studies have examined the removal of heavy metals and organic-pollutants from different types of systems, but none of them have addressed the removal of these co-occurring heavy metals and organic pollutants and the use of microbes to do so. Therefore, the main focus of this review is on the recent developments in the concurrent microbial degradation of organo-pollutants and heavy metal removal. The limitations related to the simultaneous removal and degradation of heavy metals and organo-pollutant pollutants have also been taken into account.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, Veer Bahadur Singh Purvanchal University, Jaunpur 222003, Uttar Pradesh, India.
| | - Nitu Rani
- Department of Biotechnology, Chandigarh University, Mohali, Punjab 140413, India
| | - Vinay Kumar
- Divisional Forest Office, Social Forestry Division Fatehpur, Uttar Pradesh, India; Department of Environmental Science, Babasaheb Bhimrao Ambedkar University, Lucknow, India
| | - R Mythili
- Department of Pharmacology, Saveetha Dental College, Chennai 600077, India
| | - Devendra Jain
- Department of Molecular Biology and Biotechnology, Rajasthan College of Agriculture, Maharana Pratap University of Agriculture and Technology, Udaipur 313001, India
| |
Collapse
|
8
|
Jin Z, Gu C, Fan X, Cai J, Bian Y, Song Y, Sun C, Jiang X. Novel insights into the predominant factors affecting the bioavailability of polycyclic aromatic hydrocarbons in industrial contaminated areas using PLS-developed model. CHEMOSPHERE 2023; 319:138033. [PMID: 36736478 DOI: 10.1016/j.chemosphere.2023.138033] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 06/18/2023]
Abstract
Bioavailability is recognized as a useful technical standard for risk assessment and pollution rehabilitation. However, knowledge on the bioavailability of polycyclic aromatic hydrocarbons (PAHs) in contaminated site soils is still limited, especially concerning the influential mechanism. With an abundance of soil collections from nine industrial areas in China, the bioavailabilities, as conceptually defined as bioconcentration factors (BCFs) of PAHs were analyzed using biomimetic extraction of hydroxypropyl-β-cyclodextrin (HPCD). Apart from the total content of PAHs varying with the different pyrogenic sources, the BCFs were greatly dependent on the soil physicochemical properties from the spatial scale and inversely proportional to the number of rings. Pearson correlation analysis indicated a weak relationship between bioavailability and the soil dissolved organic matter (DOM), pH and particle size. To incorporate the soil physicochemical properties and structural characteristics of PAHs determined by density functional theory (DFT), the optimum model for bioavailability was developed for BCFs by partial least square (PLS) analysis. The PLS-derived model was shown to be predictive within the applicability domain (AD). The structural characteristics, e.g., molecular polarizability and frontier orbital energy level that favor the soil adsorption of PAH isomers via dispersion interactions, and electron exchanges were indicated to be more impactful on bioavailability than soil environmental factors. However, soil factors should not be neglected, because the pH, DOM, etc. were significantly influential. It makes sense that the higher DOM causes greater bioavailability via increasing the free-dissolved fractions of PAHs. Interestingly, the effect of pH on bioavailability was spectrally validated by excitation-emission matrix (EEM) fluorescence, showing that the interaction between DOM and pyrene strengthened the fluorescence quenching of chromophores with the decline in pH.
Collapse
Affiliation(s)
- Zhihua Jin
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Chenggang Gu
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China.
| | - Xiuli Fan
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Jun Cai
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yongrong Bian
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Yang Song
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Cheng Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing, 210023, China
| | - Xin Jiang
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of the Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
9
|
Yu J, Luo H, Yang B, Wang M, Gong Y, Wang P, Jiao Y, Liang T, Cheng H, Ma F, Gu Q, Li F. Risk Control Values and Remediation Goals for Benzo[ a]pyrene in Contaminated Sites: Sectoral Characteristics, Temporal Trends, and Empirical Implications. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2064-2074. [PMID: 36695743 DOI: 10.1021/acs.est.2c09553] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Benzo[a]pyrene (BaP) is a highly carcinogenic pollutant of global concern. There is a need for a comprehensive assessment of regulation decisions for BaP-contaminated site management. Herein, we present a quantitative evaluation of remediation decisions from 206 contaminated sites throughout China between 2011 and 2021 using the cumulative distribution function (CDF) and related statistical methodologies. Generally, remediation decisions seek to establish remediation goals (RGs) based on the risk control values (RCVs). Cumulative frequency distributions, followed non-normal S-curve, emerged multiple nonrandom clusters. These clusters are consistent with regulatory guidance values (RGVs), of national and local soil levels in China. Additionally, priority interventions for contaminated sites were determined by prioritizing RCVs and identifying differences across industrial sectors. Notably, we found that RCVs and RGs became more relaxed over time, effectively reducing conservation and unsustainable social and economic impacts. The joint probability curve was applied to model decision values, which afforded a generic empirically important RG of 0.57 mg/kg. Overall, these findings will help decision-makers and governments develop appropriate remediation strategies for BaP as a ubiquitous priority pollutant.
Collapse
Affiliation(s)
- Jingjing Yu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Huilong Luo
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Bin Yang
- Technical Center for Soil, Agriculture and Rural Ecology and Environment, Ministry of Ecology and Environment, Beijing100012, China
| | - Minghao Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- School of Environment, Tsinghua University, Beijing100084, China
| | - Yiwei Gong
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Panpan Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Yufang Jiao
- Beijing Jiewei Science and Technology Limited Company, Beijing100012, China
| | - Tian Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Hongguang Cheng
- College of Water Science, Beijing Normal University, Beijing100875, China
| | - Fujun Ma
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
| | - Qingbao Gu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
| | - Fasheng Li
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing100012, China
- College of Water Science, Beijing Normal University, Beijing100875, China
| |
Collapse
|
10
|
Ali M, Song X, Wang Q, Zhang Z, Che J, Chen X, Tang Z, Liu X. Mechanisms of biostimulant-enhanced biodegradation of PAHs and BTEX mixed contaminants in soil by native microbial consortium. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 318:120831. [PMID: 36509345 DOI: 10.1016/j.envpol.2022.120831] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 11/29/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Despite the co-occurrence of polycyclic aromatic hydrocarbons (PAHs) and benzene, toluene, ethylbenzene, and xylene (BTEX) in the field, to date, knowledge on the bioremediation of benzene and benzo[a]pyrene (BaP) mixed contaminants is limited. In this study, the mechanisms underlying the biodegradation of benzene and BaP under individual and co-contaminated conditions followed by the enhanced biodegradation using methanol, ethanol, and vegetable oil as biostimulants were investigated. The results demonstrated that the benzene biodegradation was highly reduced under the co-contaminated condition compared to the individual benzene contamination, whereas the BaP biodegradation was slightly enhanced with the co-contamination of benzene. Moreover, biostimulation significantly improved the biodegradation of both contaminants under co-contaminated conditions. A trend of significant reduction in the bioavailable BaP contents was observed in all biostimulant-enhanced groups, implying that the bioavailable BaP was the preferred biodegradable BaP fraction. Furthermore, the enzymatic activity analysis revealed a significant increase in lipase and dehydrogenase (DHA) activities, as well as a reduction in the catalase and polyphenol oxidase, suggesting that the increased hydrolysis of fats and proton transfer, as well as the reduced oxidative stress, contributed to the enhanced benzene and BaP biodegradation in the vegetable oil treatment. In addition, the microbial composition analysis results demonstrated that the enriched functional genera contributed to the increased biodegradation efficiency, and the functional genera in the microbial consortium responded differently to different biostimulants, and competitive growth was observed in the biostimulant-enhanced treatments. In addition, the enrichment of Pseudomonas and Rhodococcus species was noticed during the biostimulation of benzene and BaP co-contamination soil, and was positively correlated with the DHA enzyme activities, indicating that these species encode DHA genes which contributed to the higher biodegradation. In conclusion, multiple lines of evidence were provided to shed light on the mechanisms of biostimulant-enhanced biodegradation of PAHs and BTEX co-contamination with native microbial consortiums.
Collapse
Affiliation(s)
- Mukhtiar Ali
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Zhuanxia Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jilu Che
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Xing Chen
- China Construction 8th Engineering Division Corp., LTD, Shanghai, 200122, China
| | - Zhiwen Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xin Liu
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
11
|
Barzegar G, Rezaei Kalantary R, Bashiry M, Jaafarzadeh N, Ghanbari F, Shakerinejad G, Khatebasreh M, Sabaghan M. Measurement of polycyclic aromatic hydrocarbons in edible oils and potential health risk to consumers using Monte Carlo simulation, southwest Iran. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5126-5136. [PMID: 35974284 DOI: 10.1007/s11356-022-22446-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
Persistent organic pollutants, such as polycyclic aromatic hydrocarbons, are hazardous trace contaminants frequently observed in food ingredients, such as edible oils. This study aimed to measure PAHs in forty brands of edible oils marketed in southwest Iran. Additionally, we characterized the daily intake of MOE and ILCR using Monte Carlo simulation. To analyze the content of PAHs, the liquid-liquid extraction method followed by GC-MS was utilized. The average concentration of PAHs was mostly lower than the maximum value for individual PAH (2 μg/Kg); however, the average concentration of fluorene (3.86 μg/Kg) and benzo(a)anthracene (3.13 μg/Kg) was more than the permitted level. The highest residual concentrations of PAHs were mostly observed in canola and corn oils. The daily intake of BaP and 4-PAH for 95% of consumers was 0.01 ng/kg BW/day and 0.04 ng/kg BW/day, respectively. Also, MOE was more than 10,000 for the percentiles of 5%, 50%, and 95%. The modeled ILCR showed that consumption of oil does not currently pose a cancer risk for Iranian consumers due to PAHs exposure. Concerning potential health risks, consumption of edible oils is safe; however, regular monitoring and assessment are required.
Collapse
Affiliation(s)
- Gelavizh Barzegar
- Department of Environmental Health Engineering, Behbahan Faculty of Medical Sciences, Behbahan, Iran
| | - Roshanak Rezaei Kalantary
- Research Center for Environmental Health Technology (RCEHT), Iran University of Medical Sciences, Tehran, Iran
- Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Moein Bashiry
- Research Center for Environmental Determinants of Health (RCEDH), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nematollah Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Environmental Health Engineering, School of Health, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Farshid Ghanbari
- Research Center for Environmental Contaminants (RCEC), Abadan University of Medical Sciences, Abadan, Iran
| | | | - Masoumeh Khatebasreh
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, ShahidSadoughi University of Medical Sciences, Yazd, Iran
| | - Mohamad Sabaghan
- Department of Environmental Health Engineering, Behbahan Faculty of Medical Sciences, Behbahan, Iran.
| |
Collapse
|
12
|
Tarafdar A, Sinha A. Profiling and occupational health risk assessment study on coal ashes in terms of polycyclic aromatic hydrocarbons (PAHs). JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2022; 57:913-926. [PMID: 36254457 DOI: 10.1080/10934529.2022.2131291] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/23/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Profiling and cancer risk assessment on the polycyclic aromatic hydrocarbons (PAHs) content of coal ashes produced by the major coal combustion plants from the eastern coalfield region in India was conducted. Thirteen PAHs were detected on coal ashes collected from ash deposition sites of major thermal power plants and the profiling of the PAHs was done. Benzo[a]pyrene equivalents (BaPeq) for individual PAHs were calculated and applied to the probabilistic assessment model from US EPA (1989). Monte Carlo simulations were conducted to assess the risk of inhabitants exposed to PAHs through the dust of the coal ash deposition site. In fly ash, the range of total amount of carcinogenic PAHs was from 3.50 to 6.72 µg g-1 and for the bottom ash, the range was 8.49 to 14.91 µg g-1. Bottom ashes were loaded with ample amounts of 5- and 6-ring carcinogenic PAHs, whereas fly ashes were dominated by medium molecular weight PAHs. The simulated mean cancer risks from fly ashes were 2.187 E-06 for children and 3.749 E-06 for adults. For the case of bottom ash, the mean risks were 1.248 E-05 and 2.173 E-05 respectively for children and adults. Among all the three exposure routes, dermal contact was the major and caused 81% of the total cancer risk. The most sensitive parameters were exposure duration and relative skin adherence factor for soil, which contributed the most to total variation. The 90% risks calculated from the bottom ashes (2.617 E-05 for children and 4.803 E-05 for adults) are marginally above the acceptable limit (>1.000 E-06) according to US EPA. In this study, a comprehensive risk assessment on carcinogenic PAHs present in coal ashes was done for the first time that may be helpful to develop potential strategies against occupational cancer risk.
Collapse
Affiliation(s)
- Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- Department of Environmental Science and Engineering, Indian Institute of Technology, (Indian School of Mines), Dhanbad, Jharkhand, India
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology, (Indian School of Mines), Dhanbad, Jharkhand, India
| |
Collapse
|
13
|
Ji L, Li W, Li Y, He Q, Bi Y, Zhang M, Zhang G, Wang X. Spatial Distribution, Potential Sources, and Health Risk of Polycyclic Aromatic Hydrocarbons (PAHs) in the Surface Soils under Different Land-Use Covers of Shanxi Province, North China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph191911949. [PMID: 36231245 PMCID: PMC9565183 DOI: 10.3390/ijerph191911949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 05/21/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread in the environment and pose a serious threat to the soil ecosystem. In order to better understand the health risks for residents exposed to PAH-contaminated soil, 173 surface soil samples were collected in Shanxi Province, China, to detect the levels of 16 priority PAHs. The spatial distribution patterns of PAHs were explored using interpolation and spatial clustering analysis, and the probable sources of soil PAHs were identified for different land-use covers. The results indicate that the soil Σ16 PAH concentration ranged from 22.12 to 1337.82 ng g-1, with a mean of 224.21 ng g-1. The soils were weakly to moderately contaminated by high molecular weight PAHs (3-5 ring) and the Taiyuan-Linfen Basin was the most polluted areas. In addition, the concentration of soil PAHs on construction land was higher than that on other land-use covers. Key sources of soil PAHs were related to industrial activities dominated by coal burning, coking, and heavy traffic. Based on the exposure risk assessment of PAHs, more than 10% of the area was revealed to be likely to suffer from high carcinogenic risks for children. The study maps the high-risk distribution of soil PAHs in Shanxi Province and provides PAH pollution reduction strategies for policy makers to prevent adverse health risks to residents.
Collapse
Affiliation(s)
- Li Ji
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Wenwen Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Yuan Li
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Qiusheng He
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
- Correspondence: ; Tel.: +86-351-699-8256
| | - Yonghong Bi
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Minghua Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Guixiang Zhang
- School of Environment and Resources, Taiyuan University of Science and Technology, Taiyuan 030024, China
| | - Xinming Wang
- State Key Laboratory of Organic Geochemistry, Guangzhou Institute of Geochemistry, Chinese Academy of Sciences, Guangzhou 510640, China
| |
Collapse
|
14
|
Zhao Z, Hao M, Li Y, Li S. Contamination, sources and health risks of toxic elements in soils of karstic urban parks based on Monte Carlo simulation combined with a receptor model. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156223. [PMID: 35643134 DOI: 10.1016/j.scitotenv.2022.156223] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 05/20/2022] [Accepted: 05/21/2022] [Indexed: 06/15/2023]
Abstract
Understanding the health risks of toxic elements (TEs) in urban park soils and determining their priority control factors are crucial for public health and pollution management. Soil samples were collected from 33 urban parks in Guiyang, a typical karstic city. For each park, 15-45 topsoil samples were collected according to the area and then thoroughly mixed to obtain a representative sample. The results showed that the mean concentrations of TEs in park soils (22.5, 0.37, 88.6, 43.7, 0.26, 39.9, 44.7, and 101.0 mg/kg for As, Cd, Cr, Cu, Hg, Ni, Pb, and Zn, respectively) were higher than their background values. Approximately 54.5% and 33.3% of enrichment factor (EF) values reached moderately enriched to significantly enriched levels for Cd and Hg, respectively. Moreover, 54.5% and 42.4% of monomial potential ecological index (EI) values were at considerable to high risk levels for Cd and Hg, respectively. These results illustrate that Cd and Hg pose high ecological risks. According to the potential ecological risk index (RI) values, 21.2% of the parks were exposed to considerable ecological risk and 48.5% were at moderate risk. Based on the positive matrix factorization (PMF) model, four sources governing TE contamination (including coal combustion, natural sources, traffic emissions, and industrial activities) were identified, with contribution rates of 32.3%, 31.0%, 19.6%, and 17.1%, respectively. A probabilistic health risk assessment showed acceptable non-carcinogenic risks and high levels of carcinogenic risk in all populations. Based on the source-specific health risk assessment, arsenic from coal combustion was determined to be a major contributor to human health risks. Although several efforts have been made by the local government to eliminate coal-borne arsenicosis, our results revealed that the accumulation of arsenic in the soil due to coal combustion poses a potential threat to human health.
Collapse
Affiliation(s)
- Zhenjie Zhao
- Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, School of Public Health, Guizhou Medical University, Guiyang 550025, China; State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China
| | - Ming Hao
- College of Medical humanities, Guizhou Medical University, Guiyang 550025, China
| | - Yunlong Li
- Shandong Institute of Geophysical and Geochemical Exploration, Jinan 250013, China
| | - Shehong Li
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550081, China.
| |
Collapse
|
15
|
Gaur VK, Gupta S, Pandey A. Evolution in mitigation approaches for petroleum oil-polluted environment: recent advances and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61821-61837. [PMID: 34420173 DOI: 10.1007/s11356-021-16047-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
Increasing petroleum consumption and a rise in incidental oil spillages have become global concerns owing to their aquatic and terrestrial toxicity. Various physicochemical and biological treatment strategies have been studied to tackle them and their impact on environment. One of such approaches in this regard is the use of microbial processes due to their being "green" and also apparent low cost and high effectiveness. This review presents the advancement in the physical and biological remediation methods and their progressive efficacy if employed in combination of hybrid modes. The use of biosurfactants and/or biochar along with microbes seems to be a more effective bioremediation approach as compared to their individual effects. The lacuna in research at community or molecular level has been overcome by the recent introduction of "-omics" technology in hydrocarbon degradation. Thus, the review further focuses on presenting the state-of-art information on the advancement of petroleum bioremediation strategies and identifies the research gaps for achieving total mitigation of petroleum oil.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | | | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India.
- Centre for Energy and Environmental Sustainability, Lucknow, 226029, India.
| |
Collapse
|
16
|
Wang J, Bao H, Cai J, Li J, Li J, Wu F. Uptake and accumulation of naphthalene, phenanthrene, and benzo(b)fluoranthene in winter wheat affected by foliar exposure at different growth stages. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:47617-47628. [PMID: 35182349 DOI: 10.1007/s11356-022-19263-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/13/2022] [Indexed: 06/14/2023]
Abstract
Foliar uptake, as an important pathway of polycyclic aromatic hydrocarbons (PAHs) accumulation in winter wheat, has a great contribution to wheat PAHs, which mainly depends on atmospheric PAHs level. An indoor simulation experiment was conducted to explore the effects of foliar exposure to PAHs at different growth stages on PAHs uptake in wheat. Three levels (0, 0.75, 4.5 mg L-1) of mixed solution of three PAHs (Σ3PAHs) including naphthalene (NAP), phenanthrene (PHE), and benzo(b)fluoranthene (BbF) were sprayed on leaves of two varieties (Yunong, YN; Xiaoyan, XY) of winter wheat (Triticum aestivum L.) during the booting, heading, pre-filling, and post-filling stage. The results showed that the sprayed PAHs exhibited little effects on the growth of the two varieties except the stem biomass of YN was significantly (p < 0.05) reduced when high concentration of PAHs was applied at the post-filling stage. PAHs concentration in winter wheat grain was highest under foliar exposure at the pre-filling stage, while the lowest was found under foliar exposure at the post-filling stage. Transfer factor of PAHs from stem to root (TFroot/stem) of three PAHs when foliar exposure to PAHs at the booting and heading stage was significantly (p < 0.001) higher than that at the pre-filling and post-filling stage, while TFgrain/glume of three PAHs when foliar exposure to PAHs at pre-filling stage was significantly (p < 0.01) higher than that at the other three stages. These results indicated that foliar exposure to PAHs during the vegetative growth stage was transferred and distributed to the root, while PAHs are mainly transferred and accumulated to the grain during the grain filling stage. Additionally, the higher lipophilic PAHs showed a lower ability to transfer from the glume to grain, and larger flag leaf area had the potential to promote the enrichment of PAHs in grain. This study indicated that the health risk of PAHs in winter wheat could be effectively reduced by controlling atmospheric PAHs level during pre-filling stage.
Collapse
Affiliation(s)
- Jinfeng Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- Engineer and Technology Academy of Ecology and Environment, Shanxi Province Key Laboratory of Soil Environment and Nutrient Resources, Shanxi Agricultural University, Taiyuan, 030031, People's Republic of China
| | - Huanyu Bao
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology (SKLUWRE, HIT), Harbin, 150090, People's Republic of China
| | - Jun Cai
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jia Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
| | - Jiao Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China
| | - Fuyong Wu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, 712100, Shaanxi, People's Republic of China.
- Key Laboratory of Plant Nutrition and the Agri-Environment in Northwest China, Ministry of Agriculture, Yangling, 712100, Shaanxi, People's Republic of China.
| |
Collapse
|
17
|
Zhang H, Huang Q, Han P, Zhang Z, Jiang S, Yang W. Source identification and toxicity apportionment of polycyclic aromatic hydrocarbons in surface soils in Beijing and Tianjin using a PMF-TEQ method. PLoS One 2022; 17:e0268615. [PMID: 35771809 PMCID: PMC9246166 DOI: 10.1371/journal.pone.0268615] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 05/04/2022] [Indexed: 11/18/2022] Open
Abstract
Beijing and Tianjin are two of the largest cities in northern China with high population densities and highly developed manufacturing industries. In the past decade, some authors have reported their PAH concentrations in surface soils, identified their sources and quantitatively reported their health risks. However, the contributions of different PAH sources to their toxicity have not been reported thus far. In this study, we reviewed the PAH concentrations, contributions of different sources to the toxicity, and cancer risks in soils from different land use types found within Beijing and Tianjin from data gathered by 41 studies. The total PAH concentration varied in the range of 175.7–1989.0 ng g-1 with a higher median PAH concentration detected in urban soils (789.7 ng g-1), followed by suburban soils (647.3 ng g-1) and rural soils (390.8 ng g-1). Source identification using diagnostic ratios and principal component analysis (PCA) suggested that the PAHs in all three land use types mainly originated from biomass and coal combustion, vehicular emissions, and petrogenic processes with contributions varying from 13% to 62%. Furthermore, results from a positive matrix factorization (PMF) model suggested that vehicular emissions and coal combustion in urban soils, and the vehicular emissions, coal combustion and biomass combustion in suburban and rural soils dominated the total PAH concentrations (>85%). These results were consistent with those of the PCA model. Results of the additional toxicity apportionment performed using the PMF model suggested that vehicular emissions and coal combustion contributed the most to the toxic equivalent quantity for Benzo(a)Pyrene (BaPTEQ) and, by extension, to the carcinogenic potencies. The incremental lifetime cancer risk (ILCR) values suggested a low risk level for adults exposed to PAHs in the different land use types found within Beijing and Tianjin.
Collapse
Affiliation(s)
- Huashuang Zhang
- Institute for Brain Research and Rehabilitation, South China Normal University, Guangzhou, Guangdong, China
| | - Qi Huang
- College of Life Science, Taizhou University, Taizhou, Zhejiang, China
| | - Ping Han
- Shandong Urban Construction Vocational College, Jinan, Shandong, China
| | - Zhicheng Zhang
- College of Life Science, Taizhou University, Taizhou, Zhejiang, China
| | - Shengtao Jiang
- College of Life Science, Taizhou University, Taizhou, Zhejiang, China
- * E-mail: (SJ); (WY)
| | - Wei Yang
- Polar and Marine Research Institute, Jimei University, Xiamen, Fujian, China
- * E-mail: (SJ); (WY)
| |
Collapse
|
18
|
Pham DT, Tarafdar A, Kim PG, Kwon JH. Profiling and assessing soil-air exchange of polycyclic aromatic hydrocarbons (PAHs) in playground dust and soil using ex situ equilibrium passive sampling. CHEMOSPHERE 2022; 291:133083. [PMID: 34848229 DOI: 10.1016/j.chemosphere.2021.133083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 10/29/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
Cancer risk can be associated with exposure to polycyclic aromatic hydrocarbons (PAHs) in playground dust and soil. This study investigated the profiles and sources of PAHs from poured rubber-surfaced playground dust and uncovered playground surface soil, by applying an ex-situ equilibrium passive sampling technique. Surface dust and soil samples were collected from 15 different playgrounds in Seoul, Republic of Korea. The total 16 EPA PAHs concentrations in surface dust and soil varied from 198 to 919 μg kg-1 dw and 68-169 μg kg-1 dw, respectively. 4- to 6-ring PAHs were dominant, accounting for approximately 53.8%-94.5% of the total PAHs in surface dust and soil. The diagnostic ratios and principal component analysis suggested that a mixed coal combustion and vehicular emission was likely the main source of PAHs in the surface dust and soil. The higher total organic carbon content can explain the higher PAH accumulation and lower fugacities of PAHs. The fugacity comparison of phenanthrene and pyrene in dust, soil, air, and playground surface material indicated that atmospheric deposition is the main source of PAHs in the dust and soil on rubber-surfaced and uncovered surfaced playgrounds. This study contributes to the understanding of PAHs sources in dust and soil samples in children's playground and helps policymaker determine the right contamination sources for risk management.
Collapse
Affiliation(s)
- Dat Thanh Pham
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Pil-Gon Kim
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
19
|
Mohammed AB, Goran SMA, Tarafdar A. Profiling of seasonal variation in and cancer risk assessment of benzo(a)pyrene and heavy metals in drinking water from Kirkuk city, Iraq. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22203-22222. [PMID: 34782976 DOI: 10.1007/s11356-021-17314-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Water samples at 13 sites were analyzed to evaluate heavy metals (cobalt, lead, manganese, copper) and benzo(a)pyrene using 2 methods of analysis (high-performance liquid chromatography (HPLC) and enzyme-linked immunosorbent assay (ELISA) kits). The Lesser Zap River is the main tributary of the Tigris and is used as a main source of drinking water in Kirkuk city through the General Kirkuk project. Risk evaluation for benzo(a)pyrene and lead in water samples was accomplished by Monte Carlo simulation. The highest concentrations of B(a)P were recorded at sites S7 and S5, with levels of 0.192 and 0.122 µg L-1 detected by HPLC and ELISA, respectively. The WHO guidelines for benzo[a]pyrene in drinking water recommend 0.7 µg L -1, and none of the samples surpassed this level; moreover, B(a)P levels exceeded EPA standards in 2014 (0.01 µg L-1), particularly when the liquid-liquid extraction method with HPLC was used. Carcinogenic risks for human adults and children exist and are highest during the rainy season as compared with the carcinogenic risk during the dry season and risks for children exceed those of adults. This indicates that the 2nd round of sampling (winter season) harbors more carcinogenic risk than the 1st round of sampling (dry season).
Collapse
Affiliation(s)
| | - Siraj Muhammed Abdulla Goran
- Environmental Science and Health Department, College of Science, Salahaddin University-Erbil, Kurdistan Region, Erbil, Iraq.
| | - Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Tian W, Guo P, Li H, Zhang G. Probability risk assessment of soil PAH contamination premised on industrial brownfield development: a case from China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:1559-1572. [PMID: 34355315 DOI: 10.1007/s11356-021-15781-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 07/29/2021] [Indexed: 06/13/2023]
Abstract
The harm of polycyclic aromatic hydrocarbons to human health and the natural environment has become an indisputable fact. Compared with other pollutants, PAHs are more toxic at low environmental concentrations, especially in industrialized environments. This study investigated the concentration distribution of soil PAHs at a well-known industrial production site in China and applied the Monte Carlo simulation method to assess the risk of cancer caused by the excessive accidental intake of PAHs in brownfield development environments. The results showed that the PAH content of the soil at the study site exceeded the local soil quality background value to varying degrees, and the excess rate ranged from 0.72 to 22.3%. There are serious health risks of BaP at the site, which has a 95th health risk percentile value of 1.12E-04. Those for BbF, InP, and DBA range from 1.0×10-6 to 1.0×10-4, and potential health risks occur. Moreover, the exposure duration and average carcinogenic time were the most influential parameters. The study has revealed that exposure to brownfield soil contaminated with PAHs increases the health risks. This is a representative study on the occurrence and concentration of PAHs in industrial brownfields in China, which can be adopted as a basis and evidence for pollution risk assessment of brownfield development.
Collapse
Affiliation(s)
- Wei Tian
- School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, China
- School of Environment and Municipal Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, China
| | - Ping Guo
- School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, China.
| | - Huimin Li
- School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, China
| | - Guangmin Zhang
- School of Civil Engineering, Xi'an University of Architecture & Technology, Xi'an, 710055, China
| |
Collapse
|
21
|
Zou Y, Liu J, Liu X, Jia J. Health risk assessment of polycyclic aromatic hydrocarbons (PAHs) in the soil around thermal power plants in southwest China. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2021; 56:786-796. [PMID: 34187311 DOI: 10.1080/10934529.2021.1927597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 04/23/2021] [Accepted: 05/02/2021] [Indexed: 06/13/2023]
Abstract
This study aimed to evaluate the PAH contamination levels and to assess the health risk of PAH in soils of two typical thermal power plants. The PAH content was detected using gas chromatography-mass spectrometry (GC-MS). The carcinogenic risk and the hazard quotient were assessed for health risk using the "Chinese Technical Guidelines for Risk Assessment of Contaminated Sites HJ 25.3-2014." The results showed that the average concentration of Σ16PAHs in the soils around thermal power plants A and B are 7436 μg/kg and 8975 μg/kg, respectively indicating heavily pollution. The comprehensive carcinogenic risk of PAHs in thermal power plants A and B ranged from 0.26 × 10-6 to 4.16 × 10-6. Forty percent of the sampling sites exceeded the acceptable risk level (10-6), which is a potential carcinogenic risk to the workers. Among the seven kinds of carcinogens, Bap (39.91%) and DBA (36.10%) had the highest carcinogenic risk. Oral ingestion (57.22%) and skin contact (42.49%) were the major exposure pathways that could be blocked by wearing masks, gloves, and protective clothing. The control values for oral ingestion (0.32717 mg/kg) of DBA and Bap with the highest contribution rate of the carcinogenic risk and the lowest control value were selected as reference safety thresholds for PAHs in thermal power plants.
Collapse
Affiliation(s)
- Yiping Zou
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, PR China
| | - Jialin Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, PR China
| | - Xingchen Liu
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, PR China
| | - Jianli Jia
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing, PR China
| |
Collapse
|
22
|
Wu B, Guo S, Wang J. Assessment of the human health risk of polycyclic aromatic hydrocarbons in soils from areas of crude oil exploitation. ENVIRONMENTAL RESEARCH 2021; 193:110617. [PMID: 33316229 DOI: 10.1016/j.envres.2020.110617] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 12/07/2020] [Accepted: 12/07/2020] [Indexed: 06/12/2023]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are ubiquitous carcinogenic pollutants. Areas where crude oil has been exploited are at risk due to PAHs from both natural and anthropogenic sources. The Shengli Oilfield in China was used to assess the health risk posed by PAHs in areas with different population densities. A risk assessment showed that in the areas with low, median, and high population densities, the probabilities of the total carcinogenic risk (TCR) exceeding 10-6 for adults were 9.9%, 9.3%, and 13.4%, respectively, whereas these were 7.8%, 7.1%, and 10.1%, respectively, for children. Crude oil, traffic, and residential emissions were the major sources of PAHs based on a factor analysis with a nonnegative constraint analysis. Crude oil sources accounted for 96.1% of the TCR in the low population area, whereas traffic accounted for 94.4% of the TCR in the high population area. Based on the national action plan, guidelines, and new standard for soil pollution control promulgated by the Chinese government, we assumed a reduced rate of soil PAHs from different sources, and the carcinogenic risk from PAHs in the area of crude oil exploitation could be forecast. The average probabilities of the TCR exceeding 10-6 for adults and children could be reduced by 45.8% and 49.4%, respectively, in 2040 relative to current values under a pollution control scenario. These findings highlight that the risks associated with soil contamination could be effectively controlled by implementing control policies.
Collapse
Affiliation(s)
- Bo Wu
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China
| | - Shuhai Guo
- Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang, 110016, PR China; National-Local Joint Engineering Laboratory of Contaminated Soil Remediation by Bio-physicochemical Synergistic Process, Shenyang, 110016, PR China.
| | - Jianing Wang
- Ecology Institute, Qilu University of Technology, Jinan, China
| |
Collapse
|
23
|
Cavalcanti JVFL, Fraga TJM, de Lima VF, Dos Santos e Silva DF, Loureiro Leite MDA, do Nascimento CWA, Schuler ARP, da Motta Sobrinho MA. Advanced Oxidation of Polycyclic Aromatic Hydrocarbons in Soils Contaminated with Diesel Oil at Pilot‐Scale. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000244] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
| | - Tiago José Marques Fraga
- Federal University of Pernambuco Department of Chemical Engineering 1235 Prof. Moraes Rego Avenue, Cidade Universitária 50670-901 Recife Brazil
| | - Valmir Félix de Lima
- Federal University of Pernambuco Department of Chemical Engineering 1235 Prof. Moraes Rego Avenue, Cidade Universitária 50670-901 Recife Brazil
| | - Daniella Fartes Dos Santos e Silva
- Federal University of Rio de Janeiro Group of Studies in Bioeconomy School of Chemistry 149 Athos da Silveira Ramos Avenue, Cidade Universitária, Ilha do Fundão 21941-909 Rio de Janeiro Brazil
| | - Mirella De Andrade Loureiro Leite
- Federal University of Pernambuco Department of Chemical Engineering 1235 Prof. Moraes Rego Avenue, Cidade Universitária 50670-901 Recife Brazil
| | | | - Alexandre Ricardo Pereira Schuler
- Federal University of Pernambuco Department of Chemical Engineering 1235 Prof. Moraes Rego Avenue, Cidade Universitária 50670-901 Recife Brazil
| | - Maurício Alves da Motta Sobrinho
- Federal University of Pernambuco Department of Chemical Engineering 1235 Prof. Moraes Rego Avenue, Cidade Universitária 50670-901 Recife Brazil
| |
Collapse
|
24
|
Cavalcanti JVFL, Fraga TJM, Loureiro Leite MDA, Dos Santos E Silva DF, de Lima VF, Schuler ARP, do Nascimento CWA, da Motta Sobrinho MA. In-depth investigation of Sodium percarbonate as oxidant of PAHs from soil contaminated with diesel oil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 268:115832. [PMID: 33120152 DOI: 10.1016/j.envpol.2020.115832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/04/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Sodium percarbonate (SPC, 2Na2CO3∙3H2O2), is a compound that can be used under multiple environmental applications. In this work, SPC was employed as oxidant in the treatment of soil contaminated with diesel oil. The soil samples were collected during the earthmoving stage of RNEST Oil Refinery (Petrobras), Brazil. Then, the samples were air-dried, mixed and characterized. Subsequently, raw soil was contaminated with diesel and treated by photo-Fenton reaction (H2O2/Fe2+/UV). SPC played a significant role in the generation of hydroxyl radicals under the catalytic effect of ferrous ions (Fe2+), hydrogen peroxide (H2O2) and radiation. These radicals provoked the photodegradation of polycyclic aromatic hydrocarbons (PAHs), in the soil remediation. A factorial design 33 was carried out to assess the variables which most influenced the decrease in total organic carbon (TOC). The study was performed with the following variables: initial concentration of [H2O2] and [Fe2+], between 190.0 and 950.0 mmol L-1 and 0.0-14.4 mmol L-1, respectively. UV radiation was supplied from sunlight, blacklight lamps, and system without radiation. All experiments were performed with 5.0 g of contaminated soil in 50.0 mL of solution. The initial concentration of Fe2+ showed the statistically most significant effect. The oxidation efficiency evaluated in the best condition showed a decrease from 34,765 mg kg-1 to 15,801 mg kg-1 in TOC and from 85.750 mg kg-1 to 20.770 mg kg-1 in PAHs content. Moreover, the sums of low and high molecular weight polycyclic aromatic hydrocarbons (LMW-PAHs and HMW-PAHs) were 19.537 mg kg-1 and 1.233 mg kg-1, respectively. Both values are within the limits recommended by the United Sates Environmental Protection Agency (USEPA) and evidenced the satisfactory removal of PAHs from contaminated soil, being an alternative to classic oxidation protocols.
Collapse
Affiliation(s)
| | - Tiago José Marques Fraga
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil.
| | - Mirella de Andrade Loureiro Leite
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil
| | - Daniella Fartes Dos Santos E Silva
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil
| | - Valmir Félix de Lima
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil
| | - Alexandre Ricardo Pereira Schuler
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil
| | | | - Maurício Alves da Motta Sobrinho
- Department of Chemical Engineering, Federal University of Pernambuco, 1235 Prof. Moraes Rego Avenue, Cidade Universitária, ZIP code, 50670-901, Recife, Brazil.
| |
Collapse
|
25
|
Li Z. A theorem on a product of lognormal variables and hybrid models for children's exposure to soil contaminants. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2020; 263:114393. [PMID: 32222666 DOI: 10.1016/j.envpol.2020.114393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 03/13/2020] [Accepted: 03/15/2020] [Indexed: 06/10/2023]
Abstract
This study developed hybrid Bayesian models to investigate the modeling process for children's exposure to soil contaminants, which involves the intrinsic uncertainty of the exposure model, people's judgments regarding random variables, and limited data resources. A hybrid Bayesian p-box was constructed, which was facilitated by a multiple integral dimensionality reduction (MIDR) theorem. The results indicated that exposure frequency (EF) dominated the exposure dose. The hybrid Bayesian p-box for the Frequentist-Bayesian (F-B) model at the 95th percentile of the simulated average daily dose (ADD) values corresponded to a 4.40 order-of-magnitude difference between the upper and lower bounds of the p-box. This considerable uncertainty was magnified by the combination of the highest posterior density (HPD) regions for three groups of the distribution parameters. For the Interior-Bayesian (I-B) hybrid model, the uncertainty of the outcomes, namely, [1.75 × 10-8, 2.18 × 10-8] mg kg-1d-1, was limited by the HPD regions for only one parameter unless the hyperparameters for the variables' distributions were further evaluated. It was concluded that the hybrid models could provide a novel understanding of the complexity of the exposure modeling process compared to the traditional modeling method.
Collapse
Affiliation(s)
- Zijian Li
- School of Public Health (Shenzhen), Sun Yat-sen University, Guangdong 510275, China.
| |
Collapse
|
26
|
Tarafdar A, Oh MJ, Nguyen-Phuong Q, Kwon JH. Profiling and potential cancer risk assessment on children exposed to PAHs in playground dust/soil: a comparative study on poured rubber surfaced and classical soil playgrounds in Seoul. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2020; 42:1691-1704. [PMID: 31134396 DOI: 10.1007/s10653-019-00334-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 05/21/2019] [Indexed: 06/09/2023]
Abstract
Children can get affected by polycyclic aromatic hydrocarbons (PAHs) while they interact with play area soil/rubber surfacing and exposed to PAHs by dermal contact, inhalation and hand-to-mouth activity. A comparative study has been conducted on PAHs profiling and probable cancer risk of children from PAHs present in uncovered playground surface soil and poured rubber surfaced playground dust. Surface soil and dust samples have been collected from 14 different children parks around the Korea University campus, Seoul, Republic of Korea. Concentrations of 16 PAHs in the soils/dust were found to be in a range of 2.82-57.93 μg g-1. Profiling of the PAHs from the playground soils/dust reveals 3-ring PAHs are dominating with 79.9% of total PAHs content, on an average. The diagnostic ratio analysis confirms that vehicular exhaust and fossil fuel burning are likely the main sources of high molecular weight carcinogenic PAHs, whereas low molecular weight PAHs have pyrogenic origin. The probabilistic health risk assessment using Monte Carlo simulations for the estimation of the 95% cancer risk exposed to the PAHs from the surfaced playgrounds shows a little higher value than the USEPA safety standard (1.3 × 10-5). Sensitivity analysis revealed exposure duration and relative skin adherence factor for soil as the most influential parameters of the assessment. Noticeably, cancer risk is approximately 10 times higher in poured rubber surfaced playgrounds than in uncovered soil playgrounds.
Collapse
Affiliation(s)
- Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Min-Ju Oh
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea
| | - Quynh Nguyen-Phuong
- Department of Water-Environment-Oceanography, University of Science and Technology of Hanoi (USTH), Vietnam Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, 10000, Vietnam
| | - Jung-Hwan Kwon
- Division of Environmental Science and Ecological Engineering, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul, 02841, Republic of Korea.
| |
Collapse
|
27
|
Assessing the Spatial Distribution of Soil PAHs and their Relationship with Anthropogenic Activities at a National Scale. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16244928. [PMID: 31817465 PMCID: PMC6950367 DOI: 10.3390/ijerph16244928] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 11/29/2019] [Accepted: 12/03/2019] [Indexed: 02/02/2023]
Abstract
Soil polycyclic aromatic hydrocarbon (PAH) pollution is a major concern due to its negative impact on soil quality around the world. In China, accurate data on soil PAHs and information on the relationship with anthropogenic activities are limited. In this study, about 30,800 samples from 1833 soil sample sites were reviewed from 306 published reports to build a soil PAHs database. Based on the data obtained, the results demonstrated that 24.11% of surface soils in China are heavily contaminated. Meanwhile, the concentration of soil PAHs varied, in the order of independent mining and industrial areas (IMIA) > urban areas > suburban areas > rural areas, and the spatial distribution in China demonstrated a descending trend from north to south. Moreover, the characteristic ratio and PCA-MLR (principal component analysis-multiple linear regression) analysis demonstrated that coal combustion and vehicular exhaust emissions were the main sources of soil PAH pollution in China. On the other hand, provincial total Σ16PAHs in surface soil were significantly correlated with the per square kilometer GDP (gross domestic product) of industrial land, the per capita GDP, as well as the production and consumption of energy. These results indicate that anthropogenic factors have greatly affected the levels of soil PAHs in China. This study improves our understanding on the status and sources of soil PAH contamination in China, thereby facilitating the implementation of strategies of prevention, control, and remediation of soils.
Collapse
|
28
|
Zeng S, Ma J, Yang Y, Zhang S, Liu GJ, Chen F. Spatial assessment of farmland soil pollution and its potential human health risks in China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 687:642-653. [PMID: 31220718 DOI: 10.1016/j.scitotenv.2019.05.291] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/17/2019] [Accepted: 05/20/2019] [Indexed: 05/15/2023]
Abstract
Soil pollution severely threatens agro-ecosystem stability. It is important to accurately understand the status of farmland pollution in order to protect national food safety and human health. However, information of the combined pollution level of Chinese farmland soil and associated human health risk at the national scale is relatively lacking. In this study, 5597 samples from 1781 farmland soil sites were obtained from 553 reports and combined into pollution databases of heavy metals, organochlorines, and polycyclic aromatic hydrocarbons. Based on the data obtained, this paper demonstrated the current pollution status of farmland soil, and assessed the subsequent human health risk. Results showed that the combined pollution ratio of Chinese farmland soil was 22.10%, with 1.23% of severe pollution level. Moreover, the total non-carcinogenic hazard quotients of farmland soil pollution were within the safety threshold for adults, but there was a slight non-carcinogenic risk for children. For adults, the ratio of total farmland area to total carcinogenic risk quotients above the safety threshold of 1 × 10-5 was only 1.02%, but for children, the ratio was as high as 20.75%. On the other side, food crop and vegetable plantations were the priority control farmland soil compared to other types. Meanwhile, Yunnan, Hunan, Anhui, Henan, and Liaoning were selected as the priority control provinces due to their severe pollutions and high human health risks. This study has provided a comprehensive pollution and health risk assessment. Furthermore, the spatial distribution might provide as the scientific support for accelerating the mapping of soil pollution in China, as well as developing the policy for the contaminated farmland soil management.
Collapse
Affiliation(s)
- Siyan Zeng
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| | - Jing Ma
- Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| | - Yongjun Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| | - Shaoliang Zhang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China
| | - Gang-Jun Liu
- Geospatial Sciences, College of Science, Engineering, and Health, RMIT University, Melbourne 3000, Australia
| | - Fu Chen
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China; Low Carbon Energy Institute, China University of Mining and Technology, Xuzhou, Jiangsu 221008, China.
| |
Collapse
|
29
|
Tarafdar A, Sinha A. Discussion on the technical note entitled, "public health risk assessment following exposure to PAH-contaminated soils - specific considerations for bioaccessibility and other exposure parameters". THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1448-1451. [PMID: 30580782 DOI: 10.1016/j.scitotenv.2018.12.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 12/14/2018] [Indexed: 06/09/2023]
Abstract
This is a discussion on the technical note entitled, "Public Health Risk Assessment following Exposure to PAH-contaminated Soils - Specific Considerations for Bioaccessibility and Other Exposure Parameters". Presence of some serious issues in the technical note on understanding the scopes and concepts of the original research article have been highlighted. The prevailing unclear definition of bioaccessibility and bioavailability in the scientific community may have been caused the misunderstanding of the scope of our original study. On an effort to clear this idea we feel privileged to write this discussion.
Collapse
Affiliation(s)
- Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University, Republic of Korea; Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines), Dhanbad, India.
| |
Collapse
|
30
|
Zagury GJ, Marin Villegas CA, Guney M. Public health risk assessment following exposure to PAH-contaminated soils - Specific considerations for bioaccessibility and other exposure parameters. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 656:1043-1045. [PMID: 30625636 DOI: 10.1016/j.scitotenv.2018.11.412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2018] [Revised: 11/18/2018] [Accepted: 11/27/2018] [Indexed: 06/09/2023]
Affiliation(s)
- Gerald J Zagury
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, H3C 3A7 Montréal, QC, Canada.
| | - Carlos A Marin Villegas
- Department of Civil, Geological and Mining Engineering, Polytechnique Montreal, H3C 3A7 Montréal, QC, Canada
| | - Mert Guney
- Department of Civil and Environmental Engineering, Nazarbayev University, 010000 Astana, Kazakhstan; The Environment and Resource Efficiency Cluster (EREC), Nazarbayev University, 010000 Astana, Kazakhstan
| |
Collapse
|
31
|
Kim SJ, Park MK, Lee SE, Go HJ, Cho BC, Lee YS, Choi SD. Impact of traffic volumes on levels, patterns, and toxicity of polycyclic aromatic hydrocarbons in roadside soils. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2019; 21:174-182. [PMID: 30632598 DOI: 10.1039/c8em00532j] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Vehicular exhaust is one of the important sources of polycyclic aromatic hydrocarbons (PAHs) in urban areas, and roadside soils can be directly contaminated with PAHs released from traffic emissions. In this study, roadside soils were collected at 10 sites in Ulsan, the largest industrial city in South Korea, to investigate the relationship between the traffic volume and the contamination characteristics of PAHs. The total concentrations of 16 US EPA priority PAHs (∑16 PAHs, mean: 1079 ng g-1) and organic-matter-normalized ∑16 PAHs (mean: 224 ng g-1 OM) were positively correlated with traffic volumes (Pearson correlation, r = 0.88 and 0.78, p < 0.01). The levels of carcinogenic PAHs were significantly higher at the high traffic sites than at the low traffic sites. High traffic sites (>25 000 vehicles per day) located at intersections showed elevated concentrations of indicator compounds (e.g., phenanthrene, fluoranthene, pyrene, and benzo[ghi]perylene) for gasoline and diesel exhaust. The diagnostic ratios also suggested a strong influence of the traffic emissions on the roadside soils, not only at urban sites but also at rural ones. Consequently, roadside soils and road dust (which are expected to be much more contaminated with PAHs than roadside soil) can act as important non-point sources of air and water pollution. The cancer risk from exposure to PAHs in the roadside soils was in an acceptable range, but continuous monitoring is required to evaluate the influence of increasing traffic on the environment and human health.
Collapse
Affiliation(s)
- Seong-Joon Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), Ulsan, 44919, Republic of Korea.
| | | | | | | | | | | | | |
Collapse
|
32
|
Škrbić B, Đurišić-Mladenović N, Živančev J, Tadić Đ. Seasonal occurrence and cancer risk assessment of polycyclic aromatic hydrocarbons in street dust from the Novi Sad city, Serbia. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 647:191-203. [PMID: 30077848 DOI: 10.1016/j.scitotenv.2018.07.442] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 07/29/2018] [Accepted: 07/30/2018] [Indexed: 06/08/2023]
Abstract
This is the first investigation that identified seasonal occurrence, distribution and sources of 16 polycyclic aromatic hydrocarbons (PAHs) in 60 street dust samples collected within urban zone of Novi Sad, the second largest city in Serbia. The obtained results were further used for comprehensive assessment of carcinogenic risk of Serbian inhabitants exposed to PAHs present in street dust by the incremental lifetime cancer risk method. The total level of 16 PAHs ranged between 35 μg kg-1 and 2422 μg kg-1 in samples taken in summer and between 35 μg kg-1 and 587 μg kg-1 in samples taken in winter. In both seasons, 4-ring PAHs were the most dominant compounds and high molecular weight (HMW) PAHs had similar contribution (55% in summer and 65% in winter). The highest content was determined for fluoranthene (Fly) in both seasons (597 μg kg-1 in winter, 301 μg kg-1 in summer). The PAHs source apportionment was analyzed by principal component analysis (PCA) and diagnostic ratios, and combustion of petroleum seemed to be the main sources of the PAHs in street dust. The cancer risk level for children and adult were comparable for dermal contact and by ingestion, and ranged from 10-6 to 10-4 indicating a potential risk. Additionally, the total incremental life time cancer risk (ILCR) was assessed for children and adult population taking into account three possible exposure routs and the median total cancer risk was ˃10-5, with 7% of the samples having the risk ˃10-4 that should be considered of high concern with potential health problem. These results are the first of this kind for the whole Serbia and the Western Balkan region and can be considered as the base line for future research.
Collapse
Affiliation(s)
- Biljana Škrbić
- University of Novi Sad, Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia.
| | - Nataša Đurišić-Mladenović
- University of Novi Sad, Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Jelena Živančev
- University of Novi Sad, Faculty of Technology Novi Sad, Laboratory for Chemical Contaminants and Sustainable Development, Bulevar cara Lazara 1, 21000 Novi Sad, Serbia
| | - Đorđe Tadić
- Institute of Environmental Assessment and Water Research, Consejo Superior de Investigaciones Científicas, Barcelona, Spain
| |
Collapse
|
33
|
Fagbayigbo BO, Opeolu BO, Fatoki OS, Olatunji OS. Validation and determination of nine PFCS in surface water and sediment samples using UPLC-QTOF-MS. ENVIRONMENTAL MONITORING AND ASSESSMENT 2018; 190:346. [PMID: 29766315 DOI: 10.1007/s10661-018-6715-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Accepted: 05/02/2018] [Indexed: 06/08/2023]
Abstract
In this study, an analytical method for the routine determination of nine perfluorinated compounds (PFCs), using ultra performance liquid chromatography coupled to a quadrupole time-of-flight mass spectrometer (UPLC-QTOF-MS), was developed, validated, and used for their assay in surface water and sediments. The method yielded good linearity with a correlation coefficient (R2) ranging between 0.991 and 0.999 for all the compounds investigated. Limits of detection (LOD) ranged between 0.02 and 0.08 ng/l, while the limit of quantification (LOQ) ranged from 0.065 to 0.261 ng/l. Recovery studies were carried out in replicate assays, and percentage recoveries ranged between 56 and 112% for the nine perfluorinated compounds investigated. The method was applied to determine levels of perflurooctanoic acid (PFOA) and PFOS in surface water and sediment samples collected along the Plankenburg River in Stellenbosch, South Africa. Samples were pre-treated, extracted, and cleaned up via offline solid-phase extraction (SPE) procedures, using hydrophilic-lipophilic balance (HLB) C-18 cartridges. Levels of PFOA and PFOS found in surface water ranged between (12.8 ± 4.24 and 62.62 ± 4.86 ng/l) and (<LOD and 3.8 ng/l), respectively, while levels measured in corresponding sediment samples ranged between 0.14-0.33 ng/g (PFOA) and <LOD and 0.7 ± 0.013 ng/g (PFOS). Concentrations of PFOA and PFOS were suspected to be associated with anthropogenic activities in the vicinity of the sampling areas.
Collapse
Affiliation(s)
- B O Fagbayigbo
- Department of Environmental Health and Occupational Studies, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, 8000, South Africa.
| | - B O Opeolu
- Department of Environmental Health and Occupational Studies, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, 8000, South Africa
| | - O S Fatoki
- Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, 8000, South Africa
| | - O S Olatunji
- Department of Chemistry, Faculty of Applied Sciences, Cape Peninsula University of Technology, Cape Town, 8000, South Africa
| |
Collapse
|
34
|
Tarafdar A, Sinha A. Health risk assessment and source study of PAHs from roadside soil dust of a heavy mining area in India. ARCHIVES OF ENVIRONMENTAL & OCCUPATIONAL HEALTH 2018; 74:252-262. [PMID: 29482466 DOI: 10.1080/19338244.2018.1444575] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 02/17/2018] [Indexed: 06/08/2023]
Abstract
The total concentrations of 13 detected polycyclic aromatic hydrocarbons (PAHs) in different traffic soil samples of Dhanbad heavy mining area, India, were between 8.256 and 12.562 µg/g and were dominated by four ring PAHs (44%). Diagnostic ratio study revealed that fossil fuel burning and vehicular pollution are the most prominent sources of the PAHs in roadside soil even at a heavy coal mining area. The 90th percentiles cancer risks determined by probabilistic health risk assessment (Monte Carlo simulations) for both the age groups (children and adults) were above tolerable limit (>1.00E-06) according to USEPA. The simulated mean cancer risk was 1.854E-05 for children and 1.823E-05 for adults. For different exposure pathways, dermal contact was observed to be the major pathway with an exposure load of 74% for children and 85% for adults. Sensitivity analysis demonstrated relative skin adherence factor for soil (AF) is the most influential parameter of the simulation, followed by exposure duration (ED).
Collapse
Affiliation(s)
- Abhrajyoti Tarafdar
- Division of Environmental Science and Ecological Engineering, Korea University , Republic of Korea
| | - Alok Sinha
- Department of Environmental Science and Engineering, Indian Institute of Technology (Indian School of Mines) , Dhanbad , India
| |
Collapse
|