1
|
Xian ZN, Gong H, Xu Y, Zhu N. Recent advances in occurrence, biotreatment, and integrated insights into bacterial degradation of phthalic acid esters in aquatic environments. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138248. [PMID: 40239513 DOI: 10.1016/j.jhazmat.2025.138248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 03/08/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
Phthalic acid esters (PAEs) are prevalent as emerging contaminants owing to their widespread use as plasticizers in industry. Despite their environmental and health risks, a limited understanding of PAE contamination in aquatic environments hinders the practical implementation of biotreatment strategies for their removal. This paper reviews the advances in occurrence, biotreatment, and relevant integrative analysis of bacterial PAE degradation over the past decade. In various aquatic environments, dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) are the predominant PAE pollutants across different regions, with alarming levels reported in Eastern China. PAEs in water usually inhibit the growth and metabolism of surrounding organisms. Meanwhile, various biotreatment techniques have proven effective in removing PAEs from leachate and wastewater. The treatment efficiency can be further enhanced by incorporating suitable physicochemical processes and optimizing key factors, such as the initial pollutant concentration, PAE type, and reaction time. Additionally, a K-means machine learning algorithm and 16S rRNA gene-based evolutionary analysis were employed to reveal that soil is a preferred source for isolating strains, with Gordonia and Pseudomonas being the dominant genera of PAE-degrading bacteria exhibiting high degradation efficiency. Moreover, most PAE hydrolase genes were discovered in these two genera. Different gene clusters facilitated the subsequent degradation pathways under aerobic or anaerobic conditions. This paper presents the latest updates on PAE biotreatment and offers an integrated analysis of the bacterial degradation involved. Future research should apply these insights to enhance the overall effectiveness of PAE removal in water.
Collapse
Affiliation(s)
- Zhuo-Ning Xian
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Huabo Gong
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ying Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 20040, China
| | - Nanwen Zhu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
2
|
Liu B, Li J, Ma X, Liu S, Yu Y. Tracing the influence of seasonal variation on bioaccumulation and trophodynamics of phthalate esters (PAEs) in marine food web: A case study in Bohai Bay, North China. MARINE POLLUTION BULLETIN 2025; 216:118051. [PMID: 40286415 DOI: 10.1016/j.marpolbul.2025.118051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 04/29/2025]
Abstract
The ubiquity of phthalate esters (PAEs) leads to public concerns about the safety of seafood consumption. However, their bioaccumulation and trophodynamics in marine food webs remain unclear, especially in different seasons. Herein, we collected 18 species (n = 135) in summer and 17 species (n = 146) in winter from Bohai Bay (BHB). ∑6PAEs in organisms in summer were significantly higher than those in winter. Di-(2-ethylhexyl) phthalate (DEHP) was the predominant PAE with a mean of 1112 ng·g-1 lipid weight (lw) and 375 ng·g-1 lw in summer and winter, respectively. The bioaccumulation factors (BAFs) and biota-sediment accumulation factors (BSAFs) of DEHP in summer were significantly higher than those in winter. A parabolic relationship was found between log Kow and log BAFlw or BSAFlw of PAEs. Food webs in two seasons were constructed based on the δ15N of each organism. Except for diethyl phthalate (DEP), other PAEs underwent biodilution and the biodilution of these PAEs was more obvious in summer compared to winter. Non-carcinogenic risks of 6 PAEs were negligible, but DEHP could pose incremental lifetime carcinogenic risks in some marine samples, especially in summer. This study provides insights into the seasonal variation of bioaccumulation and trophodynamics of PAEs.
Collapse
Affiliation(s)
- Baolin Liu
- College of Chemistry, Changchun Normal University, Changchun 130032, China; Institute of Innovation Science and Technology, Changchun Normal University, Changchun 130032, China
| | - Junjie Li
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Xinyu Ma
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Sixu Liu
- College of Chemistry, Changchun Normal University, Changchun 130032, China
| | - Yong Yu
- Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China.
| |
Collapse
|
3
|
Lei L, Sha W, Liu Q, Liu S, Zhou Y, Li R, Duan Y, Fu S, Li H, Liao R, Li L, Zhou R, Zhou C, Liu H. Hepatotoxic effects of exposure to different concentrations of Dibutyl phthalate (DBP) in Schizothorax prenanti: Insights from a multi-omics analysis. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2025; 285:107390. [PMID: 40381407 DOI: 10.1016/j.aquatox.2025.107390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 04/19/2025] [Accepted: 04/26/2025] [Indexed: 05/20/2025]
Abstract
Dibutyl phthalate (DBP) is one of the most widely used phthalate esters (PAEs) that raise increasing ecotoxicological concerns due to their harmful effects on living organisms and ecosystems. Recently, while PAEs pollution in the Yangtze River has attracted significant attention, little research has been conducted on the impact of PAEs stress on S. prenanti, an endemic and valuable species in the Yangtze River. In this study, one control group (C-L) and three experimental groups: T1-L (3 µg/L), T2-L (30 µg/L), and T3-L (300 µg/L) were established with reference to the DBP concentration in the environment. For the first time, we investigated the effects of DBP stress on the liver of S. prenanti using histomorphological, physiological, and biochemical indexes, as well as a joint multi-omics analysis. The results revealed that compared to the C-L group, liver structural damage and stress were not significant in the environmental concentration group (T1-L) and the number of differential genes and differential metabolites were lower. However, as DBP stress concentration increased, the liver damage became severe, with significant vacuolation and hemolysis observed in the T2-L and T3-L groups. The TUNEL assay revealed a significant increase in the number of apoptotic cells along with a notable rise in differential genes and metabolites in the T2-L and T3-L groups. Oxidative stress markers (T-AOC, SOD, CAT, and GSH-PX) were also significantly higher in the T2-L and T3-L groups. RNA-Seq analysis showed that the protein processing in the endoplasmic reticulum pathway was most significantly -enriched differential gene pathway shared by both C-L vs T2-L and C-L vs T3-L, with most of the genes in this pathway showing significant up-regulation. This suggests that the protein processing in the endoplasmic reticulum pathway may play a key role in protecting the liver from injuries caused by high DBP stress. Interestingly, C XI, C XII, C XIII, C XIV and C XV in the chemical carcinogenesis - reactive oxygen species pathway were significantly down-regulated in the T2-L and T3-L groups based on combined transcriptomic and metabolomic analyses, suggesting that DBP causes liver injury by disrupting mitochondria. This comprehensive histomorphometric and multi-omics study demonstrated that the current DBP concentration in the habitat of S. prenanti in the upper reaches of the Yangtze River temporarily causes less liver damage. However, with increasing of DBP concentration, DBP could still cause serious liver damage to S. prenanti. This study provides a new mechanistic understanding of the liver response mechanism of S. prenanti under different concentrations of DBP stress and offers basic data for the ecological protection of the Yangtze River.
Collapse
Affiliation(s)
- Luo Lei
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Wuga Sha
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Qing Liu
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Shidong Liu
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yinhua Zhou
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Rundong Li
- College of Fisheries, Southwest University, Chongqing 400715, China
| | - Yuting Duan
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Suxing Fu
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Hejiao Li
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Rongrong Liao
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Linzhen Li
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China
| | - Rongzhu Zhou
- National Animal Husbandry Services, Beijing 100125, China.
| | - Chaowei Zhou
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China.
| | - Haiping Liu
- College of Fisheries, Southwest University, Chongqing 400715, China; Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing 400715, China.
| |
Collapse
|
4
|
Alkan N, Alkan A, Salih B, Yilmaz C, Üçüncü O. Environmental distributions of phthalates in sediments affected by municipal wastewater in the South-eastern Black Sea. CHEMOSPHERE 2025; 377:144364. [PMID: 40157263 DOI: 10.1016/j.chemosphere.2025.144364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 03/15/2025] [Accepted: 03/25/2025] [Indexed: 04/01/2025]
Abstract
Concerning pollutants, such as chemicals used as additives in plastics, are becoming more and more prevalent in the environment. Information on the temporal and spatial distribution of these contaminants is still scarce in the Black Sea, one of the world's unique ecosystems and a closed sea. This study provides the preliminary data on the quantities and distribution of phthalate acid esters (PAEs) in surface sediment samples collected from the coast of the south-eastern Black Sea in Turkiye. Following solid phase extraction, phthalate levels were measured by Gas Chromatography-Mass Spectrometry (GC-MS) in sediment samples collected during two distinct time periods from 21 stations that covered the locations where pretreated urban wastewater was released. While substantial PAE concentrations were observed in deep sea discharge locations, PAE concentrations were found to be lower at stations away from deep sea discharge and river impact. PAE levels in sediment were found to be between 3.76 and 50.57 ng/g dry weight (dw) in this research, which is lower than the values recorded in a majority of the world. DHP was determined to be the most abundant high molecular weight phthalate, whereas DEP was the most abundant low molecular weight phthalate.
Collapse
Affiliation(s)
- Nigar Alkan
- Faculty of Marine Science, Karadeniz Technical University, Trabzon, Türkiye.
| | - Ali Alkan
- Institute of Marine Sciences and Technology, Karadeniz Technical University, Trabzon, Türkiye
| | - Bekir Salih
- Faculty of Sciences, Hacettepe University, Ankara, Türkiye
| | - Cemre Yilmaz
- Faculty of Engineering, Karadeniz Technical University, Trabzon, Türkiye
| | - Osman Üçüncü
- Faculty of Engineering, Karadeniz Technical University, Trabzon, Türkiye
| |
Collapse
|
5
|
Farias JDM, Argolo LA, Neves RAF, Krepsky N, Bitencourt JAP. Mangrove consortium resistant to the emerging contaminant DEHP: Composition, diversity, and ecological function of bacteria. PLoS One 2025; 20:e0320579. [PMID: 40273087 PMCID: PMC12021221 DOI: 10.1371/journal.pone.0320579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/20/2025] [Indexed: 04/26/2025] Open
Abstract
The continuous use of Di(2-ethylhexyl) phthalate (DEHP) in plastic products turns it into a ubiquitous contaminant in the environment. However, DEHP can cause harm to human beings, wildlife, and ecosystems due to its estrogenicity and toxicity. Thus, finding an efficient approach to removing this contaminant from the environment is crucial. The present study aimed to prospect and characterize a bacterial consortium (MP001) isolated from a neotropical mangrove for DEHP bioremediation. A laboratory experiment was performed with environmentally relevant DEHP concentrations (0.05, 0.09, 0.19, 0.38, 0.75, 1.50, 3.00, and 6.00 mg L-1) to determine the consortium resistance to this contaminant and high-throughput sequencing was accomplished to assess the bacterial composition, diversity, and potential ecological function of consortium MP001. The consortium MP001 presented a significant biomass increase throughout short-term incubations with increasing concentrations of DEHP (GLMs, p< 0.001). MP001 was constituted by Paraclostridium sp. (78.99%) and Bacillus sp. (10.73%). After 48 h of consortia exposure to DEHP, the bacterial population changed to Paraclostridium (50.00%), Staphylococcus sp. (12.72%), Staphylococcus epidermidis (10.40%) and Bacillus sp. (17.63%). In the negative control, the bacteria community was composed of Paraclostridium sp. (54.02%), Pseudomonas stutzeri (19.44%), and Staphylococcus sp. (11.97%). The alpha diversity of the MP001 consortium was not significant (Kruskall-Wallis; p > 0.05), and no significant difference was found between the DEHP treatment and the negative control. Furthermore, the potential ecological function found in the consortium MP001 with higher potential for application in bioremediation purposes was fermentation. The results found in this study highlight the potential of a bacterial consortium to be used in the bioremediation of DEHP-contaminated aquatic environments.
Collapse
Affiliation(s)
- Julia de Morais Farias
- Graduate Program in Neotropical Biodiversity, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Water Microbiology (LACQUA), Department of Environmental Science, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO)Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Raquel A. F. Neves
- Graduate Program in Neotropical Biodiversity, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
- Research Group of Experimental and Applied Aquatic Ecology, Department of Ecology and Marine Resources, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
| | - Natascha Krepsky
- Graduate Program in Neotropical Biodiversity, Federal University of the State of Rio de Janeiro (UNIRIO), Rio de Janeiro, Rio de Janeiro, Brazil
- Laboratory of Water Microbiology (LACQUA), Department of Environmental Science, Institute of Biosciences, Federal University of the State of Rio de Janeiro (UNIRIO)Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Augusto P. Bitencourt
- Instituto Tecnológico Vale, Desenvolvimento Sustentável (ITV), Belém, Pará, Brazil
- Rede de Biodiversidade e Biotecnologia da Amazônia Legal (BIONORTE), Brazil
| |
Collapse
|
6
|
Salazar-Remigio L, Ponce-Vélez G, Olivares-Rubio HF, Amador-Muñoz O, Márquez-García AZ, Ontiveros-Cuadras JF. Bisphenol and phthalate levels, sources, and hazard estimation in sediments from a reef system: First study in the southern Gulf of Mexico. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 370:125888. [PMID: 39986562 DOI: 10.1016/j.envpol.2025.125888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/24/2025]
Abstract
Bisphenols (BPs) and phthalate acid esters (PAEs) are emerging pollutants (EPs) associated with plastic pollution, as they are used in manufacturing processes and easily separated from these msaterials, accumulating in the sediments of coastal and marine ecosystems. This is the first report of the concentrations of BPs and PAEs in surface and trap sediments from a Protected Natural Area (PNA) of great biological, tourist, and economic importance in the southern Gulf of Mexico (GoM), the Veracruz Reef System National Park (VRSNP). ΣBPs in surface sediments were between 7.0 × 10-2 and 1.35 ng g-1, for ΣPAEs from 0.18 to 4.59 × 103 ng g-1, while in the trap sediments, the ΣPAEs were between 0.12 and 3.17 × 103 ng g-1. Plasticizer bisphenol A (BPA) showed the highest concentration (0.66 ng g-1), whereas di-butyl phthalate (DBP) for PAEs (2.58 × 103 ng g-1). PAEs were strongly associated with terrigenous sources, while BPs with urban and port activities. The ecotoxicological hazard was estimated from the sediments, where BPs had a low hazard level, and PAEs presented a moderate to high hazard level for the reef benthos, reflecting the enormous anthropogenic pressures on the VRSNP. This study contributes with the first scientifically and technically reliable records of EPs, necessary to influence the definition of effective strategies for coastal management and territorial planning of the basins that directly influence chemical pollution. These efforts are crucial for mitigating risk to biodiversity and ensuring the conservation of this PNA in the southern GoM.
Collapse
Affiliation(s)
- Laura Salazar-Remigio
- Posgrado en Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México, Ave. Universidad No. 3000, Ciudad Universitaria, Coyoacán, C.P. 04510, Ciudad de México, Mexico
| | - Guadalupe Ponce-Vélez
- Unidad Académica de Procesos Oceánicos y Costeros, Instituto de Ciencias del Mar y, Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Ciudad de México, 04510, Mexico.
| | - Hugo F Olivares-Rubio
- Unidad Académica de Procesos Oceánicos y Costeros, Instituto de Ciencias del Mar y, Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Ciudad de México, 04510, Mexico
| | - Omar Amador-Muñoz
- Laboratorio de Especiación Química de Aerosoles Orgánicos Atmosféricos, Instituto de Ciencias de la Atmósfera y Cambio Climático, Universidad Nacional Autónoma de México, Cto. Exterior s/n Cd. Universitaria, Coyoacán, Ciudad de México, 04510, Mexico
| | - Antonio Z Márquez-García
- Laboratorio de Geología, Departamento de Hidrobiología, Universidad Autónoma Metropolitana Unidad Iztapalapa, Mexico
| | - Jorge Feliciano Ontiveros-Cuadras
- Unidad Académica de Procesos Oceánicos y Costeros, Instituto de Ciencias del Mar y, Limnología, Universidad Nacional Autónoma de México, Ciudad Universitaria, Circuito Exterior s/n, Ciudad de México, 04510, Mexico
| |
Collapse
|
7
|
Dong L, Qi X, Lin L, Zhao K, Yin G, Zhao L, Pan X, Wu Z, Gao Y. Characteristics, sources, and concentration prediction of endocrine disruptors in a large reservoir driven by hydrological rhythms: A case study of the Danjiangkou Reservoir. JOURNAL OF HAZARDOUS MATERIALS 2025; 484:136779. [PMID: 39642733 DOI: 10.1016/j.jhazmat.2024.136779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/20/2024] [Accepted: 12/03/2024] [Indexed: 12/09/2024]
Abstract
Herein, we present the first systematic investigation to clarify the effect of hydrological rhythms on the concentrations and distributions of polycyclic aromatic hydrocarbons (PAHs) and phthalate esters (PAEs) in the Danjiangkou Reservoir. The results revealed that hydrological rhythms remarkably affected the PAH and PAE concentrations and distributions in the water body, wherein the PAH concentration peaked in the flood season while the PAE concentration remarkably increased in the dry season. This study represents methodological innovation, revealing significant heterogeneity of PAHs and PAEs across different water layers. The former compounds tended to accumulate in the water body's bottom layer while the latter compounds had the highest concentration at the surface layer, which can be attributed to the different physicochemical properties and environmental transport behaviors of the two compound types. The overall concentrations of PAHs and PAEs fall within the international and domestic safety standards. The primary sources of these contaminants-coal and biomass combustion for PAHs and widespread use of plastic products for PAEs-are critical areas of regulatory focus. A machine learning model is proposed for the first time for predicting PAE concentrations in the Danjiangkou Reservoir, primarily based on the stacking model and supplemented by the random forest or XGBoost models.
Collapse
Affiliation(s)
- Lei Dong
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, PR China
| | - Xingrui Qi
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430074, PR China
| | - Li Lin
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, PR China.
| | - Kefeng Zhao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China
| | - Guochuan Yin
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Liangyuan Zhao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, PR China
| | - Xiong Pan
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China; Innovation Team for Basin Water Environmental Protection and Governance of Changjiang Water Resources Commission, Wuhan 430010, PR China
| | - Zhiguang Wu
- Changjiang Technology and Economy Society, Wuhan 430074, PR China
| | - Yu Gao
- Basin Water Environmental Research Department, Changjiang River Scientific Research Institute, Wuhan 430010, PR China; Key Lab of Basin Water Resource and Eco-Environmental Science in Hubei Province, Wuhan 430010, PR China
| |
Collapse
|
8
|
Lorre E, Bianchi F, Broman E, Bonaglia S, Nascimento FJA, Samuilovienė A, Woźniczka A, Zilius M. Phthalate esters in baltic lagoons: Spatial distribution, ecological risks, and novel insights into their fate using transcriptomics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 957:177526. [PMID: 39549755 DOI: 10.1016/j.scitotenv.2024.177526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/23/2024] [Accepted: 11/10/2024] [Indexed: 11/18/2024]
Abstract
Plasticizers such as phthalate esters (PAEs) are organic compounds widely used in various consumer and industrial products, raising strong environmental concerns due to their pervasive presence and potential adverse effects. Lagoon ecosystems are particularly vulnerable to PAE pollution as they are semi-enclosed and receive high loads of organic materials. The present study investigates the distribution of seven common PAEs in three large European lagoons (Curonian, Vistula and Szczecin) in the southern Baltic Sea. The concentration levels of PAEs in the water column, encompassing both the dissolved and particulate-bound phases, and in sediments were assessed to elucidate distribution patterns and potential ecological risks within these lagoon ecosystems. The average concentration of total PAEs in the water column ranged from 0.03 to 1.45 μg L-1, whereas sediment concentration varied from 0.008 to 1.06 μg g-1, levels comparable to or lower than those found in other European coastal areas. Distribution patterns of PAEs in sediment showed notable similarity across all three lagoons, whereas variations were observed in the water column. Notably, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DOP) and dimethyl phthalate (DMP) emerged as the most concerning congeners in studied lagoons, all of which pose a moderate risk to aquatic organisms. This study applied shotgun transcriptomic analysis to field samples, revealing active microbial communities involved in PAEs degradation in the Baltic lagoons for the first time. The degradation of phthalic acid (PA) into intermediate compounds such as protocatechuate was not identified as a rate-limiting step in the studied environment. The degradation activity was primarily localized in the sediment layers, with Gram-negative bacteria playing a major role, while Gram-positive bacteria appeared incapable of degrading PA. These findings provide valuable insights into the distribution and transformation mechanisms of PAEs in estuarine environments.
Collapse
Affiliation(s)
- Elise Lorre
- Marine Research Institute, Klaipeda University, 92295 Klaipeda, Lithuania.
| | - Federica Bianchi
- Department of Chemistry, Life Science and Environmental Sustainability, University of Parma, 43124 Parma, Italy; Interdepartmental Center for Energy and Environment (CIDEA), University of Parma, Parco Area delle Scienze, 43124 Parma, Italy
| | - Elias Broman
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden; Baltic Sea Centre, Stockholm University, 106 91 Stockholm, Sweden
| | - Stefano Bonaglia
- Department of Marine Sciences, University of Gothenburg, Box 461, 405 30 Gothenburg, Sweden
| | - Francisco J A Nascimento
- Department of Ecology, Environment and Plant Sciences, Stockholm University, 106 91 Stockholm, Sweden
| | | | - Adam Woźniczka
- Department of Fisheries Oceanography and Marine Ecology, National Marine Fisheries Research Institute, 81-332 Gdynia, Poland
| | - Mindaugas Zilius
- Marine Research Institute, Klaipeda University, 92295 Klaipeda, Lithuania
| |
Collapse
|
9
|
Khoshmanesh M, Farjadfard S, Ahmadi M, Ramavandi B, Fatahi M, Sanati AM. Review of toxicity and global distribution of phthalate acid esters in fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175966. [PMID: 39245393 DOI: 10.1016/j.scitotenv.2024.175966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/15/2024] [Accepted: 08/30/2024] [Indexed: 09/10/2024]
Abstract
Organic additives are incorporated during the manufacturing of plastics, and these additives are gradually released into the environment from plastic debris. Among these, phthalate acid esters (PAEs) are the most prevalent. PAEs can be found in the atmosphere, aquatic ecosystems, terrestrial regions, soil, and within animal and human bodies. They are released from industrial activities and have a significant impact on the natural environment. This study reviews research on PAEs from various regions worldwide, with about 47.8 % of the studies published between 2020 and 2024. The highest concentrations of PAEs were detected in fish samples from rivers in Taiwan, ranging from 13.6 to 70.0 mg/kg dry weight. PAEs tend to accumulate more in benthic organisms and sediments. DEHP was the most prevalent PAE in fish samples, showing the highest levels and detection frequency among the analyzed PAEs. Some studies found a strong correlation (r2 = 0.85) between PAEs concentrations in fish and water. The findings of this study can help in assessing the fate and behavior of PAEs in the environment and provide a basis for developing future management strategies to control phthalate acid esters pollution in aquatic environments.
Collapse
Affiliation(s)
- Madineh Khoshmanesh
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| | - Sima Farjadfard
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran
| | - Mehdi Ahmadi
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran; Department of Environmental Health Engineering, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran.
| | - Mehdi Fatahi
- Department of Environmental Health Engineering, Faculty of Health, Bushehr University of Medical Sciences, Bushehr 7518759577, Iran
| | - Ali Mohammad Sanati
- Department of Environmental Science, Persian Gulf Research Institute, Persian Gulf University, Bushehr, Iran
| |
Collapse
|
10
|
Ehrampush MH, Abouee E, Arfaeinia H, soltanian Z, Ghorbanian M, Ghalehaskari S. Occurrence, distribution and risk assessment of phthalate esters in dust deposited in the outdoor environment of Yazd industrial park using Monte Carlo simulation. Heliyon 2024; 10:e37500. [PMID: 39309782 PMCID: PMC11416271 DOI: 10.1016/j.heliyon.2024.e37500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/03/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
In this study, the distribution of eight phthalate esters (PAEs), namely (dimethyl phthalate (DMP), diethyl phthalate (DEP), di-n-butyl phthalate (DBP), butyl benzyl phthalate (BBP), bis (2-ethylhexyl) phthalate (DEHP), and di-n-octyl phthalate (DnOP)) were examined across fifteen sampling stations in Yazd industrial Park. All the PAEs in dust deposited in the outdoor environment were analyzed using a Gas-mass chromatography (GC-MS/MS) device. Both probabilistic and deterministic approaches were utilized to assess the non-carcinogenic and carcinogenic health risks for adult occupational population groups. These risks were associated with three exposure pathways: inhalation, ingestion, and dermal exposure to six phthalates in the dust samples. The findings revealed, among the fifteen sampling stations, highest and lowest concentrations of the PAEs in dust deposited in the outdoor environment were observed in S8 and S6, with BEHP (326.21 ± 4.35) μg/g and DMP (0.00 ± 0.02) μg/g, respectively. The total hazard index (HI) values were below one in all samples, indicating that the combined non-carcinogenic health risk from exposure to phthalates via inhalation, ingestion, and dermal pathways is within acceptable levels in each studied area. The total cancer risk (CR) values for BBP across all exposure routes were consistently low, with magnitudes ranging from 10- x 10-15to 10 x 10-11. The order of cancer risk from phthalate exposure in outdoor environments was ingestion > dermal > inhalation. The sensitivity analysis (SA) results indicated that the influential parameters in the carcinogenic risk in adult occupational population groups were concentration for inhalation and dermal pathways, as well as ingestion rate for the ingestion pathway. The result of this study provides new insight in to PAEs pollution and risk assessments related to the dust deposited in the outdoor environment of industrial Park. Furthermore, this finding is beneficial to the controlling the exposure and promoting steps to reduce PAEs contamination and manage health in the industrial area.
Collapse
Affiliation(s)
- Mohammad Hasan Ehrampush
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Ehsan Abouee
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Hossein Arfaeinia
- Department of Environmental Health Engineering, School of Public Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Zahra soltanian
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdi Ghorbanian
- Department of Environmental Health Engineering, North Khorasan University of Medical Sciences, Iran
- Vector-borne diseases research center, North Khorasan University of Medical Sciences, Bojnoord, Iran
| | - Sahar Ghalehaskari
- Environmental Science and Technology Research Center, Department of Environmental Health Engineering, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| |
Collapse
|
11
|
Wang X, Hu Z, Jin Y, Yang M, Zhang Z, Zhou X, Qiu S, Zou X. Exploring the relationships between exposure levels of bisphenols and phthalates and prostate cancer occurrence. JOURNAL OF HAZARDOUS MATERIALS 2024; 474:134736. [PMID: 38815394 DOI: 10.1016/j.jhazmat.2024.134736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 05/10/2024] [Accepted: 05/24/2024] [Indexed: 06/01/2024]
Abstract
We established an ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) method for simultaneously analyzing the metabolites of bisphenols and phthalates in urine to identify the associations between these exposure levels and prostate cancer (PCa) based on a case-control study. After purifying urine samples with SPE, 18 metabolites were separated on a C18 column, and MS detection was performed. The UPLC-MS/MS method has been proven effective at evaluating bisphenol and phthalate exposure (0.020-0.20 μg/L of the limits of detection, 71.8 %∼119.4 % of recoveries, 0.4 %∼8.2 % of precision). Logistic regression explored the association between exposure level and PCa in 187 PCa cases and 151 controls. The detection rates of bisphenol A (BPA) and most phthalate metabolites were 100 % ranging from 0.06-46.74 and 0.12-899.92 μg/g creatinine, respectively, while the detection rates of other bisphenols and mono-benzyl phthalate (MBzP) are low, ranging from 0 % to 21.85 %. Correlation analysis of the metabolite levels indicated that the exposure sources of BPA, di-ethyl phthalate (DEP), and di(2-ethylhexyl) phthalate (DEHP) were different, and that the exposure sources of di-n-butyl phthalate (DnBP) and di-isobutyl phthalate (DiBP) may differ between two groups. Logistic regression analysis revealed that BPA (OR<0.45 vs ≥1.43 =10.02) and DEHP exposure (OR<21.75 vs ≥45.42 =48.26) increased the risk of PCa.
Collapse
Affiliation(s)
- Xuan Wang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Zifan Hu
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Yuming Jin
- Department of Urology, Institute of Urology and Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Mi Yang
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China
| | - Zilong Zhang
- Department of Urology, Institute of Urology and Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Xianghong Zhou
- Department of Urology, Institute of Urology and Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shi Qiu
- Department of Urology, Institute of Urology and Center of Biomedical Big Data, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China; Institute of Oncology Research (IOR), Oncology Institute of Southern Switzerland (IOSI), Bellinzona 6500, Switzerland.
| | - Xiaoli Zou
- Department of Public Health Laboratory Science, West China School of Public Health and West China Fourth Hospital, West China-PUMC C.C. Chen Institute of Health, Sichuan University, Chengdu 610041, China; Food Safety Monitoring and Risk Assessment Key Laboratory of Sichuan Province, Chengdu, Sichuan 610041, China.
| |
Collapse
|
12
|
Pan K, Xu J, Xu Y, Wang C, Yu J. The association between endocrine disrupting chemicals and nonalcoholic fatty liver disease: A systematic review and meta-analysis. Pharmacol Res 2024; 205:107251. [PMID: 38862070 DOI: 10.1016/j.phrs.2024.107251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 06/06/2024] [Accepted: 06/06/2024] [Indexed: 06/13/2024]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the leading causes of chronic liver disease worldwide. Epidemiological studies have reported that exposure of the population to environmental endocrine-disrupting chemicals (EDCs) is associated with NAFLD. However, EDCs are of different types, and there are inconsistencies in the relevant evidence and descriptions, which have not been systematically summarized so far. Therefore, this study aimed to determine the association between population exposure to EDCs and NAFLD. Three databases, including PubMed, Web of science, and Embase were searched, and 27 articles were included in this study. Methodological quality, heterogeneity, and publication bias of the included studies were assessed using the Newcastle-Ottawa scale, I2 statistics, Begg's test, and Egger's test. The estimated effect sizes of the included studies were pooled and evaluated using the random-effects model (I2 > 50 %) and the fixed-effects model ( I2 < 50 %). The pooled-estimate effect sizes showed that population exposure to Phthalates (PAEs) (OR = 1.18, 95 % CI:1.03-1.34), cadmium (Cd) (OR = 1.37, 95 % CI:1.09-1.72), and bisphenol A (OR = 1.43, 95 % CI:1.24-1.65) were positively correlated with the risk of NAFLD. Exposure to mercury (OR =1.46, 95 % CI:1.17-1.84) and Cd increased the risk of "elevated alanine aminotransferase". On the contrary, no significant association was identified between perfluoroalkyl substances (OR =0.99, 95 % CI:0.93-1.06) and NAFLD. However, female exposure to perfluorooctanoic acid (OR =1.82, 95 % CI:1.01-3.26) led to a higher risk of NAFLD than male exposure. In conclusion, this study revealed that EDCs were risk factors for NAFLD. Nonetheless, the sensitivity analysis results of some of the meta-analyses were not stable and demonstrated high heterogeneity. The evidence for these associations is limited, and more large-scale population-based studies are required to confirm these findings.
Collapse
Affiliation(s)
- Kai Pan
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Yuzhu Xu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Chengxing Wang
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China
| | - Jie Yu
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou 563000, PR China.
| |
Collapse
|
13
|
Tao HY, Shi J, Zhang J, Ge H, Liu X, Li XY. Phthalic acid esters: Are they a big concern for rivers flowing into reservoir with ecological facilities? WATER RESEARCH 2024; 258:121785. [PMID: 38761595 DOI: 10.1016/j.watres.2024.121785] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/19/2024] [Accepted: 05/13/2024] [Indexed: 05/20/2024]
Abstract
The city-river-reservoir system is an important system for safeguarding drinking water. Phthalic acid esters (PAEs) are emerging contaminants in drinking water sources that are gaining attention, and they could pose risks to human health and aquatic organisms. In this study, field studies that lasted four years were conducted to analyze the concentrations, spatial-temporal distribution, and removal effects of six PAEs. The total concentrations of the Σ6PAEs in the water and sediment samples were 0.2-7.4 μg L-1 (mean: 1.3 μg L-1) and 9.2-9594.1 ng g-1 (mean: 847.5 ng g-1), respectively. Di-n-butyl phthalate (DBP) and, bis(2-ethylhexyl) phthalate (DEHP) were the predominant congeners, accounting for 57.2 % in the water samples and 94.1 % in the sediment samples. The urban area contributed 72 % of the PAEs in the system. A significant removal effect of PAEs was observed in the wetland, with a removal rate of 40.2 %. The partitioning of PAEs between the water and sediment was attributed to the removal of dimethyl phthalate and diethyl phthalate that occurred during the water phase, while the removal of DBP and DEHP primarily occurred during the sediment phase. The ecological risk calculation based on the sensitivity distribution model indicated that DBP (HQwater = 0.19, HQsediment = 0.46) and DEHP (HQwater = 0.20, HQsediment = 0.13) possessed moderate risks according to some water and sediment samples. The ecological projects were verified to be effective engineering strategies to reduce ecological risk in the drinking water source.
Collapse
Affiliation(s)
- Huan-Yu Tao
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Jianghong Shi
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China.
| | - Jiawei Zhang
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China; Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China; Institute of Strategic Planning, Chinese Academy of Environmental Planning, Ministry of Ecology and Environment, Beijing 100041, China
| | - Hui Ge
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen 518055, China
| | - Xiaowei Liu
- School of Biology, Food and Environment, Hefei University, Hefei 230601, China
| | - Xiao-Yan Li
- Environmental Engineering Research Centre, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Liang J, Ji X, Feng X, Su P, Xu W, Zhang Q, Ren Z, Li Y, Zhu Q, Qu G, Liu R. Phthalate acid esters: A review of aquatic environmental occurrence and their interactions with plants. JOURNAL OF HAZARDOUS MATERIALS 2024; 470:134187. [PMID: 38574659 DOI: 10.1016/j.jhazmat.2024.134187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/06/2024]
Abstract
The increasing use of phthalate acid esters (PAEs) in various applications has inevitably led to their widespread presence in the aquatic environment. This presents a considerable threat to plants. However, the interactions between PAEs and plants in the aquatic environment have not yet been comprehensively reviewed. In this review, the properties, occurrence, uptake, transformation, and toxic effects of PAEs on plants in the aquatic environment are summarized. PAEs have been prevalently detected in the aquatic environment, including surface water, groundwater, seawater, and sediment, with concentrations ranging from the ng/L or ng/kg to the mg/L or mg/kg range. PAEs in the aquatic environment can be uptake, translocated, and metabolized by plants. Exposure to PAEs induces multiple adverse effects in aquatic plants, including growth perturbation, structural damage, disruption of photosynthesis, oxidative damage, and potential genotoxicity. High-throughput omics techniques further reveal the underlying toxicity molecular mechanisms of how PAEs disrupt plants on the transcription, protein, and metabolism levels. Finally, this review proposes that future studies should evaluate the interactions between plants and PAEs with a focus on long-term exposure to environmental PAE concentrations, the effects of PAE alternatives, and human health risks via the intake of plant-based foods.
Collapse
Affiliation(s)
- Jiefeng Liang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaomeng Ji
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaoxia Feng
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Pinjie Su
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Wenzhuo Xu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Qingzhe Zhang
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China
| | - Zhihua Ren
- College of Environment and Resource, Research Center of Environment and Health, Shanxi University, Taiyuan 030006, China
| | - Yiling Li
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao 266071, China
| | - Qingqing Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangbo Qu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Runzeng Liu
- Shandong Key Laboratory of Environmental Processes and Health, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China.
| |
Collapse
|
15
|
Hou T, Fan X, Zhang Q, Zhang H, Zhang D, Tao L, Wang Z. Dibutyl phthalate exposure induced mitochondria-dependent ferroptosis by enhancing VDAC2 in zebrafish ZF4 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 348:123846. [PMID: 38548160 DOI: 10.1016/j.envpol.2024.123846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 04/02/2024]
Abstract
Dibutyl phthalate (DBP) contamination has raised global concern for decades, while its health risk with toxic mechanisms requires further elaboration. This study used zebrafish ZF4 cells to investigate the toxicity of ferroptosis with underlying mechanisms in response to DBP exposure. Results showed that DBP induced ferroptosis, characterized by accumulation of ferrous iron, lipid peroxidation, and decrease of glutathione peroxidase 4 levels in a time-dependent manner, subsequently reduced cell viability. Transcriptome analysis revealed that voltage-dependent anion-selective channel (VDAC) in mitochondrial outer membrane was upregulated in ferroptosis signaling pathways. Protecting mitochondria with a VDAC2 inhibitor or siRNAs attenuated the accumulation of mitochondrial superoxide and lipid peroxides, the opening of mitochondrial permeability transition pore (mPTP), and the overload of iron levels, suggesting VDAC2 oligomerization mediated the influx of iron into mitochondria that is predominant and responsible for mitochondria-dependent ferroptosis under DBP exposure. Furthermore, the pivotal role of activating transcription factor 4 (ATF4) was identified in the transcriptional regulation of vdac2 by ChIP assay. And the intervention of atf4b inhibited DBP-induced VDAC2 upregulation and oligomerization. Taken together, this study reveals that ATF4-VDAC2 signaling pathway is involved in the DBP-induced ferroptosis in zebrafish ZF4 cells, contributing to the in-depth understanding of biotoxicity and the ecological risk assessment of phthalates.
Collapse
Affiliation(s)
- Tingting Hou
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Xiaoteng Fan
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qianqing Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Haowei Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dingfu Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lu Tao
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zaizhao Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
16
|
Lorre E, Bianchi F, Mėžinė J, Politi T, Vybernaite-Lubiene I, Zilius M. The seasonal distribution of plasticizers in estuarine system: Controlling factors, storage and impact on the ecosystem. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123539. [PMID: 38341066 DOI: 10.1016/j.envpol.2024.123539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/19/2024] [Accepted: 02/08/2024] [Indexed: 02/12/2024]
Abstract
Plasticizers such as phthalate esters (PAEs) are commonly used in various consumer and industrial products. This widespread use raises valid concerns regarding their ubiquity in the environment and potential negative impacts. The present study investigates the distribution of eight common plasticizers in the largest European lagoon (Curonian Lagoon) located in the SE Baltic Sea. The concentration levels of plasticizers in the water column, containing both the dissolved and particulate-bound phases, and in sediments were evaluated to reveal seasonal patterns in distribution and potential effects on the lagoon ecosystem. A total of 24 water samples and 48 sediment samples were collected across all four seasons from the two dominant sedimentary areas within the lagoon. The average concentration of total PAEs in the water column ranged from 1 to 21 μg L-1, whereas sediment concentration varied from 5.0 to 250 ng g-1. The distribution of plasticizers was influenced by the patterns in hydrodynamics and water circulation within the lagoon. The confined south-central area contained a higher amount of PAEs in sediments, accounting for most of the lagoon's plasticizer accumulation. More than 7 tons of plasticizers are stored in the 5 upper centimetres of sediment, with over 3 tons persisting for more than five years. Di(2-ethylhexyl) phthalate (DEHP), Diisobutyl phthalate (DiBP), and Dibutyl phthalate (DnBP) were the most abundant PAE congeners, with DEHP posing the highest risk quotient to algae, based on water column concentration. Several other congeners demonstrated medium to high-risk levels for organisms living in the lagoon.
Collapse
Affiliation(s)
- Elise Lorre
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania.
| | - Federica Bianchi
- University of Parma, Department of Chemistry, Life Science and Environmental Sustainability, Parco Area delle Scienze 17/A, 43124, Parma, Italy; University of Parma, Interdepartmental Center for Energy and Environment (CIDEA), Parco Area delle Scienze, 43124, Parma, Italy
| | - Jovita Mėžinė
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania
| | - Tobia Politi
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania
| | | | - Mindaugas Zilius
- Marine Research Institute, Klaipeda University, 92295, Klaipeda, Lithuania
| |
Collapse
|
17
|
Xu Y, Sun Y, Lei M, Hou J. Phthalates contamination in sediments: A review of sources, influencing factors, benthic toxicity, and removal strategies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 344:123389. [PMID: 38246215 DOI: 10.1016/j.envpol.2024.123389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/18/2023] [Accepted: 01/16/2024] [Indexed: 01/23/2024]
Abstract
Sediments provide habitat and food for benthos, and phthalates (PAEs) have been detected in numerous river and marine sediments as a widely used plastic additive. PAEs in sediments is not only toxic to benthos, but also poses a threat to pelagic fish and human health through the food chain, so it is essential to comprehensively assess the contamination of sediments with PAEs. This paper presents a critical evaluation of PAEs in sediments, which is embodied in the analysis of the sources of PAEs in sediments from multiple perspectives. Biological production is indispensable, while artificial synthesis is the most dominant, thus the focus was on analyzing the industrial and commercial sources of synthetic PAEs. In addition, since the content of PAEs in sediments varies, some factors affecting the content of PAEs in sediments are summarized, such as the properties of PAEs, the properties of plastics, and environmental factors (sediments properties and hydrodynamic conditions). As endocrine disruptors, PAEs can produce toxicity to its direct contacts. Therefore, the effects of PAEs on benthos immunity, endocrinology, reproduction, development, and metabolism were comprehensively analyzed. In addition, we found that reciprocal inhibition and activation of the systems lead to genotoxicity and apoptosis. Finally, the paper discusses the feasible measures to control PAEs in wastewater and leachate from the perspective of source control, and summarizes the in-situ treatment measures for PAEs contamination in sediments. This paper provides a comprehensive review of PAEs contamination in sediments, toxic effects and removal strategies, and provides an important reference for reducing the contamination and toxicity of PAEs to benthos.
Collapse
Affiliation(s)
- Yanli Xu
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Yuqiong Sun
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Ming Lei
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| | - Jing Hou
- MOE Key Laboratory of Resources and Environmental Systems Optimization, College of Environmental Science and Engineering, North China Electric Power University, Beijing, 102206, China.
| |
Collapse
|
18
|
Billings A, Jones KC, Pereira MG, Spurgeon DJ. Emerging and legacy plasticisers in coastal and estuarine environments: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168462. [PMID: 37963532 DOI: 10.1016/j.scitotenv.2023.168462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/16/2023]
Abstract
The occurrence of plastic waste in the environment is an emerging and ongoing concern. In addition to the physical impacts of macroplastics and microplastics on organisms, the chemical effects of plastic additives such as plasticisers have also received increasing attention. Research concerning plasticiser pollution in estuaries and coastal environments has been a particular focus, as these environments are the primary entry point for anthropogenic contaminants into the wider marine environment. Additionally, the conditions in estuarine environments favour the sedimentation of suspended particulate matter, with which plasticisers are strongly associated. Hence, estuary systems may be where some of the highest concentrations of these pollutants are seen in freshwater and marine environments. Recent studies have confirmed emerging plasticisers and phthalates as pollutants in estuaries, with the relative abundance of these compounds controlled primarily by patterns of use, source intensity, and fate. Plasticiser profiles are typically dominated by mid-high molecular weight compounds such as DnBP, DiBP, and DEHP. Plasticisers may be taken up by estuarine and marine organisms, and some phthalates can cause negative impacts in marine organisms, although further research is required to assess the impacts of emerging plasticisers. This review provides an overview of the processes controlling the release and partitioning of emerging and legacy plasticisers in aqueous environments, in addition to the sources of plasticisers in estuarine and coastal environments. This is followed by a quantitative analysis and discussion of literature concerning the (co-)occurrence and concentrations of emerging plasticisers and phthalates in these environments. We end this review with a discussion the fate (degradation and uptake by biota) of these compounds, in addition to identification of knowledge gaps and recommendations for future research.
Collapse
Affiliation(s)
- Alex Billings
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK; Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK.
| | - Kevin C Jones
- Lancaster Environment Centre, Lancaster University, Lancaster, LA1 4YQ, UK
| | - M Glória Pereira
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Library Avenue, Bailrigg, Lancaster, LA1 4AP, UK
| | - David J Spurgeon
- UK Centre for Ecology & Hydrology, Maclean Building, Benson Lane, Crowmarsh Gifford, Wallingford, Oxfordshire, OX10 8BB, UK
| |
Collapse
|
19
|
Vasseghian Y, Alimohamadi M, Dragoi EN, Sonne C. A global meta-analysis of phthalate esters in drinking water sources and associated health risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166846. [PMID: 37673273 DOI: 10.1016/j.scitotenv.2023.166846] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/15/2023] [Accepted: 09/03/2023] [Indexed: 09/08/2023]
Abstract
Phthalate esters (PAEs) are known as esters of phthalic acid, which are commonly used as plasticizers in the plastic industry. Due to the lack of chemical bonding with the polymer matrix, these compounds are easily separated from plastic products and enter the environment. To investigate the growth of concentration of PAEs like DBP (Dibutyl phthalate), DEP (Diethyl phthalate), DMP (Dimethyl phthalate), DIBP (Diisobutyl phthalate), and TPMBP (tris(2-methylbutyl) phosphate) in different water sources, a study from January 01, 1976, to April 30, 2021, was implemented via a global systematic review plus meta-analysis in which, 109 articles comprising 4061 samples, 4 water types, and 27 countries were included. Between various types of water sources, river water and lake water were the most contaminated resources with PAEs. Among all studies of PAEs, DBP and DEP with the values >15,573 mg L-1 have the highest average concentration and TPMBP with the value 0.002885 mg L-1 has the lowest average concentration in water sources. The most contaminated water sources with PAEs were in Nigeria and the least contaminated was in China. Besides, Monte-Carlo simulation indicated that for DMP and DEP minimum values that are lower than the acceptable limit are generated. However, most of the population (>75 %) is at risk for both adults and child cases. For DIBP and DBP the situation is much worse, the simulations not providing at least one case where the R index is lower than the acceptable limit of 1E-06.
Collapse
Affiliation(s)
- Yasser Vasseghian
- Department of Chemistry, Soongsil University, Seoul, 06978, South Korea; School of Engineering, Lebanese American University, Byblos, Lebanon; Department of Chemical Engineering and Material Science, Yuan Ze University, Taiwan
| | - Monireh Alimohamadi
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Elena-Niculina Dragoi
- Faculty of Chemical Engineering and Environmental Protection "Cristofor Simionescu", "Gheorghe Asachi" Technical University, Bld Mangeron no 73, Iasi 700050, Romania
| | - Christian Sonne
- Aarhus University, Department of Ecoscience, Frederiksborgvej 399, PO Box 358, DK-4000 Roskilde, Denmark.
| |
Collapse
|
20
|
Chen Y, Wang Y, Tan Y, Jiang C, Li T, Yang Y, Zhang Z. Phthalate esters in the Largest River of Asia: An exploration as indicators of microplastics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166058. [PMID: 37553051 DOI: 10.1016/j.scitotenv.2023.166058] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 07/15/2023] [Accepted: 08/02/2023] [Indexed: 08/10/2023]
Abstract
Phthalate esters (PAEs) are the most ubiquitous and highly used plasticizers in plastic products globally, yet studies on the spatial variation, risks, and their correlation with microplastics (MPs) are limited, particularly throughout the Yangtze River (the largest river in China/Asia). Therefore, this study investigated for the first time the PAEs pollution characteristics throughout the Yangtze River sediments, studied the environmental factors linked to the distribution of PAEs, and explored their potential as chemical indicators for interpreting pollution patterns of MPs. Totally 14 out of 16 PAEs were detected in sediments, with total concentrations ranging from 84.67 ng/g to 274.0 ng/g (mean: 163.5 ng/g), dominated by Bis(2-ethylhexyl) phthalate (DEHP), Di-n-butyl phthalate (DBP), and Di-isobutyl phthalate (DIBP), with contributions of 38.9 %, 31.8 %, and 20.8 %, respectively. Spatial distribution of PAEs did not indicate significant differences, which may be related to anthropogenic activities (i.e., emission intensity), runoff, and sediment physicochemical properties (i.e., TOC and TN), with TOC and TN being potential predictors of PAEs. The quantitative relationships (p < 0.001) between DEHP/∑16PAEs ratio and MPs (both individual and total MPs) were found in sediments, which suggested that DEHP could be potentially used as an indicator for MPs. DEHP, DIBP, and DBP posed high risks, accounting for 100 %, 68.4 %, and 10.5 % of the monitoring sites, respectively. Further work is necessary to better understand the relationship between DEHP/∑16PAEs and MPs in the environment and to take corresponding management and control measures for these pollutants.
Collapse
Affiliation(s)
- Yulin Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yile Wang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yang Tan
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Chunxia Jiang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China
| | - Tianyi Li
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China
| | - Yuyi Yang
- Key Laboratory of Aquatic Botany and Watershed Ecology, Wuhan Botanical Garden, Chinese Academy of Sciences, Wuhan 430074, China.
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, Wuhan University of Technology, Wuhan 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen AB15 8QH, UK.
| |
Collapse
|
21
|
Cox A, Bomstein Z, Jayaraman A, Allred C. The intestinal microbiota as mediators between dietary contaminants and host health. Exp Biol Med (Maywood) 2023; 248:2131-2150. [PMID: 37997859 PMCID: PMC10800128 DOI: 10.1177/15353702231208486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2023] Open
Abstract
The gut microbiota sit at an important interface between the host and the environment, and are exposed to a multitude of nutritive and non-nutritive substances. These microbiota are critical to maintaining host health, but their supportive roles may be compromised in response to endogenous compounds. Numerous non-nutritive substances are introduced through contaminated foods, with three common groups of contaminants being bisphenols, phthalates, and mycotoxins. The former contaminants are commonly introduced through food and/or beverages packaged in plastic, while mycotoxins contaminate various crops used to feed livestock and humans alike. Each group of contaminants have been shown to shift microbial communities following exposure; however, specific patterns in microbial responses have yet to be identified, and little is known about the capacity of the microbiota to metabolize these contaminants. This review characterizes the state of existing research related to gut microbial responses to and biotransformation of bisphenols, phthalates, and mycotoxins. Collectively, we highlight the need to identify consistent, contaminant-specific responses in microbial shifts, whether these community alterations are a result of contaminant effects on the host or microbiota directly, and to identify the extent of contaminant biotransformation by microbiota, including if these transformations occur in physiologically relevant contexts.
Collapse
Affiliation(s)
- Amon Cox
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Zach Bomstein
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| | - Arul Jayaraman
- Artie McFerrin Department of Chemical Engineering, Texas A&M University, College Station, TX 77843, USA
| | - Clinton Allred
- Department of Nutrition, University of North Carolina Greensboro, Greensboro, NC 27412, USA
| |
Collapse
|
22
|
Lu M, Jones S, McKinney M, Kandow A, Donahoe R, Cobb Faulk B, Chen S, Lu Y. Assessment of phthalic acid esters plasticizers in sediments of coastal Alabama, USA: Occurrence, source, and ecological risk. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 897:165345. [PMID: 37414190 DOI: 10.1016/j.scitotenv.2023.165345] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/08/2023]
Abstract
Considering the ubiquitous occurrences and ecotoxicity of phthalates (PAEs), it is essential to understand their sources, distribution, and associated ecological risks of PAEs in sediments to assess the environmental health of estuaries and support effective management practices. This study provides the first comprehensive dataset on the occurrence, spatial variation, inventory, and potential ecological risk assessment of PAEs in surface sediments of commercially and ecologically significant estuaries in the southeastern United States, Mobile Bay and adjoining eastern Mississippi Sound. Fifteen PAEs were widely detected in the sediments of the study region, with total concentrations varying between 0.02 and 3.37 μg/g. The dominance of low-molecular-weight (LMW) PAEs (DEP, DBP and DiBP) relative to high-molecular-weight (HMW) PAEs (DEHP, DOP, DNP) indicates that residential activities have stronger impacts than industrial activities on PAE distributions. The total PAE concentrations displayed an overall decreasing trend with increasing bottom water salinity, with the maximum concentrations occurring near river mouths. These observations suggest that river inputs were an important pathway by which PAEs were transported to the estuary. Linear regression models identified sediment adsorption (measured by total organic carbon and median grain size) and riverine inputs (measured by bottom water salinity) as significant predictors for the concentrations of LMW and HMW PAEs. Estimated 5-year total inventories of sedimentary PAEs in Mobile Bay and the eastern Mississippi Sound were 13.82 tons and 1.16 tons, respectively. Risk assessment calculations suggest that LMW PAEs posed a medium-to-high risk to sensitive aquatic organisms, and DEHP posed a low or negligible risk to the aquatic organisms. The results of this study provide important information needed for establishing and implementing effective practices for monitoring and regulating plasticizer pollutants in estuaries.
Collapse
Affiliation(s)
- Man Lu
- Molecular Eco-Geochemistry (MEG) Laboratory, Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA; College of Geosciences, China University of Petroleum (Beijing), Beijing 102249, China.
| | - Stephen Jones
- Geological Survey of Alabama, Tuscaloosa, AL 35486, USA
| | - Mac McKinney
- Geological Survey of Alabama, Tuscaloosa, AL 35486, USA
| | - Alyssa Kandow
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Rona Donahoe
- Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Bethany Cobb Faulk
- Molecular Eco-Geochemistry (MEG) Laboratory, Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA
| | - Shuo Chen
- Odum School of Ecology, University of Georgia, Athens, GA, 30602, USA
| | - YueHan Lu
- Molecular Eco-Geochemistry (MEG) Laboratory, Department of Geological Sciences, University of Alabama, Tuscaloosa, AL 35487, USA.
| |
Collapse
|
23
|
Pérez PA, Toledo J, Vitellini F, Cuello VN, Cantarelli V, Ponzio M, Mukdsi JH, Gutiérrez S. Environmentally relevant DEHP exposure during gestational and lactational period inhibits filamin a testicular expression. J Mol Histol 2023; 54:509-520. [PMID: 37572267 DOI: 10.1007/s10735-023-10144-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
Toxicological studies have revealed that DEHP exposure during pregnancy may induce developmental disorders, especially in male offspring, leading to morphological and functional alterations in the reproductive system by mechanisms that should be investigated. Thus, the aim of this work was to analyze the testicular toxicity induced by an environmentally relevant DEHP dose during development and its impact on FLNA, a protein that participates in the blood-testis barrier assembly. We used male Wistar rats exposed to DEHP during pregnancy and lactation. The results showed that DEHP exposure during development and lactation increased body weight, decreased gonadal weight and shortened anogenital distance. This phthalate induced morphological changes in the testis, suggestive of hypospermatogenesis. DEHP exposure decreased the number of FLNA positive cells and the expression of FLNA and claudin-1 in prepubertal testes. Furthermore, DEHP inhibited FLNA and claudin-1 protein expression in adult male rats. These results indicated that exposure to DEHP during gestation and lactation perturbed testis development and suggested that FLNA is a target protein of DEHP, possibly contributing to the phthalate-induced damage on BTB.
Collapse
Affiliation(s)
- Pablo A Pérez
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jonathan Toledo
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Facundo Vitellini
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Victoria Navall Cuello
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Verónica Cantarelli
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
- Instituto de Fisiología Humana, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Marina Ponzio
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
- Instituto de Fisiología Humana, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Jorge H Mukdsi
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - Silvina Gutiérrez
- Instituto de Investigaciones en Ciencias de la Salud (INICSA), Consejo Nacional de Investigaciones Científicas y Técnicas, Córdoba, Argentina.
- Centro de Microscopía Electrónica, Facultad de Ciencias Médicas, Universidad Nacional de Córdoba, Córdoba, Argentina.
| |
Collapse
|
24
|
Mi L, Xie Z, Xu W, Waniek JJ, Pohlmann T, Mi W. Air-Sea Exchange and Atmospheric Deposition of Phthalate Esters in the South China Sea. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:11195-11205. [PMID: 37459505 PMCID: PMC10399291 DOI: 10.1021/acs.est.2c09426] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/02/2023]
Abstract
Phthalate esters (PAEs) have been investigated in paired air and seawater samples collected onboard the research vessel SONNE in the South China Sea in the summer of 2019. The concentrations of ∑7PAEs ranged from 2.84 to 24.3 ng/m3 with a mean of 9.67 ± 5.86 ng/m3 in air and from 0.96 to 8.35 ng/L with a mean of 3.05 ng/L in seawater. Net air-to-seawater deposition dominated air-sea exchange fluxes of DiBP, DnBP, DMP, and DEP, while strong water-to-air volatilization was estimated for bis(2-ethylhexyl) phthalate (DEHP). The estimated net atmospheric depositions were 3740 t/y for the sum of DMP, DEP, DiBP, and DnBP, but DEHP volatilized from seawater to air with an average of 900 t/y. The seasonally changing monsoon circulation, currents, and cyclones occurring in the Pacific can significantly influence the concentration of PAEs, and alter the direction and magnitude of air-sea exchange and particle deposition fluxes. Consequently, the dynamic air-sea exchange process may drive the transport of PAEs from marginal seas and estuaries toward remote marine environments, which can play an important role in the environmental transport and cycling of PAEs in the global ocean.
Collapse
Affiliation(s)
- Lijie Mi
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
- Institute of Oceanography, University of Hamburg, Hamburg 20146, Germany
| | - Zhiyong Xie
- Institute of Coastal Environmental Chemistry, Helmholtz-Zentrum Hereon, Geesthacht 21502, Germany
| | - Weihai Xu
- Key Laboratory of Ocean and Marginal Sea Geology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Joanna J Waniek
- Department of Marine Chemistry, Leibniz Institute for Baltic Sea Research Warnemünde, Rostock 18119, Germany
| | - Thomas Pohlmann
- Institute of Oceanography, University of Hamburg, Hamburg 20146, Germany
| | - Wenying Mi
- MINJIE Institute of Environmental Science and Health Research, Geesthacht 21502, Germany
| |
Collapse
|
25
|
Liu Y, Tang Y, He Y, Liu H, Tao S, Liu W. Riverine inputs, spatiotemporal variations, and potential sources of phthalate esters transported into the Bohai Sea from an urban river in northern China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 878:163253. [PMID: 37011678 DOI: 10.1016/j.scitotenv.2023.163253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/29/2023] [Accepted: 03/30/2023] [Indexed: 05/13/2023]
Abstract
The effects of anthropogenic activities on pollutant transport and inputs to the sea remain unclear. This study aimed to evaluate the impacts of sewage discharge and dam interception on riverine inputs, spatiotemporal variations, and potential sources of phthalate esters (PAEs) throughout the Haihe River, one of the largest rivers in northern China. Based on seasonal observations, the yearly inputs of the total concentrations of 24 PAE species (Σ24PAEs) from the Haihe River to the adjacent Bohai Sea were in the range of 5.28-19.52 tons, a considerable amount compared with those of other large rivers worldwide. The value of Σ24PAEs in the water column ranged from 1.17 to 15.46 μg/L and showed the following overall seasonal pattern: normal season > wet season > dry season, with dibutyl phthalate (DBP) (31.0 ± 11.9 %), di (2-ethylhexyl) phthalate (DEHP) (23.4 ± 14.1 %), and diisobutyl phthalate (DIBP) (17.2 ± 5.4 %) as the dominant components. Σ24PAEs were higher in the surface layer, slightly lower in the intermediate layer, and higher in the bottom layer. Σ24PAEs increased from the suburban section to the urban and industrial sections, which may indicate the effects of runoff, biodegradation, regional urbanization, and industrialization levels. The Erdaozha Dam intercepted 0.29-1.27 tons of Σ24PAEs inputs into the sea, but induced a substantial quantity accumulated behind the dam. The dominant sources of PAEs were the basic residential necessities (18.2-25.5 %) and industrial production (29.1-53.0 %). This study provides insights into the direct effects of sewage discharge and river dams on the inputs and variations in the PAEs entering the sea, which can be leveraged to manage and control PAEs in megacities.
Collapse
Affiliation(s)
- Yang Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yi Tang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Science, Beijing 100012, China
| | - Yong He
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Huijuan Liu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shu Tao
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China
| | - Wenxin Liu
- Key Laboratory for Earth Surface and Processes, College of Urban and Environmental Sciences, Peking University, Beijing 100871, China.
| |
Collapse
|
26
|
Periyasamy AP. Microfiber Emissions from Functionalized Textiles: Potential Threat for Human Health and Environmental Risks. TOXICS 2023; 11:toxics11050406. [PMID: 37235219 DOI: 10.3390/toxics11050406] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 04/21/2023] [Accepted: 04/23/2023] [Indexed: 05/28/2023]
Abstract
The growing worldwide population is directly responsible for the increased production and consumption of textile products. One of the key reasons for the generation of microfibers is the use of textiles and garment materials, which is expected to increase. The textile industry is responsible for the invisible pollution that is created by textile microfibers, which have been detected in marine sediments and organisms. The present review paper demonstrates that the microfibers discharged from functionalized textiles exhibit non-biodegradable characteristics and that a considerable proportion of them possess toxic properties. This is primarily attributed to the impact of textiles' material functionalization on their biodegradability. The potential for these microfibers, which are released from textiles that contain a variety of dyes, toxic chemicals, and nanomaterials, to pose a variety of health risks to both humans and other living organisms is discussed in this paper. In addition, this paper covers a wide variety of preventative and minimizing measures for reduction, which are discussed in terms of several phases ranging from sustainable production through the consumer, end of life, domestic washing, and wastewater treatment phases.
Collapse
Affiliation(s)
- Aravin Prince Periyasamy
- Textile and Nonwoven Materials, VTT Technical Research Centre of Finland Ltd., P.O. Box 1000, FI-02044 Espoo, Finland
| |
Collapse
|
27
|
Sun S, Wang M, Yang X, Xu L, Wu J, Wang Y, Zhou Z. Pollution characteristics and health risk assessment of phthalate esters in agricultural soil of the Yellow River Delta, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:53370-53380. [PMID: 36856996 DOI: 10.1007/s11356-023-26104-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
A total of 100 agricultural soil samples, collected in the Yellow River Delta, China, were analyzed for six U.S. Environmental Protection Agency priority phthalate esters (PAEs), focusing on the characteristics of PAEs contamination and potential health risks. The detection frequencies of ∑6PAEs were 100%, where the concentration ranged from 1.087 to 14.391 mg·kg-1, with a mean value of 4.149 mg·kg-1. The most abundant PAEs were di(2-ethylhexyl) phthalate (DEHP) and di-n-butyl phthalate (DnBP). The areas with higher contents of ∑6PAEs are distributed in the western and central parts of the Yellow River Delta region and around Laizhou Bay. PAEs in the Yellow River Delta agricultural soil were attributed to pollutant emissions from petrochemical industries, plasticizers or additives, fertilizers, and pesticides. The non-carcinogenic risk of human exposure to PAEs in agricultural soils is relatively low, but the non-carcinogenic risk is higher in children than in adults, and children are a sensitive group. Under the dietary route, both DEHP and ∑2PAEs (BBP, and DEHP) pose some degree of carcinogenic risk to both local adults and children. Efforts must be made to enhance the prevention and control of PAEs contamination of agricultural soils in the Yellow River Delta region to reduce the potential risk to humans.
Collapse
Affiliation(s)
- Shu Sun
- College of Resources and Environmental Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Mengchao Wang
- College of Resources and Environmental Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xia Yang
- College of Resources and Environmental Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Liang Xu
- College of Resources and Environmental Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Juan Wu
- College of Resources and Environmental Science, Qingdao Agricultural University, Qingdao, 266109, China
| | - Yajuan Wang
- College of Economics and Management, Ningxia University, Yinchuan, 750021, China
| | - Zhenfeng Zhou
- College of Resources and Environmental Science, Qingdao Agricultural University, Qingdao, 266109, China.
| |
Collapse
|
28
|
Wenchao W, Zhang D, Sophocleous M, Qu Y, Jing W, Chalermwisutkul S, Russel M. Measuring the effects of diethyl phthalate microplastics on marine algae growth using dielectric spectroscopy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 865:161221. [PMID: 36587692 DOI: 10.1016/j.scitotenv.2022.161221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/09/2022] [Accepted: 12/23/2022] [Indexed: 06/17/2023]
Abstract
This paper presents the development of a dielectric spectroscopy-based method using a customized, transmission line probe, fabricated on a printed circuit board (PCB), for monitoring the effect of diethyl phthalate (DEP) microplastics on marine algae growth. Experiments were performed by exposing marine algae (Chlorella pyrenoidosa) to DEP (0-50 mg) for up to 6 days. In order to amplify the electrophysiological effects and improve the sensing, a glutaraldehyde crosslinking agent was used and encapsulated on the surface of the probe. The reflection coefficient (S11) and the complex permittivity (ɛ' & ɛ″) of the Medium Under Test (MUT) were investigated in the frequency range of 30 kHz-800 MHz. Without the presence of DEP, the number of algae (104 cells/mL) and chlorophyll content (mg/L) increased at the rates of 207.73 × 104 cells/mL and 148.1 mg/L per day, respectively. After 6 days of exposing Chlorella pyrenoidosa (C. pyrenoidosa) algae to different DEP concentrations, the growth rate decreased down to -11.92 × 104 cells/mL and -19.19 mg/L (50 mg DEP), respectively. Additionally, the linearity of the relationship kept decreasing as the DEP content increased from R2 = 0.9716 to R2 = 0.1050 and from R2 = 0.9293 to R2 = 0.4961, respectively. Dielectric spectroscopy using the custom, transmission line probe, at 740 MHz, showed linear relationship (-1.22 dB/day) between the reflection coefficient (S11) and hence complex permittivity (ɛ' & ɛ″) without the presence of DEP. However, as the DEP content increased, algae growth was prohibited more intensely, shown both from the number of algae and the chlorophyll content. This trend was reflected on S11 and subsequently on the complex permittivity. This relationship confirms the capability of this method to monitor the growth of marine algae in almost real-time. This dielectric spectroscopy method could be a potential, low-cost tool to examine the impact of microplastic pollutants on marine microorganisms.
Collapse
Affiliation(s)
- Wu Wenchao
- School of Ocean Science and Technology, Key laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, People's Republic of China
| | - Dayong Zhang
- School of Ocean Science and Technology, Key laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, People's Republic of China
| | - Marios Sophocleous
- eBOS Technologies Ltd, Arch. Makariou III and Mesaorias 1, Lakatamia, Nicosia 2090, Cyprus
| | - Yihe Qu
- School of Ocean Science and Technology, Key laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, People's Republic of China
| | - Wang Jing
- School of Ocean Science and Technology, Key laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, People's Republic of China
| | - Suramate Chalermwisutkul
- The Sirindhorn International Thai German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand
| | - Mohammad Russel
- School of Ocean Science and Technology, Key laboratory of Industrial Ecology and Environmental Engineering, Ministry of Education, Dalian University of Technology, Liaoning, Panjin 124221, People's Republic of China.
| |
Collapse
|
29
|
Hou Y, Tu M, Li C, Liu X, Wang J, Wei C, Zheng X, Wu Y. Risk Assessment of Phthalate Esters in Baiyangdian Lake and Typical Rivers in China. TOXICS 2023; 11:180. [PMID: 36851055 PMCID: PMC9962510 DOI: 10.3390/toxics11020180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 02/05/2023] [Accepted: 02/10/2023] [Indexed: 06/18/2023]
Abstract
Phthalate esters (PAEs) are frequently tracked in water environments worldwide. As a typical class of endocrine disruptor chemicals (EDCs), PAEs posed adverse effects on aquatic organisms at low concentration. Thus, they have attracted wide attention in recent years. In the present study, the concentrations of seven typical PAEs from 30 sampling sites in Baiyangdian Lake were measured, and the environmental exposure data of PAEs were gathered in typical rivers in China. Then, based on the aquatic life criteria (ALCs) derived from the reproductive toxicity data of aquatic organisms, two risk assessment methods, including hazard quotient (HQ) and probabilistic ecological risk assessment (PERA), were adopted to evaluate the ecological risks of PAEs in water. The sediment quality criteria (SQCs) of DEHP, DBP, BBP, DIBP and DEP were deduced based on the equilibrium partitioning method. Combined with the gathered environmental exposure data of seven PAEs in sediments from typical rivers in China, the ecological risk assessments of five PAEs in sediment were conducted only by the HQ method. The results of ecological risk assessment showed that in terms of water, DBP and DIBP posed low risk, while the risk of DEHP in Baiyangdian Lake cannot be ignored and should receive attention. In typical rivers in China, BBP and DEP posed no risk, while DIBP and DBP posed potential risk. Meanwhile, DEHP posed a high ecological risk. As far as sediment is concerned, DBP posed a high risk in some typical rivers in China, and the other rivers had medium risk. DEHP posed a high risk only in a few rivers and low to medium risk in others. This study provides an important reference for the protection of aquatic organisms and the risk management of PAEs in China.
Collapse
Affiliation(s)
- Yin Hou
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Mengchen Tu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Cheng Li
- Institute of Green Development, Hebei Provincial Academy of Environmental Sciences, Shijiazhuang 050037, China
| | - Xinyu Liu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Jing Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
- College of Marine Ecology and Environment, Shanghai Ocean University, Shanghai 201306, China
| | - Chao Wei
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Xin Zheng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China
| | - Yihong Wu
- Institute of Green Development, Hebei Provincial Academy of Environmental Sciences, Shijiazhuang 050037, China
| |
Collapse
|
30
|
Min N, Yao J, Li H, Chen Z, Pang W, Zhu J, Kümmel S, Schaefer T, Herrmann H, Richnow HH. Humic Substance Photosensitized Degradation of Phthalate Esters Characterized by 2H and 13C Isotope Fractionation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:1930-1939. [PMID: 36689325 PMCID: PMC9910037 DOI: 10.1021/acs.est.2c06783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 01/06/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The photosensitized transformation of organic chemicals is an important degradation mechanism in natural surface waters, aerosols, and water films on surfaces. Dissolved organic matter including humic-like substances (HS), acting as photosensitizers that participate in electron transfer reactions, can generate a variety of reactive species, such as OH radicals and excited triplet-state HS (3HS*), which promote the degradation of organic compounds. We use phthalate esters, which are important contaminants found in wastewaters, landfills, soils, rivers, lakes, groundwaters, and mine tailings. We use phthalate esters as probes to study the reactivity of HS irradiated with artificial sunlight. Phthalate esters with different side-chain lengths were used as probes for elucidation of reaction mechanisms using 2H and 13C isotope fractionation. Reference experiments with the artificial photosensitizers 4,5,6,7-tetrachloro-2',4',5',7'-tetraiodofluorescein (Rose Bengal), 3-methoxy-acetophenone (3-MAP), and 4-methoxybenzaldehyde (4-MBA) yielded characteristic fractionation factors (-4 ± 1, -4 ± 2, and -4 ± 1‰ for 2H; 0.7 ± 0.2, 1.0 ± 0.4, and 0.8 ± 0.2‰ for 13C), allowing interpretation of reaction mechanisms of humic substances with phthalate esters. The correlation of 2H and 13C fractions can be used diagnostically to determine photosensitized reactions in the environment and to differentiate among biodegradation, hydrolysis, and photosensitized HS reaction.
Collapse
Affiliation(s)
- Ning Min
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
- Department
of Isotope Biogeochemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Jun Yao
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Hao Li
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Zhihui Chen
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Wancheng Pang
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Junjie Zhu
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
| | - Steffen Kümmel
- Department
of Isotope Biogeochemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstraße 15, Leipzig 04318, Germany
| | - Thomas Schaefer
- Atmospheric
Chemistry Department (ACD), Leibniz Institute
for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hartmut Herrmann
- Atmospheric
Chemistry Department (ACD), Leibniz Institute
for Tropospheric Research (TROPOS), Permoserstraße 15, 04318 Leipzig, Germany
| | - Hans Hermann Richnow
- School
of Water Resources and Environment and Research Center of Environmental
Science and Engineering, Sino-Hungarian Joint Laboratory of Environmental
Science and Health, China University of
Geosciences (Beijing), 29 Xueyuan Road, Haidian District, 100083 Beijing, China
- Department
of Isotope Biogeochemistry, Helmholtz Centre
for Environmental Research − UFZ, Permoserstraße 15, Leipzig 04318, Germany
- Isodetect
Leipzig GmbH, Deutscher
Platz 5b, Leipzig 04103, Germany
| |
Collapse
|
31
|
Yin H, Chen R, Wang H, Schwarz C, Hu H, Shi B, Wang Y. Co-occurrence of phthalate esters and perfluoroalkyl substances affected bacterial community and pathogenic bacteria growth in rural drinking water distribution systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 856:158943. [PMID: 36155042 DOI: 10.1016/j.scitotenv.2022.158943] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 09/01/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
The adverse health effects of phthalate esters (PAEs) and perfluoroalkyl substances (PFAS) in drinking water have attracted considerable attention. Our study investigated the effects of PAEs and PFAS on the bacterial community and the growth of potential human pathogenic bacteria in rural drinking water distribution systems. Our results showed that the total concentration of PAEs and PFAS ranged from 1.02 × 102 to 1.65 × 104 ng/L, from 4.40 to 1.84 × 102 ng/L in rural drinking water of China, respectively. PAEs concentration gradually increased and PFAS slowly decreased along the pipeline distribution, compared to concentrations in the effluents of rural drinking water treatment plants. The co-occurrence of higher concentrations of PAEs and PFAS changed the structure and function of the bacterial communities found within these environments. The bacterial community enhanced their ability to respond to fluctuating environmental conditions through up-regulation of functional genes related to extracellular signaling and interaction, as well as genes related to replication and repair. Under these conditions, co-occurrence of PAEs and PFAS promoted the growth of potential human pathogenic bacteria (HPB), therefore increasing the risk of the development of associated diseases among exposed persons. The main HPB observed in this study included Burkholderia mallei, Mycobacterium tuberculosis, Klebsiella pneumoniae, Acinetobacter calcoaceticus, Escherichia coli, and Pseudomonas aeruginosa. Contaminants including particles, microorganisms, PAEs and PFAS were found to be released from corrosion scales and deposits of pipes and taps, resulting in the increase of the cytotoxicity and microbial risk of rural tap water. These results are important to efforts to improve the safety of rural drinking water.
Collapse
Affiliation(s)
- Hong Yin
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Ruya Chen
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou 310012, Zhejiang, China
| | - Haibo Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Cory Schwarz
- Department of Civil and Environmental Engineering, Rice University, Houston 77005, United States
| | - Haotian Hu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Baoyou Shi
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yili Wang
- Beijing Key Lab for Source Control Technology of Water Pollution, College of Environmental Science and Engineering, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
32
|
Shi YS, Zhao Y, Li XN, Li MZ, Li JL. Xenobiotic-sensing nuclear receptors as targets for phthalates-induced lung injury and antagonism of lycopene. CHEMOSPHERE 2023; 312:137265. [PMID: 36403809 DOI: 10.1016/j.chemosphere.2022.137265] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/06/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Phthalates are extensively used in the production of plastics products and have been verified to induce lung injury. Lycopene (LYC) has proved an effective preventive and can be utilized to prevent phthalates-induced toxicity. However, the role of phthalate in pathogenesis of lung injury remain poorly researched, and little work has been devoted whether LYC could alleviate phthalate-induced lung toxicity via modulating nuclear xenobiotic receptors (NXRs) response. Here, di (2-ethylhexyl) phthalate (DEHP) is used as the representative of phthalates for further studies on toxicity of phthalates and the antagonistic role of LYC in phthalates-induced lung injury. We found that DEHP exposure caused alveoli destruction and alveolar epithelial cells type II damage. Mechanistically, DEHP exposure increased nuclear accumulation of aryl hydrocarbon receptor (AHR) and its downstream genes level, including cytochrome P450-dependent monooxygenase (CYP) 1A1 and CYP1B1. Constitutive androstane receptor (CAR) and their downstream gene level, including CYP2E1 are also increased after phthalates exposure. Significantly, LYC supplementation relieves lung injury from DEHP exposure by inhibiting the activation of NXRs. We confirm that NXRs plays a key role in phthalates-induced lung injury. Our study showed that LYC may have a positive role in alleviating the toxicity effects of phthalates, which provides an effective strategy for revising phthalates-induced injury.
Collapse
Affiliation(s)
- Yu-Sheng Shi
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Yi Zhao
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Xue-Nan Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Mu-Zi Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China
| | - Jin-Long Li
- College of Veterinary Medicine, Northeast Agricultural University, Harbin, 150030, PR China; Key Laboratory of the Provincial Education Department of Heilongjiang for Common Animal Disease Prevention and Treatment, Northeast Agricultural University, Harbin, 150030, PR China; Heilongjiang Key Laboratory for Laboratory Animals and Comparative Medicine, Northeast Agricultural University, Harbin, 150030, PR China.
| |
Collapse
|
33
|
Yuan L, Liu J, Huang Y, Shen G, Pang S, Wang C, Li Y, Mu X. Integrated toxicity assessment of DEHP and DBP toward aquatic ecosystem based on multiple trophic model assays. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:87402-87412. [PMID: 35804233 DOI: 10.1007/s11356-022-21863-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
To comprehensively understand the toxic risks of phthalates to aquatic ecosystems, we examined the acute toxicity of di-(2-ethylhexyl) phthalate (DEHP) and di-butyl phthalate (DBP) on multiple trophic models, including algae (Chlorella vulgaris), Daphnia magna and fish (Danio rerio, Pseudorasbora parva). Thus, a 15-day zebrafish exposure was conducted to trace the dynamic changes of phthalate-induced toxic effects. Among the four species, D. magna exhibited the strongest sensitivity to both DEHP and DBP, followed by D. rerio and P. parva. C. vulgaris exhibited the lowest sensitivity to phthalates. The sub-chronic zebrafish assay demonstrated that 1000 μg/L DBP induced significant mortality at 15 days post-exposure (dpe), and DEHP exhibited no lethality at the tested concentrations (10-5000 μg/L). Zebrafish hepatic SOD activity and sod transcription levels were inhibited by DBP from 3 dpe, which was accompanied by increased malondialdehyde level, while zebrafish exposed to DEHP exhibited less oxidative damage. Both DEHP and DBP induced time-dependent alterations on Ache activity in zebrafish brains, thus indicating the potential neurotoxicity toward aquatic organisms. Additionally, 1000 μg/L and higher concentration of DBP caused hepatic DNA damage in zebrafish from 7 dpe. These results provide a better understanding of the health risks of phthalate to water environment.
Collapse
Affiliation(s)
- Lilai Yuan
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Jia Liu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
- College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Ying Huang
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Gongming Shen
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Sen Pang
- College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Chengju Wang
- College of Sciences, China Agricultural University, Beijing, 100193, People's Republic of China
| | - Yingren Li
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China
| | - Xiyan Mu
- Fishery Resource and Environment Research Center, Chinese Academy of Fishery Sciences, Beijing, People's Republic of China.
- Institute of Quality Standard and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China.
| |
Collapse
|
34
|
Cao Y, Lin H, Wang Q, Li J, Liu M, Zhang K, Xu S, Huang G, Ruan Y, Wu J, Leung KMY, Lam PKS. Significant riverine inputs of typical plastic additives-phthalate esters from the Pearl River Delta to the northern South China Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157744. [PMID: 35926595 DOI: 10.1016/j.scitotenv.2022.157744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/25/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
Phthalate esters (PAEs) are representative additives used extensively in plastics. In this study, 15 PAEs were investigated at the eight riverine outlets of the Pearl River Delta (PRD). The total concentrations of Σ15PAEs, including both the dissolved and particulate phases, ranged from 562 to 1460 ng/L and 679 ng/L-2830 ng/L in the surface and bottom layers, respectively. Dibutyl phthalate (DBP) and di(2-ethylhexyl) phthalate (DEHP) dominated in the dissolved and suspended particulate matter (SPM) phases, respectively, accounting for >50 % and > 80 % of Σ15PAEs. Riverine input of wastewater from the PRD was possibly the primary source of the contamination. Higher levels of PAEs occurred at the eastern outlets than at the western ones. The dissolved and particulate PAEs varied seasonally, with significantly higher concentrations observed in the dry season than in the wet season. However, no significant differences of PAE levels in both phases were observed among low, medium, and high tides. The partitioning results demonstrated that SPM is important in the transportation of pollutants in estuaries, where more hydrophobic DEHP was predominantly transported by the SPM phase, while those more hydrophilic ones were regularly transported by the dissolved phase. The total annual flux of Σ15PAEs through the eight outlets to the SCS reached 1390 tons.
Collapse
Affiliation(s)
- Yaru Cao
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Qi Wang
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Jing Li
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Mengyang Liu
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; National Observation and Research Station of Coastal Ecological Environments in Macao, Macao Environmental Research Institute, Macau University of Science and Technology, Macao SAR 999078, China; Research Centre for the Oceans and Human Health, the City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China.
| | - Shaopeng Xu
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China
| | - Guangling Huang
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Guangdong Research Institute of Water Resources and Hydropower, Guangzhou 510000, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Research Centre for the Oceans and Human Health, the City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China
| | - Jiaxue Wu
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong SAR 999077, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Research Centre for the Oceans and Human Health, the City University of Hong Kong Shenzhen Research Institute, Shenzhen 518057, China; Office of the President, Hong Kong Metropolitan University, Hong Kong SAR 999077, China.
| |
Collapse
|
35
|
Wang C, Guo Y, Feng L, Pang W, Yu J, Wang S, Qiu C, Li C, Wang Y. Fate of phthalates in a river receiving wastewater treatment plant effluent based on a multimedia model. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 86:2124-2137. [PMID: 36378170 DOI: 10.2166/wst.2022.347] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Phthalic acid esters (PAEs) can enter environment media by secondary effluent discharge from wastewater treatment plants (WWTP) into receiving rivers, thus posing a threat to ecosystem health. A level III fugacity model was established to simulate the fate and transfer of four PAEs in a study area in Tianjin, China, and to evaluate the influence of WWTP discharge on PAEs levels in the receiving river. The results show that the logarithmic residuals of most simulated and measured values of PAEs are within one order of magnitude with a good agreement. PAEs in the study area were mainly distributed in soil and sediment phases, which accounted for 84.66%, 50.26%, 71.96% and 99.09% for dimethyl phthalate (DMP), diethyl phthalate (DEP), dibutyl phthalate (DBP) and di-(2-ethylhexyl) phthalate (DEHP), respectively. The upstream advection accounted for 77.90%, 93.20%, 90.21% and 90.93% of the total source of DMP, DEP, DBP and DEHP in the river water, respectively, while the contribution of secondary effluent discharge was much lower. Sensitivity analysis shows that emission and inflow parameters have greater influences on the multimedia distributions of PAEs than physicochemical and environmental parameters. Monte Carlo analysis quantifies the uncertainties and verifies the reliability of the simulation results.
Collapse
Affiliation(s)
- Chenchen Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yaqi Guo
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail:
| | - Lixia Feng
- Tianjin United Environmental Protection Engineering Design Co., Ltd, Tianjin 300191, China
| | - Weiliang Pang
- Tianjin Academy of Environmental Sciences, Tianjin 300191, China
| | - Jingjie Yu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Shaopo Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Chunsheng Qiu
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Chaocan Li
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| | - Yufei Wang
- School of Environmental and Municipal Engineering, Tianjin Chengjian University, Tianjin 300384, China E-mail: ; Tianjin Key Laboratory of Aquatic Science and Technology, Tianjin Chengjian University, Tianjin 300384, China
| |
Collapse
|
36
|
Mohammadi A, Malakootian M, Dobaradaran S, Hashemi M, Jaafarzadeh N. Occurrence, seasonal distribution, and ecological risk assessment of microplastics and phthalate esters in leachates of a landfill site located near the marine environment: Bushehr port, Iran as a case. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156838. [PMID: 35750192 DOI: 10.1016/j.scitotenv.2022.156838] [Citation(s) in RCA: 86] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/12/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
Plastic wastes are produced in a large amount everywhere, and are commonly disposed in landfills. So landfill leachate seems an obvious source of microplastics (MPs) and phthalate esters (PAEs) due to a huge usage as plastic additives and plasticizers. But this issue still lacks attention and the present study provides the first information on the levels of MPs and PAEs in the fresh landfill leachate of Bushehr port during different seasons. The mean levels of MPs and PAEs in the fresh leachate in all seasons were 79.16 items/L and 3.27 mg/L, respectively. Also, the mean levels of PAEs in MPs were 48.33 μg/g. A statistically significant difference was detected in the levels of MPs and PAEs among different seasons with the highest values in summer and fall. MPs with a size of >1000 μm had the highest abundance in all seasons. The most prominent shape, color, and type of MPs in the leachate were fibers black, and nylon, respectively. Dibutyl phthalate (DBP) and Di(2-ethylhexyl) phthalate (DEHP) were the most dominant PAEs present in the leachate samples. The results of this study revealed high hazard index (HI) and pollution load index (PLI) of MPs in all seasons. Dioctyl phthalate (DOP), DEHP, DBP, diisobutyl phthalate (DiBP), butyl benzyl phthalate (BBP), and diethyl phthalate (DEP) represented a high risk to the sensitive organisms. The results of this study showed that significant levels of MPs and PAEs may release into the surrounding environment from the landfill sites without sufficient protection. This issue is more critical when the landfill sites in particular are located near the marine environments like the Bushehr landfill that is located near the Persian Gulf, which can lead to serious environmental problems. Thus permanent control and monitor of landfills, especially in the coastal areas are highly needed to prevent further pollution.
Collapse
Affiliation(s)
- Azam Mohammadi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Mohammad Malakootian
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran.
| | - Sina Dobaradaran
- Systems Environmental Health and Energy Research Center, The Persian Gulf Biomedical Sciences Research Institute, Bushehr University of Medical Sciences, Bushehr, Iran; Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran; Instrumental Analytical Chemistry and Centre for Water and Environmental Research (ZWU), Faculty of Chemistry, University of Duisburg-Essen, Essen, Germany.
| | - Majid Hashemi
- Environmental Health Engineering Research Center, Kerman University of Medical Sciences, Kerman, Iran; Department of Environmental Health Engineering, Faculty of Public Health, Kerman University of Medical Sciences, Kerman, Iran
| | - Neemat Jaafarzadeh
- Environmental Technologies Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
37
|
Jing F, Guan J, Tang W, Chen J. Mechanistic insight into adsorptive removal of ionic NOR and nonionic DEP organic contaminates by clay-biochar composites. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119881. [PMID: 35952988 DOI: 10.1016/j.envpol.2022.119881] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/25/2022] [Accepted: 07/30/2022] [Indexed: 06/15/2023]
Abstract
The synthesis of clay-biochar composite has been recognized as an effective way to enhance the removal of pollutants. The interaction between clay mineral and biomass during thermal pyrolysis and the sorption capacity for ionic/nonionic organic containments have not been elaborated. In this study, two types of biochar were obtained from pyrolytic carbonization of the cellulosic-rich corn straw (C) and lignin-rich pine wood (P) at 500 or 700 °C. Typical clay minerals kaolinite and montmorillonite were selected to prepare clay-biochar composite. The results showed that the addition of clay mineral could strengthen dehydration reaction of corn straw biomass and reinforce its carbon structure. Montmorillonite-biochar composite owned more CC functional groups and porous structure than kaolinite-biochar composite. The addition of clay minerals could promote electrostatic attraction of ionic formed norfloxacin (NOR) on clay-pine wood biochar. However, the sorption capacity of nonionic diethyl phthalate (DEP) adsorption on clay-corn straw biochar decreased, owing to that clay increased the compactness of the biochar carbon structure, thus inhabited hydrophobic partition of nonionic organic compounds on disordered carbon fraction. The results from this study provide insights into the suitable contaminated site remediation by clay-biochar composite.
Collapse
Affiliation(s)
- Fanqi Jing
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| | - Junjie Guan
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| | - Wei Tang
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China
| | - Jiawei Chen
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences, Beijing 100083, PR China; School of Earth Sciences and Resources, China University of Geosciences, Beijing 100083, PR China.
| |
Collapse
|
38
|
Struk-Sokołowska J, Gwoździej-Mazur J, Jurczyk Ł, Jadwiszczak P, Kotowska U, Piekutin J, Canales FA, Kaźmierczak B. Environmental risk assessment of low molecule benzotriazoles in urban road rainwaters in Poland. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 839:156246. [PMID: 35644405 DOI: 10.1016/j.scitotenv.2022.156246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 05/22/2022] [Accepted: 05/22/2022] [Indexed: 06/15/2023]
Abstract
This study aimed to identify and quantify benzotriazoles (BTRs) emissions from road traffic and paved areas in an urban environment. Heterocyclic organic compounds BTRs are an emerging threat, under-recognized and under-analyzed in most environmental and water legislation. They are hazardous, potentially mutagenic, and carcinogenic micropollutants, not susceptible to effective biodegradation, and they move easily through the trophic chain, contaminating the environment and water resources. Traffic activities are a common source of BTR emissions in the urban environment, directly polluting human habitats through the different routes and numerous vehicles circulating in the cities. Using twelve heterogeneous locations scattered over a metropolitan area in Poland as a case study, this research analyzed the presence of BTRs in water samples from runoff produced from rainwater and snowmelt. 1H-BTR, 4Me-BTR, 5Me-BTR and 5Cl-BTR were detected in the tested runoff water. 5Cl-BTR was present in all samples and in the highest concentrations reaching 47,000 ng/L. Risk quotients calculated on the basis of the determined concentrations indicate that the highest environmental risk is associated with the presence of 5Cl-BTR and the sum of 4Me-BTR and 5Me-BTR, and the most sensitive organisms are bacteria and invertebrates. The results indicate that it is possible to associate the occurrence of these contaminants with the type of cover, traffic intensity, and vehicle type.
Collapse
Affiliation(s)
- Joanna Struk-Sokołowska
- Department of Environmental Engineering Technology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland.
| | - Joanna Gwoździej-Mazur
- Department of Water Supply and Sewerage Systems, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Łukasz Jurczyk
- Institute of Agricultural Sciences, Land Management and Environmental Protection, College of Natural Sciences, University of Rzeszow, 35-601 Rzeszów, Poland
| | - Piotr Jadwiszczak
- Department of Air Conditioning, Heating, Gas Engineering and Air Protection, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wroclaw, Poland
| | - Urszula Kotowska
- Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, 15-245 Białystok, Poland
| | - Janina Piekutin
- Department of Environmental Engineering Technology, Faculty of Civil Engineering and Environmental Sciences, Bialystok University of Technology, 15-351 Bialystok, Poland
| | - Fausto A Canales
- Department of Civil and Environmental, Universidad de la Costa, Calle 58 #55-66, 080002 Barranquilla, Atlántico, Colombia
| | - Bartosz Kaźmierczak
- Department of Water Supply and Sewerage Systems, Faculty of Environmental Engineering, Wroclaw University of Science and Technology, 50-370 Wrocław, Poland.
| |
Collapse
|
39
|
Xu H, Liu Y, Xu X, Lan H, Qi W, Wang D, Liu H, Qu J. Spatiotemporal variation and risk assessment of phthalate acid esters (PAEs) in surface water of the Yangtze River Basin, China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 836:155677. [PMID: 35523337 DOI: 10.1016/j.scitotenv.2022.155677] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 04/25/2022] [Accepted: 04/29/2022] [Indexed: 06/14/2023]
Abstract
Spatiotemporal variation, potential sources, and risk assessment of phthalate acid esters (PAEs) in surface water of the Yangtze River Basin were investigated. Total cumulative concentrations of 15 PAEs (Σ15PAEs) ranged from 1594.47 ng·L-1 to 5155.50 ng·L-1, and the dominant components were di (2-ethylhexyl) phthalate (DEHP) (35.9-60.1%), dibutyl phthalate (DBP) (16.6-38.8%), and diisobutyl phthalate (DIBP) (6.7-18.2%). Σ15PAEs in surface water showed a trend of normal season > wet season > dry season. Σ15PAEs increased from the upstream (2341.7 ± 428.5 ng·L-1) to the mid- and downstream (3892.1 ± 842.8 and 2504.3 ± 355.9 ng·L-1, respectively), indicating the influence from production and consumptions of plasticizer-containing items. PAEs additives emission from daily necessities (28.9-62.3%) and construction and industrial production (18.7-31.2%) were the dominant sources of PAEs in this study. The risk quotient (RQ) method was employed to assess the potential ecological risk of specific components. High ecological risk of DEHP to the sensitive algae and crustacean, together with moderate ecological risk of DEHP and DIBP to the sensitive fish species were found in surface water regardless of the region and season. The spatial distribution of RQ values showed an increasing trend from the upstream to the midstream and downstream of the Yangtze River, indicating the influences from regional urbanization and industrialization levels.
Collapse
Affiliation(s)
- Hui Xu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yang Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Xiong Xu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huachun Lan
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Weixiao Qi
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Donghong Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Huijuan Liu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiuhui Qu
- Center for Water and Ecology, State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
40
|
Use of Typical Wastes as Biochars in Removing Diethyl Phthalate (Det) from Water. Processes (Basel) 2022. [DOI: 10.3390/pr10071369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Diethyl phthalate (DEP), one of the six typical PAEs priority pollutants declared by the US EPA, has attracted tremendous attention due to its widespread pollution and was selected as the adsorbate in this study. Properties of biochar samples obtained from three different feedstocks, i.e., sawdust (SDBC), rice straw (RSBC), and giant reed (GRBC), pyrolyzed at 400 °C as well as their ability to adsorb DEP from an aqueous solution were investigated. The results showed that the adsorption kinetics were well fitted with the pseudo-second-order model (R2 > 0.99) and the intraparticle diffusion model (R2 > 0.98). The maximal adsorption capacity of the DEP by the prepared biochar was in an order of GRBC (46.04 mg g−1) > RSBC (31.54 mg g−1) > and SDBC (18.39 mg g−1). The higher adsorption capacity of DEP by GRBC is mainly attributed to the higher surface area. The reduction in adsorption capacity of the biochar against DEP with an increase in the solution pH (from 2.5 to 10.0) was possibly due to promoting the electrostatic repulsion between the DEP and the surface of the biochar. However, the increasing sodium ionic strength promoted the adsorption of the biochar, which could be interpreted by the reduced solubility of the DEP due to enhancing “salting out” effects as increasing sodium concentration. In addition, it was favorable for the adsorption of DEP onto the biochars at a lower temperature (15 °C) and the calculated ∆G0 was less than zero, indicating that the adsorption was a spontaneous and exothermic process. These experiments designate that these derived biochars can be used as an inexpensive adsorbent for the purification of PAEs contaminated water.
Collapse
|
41
|
Wu SS, Zhu WJ, Wang C, Suo CL, Zhang W, Li CY, Fu HH, Zhang Y, Sun ML, Wang P. Genomic analysis of Thalassospira sp. SW-3-3 reveals its genetic potential for phthalate pollution remediation. Mar Genomics 2022; 63:100953. [DOI: 10.1016/j.margen.2022.100953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 11/17/2022]
|
42
|
Wang X, Zhang Z, Zhang R, Huang W, Dou W, You J, Jiao H, Sun A, Chen J, Shi X, Zheng D. Occurrence, source, and ecological risk assessment of organochlorine pesticides and polychlorinated biphenyls in the water-sediment system of Hangzhou Bay and East China Sea. MARINE POLLUTION BULLETIN 2022; 179:113735. [PMID: 35567961 DOI: 10.1016/j.marpolbul.2022.113735] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/01/2022] [Accepted: 05/05/2022] [Indexed: 06/15/2023]
Abstract
The pollution characteristics, potential sources, and potential ecological risk of organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) were investigated in the Hangzhou Bay (HZB) and East China Sea (ECS). Total OCPs concentration ranged from 2.62 to 102.07 ng/L and 4.41 to 75.79 μg/kg in the seawater and sediment samples, with PCBs concentration in the range of 0.40-51.75 ng/L and 0.80-45.54 μg/kg, respectively. The OCPs were positively correlated with nutrients, whereas PCBs presented a negative correlation. The newly imported dichlorodiphenyltrichloroethane (DDT) in HZB is mainly the mixing of technical DDT and dicofol sources. The PCB source composition is more likely related to the mixture of Kanechlor 300, 400, Aroclor 1016, 1242, and Aroclor 1248. Risk assessment results indicate that OCPs posed low risk in seawater. The potential risk of DDTs in the sediments is a cause of concern.
Collapse
Affiliation(s)
- Xiaoni Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Zeming Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Rongrong Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics and Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, PR China
| | - Wenke Dou
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jinjie You
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Haifeng Jiao
- College of Biological and Environment Science, Zhejiang Wanli University, Ningbo 315100, PR China
| | - Aili Sun
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Jiong Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China
| | - Xizhi Shi
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Marine Sciences, Ningbo University, Ningbo 315211, PR China.
| | - Dan Zheng
- Ningbo Academy of Oceanology and Fisheries, Ningbo, 315042, PR China
| |
Collapse
|
43
|
Le TM, Thi Pham CL, Nu Nguyen HM, Duong TT, Quynh Le TP, Nguyen DT, Vu ND, Minh TB, Tran TM. Distribution and ecological risk assessment of phthalic acid esters in surface sediments of three rivers in Northern Vietnam. ENVIRONMENTAL RESEARCH 2022; 209:112843. [PMID: 35101399 DOI: 10.1016/j.envres.2022.112843] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 01/15/2022] [Accepted: 01/24/2022] [Indexed: 06/14/2023]
Abstract
Pollution status and distribution characteristics of ten typical phthalic acid esters (PAEs) were investigated in 36 sediment samples collected from three rivers in Northern Vietnam from June to October 2020. The total concentrations of PAEs in sediment samples collected from the To Lich River (n = 9), the Nhue River (n = 12), and the Day River (n = 15) were in ranges of 11,000-125,000 ng/g-dwt (mean/median: 50,000/42,200 ng/g-dwt), 2140-89,900 ng/g-dwt (mean/median: 29,300/20,700 ng/g-dwt), and 1140-43,100 ng/g-dwt (mean/median: 13,800/10,400 ng/g-dwt), respectively. Among ten PAEs studied, di-(2-ethylhexyl) phthalate (DEHP) was found at the highest levels in all samples meanwhile dimethyl phthalate (DMP), diethyl phthalate (DEP), and dipropyl phthalate (DPP) were detected at low frequency and concentration. Significant correlations have existed between the median-chain (C4-C7) PAE pairs in sediment samples. Due to the high accumulation in the sediments, the median-chain PAEs had a higher ecological risk than the short-chain (C1-C3) PAEs. These contaminants may present a longstanding influence on organisms and ecosystems.
Collapse
Affiliation(s)
- Thuy Minh Le
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam; Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Chi Linh Thi Pham
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Ha My Nu Nguyen
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam; Ha Tinh University, Cam Vinh commune, Cam Xuyen District, Ha Tinh, Viet Nam
| | - Thi Thuy Duong
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam.
| | - Thi Phuong Quynh Le
- Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Dong Thanh Nguyen
- Institute of Environmental Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Nam Duc Vu
- Center for Research and Technology Transfer, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet Road, Cau Giay, Hanoi, Viet Nam
| | - Tu Binh Minh
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam
| | - Tri Manh Tran
- Faculty of Chemistry, University of Science, Vietnam National University, Hanoi, 19 Le Thanh Tong, Hanoi, Viet Nam.
| |
Collapse
|
44
|
Shen Y, Jiang Z, Zhong X, Wang H, Liu Y, Li X. Manipulation of cadmium and diethylhexyl phthalate on Rana chensinensis tadpoles affects the intestinal microbiota and fatty acid metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 821:153455. [PMID: 35093358 DOI: 10.1016/j.scitotenv.2022.153455] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 01/17/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
Gastrointestinal tract and intestine microbiota can both have deep effects on the lipid metabolism and immune function of amphibians. Additionally, the composition and structure of the microbial community are influenced by environmental pollutions. It is noteworthy that environmental compounds such as Cd and DEHP are pervasive in the aquatic environment and do not exist in isolation, and single exposure experiments cannot well explain the effects of unpredictable interactions between co-existing compounds on amphibians. In this study, we calculated the parameters of morphological and histological indices of Rana chensinensis tadpoles after treated with Cd and/or DEHP. The 16S rRNA gene sequencing technology was used to assess the relative abundance of intestinal microbial community among tadpoles from each treatment groups. We also examined the mRNA expression levels of lipid digestion and absorption and SCFAs related-genes. Our results indicated that all morphological and histological indices were significantly declined in the Cd treatment group, while the mixed treatment group was similar to the control group. Compared with the control group, the relative abundances of Firmicutes, Proteobacteria and Verrucomicrobia exhibited distinctive differences in Cd and/or DEHP treatment groups. Further, RT-qPCR results revealed that the expression levels of lipid metabolism and SCFAs related-genes were also significantly altered among the treatment groups. Taken together, the present study highlighted a new evidence that the alterations in intestinal microbial community and mRNA expression levels of larval amphibians after exposure to Cd and/or DEHP may impair lipid storage and transport, as well as reduce anti-inflammatory capacity, which may ultimately lead to a decline in amphibian populations.
Collapse
Affiliation(s)
- Yujia Shen
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Zhaoyang Jiang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyi Zhong
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Hemei Wang
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Yutian Liu
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China
| | - Xinyi Li
- College of Life Science, Shaanxi Normal University, Xi'an 710119, China.
| |
Collapse
|
45
|
Nas B, Ateş H, Dolu T, Yel E, Argun ME, Koyuncu S, Kara M, Dinç S. Evaluation of occurrence, fate and removal of priority phthalate esters (PAEs) in wastewater and sewage sludge by advanced biological treatment, waste stabilization pond and constructed wetland. CHEMOSPHERE 2022; 295:133864. [PMID: 35150704 DOI: 10.1016/j.chemosphere.2022.133864] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 12/29/2021] [Accepted: 02/01/2022] [Indexed: 06/14/2023]
Abstract
Phthalate Esters (PAEs), detected in high concentrations generally in treated wastewater discharged from wastewater treatment plants (WWTPs), are important pollutants that restrict the reuse of wastewater. Investigating the fate of these endocrine-disrupting chemicals in WWTPs is crucial in order to protect both receiving environments and ecosystems. For this purpose, di(2-ethylhexyl) phthalate (DEHP), di-n-octyl phthalate (DNOP) and benzyl butyl phthalate (BBP) in the group of PAEs were monitored in simultaneously both in wastewater and sludge lines of selected two nature-based WWTPs and one advanced biological WWTP. Although it was frequently stated that phthalates were significantly removed in WWTPs in many studies found in literature, negative removal efficiencies of selected phthalates in investigated WWTPs during the sampling period were observed generally in this study. One of the reasons for this concentration increase could be releasing of phthalates from microplastics in wastewater during the treatment process or the desorption of PAEs from treatment sludge. DNOP was the compound with the highest concentration increase at almost each treatment unit of the three WWTPs. On the other hand, total PAEs load was 1997 g d-1 in advanced biological WWTP and adsorption onto sludge of PAEs were determined as 90%. The side-stream total load returned from the decanter supernatant was 0.02% of the total PAEs load coming to advanced biological WWTP from the sewer system. As a result of detailed statistical analysis, the correlation between raw wastewater and primary clarifier (PC) effluent was determined as an increasing linear relation for DEHP and DNOP. On the other hand, moderate and strong correlations were observed both between septic tank and constructed wetland (CW) processes with raw wastewater. In the waste stabilization pond (WSP), while a significant correlation was not found between the sludge line data, homogeneous variance, strong and moderate correlations were obtained in the wastewater line data. However, while mean differences for all investigated PAEs were not significant (p > 0.05) in the wastewater line, mean differences of DEHP (p < 0.05) were significant in the sludge line according to ANOVA analysis.
Collapse
Affiliation(s)
- B Nas
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - H Ateş
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - T Dolu
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - E Yel
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - M E Argun
- Department of Environmental Engineering, Konya Technical University, Konya, Turkey.
| | - S Koyuncu
- Konya Metropolitan Municipality, Environmental Protection and Control Department, Konya, Turkey.
| | - M Kara
- Çumra Vocational High School, Selçuk University, Konya, Turkey.
| | - S Dinç
- Çumra School of Applied Sciences, Selçuk University, Konya, Turkey.
| |
Collapse
|
46
|
Lyu L, Liang H, Huang Y, Ding H, Yang GP. Annual hypoxia causing long-term seawater acidification: Evidence from low-molecular-weight organic acids in the Changjiang Estuary and its adjacent sea area. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151819. [PMID: 34838564 DOI: 10.1016/j.scitotenv.2021.151819] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 06/13/2023]
Abstract
In this study, components, concentrations, distribution characteristics, sources of low-molecular-weight organic acids (LMWOAs) and relationships among the annual hypoxia, LMWOAs and seawater acidification were investigated in the Changjiang Estuary and its adjacent sea area in July 2015. Lactic, acetic and formic acids were detected in the seawater samples in the study area, and their total concentrations (ΣLMWOAs) varied from 0 to 262.6 μmol·L-1, with an average value of 39.2 μmol·L-1. In the surface seawater, high concentration areas of ΣLMWOAs occurred in the sea area near the Changjiang Estuary and the Hangzhou Bay, and north of study area. In the sampling stations along transect A6, high concentration areas of ΣLMWOAs appeared in the bottom seawater of nearshore stations and middle seawater of offshore stations. The terrigenous inputs, especially the Changjiang runoff, were the dominant sources for LMWOAs in the sampling period. The consistency of hypoxia areas, high concentration areas of ΣLMWOAs and low pH value areas in winter and summer suggested that annual hypoxia could cause the long-term seawater acidification by producing LMWOAs in the Changjiang Estuary and its adjacent sea area.
Collapse
Affiliation(s)
- Lina Lyu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, Guangdong, PR China; Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, PR China
| | - Haorui Liang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, PR China; South China Sea Marine Survey and Technology Center, State Oceanic Administration, Guangzhou 510300, PR China
| | - Yuhuan Huang
- Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, PR China
| | - Haibing Ding
- Qingdao National Laboratory of Marine Science and Technology, Qingdao 266100, PR China; Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, PR China; Qingdao Collaborative Innovation Center of Marine Science and Technology, Ocean University of China, Qingdao 266100, PR China.
| | - Gui-Peng Yang
- Qingdao National Laboratory of Marine Science and Technology, Qingdao 266100, PR China; Key Laboratory of Marine Chemistry Theory and Technology, Ocean University of China, Ministry of Education, Qingdao 266100, PR China
| |
Collapse
|
47
|
Li Z, Liu Y, Zhang D, Feng L, He X, Duan X, Li X, Xie H. Distribution and environmental risk assessment of microplastics in continental shelf sediments in the southern East China Sea: A high-spatial-resolution survey. MARINE POLLUTION BULLETIN 2022; 177:113548. [PMID: 35303635 DOI: 10.1016/j.marpolbul.2022.113548] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
We report a high-spatial-resolution study on the distributions, characteristics, and environmental risks of microplastics in surface sediments of the southern East China Sea. Microplastics were omnipresent in the sediments (concentration range: 53.3-246.7; mean: 138.4 particles/kg dry-weight sediment) and enriched in nearshore areas close to urban centers relative to lower offshore concentrations. The microplastics identified were dominated by polyethylene (41.2%) and polyethylene terephthalate (19.9%) in polymer type, fibers (45.8%) and fragments (40.3%) in shape, 0.1-0.5 mm (61.0%) in size, and black (52.0%) in color. The benthic environment experienced low to moderate microplastic pollution, with polyvinylchloride exhibiting the highest ecological risk index. The high-resolution sampling revealed highly diverse polymer types and strongly patchy distributions of microplastic abundance and pollution indices in sediments. Results from this study imply that complex physical, biological, and topographic interactions control the distribution of microplastics and the associated environmental risks in coastal sediments.
Collapse
Affiliation(s)
- Zhaozhao Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China; Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski G5L 3A1, Canada
| | - Yandong Liu
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Dahai Zhang
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Lijuan Feng
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China
| | - Xingliang He
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, China
| | - Xiaoyong Duan
- Qingdao Institute of Marine Geology, China Geological Survey, Qingdao 266071, China
| | - Xianguo Li
- Key Laboratory of Marine Chemistry Theory and Technology (Ocean University of China), Ministry of Education, Qingdao 266100, China.
| | - Huixiang Xie
- Institut des sciences de la mer de Rimouski, Université du Québec à Rimouski, Rimouski G5L 3A1, Canada.
| |
Collapse
|
48
|
Cao Y, Li J, Wu R, Lin H, Lao JY, Ruan Y, Zhang K, Wu J, Leung KMY, Lam PKS. Phthalate esters in seawater and sediment of the northern South China Sea: Occurrence, distribution, and ecological risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 811:151412. [PMID: 34742950 DOI: 10.1016/j.scitotenv.2021.151412] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/27/2021] [Accepted: 10/30/2021] [Indexed: 06/13/2023]
Abstract
In this study, the occurrence and distribution of 15 phthalate esters (PAEs) in seawater and sediment from the northern South China Sea (NSCS) were investigated for the first time to improve understanding on the contamination status of PAEs in this region. The concentrations of total PAEs (∑15 PAEs) were found to range from 68.8 to 1500 ng/L, 46.0 to 7800 ng/L, and 49.2 to 440 ng/g dry weight in surface seawater, bottom seawater, and sediment, respectively. Among the 15 PAEs, dibutyl phthalate (DBP) and bis(2-ethylhexyl) phthalate (DEHP) were the predominant PAE congeners, with mean contributions of 44.7% and 24.0% in surface water, and 42.7% and 25.8% in bottom water, respectively. Moreover, diisobutyl phthalate (DiBP) constituted the majority of ∑15 PAEs in the sediment (61.3%). Comparatively high concentrations of Σ15 PAEs were observed in seawater at the sites within the western NSCS, whereas relatively higher concentrations of Σ15 PAEs were detected in sediments at the eastern NSCS. River input and atmospheric deposition could be the main sources of PAEs in the NSCS. Preliminary risk assessment implied that DBP, DiBP, and DEHP posed low to high potential risks for marine organisms at different trophic levels. These results would be valuable for implementing effective control measures and remediation strategies for PAEs contamination in the region.
Collapse
Affiliation(s)
- Yaru Cao
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Jing Li
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Department of Transportation and Environment, Shenzhen Institute of Information Technology, Shenzhen 518172, China
| | - Rongben Wu
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Huiju Lin
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Jia-Yong Lao
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China
| | - Yuefei Ruan
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Kai Zhang
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Research Centre for the Oceans and Human Health, The City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China.
| | - Jiaxue Wu
- School of Marine Sciences, Sun Yat-sen University, Zhuhai 519082, China
| | - Kenneth M Y Leung
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Paul K S Lam
- State Key Laboratory of Marine Pollution, and Department of Chemistry, City University of Hong Kong, Hong Kong, SAR, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China; Office of the President, Hong Kong Metropolitan University, Hong Kong, SAR, China.
| |
Collapse
|
49
|
Chen CF, Ju YR, Lim YC, Wang MH, Patel AK, Singhania RR, Chen CW, Dong CD. The effect of heavy rainfall on the exposure risks of sedimentary phthalate esters to aquatic organisms. CHEMOSPHERE 2022; 290:133204. [PMID: 34914947 DOI: 10.1016/j.chemosphere.2021.133204] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Revised: 11/19/2021] [Accepted: 12/05/2021] [Indexed: 06/14/2023]
Abstract
Phthalate esters (PAEs) have known widely being used in plastic products leading to being ubiquitous in the environment by easy to release from those products. This study aims to understand the impact of heavy rainfall on the concentration of PAEs in surface sediments of the Salt River in Kaohsiung, Taiwan, and its potential ecological risks on aquatic organisms. The potential ecological risk assessment of sediment PAEs is based on the total risk quotient (TRQ) method. The total concentration of 10 PAEs (∑PAE10) in sediments of the Salt River is 333-13,615 ng/g dw, with an average of 4212 ± 3753 ng/g dw. Before the rainy season, the ∑PAE10 concentration in sediments at the outlets of domestic sewage in upstream was 9768-13,615 ng/g dw, which were relatively higher than other sites (542-3721 ng/g dw). During the rainy season, the ∑PAE10 concentration was 2820-12,041 ng/g dw, which was 1-11 times higher than that determined before the rainy season. After the rainy season, the ∑PAE10 concentration recorded was 530-6652 ng/g dw, which is 1-11 times lower than the value obtained during the rainy season. PAEs in sediments of the Salt River may have low to moderate potential risks to algae, crustaceans, and fish. Bis(2-ethylhexyl) phthalate (DEHP) and diisobutyl phthalate (DiBP) are the main PAE that poses a potential risk to algae and crustaceans, and to fish respectively, whose values of risk quotient accounts for 40-69% of the TRQ value. The distribution of TRQ values for these aquatic organisms show a decreasing trend of PAEs level with respect to the rainy season: during the rainy season > after the rainy season > before the rainy season. Heavy rainfall may cause more serious pollution in sediments and increase the exposure risk of PAEs to aquatic organisms.
Collapse
Affiliation(s)
- Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Yun-Ru Ju
- Department of Safety, Health and Environmental Engineering, National United University, Miaoli, 36063, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan; Sustainable Environment Research Center, National Kaohsiung University of Science and Technology, Kaohsiung City, 81157, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, 81157, Taiwan.
| |
Collapse
|
50
|
Hidalgo-Serrano M, Borrull F, Marcé RM, Pocurull E. Phthalate esters in marine ecosystems: analytical methods, occurrence and distribution. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116598] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|